Strategies for SAT-based Formal Verification

by

Vishnu C. Vimjam

Dissertation submitted to the Faculty of
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Dr. Michael S. Hsiao, Chair
Dr. Dong S. Ha
Dr. Sandeep K. Shukla
Dr. R. Michael Buehrer

Dr. Ezra Brown

January 29, 2007
Bradley Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Keywords: Learning, Model Checking, Equivalence Checking, ATPG, SAT, BDD
Copyright(©) 2007, Vishnu C. Vimjam

To my loving parents

Basavaiah Naidu and Indira

Strategies for SAT-based Formal Verification

Vishnu C. Vimjam

Abstract

Verification of digital hardware designs is becoming an increasingly complex task as the designs are incor-
porating more functionality, becoming complex and growing larger in size. Today, verification remains a
bottleneck in meeting time-to-market requirements and consumes more than 70% of the overall design-costs.
Traditionally, verification has been done using simulation-based approaches, where a set of appropriate test-
stimuli is used by the designer. As the designs become more complex, however, simulation-based techniques
often fail to capture corner-case errors. Furthermore, unless exhaustively tested, these approaches do not
guarantee the correctness of a system with respect to its specifications. As a consequence, formal methods
for design verification have been sought after. In formal verification, the conformance of a design to a
given set of specifications is proven mathematically, thereby leaving no room for unexplored search spaces.
Despite the exponential time/memory complexities often involved within the formal approaches, they have

shown promise in capturing subtle bugs, which were missed otherwise.

In this dissertation, we focus on Boolean Satisfiability (SAT) based formal verification, which has gained
tremendous importance in the recent past. Importantly, SAT-based approaches often alleviate the mem-
ory explosion problem, which had been a bottleneck of the traditional symbolic (Binary Decision Diagram
based) approaches. In SAT-based techniques, the set of verification tasks are converted into a set of Boolean
formulae, which are checked for satisfiability using a SAT solver. These problems are often NP-complete
and are prone to an explosion in the required run-time. To overcome this, we propose novel strategies which
utilize both structural and logical information of a sequential circuit. In particular, we devise techniques

to extract non-trivial invariants of a design, strengthen properties such that they can be proven faster and
interleave bounded reachability analysis with bounded model checking. We provide the necessary algo-
rithms and implementation details in order to automate the proposed techniques. Experiments conducted
on a variety of benchmark circuits show that orders of magnitude improvement in overall run-times can be

achieved via our techniques compared to the existing state-of-the-art SAT-based approaches.

Acknowledgements

It gives me immense pleasure to thank my advisor Prof. Michael Hsiao for his continued inspiration and
guidance throughout my stay at Virginia Tech. Without his profound vision and my endless hours of discus-
sions with him, this dissertation would not have been possible. | am extremely thankful to Prof. Dong Ha,
Prof. Sandeep Shukla, Prof. Michael Buehrer and Prof. Ezra Brown for serving on my PhD committee and

their valuable suggestions in improving my dissertation.

I am thankful to Sreejit Chakravarty and Srikanth Venkataraman for providing me valuable internship op-
portunities at Intel Corporation. My discussions with both of them and my supervisors Yi-Shing Chang,
Ruifeng Guo and Enamul Amyeen were very helpful and increased my insight to the state-space explosion
problem. | would also like to thank Prof. Thomas Martin, Prof. Joseph Tront, Prof. Lynn Abbott and Prof.

James Baker for their encouragement and guidance provided during my Masters’ days at Virginia Tech.

My sincere thanks to all Proactive Lab colleagues Kameshwar Chandrasekar, Manan Syal, Shuo Sheng,
Qingwei Wu, Xiao Liu, Gordon Zhang, Xiaoding Chen, Puneet Gupta, Rajat Arora, Shrirang Yardi, Karthik
Channakeshava, Maheshwar Chandrasekar, Ronnie Lajaunie, Bin Li, Danling Chen, Lei Fang, Weixin Wu,
Xuegi Chen and Nannan He for all the good times and several valuable discussions during the course of my
PhD. | am also thankful to all my room-mates for their support and help during my stay in Blacksburg. Last
but not the least, | would like to thank my family, friends and well-wishers for their constant encouragement

and support throughout my academic career.

Vishnu C. Vimjam

January 2007

Table of Contents

ableof Contents e e e \Y
... ix
Listof Tables e e e Xi
[Chapter T Tntroduction] 1
[L.1 DesignFlow e 2
[I.2 Design Verification and Complexity Issbes 3
1.3 Why Formal Verification? e 4
1.4 _Contributions of this Dissertation e 5
[I.5 Dissertation Organizatibn 7
[Chapter 2 Preliminaries 9
2.1 Terms and Notatiohs e e e 9
[2.2 The Boolean Satistiability Problem o oL 11
2.3 SAT-based EquUIVAlENce CRECRING o v v v v e e e e 15
2.4 SAl-based Model Checking 17
[2.4.1 SAT-based Unbounded Model Checking 18
[2.4.2 SAT-based Bounded Model Checking 21
2.4.3 SAT-basedInductibn 24

[Chapter 3 Tncreasing Deductibility in SAT Instances 27
3.1 Motivation e e 27
3.2 RelatedWork e 28
[3.3 Increasing the Deductibility for SAT-basedBMC 30
[3.3.1 Learning via Justification Enumeration 31
[3.3.2 Learning via Justification Frontier o0 33
[3.4 Efficiency Issues e 35
[3.5 Experimental Evaluation 36
.. 40
[Chapter 4 lllegal State Identification 43
M1 Motivation e e 43
4.2 Related WOIK o e e e e e e 44
4.3 Fastlllegal State Extraction 44
[4.3.1 TearningUsing AnATPIG 45
[4.3.2 Unachievable Partial-State Learfiing 50
[4.3.3 Exploiting LogicTmplicatiods 52
[4.3.4 UnifiedFramework 54
4.4 Experimental Results e 55
A5 SUMMANY . . . o oo e e e e e e e 57
[Chapter 5 Property Strengthening 60
B1 Motivation e e 60
[°.2 Property Strengthening Usingan AlIPG 62

Vi

5.3 Pre-selection and Derivation of Co-invariants 67
6.4 OverallFlow and DISCUSSIDN o o it 70
0.0 EXperimental Results e 70
.. 73
[Chapter 6 Interleaving BMC and Bounded Reachability Analysis 75
0.1 MOtIvation e e e e 75
[6.2 Proposed Searching Framework 76
B2Z21 Basicldga. e 76
[6.2.2 Controllability-bpased Guiding 79
[6.3 Overall Algorithmh e e 81
6.4 Experimental Results e 81
B5 SUMMANY . . . o v o o e e e e e e e e 86
[Chapter 7 Static Invariant Extraction | 87
L1 MOTIVAaLIONM e e e e e e e e 87
[[.2 _Static Invariant EXtraction e e 89
[(.2.1 Generation of Candidate Invariants 90
[/.2.2 Pruningthe Candidate 5et 91
/2. Verification of Candidates e e 94
[7.3 ExperimentalResults e 95
7A SUMMANY . . . o oo oo e e e e e e e 100
[Chapter 8 Conclusions and Future Work 102
Bibllography e e 105

Vil

\Vital 114

viii

List of Figures

2.1 Circuit Notations|. e e e 10
tyle goritnM | e e 13
2.3 CEC Framework|. e e e 15
2.4 Example State Transition Graph e 20
2.5 BMC Framework for Safety Properties] oo 22
[3.1 Example ImplicationLearning| 29
[3.2 Example Learning via Justification Enumerationf. 32
3.3 Example Learning via Justification Frontier| 34
[3.4 Example Cumulatve BMC Runtimeg 42
4.1 Learning via ATPG| e e 46
|4.2 Sufficient Implication Examplego oL 50
4.3 Unachievability Learning Examplel. oL 54
4.4 Enumeration BDD Examplg 55
4.5 Cumulative run-timesforb14.2 57
2.1 CircutUnrolling |. e 62
BT EXample STGS o o o o o e e e e e e 77

6.2

Basic idea of proposed methad

7.1

Sequential circuit and ItS exXpansIon e e e e e e e e e

7.2

Region Of Influence for a Gate-value assignmeht

73

Example Invariant Extraction |

List of Tables

2.1 Workingofa DPLL procedure| 14
3.1 Improvementin Deductibility|. 37
3.2 BMC results tor safety properties for ISCAS and ITC Benchmarkg 38

4.1 Induction runs for safety properties| e e e 59
[5.1 Results tor induction runs for safety properties 74
[6.1 State Justification Experiments on ISCAS and ITC Benchmarks. 84

[6.2 Reachability of First/Last 100 States among 5000 states 85

[6.3 Maximum induction depth reachedinonehour 86
[7.1 SATRunsforgatdepth k| 88
/.2 Results for Invarlant Extraction| e 97
|[7.3 Results for Induction Runs for Safety Properties 98

Xi

Chapter 1

Introduction

Today’s computing systems are becoming increasingly complex due to the huge number of features added
for realizing high-end applications. These include critical systems such as space applications, medical diag-
nosis systems, secure banking systems, etc. Digital integrated circuits (IC) form an important component in

these systems and range from small end micro-controllers to very complex special purpose processors. As
the size and complexity of these IC designs keep on increasing, the ultimate products become increasingly
error prone. These errors can be present in the initial design itself or introduced in the middle due to human

interference or due to buggy design automation tools. It is quintessential that all the logical or physical

errors of an integrated circuit be cleared before the final product is released.

While the verification tasks are applied to both hardware and software of the underlying system, this dis-
sertation will focus mainly on the verification of the hardware. We note that the techniques introduced
for bounded model checking, property strengthening, etc., can be incorporated into software verification
as well. In the following sections, we will introduce the design flow in VLSI designs and the necessity of
design verification. We will talk about some of the issues in verification and point out why verification tasks
should be done formally. Finally, we provide the main contributions of this dissertation and provide the

overall flow of this document.

Chapter([l} Introduction 2

1.1 Design Flow

The design process of a system starts with a set of user-defieeificationsFor example, when designing

a traffic-light controller, we require that no two perpendicular sides have the green signal simultaneously.
Such specifications are taken into account while designing a system and it is crucial that the system con-
forms to thewholeset of specifications. Sometimes, the set of specifications itself might not be complete,
which leaves room for unspecified behavior of the system. Such a lack of specification may sometimes be

intentional, where the user does not bother about what the system does in those cases.

The set of specifications are first modeled at the behavioral level. Then a structural description at the Register
Transfer Level (RTL) is derived. This process is knownBsehavioral synthesis and is often used for
Application Specific Integrated Circuit (ASIC) design. In cases where critical adherence to criteria such as
area requirements is needed, designers may directly model structual RTL from the specifications without
going through behavioral synthesis. The structual descriptions are then synthesized to gate-level net-lists
and then to a lower circuit (transistor/schematic) level. This is knowhaggc synthesis. The circuit
schematic is then converted into a physical layout and a chip is fabricated using these layouts and adding

the input-output pads, etc|[1].

Besides the transformation of a design from one level to another, it is modified or optimized at each level.
Designmodificationsare usually done to add more functionality or to make the design meet the specifi-
cations in a stricter sense or to improve the testability of a designOn the other handyptimizations

are done to improve the system’s performance, which include reducing the latency/cycle-time, decreasing
the area, minimizing the power consumption, etc. In most cases, these optimizations are automated at the
RTL and lower levels using computer-aided design tools. Manual optimizations such as those done at the

architectural level or placement of functional blocks are also very common [1].

Chapter([l} Introduction 3

1.2 Design Verification and Complexity Issues

The termDesign Verificationusually refers to various aspects of verification of a design. These include
Functional verification, Timing verification, Power verification, etc. In functional verification, the function-
ality of a design is verified for correctness. In timing verification, the design is checked to see if it satisfies
the timing specifications. Note that a design can be functionally correct but might not be producing the
outputs at thepecifiedime. Similarly, in power verification, a design is checked if it satisfies certain power

constraints such as leakage power, maximum instantaneous power, etc.

In this dissertation, we focus on functional verification which is often categorized into two types: (i) Static
verification which formally verifies designs with respect to their functional specifications and (ii) Dynamic
verification which usually employs simulation based techniques and aims at increasing coverage (such as
state coverage, transition coverage etc.) of the test-bench. Dynamic verification is also referred to as Design

Validation.

Depending of the size and type of a given functional block, the complexity of a verification task can vary.
It also varies according to the kind of specification being verified. For example, it may be non-trivial to
estimate the cost-difference of verifying if a violation occursaiy clock-cycle compared to verifying if

the same violation occurs ingavenclock-cycle. Verification of a functional block becomes more complex
when it is integrated as a part of a bigger system. For example, to check if a divide by zero error occurs in a
division unit, we need to check if the output of the unit feeding the divisor can ever be zero. Such tasks are

usually referred to aSystem-levalerification.

In the worst case, the complexity of a verification task camt@onentiain time as well as memory which

forms the major bottleneck for verification techniques. When the design size is small, verification can be
performed fairly easily with the state-of-the-art computing systems. But as a design’s complexity or size
increases, the time/memory complexity in verification increases exponentially. For example, a design with
30 state-elements can have more than a billion reachable states and checking if a given property holds in
the design might require checking all those states. As today’s designs have tens to hundreds of thousands of

state-elements, methods to reduce the exponential costs of verification is a must.

Chapter([l} Introduction 4

1.3 Why Formal Verification?

Formal verification deals with establishing a complete proof for verifying a system with respect to its spec-
ifications. Conventionally, one can use test-benches (or test-patterns) thatiuéreely generated by the
designer to check if the design has any bugs. However, there are several limitations behind such approaches:
(i) Creation and application of test stimuli often requires great expertise both on the part of the design en-
gineer and the verification engineer, (ii) Corner-case errors existing in the implementation might not be
covered by the manually-generated test-stimuli, (iii) Automation or manual generation of test stimuli at a
full-chip level is very time consuming. As opposed to applying such tests, an exhaustive simulation of all the
test vectors can be conducted to cover allpgbssiblescenarios. However, this requires simulating a huge
number of input patterns which can be impractical even for medium-sized designs. As a result, techniques
for formally verifying a system have been sought after in the past. Such techniques are referifeatioshs

Methods

Formal methods employ mathematical proof procedures to fully verify a system with respect to its spec-
ifications. Some of the underlying engines used in formal methods include techniques that employ Au-
tomatic Test Pattern Generation (ATPG), Symbolic engines, and/or Boolean Satisfiability (SAT). Among
these, ATPG and SAT based techniques are propositional procedures and try to establish that no counter-
example exists for a given verification task. On the other hand, symbolic methods employ graph-based data
structures (such as Binary Decision Diagrams (BDDs)) and verification is performed by performing logical
operations or quantifications on these structures. Although operatiomslereddecision diagrams can be
performed in linear time with respect to their sizes, the main disadvantage is that the graphs themselves are
prone to an explosion in size. In general, ATPG/SAT procedures are prone to an explosion in time, whereas

the BDD based approaches are prone to an explosion in memory.

Despite these inherent limitations within formal methods, they have shown much promise in verifying sys-
tems in their entirety. For several industrial designs, they were used to find subtle bugs in the past that were
not captured via simulation-based approaches. Thus, as a design’s size/complexity grows, formal verifica-

tion becomegssentiahs opposed toptional

Chapter([l} Introduction 5

1.4 Contributions of this Dissertation

In this dissertation, we focus on SAT-based formal verification approaches with an emphasis on SAT-based
Bounded Model Checking [2] and Inductidn [3] techniques for safety properties. We study various limita-
tions of these approaches in terms of efficiency for safety property checking and propose novel strategies
to improve their performance. Below, we present a high-level overview of our contributions whereas the

detailed techniques, algorithms and experimental results can be found in Chaptefs 3 to 7.

There are several limitations in terms of efficiency in the SAT-based Bounded Model Checking and Induc-
tion techniques. For checking safety properties, a design is unrolled for several cycles and checked to see if
starting from the initial state, the design satisfies the specifications which are written formaibpasgties

For a given property, if nothing can be concluded within an unrolled bound, the bound needs to be increased
to check if the property is refuted/proved at a higher bound. As the bound is increased, the Boolean for-
mula generated to be solved by a SAT solver increases linearly. However, even such a linear increase in
size leads to an increase the problem complexity exponentially. This directly relates to the efficiency of
BMC/Induction approaches. Experiments|[4, 5] have shown that these approaches are often successful for
properties that can be proven within smaller bounds while they explode in time for properties that require
longer bounds to be proven. Existing improvements such as Incremental Learning [6, 7, 8], improved order-
ing schemes [9, 10] and Simplification techniques|[11, 12] etc. improve the efficiency at a given bound but
do not have the capability to prove properties at smaller bounds than required otherwise. In this dissertation,
we provide automated techniques that aim at proving safety properties at smaller bounds so that the overall

runtimes can be significantly smaller. These are described below.

When a circuit is converted to a Boolean formula in Conjunctive Normal Form (CNF), the circuit gates
are associated with Boolean variables. As a result, all the logical relationships among the circuit gates
also exist in the CNF formula. However, when the Boolean formula is given to a SAT solver, it may not
understand these relations, which limits their ability to perform efficient Boolean Constraint Propagation
(BCP). In Chaptef |3, we present two new techniques to identify two-node sequential logic implications

among the gates which can be converted appropriately and added to the Boolean formula [13]. To efficiently

Chapter([l} Introduction 6

learn these relations, we unroll the circuit a small number of cycles and use our techniques to compute
implications that might span more than one cycle. We show that our techniques can learn highly non-trivial
implications which when added to the Boolean formula improves the BCP process of the SAT engine and

aids in earlier backtracking [13].

Next, we propose novel technigues in Cha@er 4 and ChEbter 7 to prm/propertie efficiently. Since
Bounded Model Checking aims egfuting properties, it suffers while proving true properties, where the
design needs to be unrolled very long to complete the proof. This can be overcome by using induction
techniques [3] which uses a assume-verify procedure to prove true properties faster. However, the efficiency
of induction techniques depends on the respective property at hand. Whereas it proves several properties
at smaller bounds, it suffers for those that require larger bounds to be proved. Looking from a different
perspective, if we extract illegal state-spaces efficiently and use them as constraints in the induction runs,

we can prove harder properties at smaller depths.

In Chaptef #, we propose novel techniques for fast identification of illegal state spaces. We employ ATPG
based learning, exploit logic implications and use an enumerative framework to learn more illegal states
[14]. Experiments reveal that, when all the learned states are used as constraints at the state-boundaries in

induction runs, we are able to prove several true properties that were hard to prove otherwise using induction.

In Chaptef J, we present novel approaches to learn invariants of a design. The main idea here is behind
our motivation that hard-to-prove true properties can be proved by knowing information about other true
properties|[15]. We propose two models from which we extract candidate invariants and prove them using
induction. All those candidates that are proved are again added as constraints in induction runs. Experi-
mental results show that we are able to prove further hard-to-prove true properties. This led to orders of

magnitude improvements in property checking runtimes [15].

Whereas the techniques mentioned above aid in proving true properties faster, they do not have the capability
to refutefalse propertie at lower depths. To overcome this limitation, we propose new techniques for

strengthening properties and for performing a deeper search for hard properties [16, 17]. In [Ghapter 5, we

Ytrue properties are those that are satisfied by the design
%false properties are those that are not satisfied by the design

Chapter([l} Introduction 7

propose our property strengthening techniques. We employ ATPG-based pre-image computations and co-
invarianﬁ extractions to efficiently enlarge the property|[16]. Resolution and Dynamic variable ordering are
further employed to improve the quality of strengthening. Once a property is strengthened, it can be verified
using BMC/Induction similar to the original property. Experimental results have shown that the proof-depths
can be reduced significantly thereby achieving several orders of magnitude runtime improvements. As
opposed to the above techniques, strengthening enables in proving both passing as well as failing properties

faster.

In Chaptef B, we present a novel approach that can refutefllaegbroperties which require long counter-
examples to be violated. The main idea is to follow a sequence of states, in the forward direction from the
initial state(s) and in the reverse direction from the target state(s) and employ a bounded model checker to
check if at least one backward state can be reached from one forward state [17]. To achieve this, we augment
depth-first bounded reachability analysis together with bounded model checking. Such a framework is very
powerful because of the exponential numbeneivstates that might be covered compared to conventional
bounded model checking. While doing so, due to the strengthened target states, true properties can also
be proved earlier via induction runs. We further employ controllability-based guiding techniques such that
states collected via the depth-first search are tuned toward reaching the targets faster [17]. Comparison
with state-of-the-art incremental learning techniques and sequential SAT solvers show that our technique

out-performs them in most cases by reaching the target state faster.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows:

e Chaptef P provides the necessary background to formal verification while discussing in detail about

SAT-based techniques, their capabilities and limitations

e Chaptef B proposes two new techniques for implication learning that aim at improving the efficiency

3co-invariants for a property are those that should be invariant if the property is an invariant

Chapter([l} Introduction 8

of SAT-based Bounded Model Checking

Chaptef # presents a novel framework for fast identification of illegal states and their application to

enhance SAT-based induction runs

Chaptef b presents our property strengthening techniques which enables us to prove properties faster

using SAT-based Induction

Chaptef b proposes a novel framework that interleaves bounded reachability analysis together with

bounded model checking which can reach deeper target states that are hard to reach otherwise

Chaptef ¥ presents our static invariant extraction technigques, which enables us to prove harder prop-

erties of a design

Chaptef B concludes the dissertation with several directions for future work

Chapter 2

Preliminaries

In this chapter, we provide the necessary background to SAT-based verification techniques. We first intro-
duce the Boolean Satisfiability (SAT) problem, followed by its application to Formal Verification. We then
describe all the SAT-based approaches to Equivalence Checking, Unbounded Model Checking, Bounded
Model Checking and SAT-based Induction.

2.1 Terms and Notations

Throughout this dissertation, we use the following terms and notations: We represent a combinational circuit
asC =< X, T, Z >, whereX is the set of primary-inputd; is the combinational logic and is the set of

primary outputs in the circuit. A sequential circuit is representefl as< X,Y,T,Y’, Z >, whereX and

Z are the primary inputs and primary outputs, respectivély;” denote the present and next state elements

of the circuit andl" represents its transition function. A combinational circuit is shown in Figuje 2.1(a), a
sequential circuit is shown in part (b) of the same figure, and a sequential circuit unrolf¥difoe-frames

(or clock-cycles) using the iterative logic array (ILA) model is shown in Figurg 2.1(c). In an ILA model of a
sequential circuit, the next-state elements of a given time-frame are connected to the present-state elements

of the immediate next time-frame.

Chapter[2} Preliminaries 10

Boolean gates are denoted with upper-case alphabets suéh(als etc. We use the seB = {0, 1}

to represent the Boolean logic values. The lower-case alphabets etc. are used to denote Boolean
valued variables and, v1, etc, denote their complements. The tenmdeis used to represent a logic value
assignment to a gate. We represent a nod&,as whereG is a gatep € B andt € {1,2,.., N}. In other
words, gate(z is assigned to value in time-framet, wheret is limited to the N time-frames. In cases
where necessary, we usdor any time-frame and not necessarily betwekeand V. For combinational
circuits, we represent a node simply@s (without the time-frame parametér. We use the symbol to
refer to the conjunction of the nodes awdo refer to their disjunction. We refer to logic simulation as the
propagation of logic assignments with the three val{&s,U }, whereU is the unknown logic value. We
useq to represent a property of a design.

PI
-

PI(1) PI(2) PI(N)
g L COMB|; ps()y Ll | PS@) Lll----1 PS(Q3) LI | PS(N+1)
— COMB f[(— T | — frame frame = — frame &
PI . PO M55 21 ‘ 2 L N
| T [PO NS(OH‘,,,,‘ NS(1) M1 NS(2) e NS(N)
PO(1) PO(2) PO(N)
(a) Combinational Circuit (b) Sequential Circuit (c) Seq Circuit Unrolled for N time—frames

Figure 2.1. Circuit Notations

Definition 2.1: A gate is said to bepecifiedf it is assigned a logic value € B. If its value is unknown

(U), then it isunspecified

Definition 2.2: A specified gate(, is said to baunjustified(by its inputs) if the current assignments of its

inputs do not justify the output value of the gate.

For example, let an OR gate hasn faninsG1, G2, ..Gn. If G is assigned to logic valug but none of its
inputs are assigned tg thenG is an unjustified gate. The notion of justification can be easily understood

for other gate types.

Definition 2.3: A design is said to baitializable if it can be brought to a completely specified state from

an all-unspecified initial state, viafiite input vector sequence or via an explicit reset signal.

Definition 2.4: A nodeG, is said to beachievabldf starting from an all unknown initial state, there exists

Chapter[2} Preliminaries 11
at least ondinite input vector sequence that can drive a vala gateGG (in somet). Otherwise(,, is said
to beunachievable

Definition 2.5: A property ¢ is said to banvariant if that property holds in all the reachable states of the

sequential desigh. Formally, this is written as$' = ¢.

For an initializable design, at least one @f, or G will be achievable, wheré&' € {set of gates in the

circuit}. If G, is unachievableiy will be an invariant.

We use the terrtogic implication(or simply implication) to refer to the causal relationship between a set of
nodes. An implicatiorG1,; A G2,0 — (G3,3 means that whenever the assignm@it= v1 andG2 = v2

is true, the gaté:'3 cannot be assigned to valug.

In the next section, we provide preliminaries to the Boolean Satisfiability problem.

2.2 The Boolean Satisfiability Problem

Boolean Satisfiability (SAT for short) is the first known NP-complete problem. It was proved to belong to

the class of NP-complete in 1971 by S. Cook|[18].

In the SAT problem, a Boolean formula involving a set of propositional variables is given. This formula can
be in Disjunctive Normal Form (DNF) or the Conjunctive Normal Form (CNF). Most of the current day’s

SAT solvers work on CNFs and hence we will describe it below:

A CNF formulaF =< ¢, 1, v > consists of a conjunction of a set of clauses, where

e Each clause is a disjunction of literals
e Each literall is a positive or negative occurrence of a variable

e Each variable is propositional which can take valuesB

An example CNF formula consisting of 4 clauses is given below, wiereX 2, X3, X4, X5 are Boolean

Chapter[2} Preliminaries 12

variables:F' = (X1V X2) A (— X2V X3) A (—X2V X4) A (—X3V —X4V X5). The number of literals

in each clause is referred to teezeof the clause. If the size is 1, then it is callediait-clause A CNF
instance is referred to /2CNF if all the clauses have sizes k. Any k’-CNF can be reduced tolaCNF,
wherek’ > k, k > 3, by adding new variables and using them to shorten longer clauses. Whereas SAT

problems in DNF form can be solved in polynomial tirkeCNF problems withk > 3 are NP-complete.
The Boolean Satisfiability problem in the CNF form can be formally stated as follows:

Given a set of clauseS with variables that take value assignmertd3, does there exist a satisfying truth

assignment to the variables such that all the clauses are satisfied?

Looking from one perspective, this problem is a simplified version of the class of optimization problems
(such as ILP). In an optimization problem, we aim at finding a solution such that a given objective is either
minimized or maximized. Whereas, in the Boolean Satisfiability problem, we simply search fongist
arbitrary satisfying solution. Also note that, Boolean Satisfiability is a subset of the general Satisfiability
problem in that the variables can only take binary values. There exists several variations of the SAT problem

such as MAXSAT, HORNSAT, etc.

One of the initial forms of SAT solving was done using Binary Resolution [19]. This is called the Davis-
Putnam procedure. In Binary Resolution, two clauses can be combined and resolved on a common variable
that appear in opposing polarities to yield a new clause. This process can be repeated until there are no more
such common variables between the two clauses. For example, the above first two ctauseX& 2) and

(—X2 Vv X3) when resolved orX2 yields (X1 Vv X3). In the DP-style SAT solving, binary resolution is
repeated until we get unit-clauses with each variable having a literal in at least one of these unit-clauses.
If these unit-clauses are not consistent (i.e., a variable appears in positive form in one unit-clause and in
negative form in another), then that CNF formula is proved to be unsatisfiable. Otherwise, the corresponding
truth assignments give a satisfying assignment to the variables. This kind of SAT solving, however, suffers
from memory explosion due to the exponential number of new clauses, cedlelyentsthat are derived

during the solving process.

This has been improved using a new procedure called DPLL (Davis-Putham-Love-Longland), where a deci-

Chapter[2} Preliminaries 13

sion tree is constructed with the propositional variables. In this style of SAT solving, resolution is performed
only implicitly and the truth assignments under any given branch of the decision tree are saithfiibe

If there isat least ongath in the decision tree leading to a solution that has consistent variable assignments,
then the formula is said to be satisfiable. If no such path exists, then it is unsatisfiable. The pseudo-code for
a DPLL style solver is shown in Figure 2.2. Since the decision tree is built over the set of variables with each
parent-node having a maximum of 2 children-nodes, thiselkpenentiatime complexity. However, note

that there are no new clauses stored during the process and hence there is no memory-explosion problem.

SAT_Solver()
{

If (atleast one clause violated) return false;

If (all clauses satisfied) return true and exit;

(X, v) = MakeNextDecision(); // use a decision heuristic
Deduce(X=v); /I Boolean Constraint Propagation
SAT_Solver(); // recurse

Deduce(X=not(v)); // Boolean Constraint Propagation
SAT_Solver(); // recurse

Unspecify(X);

Figure 2.2. DPLL Style SAT Algorithm

As seen from the algorithm, the DPLL procedure tries to incrementally build a satisfying truth assignment
M for a CNF formulaF'. M is grown by deducing the truth value of a literal by using already existing
assignments id/, or by guessing the value of a variablefin If a guess for a variable leads to an inconsis-
tency, the procedure backtracks and tries the opposite value.[Table 2.1 gives a simple formula and explains

step-by-step how the DPLL procedure works.

Most of the modern SAT-solvers are of the DPLL style and are tuned for high-performance. These solvers
include, but not limited to, GRASP [20], SATO [21], Chaff [22], BerkM|n [23], Siege|[24], and MiniSAT
[25] etc. The concepts of Conflict-Driven Learning (CDL) and Non-Chronological Backtracking (NCB)
have been introduced in the GRASP algorithm|[20] which led to a break-through and inspired much of
recent developments in SAT solvers. In CDL, upon a conflict, new clauses are extracted by analyzing the

nature of each conflict under a given path of the decision-tree. These clauses, when added to the original

Chapter[2} Preliminaries 14

Table 2.1. Working of a DPLL procedure

Operation| Assignment Formula,F’ Status
- - (avb)(bvevd)(avb)(aveVd)(a) start
deduce a a=1 (T)(bvevd)(b)(ev J)() unknown
deduce b b=0 (T)(evd)(T)(evd)(T) unknown
guess c c=1 (T)(d)(T)(d)(T) unknown
deduced d=1 (MIM(MH(L)(T) conflict
undo ¢ - (T)(evd)(T)(evd)(T) unknown
guess c c=0 (MM)(MH(T)(T) satisfied

Assignment sefa=1, b=0, c=0, d=0/Lis a model forF’

clause database, constrain the search space by avoiding entering the same conflict space. Subsequently, it
directs the search toward the non-searched regions. Note that due to this addition of clauses, SAT solving
via CDL is prone to memory explosion. When compared with the original DPLL algorithm, CDL gives

rise to a trade-off between time and memory. However, practical results have shown that the amount of
savings in execution time usually outweighs the rather small amounts of additional memory requirements.
Furthermore, if the number of conflict-induced clauses is large, ranking of these newly added clauses can be

made, and those less-useful clauses may be removed [22, 23].

Other high-performance oriented features of the modern SAT solvers include 2-literal watching [21, 22],
efficient decision heuristic$ [22, 23], efficient clause management [23], better resolution of canflicts [26]
and efficient implementation [25], etc. Note that, in spite of all these improvements [27], the complexity of
SAT solving is still exponential in the worst case. There has been a tremendous amount of research being
conducted these days [28] to identify better SAT solving techniques. Much research has also been dedicated
to developing pre-processor engines for SAT such aks [29, 30, 31] etc. These engines try to simplify and
minimize the CNF instances such that the resulting CNFs can be solved faster using the conventional SAT
solvers. Experiments have shown that in many cases significant runtime improvements can be achieved via
preprocessing. Whereas most of the practical solvers are general purpose, research is also being done to

tune the SAT solvers for specific applications such as verification.

Chapter[2} Preliminaries 15

The main frameworks in SAT-based Formal Verification are SAT-based Equivalence Checking and SAT-

based Model Checking, which are described in the rest of this chapter.

2.3 SAT-based Equivalence Checking

Equivalence checking forms an important part in the design verification process. Due to erroneous mod-
ifications or optimizations to the implementation, bugs can be added into the design. Hence, whenever a
design is modified/optimized in any way, it is essential to check it for equivalence with respect to the original
design. Currently, equivalence checking tools are employed to verify the equivalence of RTL models to the
transformed net-list model (after logic synthesis) or the equivalence of two net-list models implementing the

same functionality.

Y1 z1
XOR
i Y2 72
Original XOR OR |
Design
Zn
m XOR
X1
i: Optimized
n) .
Design
Xm

Figure 2.3. CEC Framework

Let C be a multi-output combinational circuit with primary inputsX'1, X2, ..., Xm andn primary outputs
Y1,Y2,..,Yn. LetC’ be the modified/optimized circuit ¢f with outputsY'1’, Y2/, ...,Y'n'. To verify that

C = C', amiter circuit [32] is constructed as shown in Figurg 2.3. In this miter circuit, each corresponding
primary output-paif’’s andY '’ from the two circuits are fed to an XOR gate, whose output forms a local
miter Zi. All such local miters £¢) are then fed to an OR gate to obtain the final global miter output

The objective of an equivalence checker is to verify thas a tautology O; in other words, to verify = 1

is unachievable. In SAT-based equivalence checking, the miter circuit is first converted to a CNF formula

along with the added constraint claus€) (If the resulting CNF is satisfiable, then a satisfying solution

Chapter[2} Preliminaries 16

exists. Such a solution serves as a counter-example and can be used to debug the design. On the other hand,
if the CNF is unsatisfiable, it can be concluded that the optimized circuit is functionally equivalent to the

original (golden) one.

As mentioned earlier, a general-purpose SAT solver might not be competitive enough for equivalence check-
ing purposes. Whereas they perform well in easy-to-solve cases, additional learning is necessary to solve the
hard instances. Tuning the SAT checks for Equivalence checking has been exploited in several ways. Ex-
amples include Robust Boolean reasoning [33], Recursive Learniiig [34, 35], Exploiting local refations [36],

Signal correlation guided solving [37,/38], etc.

While combinational equivalence checking is known to be a coNP-hard problém [39], sequential equivalence
checking is considered EXP-space complete [40]. Instead of simply checking the combinational logics for
equality, verifying sequential equivalence involves verifying the equality of outpuedanyreachable state

of the product-machine of both the implementation and the golden models.

There exists several notions of equivalence in sequential circuits, which differ in the assumption(s) made
with respect to the operation and working environment of the sequential circuit. For circuits with an ex-
ternal reset state, a notion of reset-equivalence is defined, according to which, two sequential circuits are
said to be equivalent if their input-output behaviors are identical after reset. Reset equivalence assumes
that the external environment is capable of generating the reset signal for both circuits under consideration.
However, many real designs do not have an external reset|state [41]. For circuits without an external reset,
other notions of sequential equivalence have been definéd [41,42]43,44]! In [42], the notion of sequential
hardware equivalence (SHE) has been proposed, which considers two sequential circuits as equivalent if
their input-output behaviors are identical after an initialization sequence has been applied. However, SHE
requires the preservation of only one initializing sequence and as a consequence, it can lead to erroneous de-
sign replacements if the design environment cannot generate the specific initializing sequence under which
the replacement is verified against the original design| 1h [43], a notion of design replacement in terms of
sequential redundancy is proposed. Another classification of sequential equivalence called 3-valued safe
replaceability was introduced in [44]. In contrast to the above classifications, the notions of safe replace-

ability and delay replaceability [41] do not make any assumptions either about the design-environment or

Chapter[2} Preliminaries 17

about the steady state behavior of the design (such as initialization). Although safe replaceability provides a
more general form of design replacement compared to delay replaceability [41], it is more practical to target

verification of delay replaceability of sequential circuits.

Conventional techniques for sequential equivalence checking are based either upon binary decision dia-
grams (BDD) or upon automatic test pattern generators (ATPG). Due to the recent progress in SAT solvers,
sequential equivalence checking using SAT procedures have been explored. Interested readers are referred

to [45/46] 40] for more details on SAT-based sequential equivalence checking.

2.4 SAT-based Model Checking

Model checking deals with the verification of design (or a model) with respect to a given set of specifications
(or properties). In model checking [47,48], the design to be verified is modeled as a Kripke structure (or a
finite-state machine) and the properties are written in temporal logic. The reachable states of the design are

traversed from an initial state to verify these properties formally.

A property can be of two types$ [48]: (i) Safety and (ii) Liveness. Safety properties are formulated to
verify that nothing bad will happen in the design. These include properties sudkwes x Always X

After x Never yAfter x Always yAfter x Always y Unless z, et¢-or example, the condition that no two
perpendicular streets should have the green traffic signal simultaneously, is a safety property. Liveness
properties are formulated to verify that something good will eventually happen as the system keeps running.
These include properties suchBgentually x, After x Eventually y, After x Eventually y Unless z, ledc.

example, verifying that an acknowledgment eventually occurs after a request is made, is a liveness property.

Early model checking algorithms aexplicit in the sense that they work directly by traversing the State
Transition Graph (STG) of the design. However, as the design size grows, constructing an STG itself will be
impractical since the number of states can be exponential. Hence, the practicality of explicit model checking

is very limited.

A breakthrough in the form of Symbolic Model Checking (SMC) using BDDs was introduced n [49] to

Chapter[2} Preliminaries 18

efficiently automate the model checking process (without needing explicit STGs). Symbolic Model Check-
ing uses efficient Boolean encodings to compactly represent Kripke structures/finite-state machines. By
replacing the transition relation and the sets of states with BDD structures, SMC is shown to handle much
larger designs. In particular, Boolean function manipulations using ordered BDDs can be performed in
linear time [50] with respect to the size of the BDDs. However, an ordered BDD is highly sensitive to its
variable order and quickly explodes if a bad ordering is used. Due to this fact, the applicability of symbolic
methods remains limited to small/medium-sized designs. Interested readers are referred to [51] for efficient
implementation of a BDD package and [to [[52,53/ 54, 55, 56,57, 58] for efficient variable ordering schemes

for constructing reduced ordered BDDs (ROBDDs).

Due to the advent of high-performance SAT solvers, SAT-based techniques for model checking have recently
gained industry-wide acceptance over the symbolic methods. All the tasks that need to be verified, are con-
verted to propositional Boolean formulas which can be checked for satisfiability using a SAT solver. Based
on the nature of the model checking approaches, SAT-based Model checking can be further classified into
two categories (i) SAT-based Unbounded Model Checking and (ii) SAT-based Bounded Model Checking.

We will detail these in the following sections.

2.4.1 SAT-based Unbounded Model Checking

In SAT-based Unbounded Model Checking (UMC), a SAT solver is employed to perform reachability anal-
ysis of the design and verify its correctness with respect to a property heta property to be checked
and letSy be the set of initial-state(s) of the mod#. In property checking, we want to verify ¥/ = ¢.
Putting it in a different way, if there exists a path from any initial state to a state that satigfiéken we

know that the model does not satisfy the property
The two fundamental steps in reachability analysis are Image and Preimage computations.
Definition 2.6: The set of all states that can be reached in one step from asdtatas the Image of.

Definition 2.7: The set of all states that can reach a stateone step forms the Preimageof

Chapter[2} Preliminaries 19

Given a sequential circuit of the fort =< X,Y,T.,Y’, Z >, the characteristic function of the image set

for a set of state$' can be computed as below:
Img(s)=3xIy(SAT)

Here, the symbol refers to the existential quantification. The right hand side of the above equation exis-
tentially quantifies the input variables and the present state variablédrom s A T" and results in a set of

states involving the next state variablé§ This set of states form the image 8f The above equation can

be used repeatedly to find the set of states that can be reached in 1, 2, 3, ... clock cycles and so on. Once
the set of states reach a fix-point (s@ympleteImg(s)), that set represents the complete set of reachable

states of the design. This type of analysis is usually catedvard Reachability Analysis

As an example of forward reachability analysis, consider the simple state transition graph shown in Figure
[2.4, wheres0 is the initial state. The stated, s2 ands3 are reachable frors0 in one step and form the
image set for0. Similarly, only one state4 is reachable from1 which forms the image of1. Continuing

this way in forward direction, we can obtain a fixed-point which consists of all the reachable states that can
be reached from the initial stat®. It is easy to see from this example, that the design has 9 reachable states

while others are illegal (exampk& ands10).

Similarly, the characteristic function of the preimage set for a statn be computed using the following

equation:
PreImg(s) = 3x3y (TN S)

In contrast to the Image operation, note that here we quantify the next state variabldsus the result is

a set of states involving the present state variableg/hich forms the preimage af This can be repeated
as before to obtain all the set of states that can reach, 2, 3, ... clock cycles and so on. Once we reach a
fix-point (say,Complete PreImg(s)), the final result gives the complete set of states that can reaidhis

type of analysis is usually calldglackward Reachability Analysis

As an example of backward reachability analysis, again consider the STG shown in[Figure 2.4. Let us

consider a target state 1. This state can be reached from, s9 ands10 in one step which forms the

Chapter[2} Preliminaries 20

RO O
&) (D

@?@@
& © @

Figure 2.4. Example State Transition Graph

preimage set of11. Similarly, only one state6 can reacts9 which forms its preimage set. Continuing this
way in the backward direction, we reach a fixed-point which consists of all the set of states that can reach
s11. If the initial states0 is present in such a set (as does in this example), then we know that there exists a

path froms0 to the target statel 1 of the design.

Now consider another target stat&). Its preimage set i$s7} and the state7 has no predecessors. So
we reached a fixed-point with statésl0, s7}. In this case, we can conclude there does not exist a path
from the initial statesO to the states10 of the design thereby learning thattO is illegal (as well as all its

predecessors).

From the above examples, we can see that both forward and backward analyzisnpteteprocedures
themselves and in general there does not exist a clear distinction as to which procedure is more efficient.
However, one might judiciously apply either one depending on the underlying engines he is using to perform
the analysis or by using his/her intuition about the design. For example, if we know that a design has
significantly more reachable states than unreachable states and if a target state is intuitively unreachable, it
might be efficient to perform backward reachability, since a fixed-point might be reached faster. Likewise,

if we know that the design has significantly more unreachable states than unreachable states and if a target

state is intuitively unreachable, it might be better to perform forward reachability.

Similarly, for reachable target states, intuition might be applied. For example, the&tweae be reached

via only one path frony0. In such cases, performing a backward reachability might be efficient since the

Chapter[2} Preliminaries 21

sets of preimage states traversed and stored can be significantly smaller than the image states.

Besides performing only forward or only backward reachability analysis, one can also interleave them [49,
59]. In such cases, certain number of forward and backward steps are computed in each iteration and checked
to see if they intersect with at least one state. Note that the efficiency of such an interleaving depends entirely

on the target at hand and the nature of the corresponding state transition graph of the design.

In SAT-based UMC, the fundamental image and preimage operations are done usiigauation SAT

solver [59,60,61]. Note that a general-purpose SAT solver simply givesesolution (if exists) for a given

CNF formula. On the other hand, afi-solution SAT solver computes all the satisfying solutions. If we
extract the assignments for variablésor Y in all these solutions, that would yield the corresponding Image

or Preimage. As opposed to the BDD-based computations, the SAT-based procedures do not necessarily rely
on canonicity and the set of states reached are simply stored as a set of clauses. To avoid reaching the same
solution space agaiflocking clausesire added which allows for automatic variable quantifications. The
clauses obtained at the end of an iteration can be used as the starting states for the next iteration and so
on. Experiments [60, 62, 63] conducted have shown that SAT based approaches often complete reachability

analysis for large designs which were hard for BDD-based approaches.

To verify if M = ¢, whereg is a safety property, we can simply check if the s8tsnpleteImg(Sy) and
Complete PreImg(—¢) has any state in common. If so, then there exists a path from a stéjeara state
satisfying—¢. This path can be used as a counter-example to debug the design. In practice, the ifsjage of
and the preimage of¢ are computed one step at a time and checked for intersection. The number of steps
needed for terminating the process depends on the property-at¢halfids indeed holds for the design,

there will not be a counter-example at any step and the process needs to be continued until a fixed-point is

seen in either forward or backward direction.

2.4.2 SAT-based Bounded Model Checking

Bounded Model Checking (BMC) based on SAT procedurés [2] is an alternative verification approach as

compared to the above Unbounded Model checking. In UMC, the images and preimages are computed

Chapter[2} Preliminaries 22

explicitly. Whereas in BMC, we simply search for the existence of a patloohdedength betweers, and

those state(s) satisfyingy (whereg is a safety property). To perform this, a Boolean formula is constructed

by unrolling the circuit into several time-frames together with a monitor circuit. This constructed formula is
satisfiable if and only if the underlying transition system can realize a bounded sequence of state transitions

that exposes a path frofy to —¢.

A typical BMC framework for safety property checking is shown in Figure 2.5 witgreepresents the

initial state(s),T1, 7>, ..., Ty represent each unrolled transition, aRd P, ..., P, represent the property
assertions in each unrolled copy. (Hefe= —¢ and the monitor circuit is a logical OR function). The total

CNF instance can be obtained by concatenating the CNF formul&s fdb, 11, ..., T, andPy, Ps, ..., Py

and the monitor circuit. Given such a CNF instance, the SAT solver performs an implicit exploration of the
reachable states to verify whether the property assertion is satisfiable within the lduoch Sy. If the

CNF formula for the BMC instance is satisfiable, a counter-example (trace) is generated which exposes an

error in the design. If the property is not satisfiable, then the necessity of increasing the bound comes into

. J O
H

MONITOR

play.

i OUT (=1?)
Figure 2.5. BMC Framework for Safety Properties

Note that, similar to the UMC case, the effectiveness of BMC depends on the property-at-hand. If the
property can be refuted with a short counter-example (i.e., within a small bound), then BMC is very efficient.
On the other hand, if the property is an invariant (i.e., holds forever), we need to increase the bound until
the sequential diameter|[2] of the circuit is reached. dianeterof a design can be defined as the largest
simple path in its state transition graph. In other words, it is the maximum distance between any two states

s; ands; such thats; is reachable froms;. Diameter of a design can be exponential in terms of the number

Chapter[2} Preliminaries 23

of state-elements and as a consequence, BMC based approaches are limited in practice to only refutation
of properties within small bounds. Interested readers can refer to [64] for efficient diameter estimation

techniques.

As a simple example, again consider the state-transition graph shown in Figure 2.4. Its diameter is 6 (for
example, patl30-s1-s4-s6-s8-s11). Let ¢ be a simple safety property that can only be violated at state
Initially, we check if the initial state0 can violatep. Since it cannot be violated, we unroll the design for

one time-frame and check for violations @ft the next state elements while setting the starting stai@ to
During decision making, the SAT solver implicitly searches the states2 ands3 that are the only ones
reachable in the first cycle. Since these do not viofatee further increase the number of unroliments (i.e.
bound) to 2 and continue the process. Finally, when we reach a bound of 4, we can reach Hieasidtbe

SAT solver produces a counter-example (eit¥tek2-s5-59, or s0-s3-s5-s9). On the other hand, if we were

given a propertyp that can be violated only at stat€gsor s10, we would not have found a counter-example

even as the bound is increased until the diameter of 6. In such cases, we can conclyde dhahvariant.

Whereas BMC can be used straightforward to check safety properties, liveness property checking is slightly
more complex. For example, to check a liveness progergntually x we need to verify that all paths from

the starting state lead to In other words, if there does not exist a infinite path that goes through only the

bad states (i.e. those violating, then the liveness property holds. Such a check can be formulated using
BMC [2]. Initially, we set bound to 1 and check if a state satisfyifigcan be reached in one cycle. If so,

then not all paths satisfyin one cycle and we need to increase the bound to 2. While doing so, we assert
that—z holds in cycle 1 and check if a state satisfying can be reached in cycle 2. If so, we can repeat the
process by increasing the bound. On the other hand, at any given bound, if the SAT check is unsatisfiable,
then that means there does not exist an infinite path that goes only through the bad states and hence we can
conclude the liveness property holds. For more details on SAT-based Liveness checking, readers are referred

to [2,[65].

Since BMC aims at solving Boolean formulae using propositional SAT procedures, it enjoys several ad-
vantages and at the same time has several limitations. The main advantages of BMC can be formulated as

follows: (i) Linear conversion time to CNF formulae especially for hardware designs. This is because once

Chapter[2} Preliminaries 24

a translation is obtained for a single unroliment of the circuit, it can simply be replicated without additional
analysis. (ii) SAT-solving techniques have taken a plunge and several high-performance SAT solvers such
as zChaff|[22], BerkMin[[23], Siegé [24], MiniSAT [28tcare available (iii) Incremental learning possible

and helpful in many cases. This is because of the replicated nature of the clauses in BMC instances. When
a BMC instance is constructed for an unrolled sequential circuit, most of the clauses in the combinational
logic are replicated while retaining the already existing combinational logic clauses. Thus, learning conflict
clauses while solving smaller instances, and carrying them over while solving larger instances can be greatly
beneficial in solving the larger instances efficiently. (iv) No serious memory explosion problem especially

at smaller depths.

BMC despite being practical for providing counter-examples for false properties, suffers from two main
limitations: (i) The technique is theoretically incomplete unless the bound is increased until the diameter of
the system. In other words, BMC suffers heavily while solving true properties. As mentioned above, finding
diameter is also another reachability problem. (i) Explosion in time at higher depths. This is because, as
the bound is increased, the number of variables and clauses increase linearly. However, even such a linear
increase leads to exponential increase in solving complexity. Thus BMC is efficient for solving properties

that can be refuted via smaller counter-examples.

To overcome the above limitations, several approaches have been proposed in the past: These include Incre-
mental learning [6,7,8], Improved ordering strategies|[6,8,66,9], BDD-based learning mechanisnis [67,68],
and CNF simplification techniques [11,/12]. Furthermore, when a BMC instance is proved unsatisfiable
using a SAT solver, we can learn the UNSAT @)ﬁ@m the SAT engine. This UNSAT core information is

exploited in various ways [69, ¥0,[71] to efficiently abstract the design according to the property-at-hand.

2.4.3 SAT-based Induction

In contrast to the above UMC and BMC approaches, Induction [[2} 3, 73] is a special technique that aims at

proving invariant properties without performing state-space traversals. For example, in [72], equivalence of

LAn UNSAT core is a subset of the clauses of the CNF which itself is unsatisfiable

Chapter[2} Preliminaries 25

certain internal signals is assumed in initial clock cycles and it is checked to see if they remain equivalent
forever in all clock cycles. The main advantage here is that, if those equivalences are indeed true, the two
circuits might be proved very quickly for equivalence. Below, we provide details on SAT-based induction

whereas the same theory applies to Induction, in general.

Let Sy be the initial state(s) of a finite-transition system wiltfas its transition relation. Let be a property
to be verified. When the system is unrolled to an ILA of lengtHet T; and ¢; respectively denote the
transition relation and the property assertion at stepspectively. Then, the Boolean formula for the
complete unrolled instance with the property can be constructed by

¢*(1,2,., k) NT*(1,2,.., k), where

" (1,2,.,k) = p1 ANpa A . A g andT*(1,2, .., k) =Ty ANTo A .. A T. In SAT-based induction [3], the

base casé&, — ¢ and the induction step; A T7 — ¢, are translated to Boolean formulas—Sy V ¢) and

&1 AT A ¢o, respectively. These two CNF formulas are checked for satisfiability using a SAT solver. If the
base case formula is satisfiable, then one can readily conglisdeot an invariant. Otherwise, the induction

step is performed. If it is unsatisfiable, the@rtan be concluded as an invariant. Otherwise, nothing can be
concluded aboup. For most properties, however, tisisnple inductiorscheme is insufficient, and a stronger
induction scheme calledduction with deptttan be used. In this new scheme, the base case is modified to
SoANT*(1,2,..., k) — ¢*(1,2, .., k), and the induction step is modifieddt(1, 2, .., k) AT*(1,2, .., k+1) —

¢r11, both of which are again converted into respective CNF formulas. If nothing can be concluded about

¢ at a depthk, itis increased to a higher depthand the SAT checks are repeated.

To make the procedure complete, the search needs to be limited to simple paths. This is conducted by
addingunique state constrain@], which restrict that no state can be repeated in the satisfying solution.
For example, consider a simple STG with tworeachablestatess1 ands2 and two transitiongl — sl

andsl — s2. Now, consider a property that can only be violated a® i.e. ¢ is invariant. If we conduct
induction step runs fog, then we obtain a counter-example at any depthuch that the first — 1 states

are sl and the last state i&2. However, if we use unique state constraints, thércannot repeat in the

counter-example and we would be proving the property at d2zjigtelf.

For finite-transition systems, when the unique-state constraints are added, there always exisissutthite

Chapter[2} Preliminaries 26

that the formula for the induction step is unsatisfiable [3] for invariant properties.

The main motivation behind induction is to prove invariants quickly at smaller depths. All the invariants
that are proved via induction are callgdiuctive invariants In general, UMC or BMC based approaches
are good for quick refutations of a property, where as induction based approaches are better for proving a

property to be an invariant.

2.5 Summary

In this chapter, we provided a formal background to the Boolean Satisfiability problem followed by the
SAT-based Formal Verification techniques. In particular, we outlined the SAT-based Equivalence Checking
and SAT-based Model Checking frameworks while describing the state-of-the-art enhancements that have

been done to make these approaches more efficient.

Chapter 3

Increasing Deductibility in SAT Instances

In this chapter, we will first explain the drawbacks of SAT-based Bounded Model Checking framework,
followed by the related work done in the past. We then describe our new technique to alleviate this problem

along-with experimental results and some directions for future work.
3.1 Motivation

First and foremost, remember that if all the BMC instances up to a bbamd not satisfiable, then nothing
can be deduced about the property. If the property-at-hand is an invariant, we might need to go until the
diameterof the system to prove it. This diameter can be exponential in terms of the number of state-elements

and hence we need to reduce the execution time at each bound as much as possible.

Secondly, note that every time we increase the bound, new variables and clauses are added to the CNF
formula. Though this increase is linear in number with respect to the bound, the corresponding increase in
solving complexity is exponential in time. For example when going from a boukdm#’, the complexity

increases from™* to 2"-¥", wheren is the number of gates in the sequential circuit.

For the above two reasons, BMC becomes inefficient as the bound is increased. In practice, BMC is used to

27

Chapter[3, Increasing Deductibility in SAT Instances 28

identify as many counter-examples (bugs) as possible within a given small bound. If no counter-examples

are found for a property within that bound, UMC techniques might be employed to proceed further.

Thirdly, when a circuit is converted into a CNF formula, all the circuit structural information is lost. In
other words, given a CNF formula, a SAT solver cannot identify which variables are primary inputs, which
ones are flip-flops etc. Sometimes, such information might be significantly helpful in order to make better

decisions or for exploiting Boolean reasoning etc.

3.2 Related Work

Recently, several techniques have been developed that try to learn information from the circuit. Whereas
some of these are general, some are specifically aimed at improving BMC.|In [68], approximate reacha-
bility analysis using BDDs is performed and the BDDs obtained at each state-boundary are converted into
clauses to constrain the SAT engine. Since BDDs are employed, care must be taken to avoid excessive
pre-processing times as well the number of clauses added. Another BDD-based analysis is proposed in [67]
to extract constraint clauses statically or dynamically. In order to restrict both memory and computational

costs, the learning is limited only to local regions.

Generalized rules for deducing relations among variables have been propdsed in [36] on the basis of unit-
propagation. However, the analysis is also limited locally to reduce cost. In Simp2C [74], indirect implica-
tions learned via logic simulation are converted to constraint clauses to speed up the SAT solving in BMC.
In the example shown in Figufe B.1(a), logic simulatioafresults inA,, and hence the claus®(/ —A)

is learned, which helps the SAT engine to learn contra-positively that BQR€sults inD;. Besides such
learning, Simp2C proposes the replication of the learned clauses throughout the entire BMC bound. A sim-
ple replication is shown in Figufe 3.1(b), where an implicatiohy — Y2, learned in a small window is

replicated througho(fi

A similar form of learning was employed in the Hypre [29] preprocessor. For example, if cldiises 4),

(HV-B),(HvVv-C)and AV BV CV D) exist in the original CNF, a new claus# (v D) is learned via

'Here, X1 refers to signalX in frame 1 andv'2 refers to signal” in frame 2 and so on

Chapter[3, Increasing Deductibility in SAT Instances 29

hyper-resolution. Besides this, Hypre performs equality reduction. If two cladses{(B) and A Vv B)
exist in the CNF, then variabled and B are equivalent and one of the variables can be eliminated by
replacing with the other. Similar reductions can be done for complement varjglesB) A (—A V —B)]

and constant variabldgA) or (—A)].

Since only logic simulation (or BCP) was employed, the learning of both Simp2C and Hypre is limited.
Non-increasing variable elimination has been proposed in NIVER [30], in which variables are eliminated
via resolution if doing so do not increase the size of the overall CNF formula. Although Hypre and NiVER

are proposed for general-purpose SAT solving, they are equally applicable for SAT-based BMC.

A 0 : Y2=1 Y3=1 Yd=1 Y5=1

a0 0 . o |~ =g |~ |~
B c X1=0 X2=0 X3=0 X4=0

‘ 1 2 3 ‘ 4 5
1 0 learning window

(a) Indirect (b) Replication in several windows (c) EBL

Figure 3.1. Example Implication Learning

Next, we describe the Extended Backward learning (EBL) procedure developed in [75], which was originally
used for the identification of untestable faults. This uses the input justification scenarios of an unjustified
gate to learn new implications that are common in all the justification scenarios. We explain the procedure
for an AND gate which can be extended to all other gate types:GLbé a AND gate and leY, — Gj

hold. WhenY = v, G becomes unjustified and 1&t1, X2, ..., Xn be itsn unspecified inputs. Nowi; = 0

can be justified by a logi6é assignment on any of theseinputs. In such a case, the intersection of gate
assignments obtained by logic simulating the node combinatigns (X 1), (Y, A X2p), ..., ', A Xng)

are new implications of the nodg,. Note that the assignment sfft;, A X1) N (Y, A X2p) N ... N

(Y, A Xng)} automatically contains the assignments that can be obtained by logic simuiataigne.

Hence the implications obtained through EBL are strictly a super-set of those obtained via simple logic
simulation (Simp2C or Hypre). We will illustrate EBL via an example circuit shown in Figure 3.1(c).
Initially, we have X; — A; which makes gatel unjustified. Performing EBL using input justification

scenarios forA = 1 helps us to leartX; — Y;. Via the contra-positive law, the implicatidry — Xg is

Chapter[3, Increasing Deductibility in SAT Instances 30

also learned. Our experience indicates that these contra-positive implications often aid in significant increase
in the total number of non-trivial implications learned from the circuit. In the example of Higure 34k(a),
is the only justification scenario fa@r, (given Dy) and hence we can automatically concludg — Ay (i.e.

no explicit intersection is necessary).

Though the learning obtained through EBL procedure is efficient, it might not be adequate for BMC pur-
poses. We conjecture that the more non—trial learned relation is, the more it will help a SAT engine

in reducing the solving times during BMC. To improve the learning, we propose two new learning strate-
gies that demonstrate superior performance, which can be applied along with [68] or [67] for additional

performance benefits.
3.3 Increasing the Deductibility for SAT-based BMC

In this section, we describe new learning techniques based on static implication learning and binary resolu-

tion for enhancing SAT-based BMC. First, consider the following definition:

Definition 3.1: Deductibility of a CNF formula is defined ab = Z |BCP(Xo)| + Z |BCP(X1)],
X X

whereX e {variable set of the CNFand|BC P(X,)| denotes the number of other truth assignments (i.e.

implications) due to assignment = v.

The main motivation behind our work is to add non-trivial clauses to a CNF instance which increases the
deductibility in the final CNF formula. Clearly, the newly added clauses will be helpful only if the SAT
engine cannot deduce them through BCP from the original CNF. In this regard, we explore the underlying
circuit structure to deduce non-trivial relations and add them to the original CNF instance. Our techniques
are specially applicable for BMC or sequential ATPG problems, where the large CNF formulas can over-
whelm the SAT solvers, makingarning critically beneficial. Since the implications learned through EBL

are more non-trivial than those learned from either Simp2C or Hypre, we have developed our two strategies

by extending the concept of EBL. As such, our learning is a superset of the learning provided by EBL.

2Non-triviality of a relation is related to how many decisions a SAT solver takes to learn it

Chapter[3, Increasing Deductibility in SAT Instances 31

3.3.1 Learning via Justification Enumeration

Let S represent the set of implications in the intersection of two opposing nodes related toJa,dae
Xp and X;. ConsiderS to be non-empty, and l&¥, be a node inS. SinceG,, is implied by bothX, and
X1, according to the dilemma rule [[76J; is a constant gate achievable to only one valuélowever, if
the circuit has no gates with constant values, then no such sets would exist. Our aim isctinfiitébnal
constants, whereby under the presence of some otheripotlee setS is no longer empty for a target gate

X. First, we consider the following lemma which is a conditional variant of the above dilemma.

Lemma 3.1: If the intersection of implications of two mutually exclusive nodigsand X is non-empty
under a conditiorl,,, then the nodes in the intersection are implication¥afin other words, if Ko A Yy)

— Zy and (X1 A Y,) — Zy1, thenY, — Z,4.

Proof: The proof can be obtained simply by applying binary resolution. Resolving ongataninates the
nodesX, and.X; from the two conflicting setsXy A Y, A Z.7) and (X1 A'Y, A Z,7), thus resulting in the

new conflicting setY, A Z;7) which means’, — Z,;. o

We callY, as thebasenode, gateX as theresolverand X, X; as theresolvingnodes. Given Lemma 1, one

can aim at finding base nodes such that the intersecting athe resolving nodes is non-empty. However,

in order to avoid selecting too many base nodes for a given resolver gate, we formulate this problem in
the reverse fashion to find good resolver gates for a given base node. Recall that during the application of
EBL for a nodeY,,, we find unjustified gates and use their unspecified inputs for justifications. We find that
such unspecified inputs for an unjustified gate are golidate resolvegates for the base nod¢. This

heuristic selection helps in (1) capturing efficient re-convergences of the resolving nodes through the base
node, (2) increasing the specified region around the unjustified gate, and (3) keeping the simulation overhead
as small as possible since half of the work is already being done during EBL computation. Since the nodes
X and X create similar local simulation events, we bit-pgblhem during simulation to further reduce

the overhead. Though simpler in theory, we have observed that this formulation can extract several powerful

3In bit-packing, one bit of a word is allocated to each case split such that all case splits can be simulated simultaneously

Chapter[3, Increasing Deductibility in SAT Instances 32

relations that cannot be captured by a SAT engine (through BCP) or by Simp2C or the EBL procedure.

We demonstrate this type of learning with the help of an example shown in fFiglire 3.2. Let the implications
E, — Cy, By — Hy, Dy — Fy, Gy — I, Ky — J; be those relations already learned from the circuit
(shown by dotted lines). LeK, be the base node. Its implications are simgly, By and K, from the

circuit shown in the figure. None of these implications can further imply any other gate. Considéf gate
which is one of the unspecified inputs 4f According to Lemma 1, we can compute the §&f, A Ep) N

(Y, A E4)} as the new implications df,. Besides Lemma 1, we can see that the node combinatjonk,)

leads to a conflict around gate during logic simulation. Thus the only possible assignmentifamder
condition X is a logicO and we conclud&, — FE, and hencer; — X, via the contra-positive law. We

note that these relations cannot be derived with EBL even if it is iterated until its convergencei.paint (
when no more implications can be deduced from the circuit). Such internal relations can be very useful, and
adding them to the implication graph enables us to capture even more non-trivial implications during the

learning process.

Figure 3.2. Example Learning via Justification Enumeration

In Lemma 1, we have described the case where only a single gate is used for resolution under a base node.
We now extend Lemma 1 to consider multiple gates under a base node. For instance, in the example just
discussed for Figurie 3.2, when gatebecomes unjustified for nodg,, multi-gate resolution can also be
performed using the three new justification scenariag A Ey), (Do A E1) and (D1 A Ep). Note that these

three scenarios automatically cover the direct binary resolutions on the unspecified indytaraf they
represent the complete justification scenariosAee 0. Even though such an enumeration would intuitively

be more powerful thaikBL + Lemma 1it would be expensive for performing several logic simulations.

Chapter[3, Increasing Deductibility in SAT Instances 33

For an unjustified gate with unspecified input®™ — 1 simulations (corresponding to each of ttie— 1
justification scenarios) would be necessary to check if the intersection has any nodes in common. However,
for the case whem = 2, only three simulations are needed. Hence, we resort to such an exhaustive
enumeration only when = 2 and employ Lemma 1 along with EBL for cases where- 2 to keep the
pre-processing time low. As before, all justification scenarios can be bit-packed and simulated together to
enable faster simulation. We incorporated this kind of learning as the first strdtegyr() of our tool. Note

that these implications cannot be captured by the propositions|in [77] because of two main reasons: (1) the
result is limited to only identifying equivalent variables where as ours can identify one-way implications as
well and (2) no concrete procedure is used for selecting variablefofdrle unit-propagation look ahead

where as ours uses the justification scenarios for unjustified gates which increases the specified region within
the circuit. Similarly the work in[[78] is limited to only equivalence reasoning. In the next subsection, we

describe an improved learning strategy that has more extraction capabilityEham

3.3.2 Learning via Justification Frontier

Consider Figurg 3]3(a). Nodé, is a direct backward implication of the nod&. Since neither gat®& nor
gateC is specified to logi®, gateA is an unjustified gate. Learning based on EBL would use the justification
scenariosB = 0 andC = 0. However, gateB is not a fanout stem and hence no new implications would
be learned forX, using EBL. We extend the justification scenarios for gate its Immediate Justification
Frontier (which is comprised of the complete set of nodes farthest away fronddhét would individually

justify assignmen#d = 0).

The Immediate Justification Frontier (IJF) of a gate’s assignment can be obtained by taking the immediate
input justification scenarios for that assignment and recursively extending them backward until all the gates
achieve their non-controlling values or a primary input is reached. For example, using[Figure 3.3(a) again,
extending the immediate justification scenarios for= 0 would give the node-setCy, D;, F1, G1} as

the IJF. Extending in such a way has two main advantages: First, any fanout stems along the backward
path (for example(, D and E in Figure[3.3(a)) would be covered automatically. Secondly, the number

of implications of the nodes in the IJF would be greater than the number of implications of nodes in the

Chapter[3, Increasing Deductibility in SAT Instances 34

immediate input justification scenarios. Hence, this would lead to capturing more complex relations that
might not be obtained even whdBnumlearning is enumerated far > 2. According to this new procedure,

the new gate assignments in the §e¥o A Cp) N (Xo A D1) N (Xo A F1) N (XoAG1)} are also implications
of Xy in Figure[3.3(a).

Again, we consider the application of Lemma 1 here, which can be directly applied to the nodes in the IJF
of the unjustified gate. Similar tdEnum any node in the IJF and its opposite hode can be bit-packed and
simulated together to reduce the simulation time. However if an unjustified gate: magles in its 1JF,

then we would need@ x m bits for simulation using Lemma 1. In general,can be much larger than the
number of inputs (say) of the unjustified gate. In such cases, the pre-processing time can be very high. To
avoid this and to obtain even more non-trivial learning, we propose a new technique by modifying the above

procedure, which is explained below.

UFA=D |

UF®B=1)|

UF(C=1) = UF(A=1) U UF(B=1)

(a) (b)
Figure 3.3. Example Learning via Justification Frontier

Consider Figuré 3|3(b). Let the set IJF(A=1) contaimodesAl,:, A2, ..., Ai,; and the set IJF(B=1)
containj nodesB1,1, B2, ..., Bj,; respectively. Note that the set IJF(C=1) is the union of the sets
IJF(A=1) and IJF(B=1). LeKX,, — C; which makes gat€’ unjustified. According to Lemma 1, using input
A, we would computg (X, A Ap) N (X, A A1)}. Replacing4; with its IJF, we would like to compute the
set{(X, A Ap) N(Xy AALy) N(Xy AA249) N ... N (X, A Aiy;) b Note that this set represents the complete
possible assignment cases forand hence assignments in this set are implications ofSimilarly, using

all possible assignment cases forwe can compute the sétX, A By) N (X, A Bly1) N (X, A B2,2) N

... N (X, A Bjy;)} which can be added as implications of nallg. Apart from these, the assignment set
{(Xy A ALy N (X A A242) N o N (X A Aiyg) N (Xy A Blyr) N (Xy A B2y2) N ..o N (Xy A Bjyj)}

(using the 1JF forCy) are also implications of nod¥,,. We incorporated this kind of learning as our second

Chapter[3, Increasing Deductibility in SAT Instances 35

strategy JFron) in our tool. Note that this new procedure requires omly+ n bits for simulation
for IJF(C=1),n for (Ag, By)) to process one unjustified gate as oppose?l tom needed earlier. At the
same time, since node% and B, have more implications than each {oll1,7, A2;5, ... Ai;} and each of

{Blyy, B2, ...ij—j} respectively, this will provide superior learning as compared to the direct application

vl
of Lemma 1 on IJF(C=1). However, the enumeration step donEEmummay sometimes lead to new
implications that cannot be obtained throuliivon. WhetherJEnumextracts more non-trivial implications

or JFrondoes, depends on the underlying circuit structure.

3.4 Efficiency Issues

We have integrated the above two learning strategies into our tool Static Extraction Techniques for SAT-
based BMC (SET-SAT), which computes the sequential implication graph of a circuit and then generates
the final CNF instance for BMC. Converting a learned implication into a clause is straight-forward. For
example, the four implicationXy — Yy, Xg — Y1, X7 — Yy andX; — Y7 would be converted to the
clauses X —Y), (X Y), (X —Y) and (X Y) respectively. Note that adding a clause for an implication

automatically takes care of the contrapositive implication as well.

There are three important implementation issues involved in SET-SAT. The first is concerned with the or-
dering of nodes for which the static logic implications are learned. Initially, we have only direct implication
edges. More edges are learned as the learning process progresses. Experience from other researchers [75]
as well as our own experiments support that learning in a levelized fasteqib{eadth-first manner) leads

to best case of learning. Given a gate-level net list, we first levelize it and compute the implications for
the nodes in a levelized manner starting from the inputs level to the outputs level. Secondly, since we add
the learned implications as extra clauses, the BMC formula sizes can grow very large. Similar to [79], we
employ a sequential implication graph for efficient implication storing (refef to [79] for its construction
details) and then convert the implications to clauses. However, the final implication graph obtained during
the learning can have many redundant edges. For example 2dge 7, will be redundant if the edges

X, — Y, andY, — Z, already exist in the graph. Hence, we first process the implication graph to remove

all such redundant edges and then create the final CNF formula. Notaetthattibilityremains the same

Chapter[3, Increasing Deductibility in SAT Instances 36

before and after the edge reduction process, but the new number of clauses added to the BMC formula can
reduce significantly. Another implementation issue concerns with the number of iterations (sweeps across
the circuit). In general, we have observed that only a small fraction of implications are newly learned after
the first iteration. Hence we limit our tool to only one iteration so that the pre-processing time is effective

for overall BMC run times.

The overall flow for SET-SAT is as follows: First the implication graph is computed for a circuit using a
user-defined window size and then redundant edges are removed to make the graph efficient. The CNF
formula for the given initial state(s), property, and the expansion bound is then generated to be solved by a

SAT solver.

3.5 Experimental Evaluation

Experiments for circuits from the ISCAS89 and ITC99 benchmark suites were conducted using the zChaff
SAT solver (version 2004.11.15) on a Pentium-4 3.2GHz machine having 1GB RAM and running RedHat
Linux operating system. We have taken few safety properties for each circuit and selected the top two
properties which are hard for zChaff with the original CNF. We ran all of the available techniques and ours
on these hard safety properties. Our main aim is to show the relative robustness of our learning as compared

to the existing techniques.

Table[3.1 shows the deductibility information in the pre-processing phase. For each circuit, we show the
number of gates in columBatesand the learning window size used Wn. We used a window size of 5

for all circuits except for the large circuit s35932 for which 3 was used. We repodétthectibilitynumbers

(for the middle time-frame variables amowin) obtained via the original CNF and our two strategies under
the columngOrig, JEnumand JFron respectively. Apart from the circuit b10, learning \d&ron always
resulted in higher deductibility as compared to thafBhum Next, we show our average improvement in
deductibility over the original CNF in the columfa As seen, deductibility can be increased up to 4.9 times
using our learning. Note that this improvement is from the non-trivial implications learned and can lead to

greater speedups in BMC instances, as seen next.

Chapter[3, Increasing Deductibility in SAT Instances

Table 3.1. Improvement in Deductibility

Circuit Gates | win | Orig | JEnum | JFron | X
s400 194 5 135K | 395K | 39.9K | 2.9
s420.1 253 5 32.2K 112K 113K | 3.5
s444 211 5 152K | 46.6K | 48.5K | 3.1
s510 243 5 28K 103K | 109K | 3.8
s526 223 5 | 188K | 61.6K | 63.6K | 3.3
s820 331 5 86.3K | 215K 227K | 2.6
s832 329 5 86K 217K 226K | 2.6
s967 462 5 96.2K | 315K 315K | 3.3
s9234.1 | 5883 | 5 | 1.43M | 3.52M | 3.59M | 2.5
s13207.1| 8803 5 7.32M | 13.7M | 139M | 1.9
s15850.1| 10533 | 5 4.2M 8.4M 8.6M | 2.0
s35932 | 18148 | 3 8.95M | 9.94M | 9.94M | 1.1
b10 206 5 152K | 67.6K | 66.8K | 4.4
b1l 770 5 55.1K | 271K 272K | 4.9
b12 1076 5 139K 490K 501K | 3.6
b13 362 5 | 175K | 59.8K 60K | 3.4

win: learning window size

X: Our Average / Orig

37

Chapter[3, Increasing Deductibility in SAT Instances 38
Table 3.2. BMC results for safety properties for ISCAS and ITC Benchmarks
o))) SET-SAT
Circuit k Prop | Orig | NiVER[30] | Simp2C|[74]| EBL [75]
JEnum JFron .
san | o |, ||\, | o || || || T o
1(S) 19 | 002| 66 | 001| 173 | 01| 29 | 03| 40 | 04| 12 7.2
s400 200
2(V) 15 | 002| 09 | 001|102 | 01| 14 | 03| 07 | 04| 0.8 20
1(V) 393 | 0.02| 40.8 | 0.03| 553 | 0.2 | 29.2| 05| 205 | 0.8 | 9.8 26
s420.1 | 200
2(V) 144 | 0.02| 109 | 0.03| 103 | 0.2 | 322 | 05| 335 | 0.8 | 8.6 7.8
1(S) 74 | 0.03| 105 | 0.03| 20 01| 145| 03| 56 | 05| 51 13.8
s444 200
2(V) 28 | 003| 75 | 003| 31 01| 11 | 03] 07 | 05] 21 20
1(S) 223 | 0.02| 256 | 0.02| 380 | 0.2 | 50 | 16| 1.8 3 3.5 84
s510 200
2(S) | 1284 | 0.02| 156 | 0.02 | 1136 | 0.2 | 409 | 1.6 | 11.6 3 3.5 170
506 200 1(S) | 1033 | 0.03| 678 | 0.02| 1063 | 0.5 | 475 | 3.2 | 182 | 6.7 | 23.7 | 483
s
2(V) 833 | 0.03| 342 | 0.02| 541 | 05| 165 | 3.2 | 44 | 6.7 | 87 127
1(V) 511 | 0.04| 134 | 0.03| 489 | 05| 294 | 3.1 | 274 | 6.7 | 8.6 28
s820 200
2(V) 317 | 0.04| 59 | 0.03| 266 | 05| 193 | 3.1 | 141 | 6.7 | 9.8 26
1(V) 610 | 0.04| 118 | 0.03| 542 | 05| 339 | 3.3 | 56.3 | 6.6 | 191 16
s832 200
2(S) | 272 | 0.04| 447 | 003 | 190 | 05| 305 | 3.3 | 198 | 6.6 | 104 18
1V) 236 | 0.05| 843 | 0.05| 235 | 11| 227 | 34| 7.6 8 9.9 27
s967 200
2(V) 148 | 0.05| 466 | 0.05| 146 | 1.1 | 116 | 3.4 | 6.91 8 9.1 185
1(S) | 5893 | 0.5 | 3388 | 0.53| 4589 | 18 | 1296 | 32 | 36.2 | 46 | 148 64
s9234.1 | 60
2(S) | 4712 | 0.5 | 1566 | 0.53 | 3821 | 18 49 32 33 46 | 46.5 | 118
1(V) 852 | 05| 287 | 1.9 154 | 37 55 132 | 141 | 112 | 117 6.6
s13207.1| 100
2(V) 701 | 0.5 285 1.9 157 37 68 132 | 142 | 112 | 116 54
1(S) | 2155| 0.6 | 274 | 1.2 949 | 36 | 281 | 73 | 217 | 108 | 174 11
s15850.1| 80
2(S) | 2559 | 06 | 317 | 1.2 | 1085 | 36 | 601 | 73 | 564 | 108 | 252 6
1(S) | -TO- | 1.0 | 1539 | 8.4 | 6301 | 103 | 2510 | 145 | 2544 | 149 | 2546 | >4
s35932 | 80
2(S) | 4796 | 1.0 | 848 | 8.4 | 4160 | 103 | 1026 | 145 | 1068 | 149 | 1072 | 4.4
b10 150 1(V) 172 | 0.03| 52 | 0.01| 123 | 0.2 | 59.2| 0.9 | 309 | 1.1 | 144 7.5
2(V) 208 | 0.03| 74 | 001| 123 | 02| 202 | 09| 239 | 11| 181 | 938
2(S) | 502 | 0.1 | 237 | 0.03| 75 17| 83 | 34| 57 6 6.4 83
b1l 150
2(S) 503 | 0.1 | 185 | 0.03| 318 | 1.7 | 27.7 | 3.4 | 45 6 7.2 111
b12 100 1(U) | 1566 | 0.2 | 696 | 0.05| 1392 | 2.6 | 486 | 18 | 461 | 24 | 324 4
2(U) | 1262 | 0.2 | 631 | 0.05| 1158 | 2.6 | 449 | 18 | 229 | 24 | 394 4
1(V) 35 01| 148|001 282 | 02| 186 | 04 | 25 | 0.6 | 3.3 12
b13 150
2(V) 40 0.1 | 10.1 | 0.01| 28 02| 131| 04| 24 | 06| 20 18
T,: Preprocessing time Xavg: Our average speed-up (@EnumandJFron) overOrig.

T;: Total execution time (includeg,) TO: Instance timed out after 10000 seconds.

Chapter[3, Increasing Deductibility in SAT Instances 39

Table[3.2 reports the actual BMC experimental results. An all-zero initial state is used for all circuits. For
each circuitk gives the BMC bound used, which was selected based on the circuit size and its complexity.
The columnProp(SAT)shows the property number followed by its satisfiabil®fgr SAT andU for UN-

SAT). The columngrig, NiVER Simp2C EBL, JEnumandJFron report the times taken by zChaff with

the original CNF, |[30],/[74],|[75] and our two strategies, respectively. The sub-coldnasdT; report

the pre-processing and total times, (+ solving time) respectively in seconds. For a fair comparison with
NIVER (since it works on an entire unrolled instance where as all others work on a learning window), we
used7), of NiVER as (originalZ}, x win/k). The columnX,,, shows our average speed-up {&num

and JFron) obtained ovelOrig. As seen from the table, our learning strategies can significantly decrease
the overall BMC run times. For most circuits, a consistent speed-up of more than an order of magnitude
was achieved over the original BMC run. Since our learning enables the deduction of more implied literals
at each decision, it increases the efficiency of the SAT-solver for both satisfiable as well as unsatisfiable
instances. Next, we will compare our tool with NiVER [30]. Although NiVER is very fast in reducing
the CNF formula, the overall improvement NiVER achieves over the original CNF is limited for most cir-
cuits. Except for circuit s35932, our tool consistently outperformed NiVER for all other circuits. Similar to
NiIVER, SIMP2C’s preprocessing cost is also low. However, the main drawback is that most of the added
clauses help the SAT engine in only one direction whereas the other direction incurs additional BCP costs.
Though our tool adds more clauses compared to Simp2C, the clauses are highly non-trivial and the resulting
deductive power is superior. For many circuits, our tool outperformed Simp2C by an order of magnitude or

more.

Finally, consider our performance with respect to EBL. It can be seen from [Table 3.2 that EBL performs
better for some instances, although more implications can be learnedJ&iogiandJFron. One possible

reason for this is that the newly added clauses increase the correlation among the CNF variables and the
number of clauses each variable appears in. In some cases, the benefit gained due to the added learning
might be lost due to a (possibly) inferior ordering followed by the SAT engine. Note that even in such cases,
our tool performs much better th&rig, thus revealing the robustness of the proposed learning strategies.

For circuit s13207.1, although the total times for EBL are better, the actual solving times are smaller for

JEnumandJFron. For most other circuits shown in the table, adding the learned non-trivial relations to the

Chapter[3, Increasing Deductibility in SAT Instances 40

original CNF instance has shown consistent improvements over EBL.

Let us now look into the differences betwe#enumandJFron. As seen in the theory, the learning obtained

by JFronis in general superior thalfEnum(though strictly not a superset). HowevéFron requires more
computational cost in the pre-processing phase. For most of the casesJEheraoutperformed]Fron,

the actual solving times differed only marginally. With an intuition in the design and the property being
checked, a verifier can choodEronfor hard properties andEnumfor reduced learning and pre-processing
times. For large industrial circuits, the CNF instances generated for BMC can be huge and hence both of

our learning strategies might be very effective in reducing the total solving times.

In Figure[3.4, we show example cumulative runtimes for property 2 for circuit s820 and for property 1
for circuit s9234.1. The main intention here is to demonstrate the superiority of our learning techniques
compared with others. As we can see, the cumulative runtimes for the original BMC run, run with NiVER,
Simp2C and EBL increase drastically as the bound is increased, whereas via our techniques we were able to
contain the runtimes even at larger depths. This shows the efficiency of our techniques in enabling deeper

BMC runs, under given resource limits.

3.6 Summary

In this chapter, we have presented new and efficient learning techniques based on powerful combination of
binary resolution and static implication learning to extract non-trivial relations from a circuit. These se-

guential logic implications act as constraint clauses and turn away the SAT engine from reaching unwanted
regions. Experimental results show that our learning increases the deductibility and hence provides con-
sistent performance improvement over a wide variety of circuits and properties. Our approach can be used
as a pre-processing step for the SAT-based BMC problem and can complement dynamic/property-specific

techniques.

There are several directions possible for future work. First, note that in some cases, the solving times
actually increase due to the added clauses. This might be because, due to the added clauses, the number of

occurrences of each variable is increased, which leads to a possibly different decision order chosen by the

Chapter[3, Increasing Deductibility in SAT Instances 41

SAT solver. It will be definitely interesting to study the effect of added clauses upon the variable order and
find a better ordering strategy. Secondly, all the clauses being added might not be useful in the same way. For
example, some clauses might be trivial and can be easily learned by the SAT solver, given the other clauses.
Careful elimination of such clauses might reduce the burden on the SAT solver and avoids overheads in

BCP. Finally, new ways to learn non-trivial implications would definitely be a promising future-work.

Chapter[3] Increasing Deductibility in SAT Instances

Time (seconds)

Cumulative BMC Runtimes for s820

20 40 60 80 100 120 140 160 180
Bound

200

Orig
- NIVER
—x— Simp2C
—e—EBL
—+—JEnum
——JFron

(a) Cumulative BMC runtimes for s820

Time (seconds)

Cumulative BMC Runtimes for s9234.1

Bound

Orig
—<—NIVER
—x— Simp2C
—e—EBL
—+—JEnum

——JFron

(b) Cumulative BMC runtimes for s9234.1

Figure 3.4. Example Cumulative BMC Runtimes

42

Chapter 4

lllegal State Identification

In this chapter, we will first explain the limitations within the SAT-based induction framework, followed

by outlining the work done in the past. We will then describe a novel framework developed to quickly
extract the illegal (i.e. unreachable) states of a sequential circuit, which are used to improve the SAT-based
induction runs. We also provide experimental results based on our framework and identify potential future

research areas.
4.1 Motivation

There is a main drawback for SAT-based induction, which is the lack of knowledge about the illegal state-
space of the design. This limitation manifests itself in two ways. First, since the SAT-solver relies on a
branch-and-bound procedure, the SAT engine may make poor decisions and later learn that the decisions
lead to a functionally impossible (i.e. unreachable) space. This problem is critical in an induction step run
since the initial state space is not constrained to any reachable state(s). Hence, the knowledge of illegal
states before-hand can constrain the SAT-search. Second, if the formula for the induction step aka depth

is satisfiable, the satisfying solution forms a simple pathss, ..., sy11 such that the firsk states satisfy

but the last statey; does not. In such a scenario, two cases are possible: (i) the first state reachable

state, and hence is definitely not an invariant. (ii) the first statg is an illegal state in which case the

43

Chapter[4, Illegal State Identification 44

counter-example obtained is spurious and nothing can be concludedsabidamvever, it is very difficult to

identify the reachability of;.

Due to the reasons discussed above, SAT-based induction runs can be improved by learning as many illegal
states as possible. Since a thorough reachability analysis (even over-approximate) can be prohibitively
expensive, we try to gather under-approximate illegal state information of a design, via an alternative, low-

cost analysis.

4.2 Related Work

Whenever a counter-example (as explained above) is obtained in the induction step run, the authiors in [80]
assumes; to be an illegal state and obtain a strengthened progesty-s;. The main intuition behind it is

that the new property is stronger than the original one and might be proved at an earlier depth via induction.
However, if the induction run has several such counter-examples (which can be exponential in the number

of state elements), the new property obtained might not be strong enough.

Another technique for improving induction runs has been explored in the form of Incremental learning
[6l(7,&]. Due to the incremental nature of the induction runs, the idea here is to identify relevant conflict
clauses that can be carried over to the successive iterations. As a consequence, the effectiveness of these
techniques depends largely on the learning ability of the underlying SAT solver. Another limitation is that

all the conflict clauses that alecal to the property constraints cannot be carried to higher bounds.

4.3 Fast lllegal State Extraction

In this section, we describe our techniques for learning illegal states. We use thirterframeto represent
one transition relation of a sequential circuit. L&+{0, 1} represent the set of Boolean logic values. The
notationXx, , is used to represent a signdlset to value) € B in a given time-frame-. If the parameter is

not relevant, we simply us&,. Also, we assume all the designs are initializable (either by an initialization

sequence or via an explicit reset signal). This ensures that the system has only one terminally strongly

Chapter[4, Illegal State Identification 45

connected component (TSC@)

We refer to logic simulation as 3-valued logic propagation done using the three aluesU }, where
U is the unknown logic value. A sign&l is said to bespecifiedf it attains a known logic value € B;
otherwise it isunspecifieqor unknown). A composite signal assignmefit= { X 1,1 A X 2,0 A ... A X nyp },
wherevl,v2,...,vn € B, is said to beachievabldf starting from an all unknown initial state, there exists
at least ondinite input vector sequence that can set 1 in a finite time-framer (i.e. to specifyX1 = vl1,
X2 =v2,..,Xn=wvnin 7). OtherwiseF is said to bainachievable For an initializable design, at least

one of F' or —=F will be achievable. IfF" is unachievable; F' will be an invariant.

4.3.1 Learning Using An ATPG

In this subsection, we will explain our ATPG based illegal state identification technique. The following

definition forms the basis of our learning.

Definition 4.1: (n-Cycle-Unreachablg A states is said to be:-cycle-unreachable if the'”-level preimage

of s is empty.

In other words, if there does not exist any state that can reach cycles, thers is unreachable. Note that

this definition is a simpler form of the complete induction seen in chapter 2. If a statgyide-unreachable,

it is also f+1)-cycle-unreachable, and so on. We employ a combinational ATPG-based method (using the
PODEI\,E| algorithm [81]) to quickly identify a subset of such states. The main advantage is that the learned
information can be used repeatedly to constrain all the state-spaces without any additional analysis. Another
added benefit is that, states that can be reachable only from the learned unreachable states can also be

avoided by the SAT-solver during its search.

We unroll a circuit forn time-frames (similar to an Iterative Logic Array expansion) as shown in Figure

1A TSCC comprises a set of states of a design such that any state in the TSCC is reachable from all other states in the TSCC

and once the design enters a state in the TSCC, it remains in the TSCC until powered off
2PODEM backtraces from a given objective (s&y,) and makes decisions on the primary inputs to justifi/ét o setX = v)

Chapter[4, Illegal State Identification 46

PI(1) PI(2) Pl(n)
PS(1) LIl pPS2) LIl----| PS@3) [[[--- | PS(n+1)
— frame frame — — frame —
1 ‘ 2 4 n =
NSO NS =T NS@ - =1 NS@)
PO(1) PO(2) PO(n)

(a) Circuit Expansion

! ()
Max :
Dec
! 0
|
|
|
|

AN |
) 1@) 1 100

1 0
0 011 010 110 011 010

(b) Free—BDD decision strcuture

Figure 4.1. Learning via ATPG

[5.4(a), where the unrolled frames are numberey ..., n. The lines PI), PO¢), PS¢), NS() represent the
primary inputs, primary outputs, present-state elements, next-state elements for fespectively. All the
present-state elements for franke® n are simply treated as buffers. We can embed a statd’S + 1)

and try to justify it while treating the state elements at BS6 pseudo-primary inputs (PPIs). In such a
scenario, if no input assignment can justify the statie is n-cycle-unreachable. This is because, allowing

the flip-flops at PS() to be fully controllable assumes all the states are possible at that boundary and hence
guaranteess is an invariant. However, pre-image computations usually have exponential complexity and
it will be infeasible to compute them even for a small subset of states. In order to identify unreachable states

in an efficient manner, we proposeatate-independemrocedure as explained below.

Without loss of generality, consider the flip-flops at RS{ 1) be arranged in an orddrX'1, X2, X3,

., Xngr}, whereng; is the number of flip-flops. Our main goal is to perform an ATPG search without
targeting any particular state. We start with the first flip-flop set to an objective logic value (saly, and
start the search processe(justifications via PODEM). 1£X14 ,,, 1 is justified during the decision process,

we proceed to justifyX 2 to a value (say)) and continue. In this way, the entire decision tree is constructed

Chapter[4, Illegal State Identification 47

like a free-BDIF| as shown in Figurk 5.1(b), where the nodes represent the decision varibhlég,(..,
16 can be any primary input or a PPI) and the leaves indicates the logic values attained by the flip-flops at

PSG + 1).

Consider a group of 3 flip-flopsX(1, X2, X3) at PS + 1) wereall specified atll leaves of the decision
structure. Figurg 5]1(b) shows some example values. It can be seen that the partiabstdiésand111

were not achieved at any of the leaves. Since the decision tree is complgpeddyingall these 3 flip-flops,
these three states can be concluded as illegal. In other w@ds, A X2 A X3)V (XTAX2AX3)V (X1A
X2AX3)V(X1AX2AX3)V(X1AX2A X3)}is aninvariant. One way of strengthening this invariant

is by increasing, due to which more illegal states can be ruled out. Another way is to eliminate the already
known illegal paths (and the corresponding leaves) of the decision structure. For examplandf/2 of
Figurg/5.1(b) are PPIs and if we know tHdtl, A 12} is an illegal partial-state, thefX 1, A X 20 A X 3¢} is

also an illegal partial-state. This is because the partial-$t@tean be obtained via only illegal paths of the
free-BDD (in this case, only one such path). In our implementation, we store the illegal states learned in the
iterationsn = 1,2, ..,7—1 and use them to eliminate the illegal paths of the free-BDDs in the iteratieri.

All the illegal partial-states accumulated till the end of the last iteratiofuser-defined) are converted into

constraint clauses.

Algorithm[1] shows our learning algorithm for a given Due to space limit, we do not show the above
invariant strengthening technique. To keep the computational cost low, we limit the maximum decision
level (MDL) to a user-defined value (currently set to 20). After each ATPG run, we obtain a free-BDD
from which unreachable partial-states are extracted. We use a technique similar to [that of [82] to form the
free-BDD. We refer the reader to [82] for details. All the flip-flops that are specifiatl tte leaves of the
free-BDD are removed from the order and are not considered in the remaining ATPG runs. Within a given
MDL limit, if no such flip-flop exists, we forcefully remove the first flip-flop in the order. This is done to

ensure that the algorithm terminates within a maximum pgf calls to the ModifiedPODEM() procedure.

We use the SCOAP measures|[83] to identify if a flip-flop is most controllable to (ogidogic 1. Heuristi-

cally, we always try to justify a flip-flop to its most controllable value. This is done to specify a value at that

3a BDD where all the paths need not have the same variable order

Chapter[4, Illegal State Identification

48

Algorithm 1 n-Cycle Unreachable Learning Algorithm

1:

N N R R R R R R R R R
B Q@ © o N o g A N kB O

22:
23:

© © N o a k~ w bN

Givenn, MDL; Unroll circuit n times

: Order flip-flops at PS{ + 1) and unmark them
: Compute SCOAP values (CO, C1) for each flip-flop

: while (not done) do

currDL=0; Initialize all signals to valu&
ModifiedPODEM(); // build a free-BDD
LearnlllegalStatesFromFreeBDD();

Mark flip-flops for which free-BDD is complete

If all flip-flops are marked, then done

: end while
: ModifiedPODEM()

if (currDL=MDL) then return;

currDL = currDL+1;

X=Next unspecified flip-flop in the order
if (CO(X) ¢, C1(X)), then obj=0; else obj=1
(pi,val)=Backtrace(X,0bj);
LogicSim(pi=val);

ModifiedPODEM(); // recurse
LogicSim(pi=not(val));
ModifiedPODEM(); // recurse
LogicSim(pi=V);

currDL = currDL-1;

return

Chapter[4, Illegal State Identification 49

flip-flop with as few decisions as possible (recall the MDL limit). The MLP procedure [84] is used to obtain
the initial ordering of the flip-flops. This procedure computes the input supports for the flip-flops and clus-
ters the ones with closer supports. For our purpose, note that an initial ordering is important, because, once a
flip-flop is specified, the next flip-flop that we choose should be co-justifiable easily. The overall complexity

of the above algorithm ié)(nff.2MDL), which can be be adjusted according to the user-specified value for
MDL.

Dynamic Regrouping Since MLP uses only structural analysis to order flip-flops, we have observed that
the ordering may not always help us in justifying a suitable group of flip-flops together. For example, if
flip-flops X1 and X2 are adjacent in the order produced by MLP, it is possible that within MDL, there
exists several paths of the free-BDD, at whose lea¥éds specified but noX 2. This happens when the
flip-flop X2 does not group well withX'1 and more decisions are needed along those paths to spégify

In such cases, we will not learn anything illegal involvixg and X2. We use a procedure to dynamically
regroup the flip-flops as our analysis progresses. Essentially, if we were not able to sfieeifyhe leaf of

a pathp during the decision process, we check if any other flip-flops in the lower order have been specified
at all the leaves of the previously construcied 1 paths and as well at the current pathif so, all such
flip-flops are moved to the position nextl, and X 2 is moved down the order. If no such flip-flop exists,
however, we continue as shown in our regular algorithm (see Algofithm 1). The main intuition behind this
dynamic approach is to group flip-flops which are closely related in the Boolean space rather than via circuit
structure. The final ordering obtained at the end of unroll depthl is used as the initial ordering for the

next iterationn.

At each leaf,L, of a free-BDD built in Algorithn] 1L, we obtain a set of assignments to the flip-flops at
PS{ + 1). Let this be partial-staté'l. Let the flip-flop assignments along the path of the free-BDD for leaf

L form a partial statg'2. We take the intersection of the assignmentg’inand F'2 (say, F'3) and store

them as a listLIST. All such stored partial-states are used in our unified framework as explained in section

4.3.4.

Chapter[4, Illegal State Identification 50

A b (a) D=1 —> E=0 (Not suff)
@7 (b) D=0 —> E=0 (Suff)

(c) B=0 —> E=0 (Not Suff)

(d) B=1 —> E=0 (Not Suff)

K—D (&) A=l —> E=0 (Suff)
c E (pc=1->E=0 (Suff)

Figure 4.2. Sufficient Implication Examples

4.3.2 Unachievable Partial-State Learning

In this subsection, we explain our necessary assignment looping theory to learn additional unachievable
partial-states. First, consider the concept of a general logic implication, which describes the logical depen-
dencies among the signals in a circuit. For example, the implic&fipn — Y7 .41 means that whenever
signal X is set to logic0 in frame, the only possible value at sign&lin framer + 1 is a logicl. We

define the concept of sufficientimplication as follows.

Definition 4.2: (Sufficiency). Starting at an all unknown initial state, I&tbe an input vector sequence
of lengthr. The implicationX,, — Y, . (v,w € B, k > 0) is termedsufficientif any input vector

sequencd that impliesX, -, also impliesY,, .. Formally,VI : [— X, =1 — Y, .

Not all the logical implications inside a circuit are sufficient. For example, consider the simple circuit shown
in Figure[4.2 wherd, is a constant assignment. The implicatibn — Ey holds true but is not sufficient.
This is becaus®; can be achieved by an input vectod = U, B = 1} which doesn’t causé, via logic

simulation. The figure shows a few other sufficient and non-sufficient example implications.

Next, we use the above sufficiency condition and define the following lemma for obtaining unachievable

assignments to flip-flops.

Next, we use the above sufficiency condition and propose the following theorem for obtaining unachievable

partial-states.

Theorem 4.1: A partial-stateF’ = {X1,; AX2,0A.. A X1y}, (v1, 02, ..,un € B), consisting of: flip-flop

Chapter[4, Illegal State Identification 51

assignments is unachievable, if for anythe following sufficient implication existsX(l,1.+ A X240, A

o A XNpnr) = (X1p1r—e A X227k A oo A X Nppr—i), k> 0.

Proof: We prove this by contradiction. Starting from an all unknown initial state at frariet a finite input
vector sequenceé of length/ achievest’ = 1 in framel. According to our sufficient implication aboveé,
should also sef’ = 1 in framel — k, which in turn required” = 1 in frames! — 2k, [— 3k, ...,l — nk and
SO on, wherex — oo. For some value of, nk > [which means thaf’ has to be true in a fram€ 1. This,

however, requires to have a length> 1.
[(length(l) =1) — (length()> 1) = (length{) = o0)].

In other words, no finite input vector sequence can achiéve o

For example, let for any, (Xo.- A Y1.7) — (Xo.-—1 A Y1.-—1) be a sufficient implication. Then, by the
contrapositive law,X1.,_1 V Yy.-—1) — (X1.- VYy.-). In other words, flip-flopsy andY” can be initialized

and remain only in the following state§00, 10, 11}. Note that Theorem 1 holds true only if the implication

is asufficientone. Otherwise, we might not conclude unachievability. For example, if the combinational
logic shown in Figuré 4]2 is a part of a sequential circuit, thgn — FEj ._; holds true for anyr, any

k > 0. However, itcannotbe asufficientimplication according to definition 2. Simply put, an invariant

cannot sufficiently imply itself backward. Otherwise, it will not be an invariant.

In a naive manner, we can inject a partial-state onto the circuit, imply its necessary logic values and check if
it satisfies the criteria given in Theorem 1. However, checking this for all possible partial-state assignments
is impractical even for medium-sized designs. While Theorem 1 is proposed with respect to partial states, it
is equally applicable for any composite signal assignment in a circuit. Hence, we apply it efficiently during
the static implication computation process and in our unified framework, as explained in the following sub-

sections.

Chapter[4, Illegal State Identification 52

4.3.3 Exploiting Logic Implications

Since the circuit information is encoded into a Boolean formula for performing the induction runs, it be-
comes beneficiary to extract non-trivial relations existing among the circuit sigrealghose that cannot

be deduced by the SAT solver directly through Boolean Constraint Propagation(BCP)) and inject them as
learned clauses into the formula. This has been put to uselin [74], where the implications learned via direct
logic simulation are converted to clauses for enhancing the SAT runs. In our framework, we make use of
the Extended Backward learning (EBL) procedure described in [75]. There are two main advantages behind
this: First, the learning procedure used|in|[74] might miss many complex relations existing inside a circuit.
Although the time consumed by the EBL procedure can be higher than that of [74], it has the potential to
identify new non-trivial relations. Second, the unachievability theory described in the above sub-section
can be efficiently employed during the EBL computation process. Note that the use of EBL is not a main

contribution of this paper, but the means of applying our technique via EBL is.

Algorithm 2 Algorithm for Unachievability Learning
1: Given N(odd), Unroll circuitN times;n = (N +1)/2

2: Order signals in frame from PlIs to POs
3: for each signalX in order, for each in {0,1} do
4: LogicSim(X = v)

5: UG = Set of unjustified gates due 16 = v

6: for each gat&s in UG with controlling valuecv do

7: for each unspecified fanif; of G do

8: S; = Set of assignments due to LogicSikhE v, F; = cv)

9: if (X =wv, F; = cv) hold Theorem 1, addX = v)—(F; = ¢v)
10: end for
11 Add (X =v)—(S; [/ EBL step
12: end for

13: if (X = v) holds Theorem 1, stor& = v as invariant

14: end for

Algorithm[2 shows our unachievability learning algorithm. Giv&n the circuit is unrolled forV time-

frames. Each signal assignmekli, (v € B) in the middle framen is logic simulated and the set of

Chapter[4, Illegal State Identification 53

unjustified gat@due to X, are identified. IfG is an unjustified gate with controlling value, each of its
unspecified fanirF'; is set to valuev and logic simulated together witki,. The EBL procedure (step 11)
computes the intersection of signal assignments in all such logic simulations and stores them as implications
of X,,. As soon as the logic simulation &f, A Fi., is done, we check if it holds the criteria of Theorem

1. If so, the implicationX,, — Flig is learned. At the same time, the contrapositive relation, — X3

is also learned. Note that all such implications learned via Theorem 1 are highly non-trivial since a SAT
engine might not be able to deduce them during its decision making process. In our implementation, we
store all the implications learned and use them to identify more signal assignments during logic simulations
(at steps 4 and 8). The advantage of doing so is to learn more non-trivial implications when the algorithm

proceeds for the remaining signals.

Finally, after all the implications are computed for a given signal assignigntve check ifX, satisfies
the criteria of Theorem 1. If sz is stored as an invariant. All such invariants and learned implications are
converted to clauses. For example, for a learned implicatipr- Y1, the clauseX Vv Y) is created. The
original EBL algorithm has quadratic complexity in terms of the number of signals of the circuit. Checking

our unachievability criteria only requires a small fraction of the run-time needed by EBL.

Figure shows 2 time-frames of an example sub-circuit. The copy of agatdramen is namedx’

in framen — 1. The implicationsX1y,, — H'y,_1andFy, — I, already exist in the circuit (shown by

dotted lines). For simplicity, we do not show all the gates in both the frames. Consider the assighment

due to which the gat€' (with logic value0) is unjustified. The two possible justifications 6., are Jy.,,

and Fy ,, (since both faning/ and F’ are unspecified currently). Whdr ,, is logic simulated along with

E4 ,, the figure shows how the assignmeﬁt'@,n_l andE'; ,_; are also implied. Since we are implying

the necessary values in the circuit, these are sufficiently implied and hence we can cqdglutle }

as unachievable according to Theorem 1. Encoding this as a claése) into the induction formula

helps in rejecting states that can cause these unachievable signal combinations. In the example shown,

{X1o A X271 A X31} is one such illegal state.

“a gate isunjustifiedif it has a specified value but the current logic values of its fanins do not justify it

Chapter[4, Illegal State Identification 54

frame n—1 i frame n

Figure 4.3. Unachievability Learning Example

4.3.4 Unified Framework

In this sub-section, we provide a unified framework which helps us in extracting more illegal states by using
the information learned so far. First, for each partial stasestored inL/ST (obtained from the ATPG
procedure), we check if it satisfies Theorem 1. If 883, is marked unachievable and the corresponding

clause is learned, which can be used to constrain the induction runs.

Second, we do the following: By performing the ATPG procedure in Seftion|4.3.1, we obtain groups of
flip-flops and impossible combinations among the flip-flops in each group. From the procedure described
in Sectior] 4.33, we obtain non-trivial implications (from EBL as well as via Theorem 1). For each group
of flip-flops obtained at the end of our ATPG analysis, we construct an ordered BDD as shown in Figure
[4.4, where each BDD node shows a flip-flop with logic assignmeatsd0 respectively. At each decision
along a path, all the logic implications of the corresponding assignment are injected onto the circuit and

logic simulated.

If the new signal assignments due to that decision are not consistent in the circuit, we store the partial-state
(so far) as illegal and continue with the opposite assignment for that flip-flop. Otherwise, we check if the
partial-state satisfies the criteria of Theorem 1. If so, we store the partial-state as illegal and continue as
before. This process is repeated until the whole BDD is enumerated. In Figlre 4.4, let the three flip-flops
X1, X2, X3 be in one group (in that order) and X 1o A X2; A X3y} be an unreachable partial-state

learned via our ATPG analysis. As shown in the figure, let the assignment combifitigm X2, A X 3¢}

Chapter[4, Illegal State Identification 55

NR = No Result

CA = Conflict from ATPG analysis
CU = Conflict due to unachievability
CS = Conflict during simulation

ONONA
\0 1 0

NR CS NR NR NR CA
Figure 4.4. Enumeration BDD Example

cause a conflict during logic simulation where as the combingtioiy A X2y} satisfies the unachievability
criteria. Converting each illegal partial-state to clause form will lead to the three clgkides— X2V X3),

(=X1Vv-X2V X3)and(X1V X2) respectively.

Finally, we simplify all the clauses learned so far. Since we utilized BDD structures, there might be re-
dundancies present in the resulting clauses. For example, from Fighre 4.4, we can see that the partial-state
{X2; A X3y} itselfis illegal (irrespective o 1). Thus the first two clauses learned above has a redundant
literal in them. We utilize binary resolution [19] to remove such redundancies. For example, resolving on
the variableX'1 using those two clauses would lead to the claus&2 v X 3) which captures the unreach-

able core and maximizes the conflicting probability. Similarly, given the ATPG learning from Figlire 5.1(b),

we would learn the clause (X1 VvV =X 3).

Thus, once we obtain all the constraint clauses, we resolve on each variable at a time and eliminate the
redundant literals in them. The final set of clauses maximizes the learned constraints. Recent clause sim-
plifying technigues such as NiVER [B0] can as well be used for further simplification, however are not

currently employed in our tool.
4.4 Experimental Results

We have integrated all the above learning mechanisms into our framework IFILL (Induction using Fast IL-

Legal states). In IFILL, the procedures described in Secfions|4.3.1] 4.3[3 and 4.3.4 are performed and the

Chapter[4, Illegal State Identification 56

constraint clauses are obtained. Experiments for sequential circuits from the ISCAS89 and ITC99 bench-
mark suites were conducted using the zChaff [22] SAT solver (version 2004.11.15 taken from [85]) on a P4
3.2GHz machine with 1GB RAM and running Linux OS. We experimented with the hard safety properties,
which are based on aborted state-justifications from a sequential ATPG. An aborted state is a state that the
ATPG failed to justify within its resource limit. 1§ is an aborted state, the property was formulated as

AG(—s). We have neglected all those properties which can be proved easily using induction.

For the smaller circuits< 5000 gates), maximum unroll limit was set to 4 and 5 for the ATPG analysis
and EBL procedure, respectively, whereas it was set to 3 and 3 for the larger ones. The inductidnislepth
increased by 25 frames per iteration up to a maximum of 250 frames for the smaller circuits. For the larger

ones, these were set to 10 and 100 respectively. Time-out limit for each property was set to 30,000 seconds.

Table[4.1 reports the experimental results. For each instance shown, we report the induction run-times
required by the original run (no learning), learning from|[74], learning from EBL [75] and with our learning
under column®rig, [[74], EBLandIFILL respectively. In columiEBL, only implications learned via EBL

are added, where-as in ours, all the learned illegal states are added in addition. The sub-Zplanui

denote the pre-processing and total timEs < solving time) in seconds. As a first observation, we can see
that the pre-processing times needed by our method is only few seconds higher than that of EBL. In most

cases, they are negligible when compared with the actual induction run-times.

If a property is verified via our technique, we report the corresponding bound in brackets under our sub-
columnT;. Among the 26 properties shown, we were able to complete the proof at an early bound for
11 properties whereas the other three approaches could not. For example, for s13207.1, the original run,
[74] and EBL took more than 30000, 28000, 10000 seconds respectively without any result, whereas we
completed the proof within a total of 129 seconds. Note that, by being able to complete the proofs at smaller

depths, the high run-times incurred in solving the higher depth instances are avoided.

For most other properties for which nothing is concluded within the maximum depth, we were able to speed-
up the induction runs. For example, for b15850.2, the original fun, [74] and EBL took more than 30000,

30000 and 16000 seconds, respectively, whereas we were able to reduce it to 8803 seconds. For the two

Chapter[4, Illegal State Identification 57

Cumulative induction runtimes

1600
1400

1200 /

1000

—e— Orig
—a—[17]
800
——EBL
600

»
400 o //:/ A | |—e—ours
—

200
0+—= - e —eo——+o %

10 20 30 40 50 60 70 80 90 100
Depth

Time (seconds)

Figure 4.5. Cumulative run-times for b14.2

properties b15.1 and b15.2, adding the new clauses caused negative effects when compared with the original
runs. This is because, all the added clauses increase the burden on the SAT engine during BCP and also

possibly lead to a different decision ordering, which reduces its efficiency.

Next, we illustrate a cumulative run-time analysis (excludippfor b14.2 with respect to the depth in Figure

[4.5. Note that, we want the cumulative increase in run-time with depth to be as slow as possible. For smaller
depths, all the runs seemed competitive (differing only little). But when the depth is increased beyond a

certain limit (say, 60-70 in this case) the run-times for the other approaches increased almost exponentially,
whereas we were still able to contain it. This demonstrates the efficiency of IFILL in enabling a deeper

inductive search, under given resource limits.

4.5 Summary

We have proposed novel, low-cost learning techniques to extract illegal partial-states of a design for im-
proving SAT-based induction. These illegal partial-states are replicated as constraint clauses to aid the SAT
engine in pruning the search-space. Experiments revealed that our learning can prove many properties at

early depths where the conventional runs failed. We were also able to reduce the induction run-times for a

Chapter[4, Illegal State Identification 58

variety of other properties.

There are several directions for future work. First, the above framework aihesvatostand does not
guarantee finding all illegal states. For further hard to solve properties, it would be interesting to generalize
this learning to capture additional illegal states. Secondly, since only logic implications are employed, the
relations might not go deeper. Employing sophisticated technigues such as SAT-based induction itself would
be more helpful in extracting the invariants. Finally, the learning regions can be limited for a given property

to reduce the pre-processing times further.

Chapter[4, Illegal State Identification

Table 4.1. Induction runs for safety properties

Circuit.p | Gates| Orig [74] EBL [75] IFILL(Ours)
T, T, |T,| T, |T, T,
b10.1 206 83 118 1 8 2 3
b10.2 206 86 131 1 7 2 3
s526.1 223 3565 | 3434 1 1291 3 3[50]
s$526.2 223 4034 | 4386 1 1599 3 3[50]
b13.1 362 534 89 1 16 2 13
b07.1 441 193 42 1 11 2 8
b07.2 441 219 43 1 20 2 9
b04.1 737 580 563 0 491 1 509
b04.2 737 768 491 0 465 1 507
s1423.1| 753 7371 | 7616 1 8943 4 7259
s1423.2 | 753 7162 | 9874 1 7475 4 6013
bl1.1 770 5154 | 4864 1 3405 2 2[50]
b11.2 770 | 5575 | 4800 | 1 | 2386 | 2 2[25]
b05.1 998 151 46 0 41 1 1[50]
b05.2 998 192 32 0 44 1 1[50]
s9234.1 | 5883 | 28015| 21912| 18 | 3033 | 25 | 26[20]
s9234.2 | 5883 | 21319| 18682| 18 | 6252 | 25 | 26[20]
s13207.1] 8803 | -TO- | 28613 | 108 | 10712| 129 | 129[20]
s13207.2| 8803 | -TO- | -TO- | 108 | 8258 | 129 | 130[20]
b15.1 | 8922 | 9037 | 11985| 490 | 18120| 523 | 10188
b15.2 8922 | 7547 | 16851 | 490 | 10849 | 523 | 8398
b14.1 | 10098 | 597 505 | 48 | 101 | 57 80
b14.2 | 10098 | 1357 | 1110 | 48 594 57 73
s15850.1| 10533| -TO- | -TO- | 35 | 12124| 46 7387
s15850.2| 10533 | -TO- | -TO- | 35 | 16051 46 | 8803
s38417.1| 23949 | 10211| 7254 | 34 | 4787 | 48 | 48[10]

T,: Preprocessing timeT;: Total time (with7,) TO:7; > 30000 sec

Chapter 5

Property Strengthening

As seen from the previous chapters, SAT-based BMC/Induction techniques suffer as the depth is increased.
In other words, for properties that can be proved only at larger depths, these techniques are not effective.
Strengthening property allows it to be falsified/verified at an earlier depth compared to the depth needed
to proving the original property. In this chapter, we propose new preprocessing techniques for explicitly
identifying co-invariants for a given safety property which are then added to the verification instance for
strengthening. First, we employ a path-oriented decision making engine to quickly identify several states
which has paths to states violating the property. Next, we generate a set of candidate co-invariants and
propose a induction based technique to learn true co-invariants among those candidates. All the learned

co-invariants are minimized using resolution and added to the original property to strengthen it.

Below, we first provide our motivation in detail followed by the proposed strengthening techniques and

algorithms.
5.1 Motivation

Incremental learning techniques for improving bounded model checking and induction have been exploited

in [6,/7,/8]. Since the clause databases over multiple iterations have much similarity, the idea here is to

60

Chapter[3 Property Strengthening 61

extract conflict clauses while solving smaller depths and use them to reduce the complexity of solving the
larger instances. However, these techniques do not have the capability to reduce the induction depth needed
to prove a property when compared with the conventional induction runs. Strengthening a property, on the
other hand, involves enlargement of the property such that a counter-example can be seen faster or that it can
be verified at a smaller depth. In [86], target enlargement using BDD-based pre-image computations have
been explored. However, this technique lacks the ability to learn over various portions of the state-space
which affects the final strengthening. Furthermore, since canonical BDDs are needed, this could be memory
intensive. In[[80], the counter-example obtained during an induction step run is automatically added to
the property to strengthen it. Whereas this technique does not require additional run-times, the resulting
strengthening power is limited since it largely depends on the counterexample produced by the underlying

SAT engine.

Let ¢ be a false property that can be refuted at a dépftom the initial state(s)/. If we are able to

extract a set of state$ that can reachp in steps< m (m < k), then strengthening with -5 to form a

new propertyp A =S can aid in refuting the new property at a depth as lovk asm. Similarly, for true
properties, strengthening a property will enable it to be proved at an earlier depth, which in turn depends on
the quality of the strengthening proposition. This is because as more states are added to the target property,
the number of solutions in the induction-step run becomes smaller. For hard to prove properties, it becomes
highly beneficial to pre-process it such that it can be proved at smaller depths, thereby avoiding the excessive

run-times incurred at the higher depths.

In [80], a propertys is strengthened automatically using the counter-example obtained from the induction
step run. For example, ifis the first state in the solution for the induction step run, a strengthened property
¢N-sis obtained. There are two main limitations in doing so. First, if the induction step run has several such
spurious counter-examples (which can be exponential in the number of state-elements), the new property
obtained might still require a high induction depth to be proved. Second, the provability of the new property
depends on the added strengthenirgy, addings; alone might not be sufficient. If we are able to collect
several such states, they can be simplified to improve the strengthening. Note that the larger the state-cube

added, the better the chances of refuting/proving the resulting property. We exploit the structure of the

Chapter[3 Property Strengthening 62

PI(1) PI(2) PI(k)

PS(1) LIl pS) Lll----] PS@3) L[| PS(k+1)
— frame frame = — frame &=
| ‘ 2 1 k=

NSOTIT—=7 NS 7T NS M1 NS
¢ PO(1) ¢ PO(2) ¢ PO(k) ¢

PHI PHI PHI PHIbar

Figure 5.1. Circuit Unrolling

circuit to accomplish this as detailed in the following sections.

5.2 Property Strengthening Using an ATPG

In this section, we propose our ATPG-based framework which aims at explicitly strengthening the property
while trying to limit the learning costs. Our main idea is to extract as much information as possible at
smaller depths which can be used to improve the quality of strengthening. For simplicity of explanation, we
assume a safety propertyto be combinational|e., it involves state-elements within a single time-frame)

though all our discussions/algorithms can be applied directly to general temporal properties.

We employ a combinational ATPG-based method (using the PODEM algEHRﬁh) to identify a subset

of states that can violate. Algorithm 1 outlines our overall procedure. We first unroll a circuit fdime-
frames (similar to an lterative Logic Array expansion) as shown in Figuie 5.1, where the unrolled frames
are numbered, 2, .., k. The lines PI), POg), PS{), NS() represent the primary inputs, primary outputs,
present-state elements, next-state elements for fiaaspectively. All the present-state elements for frames

2 to k are simply treated as buffers, while those atlp&(e treated as pseudo-primary inputs (PPIs).

As shown in Figuré 5]1, the present-state elements at fran2es., k are constrained with, whereas the
framek + 1 is constrained t@. This can be simply done by constructing single-output monitor circuits

according to the property clauses and constraining their output toGogid. To constrainp at a framei,

!'PODEM makes decisions by backtracing from a given objective (gey,X = v) and makes decisions only on the primary

inputs and pseudo primary inputs to justify ite(, to setX = v)

Chapter[3 Property Strengthening 63

we need to set the output of the corresponding monitor at fisiméogic 1, whereas for it needs to be set

to logic 0. This is shown in line 4 of Algorithm 1.

In such a setup, we set a series of objectiugs- 1 at framek + 1, ¢ = 1 at framesk, k — 1, ..., 1} and start

our decision making process. For the complete algorithm and implementation details of PODEM, the reader
is referred to[[8[1]. During the decision making process, we obtain a vector (involving logic assignments to
Pls and PPIs) with one of the following three results: (i) that vectorgets) in at least one of the frames

1,2, ..., k, (i) that vector set®) = 0 at framek + 1, or (iii) that vector satisfies all the set of objectives

¢ = 1 for framesl..k and¢ = 1 for framek + 1. Among these three cases, we are interested in the
vectors belonging to case (iii) because these are the vectors that gaitisfyne-framesl to k, but not in

k + 1. Once such a vector is obtained during the decision process, we quantify away the Pl assignments in
that vector since we only need the PPI assignments for strengthening a property. The PPI assignments in
that vector form a state-cube which is used to strengthem essence, i¥/pp;Ap; IS One such a vector,

the new property will bed = ¢ A V ppr. Note that the complement of the state-cibes;, V ppr, forms

a disjunction of state-element assignments which can be directly added as a clause to the existing property
clausesg. All those vectors belonging to cases (i) or (ii) do not contribute to strengthening and we simply

backtrack and continue our decision making process. The above process is shown in line 9 of Algorithm 1.

For efficient search in PODEM, we use the SCOAP measures [83] to identify if a signal in the circuit is
most controllable to logi® or logic 1. In SCOAP, two controllability parameteSONT, and CONTy

are computed for each signal, assuming that the primary inputs are fully controllable. In our setup shown

in Figure[5.1, we initially set th ONT,, CONT; of Pls and PPIs td (i.e., fully controllable) and

compute the SCOAP values for the rest of the internal signals in the unrolled circuit. These are used during
backtracing from the objective to find a suitable PI/PPI logic assignment. To limit the strengthening costs
and obtainbigger state cubesi.g., involving a small number of state-elements), we limit the maximum
decision level (MDL) in PODEM to a small user-specified value. Note that our main intention is to capture

as many state cubes as possible but not to complete the entire search, since a complete search may have

exponential complexity.

Chapter[3 Property Strengthening

64

Algorithm 3 Property Strengthening using PODEM

1

10:
11:
12:
13:
14:
15:
16:

17

2
3
4
5:
6
7
8
9

: For ¢, do base, ind step runs at deptHf result, DONE

: GivenK,ITER,MDL; k=1

: while (k < K) do

Unroll circuit k times, set property constraints

SetCONT, andCONT; of Pls, PPIs td)

Compute SCOAP values for all internal signals

iter =1

while (iter < ITER) do
Use PODEM to strengthep: limit decisions to MDL
Simplify new ¢ using resolution
Modify CONT,, CONT; values for PPIs using
Recompute SCOAP values for all internal signals
iter = iter + 1

endwhile

Do base run at depth If failed, DONE; Else, continue

k=k+1

: endwhile

Chapter[3 Property Strengthening 65

5.2.1 Property Simplification and Reordering

Given a propertyp, an unroll lengthk, and a maximum decision limit/ DL, the above process yields a
strengthened. However, the state cubes that we obtain are skewed according to the PPIs chosen during
the decision process. For example, if a pseudo-primary ifjgei; is chosen at the first decision, then all

the state-cubes that we obtain will involvePI;. At the same time, for quality strengthening, we need
bigger state cubes that cover different regions of the state-space. To achieve this, we perform property

simplification and input reordering as follows.

First, we employ binary resolutioh [[L9] to simplify the strengthened property. Binary resolution is a process

in which two impossible assignments can be used to deduce a hew impossible assignment. For example, if
(SVv X,)and ¢ Vv —-X,) are two clauses (wherg, is any disjunction of a set of literals), the last variable

X, can be resolved to obtain a newer and stronger clatiselif line 10 of Algorithm 1, we simplify the
strengtheneg using resolution. If two clauses1 andC'2 in new¢ can be resolved to eliminate a variable,

then they are removed from and the new clause obtained via resolution ($2¥) is added top. We

perform the resolution iteratively, wherein each variablé ia resolved to remove any redundant literals in

the clauses and the process is repeated until no more resolution is possible. Note that if at least one variable
is eliminated via resolution, the resultingis expected to be stronger than the already strengthened one.
Newer simplification techniques such as NiVER|[30] could be further used but are not currently employed

in our framework. The following theorem ensures the correctness of our approach.

Theorem 5.1: Property simplification using cross-timeframe resolution is sdfe,, (t does not produce

false negatives or false positives during the induction runs)

Proof. We prove this for the case where the original propertis a single CNF clause and we perform
a single resolution, which can be inductively used to prove complex properties or performing multiple

resolutions.

Let ¢ consists of a claus€'1l = (S Vv X,,), whereS is a disjunction of a set of literals and,, is a state

variable. Upon performing our PODEM procedure at an unrolled lehgtet C2 = (S vV —=X,,) be a new

Chapter[3 Property Strengthening 66

clause that is added to strengthgnin other words;~-C'1 can be reached ik steps from—C?2. According
to our above proceduré;1 andC2 can be resolved to produce a new claG8e= (S). We remove”'1 and

C2 from ¢ but addC3 to it.

First of all, since clausé’'3 consists of a subset of literals 6f1, it follows directly that (originaly is false)
— (new ¢ is false) and by contrapositivity, (newis true)— (original ¢ is true). The two relations that

remain to be proved are (newis false)— (original ¢ is false) and (origina is true)— (new¢ is true).

Let the new¢ be refuted at a base case deptHfrom I(s). In other words, there exists an input vector
sequence that can violate the cladseat depth’. If that sequence sets state elem&ptto logic 0 at depth
k', thenC1 is also violated at depth/. On the other hand, if that sequence sEfsto logic 1 at depth’,
then(C2 is violated at depttt’ which in turn means that’1l will be violated at deptht’ + k. Thus, we can

conclude (new is false)— (original ¢ is false).

Now, let us consider the original to be a true property which can be verified at an induction step depth
K”. In other words, the CNF formul&l ={C1*(1,2,...,k") A T*(1,2,...,k" + 1) A ~Clgr41} is not
satisfiable. Clearlyk” > k, since we already know thatC'1 can be reached ik steps from~C2. This
implies that there is no input sequencefii that can violate®'2 at depthk” — k. Due to induction, this in

turn follows that there does not exist any input sequendélithat can violate”'2 at any depth> k" — k.

SinceC3 constrairﬁ more state space thdil, there also does not exist an input sequence that can violate
C2 atany depth> £ — k in CNF formulaF2 = {C3*(1,2, ..., k") AT*(1,2, ..., k" + 1) A=C3j» .1 }. Due
to the same reason as above and simildtoC'1 cannot be violated at dep#{ + 1 in formula £'2. From
the above two arguments, we can conclude that, there does not exist an input sequence that céfgviolate
at depthk” + 1 in F2. In other words, the formul&'2 is also not satisfiable. Thus, (originalis true) —

(new¢ is true). o

Via performing resolution on the learned state-cubes, we obtain a further enlarged propgéotyever, the
quality of strengthening can be improved further by capturing cubes from different parts of the state-space.

As a consequence, we want to explore the unexplored PPI space of [Figure 5.1 (remember that due to the

2the number of possible state assignments decreases as the constrained clause is made smaller

Chapter[3 Property Strengthening 67

MDL limit, we do not exhaust the search). In the following, we use an adaptive procedure to modify the

SCOAP values such that backtracing via PODEM leads to a unexplored state-spaces.

Let 4. be the maximum clause length ih Initially, all the CONT, and CONT; values for the

PPIs are set t0. For each negative literdl in each clause& of ¢, we computeCONT; (var(L)) =
CONTi(var(L)) + length(C) /lmaz, Wherevar(L) is the PPI corresponding to literal Similarly, for

each positive literal, we comput@ONTy(var(L)) = CONTy(var(L)) + length(C)/lmqe:- The main
intuition behind this is to increase the controllabilities of the PPIs in the already found solutions such that

newer PPI spaces are favored in the future searches. This is done in line 11 in Algorithm 1.

The SCOAP measures for the entire circuit are recomputed (line 12) and the PODEM procedure is repeated
to learn more state-cubes and further strength€Fhe entire process is repeated until a user-defined number
of iterations/T F R at a depthk. The resulting property after processing at a depthis given as the input

at depthk 4 1 and the process is repeated until a maximum user-defined éépth

The overall complexity of the above algorithm (K x ITER x 2MPL) which can be be adjusted

according to the user-specified values ¥oy ITER and M D L.

5.3 Pre-selection and Derivation of Co-invariants

In the previous section, we have presented a procedure to quickly strengthen the property and further im-
prove the quality of strengthening. Its efficiency depends on the decision making process which in turn
depends on the accuracy of the SCOAP measures for that circuit. In this section, we present a new tech-
nique to identify more co-invariants for a propertyia a pre-selection based technique. The main idea
here is to generate a set of candidate propositions and check if they are co-invariant(ethto find if

the candidate propositions have to be invariangfto be invariant). The following theorem forms the basis

of our new strengthening algorithm.

Theorem 5.2: A propositional formula) can be used to strengthenif the following two conditions hold

true: (i) the CNF formula,F' = {¢*(1,2,...,k) AN o™ (1,2, ... k + 1) AT*(1,2, ...,k + 1) A =1} iS not

Chapter[3 Property Strengthening 68

satisfiable and (ii) no input sequence can violateithin depthk from I(s).

Proof: First, consider) to be an invariant. Because strengthening a property with an invariant cannot cause

false negatives or false positives, strengtheringth » will always be sound.

Next, consider) not to be an invariant,e, lett be refuted at a depttf from () via a pathP = s1, s9, s3,
.., Spr+1, Wheres; € I(s). Clearly, since the theorem states that no input sequence viglatéhkin a depth
of kfromI(s), k' > k. Next, consider a CNF formulBl = {¢*(1,2,..., k) AT*(1,2, ...,k + 1) A—tbg41}-
Sincey is not an invariantF'1 will be satisfiable. Now, iff’ is unsatisfiable and’1 is satisfiable, we can
conclude that at least one of the firkak- 1 states in pathP (which has a length’ + 1) must violateph:.
Since such a state starts frath € I(s), we can also conclude thaki is not an invariant, thereby reducing

the induction depth. o

If the two conditions of Theorem 2 are satisfied, titetan be strengthened usigigo form ¢ A «. In order

to efficiently utilize this, we first generate a set of propositigrnass given in line 1 through 8 of Algorithm

2. Essentially, we order the state elements of the design according to their structural connectivity using the
MLPE] procedure|[84]. All the combinations among groupsiéfadjacent state elements are enumerated
whose disjunctions are treated as suitable candidates. For example f> and X3 are 3 adjacent state-
elements in the order, we obtaiX{ = 0V Xo =0V X3 =0), (X1 =0VXys =0V X3 =1), ..,

(X1 =1Vv X, =1V X3 = 1) as the 8 potential co-invariants. Given a depttwe initially check each
candidate if they can be reached from the initial state(s). If so, that candidate is removed and not considered
anymore. On the other hand, if refutation is seen, we check that candidate for co-invariancy using Theorem
2. As in Algorithm 1, we use a maximum decision limit, MDL, in the PODEM algorithm to limit the
amount of time spent in identifying the co-invariants. If at least one solution is foun#l {see Theorem

2 statement), then we can conclude the correspongiisgnot a co-invariant and abort the search. On the
other hand, if no solution is found, we can conclugdé& be a co-invariant and use it to strengthe(line

15). The resulting at the end of deptk can be further simplified using resolution (line 17) which is then
used as the input property at defth- 1. This process is repeated until the user-defined maximum déepth

is reached.
3MLP orders state elements according to their input support affinity

Chapter[3 Property Strengthening

69

Algorithm 4 Property Strengthening using Pre-selection

1: Given Max candidate sizé/
: Order the state elements using MLP
: for each elemenk; in ascending ordeilo

Xir1, Xiqo, -, X1 m—1 = Next M — 1 elements in order

2
3
4
5. Enumerate al2 combinations among’;, X; 1, .., Xitar—1
6: Add disjunction of each enumeration to CAND-LIST

7: RemoveX; from the order

8: end for

9: GivenK,MDL; k=1

10: while (k < K) do

11: for eachy) € CAND-LIST do

12: If base run at depth failed, removey; Else continue

13: Unroll circuit £ times

14: Check Theorem 2 using PODEM : limit decisions to MDL
15: If Theorem 2 holds, set = ¢ A 1) and remove)

16: endfor

17: Simplify ¢ using resolution

18 k=k+1

19: endfor

Chapter[3 Property Strengthening 70

5.4 Overall Flow and Discussion

In our current implementation, we combined both algorithms such that the strengthened property can be
alternated. For a given unrolled depgth(k = 1, 2, ..., K), we first run Algorithm 1 and use the obtained
strengthened property as input to Algorithm 2. The strengthened property from Algorithm 2 is again used
as input at deptlt + 1 for Algorithm 1, and so on. After reaching the maximum user-defined d&ptimne

resulting strengthened property is checked using conventional SAT-based induction.

For true safety properties, a successful induction run is sufficient. In other words, the depth at which they
are proven is often immaterial to the designer. However, for false properties, it is important to generate
the counter-example that refutes the property so that the design can be debugged accordingly. Note that,
when we strengthen a false property, it is guaranteed to be refuted at akddpthk), wherek is the

depth at which the original property could be refuted. Whereas the new clauses added to strengthen the
property might increase the intuition on the part of the designer, the shorter counter-example might not help
in tracing the cause for the original bug. Since we strengthen a property by searching the state transitions
and simplifying them using resolution, the original counter-example can be reconstructed completely from
the new counter-example obtained. Since we know the cause for adding a new(lauseengtherp, a
counter-example fof” can be appended with the input vector sequence that causéalbe reached from

—C'. This can be automated according to the proofs of Theorems 1 and 2.

5.5 Experimental Results

We have developed a prototype tool for explicit property strengthening, which takes a safety property as
input and produces the strengthened property. Induction runs were conducted using a general purpose SAT
solver zChaff[[85] and a special purpose incremental solver for induction called Temporal Induction Prover
(TIP) [7]. The main motivation is to evaluate the proposed property strengthening with respect to both the
general purpose learning mechanisms used in the modern SAT solvers and the state-of-the-art incremental

learning techniques for induction.

All the experiments were conducted on a 3.2GHz Pentium 4 machine running Linux OS with 1GB of RAM.

Chapter[3 Property Strengthening 71

We experimented with the safety properties for the ISCAS89 and ITC99 benchmarks which are properties
representing aborted states from a Sequential ATPG.idfan aborted state, AGg) is formulated as a
safety property. For each property, we ran zChaff and TIP until a maximum induction depth of 250 or until
a time out limit of 7200 seconds. For all the circuits, we have set the maximum unroll defl8, the
maximum decision limitA/ DL to 20 and the number of iterations]’ 'R to 3. In Algorithm 2,M is set

to 3.

Table5.]1 shows the experimental results. For each cifeb&andGatesshow the number of flip-flops and

gates respectively. The results for the properties with the conventional runs are shown under the column
Original, while those with the proposed techniques are shown uddes The columns termetdimegives

the induction run-times in seconds whereas the coldinme(str) reports the preprocessing runtime for
strengthening. The colum#Cls(str)reports the number of strengthening clauses learned for the respective
property. The column&esultreport the final result wheré means “failed”, P means “passed” and/

means “nothing concluded”. The number next indicates the depth at which the result is obtained or the
maximum depth solved until the time limit is reached. Among all the techniques, we highlight the lowest

run-times and the lowest depths for those proven propertiesith

First, consider our processing run-times needed to strengthen the property. These depend mainly on the
size and structure of the circuit and varies according to the target property. The maximum pre-processing
time taken is around 57 seconds for the circuit s15850.1. Note that in most of the cases, these times are
insignificant when compared to the actual induction run-times. Similarly, the number of strengthening
clauses depends on the complexity of the circuit and the number of total solutions present for that property.

A maximum of 426 clauses were learned for the instance s444.1.

Next, consider the actual property checking results. Depending on the performance of our technique, we
classify the results into 3 categories. The first category are those where our property strengthening was able
to improve the total run-times required to falsify/verify the property. This is mainly due to its ability in
reducing the depths required to produce a result. As an example of a false property, consider s1512.1. When
the original property is checked using zChaff and TIP, they both timed out while reaching depths of 123 and

188 respectively. On the other hand, the strengthened property was falsified at a depth of only 2 time-frames.

Chapter[3 Property Strengthening 72

Note that if resolution is not performed but the learned state-cubes are simply added for strengthening, the
improvement in the proving depth for false properties can only be linear. For exampleisithe depth

needed to refute a property using the conventional run and we learn state-cubes up to/d,dbptinthe

lowest depth at which the enlarged property can be refuted isnly K. Since we employ resolution to
improve the quality of strengthening, we were able to reduce the proving depths significantly for the proven
false properties (such as s1512.1, b11.2, s158&@) 1Next, consider the passing properties. For example,

for s526.2, zChaff timed-out after depth 176 while TIP took 888 seconds until the maximum depth of 250
without any conclusion. On the other hand, the strengthened property was proved at a depth of 107 with
31 and 22 seconds with zChaff and TIP respectively. In several cases, due to the reductions in the proving
depths required, the run-times have been improved by more than an order of magnitude. Also, note that the
improvements achieved over the general purpose solver zChaff is in general more when compared with the

prover TIP, since TIP already obtains performance improvement due to its incremental solving capability.

Next, consider the second category where we were able to reduce the induction depths but could not improve
the run-times compared to TIP. For example, for s444.1, the original property was proved false at a depth

of 139 in 53.8 seconds by TIP. Although the strengthened property was proved false at a depth of 84, the
runtime needed was around 93.5 seconds. This is because, all the clauses that are added to strengthen the
property can become a burden on the SAT engine during BCP. At the same time, they skew the number
of clauses each variable appears in, which possibly leads to a different variable order chosen by the SAT
solver, thereby reducing its efficiency. For the passing property b05.1, our total runtime was higher due to
the pre-processing time, though the actual proving time is negligible. In all these cases, however, we were

still able to obtain considerable improvement over zChaff.

Finally, consider the last category, where our technique could not reduce the induction depths. Most of these
properties are hard and could not be proved within the maximum depth of 250 or until the timeout limit. In
these cases, again, the new clauses added for property strengthening incur additional computational costs

and hence the depth reached within the time limit is reduced.

Chapter[3 Property Strengthening 73

5.6 Summary

In this chapter, we proposed new and low-cost techniques for explicitly strengthening a safety property such
that it can be proved at earlier induction depths. Experiments revealed that our techniques can be robust in
complementing the incremental learning techniques for induction and improve the run-times for both failing
and passing properties. We used PODEM as a basis of our implementation, although our algorithms can be

used in conjunction with the newer solvers such as the hybrid SAT solver proposed in [87].

There are two important directions for future work. First, it has been observed that property strengthening
can sometimes be a overhead due to the additional clauses added. Clever minimization of the added clauses
would be interesting to pursue. For example, some of the added clauses might not present any value for
strengthening when certain other clauses are added. Secondly, it will be interesting to exploit ways of
automatically identifying co-invariants for a given safety property (using Theorem 5.2) as opposed to pre-

selecting them as done in our work.

Chapter[3 Property Strengthening 74

Table 5.1. Results for induction runs for safety properties

Original OURS
zChaff [85] TIP [7] Time | #Cls | zChalff [85] TIP [7]

Circuit.p | FFs | Gates

Time | Result| Time | Result| (str) | (str) | Time | Result| Time | Result

b10 66 189 | 1876 | N:250 | -TO- | N:23 1.4 3 1.4 P:1 1.4 P:1

s382.1 | 21 266 | 71.1| P:100| 16 | P:200| 05 | 144 | 05 P:1 0.5 P:1

s400.1 | 21 276 | 116 | P61 | 0.7 P61 | 06 | 174 | 0.6 P:1 0.6 P:1

b13.1 53 362 | 70.1 | F75 | 29.2 | F75 11 | 103 | 485 | F:73 | 26.2 | F:73

b13.2 53 362 | -TO- | N:212 | 898 | N:250 | 1.0 95 | -TO- | N:218 | 575 | N:250

s526.1 | 21 368 | -TO- | N:174 | 209 | P:187 | 1.7 | 175 | 59 | P:127 | 41 | P:127

s§526.2 | 21 368 | -TO- | N:1176| 888 | N:250| 1.9 | 161 | 31 | P:107 | 22 | P:107

b1l1.1 30 396 | -TO- | N:115| -TO- | N:121 | 21 | 142 | 21 P:1 21 P:1

b11.2 30 396 | 1801 | F:73 | 228 | F:'73 | 23 | 168 | 75 F:38 | 188 | F:38

bO7 51 433 | -TO- | N:192 | 4018 | N:250 | 3.2 29 | 4476 | N:250 | 3372 | N:250

s641 19 510 | 20.5 | N:250 | -TO- | N:149 | 24 45 2.4 P:1 2.4 P:1

s713 19 529 | 22.1 | N:250 | -TO- | N:158 | 25 43 25 P:1 25 P:1

b04.1 66 546 | -TO- | N:188 | 3984 | N:250 | 2.3 28 | 6991 | N:250 | 953 | N:250

b04.2 66 546 | -TO- | N:202 | 3301 | N:250 | 2.3 29 | -TO- | N:247 | 1502 | N:250

s1423 | 74 779 | -TO- | N:86 | -TO- | N:138| 35 | 122 | 3.8 F:7 3.6 F:7

s1512.1| 55 967 | -TO- | N:123 | -TO- | N:188 | 3.7 33 3.7 F:2 3.7 F:2

s9234 | 170 | 6331 | -TO- | N:58 | -TO- | N:82 36 | 216 | 36 F:1 36 F:1

s15850.1| 506 | 11055| 1437 | F:32 | 293 | F:32 57 | 191 | 57 F:1 57 F:1

s15850.2| 506 | 11055| 558 | F:27 | 145 | F:27 53 167 | 53 F:1 53 F:1

§382.2 | 21 266 129 | F91 7.1 F:91 06 | 137 | 242 | F:77 | 104 | F77

s400.2 | 21 276 133 | F91 6.9 F:91 0.6 78 | 26.1 | F:68 9.9 F:68

s444.1 | 21 293 | 1133 | F:139 | 53.8 | F:1139 | 1.1 | 426 | 61 F:58 | 92.3 | F:58

s444.2 | 21 293 | 16.7 | F:56 2.1 F:56 12 | 225 | 2.7 F:25 4.2 F:25

b05.1 34 642 9.8 P:58 | 0.9 P58 | 24 16 2.4 P:3 2.4 P:3

b05.2 34 642 6.7 P:31 | 0.7 P31 | 2.6 17 6.1 P:30 | 45 P:30

s1512.2| 55 967 | -TO- | N:134 | -TO- | N:180 | 3.9 72 | -TO- | N:119 | -TO- | N:164

s3384 | 183 | 1937 | -TO- | N:64 | -TO- | N:51 | 6.2 30 | -TO- | N:58 | -TO- | N:42

s13207 | 550 | 9517 | -TO- | N:48 | -TO- | N:86 47 12 | -TO- | N:45 | -TO- | N:73

F: Failed P: Passed N: Notknown; Next# shown is the depth reached (max=250); -TO-: Time Out after 7200 seconds

Chapter 6

Interleaving BMC and Bounded
Reachability Analysis

In this chapter, we present a novel SAT-based framework that has the potential to search exponentially

more new states than those traversed via conventional approaches. Our technique employs forward and
backward bounded reachability analysis together with a bounded model checker to efficiently traverse the

state-space. The most important feature of our technique is the controllability-analysis-based guidance that
utilizes the knowledge from the previous searches to direct the current search in order to reach the target
state(s) faster. In the following sections, we first present our motivation followed by the proposed framework

and experimental results.
6.1 Motivation

As mentioned in chapté¢l 2, the efficiency of induction techniques depends mainly on the underlying SAT
solver employed. As the induction depth is increased, the number of variables and clauses increase linearly.
This in turn increases the search complexity exponentially, and it may become unmanageable for the SAT

engines. Due to practical resource limitations, this bound is often restricted to a small value depending on

75

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 76

the size of the design. Thus, all the reachable states that lie beyond this bound would not be traversed via

conventional bounded model checkers.

The sequential SAT solver proposed|in|[88] tries to avoid this problem by doing a prioritized search back-
ward from the target state. Although the presented heuristics try to maximize the solution sizes, the number
of states they traverse might still be limited because they obtain few solutions at a time and check if the
solution spaces contain the initial state. Furthermore, if the backward search reaches a very long path in the

illegal state space, all the solutions that were computed would be futile.

To overcome the above problems, we combine depth-first forward and backward bounded reachability anal-
ysis together wittk-induction. We use induction in order to make our framework efficient for passing prop-
erties; however, the proposed algorithm can be restricted by the user to just the base case runs if obtaining a

counter-example is the primary goal.

6.2 Proposed Searching Framework

In this section, we describe the proposed framework where we augment bounded reachability analysis to-
gether with bounded model checking. The basic idea is given in the next subsection followed by our con-

trollability based guiding heuristic.

6.2.1 Basic ldea

The number of reachable states in a design could be exponential in the number of state-elements. Suppose
we can extract a set of statés, from the state-transition graph such that any stats can be reached from

at least one state .S;, within a distancek. In other words, the shortest distance between a gtéteand a

statec Sy, is at mostt. Whenk = 0, the setSy has all reachable states in it and is unique. On the other hand,

for £ > 1, there can be more than one such sets that can be extracted from the state transition graph. Let
L, represent the minimal-sized set possible for a giveAs the distancé is increased;, either remains

the same or decreases. For example, consider the state transition graph shown|in figure 6.1(a). There are 8

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 77

e~~~ (DD~~~ @

O PROHO0 °

Figure 6.1. Example STGs

reachable states and hentg = 8. Further, since each state has at most one out-going édgmuld be

one of{sy, s2, s4, s¢} Or {s1, s3, s5, s7}. Hence,L; = 4. Similarly, Lo = L3 =3, Ly = Ls = Ls = 2 and

L7 = 1. Now, consider the STG in Figufe 6.1(b), where two new edges- =P and s3— s5 are added.

Now, S; can just be{sg, s3, s¢}, thus makingl.; = 3 in this new graph. Consequently, as more edges are
presentin an STG, the corresponding minimal set sizes can be smaller. In a hardware design, the number of
states reachable in one step from a given statan be exponential in the number of primary inputs. As a

result, the reduction i, could be exponential dsis increased.

Clearly, if we can extract one such set for an appropriatere can employ bounded model checking by
setting the initial states to all those f} and search within a maximum bound /af If a target7” was not
found within k& distance from any state ifi;, then we can conclude thdtis not present in the STG, i.e.,

it is unreachable. The value &fposes a trade-off in such a scenariok lis small, the maximum bound
needed for verification will be small but the size $f might be huge to compute. On the other-hand; if

is made larger, the sé&, might be smaller but the maximum depth needed for verification might be higher.
However, the main bottleneck here would be the computatid, since guaranteeing that all states outside
S are within k distance is itself another reachability problem. As a result, an exact computatigyn of

would be impractical even for medium sized designs.

In our approach, we try to approximase such that the computation time is less intensive. The main idea
behind our approach is shown in Figlire|6.2 where three unrolled circuit blocks are shown. The first one
represents the forward reachability analysis engine, the middle one represents a bounded model checker and
the last one represents the backward reachability analysis engine. First, consider the forward reachability

engine where each circuit blocks be numbeyéd D ;. Let F'IW D represent the set of initial states we have

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 78

at any given time. We constrain th& state-space t&'7W D and the remaining to Dy to~FWD. Under
such constraints, we run the SAT engine to obtain a satisfying solution. If a solution indeed exists, then the
satisfying assignments for state elements at blddksD; form new reachable states, s, ..., sp, which

can be added t6'W D and the process can be repeated.

Since the bounded model checker performs breadth-first search, we obtain solutions in the forward analysis
engine in a depth-first manner. Initially, we ha¥&V' D = {I}, the original initial (or reset) state. After
obtaining one solution, we havBW D = {I, sy, s, ...,st}. When computing the next solution, we
always try to satisfyp, firstin the0'” frame. If no solution exists, we continue to satisfy, 1 and so on.

At a given time, if there does not exist a solution starting from any stafd1” D, then we have reached a
boundedixed point. In other words, it would be sufficient to search for the tdrgetthin a depthD ; from

statess FW D using the bounded model checker.

By using the depth-first search in this manner, we obtain a state-sequence in the state transition graph.
The main intuition here is that, by constraining the state-elements at frathesugh D, to -F'W D, the

SAT solver implicitly eliminates all states that can be reached from those stadf@¥ D within a distance

Dy — [and caronly reach those states F'IW D within a distancd, wherel < [< D;. Such states can

be exponential in number and would be covered by the bounded model checkeFWhénis used as the

initial state set. Thus, the new states obtained in a solution would add value to the existing etThere

are two main points to be noted here: (i) As more depth-first states are added to Bi& getthe number

of states rejected by the SAT engine can increase exponentially and (ii) the effectiveness of resulting states
in W D depends on the depth,. Clearly, largerD; would be beneficial in rejecting more states but at

the cost of higher computation times.

Likewise, the backward reachability analysis can be formulated in a similar fashion. Initially, the set of
target statesBW D is set to{T'} which is the first target state. We constrain the state-space at fegrte
BW D (refer to Figur¢ 6J2) while those at fram@shroughD;, — 1 to ~BW D. Once we obtain a solution,

the resulting states are addedBdV D to become{T’, sp, 1, ..., s1, so}. The process can be repeated and

more states are added BRIV D.

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 79

Once a given number of states have been computédaD and BW D, we employ the bounded model
checker to verify if any state BW D can be reached from any stateF'1W D within a boundDy,,,.. This
framework can potentially be very powerful because the 5&5D and BW D approximate the previously
explainedS;, and by using a bounded model checker, we are verifying exponential number of states at one
time. However, we have observed that repeating the bounded model checking foldgpthafter every
iteration could be time consuming. So, initially we start with,,. = 1, and then gradually increase this

bound as more states are added'1d D and BW D.

Forward Reach Bounded Model Check Backward Reach

Figure 6.2. Basic idea of proposed method

6.2.2 Controllability-based Guiding

In the previous subsection, we have presented a basic framework for compitiig and BW D. How-

ever, the states i'WW D and BW D are computed independently and the new solutions obtained largely
depend on the decision order followed by the underlying SAT solver. In this work, we try to guide the com-
putation of 'YW D and BW D using controllability measures such that the target can be reached faster. In
other words, we computeW D keeping in mind those states that cannot lead to satB8l’ D. Similarly,

BW D is computed by avoiding states that cannot be reached #&Y). The main idea is based on our
observation that certain state assignments are hard to be justified from the initial state and that the target
state is hard to be reached from certain state assignments. For example, some state elements may remain in
the same initial state value within a certain bound. If the target state requires the opposite values on those
elements, it would be difficult for conventional bounded model checkers because they might need to unroll

deeper.

Initially, we compute SCOAP measures [83] for the circuit. Each internal signal in the circuit is initially

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 80

associated with very large forward controllability index values for ldgand logicl. Since the primary

inputs are fully-controllable, their indices are seftd hese indices are propagated onto the circuit to obtain
new controllability values. This process is repeated until all values converge in the forward direction. Let
My and M; be the maximum forward controllability indices for any state-element. We identify all those
that has an index greater than a threshold (say, 70%) of the maximum values to be hard to control in the
forward direction. All these assignments are stored as &'liBtD — Cont. Similarly, we set large backward
controllability values for all signals by setting the backward controllability for primary outputs @o bee

values are propagated backward until they converge. Again, we identify a set of state elements that are hard

to control in the backward direction. All these assignments are stored in2WsD — Cont.

During our forward bounded reachability computation, we assert each of the hard-to-control assignments
€ FWD — Cont at frameD; and try to obtain a solution. If one exists, we add the solution states to
FW D and the corresponding assignment is removed ffaD — C'ont. On the other hand, if no solution

exists, we mark the corresponding state-variable assignment as truly hard in the forward direction. When
performing backward bounded reachability computation, we assert the opposite values for these marked
state assignments at framesuch that the solutions obtained f&W D will be biased toward those in

FWD.

Likewise, during backward bounded reachability computation, we assert each of the hard to control assign-
mentse BW D — Cont at frame0 and try to obtain a solution. If one exists, we add the solution states to
BW D and the corresponding assignment is removed fBIfD — Cont. On the other hand, if no solution

exists, we mark the corresponding state-variable assignment as truly hard in the backward direction. When
performing forward bounded reachability computation, we assert the opposite values for these marked state

assignments at framB such that the solutions obtained B8 D will be biased toward those iBW D.

Thus, our overall flow is as follows: Initially, we obtain the two sé&td’ D — Cont and BW D — Cont.

At the start of every iteration, we check these for controllability and identify those truly hard ones. Then we
perform forward and backward bounded reachability computations followed by bounded model checking
with induction. If a result is not obtained, then we goto the next iteration where we try to justify the still

remaining hard to control assignments. If a solution is found for a state assignment, instead of simply

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 81

removing it from the control lists, we also form new candidates by conjoining those for which a solution has
already been found. This way, we enhance the B&SD — Cont andBW D — C'ont with multi-literal state
assignments. For example, Il = 0 andF'2 = 1 be our initial candidates if'iW D — Cont. Once we

find a solution for both of these, we remove these from the list and obtain a new candidaté A F'2 = 1

and add it toF W D — Cont. To avoid excessive overheads, we limit each candidate size to 4.

6.3 Overall Algorithm

Our overall algorithm for augmenting bounded reachability analysis with bounded model checking is shown
in Algorithm([5, where we assume the target state($p be those satisfying the property During forward
reachability, we obtainV number of solutions per iteration and store it in the k§/ D. Similarly, in
backward reachability, we obtaiN number of solutions per iteration and store it in the 8§/ D. After

each iteration, we use our BMC checker to see if any stat&inD can be reached from any stateAl’ D.

If so, we can conclude thatis not invariant. Otherwise, we do the induction step run ugig D. If this

run is UNSAT, then we conclude thatis invariant. If nothing is concluded, then we perform next iteration

by computing and adding more statesttV’ D and BW D.

6.4 Experimental Results

All the proposed techniques are built on top of the zChaff SAT solver [85] (version 2004.11.15). We com-
pare the performance of our techniques with the conventional induction runs and with two other existing
techniques TIF [7] and Sequential SAT solVer [88]. TIP performs induction runs using incremental learning
and other optimizations for specifying unique-state constraints on the fly. Experiments are conducted for
justifying partial-states that are aborted after 10,000 seconds during test generation. We check the efficiency
of the SAT-based methods in solving these hard problems. In our technique, the bound for forward/backward

reachability is set to 5 and the number of solutions obtained per iteration is set to 100.

Tablg 6.1 shows the state justification results with a time-out limit of 3600 seconds set for each run. For each

Chapter[@ Interleaving BMC and Bounded Reachability Analysis

82

Algorithm 5 Interleaving Bounded Reachability with Bounded Model Checking

1:

e e e O i o e =
© N o2 g kM w N R O

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

Given initial stateso and propertyp. Let target state(s); satisfiesp
Given depth®D; = D, = k and number of solutiond’; setDy,,. = 1
setFWD = sp andBWD = s
while (not DONE) do
ObtainFWDQy, N)
ObtainBWD(D5, N)
DoBMC[Dsme, FW D, BW D)
If result seen, then DONE
Dyme = Dpme +1
end while
ObtainFWDDy, N) {
numSolutions = 0
while (humSolutions< N) do
Constrairly to last state inF’W D
Constraifil™ (1,2, ..., Dy) to~FWD
SAT-Check(ForwardReach)
Append solution statesy sz, ...,sp,) to FW.D
numSolutions = numSolutions + 1
end while
}
ObtainBWDy, N) {
numsSolutions = 0
while (numSolutions< N) do
Constrairil'p, to last state iBBW D
Constraiir’*(0, 1, ..., Dy — 1) to ~BW D
SAT-Check(BackwardReach)
Append solution statesf, -1, sp,—2, ..., So) to BW D
numSolutions = numSolutions + 1
end while
}
DoBMC(Dyme, FW D, BW D) {
setso = FWD and¢ = -BW D
SAT-Check(BaseCase)
If SAT, counter-example found
Else SAT-Check(IndStep)
If UNSAT, property is true

Else, nothing is concluded

}

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 83

instance, we first show the number of primary inputs, flip-flops, and the number of gates in columns 2, 3 and
4, respectively. The colum@tate Resulkhows the nature of the corresponding state, whatieinsaimean

that the state is reachable/unreachable, respectively. The st#toewnmeans that no technique could
classify that state within the time-limit. Each of the remaining of the columns first report the runtime for the
corresponding technique, and then report in brackets the counter-example length for satisfying properties for
the Conventional Induction, TIP, and SeqSAT, respectively. Whenever any of the induction based techniques
timed out (TO), the number in brackets indicate the depth reached. @idRScolumns, in addition to

the execution time, we report in brackets (i) the counter-example length, (ii) induction depth at which the
result is obtained, and (iii) the iteration number at which we obtained the result. Take instance s1423.2, for
example. This is a second aborted state for s1423, which has 17 primary inputs, 74 flip-flops, and 779 gates.
The conventional induction method timed out at depth 110, TIP timed out at depth 142, SeqSAT also timed
out. Our base-line method timed out at iteration 16. On the other hand, with controllability based guiding,
our technique was able to reach the target state with a length of 6823 time-frames, which was obtained at
induction depth of 4 at iteration #13. Out of the 14 instances, our techniques were able to classify 10. On

the other hand, the three other techniques could not finish for many of these instances.

Consider the instance b15.1. Though the target was reached within a depth of 14 via regular BMC, our
base-line took 1520 seconds while the controllability based guding timed out. This clearly indicates that our

technique is not an alternative to BMC but can complement it well.

In Table[6.2, we report additional analysis regarding the reachability of the states obtained by our technique.
We obtain 1000 forward solutions using a bound of 5 (i.e., a total of 5000 unique states) and contrast this
with 5000 unique states obtained using random simulation. For example, consider s1423. The first 100
unigue states obtained by the random simulation can be reached from the initial state within a depth of 10.
This is intuitive since the random simulation starts from the initial state, and the states reached would not
be very far. Likewise, in our technique, the first 100 unique states obtained are also not too far from the
initial state. 91 (81+10) of these 100 states obtained by our technique are within a distance of 10 from the
initial state while only 9 are beyond a distance 10. When the last 100 are checked, we can see that most of

those obtained by random simulation can still be reached within a distance of 10 from the initial state. On

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 84

Table 6.1. State Justification Experiments on ISCAS and ITC Benchmarks

Instance | PIs | FFs | Gates state Convind | TIP[7] | SeqSAT|[88] OURS
Result Base-line With Cont
s1423.1 | 17 | 74 | 779 sat 1(5) 1(5) TO 3(108, 2, 0) 3(108, 2, 0)
s14232 | 17 | 74 | 779 sat || TO(110) | TO(142) TO TO(-, -, 16) 2369(6823, 13, 4)
s3384 | 43 | 183 | 1937 || unkwn || TO(34) | TO(41) TO TO(-, -, 26) TO(-, -, 24)
s9234 | 77 | 170 | 6331 sat TO(51) | TO(73) 319(2811) TO(-, -, 35) TOC(-, -, 30)
s13207.1| 62 | 638 | 9517 || unkwn || TO(43) | TO(55) TO TO(-, -, 23) TO(-, -, 21)
s13207.2| 62 | 638 | 9517 sat TO(51) | TO(64) TO TO(-, -, 24) 177(1033, 2, 1)
s15850.1| 77 | 534 | 11055| sat TO@45) | TO(53) TO TO(-, -, 23) 778(4675, 6, 2)
s15850.2| 77 | 534 | 11055 | unkwn || TO(51) | TO(65) TO TO(-, -, 24) TO(-, -, 20)
$35932 | 35 | 1728 | 18148 | sat 161(8) 88(8) TO 106(532, 2, 0) 106(532, 2, 0)
s38584 | 38 | 1426 | 23706 sat 182(12) | 101(12) TO 88(698, 2, 1) 88(698, 2, 1)
bo7* 2 51 433 unsat | TO(192) | TO(387) 59 1(-, -, 3) 2(-,-,3)
b12 6 121 | 1119 sat 206(29) | 145(29) TO 368(4324,8,3) | 288(3726, 7, 3)
b15.1 | 36 | 447 | 7378 sat 638(14) | 239(14) TO 1520(8073,15,3) TO(-, -, 19)
b15.2 | 36 | 447 | 7378 sat TO(25) | TO(30) TO 412(3236, 8, 2) | 1221(5723, 10, 2)

All times are in seconds. TO: Runtime exceeded 3600 seconds. *Ours reached bounded fixed point at iteration 3

the other hand, by our technique, the last 100 are significantly farther from the initial state. For s1423, all
of these last 100 states are beyond the distance of 30 from the initial state. Note that the actual distance can
be much longer, but we did not verify exhaustively due to exceeding runtimes required. Similarly, for the

larger circuits s35932 and b15, the actual distances could be much greater than 10.

Table[6.8 shows the analysis for maximum induction depth reached as more reachable states are learned
and added to the initial states. In the experiments, the bound for reachability analysis is again set to 5, and
a given number of states are learned using our base-line forward analysis which are then used to perform
the induction runs. For the number of states given in each column, we report the corresponding runtime
required to compute these states followed by the maximum bound reached within a time limit of 3600
seconds. There are two main observations: (i) It is clear that the time required to compute new solutions

increases super-linearly. For example, in instance s1423.2, it took 1 second to compute 1000 unique states,

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 85

Table 6.2. Reachability of First/Last 100 States among 5000 states
Distance from Init State

0-4 | 5-9 | 10-29 | >30
Rand | First100| 86 | 14 - -
§1423 | Ours | First100| 81 | 10 9 -
Rand| Last100| 96 | 4 - -
Ours | Last100| - - - 100
Rand| First100| 99 1

$35932| OQurs | First100| 4 5 91 (>10)
Rand| Last100| 99 | 1

Ours | Last100| - - 100 (>10)
Rand| First100| 100 | - - -
b12 Ours | First100| 23 | 36 41 -
Rand| Last100| 98 | 2 - -
Ours | Last100| - 19 81 -
Rand | First100| 99 | 1 - -
b15 Ours | First100| 13 5 82 (>10)
Rand| Last100| 100 | - - -
Ours | Last100| - - 100 (>10)

Circuit | Type | States

2 seconds to compute 2000 unique states, but it took 18 seconds to obtain 10000 unique states. This is
because, as more states are used to constrain the state-spaces, the SAT solver takes more time to search for
new solutions. (ii) The maximum induction depth reached varied insignificantly as more initial states are
injected. For example, in instance 1423.2, with 1000 initial states, we were able to reach the depth of 109
time-frames within the time-limit. When we start with 10000 initial states, we were able to reach a depth

of 101 time-frames. This is because, most of the runtime is consumed at the higher induction depths, and
adding more initial states caused not reaching only a few of these higher depth instances. This shows that
our technique can also be used to statically obtain a certain set of states via forward/backward analysis, and
then conventional induction can be used for furthering the proof. One such case is s15850.1, where after the

first 1000 solutions were obtained, the target was reached at a bound of 25.

Chapter[@ Interleaving BMC and Bounded Reachability Analysis 86

Table 6.3. Maximum induction depth reached in one hour
#InitStates

1000 | 2000 | 3000 | 4000 | 5000 | 10000
s1423.2 | 1:109| 2:105| 3:105| 4:105| 6:104 | 18:101
s3384 | 1:33 | 4:33 | 7:33 | 11:32| 17:32| 55:31
s9234 | 5:50 | 11:49| 18:49 | 25:48 | 33:48 | 83:46
s13207.1| 7:43 | 14:43 | 23:43 | 32:43 | 43:43| 109:42
s15850.1| 6:25 | 16:25| 27:25| 39:25| 53:25 | 132:25

Instance

Each entry— Time taken to extract the states : Max depth reached

6.5 Summary

In this chapter, we have presented a new SAT-based framework for state-space traversal that combines depth-
first bounded reachability analysis together with bounded model checking. Experimental results show that
our technique complements conventional bounded model checking in tracking down targets and can reach
states beyond the bounds that can be reached by practical solvers. This enabled more than an order of

magnitude runtime improvements than existing approaches.

There are several directions for future work. First, due to its search in a depth-first manner, our technigue
does not guarantee the minimal-length counter-example. More sophisticated heuristics might be employed
to direct the search, for example, by using the functionality of the design. Second, there is no obvious
evidence for setting an appropriadepthfor performing the bounded reachability analysis. The depth of
interest would be the one that can reject many states thereby improving the overall runtime. Finally, it would
be interesting to incorporate techniques such as interpolation [70] and proof-based abstraction [69] within

our bounded model checker and see the effectiveness as more initial states are added.

Chapter 7

Static Invariant Extraction

In this chapter, we propose a novel framework that statically extracts invariants of a synchronous sequen-
tial circuit and uses them to enhance SAT-based induction runs. First, we quickly generate a number of
candidate invariants. Among these, many of the false and redundant candidates are eliminated via two low-
cost techniques. For the remaining candidates, we employ a SAT-based induction method to establish an
inductive-proof. All the candidates that are proved to be invariants are converted into constraint clauses

which are applied in all the transition relations during the SAT checks for a given safety property.
7.1 Motivation

Before going to the motivation part, first consider the result of using induction to verify a prapastgiven

in Table[7.1. There exists three scenariosz(i$ of Type 1 if the base case is satisfiable, fiijs of Type

3 if both the base case and the induction step runs are unsatisfiable andioj Type 2 if the base case

is unsatisfiable but the induction step is satisfiable. Note that the notion of Type2 is with respect to a given

depthik. As the depthk is increasedy might be classified into Typel or Type3.

In the induction-step run, note that the initial-state is not constrained to any of the reachable state(s). When

verifying a true safety-property, we want this induction-step run to be unsatisfiable at as smaller depth as

87

Chapter[}} Static Invariant Extraction 88

Table 7.1. SAT Runs for ¢ at depth k

Type | Base Case Ind Step Result
1 SAT - ¢ is not an invariant
2 UNSAT SAT Nothing concluded. Increage
3 UNSAT | UNSAT ¢ is an invariant

possible. However, since there are no initial state constraints, these runs tend to be satisfiable most of the

time. This has been observed in the case of several industrial circuits as|well [8].

If the formula for the induction step at a depihs satisfiable, then the satisfying solution forms a simple
pathsy, so, ..., sp+1 such that the first states satisfy but the last state;; does not. In such a scenario,

two cases are possible: (i) the first statds a reachable state, and hercis definitely not an invariant. (ii)

the first states; is an illegal state in which case the counter-example obtainggusousand nothing can

be concluded about. However, in general, it is hard to identify the reachabilitysof In [80], the authors
assumes; to be an illegal state and obtain a strengthened progertys;. The main intuition behind it is

that the new property is stronger than the original one and might be proved at an earlier induction-depth.
However, if the induction run has several such spurious counter-examples (which can be exponential in the
number of state-elements), the new property obtained might still require a very high induction depth to be

proved.

From the above discussion, the induction-step runs can be improved by learning as many invariants as
possible and restricting the SAT search with these invariants. For example, if we learn sufficiently many
invariants that can voidll the spurious counter-examples for a given safety property, then we would be
directly proving that property. Another important benefit behind learning of such invariants is that they can
be repeatedly asserted in all the unrolled transition relations, which further constrains the search close to the
reachable space. Since a thorough reachability analysis (even over-approximate analysis using unbounded
model checking) can be prohibitively expensive, we try to extract invariants of a sequential design via an

alternative analysis. Whereas our technique does not guarantee the learalhthefpossible invariants

Chapter[}} Static Invariant Extraction 89

P1
[

PI(1) PI(2) PI(T)
COMB| : PS(BH\"'\ PS(2) \\\"'\35(3) 7\\\"'\ES(T+1)
' — frame frame = — frame =
i 1 i 2 _ T |
NSOTT=—T NSO TT=-T NS@ =7 NS(D
PO(1) PO(Q2) PO(T)
(a) Sequential Circuit (b) Circuit Unrollment for T time—frames

Figure 7.1. Sequential circuit and its expansion

in a circuit, it identifies many temporal onés. those which relates circuit signals across different clock-
cycles. Such invariants might be useful for a better understanding of the circuit behavior and for proving

other temporal properties.

7.2 Static Invariant Extraction

In this section, we provide our contributions and algorithms for candidate generation, pruning and veri-
fication. In all the following descriptions, we consider a transition relation in the form of a synthesized
sequential circuit consisting of Boolean gates and flip-flops. A typical sequential circuit with primary inputs
(Pls), primary outputs (POs) and flip-flops (FFs) is shown in Figure 7.1(a). A circuit unrollgdffames is

shown in Figuré 7]1(b), where the next-state(NS) elements of previous frame are fed to the present-state(PS)

elements of the next frame.

As mentioned before, we wish to extract as many invariants as possible via static analysis to improve SAT-
based induction. In this work, we try to automate this at a gate-level description of a sequential circuit. We
represent a logic value assignmemntc {0, 1}, to a gateG in time-framet with G, ;. For each gate in a
time-frame, there exists two assignments, one with l6giad the other with logid¢. Each candidatey, is
represented as a disjunction of such gate-value assignments in the circuit. The compidmsimply the
conjunction of the opposite gate-value assignments. For examples; 671,141 V G222 V ... V Gnyn tn,

theng = Glzg,; A G2 15 A ... A Gz, Wherevl, v2,..,on € {0,1} andt1,¢2,..,tn € {1,2,..,T}.

We refer to the number of elements in each candidate asiteef that candidate. The first stage of our

framework is the candidate generation process which is given below.

Chapter[}} Static Invariant Extraction 90

Frame t—1 Frame t Frame t+1
.

(b) ROI for C=0 in frame t

Figure 7.2. Region Of Influence for a Gate-value assignment

7.2.1 Generation of Candidate Invariants

In this section, we use two models, namely the Region-based model and Cut-based model, for generating
the candidate invariants. In the Region-based model, we employ logic impliﬁtmimhentify the suitable
candidates. For each gate-value assignn&nt, we define the Region Of Influence (ROI) as the topolog-

ical circuit region within which the logic implications @¥, ; encompass. Figufe 7.2(a) shows an example
circuit with one flip-flopF. Consider a gate-value assignméht; as shown in Figurg 7.2(b). The logic
implications ofCy; include Go, A1, 1114, 1214, Boy, 1304, Fot, Foi—1, Eor and Fy¢41. All these
assignments form the ROI fa@r, ;. Now, consider the outer connected region for this ROI, which includes
output of gate” and/5 in framet — 1, output of gateD in framet and output of gaté? in framet + 1. We

call this signal set as the Outer Region of Influence (OROU®f. Formally put, an OROI consists of the
unspecified fanins of gates in ROI and the output signals of unspecified gates which has at least one fanin
in ROI. The OROI for a conjunction of gate-value assignments can be obtained by logic implying all those

assignments together in the circuit and then gathering the ROI.

Steps 1 through 11 of Algorithm 1 describes the candidate generation process via Region-based model. The
algorithm takes as input the maximum number of time-frarfi@dq be considered for propagating the logic
implications. We form an initial set of candidates of siagsing each gate in the center time-fram(step 4).

Note that, here, we need to consider gate-value assignments only to the four primitive gates AND, NAND,
OR and NOR, since assignments to other gates such as inverters and buffers are automatically covered by
these. We employ these initial candidates as seeds and recursively generate larger-sized candidates using

their OROls. Given a candidate segdwe form2 x n new candidates(V G,:) where eaclG,; €

!Logic implications ofG.,, ; are those gate-value assignments that are set @haeris set to true

Chapter[}} Static Invariant Extraction 91

OROI(4), v € {0,1} and|OROI(¢)| = n. For example, given a seed candidate; in Figure[7.2(b),
we compute OROI(, ;) and obtain the corresponding 8 new candidates. The reason behind this kind of
candidate selection is to explore the unspecified region beyond the region-of-influence. Note that if the seed

candidate itself is an invariant, so will be its successors.

Next, in the Cut-based model, we use a cut in the circuit to obtain the candidates. The idea here is to gather
potential candidates that might not be covered in the Region-based model. In the current framework, we
use the cut comprised of all the flip-flops. Other cuts such as the min-cut(s) or a designer specified cut can
also be used in addition to this. Once the cut signals are obtained, they are ordered so that each signal in
the order is structurally near to its adjacent ones. We employ the MLP procedure [84] for this purpose. The
MLP procedure first computes the input-support for each (next-state) flip-flop and then orders them such that
the dependency matrix attains a block-triangular form. We refer the reader|to [84] for its implementation
details. Once the signals in the cut are ordered, we enumerate all possible combinations among groups of
adjacent signals and form the candidates using their disjunctions. In contrast to the region-based model, all
the elements in each candidate here belongs to the same time-frame. The pseudo-code for the Cut-based

candidate generation is given in steps 12 through 18 of Algorithm 1, which are self-explanatory.

7.2.2 Pruning the Candidate Set

Depending on the size of the circuit and the size-limits supplied, the number of candidates generated in
Algorithm 1 can be many. In this section, we provide two low-cost techniques to quickly prune the initial

candidate list so that the computational complexity in verifying them in the next (third) stage is minimized.

In the first technique, we use the logical dependencies among the candidates to prune the redundant ones. If
¢1 and¢?2 are two candidates anddfl — ¢2, theng2 is covered bys1 and hence can be removed. This is
because, ifh1 is an actual invariant, so will bg2 and hence we need not chegX However, note that the

reverse is not true.e., it is possible forp2 to be an invariant, but not fafl. Nevertheless, each sugl can

cover several other candidates, all of which can also be pruned out. This gives rise to a trade-off between

the verification runtime required and the amount of learning that can be obtained. In our current framework,

Chapter[}} Static Invariant Extraction 92

Algorithm 6 Candidate Generation

1:

2:

3:

4:

5:

6:

10:

11:

12:

13:

14:

15:

16:

17:

18:

Given oddT, 7 = (T — 1)/2; Initialize CAND-LIST = NULL
Given Max Region-based candidate sixg,setn = 1
while (n < N) do
if n =1, CAND-LIST = All G-, G- : GateTypeG) € {AND, NAND, OR, NOR}
else // steps 6 through 9
for each candidate € CAND-LIST with sizen — 1 do
Logicimply(¢); ObtainOROI(¢)
Form new candidates¢(vV G,1) VG € OROI(¢),v € {0,1}
end for
n=n+1
end while
Given Max Cut-based candidate sié,
Order the cut signals using MLP // currently flip-flop cut
for each signab; in ascending ordesto
S9, 53, ..., Sy = Next M — 1 signals in order
Enumerate a2 combinations amongi, S, ..., Su
Add disjunction of each enumeration to CAND-LIST; Remdiefrom the order

end for

Chapter[}} Static Invariant Extraction 93

we allowed the above pruning to lower the computational costs. In practice, given enough time, one can still

check for the invariance af2 and eliminate it only ifp1 is proved invariant.

Since learningdl — ¢2 is not straightforward, we individually check each of the elementsland¢2 for

cover. Letpl = X1yp1.401 V X 2022022 V oo V XNyzn tzn @NAG2 = Y1191 VY 2092492 V oo VY Ny tyns

both having sizer. If X1,z1.601 — Yloytty1, X2022.002 — Y 20y2.4920 ooy X Nuzntzn — Y Nuyn.tyn, then

we can concludedl — ¢2 and removep2. The pseudo-code for this is shown in Algorithm 2 (steps 1
through 8). Note that, due to the recursive nature of the candidate generation process, we can only eliminate
those having equal sizes. Otherwise, we will simply end up with candidates with s&iace all the

candidates of size are automatically covered by those having sizes.

Algorithm 7 Candidate Pruning
1: for each candidate € CAND-LIST do

2: Let (b = le:vl.txl \ X2vx2.t:c2 V..V Xnvam.txn

3. Si=Set of gate-value assignments due to Logiclmh(.; ;)
4: for each candidatgé’ € CAND-LIST do

5: Letd = YV lyityr VY 202002 V oo VY My tym
6: If m = n and if eachY i, 1,; € eachSi, removey’
7. end for

8: end for

9: Given vector limit, N;n =1

10: while (At least one candidate removed) ar{ N) do
11: Generate Random Vectdf,; LogicSimulatet;,)
12: Remove allp such thatp is achieved
13: n=n+1

14: end for

After the above candidate pruning process, the remaining candidates can belong to any of Typel, TypeZ2 or
Type3 described in TabJe 7.1. Among these the ones that we are interested in are Type3 (invariants that can

be proved at a given depth). Whereas no direct technique exists for pruning out Type2 candidates, Typel

Chapter[}} Static Invariant Extraction 94

11
) First Invariant: (D o)
Second Invariant: (A V E |

Figure 7.3. Example Invariant Extraction

candidates can be eliminated if the base case is satisfiable. In other wapds, dfcandidate and can

be reachable from the initial state(s), thems definitely not an invariant. In our framework, we employ
random vector simulation to filter those Typel candidates. Steps 10 through 14 of Algorithm 2 gives the
pseudo-code. Essentially, we start with one known initial state. A random vector is applied at the primary
inputs and logic simulated on the circuit. All the violated candidates are removed from the candidate list.
The resulting state-assignment after each logic simulation is carried over as the initial state for the next
random vector. This process is repeated for a given number of random vectors or until no more candidates
are pruned in an iteration. The above process results in eliminating many of the false (Typel) candidates

which need not be carried to the verification stage.
7.2.3 \Verification of Candidates

After the end of above pruning process, we end up with a set of candidates which are highly probable to

be Type2 or Type3. Given a maximum induction deptruser-specified), we first conduct the base case

run for each candidate. If this run is satisfiable for any candidate, then that candidate is false and hence
eliminated. We use the corresponding satisfying solution to check if any other candidates are also violated.
If so, all such candidates are immediately removed to save the computation time incurred in verifying them

later. This process is given in steps 1 through 6 of Algorithm 3.

After the base-case run, all the Typel candidates withare removed and we are left with Type2 or Type3.

Now, we can proceed directly to the induction step run with the maximum induction dépbhn each of

Chapter[}} Static Invariant Extraction 95

these candidates. However, as mentioned earlier, the induction depths needed for certain candidates can
be exponentially reduced when other known invariants are applied. Consider the example circuit shown in
Figure[7.8 which has 3 flip-flopsl, £2, F'3) and 2 primary inputs®1, PI2). First, it can readily seen
that Dy ; is an invariant since the flip-flop'3 can never achieve a logic The induction depth needed to

prove this invariant is just. Now consider the single-gate candidatg;. The ROI of A, ; includesB; ;1

and hencedg; VvV E1 ;1 is generated as a candidate of slzd his candidate is a true invariant and requires

an induction depth o8 to be proved. However, if we assert the invariant that= 0 in each transition

relation, the above candidate can be proved at a depth of juBurthermore, this second invariant is a
temporal one and asserting it together with the first one might prove more invariants, that are temporal in

nature, in a larger circuit.

In other words, using the already proved invariants as constraints leads to more effective results. For this
reason, rather than directly conducting the induction step runs at the maximum/dep#h start with the

depth of1 and then progress toward. The pseudo-code for this process is shown in steps 7 through 15 of
Algorithm 3. If the induction step for a candidateat stepn is unsatisfiable, we conclude it as an invariant,
remove it from the list and add it as a clause to the databagé the same time, all other larger candidates

that are covered by are also eliminated. For exampled, ; is an invariant, so will be any other candidate
containing elements implied k¥, ;. All the invariants learned so far are added to the CNF formulas when
checking the other candidates for efficiency. The conversion of an invariant to a clause is straightforward

since the candidates are already in disjunctive form.

7.3 Experimental Results

We have developed a prototype for candidate generation and pruning in C++ and integrated it with the zChaff
SAT solver (version 2004.11.15) [85] for performing both the invariant extraction and the induction runs for
the safety properties. Experiments for various sequential circuits from the ISCAS89 and ITC99 benchmark

suites were conducted on a 3.2GHz Pentium 4 machine with 1GB RAM and running Linux OS.

First, we report the results for extracting the invariants in Table 7.2. To limit the initial number of candidates

Chapter[}} Static Invariant Extraction

96

Algorithm 8 Candidate Verification

1. Given Max Induction depthy

2: for each candidate € CAND-LIST do

3 Pay=1Vd2V..VoN

4: SAT-CHECK((1) AT*(1,2,.., N) A Gany)

5. If SAT, removeg; Use solution to prune other false candidates
6: end for

7. Clause databasé = NULL

8: for eachn from1to NV

9: for each candidate € CAND-LIST do

10: C*(1,2,..,n) =C1 ANCo AN ... NCly

11 SAT-CHECK(T™(1,2,..,n) A ¢*(1,2,...,n — 1) A ¢ A C*(1,2, .., 1))

12: If UNSAT, remove¢ and all other candidates covereddyAdd ¢ as a clause t¢’
13: end for

14: end for

15: Clauses inC' are the learned invariants

Chapter[}} Static Invariant Extraction 97

Table 7.2. Results for Invariant Extraction

Circuit | Gates Initial Cand. After Init. Pruning Verified Cand. Time

Comb Seq Total Comb | Seq | Total | Comb | Seq | Total | %Seq
b10 189 8068 4799 12997 45 63 108 7 16 23 69.5 2
b13 362 7308 8178 15486 384 2117 | 2501 161 447 608 73.5 17
s526 368 12540 | 12528 25068 321 1035 | 1356 76 164 | 240 68.3 22
bl1 396 18252 | 15097 33349 217 538 755 40 108 148 72.9 12
b07 433 19741 | 18534 38275 508 2993 | 3501 53 281 | 334 84.1 25
b04 546 | 24683 | 15823 | 40506 131 | 5290 | 5421 | 131 | 5289 | 5420 | 97.6 9
s832 622 | 65336 | 17082 | 82418 132 291 423 0 20 20 100 14
b05 642 | 21135 | 10156 | 31291 757 | 1512 | 2269 | 369 | 509 | 878 | 57.9 | 64

51423 779 12659 | 10064 22723 454 1001 | 1455 43 55 98 56.1 31
b14 3708 | 882214 | 590372 | 1472586 | 1211 | 14375 | 15586 | 613 427 | 1040 | 411 | 426

$9234 | 6331 | 300994 | 94226 | 395220 | 1268 | 7560 | 8828 92 700 | 792 88.4 221

s13207| 9517 | 436368 | 129511 | 565879 | 5249 | 31562 | 36811 | 309 | 1937 | 2246 | 86.2 | 449

s15850| 11055 | 221002 | 99997 | 320999 | 4197 | 25420 | 29617 | 1066 | 4455 | 5521 | 80.7 | 402

Comb: Num combinational candidates Seq: Num sequential(temporal) candidates

obtained, we used a maximum region-based candidate size of 2 and a maximum cut-based candidate size of
3. The maximum induction depth is set to 5 for smaller circuits 000 gates) and 3 for the larger ones. For

each circuit, the colum@atesshows the number of gates in it. The remaining columns report the number of
initial candidates, those remaining after initial pruning and those verified as invariants. The c@amhs
andSeqreport the number of corresponding combinational and sequengiatdmporal) candidates. The
column%Secqgives the percentage of sequential candidates among the total verified candidates. Finally the

columnTimereports the run time in seconds.

It can be observed that the number of initial candidates tend to be very large. This number grows with
the circuit size and with the size-limit of each candidate. However, in the pruning stage, many of the false
and redundant ones are quickly eliminated, thus leaving only a set of candidates with higher probability.
One interesting thing to notice in most of these circuits is that, the amount of pruning in combinational

candidates is much higher than that of the sequential ones. This might be due to the fact that we use simple

Chapter[}} Static Invariant Extraction

Table 7.3. Results for Induction Runs for Safety Properties

Circuit.p | Gates| Original | Simp2C|[74]| EBL[75] Incr [7] OURS
T, Tie T Tie T T; Tie T Proved?
b10.1 189 83 0 118 1 8 5 2 3 Yes[25]
b10.2 | 189 86 0| 131 | 1 7 14 2 3 | Yes[25]
b13.1 362 534 0 89 1 13 86 17 18 No
s$526.1 368 3565 0 3434 1 1291 841 21 22 Yes[25]
$526.2 368 4034 0 4386 1 1599 1451 21 22 Yes[50]
b11.1 396 5154 1 4864 1 3405 1471 12 13 Yes[50]
b11.2 396 5575 1 | 4800 | 1 | 2386 | 1053 | 12 13 | Yes[25]
b07.1 433 193 0 42 1 11 52 25 71 No
b07.2 433 219 0 43 1 20 42 25 26 Yes[25]
b04.1 546 580 0 563 0 491 133 9 10 | Yes[25]
b04.2 546 768 0 491 0 465 128 9 10 Yes[25]
s832.1 622 610 0 542 1 339 145 14 234 No
s832.2 622 272 0 190 1 31 33 14 29 No
b05.1 642 151 0 46 0 41 60 64 65 Yes[25]
b05.2 642 192 0 32 0 44 45 64 66 | Yes[50]
s1423.1| 779 7371 0 7616 1 8942 1651 31 32 Yes[25]
s1423.2 | 779 11107 0 8324 1 3798 1379 31 32 Yes[25]
b14.1 3708 597 3 505 48 101 270 426 | 427 | Yes[10]
b14.2 3708 1357 3 1110 | 48 594 474 426 | 427 | Yes[10]
s9234.1| 6331 | 28015 | 1 | 21912 | 18 | 3033 | 2836 | 221| 223 | Yes[20]
s9234.2 | 6331 | 21319 1 | 18682 | 18 | 6252 2364 | 221 | 222 | Yes[10]
s13207.1] 9517 -TO- 2 | 28613 | 108 | 10712| 5558 | 449 | 450 | Yes[10]
s13207.2| 9517 -TO- 2 -TO- | 108 | 8258 | 11451 | 449 | 451 | Yes[20]
s15850.1| 11055| -TO- 3 -TO- 35 | 12092| 3689 | 402 | 13806 No
s15850.2| 11055| -TO- 3 -TO- 35 | 16019| 3778 | 402 | 18570 No

(i) None of Original, Simp2C, EBL, and Incr could complete proof for any property

(i) Smallest run-times for those proved propertiestzokl-faced

(iii) Smallest run-times for those unproved propertiesitaiécized

(iv) T;e: Invariant extraction time T;: Total time (withT;.) TO: T; > 30000

98

Chapter[}} Static Invariant Extraction 99

logic implications for pruning in Algorithm 2, which simply might not extend into the other time-frames. For

the same reason, the number of initial combinational candidates tend to be higher than that of the sequential
ones. Next, when we look at the number of verified candidates, it averaged around 21.4% of the candidates
remaining after pruning. In other words, 78.6% of them belong to either Typel or Type2. Among these, we
observed that 70 to 90% are Type2, even though the exact numbers are not reported in the table due to space
limitations. This is encouraging, because, given more time resources, one might extract more invariants out

of these Type2 candidates at greater unrolled depths.

Consider the circuit b04. In this circuit, 5420 out of the 5421 candidates were proved to be invariant. In
other words, there was almost no execution time wasted in verifying the Typel/Type2 candidates. Finally,
when we looked at the percentage of sequential candidates among the total verified ones, the average turned
out to be 76.5%. This is significant because such invariants enable a better understanding of the design and
may be helpful in proving other temporal safety properties. Within the total run-time, less than 5% was spent
by Algorithms 1 and 2 during candidate generation and pruning, whereas the rest was spent in Algorithm 3

for candidate verification.

Next, we report the results for safety-property verification by embedding the extracted invariants. The
experiments were conducted for hard safety properties, which were based on aborted parﬁh‘ﬁsnntes

a sequential ATPG. An aborted state is a state that the ATPG failed to justify within its resource limit. If
s is an aborted partial-state, the property was formulated@iés). For smaller circuits, we increased the
induction deptht by 25 frames per iteration up to a maximum of 250 frames. Whereas for the larger ones,

these were set to 10 and 100 respectively. The time-out limit for each property was set to 30,000 seconds.

Table[7.3 reports the experimental results. We compare our technique with the original inductipe. yun (
without any learning), learning from Simp2C [74] and EBL|[75] and Incremental learning as dane in [7].
All the invariants learned are replicated as clauses in all the transition relations. For each property instance
shown, we report the induction run-times required by the corresponding techniques,fwhandT; show

the invariant extraction and the totdl;{ + solving) run times, respectively, in seconds.

2/ partial-state is a set of assignments to a group of flip-flops (not necessarily all of them)

Chapter[7} Static Invariant Extraction 100

As a first observation, we can see that the invariant extraction times needed by our method is in general
higher than that of others (Simp2C and EBL). However, in most cases, they are small when compared
with the actual induction run-times. If a property is proved as an invariant via our learning, we report the
corresponding bound in brackets under the coli#troved Among the 28 properties tested, we were able

to complete the proof for 22 properties. In contrast, all the other approaches could not prove any of the
28 properties. For example, for s13207.1, the original run, Simp2C, EBL and Incremental learning took
more than 30000, 28000, 10000 and 5000 seconds, respectively, without proving the property; on the other
hand, we verified it as an invariant in only 450 seconds. Note that in proving these properties, we have
achieved more than an order of magnitude improvement in run-times. For the cases where none of the
techniques could prove the property, our overall runtime tended to be higher than techniques. This might
be due to two reasons: If these properties are not actually invariants, our added clauses might not be as
efficient as the other techniques in pruning the combinational search-spaces. On the other hand, if these
properties are indeed invariants, the extra clauses we add prunes many of the satisfying solutions and hence
finding one solution among the remaining less number of solutions may need more time. Nevertheless, in
all these unproved cases, our total run-time was smaller than that ofitheal run-time, displaying the

effectiveness of the added clauses.

7.4 Summary

We have proposed a novel framework that automates the extraction of a set of invariants of a sequential
design and applies them to enhance SAT-based induction. All the learned invariants are converted to con-
straint clauses and inserted into all transition relations to restrict the SAT search as close as possible to the
reachable space. Experiments revealed that our learning can prove many properties at early induction depths
where as the conventional runs failed. This lead to more than an order of magnitude savings in the property

checking run-times.

There are two possible directions for future research. In our current framework, all the invariants are com-
puted before-hand irrespective of the property. In practice, one might dynamically compute only those re-

quired for a given property. For example, the cone-of-influence (COI) of a property might be used to reduce

Chapter[7} Static Invariant Extraction 101

the number of initial candidates. Secondly, it will be interesting to explore the candidaié8-favariants.
For example, some of the Typel candidates that we eliminate might actually turn out to be invariants after a

given number of clock-cycles.

Chapter 8

Conclusions and Future Work

In this dissertation, we have outlined the main limitations in SAT-based formal verification approaches
including SAT-based Bounded Model Checking and SAT-based Induction. These can be summarized as
follows: (i) Lack of ability of the SAT solver to learn internal variable relationships, (ii) Exponential increase

in run-time at higher depths that prohibits complete verification of a property, (iii) Lack of knowledge about

non-trivial invariants of a design, and (iv) Lack of information about co-invariants for a given property.

In Chaptef B, we have proposed two new techniques for increasing the deductibility in CNF instances for
enhancing SAT-based Bounded Model Checking. All the logic dependencies learned via those techniques
are converted to constraint clauses and replicated in the transition relations during the SAT runs. Experi-
mental results on a variety of circuits and properties have shown that significant improvements in runtime
can be consistently achieved. Whereas implication learning helps in speeding-up the SAT runs, it doesnt
enable the reduction in depths required to prove a property. There are several directions for future work.
First, note that in some cases, the solving times actually increase due to the added clauses. This is because,
due to the added clauses, the number of occurrences of each variable is increased, which leads to a possibly
different decision order chosen by the SAT solver. It will be interesting to study the effect of added clauses
upon the variable order and research a better ordering strategy. Secondly, all the clauses being added might

not be useful in the same way. For example, some clauses might be trivial and can be easily learned by the

102

Chapter[8| Conclusions and Future Work 103

SAT solver, given the other clauses. Careful elimination of such clauses might reduce the burden on the SAT
solver and avoids overheads in BCP. Finally, new ways to learn non-trivial implications would definitely be

a promising future-work.

Chapte[# proposes novel techngiues for fast identification of illegal state spaces. We employed ATPG based
learning, exploited logic implications and used an enumerative framework to learn more illegal states. All
the learned states are used as constraints at the state-boundaries in order to improve the SAT-based induction
runs. Experiments have shown that these constraints often reduce the run-times and at the same time can
reduce the depth required to prove a property thereby achieving more than an order of magnitude runtime
improvements. One limitation of this technique is that it can only be helpful for true properties and does not
have the ability to reduce the depth for false properties. There are two directions for future work. First, the
above framework aims #&w-costand might miss crucial illegal states. For further hard to solve properties,

it would be interesting to generalize this learning to capture additional illegal states. Second, the learning

regions can be limited according to a given property to reduce the pre-processing times further.

In Chaptef b, we proposed techniques using ATPG-based pre-image computations and co-invariant extrac-
tions to strengthen a property. Resolution and Dynamic variable ordering are further employed to improve
the quality of strengthening. Once a property is strengthened, it can be verified using BMC/Induction similar
to the original property. Experimental results have shown that the proof-depths can be reduced significantly
thereby achieving several orders of magnitude runtime improvements. As opposed to the above two tech-
nigues, strengthening enables in proving both passing as well as failing properties faster. There are two
important directions of future work. First, it can be seen that property strengthening can sometimes be a
overhead due to the additional clauses added. Clever minimization of the added clauses would be interest-
ing to pursue. For example, some of the added clauses might not present any value for strengthening when
certain other clauses are added. Secondly, it will be interesting to exploit ways of automatically identifying

co-invariants for a given safety property as opposed to pre-selecting them as done in our work.

In Chaptelf , we presented a novel approach that augments bounded reachability analysis with bounded
model checking. The main idea here is to learn a sequence of states, from the initial state(s) in the forward

direction and from the target state(s) in the backward direction, and use bounded model checking to check

Chapter[8| Conclusions and Future Work 104

if atleast one backward state can be reached from atleast one forward state. Such a framework is very
powerful because of the exponential number of new states it can cover compared to conventional bounded
model checking. While doing so, for true properties, the strengthened target states can also be proved earlier
via induction runs. Comparison with state-of-the-art incremental learning techniques and sequential SAT
solvers showed that our technique out-performs them in most cases by providing the result faster. There
are few directions for future work. First, due to its search in a depth-first manner, our technique does not
guarantee the minimal-length counter-example. More sophisticated heuristics might be employed to direct
the search, for example, by using the functionality of the design. Second, there is no obvious evidence
for setting an appropriatdepthfor performing the bounded reachability analysis. The depth of interest
would be the one that can reject many states thereby improving the overall runtime. Finally, it would be
interesting to incorporate techniques such as interpolgtidn [70] within our bounded model checker and see

the effectiveness as more initial states are added.

Finally, in Chaptef]/, we proposed two models for extracting candidate invariants and using induction to
prove them. The region-based model aims at using logic implications to obtain a set of non-trivial candidates
in the circuit, where as the cut-based model aims at obtain candidates at a given cut in the circuit (say, the
flip-flop cut). Once the candidates are obtained, the false ones among them are eliminated and the proof
for the remaining ones is established using induction. All the invariants that were proved can be used as
constraints during the induction runs which will help in proving complex or difficult properties. There
are two possible directions for future research. In our current framework, all the invariants are computed
before-hand irrespective of the property. In practice, one might dynamically compute only those required
for a given property. For example, the cone-of-influence (COIl) of a property might be used to reduce the
number of initial candidates. Second, it will be interesting to explore the candidate’$ fmwvariants. For
example, some of the Typel candidates that we eliminate might actually turn out to be invariants after a

given number of clock-cycles.

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

N. H. E. Weste and D. HarrisyMOS VLSI Design: A Circuits and Systems PerspectAgdison-
Wesley, Third Edition, 2005.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model Checking without BDDs,Piro-
ceedings of International Conference on Tools and Algorithms for the Construction and Analysis of

Systemspp. 317-320, 1999.

M. Sheeran, S. Singh, and G. Stalmarck, “Checking Safety Properties using Induction and a SAT
Solver,” in Proceedings of International Conference on Formal Methods in Computer Aided Design
pp. 108-125, 2000.

N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan, “An Analysis of SAT-Based
Model Checking Techniques in an Industrial Environment,Pimceedings of Conference on Correct

Hardware Design and Verification Methadsp. 254-268, 2005.

N. Amla, R. Kurshan, K. McMillan, and R. Medel, “Experimental Analysis of Different Techniques
for Bounded Model Checking,” iProceedings of International Conference on Tools and Algorithms

for the Construction and Analysis of Systems. 34—48, 2003.

O. Strichman, “Accelerating bounded model checking of safety properkesyial Methods in System

Design vol. 24, pp. 5-24, Jan 2004.

N. Een and N. Sorensson, “Temporal Induction by Incremental SAT Solvindgiternational Work-

shop on Bounded Model Checkjrgly 2003.

105

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bibliography 106

L. Zhang, M. R. Prasad, and M. S. Hsiao, “Incremental Deductive & Inductive Reasoning for SAT-
based Bounded Model Checking,” Proceedings of International Conference on Computer Aided

Design pp. 502-509, 2004.

O. Shacham and E. Zarpas, “Tuning the vsids decision heuristic for bounded model checking,” in

International Workshop on Microprocessor Test and VerficatRfiD3.

B. Li and F. Somenzi, “Efficient Computation of Small Abstraction RefinementsPrateedings of

International Conference on Computer Aided Desigm 518-525, 2004.

M. N. Velev, “Exploiting Signal Unobservability for Efficient Translation to CNF in Formal Verifica-
tion of Microprocessors,” irProceedings of Conference on Design Automation and Test in Europe

pp. 266-271, 2004.

A. Kuehlmann, “Dynamic Transition Relation Simplification for Bounded Property Checkingfan

ceedings of International Conference on Computer Aided Depjgrb0-57, 2004.

V. C. Vimjam and M. S. Hsiao, “Increasing the Deductibility in CNF Instances for Efficient SAT-
based Bounded Model Checking,”Rtoceedings of High Level Design, Validation and Test Workshop
pp. 52-59, Nov 2005.

V. C. Vimjam and M. S. Hsiao, “Fast lllegal State Identification for Improving SAT-based Induction,”

in Proceedings of Design Automation Confergmge 241246, July 2006.

V. C. Vimjam and M. S. Hsiao, “Static Invariant Extraction for Fast Verification of True Properties,” in

To be submitted?2007.

V. C. Vimjam and M. S. Hsiao, “Explicit Safety Property Strengthening in SAT-based Induction,” in
Proceedings of International Conference on VLSI Desigm 2007.

V. C. Vimjam and M. S. Hsiao, “Augmenting Bounded Model Checking and Bounded Reachability

Analysis,” in Submitted to an anonymous conferer@07.

S. Cook, “The Complexity of Theorem Proving Procedures,AtM SIGACT Symposium on the
Theory of Computingl971.

Bibliography 107

[19] M. Davis and H. Putnam, “A computing procedure for quantification the@&¢M Journal vol. 7,

pp. 201-215, 1960.

[20] J. P. Marques-Silva and K. A. Sakallah, “Grasp: A search algorithm for propositional satisfiability,”
IEEE Trans. on Computersol. 48, pp. 506-521, May 1999.

[21] H. Zhang, “SATO: An Efficient Propositional Prover,” Proceedings of International Conference on

Automated Deduction (CADE)997.

[22] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an Efficient
SAT-Solver,” inProceedings of Design Automation Conferemge 530-535, 2001.

[23] E. Goldberg and Y. Novikov, “BerkMin: a Fast and Robust SAT-SolverPiaceedings of Conference
on Design Automation and Test in Eurgipp. 142-149, 2002.

[24] L. Ryan, “http://www.cs.sfu.ca/ loryan/personal,”Siege SAT solver version 4

[25] N. Een and N. Sorensson, “Minisat a sat solver with conflict-clause minimizatioijténnational

Conference on Theory and Applications of Satisfiability Testing, RG2065.

[26] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, “Efficient Conflict Driven Learning in a Boolean
Satisfiability Solver,” inProceedings of International Conference on Computer Aided Deign

2001.

[27] “htpp://www.satisfiability.org : International Conference on Theory and Applications of Satisfiability

Testing,”
[28] “http://www.satcompetition.org : The International SAT Competition,”

[29] F. Bachhus and J. Winter, “Effective Preprocessing with Hyper-Resolution and Equality Reduction,”
in Proceedings of Workshop on Satisfiabiliyp. 341-355, 2003.

[30] S. Subbarayan and D. Pradhan, “NiVER: Non-Increasing Variable Elimination Resolution for prepro-

cessing SAT instances,” ifroceedings of Workshop on Satisfiabilpyp. X-Y, 2004.

Bibliography 108

[31] N. Een and N. Sorensson, “Effective preprocessing in sat through variable and clause elimination,” in

Proceedings of International Conference on Theory and Applications of Satisfiability TexX)Digy

[32] D. Brand, “Verification of Large Synthesized Designs,Aroceedings of International Conference on

Computer-Aided Desigmpp. 534-537, 1993.

[33] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for Combinational Equivalence Check-
ing,” in Proceedings of Conference on Design Automation and Test in Euyspp&14—121, 2001.

[34] W. Kunz and D. K. Pradhan, “Recursive learning: A new implication technique for efficient solutions
to cad problems - test, verification and optimizatidiEEE Transactions on Computer Aided Design

of Integrated Circuits and System®l. 13, pp. 1149-1158, Sept 1994.

[35] J. Marques-Silva and T. Glass, “Combinational Equivalence Checking using Satisfiability and Recur-
sive Learning,” inProceedings of Conference on Design Automation and Test in Eyspp&45-149,

1999.

[36] Y. Novikov, “Local Search for Boolean Relations on the Basis of Unit PropagatioRfdneedings of

Conference on Design Automation and Test in Eurgpe X-Y, 2003.

[37] F. Lu, L.-C. Wang, K.-T. Cheng, and R. C.-Y. Huang, “A Circuit SAT Solver with Signal Correlation
Guided Learning,” irProceedings of Conference on Design Automation and Test in Eyppp892—

897, 2003.

[38] F. Lu, L.-C. Wang, K.-T. Cheng, J. Moondanos, and Z. Hanna, “A Signal Correlation Guided ATPG
Solver And Its Applications For Solving Difficult Industrial Cases,’Hroceedings of Design Automa-

tion ConferencgJune.

[39] I.-H. Moon and C. Pixley, “Non-Miter-Based Combinational Equivalence Checking by Comparing
BDDs with Different Variable Orders,” iRroceedings of Formal Methods in Computer-Aided Design
2004.

[40] M. Syal and M. Hsiao, “VERISEC: VERIfying Equivalence of SEquential Circuits using SAT,” in
Proceedings of High-Level Design Validation and Test Worksppp52-59, 2005.

Bibliography 109

[41] V. Singhal, C. Pixley, A. Aziz, and R. K. Brayton, “Theory of Safe Replacements for Sequential
Circuits,” in IEEE Transcations on CAD of Integrated Circuits and Systemis 20, pp. 249-265, Feb
2001.

[42] C. Pixley, “A Theory and Implementation of Sequential Hardware EquivalenclEEE Transactions

on Computer Aided Designmol. 11, pp. 1469-1494, Dec 1992.

[43] K. T. Cheng, “Redundancy Removal for Sequential Circuits Without Reset StatéEFE Transac-
tions on Computer Aided Desigwol. 12, pp. 13—-24, Jan 1993.

[44] S. Y. Huang, K. T. Cheng, and K. C. Chen, “Verifying sequential equivalence using atpg techniques,”
in ACM TODAESvol. 6, pp. 244-275, April 2001.

[45] F. Lu and K.-T. Cheng, “Sequential Equivalence Checking Based on K-th Invariants and Circuit SAT
Solving,” in Proceedings of High Level Design Validation and Test Worksppp45-51, 2005.

[46] F. Lu and K.-T. Cheng, “IChecker: An Efficient Checker for Inductive InvariantsPlioceedings of
High Level Design Validation and Test Worksh2p06.

[47] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite state concurrent systems
using temporal logic,” ilACM Trans. on Programming Languages and Systewis 8, pp. 244—263,
1986.

[48] E. M. Clarke, O. Grumberg, and D. A. Pel@dpdel CheckingThe MIT Press, 2000.
[49] K. L. McMillan, Symbolic Model Checkindluwer Academic Publishers, 1993.

[50] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation|EiBE Trans. on Com-
puters vol. 35, pp. 677—691, 1986.

[51] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implementation of a BDD packagé?taon
ceedings of Design Automation Conferegnme. 40—45, 1990.

[52] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Logic Verification Using
Binary Decision Diagrams in a Logic Synthesis Environment,Pinceedings of International Con-

ference on Computer Aided Desjdir988.

Bibliography 110

[53] H. Fujii, G. Ootomo, and C. Hori, “Interleaving Based Variable Ordering Methods for Ordered Binary
Decision Diagrams,” irProceedings of International Conference on Computer Aided Depjgr38—

41,1993.

[54] P. Y. Chung, I. N. Hajj, and J. H. Patel, “Efficient Variable Ordering Heuristics for Shared ROBDD,"
in Proceedings of ISCA3993.

[55] S. Panda and F. Somenzi, “Who are the variables in your neighbourhodttgdéeedings of Interna-

tional Conference on Computer Aided Desi@A95.

[56] M. Thornton, J. Williams, R. Drechsler, and N. Drechsler, “Variable re-ordering for shared Binary
Decision Diagrams using output probabilities,”"Pmoceedings of Conference on Design Automation

and Test in Europel999.

[57] F. Aloul, I. Markov, and K. Sakallah, “MINCE: A Static Global Variable-ordering for SAT and BDD,"

in Proceedings of International Workwhop on Logic and Synth@6ia1.

[58] F. Aloul, I. Markov, and K. Sakallah, “FORCE: A Fast and Easy-To-Implement Variable Ordering

Heuristic,” in Proceedings of Great Lakes Symposium on Y2&03.

[59] P. A. Abdulla, P. Bjesse, and N. Een, “Symbolic Reachability Analysis based on SAT-Solvers,” in
Proceedings of International Conference on Tools and Algorithms for the Construction and Analysis

of Systems2000.

[60] A. Gupta, Z. Yang, P. Ashar, and A. Gupta, “SAT-Based Image Computation with Application in
Reachability Analysis,” irProceedings of International Conference on Formal Methods in Computer

Aided Design2000.

[61] B.Li, M. S. Hsiao, and S. Sheng, “A Novel SAT All-Solutions Solver for Efficient Preimage Compu-
tation,” in Proceedings of Conference on Design Automation and Test in Eyspp872—-277, 2004.

[62] K. L. McMillan, “Applying SAT methods in unbounded Symbolic Model Checking,Hroceedings
of International Conference on Computer Aided Verification, Vol. 2404 of Lecture Notes in Computer

Sciencepp. 250-264, 2002.

Bibliography 111

[63] H. J. Kang and I. C. Park, “SAT-based Unbounded Model Checking?rateedings of Design Au-

tomation Conference003.

[64] J. Baumgartner and A. Kuehimann, “Enhanced Diameter Bounding via Structural Transformation,” in

Proceedings of Conference on Design, Automation and Test in EL26p4.

[65] M. K. Ganai, A. Gupta, and P. Ashar, “Beyond Safety: Customized SAT-based Model Checking,” in
Proceedings of Design Automation Confererme 738-743, 2005.

[66] C. Wang, H. Jin, G. D. Hatchel, and F. Somenzi, “Refining the SAT Decision Ordering for Bounded
Model Checking,” inProceedings of Design Automation Conferere 535-538, 2004.

[67] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar, “Learning from BDDs in SAT-based Bounded
Model Checking,” inProceedings of Design Automation Confererme 824—-829, 2003.

[68] G. Cabodi, S. Nocco, and S. Quer, “Improving SAT-based Bounded Model Checking by Means of
BDD-based Approximate Traversals,” Rroceedings of Conference on Design Automation and Test

in Europe pp. 898—-903, 2003.

[69] K. L. McMillan and N. Amla, “Automatic Abstraction without Counterexamples,Aroceedings of

International Conference on Tools and Algorithms for the Construction and Analysis of Sy20&®s

[70] K. L. McMillan, “Interpolation and SAT-based Model Checking,” Rroceedings of Conference on
Computer Aided Verificatigrmpp. 1-13, 2003.

[71] L. Zhang, M. R. Prasad, M. S. Hsiao, and T. Sidle, “Dynamic Abstraction Using SAT-based BMC,” in
Proceedings of Design Automation Confererme 754—757, 2005.

[72] C. A. J. van Eijk, “Sequential Equivalence Checking without State-Space TraversBipdeedings

of Conference on Design, Automation and Test in Eur@p88.

[73] P. Bjesse and K. Claessen, “SAT-based Verification without State-Space TraverBa@t@edings of
Conference on Formal Methods in Computer Aided Des2§00.

Bibliography 112

[74] R. Arora and M. S. Hsiao, “Enhancing SAT-based Bounded Model Checking using Sequential Logic
Implications,” inProceedings of International Conference on VLSI Desgm 784—787, 2004.

[75] J. Zhao, M. Rudnick, and J. Patel, “Static Logic Implication with application to fast redundancy iden-
tification,” in Proceedings of VLSI Test Symposjyp. 288-293, 1997.

[76] A. Church, “Introduction to Mathematical Logic,” iRrinceton, NJ: Princeton Uniy1956.

[77] D. LeBerre, “Exploiting the Real Power of Unit-Propagation Lookahead?roteedings of Workshop
on Satisfiability 2001.

[78] C. M. Li, “Integrating Equivalency Reasoning into Davis-Putnam procedurdtaceedings of AAAI
Conferencepp. 291-296, 2000.

[79] J. Zhao, J. A. Newquist, and J. H. Patel, “A Graph Traversal Based Framework for Sequential Logic
Implication with an Application to C-Cycle Redundancy ldentification,’Aroceedings of Interna-

tional Conference on VLSI Desigpp. 163-169, 2001.

[80] L. de Moura, H. Ruel3, and M. Sorea, “Bounded Model Checking and Induction: From Refutation to

Verification,” in Proceedings of Conference on Computer Aided Verifica003.

[81] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic circkE&ESE

Transactions on Computergol. C-30, pp. 215-222, Mar 1981.

[82] S. Sheng and M. S. Hsiao, “Efficient Preimage Computation Using a Novel Success-Driven ATPG,” in
Proceedings of Conference on Design Automation and Test in Eyppp822-827, 2003.

[83] H. Goldstein and E. L. Thigpen, “Scoap: Sandia Controllability/Observability analysis program,” in
Proceedings of Design Automation Conferer@80.

[84] I.-H. Moon, G. Hachtel, and F. Somenzi, “Border-block Triangular Form and Conjunction Schedule in
Image Computation,” ifProceedings of Conference on Formal Methods in Computer Aided Design

2000.

Bibliography 113

[85] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient Conflict Driven Learning in
a Boolean Satisfiability,” inrProceedings of International Conference on Computer Aided Design
pp. 279-285, 2001.

[86] J. Baumgartner, A. Kuehlmann, and J. Abraham, “Property Checking via Structural Analysis,” in

Proceedings of International Conference on Computer Aided Verifica2iaoR.

[87] M. K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik, “Combining Strengths of Circuit-based and
CNF-based algorithms for a High-Performance SAT SolverPiaceedings of Design Automation

Conferencepp. 747—750, June 2002.

[88] F. Lu, M. K. lyer, G. Parthasarathy, and K.-T. Cheng, “An Efficient Sequential SAT Solver With
Improved Search Strategies,” Rroceedings of Design Automation and Test In Europe Conference
2005.

Vita

Vishnu C. Vimjam was born on May 24, 1981 in Kavali, a small town in coastal Andhra Pradesh in India. He
had his primary education in the Railway Mixed English Medium High School (Bitragunta - AP) till 1991
and then higher education in Ongole Public School (Ongole - AP) till 1996. He recieved the best out-going
student award from Ongole Public School in 1996. He then joined Narayana Residential Junior College
(Brahmadevam - AP) and completed his Intermediate college studies for two years. In 1998, he joined
Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology (affiliated to Jawaharlal
Nehru Technological University, Hyderabad - AP, India) and obtained his Bachelor of Technology Degree
in Electronics and Communications Engineering in April 2002. In 2002, he recieved the Justice Punnaiah
Gold Medal for his excellent academic achievements and also the best out-going male student award for
his overall undergrad performance. Later, he joined Virginia Tech in Fall 2002 and was admitted into the
direct PhD program in Computer Engineering in Spring 2004. He obtained his Masters Degree in Computer
Engineering from Virginia Tech in Decemeber 2004 and is currently pursuing his PhD on SAT-based Formal
Verification. His other research interests include BDD-based Model Checking and Sequential ATPG. After
the completion of his PhD, he will be joining Real Intent, a company specializing in functional verification

based in California.

114

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Design Flow
	Design Verification and Complexity Issues
	Why Formal Verification?
	Contributions of this Dissertation
	Dissertation Organization

	Chapter 2 Preliminaries
	Terms and Notations
	The Boolean Satisfiability Problem
	SAT-based Equivalence Checking
	SAT-based Model Checking
	SAT-based Unbounded Model Checking
	SAT-based Bounded Model Checking
	SAT-based Induction

	Summary

	Chapter 3 Increasing Deductibility in SAT Instances
	Motivation
	Related Work
	Increasing the Deductibility for SAT-based BMC
	Learning via Justification Enumeration
	Learning via Justification Frontier

	Efficiency Issues
	Experimental Evaluation
	Summary

	Chapter 4 Illegal State Identification
	Motivation
	Related Work
	Fast Illegal State Extraction
	Learning Using An ATPG
	Unachievable Partial-State Learning
	Exploiting Logic Implications
	Unified Framework

	Experimental Results
	Summary

	Chapter 5 Property Strengthening
	Motivation
	Property Strengthening Using an ATPG
	Property Simplification and Reordering

	Pre-selection and Derivation of Co-invariants
	Overall Flow and Discussion
	Experimental Results
	Summary

	Chapter 6 Interleaving BMC and Bounded Reachability Analysis
	Motivation
	Proposed Searching Framework
	Basic Idea
	Controllability-based Guiding

	Overall Algorithm
	Experimental Results
	Summary

	Chapter 7 Static Invariant Extraction
	Motivation
	Static Invariant Extraction
	Generation of Candidate Invariants
	Pruning the Candidate Set
	Verification of Candidates

	Experimental Results
	Summary

	Chapter 8 Conclusions and Future Work
	Bibliography

	Vita

