
Strategies for SAT-based Formal Verification

by

Vishnu C. Vimjam

Dissertation submitted to the Faculty of

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Dr. Michael S. Hsiao, Chair

Dr. Dong S. Ha

Dr. Sandeep K. Shukla

Dr. R. Michael Buehrer

Dr. Ezra Brown

January 29, 2007

Bradley Department of Electrical and Computer Engineering

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Keywords: Learning, Model Checking, Equivalence Checking, ATPG, SAT, BDD

Copyright c© 2007, Vishnu C. Vimjam

To my loving parents

Basavaiah Naidu and Indira

Strategies for SAT-based Formal Verification

Vishnu C. Vimjam

Abstract

Verification of digital hardware designs is becoming an increasingly complex task as the designs are incor-

porating more functionality, becoming complex and growing larger in size. Today, verification remains a

bottleneck in meeting time-to-market requirements and consumes more than 70% of the overall design-costs.

Traditionally, verification has been done using simulation-based approaches, where a set of appropriate test-

stimuli is used by the designer. As the designs become more complex, however, simulation-based techniques

often fail to capture corner-case errors. Furthermore, unless exhaustively tested, these approaches do not

guarantee the correctness of a system with respect to its specifications. As a consequence, formal methods

for design verification have been sought after. In formal verification, the conformance of a design to a

given set of specifications is proven mathematically, thereby leaving no room for unexplored search spaces.

Despite the exponential time/memory complexities often involved within the formal approaches, they have

shown promise in capturing subtle bugs, which were missed otherwise.

In this dissertation, we focus on Boolean Satisfiability (SAT) based formal verification, which has gained

tremendous importance in the recent past. Importantly, SAT-based approaches often alleviate the mem-

ory explosion problem, which had been a bottleneck of the traditional symbolic (Binary Decision Diagram

based) approaches. In SAT-based techniques, the set of verification tasks are converted into a set of Boolean

formulae, which are checked for satisfiability using a SAT solver. These problems are often NP-complete

and are prone to an explosion in the required run-time. To overcome this, we propose novel strategies which

utilize both structural and logical information of a sequential circuit. In particular, we devise techniques

to extract non-trivial invariants of a design, strengthen properties such that they can be proven faster and

interleave bounded reachability analysis with bounded model checking. We provide the necessary algo-

rithms and implementation details in order to automate the proposed techniques. Experiments conducted

on a variety of benchmark circuits show that orders of magnitude improvement in overall run-times can be

achieved via our techniques compared to the existing state-of-the-art SAT-based approaches.

Acknowledgements

It gives me immense pleasure to thank my advisor Prof. Michael Hsiao for his continued inspiration and

guidance throughout my stay at Virginia Tech. Without his profound vision and my endless hours of discus-

sions with him, this dissertation would not have been possible. I am extremely thankful to Prof. Dong Ha,

Prof. Sandeep Shukla, Prof. Michael Buehrer and Prof. Ezra Brown for serving on my PhD committee and

their valuable suggestions in improving my dissertation.

I am thankful to Sreejit Chakravarty and Srikanth Venkataraman for providing me valuable internship op-

portunities at Intel Corporation. My discussions with both of them and my supervisors Yi-Shing Chang,

Ruifeng Guo and Enamul Amyeen were very helpful and increased my insight to the state-space explosion

problem. I would also like to thank Prof. Thomas Martin, Prof. Joseph Tront, Prof. Lynn Abbott and Prof.

James Baker for their encouragement and guidance provided during my Masters’ days at Virginia Tech.

My sincere thanks to all Proactive Lab colleagues Kameshwar Chandrasekar, Manan Syal, Shuo Sheng,

Qingwei Wu, Xiao Liu, Gordon Zhang, Xiaoding Chen, Puneet Gupta, Rajat Arora, Shrirang Yardi, Karthik

Channakeshava, Maheshwar Chandrasekar, Ronnie Lajaunie, Bin Li, Danling Chen, Lei Fang, Weixin Wu,

Xueqi Chen and Nannan He for all the good times and several valuable discussions during the course of my

PhD. I am also thankful to all my room-mates for their support and help during my stay in Blacksburg. Last

but not the least, I would like to thank my family, friends and well-wishers for their constant encouragement

and support throughout my academic career.

Vishnu C. Vimjam

January 2007

iv

Table of Contents

Table of Contents . v

List of Figures . ix

List of Tables . xi

Chapter 1 Introduction 1

1.1 Design Flow . 2

1.2 Design Verification and Complexity Issues . 3

1.3 Why Formal Verification? . 4

1.4 Contributions of this Dissertation . 5

1.5 Dissertation Organization . 7

Chapter 2 Preliminaries 9

2.1 Terms and Notations . 9

2.2 The Boolean Satisfiability Problem . 11

2.3 SAT-based Equivalence Checking . 15

2.4 SAT-based Model Checking . 17

2.4.1 SAT-based Unbounded Model Checking . 18

2.4.2 SAT-based Bounded Model Checking . 21

2.4.3 SAT-based Induction . 24

v

2.5 Summary . 26

Chapter 3 Increasing Deductibility in SAT Instances 27

3.1 Motivation . 27

3.2 Related Work . 28

3.3 Increasing the Deductibility for SAT-based BMC . 30

3.3.1 Learning via Justification Enumeration . 31

3.3.2 Learning via Justification Frontier . 33

3.4 Efficiency Issues . 35

3.5 Experimental Evaluation . 36

3.6 Summary . 40

Chapter 4 Illegal State Identification 43

4.1 Motivation . 43

4.2 Related Work . 44

4.3 Fast Illegal State Extraction . 44

4.3.1 Learning Using An ATPG . 45

4.3.2 Unachievable Partial-State Learning . 50

4.3.3 Exploiting Logic Implications . 52

4.3.4 Unified Framework . 54

4.4 Experimental Results . 55

4.5 Summary . 57

Chapter 5 Property Strengthening 60

5.1 Motivation . 60

5.2 Property Strengthening Using an ATPG . 62

vi

5.2.1 Property Simplification and Reordering . 65

5.3 Pre-selection and Derivation of Co-invariants . 67

5.4 Overall Flow and Discussion . 70

5.5 Experimental Results . 70

5.6 Summary . 73

Chapter 6 Interleaving BMC and Bounded Reachability Analysis 75

6.1 Motivation . 75

6.2 Proposed Searching Framework . 76

6.2.1 Basic Idea . 76

6.2.2 Controllability-based Guiding . 79

6.3 Overall Algorithm . 81

6.4 Experimental Results . 81

6.5 Summary . 86

Chapter 7 Static Invariant Extraction 87

7.1 Motivation . 87

7.2 Static Invariant Extraction . 89

7.2.1 Generation of Candidate Invariants . 90

7.2.2 Pruning the Candidate Set . 91

7.2.3 Verification of Candidates . 94

7.3 Experimental Results . 95

7.4 Summary . 100

Chapter 8 Conclusions and Future Work 102

Bibliography . 105

vii

Vita 114

viii

List of Figures

2.1 Circuit Notations . 10

2.2 DPLL Style SAT Algorithm . 13

2.3 CEC Framework . 15

2.4 Example State Transition Graph . 20

2.5 BMC Framework for Safety Properties . 22

3.1 Example Implication Learning . 29

3.2 Example Learning via Justification Enumeration . 32

3.3 Example Learning via Justification Frontier . 34

3.4 Example Cumulative BMC Runtimes . 42

4.1 Learning via ATPG . 46

4.2 Sufficient Implication Examples . 50

4.3 Unachievability Learning Example . 54

4.4 Enumeration BDD Example . 55

4.5 Cumulative run-times for b14.2 . 57

5.1 Circuit Unrolling . 62

6.1 Example STGs . 77

ix

6.2 Basic idea of proposed method. 79

7.1 Sequential circuit and its expansion . 89

7.2 Region Of Influence for a Gate-value assignment. 90

7.3 Example Invariant Extraction . 94

x

List of Tables

2.1 Working of a DPLL procedure . 14

3.1 Improvement in Deductibility . 37

3.2 BMC results for safety properties for ISCAS and ITC Benchmarks 38

4.1 Induction runs for safety properties . 59

5.1 Results for induction runs for safety properties . 74

6.1 State Justification Experiments on ISCAS and ITC Benchmarks 84

6.2 Reachability of First/Last 100 States among 5000 states. 85

6.3 Maximum induction depth reached in one hour . 86

7.1 SAT Runs for φ at depth k . 88

7.2 Results for Invariant Extraction . 97

7.3 Results for Induction Runs for Safety Properties . 98

xi

Chapter 1

Introduction

Today’s computing systems are becoming increasingly complex due to the huge number of features added

for realizing high-end applications. These include critical systems such as space applications, medical diag-

nosis systems, secure banking systems, etc. Digital integrated circuits (IC) form an important component in

these systems and range from small end micro-controllers to very complex special purpose processors. As

the size and complexity of these IC designs keep on increasing, the ultimate products become increasingly

error prone. These errors can be present in the initial design itself or introduced in the middle due to human

interference or due to buggy design automation tools. It is quintessential that all the logical or physical

errors of an integrated circuit be cleared before the final product is released.

While the verification tasks are applied to both hardware and software of the underlying system, this dis-

sertation will focus mainly on the verification of the hardware. We note that the techniques introduced

for bounded model checking, property strengthening, etc., can be incorporated into software verification

as well. In the following sections, we will introduce the design flow in VLSI designs and the necessity of

design verification. We will talk about some of the issues in verification and point out why verification tasks

should be done formally. Finally, we provide the main contributions of this dissertation and provide the

overall flow of this document.

1

Chapter 1. Introduction 2

1.1 Design Flow

The design process of a system starts with a set of user-definedspecifications. For example, when designing

a traffic-light controller, we require that no two perpendicular sides have the green signal simultaneously.

Such specifications are taken into account while designing a system and it is crucial that the system con-

forms to thewholeset of specifications. Sometimes, the set of specifications itself might not be complete,

which leaves room for unspecified behavior of the system. Such a lack of specification may sometimes be

intentional, where the user does not bother about what the system does in those cases.

The set of specifications are first modeled at the behavioral level. Then a structural description at the Register

Transfer Level (RTL) is derived. This process is known asBehavioralsynthesis and is often used for

Application Specific Integrated Circuit (ASIC) design. In cases where critical adherence to criteria such as

area requirements is needed, designers may directly model structual RTL from the specifications without

going through behavioral synthesis. The structual descriptions are then synthesized to gate-level net-lists

and then to a lower circuit (transistor/schematic) level. This is known asLogic synthesis. The circuit

schematic is then converted into a physical layout and a chip is fabricated using these layouts and adding

the input-output pads, etc [1].

Besides the transformation of a design from one level to another, it is modified or optimized at each level.

Designmodificationsare usually done to add more functionality or to make the design meet the specifi-

cations in a stricter sense or to improve the testability of a designetc. On the other hand,optimizations

are done to improve the system’s performance, which include reducing the latency/cycle-time, decreasing

the area, minimizing the power consumption, etc. In most cases, these optimizations are automated at the

RTL and lower levels using computer-aided design tools. Manual optimizations such as those done at the

architectural level or placement of functional blocks are also very common [1].

Chapter 1. Introduction 3

1.2 Design Verification and Complexity Issues

The termDesign Verificationusually refers to various aspects of verification of a design. These include

Functional verification, Timing verification, Power verification, etc. In functional verification, the function-

ality of a design is verified for correctness. In timing verification, the design is checked to see if it satisfies

the timing specifications. Note that a design can be functionally correct but might not be producing the

outputs at thespecifiedtime. Similarly, in power verification, a design is checked if it satisfies certain power

constraints such as leakage power, maximum instantaneous power, etc.

In this dissertation, we focus on functional verification which is often categorized into two types: (i) Static

verification which formally verifies designs with respect to their functional specifications and (ii) Dynamic

verification which usually employs simulation based techniques and aims at increasing coverage (such as

state coverage, transition coverage etc.) of the test-bench. Dynamic verification is also referred to as Design

Validation.

Depending of the size and type of a given functional block, the complexity of a verification task can vary.

It also varies according to the kind of specification being verified. For example, it may be non-trivial to

estimate the cost-difference of verifying if a violation occurs inany clock-cycle compared to verifying if

the same violation occurs in agivenclock-cycle. Verification of a functional block becomes more complex

when it is integrated as a part of a bigger system. For example, to check if a divide by zero error occurs in a

division unit, we need to check if the output of the unit feeding the divisor can ever be zero. Such tasks are

usually referred to asSystem-levelverification.

In the worst case, the complexity of a verification task can beexponentialin time as well as memory which

forms the major bottleneck for verification techniques. When the design size is small, verification can be

performed fairly easily with the state-of-the-art computing systems. But as a design’s complexity or size

increases, the time/memory complexity in verification increases exponentially. For example, a design with

30 state-elements can have more than a billion reachable states and checking if a given property holds in

the design might require checking all those states. As today’s designs have tens to hundreds of thousands of

state-elements, methods to reduce the exponential costs of verification is a must.

Chapter 1. Introduction 4

1.3 Why Formal Verification?

Formal verification deals with establishing a complete proof for verifying a system with respect to its spec-

ifications. Conventionally, one can use test-benches (or test-patterns) that areintuitively generated by the

designer to check if the design has any bugs. However, there are several limitations behind such approaches:

(i) Creation and application of test stimuli often requires great expertise both on the part of the design en-

gineer and the verification engineer, (ii) Corner-case errors existing in the implementation might not be

covered by the manually-generated test-stimuli, (iii) Automation or manual generation of test stimuli at a

full-chip level is very time consuming. As opposed to applying such tests, an exhaustive simulation of all the

test vectors can be conducted to cover all thepossiblescenarios. However, this requires simulating a huge

number of input patterns which can be impractical even for medium-sized designs. As a result, techniques

for formally verifying a system have been sought after in the past. Such techniques are referred to asFormal

Methods.

Formal methods employ mathematical proof procedures to fully verify a system with respect to its spec-

ifications. Some of the underlying engines used in formal methods include techniques that employ Au-

tomatic Test Pattern Generation (ATPG), Symbolic engines, and/or Boolean Satisfiability (SAT). Among

these, ATPG and SAT based techniques are propositional procedures and try to establish that no counter-

example exists for a given verification task. On the other hand, symbolic methods employ graph-based data

structures (such as Binary Decision Diagrams (BDDs)) and verification is performed by performing logical

operations or quantifications on these structures. Although operations onordereddecision diagrams can be

performed in linear time with respect to their sizes, the main disadvantage is that the graphs themselves are

prone to an explosion in size. In general, ATPG/SAT procedures are prone to an explosion in time, whereas

the BDD based approaches are prone to an explosion in memory.

Despite these inherent limitations within formal methods, they have shown much promise in verifying sys-

tems in their entirety. For several industrial designs, they were used to find subtle bugs in the past that were

not captured via simulation-based approaches. Thus, as a design’s size/complexity grows, formal verifica-

tion becomesessentialas opposed tooptional.

Chapter 1. Introduction 5

1.4 Contributions of this Dissertation

In this dissertation, we focus on SAT-based formal verification approaches with an emphasis on SAT-based

Bounded Model Checking [2] and Induction [3] techniques for safety properties. We study various limita-

tions of these approaches in terms of efficiency for safety property checking and propose novel strategies

to improve their performance. Below, we present a high-level overview of our contributions whereas the

detailed techniques, algorithms and experimental results can be found in Chapters 3 to 7.

There are several limitations in terms of efficiency in the SAT-based Bounded Model Checking and Induc-

tion techniques. For checking safety properties, a design is unrolled for several cycles and checked to see if

starting from the initial state, the design satisfies the specifications which are written formally asproperties.

For a given property, if nothing can be concluded within an unrolled bound, the bound needs to be increased

to check if the property is refuted/proved at a higher bound. As the bound is increased, the Boolean for-

mula generated to be solved by a SAT solver increases linearly. However, even such a linear increase in

size leads to an increase the problem complexity exponentially. This directly relates to the efficiency of

BMC/Induction approaches. Experiments [4, 5] have shown that these approaches are often successful for

properties that can be proven within smaller bounds while they explode in time for properties that require

longer bounds to be proven. Existing improvements such as Incremental Learning [6,7,8], improved order-

ing schemes [9, 10] and Simplification techniques [11, 12] etc. improve the efficiency at a given bound but

do not have the capability to prove properties at smaller bounds than required otherwise. In this dissertation,

we provide automated techniques that aim at proving safety properties at smaller bounds so that the overall

runtimes can be significantly smaller. These are described below.

When a circuit is converted to a Boolean formula in Conjunctive Normal Form (CNF), the circuit gates

are associated with Boolean variables. As a result, all the logical relationships among the circuit gates

also exist in the CNF formula. However, when the Boolean formula is given to a SAT solver, it may not

understand these relations, which limits their ability to perform efficient Boolean Constraint Propagation

(BCP). In Chapter 3, we present two new techniques to identify two-node sequential logic implications

among the gates which can be converted appropriately and added to the Boolean formula [13]. To efficiently

Chapter 1. Introduction 6

learn these relations, we unroll the circuit a small number of cycles and use our techniques to compute

implications that might span more than one cycle. We show that our techniques can learn highly non-trivial

implications which when added to the Boolean formula improves the BCP process of the SAT engine and

aids in earlier backtracking [13].

Next, we propose novel techniques in Chapter 4 and Chapter 7 to provetrue properties1 efficiently. Since

Bounded Model Checking aims atrefuting properties, it suffers while proving true properties, where the

design needs to be unrolled very long to complete the proof. This can be overcome by using induction

techniques [3] which uses a assume-verify procedure to prove true properties faster. However, the efficiency

of induction techniques depends on the respective property at hand. Whereas it proves several properties

at smaller bounds, it suffers for those that require larger bounds to be proved. Looking from a different

perspective, if we extract illegal state-spaces efficiently and use them as constraints in the induction runs,

we can prove harder properties at smaller depths.

In Chapter 4, we propose novel techniques for fast identification of illegal state spaces. We employ ATPG

based learning, exploit logic implications and use an enumerative framework to learn more illegal states

[14]. Experiments reveal that, when all the learned states are used as constraints at the state-boundaries in

induction runs, we are able to prove several true properties that were hard to prove otherwise using induction.

In Chapter 7, we present novel approaches to learn invariants of a design. The main idea here is behind

our motivation that hard-to-prove true properties can be proved by knowing information about other true

properties [15]. We propose two models from which we extract candidate invariants and prove them using

induction. All those candidates that are proved are again added as constraints in induction runs. Experi-

mental results show that we are able to prove further hard-to-prove true properties. This led to orders of

magnitude improvements in property checking runtimes [15].

Whereas the techniques mentioned above aid in proving true properties faster, they do not have the capability

to refutefalseproperties2 at lower depths. To overcome this limitation, we propose new techniques for

strengthening properties and for performing a deeper search for hard properties [16, 17]. In Chapter 5, we

1true properties are those that are satisfied by the design
2false properties are those that are not satisfied by the design

Chapter 1. Introduction 7

propose our property strengthening techniques. We employ ATPG-based pre-image computations and co-

invariant3 extractions to efficiently enlarge the property [16]. Resolution and Dynamic variable ordering are

further employed to improve the quality of strengthening. Once a property is strengthened, it can be verified

using BMC/Induction similar to the original property. Experimental results have shown that the proof-depths

can be reduced significantly thereby achieving several orders of magnitude runtime improvements. As

opposed to the above techniques, strengthening enables in proving both passing as well as failing properties

faster.

In Chapter 6, we present a novel approach that can refute hardfalseproperties which require long counter-

examples to be violated. The main idea is to follow a sequence of states, in the forward direction from the

initial state(s) and in the reverse direction from the target state(s) and employ a bounded model checker to

check if at least one backward state can be reached from one forward state [17]. To achieve this, we augment

depth-first bounded reachability analysis together with bounded model checking. Such a framework is very

powerful because of the exponential number ofnewstates that might be covered compared to conventional

bounded model checking. While doing so, due to the strengthened target states, true properties can also

be proved earlier via induction runs. We further employ controllability-based guiding techniques such that

states collected via the depth-first search are tuned toward reaching the targets faster [17]. Comparison

with state-of-the-art incremental learning techniques and sequential SAT solvers show that our technique

out-performs them in most cases by reaching the target state faster.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows:

• Chapter 2 provides the necessary background to formal verification while discussing in detail about

SAT-based techniques, their capabilities and limitations

• Chapter 3 proposes two new techniques for implication learning that aim at improving the efficiency

3co-invariants for a property are those that should be invariant if the property is an invariant

Chapter 1. Introduction 8

of SAT-based Bounded Model Checking

• Chapter 4 presents a novel framework for fast identification of illegal states and their application to

enhance SAT-based induction runs

• Chapter 5 presents our property strengthening techniques which enables us to prove properties faster

using SAT-based Induction

• Chapter 6 proposes a novel framework that interleaves bounded reachability analysis together with

bounded model checking which can reach deeper target states that are hard to reach otherwise

• Chapter 7 presents our static invariant extraction techniques, which enables us to prove harder prop-

erties of a design

• Chapter 8 concludes the dissertation with several directions for future work

Chapter 2

Preliminaries

In this chapter, we provide the necessary background to SAT-based verification techniques. We first intro-

duce the Boolean Satisfiability (SAT) problem, followed by its application to Formal Verification. We then

describe all the SAT-based approaches to Equivalence Checking, Unbounded Model Checking, Bounded

Model Checking and SAT-based Induction.

2.1 Terms and Notations

Throughout this dissertation, we use the following terms and notations: We represent a combinational circuit

asC =< X,T, Z >, whereX is the set of primary-inputs,T is the combinational logic andZ is the set of

primary outputs in the circuit. A sequential circuit is represented asS =< X,Y, T, Y ′, Z >, whereX and

Z are the primary inputs and primary outputs, respectively,Y, Y ′ denote the present and next state elements

of the circuit andT represents its transition function. A combinational circuit is shown in Figure 2.1(a), a

sequential circuit is shown in part (b) of the same figure, and a sequential circuit unrolled forN time-frames

(or clock-cycles) using the iterative logic array (ILA) model is shown in Figure 2.1(c). In an ILA model of a

sequential circuit, the next-state elements of a given time-frame are connected to the present-state elements

of the immediate next time-frame.

9

Chapter 2. Preliminaries 10

Boolean gates are denoted with upper-case alphabets such asG,G1, etc. We use the setB = {0, 1}

to represent the Boolean logic values. The lower-case alphabetsv, v1, etc. are used to denote Boolean

valued variables andv, v1, etc, denote their complements. The termnodeis used to represent a logic value

assignment to a gate. We represent a node asGv.t, whereG is a gate,v ∈ B andt ∈ {1, 2, .., N}. In other

words, gateG is assigned to valuev in time-framet, wheret is limited to theN time-frames. In cases

where necessary, we uset for any time-frame and not necessarily between1 andN . For combinational

circuits, we represent a node simply asGv (without the time-frame parametert). We use the symbol∧ to

refer to the conjunction of the nodes and∨ to refer to their disjunction. We refer to logic simulation as the

propagation of logic assignments with the three values{0,1,U}, whereU is the unknown logic value. We

useφ to represent a property of a design.

frame
2

PI(2)

PO(2)

COMB

TPI

(a) Combinational Circuit (c) Seq Circuit Unrolled for N time−frames

PO

(b) Sequential Circuit

frameframe
1 N

PI(N)

PO(1) PO(N)
NS(1)

PS(3)

NS(2)

PS(2)

NS(N)

PS(N+1)PS(1)

NS(0)

PI(1)

FF

PO

PI

COMB
T

Figure 2.1. Circuit Notations

Definition 2.1: A gate is said to bespecifiedif it is assigned a logic valuev ∈ B. If its value is unknown

(U), then it isunspecified.

Definition 2.2: A specified gate,G, is said to beunjustified(by its inputs) if the current assignments of its

inputs do not justify the output value of the gate.

For example, let an OR gateG hasn faninsG1,G2, ...Gn. If G is assigned to logic value1, but none of its

inputs are assigned to1, thenG is an unjustified gate. The notion of justification can be easily understood

for other gate types.

Definition 2.3: A design is said to beinitializable if it can be brought to a completely specified state from

an all-unspecified initial state, via afinite input vector sequence or via an explicit reset signal.

Definition 2.4: A nodeGv is said to beachievableif starting from an all unknown initial state, there exists

Chapter 2. Preliminaries 11

at least onefinite input vector sequence that can drive a valuev at gateG (in somet). Otherwise,Gv is said

to beunachievable.

Definition 2.5: A propertyφ is said to beinvariant if that property holds in all the reachable states of the

sequential designS. Formally, this is written asS |= φ.

For an initializable design, at least one ofGv or Gv will be achievable, whereG ∈ {set of gates in the

circuit}. If Gv is unachievable,Gv will be an invariant.

We use the termlogic implication(or simply implication) to refer to the causal relationship between a set of

nodes. An implicationG1v1 ∧G2v2 → G3v3 means that whenever the assignmentG1 = v1 andG2 = v2

is true, the gateG3 cannot be assigned to valuev3.

In the next section, we provide preliminaries to the Boolean Satisfiability problem.

2.2 The Boolean Satisfiability Problem

Boolean Satisfiability (SAT for short) is the first known NP-complete problem. It was proved to belong to

the class of NP-complete in 1971 by S. Cook [18].

In the SAT problem, a Boolean formula involving a set of propositional variables is given. This formula can

be in Disjunctive Normal Form (DNF) or the Conjunctive Normal Form (CNF). Most of the current day’s

SAT solvers work on CNFs and hence we will describe it below:

A CNF formulaF =< c, l, v > consists of a conjunction of a set of clauses, where

• Each clausec is a disjunction of literals

• Each literall is a positive or negative occurrence of a variable

• Each variablev is propositional which can take values∈ B

An example CNF formula consisting of 4 clauses is given below, whereX1, X2, X3, X4, X5 are Boolean

Chapter 2. Preliminaries 12

variables:F = (X1 ∨X2) ∧ (−X2 ∨X3) ∧ (−X2 ∨X4) ∧ (−X3 ∨−X4 ∨X5). The number of literals

in each clause is referred to thesizeof the clause. If the size is 1, then it is called aunit-clause. A CNF

instance is referred to ak-CNF if all the clauses have sizes≤ k. Any k′-CNF can be reduced to ak-CNF,

wherek′ ≥ k, k ≥ 3, by adding new variables and using them to shorten longer clauses. Whereas SAT

problems in DNF form can be solved in polynomial time,k-CNF problems withk ≥ 3 are NP-complete.

The Boolean Satisfiability problem in the CNF form can be formally stated as follows:

Given a set of clausesC with variables that take value assignments∈ B, does there exist a satisfying truth

assignment to the variables such that all the clauses are satisfied?

Looking from one perspective, this problem is a simplified version of the class of optimization problems

(such as ILP). In an optimization problem, we aim at finding a solution such that a given objective is either

minimized or maximized. Whereas, in the Boolean Satisfiability problem, we simply search for justone

arbitrary satisfying solution. Also note that, Boolean Satisfiability is a subset of the general Satisfiability

problem in that the variables can only take binary values. There exists several variations of the SAT problem

such as MAXSAT, HORNSAT, etc.

One of the initial forms of SAT solving was done using Binary Resolution [19]. This is called the Davis-

Putnam procedure. In Binary Resolution, two clauses can be combined and resolved on a common variable

that appear in opposing polarities to yield a new clause. This process can be repeated until there are no more

such common variables between the two clauses. For example, the above first two clauses (X1 ∨X2) and

(−X2 ∨ X3) when resolved onX2 yields (X1 ∨ X3). In the DP-style SAT solving, binary resolution is

repeated until we get unit-clauses with each variable having a literal in at least one of these unit-clauses.

If these unit-clauses are not consistent (i.e., a variable appears in positive form in one unit-clause and in

negative form in another), then that CNF formula is proved to be unsatisfiable. Otherwise, the corresponding

truth assignments give a satisfying assignment to the variables. This kind of SAT solving, however, suffers

from memory explosion due to the exponential number of new clauses, calledresolvents, that are derived

during the solving process.

This has been improved using a new procedure called DPLL (Davis-Putnam-Love-Longland), where a deci-

Chapter 2. Preliminaries 13

sion tree is constructed with the propositional variables. In this style of SAT solving, resolution is performed

only implicitly and the truth assignments under any given branch of the decision tree are said to beimplied.

If there isat least onepath in the decision tree leading to a solution that has consistent variable assignments,

then the formula is said to be satisfiable. If no such path exists, then it is unsatisfiable. The pseudo-code for

a DPLL style solver is shown in Figure 2.2. Since the decision tree is built over the set of variables with each

parent-node having a maximum of 2 children-nodes, this hasexponentialtime complexity. However, note

that there are no new clauses stored during the process and hence there is no memory-explosion problem.

SAT_Solver()
{

If (atleast one clause violated) return false;

If (all clauses satisfied) return true and exit;

(X, v) = MakeNextDecision(); // use a decision heuristic

Deduce(X=v); // Boolean Constraint Propagation

SAT_Solver(); // recurse

Deduce(X=not(v)); // Boolean Constraint Propagation

SAT_Solver(); // recurse

Unspecify(X);
}

Figure 2.2. DPLL Style SAT Algorithm

As seen from the algorithm, the DPLL procedure tries to incrementally build a satisfying truth assignment

M for a CNF formulaF . M is grown by deducing the truth value of a literal by using already existing

assignments inM , or by guessing the value of a variable inF . If a guess for a variable leads to an inconsis-

tency, the procedure backtracks and tries the opposite value. Table 2.1 gives a simple formula and explains

step-by-step how the DPLL procedure works.

Most of the modern SAT-solvers are of the DPLL style and are tuned for high-performance. These solvers

include, but not limited to, GRASP [20], SATO [21], Chaff [22], BerkMin [23], Siege [24], and MiniSAT

[25] etc. The concepts of Conflict-Driven Learning (CDL) and Non-Chronological Backtracking (NCB)

have been introduced in the GRASP algorithm [20] which led to a break-through and inspired much of

recent developments in SAT solvers. In CDL, upon a conflict, new clauses are extracted by analyzing the

nature of each conflict under a given path of the decision-tree. These clauses, when added to the original

Chapter 2. Preliminaries 14

Table 2.1. Working of a DPLL procedure

Operation Assignment Formula,F Status

- - (a ∨ b)(b ∨ c̄ ∨ d)(ā ∨ b̄)(ā ∨ c̄ ∨ d̄)(a) start

deduce a a=1 (>)(b ∨ c̄ ∨ d)(b̄)(c̄ ∨ d̄)(>) unknown

deduce b b=0 (>)(c̄ ∨ d)(>)(c̄ ∨ d̄)(>) unknown

guess c c=1 (>)(d)(>)(d̄)(>) unknown

deduce d d=1 (>)(>)(>)(⊥)(>) conflict

undo c - (>)(c̄ ∨ d)(>)(c̄ ∨ d̄)(>) unknown

guess c c=0 (>)(>)(>)(>)(>) satisfied

Assignment set{a=1, b=0, c=0, d=0/1} is a model forF

clause database, constrain the search space by avoiding entering the same conflict space. Subsequently, it

directs the search toward the non-searched regions. Note that due to this addition of clauses, SAT solving

via CDL is prone to memory explosion. When compared with the original DPLL algorithm, CDL gives

rise to a trade-off between time and memory. However, practical results have shown that the amount of

savings in execution time usually outweighs the rather small amounts of additional memory requirements.

Furthermore, if the number of conflict-induced clauses is large, ranking of these newly added clauses can be

made, and those less-useful clauses may be removed [22,23].

Other high-performance oriented features of the modern SAT solvers include 2-literal watching [21, 22],

efficient decision heuristics [22, 23], efficient clause management [23], better resolution of conflicts [26]

and efficient implementation [25], etc. Note that, in spite of all these improvements [27], the complexity of

SAT solving is still exponential in the worst case. There has been a tremendous amount of research being

conducted these days [28] to identify better SAT solving techniques. Much research has also been dedicated

to developing pre-processor engines for SAT such as [29, 30, 31] etc. These engines try to simplify and

minimize the CNF instances such that the resulting CNFs can be solved faster using the conventional SAT

solvers. Experiments have shown that in many cases significant runtime improvements can be achieved via

preprocessing. Whereas most of the practical solvers are general purpose, research is also being done to

tune the SAT solvers for specific applications such as verification.

Chapter 2. Preliminaries 15

The main frameworks in SAT-based Formal Verification are SAT-based Equivalence Checking and SAT-

based Model Checking, which are described in the rest of this chapter.

2.3 SAT-based Equivalence Checking

Equivalence checking forms an important part in the design verification process. Due to erroneous mod-

ifications or optimizations to the implementation, bugs can be added into the design. Hence, whenever a

design is modified/optimized in any way, it is essential to check it for equivalence with respect to the original

design. Currently, equivalence checking tools are employed to verify the equivalence of RTL models to the

transformed net-list model (after logic synthesis) or the equivalence of two net-list models implementing the

same functionality.

X1
X2
X3

Original
Design

Optimized
Design

XOR

XOR

XOR

OR

Y1

Y2

Yn

Y2’

Yn’

Z1

Z2

Zn

Z

Xm

Y1’

Figure 2.3. CEC Framework

LetC be a multi-output combinational circuit withm primary inputsX1,X2, ...,Xm andn primary outputs

Y 1, Y 2, ...,Y n. LetC ′ be the modified/optimized circuit ofC with outputsY 1′, Y 2′, ...,Y n′. To verify that

C ≡ C ′, a miter circuit [32] is constructed as shown in Figure 2.3. In this miter circuit, each corresponding

primary output-pairY i andY i′ from the two circuits are fed to an XOR gate, whose output forms a local

miterZi. All such local miters (Zi) are then fed to an OR gate to obtain the final global miter outputZ.

The objective of an equivalence checker is to verify thatZ is a tautology 0; in other words, to verifyZ = 1

is unachievable. In SAT-based equivalence checking, the miter circuit is first converted to a CNF formula

along with the added constraint clause (Z). If the resulting CNF is satisfiable, then a satisfying solution

Chapter 2. Preliminaries 16

exists. Such a solution serves as a counter-example and can be used to debug the design. On the other hand,

if the CNF is unsatisfiable, it can be concluded that the optimized circuit is functionally equivalent to the

original (golden) one.

As mentioned earlier, a general-purpose SAT solver might not be competitive enough for equivalence check-

ing purposes. Whereas they perform well in easy-to-solve cases, additional learning is necessary to solve the

hard instances. Tuning the SAT checks for Equivalence checking has been exploited in several ways. Ex-

amples include Robust Boolean reasoning [33], Recursive Learning [34,35], Exploiting local relations [36],

Signal correlation guided solving [37,38], etc.

While combinational equivalence checking is known to be a coNP-hard problem [39], sequential equivalence

checking is considered EXP-space complete [40]. Instead of simply checking the combinational logics for

equality, verifying sequential equivalence involves verifying the equality of outputs ineveryreachable state

of the product-machine of both the implementation and the golden models.

There exists several notions of equivalence in sequential circuits, which differ in the assumption(s) made

with respect to the operation and working environment of the sequential circuit. For circuits with an ex-

ternal reset state, a notion of reset-equivalence is defined, according to which, two sequential circuits are

said to be equivalent if their input-output behaviors are identical after reset. Reset equivalence assumes

that the external environment is capable of generating the reset signal for both circuits under consideration.

However, many real designs do not have an external reset state [41]. For circuits without an external reset,

other notions of sequential equivalence have been defined [41, 42, 43, 44]. In [42], the notion of sequential

hardware equivalence (SHE) has been proposed, which considers two sequential circuits as equivalent if

their input-output behaviors are identical after an initialization sequence has been applied. However, SHE

requires the preservation of only one initializing sequence and as a consequence, it can lead to erroneous de-

sign replacements if the design environment cannot generate the specific initializing sequence under which

the replacement is verified against the original design. In [43], a notion of design replacement in terms of

sequential redundancy is proposed. Another classification of sequential equivalence called 3-valued safe

replaceability was introduced in [44]. In contrast to the above classifications, the notions of safe replace-

ability and delay replaceability [41] do not make any assumptions either about the design-environment or

Chapter 2. Preliminaries 17

about the steady state behavior of the design (such as initialization). Although safe replaceability provides a

more general form of design replacement compared to delay replaceability [41], it is more practical to target

verification of delay replaceability of sequential circuits.

Conventional techniques for sequential equivalence checking are based either upon binary decision dia-

grams (BDD) or upon automatic test pattern generators (ATPG). Due to the recent progress in SAT solvers,

sequential equivalence checking using SAT procedures have been explored. Interested readers are referred

to [45,46,40] for more details on SAT-based sequential equivalence checking.

2.4 SAT-based Model Checking

Model checking deals with the verification of design (or a model) with respect to a given set of specifications

(or properties). In model checking [47, 48], the design to be verified is modeled as a Kripke structure (or a

finite-state machine) and the properties are written in temporal logic. The reachable states of the design are

traversed from an initial state to verify these properties formally.

A property can be of two types [48]: (i) Safety and (ii) Liveness. Safety properties are formulated to

verify that nothing bad will happen in the design. These include properties such asNever x, Always x,

After x Never y, After x Always y, After x Always y Unless z, etc. For example, the condition that no two

perpendicular streets should have the green traffic signal simultaneously, is a safety property. Liveness

properties are formulated to verify that something good will eventually happen as the system keeps running.

These include properties such asEventually x, After x Eventually y, After x Eventually y Unless z, etc.For

example, verifying that an acknowledgment eventually occurs after a request is made, is a liveness property.

Early model checking algorithms areexplicit in the sense that they work directly by traversing the State

Transition Graph (STG) of the design. However, as the design size grows, constructing an STG itself will be

impractical since the number of states can be exponential. Hence, the practicality of explicit model checking

is very limited.

A breakthrough in the form of Symbolic Model Checking (SMC) using BDDs was introduced in [49] to

Chapter 2. Preliminaries 18

efficiently automate the model checking process (without needing explicit STGs). Symbolic Model Check-

ing uses efficient Boolean encodings to compactly represent Kripke structures/finite-state machines. By

replacing the transition relation and the sets of states with BDD structures, SMC is shown to handle much

larger designs. In particular, Boolean function manipulations using ordered BDDs can be performed in

linear time [50] with respect to the size of the BDDs. However, an ordered BDD is highly sensitive to its

variable order and quickly explodes if a bad ordering is used. Due to this fact, the applicability of symbolic

methods remains limited to small/medium-sized designs. Interested readers are referred to [51] for efficient

implementation of a BDD package and to [52, 53, 54, 55, 56, 57, 58] for efficient variable ordering schemes

for constructing reduced ordered BDDs (ROBDDs).

Due to the advent of high-performance SAT solvers, SAT-based techniques for model checking have recently

gained industry-wide acceptance over the symbolic methods. All the tasks that need to be verified, are con-

verted to propositional Boolean formulas which can be checked for satisfiability using a SAT solver. Based

on the nature of the model checking approaches, SAT-based Model checking can be further classified into

two categories (i) SAT-based Unbounded Model Checking and (ii) SAT-based Bounded Model Checking.

We will detail these in the following sections.

2.4.1 SAT-based Unbounded Model Checking

In SAT-based Unbounded Model Checking (UMC), a SAT solver is employed to perform reachability anal-

ysis of the design and verify its correctness with respect to a property. Letφ be a property to be checked

and letS0 be the set of initial-state(s) of the modelM . In property checking, we want to verify ifM |= φ.

Putting it in a different way, if there exists a path from any initial state to a state that satisfies¬φ, then we

know that the modelM does not satisfy the propertyφ.

The two fundamental steps in reachability analysis are Image and Preimage computations.

Definition 2.6: The set of all states that can be reached in one step from a states forms the Image ofs.

Definition 2.7: The set of all states that can reach a states in one step forms the Preimage ofs.

Chapter 2. Preliminaries 19

Given a sequential circuit of the formS =< X,Y, T, Y ′, Z >, the characteristic function of the image set

for a set of statesS can be computed as below:

Img(s) = ∃X∃Y (S ∧ T)

Here, the symbol∃ refers to the existential quantification. The right hand side of the above equation exis-

tentially quantifies the input variablesX and the present state variablesY from s ∧ T and results in a set of

states involving the next state variablesY ′. This set of states form the image ofS. The above equation can

be used repeatedly to find the set of states that can be reached in 1, 2, 3, ... clock cycles and so on. Once

the set of states reach a fix-point (say,CompleteImg(s)), that set represents the complete set of reachable

states of the design. This type of analysis is usually calledForward Reachability Analysis.

As an example of forward reachability analysis, consider the simple state transition graph shown in Figure

2.4, wheres0 is the initial state. The statess1, s2 ands3 are reachable froms0 in one step and form the

image set fors0. Similarly, only one states4 is reachable froms1 which forms the image ofs1. Continuing

this way in forward direction, we can obtain a fixed-point which consists of all the reachable states that can

be reached from the initial states0. It is easy to see from this example, that the design has 9 reachable states

while others are illegal (examples7 ands10).

Similarly, the characteristic function of the preimage set for a states can be computed using the following

equation:

PreImg(s) = ∃X∃Y ′(T ∧ S)

In contrast to the Image operation, note that here we quantify the next state variablesY ′. Thus the result is

a set of states involving the present state variablesY , which forms the preimage ofs. This can be repeated

as before to obtain all the set of states that can reachs in 1, 2, 3, ... clock cycles and so on. Once we reach a

fix-point (say,CompletePreImg(s)), the final result gives the complete set of states that can reachs. This

type of analysis is usually calledBackward Reachability Analysis.

As an example of backward reachability analysis, again consider the STG shown in Figure 2.4. Let us

consider a target states11. This state can be reached froms8, s9 ands10 in one step which forms the

Chapter 2. Preliminaries 20

s0

s1

s2

s3

s4

s5

s6

s7

s9

s10

s8

s11
Init

Figure 2.4. Example State Transition Graph

preimage set ofs11. Similarly, only one states6 can reachs9 which forms its preimage set. Continuing this

way in the backward direction, we reach a fixed-point which consists of all the set of states that can reach

s11. If the initial states0 is present in such a set (as does in this example), then we know that there exists a

path froms0 to the target states11 of the design.

Now consider another target states10. Its preimage set is{s7} and the states7 has no predecessors. So

we reached a fixed-point with states{s10, s7}. In this case, we can conclude there does not exist a path

from the initial states0 to the states10 of the design thereby learning thats10 is illegal (as well as all its

predecessors).

From the above examples, we can see that both forward and backward analysis arecompleteprocedures

themselves and in general there does not exist a clear distinction as to which procedure is more efficient.

However, one might judiciously apply either one depending on the underlying engines he is using to perform

the analysis or by using his/her intuition about the design. For example, if we know that a design has

significantly more reachable states than unreachable states and if a target state is intuitively unreachable, it

might be efficient to perform backward reachability, since a fixed-point might be reached faster. Likewise,

if we know that the design has significantly more unreachable states than unreachable states and if a target

state is intuitively unreachable, it might be better to perform forward reachability.

Similarly, for reachable target states, intuition might be applied. For example, the states8 can be reached

via only one path froms0. In such cases, performing a backward reachability might be efficient since the

Chapter 2. Preliminaries 21

sets of preimage states traversed and stored can be significantly smaller than the image states.

Besides performing only forward or only backward reachability analysis, one can also interleave them [49,

59]. In such cases, certain number of forward and backward steps are computed in each iteration and checked

to see if they intersect with at least one state. Note that the efficiency of such an interleaving depends entirely

on the target at hand and the nature of the corresponding state transition graph of the design.

In SAT-based UMC, the fundamental image and preimage operations are done using anall-solution SAT

solver [59,60,61]. Note that a general-purpose SAT solver simply gives usonesolution (if exists) for a given

CNF formula. On the other hand, anall-solution SAT solver computes all the satisfying solutions. If we

extract the assignments for variablesY ′ orY in all these solutions, that would yield the corresponding Image

or Preimage. As opposed to the BDD-based computations, the SAT-based procedures do not necessarily rely

on canonicity and the set of states reached are simply stored as a set of clauses. To avoid reaching the same

solution space again,blocking clausesare added which allows for automatic variable quantifications. The

clauses obtained at the end of an iteration can be used as the starting states for the next iteration and so

on. Experiments [60,62,63] conducted have shown that SAT based approaches often complete reachability

analysis for large designs which were hard for BDD-based approaches.

To verify if M |= φ, whereφ is a safety property, we can simply check if the setsCompleteImg(S0) and

CompletePreImg(¬φ) has any state in common. If so, then there exists a path from a state inS0 to a state

satisfying¬φ. This path can be used as a counter-example to debug the design. In practice, the image ofS0

and the preimage of¬φ are computed one step at a time and checked for intersection. The number of steps

needed for terminating the process depends on the property-at-handφ. If φ indeed holds for the design,

there will not be a counter-example at any step and the process needs to be continued until a fixed-point is

seen in either forward or backward direction.

2.4.2 SAT-based Bounded Model Checking

Bounded Model Checking (BMC) based on SAT procedures [2] is an alternative verification approach as

compared to the above Unbounded Model checking. In UMC, the images and preimages are computed

Chapter 2. Preliminaries 22

explicitly. Whereas in BMC, we simply search for the existence of a path ofboundedlength betweenS0 and

those state(s) satisfying¬φ (whereφ is a safety property). To perform this, a Boolean formula is constructed

by unrolling the circuit into several time-frames together with a monitor circuit. This constructed formula is

satisfiable if and only if the underlying transition system can realize a bounded sequence of state transitions

that exposes a path fromS0 to¬φ.

A typical BMC framework for safety property checking is shown in Figure 2.5 whereS0 represents the

initial state(s),T1, T2, ..., Tk represent each unrolled transition, andP1, P2, ..., Pk represent the property

assertions in each unrolled copy. (Here,P = ¬φ and the monitor circuit is a logical OR function). The total

CNF instance can be obtained by concatenating the CNF formulas forS0, T0, T1, ...,Tk, andP1, P2, ...,Pk

and the monitor circuit. Given such a CNF instance, the SAT solver performs an implicit exploration of the

reachable states to verify whether the property assertion is satisfiable within the boundk, from S0. If the

CNF formula for the BMC instance is satisfiable, a counter-example (trace) is generated which exposes an

error in the design. If the property is not satisfiable, then the necessity of increasing the bound comes into

play.

S0 TkT1 T2 P2P1 Pk

MONITOR

OUT (=1?)

Figure 2.5. BMC Framework for Safety Properties

Note that, similar to the UMC case, the effectiveness of BMC depends on the property-at-hand. If the

property can be refuted with a short counter-example (i.e., within a small bound), then BMC is very efficient.

On the other hand, if the property is an invariant (i.e., holds forever), we need to increase the bound until

the sequential diameter [2] of the circuit is reached. Thediameterof a design can be defined as the largest

simple path in its state transition graph. In other words, it is the maximum distance between any two states

si andsj such thatsj is reachable fromsi. Diameter of a design can be exponential in terms of the number

Chapter 2. Preliminaries 23

of state-elements and as a consequence, BMC based approaches are limited in practice to only refutation

of properties within small bounds. Interested readers can refer to [64] for efficient diameter estimation

techniques.

As a simple example, again consider the state-transition graph shown in Figure 2.4. Its diameter is 6 (for

example, paths0-s1-s4-s6-s8-s11). Let φ be a simple safety property that can only be violated at states9.

Initially, we check if the initial states0 can violateφ. Since it cannot be violated, we unroll the design for

one time-frame and check for violations ofφ at the next state elements while setting the starting state tos0.

During decision making, the SAT solver implicitly searches the statess1, s2 ands3 that are the only ones

reachable in the first cycle. Since these do not violateφ, we further increase the number of unrollments (i.e.

bound) to 2 and continue the process. Finally, when we reach a bound of 4, we can reach the states9 and the

SAT solver produces a counter-example (eithers0-s2-s5-s9, or s0-s3-s5-s9). On the other hand, if we were

given a propertyφ that can be violated only at statess7 or s10, we would not have found a counter-example

even as the bound is increased until the diameter of 6. In such cases, we can conclude thatφ is an invariant.

Whereas BMC can be used straightforward to check safety properties, liveness property checking is slightly

more complex. For example, to check a liveness propertyEventually x, we need to verify that all paths from

the starting state lead tox. In other words, if there does not exist a infinite path that goes through only the

bad states (i.e. those violatingx), then the liveness property holds. Such a check can be formulated using

BMC [2]. Initially, we set bound to 1 and check if a state satisfying¬x can be reached in one cycle. If so,

then not all paths satisfyx in one cycle and we need to increase the bound to 2. While doing so, we assert

that¬x holds in cycle 1 and check if a state satisfying¬x can be reached in cycle 2. If so, we can repeat the

process by increasing the bound. On the other hand, at any given bound, if the SAT check is unsatisfiable,

then that means there does not exist an infinite path that goes only through the bad states and hence we can

conclude the liveness property holds. For more details on SAT-based Liveness checking, readers are referred

to [2,65].

Since BMC aims at solving Boolean formulae using propositional SAT procedures, it enjoys several ad-

vantages and at the same time has several limitations. The main advantages of BMC can be formulated as

follows: (i) Linear conversion time to CNF formulae especially for hardware designs. This is because once

Chapter 2. Preliminaries 24

a translation is obtained for a single unrollment of the circuit, it can simply be replicated without additional

analysis. (ii) SAT-solving techniques have taken a plunge and several high-performance SAT solvers such

as zChaff [22], BerkMin [23], Siege [24], MiniSAT [25]etcare available (iii) Incremental learning possible

and helpful in many cases. This is because of the replicated nature of the clauses in BMC instances. When

a BMC instance is constructed for an unrolled sequential circuit, most of the clauses in the combinational

logic are replicated while retaining the already existing combinational logic clauses. Thus, learning conflict

clauses while solving smaller instances, and carrying them over while solving larger instances can be greatly

beneficial in solving the larger instances efficiently. (iv) No serious memory explosion problem especially

at smaller depths.

BMC despite being practical for providing counter-examples for false properties, suffers from two main

limitations: (i) The technique is theoretically incomplete unless the bound is increased until the diameter of

the system. In other words, BMC suffers heavily while solving true properties. As mentioned above, finding

diameter is also another reachability problem. (ii) Explosion in time at higher depths. This is because, as

the bound is increased, the number of variables and clauses increase linearly. However, even such a linear

increase leads to exponential increase in solving complexity. Thus BMC is efficient for solving properties

that can be refuted via smaller counter-examples.

To overcome the above limitations, several approaches have been proposed in the past: These include Incre-

mental learning [6,7,8], Improved ordering strategies [6,8,66,9], BDD-based learning mechanisms [67,68],

and CNF simplification techniques [11, 12]. Furthermore, when a BMC instance is proved unsatisfiable

using a SAT solver, we can learn the UNSAT core1 from the SAT engine. This UNSAT core information is

exploited in various ways [69,70,71] to efficiently abstract the design according to the property-at-hand.

2.4.3 SAT-based Induction

In contrast to the above UMC and BMC approaches, Induction [72,3,73] is a special technique that aims at

proving invariant properties without performing state-space traversals. For example, in [72], equivalence of

1An UNSAT core is a subset of the clauses of the CNF which itself is unsatisfiable

Chapter 2. Preliminaries 25

certain internal signals is assumed in initial clock cycles and it is checked to see if they remain equivalent

forever in all clock cycles. The main advantage here is that, if those equivalences are indeed true, the two

circuits might be proved very quickly for equivalence. Below, we provide details on SAT-based induction

whereas the same theory applies to Induction, in general.

LetS0 be the initial state(s) of a finite-transition system withT as its transition relation. Letφ be a property

to be verified. When the system is unrolled to an ILA of lengthk, let Ti andφi respectively denote the

transition relation and the property assertion at stepi respectively. Then, the Boolean formula for the

complete unrolled instance with the property can be constructed by

φ∗(1, 2, .., k) ∧ T ∗(1, 2, .., k),where

φ∗(1, 2, .., k) = φ1 ∧ φ2 ∧ .. ∧ φk andT ∗(1, 2, .., k) = T1 ∧ T2 ∧ .. ∧ Tk. In SAT-based induction [3], the

base caseS0 → φ and the induction stepφ1 ∧ T1 → φ2 are translated to Boolean formulas¬(¬S0 ∨ φ) and

φ1 ∧ T1 ∧ φ̄2, respectively. These two CNF formulas are checked for satisfiability using a SAT solver. If the

base case formula is satisfiable, then one can readily concludeφ is not an invariant. Otherwise, the induction

step is performed. If it is unsatisfiable, thenφ can be concluded as an invariant. Otherwise, nothing can be

concluded aboutφ. For most properties, however, thissimple inductionscheme is insufficient, and a stronger

induction scheme calledinduction with depthcan be used. In this new scheme, the base case is modified to

S0∧T ∗(1, 2, .., k) → φ∗(1, 2, .., k), and the induction step is modified toφ∗(1, 2, .., k)∧T ∗(1, 2, .., k+1) →

φk+1, both of which are again converted into respective CNF formulas. If nothing can be concluded about

φ at a depthk, it is increased to a higher depthk′ and the SAT checks are repeated.

To make the procedure complete, the search needs to be limited to simple paths. This is conducted by

addingunique state constraints[3], which restrict that no state can be repeated in the satisfying solution.

For example, consider a simple STG with twounreachablestatess1 ands2 and two transitionss1 → s1

ands1 → s2. Now, consider a propertyφ that can only be violated ats2 i.e. φ is invariant. If we conduct

induction step runs forφ, then we obtain a counter-example at any depthn, such that the firstn − 1 states

ares1 and the last state iss2. However, if we use unique state constraints, thens1 cannot repeat in the

counter-example and we would be proving the property at depth2 itself.

For finite-transition systems, when the unique-state constraints are added, there always exists a finitek such

Chapter 2. Preliminaries 26

that the formula for the induction step is unsatisfiable [3] for invariant properties.

The main motivation behind induction is to prove invariants quickly at smaller depths. All the invariants

that are proved via induction are calledinductive invariants. In general, UMC or BMC based approaches

are good for quick refutations of a property, where as induction based approaches are better for proving a

property to be an invariant.

2.5 Summary

In this chapter, we provided a formal background to the Boolean Satisfiability problem followed by the

SAT-based Formal Verification techniques. In particular, we outlined the SAT-based Equivalence Checking

and SAT-based Model Checking frameworks while describing the state-of-the-art enhancements that have

been done to make these approaches more efficient.

Chapter 3

Increasing Deductibility in SAT Instances

In this chapter, we will first explain the drawbacks of SAT-based Bounded Model Checking framework,

followed by the related work done in the past. We then describe our new technique to alleviate this problem

along-with experimental results and some directions for future work.

3.1 Motivation

First and foremost, remember that if all the BMC instances up to a boundk are not satisfiable, then nothing

can be deduced about the property. If the property-at-hand is an invariant, we might need to go until the

diameterof the system to prove it. This diameter can be exponential in terms of the number of state-elements

and hence we need to reduce the execution time at each bound as much as possible.

Secondly, note that every time we increase the bound, new variables and clauses are added to the CNF

formula. Though this increase is linear in number with respect to the bound, the corresponding increase in

solving complexity is exponential in time. For example when going from a bound ofk to k′, the complexity

increases from2n.k to 2n.k′ , wheren is the number of gates in the sequential circuit.

For the above two reasons, BMC becomes inefficient as the bound is increased. In practice, BMC is used to

27

Chapter 3. Increasing Deductibility in SAT Instances 28

identify as many counter-examples (bugs) as possible within a given small bound. If no counter-examples

are found for a property within that bound, UMC techniques might be employed to proceed further.

Thirdly, when a circuit is converted into a CNF formula, all the circuit structural information is lost. In

other words, given a CNF formula, a SAT solver cannot identify which variables are primary inputs, which

ones are flip-flops etc. Sometimes, such information might be significantly helpful in order to make better

decisions or for exploiting Boolean reasoning etc.

3.2 Related Work

Recently, several techniques have been developed that try to learn information from the circuit. Whereas

some of these are general, some are specifically aimed at improving BMC. In [68], approximate reacha-

bility analysis using BDDs is performed and the BDDs obtained at each state-boundary are converted into

clauses to constrain the SAT engine. Since BDDs are employed, care must be taken to avoid excessive

pre-processing times as well the number of clauses added. Another BDD-based analysis is proposed in [67]

to extract constraint clauses statically or dynamically. In order to restrict both memory and computational

costs, the learning is limited only to local regions.

Generalized rules for deducing relations among variables have been proposed in [36] on the basis of unit-

propagation. However, the analysis is also limited locally to reduce cost. In Simp2C [74], indirect implica-

tions learned via logic simulation are converted to constraint clauses to speed up the SAT solving in BMC.

In the example shown in Figure 3.1(a), logic simulation ofD0 results inA0, and hence the clause (D ∨¬A)

is learned, which helps the SAT engine to learn contra-positively that BCP(A1) results inD1. Besides such

learning, Simp2C proposes the replication of the learned clauses throughout the entire BMC bound. A sim-

ple replication is shown in Figure 3.1(b), where an implicationX10 → Y 21 learned in a small window is

replicated throughout1.

A similar form of learning was employed in the Hypre [29] preprocessor. For example, if clauses (H ∨¬A),

(H ∨ ¬B), (H ∨ ¬C) and (A ∨B ∨ C ∨D) exist in the original CNF, a new clause (H ∨D) is learned via

1Here,X1 refers to signalX in frame 1 andY 2 refers to signalY in frame 2 and so on

Chapter 3. Increasing Deductibility in SAT Instances 29

hyper-resolution. Besides this, Hypre performs equality reduction. If two clauses (A ∨ ¬B) and (¬A ∨ B)

exist in the CNF, then variablesA andB are equivalent and one of the variables can be eliminated by

replacing with the other. Similar reductions can be done for complement variables[(A ∨B) ∧ (¬A ∨ ¬B)]

and constant variables[(A) or (¬A)].

Since only logic simulation (or BCP) was employed, the learning of both Simp2C and Hypre is limited.

Non-increasing variable elimination has been proposed in NiVER [30], in which variables are eliminated

via resolution if doing so do not increase the size of the overall CNF formula. Although Hypre and NiVER

are proposed for general-purpose SAT solving, they are equally applicable for SAT-based BMC.

YA
D

E

1/X

X/1

1/X

X/1
X/1

1/X

(c) EBL

DC

A

B 0
0

0

0

1

(a) Indirect

1 2 3 4 5

learning window

Y2=1

X1=0 X2=0 X3=0

Y3=1 Y4=1 Y5=1

X4=0

 (b) Replication in several windows

1

1
1X

1/1

C

B

Figure 3.1. Example Implication Learning

Next, we describe the Extended Backward learning (EBL) procedure developed in [75], which was originally

used for the identification of untestable faults. This uses the input justification scenarios of an unjustified

gate to learn new implications that are common in all the justification scenarios. We explain the procedure

for an AND gate which can be extended to all other gate types: LetG be a AND gate and letYv → G0

hold. WhenY = v,G becomes unjustified and letX1,X2, ...,Xn be itsn unspecified inputs. Now,G = 0

can be justified by a logic0 assignment on any of thesen inputs. In such a case, the intersection of gate

assignments obtained by logic simulating the node combinations (Yv ∧X10), (Yv ∧X20), ..., (Yv ∧Xn0)

are new implications of the nodeYv. Note that the assignment set{(Yv ∧ X10) ∩ (Yv ∧ X20) ∩ ... ∩

(Yv ∧ Xn0)} automatically contains the assignments that can be obtained by logic simulatingYv alone.

Hence the implications obtained through EBL are strictly a super-set of those obtained via simple logic

simulation (Simp2C or Hypre). We will illustrate EBL via an example circuit shown in Figure 3.1(c).

Initially, we haveX1 → A1 which makes gateA unjustified. Performing EBL using input justification

scenarios forA = 1 helps us to learnX1 → Y1. Via the contra-positive law, the implicationY0 → X0 is

Chapter 3. Increasing Deductibility in SAT Instances 30

also learned. Our experience indicates that these contra-positive implications often aid in significant increase

in the total number of non-trivial implications learned from the circuit. In the example of Figure 3.1(a),A0

is the only justification scenario forC0 (givenD0) and hence we can automatically concludeD0 → A0 (i.e.

no explicit intersection is necessary).

Though the learning obtained through EBL procedure is efficient, it might not be adequate for BMC pur-

poses. We conjecture that the more non-trivial2 a learned relation is, the more it will help a SAT engine

in reducing the solving times during BMC. To improve the learning, we propose two new learning strate-

gies that demonstrate superior performance, which can be applied along with [68] or [67] for additional

performance benefits.

3.3 Increasing the Deductibility for SAT-based BMC

In this section, we describe new learning techniques based on static implication learning and binary resolu-

tion for enhancing SAT-based BMC. First, consider the following definition:

Definition 3.1: Deductibility of a CNF formula is defined asD =
∑
X

|BCP (X0)| +
∑
X

|BCP (X1)|,

whereX ∈ {variable set of the CNF} and|BCP (Xv)| denotes the number of other truth assignments (i.e.

implications) due to assignmentX = v.

The main motivation behind our work is to add non-trivial clauses to a CNF instance which increases the

deductibility in the final CNF formula. Clearly, the newly added clauses will be helpful only if the SAT

engine cannot deduce them through BCP from the original CNF. In this regard, we explore the underlying

circuit structure to deduce non-trivial relations and add them to the original CNF instance. Our techniques

are specially applicable for BMC or sequential ATPG problems, where the large CNF formulas can over-

whelm the SAT solvers, makinglearningcritically beneficial. Since the implications learned through EBL

are more non-trivial than those learned from either Simp2C or Hypre, we have developed our two strategies

by extending the concept of EBL. As such, our learning is a superset of the learning provided by EBL.

2Non-triviality of a relation is related to how many decisions a SAT solver takes to learn it

Chapter 3. Increasing Deductibility in SAT Instances 31

3.3.1 Learning via Justification Enumeration

Let S represent the set of implications in the intersection of two opposing nodes related to a gateX, i.e.,

X0 andX1. ConsiderS to be non-empty, and letGv be a node inS. SinceGv is implied by bothX0 and

X1, according to the dilemma rule [76],G is a constant gate achievable to only one valuev. However, if

the circuit has no gates with constant values, then no such sets would exist. Our aim is to findconditional

constants, whereby under the presence of some other nodeYv, the setS is no longer empty for a target gate

X. First, we consider the following lemma which is a conditional variant of the above dilemma.

Lemma 3.1: If the intersection of implications of two mutually exclusive nodesX0 andX1 is non-empty

under a conditionYv, then the nodes in the intersection are implications ofYv. In other words, if (X0 ∧ Yv)

→ Zv1 and (X1 ∧ Yv) → Zv1, thenYv → Zv1.

Proof: The proof can be obtained simply by applying binary resolution. Resolving on gateX eliminates the

nodesX0 andX1 from the two conflicting sets (X0 ∧ Yv ∧ Zv1) and (X1 ∧ Yv ∧ Zv1), thus resulting in the

new conflicting set (Yv ∧ Zv1) which meansYv → Zv1. �

We callYv as thebasenode, gateX as theresolverandX0,X1 as theresolvingnodes. Given Lemma 1, one

can aim at finding base nodes such that the intersecting setS of the resolving nodes is non-empty. However,

in order to avoid selecting too many base nodes for a given resolver gate, we formulate this problem in

the reverse fashion to find good resolver gates for a given base node. Recall that during the application of

EBL for a nodeYv, we find unjustified gates and use their unspecified inputs for justifications. We find that

such unspecified inputs for an unjustified gate are goodcandidate resolvergates for the base nodeYv. This

heuristic selection helps in (1) capturing efficient re-convergences of the resolving nodes through the base

node, (2) increasing the specified region around the unjustified gate, and (3) keeping the simulation overhead

as small as possible since half of the work is already being done during EBL computation. Since the nodes

X0 andX1 create similar local simulation events, we bit-pack3 them during simulation to further reduce

the overhead. Though simpler in theory, we have observed that this formulation can extract several powerful

3In bit-packing, one bit of a word is allocated to each case split such that all case splits can be simulated simultaneously

Chapter 3. Increasing Deductibility in SAT Instances 32

relations that cannot be captured by a SAT engine (through BCP) or by Simp2C or the EBL procedure.

We demonstrate this type of learning with the help of an example shown in Figure 3.2. Let the implications

E1 → C0, E1 → H1, D0 → F0, G1 → I1, K0 → J1 be those relations already learned from the circuit

(shown by dotted lines). LetX0 be the base node. Its implications are simplyA0, B0 andK0 from the

circuit shown in the figure. None of these implications can further imply any other gate. Consider gateE

which is one of the unspecified inputs ofA. According to Lemma 1, we can compute the set{(Yv ∧ E0) ∩

(Yv∧E1)} as the new implications ofYv. Besides Lemma 1, we can see that the node combination (Yv∧E1)

leads to a conflict around gateB during logic simulation. Thus the only possible assignment forE under

conditionX0 is a logic0 and we concludeX0 → E0 and henceE1 → X1 via the contra-positive law. We

note that these relations cannot be derived with EBL even if it is iterated until its convergence point (i.e.,

when no more implications can be deduced from the circuit). Such internal relations can be very useful, and

adding them to the implication graph enables us to capture even more non-trivial implications during the

learning process.

E=0X=0

X=1 E=1

X

A

C

D

F

G

E

0

0

0

1

0

0
0

1 H

B

1

K
0

J

1
1

I

Figure 3.2. Example Learning via Justification Enumeration

In Lemma 1, we have described the case where only a single gate is used for resolution under a base node.

We now extend Lemma 1 to consider multiple gates under a base node. For instance, in the example just

discussed for Figure 3.2, when gateA becomes unjustified for nodeX0, multi-gate resolution can also be

performed using the three new justification scenarios (D0 ∧E0), (D0 ∧E1) and (D1 ∧E0). Note that these

three scenarios automatically cover the direct binary resolutions on the unspecified inputs ofA, and they

represent the complete justification scenarios forA = 0. Even though such an enumeration would intuitively

be more powerful thanEBL + Lemma 1, it would be expensive for performing several logic simulations.

Chapter 3. Increasing Deductibility in SAT Instances 33

For an unjustified gate withn unspecified inputs,2n − 1 simulations (corresponding to each of the2n − 1

justification scenarios) would be necessary to check if the intersection has any nodes in common. However,

for the case whenn = 2, only three simulations are needed. Hence, we resort to such an exhaustive

enumeration only whenn = 2 and employ Lemma 1 along with EBL for cases wheren > 2 to keep the

pre-processing time low. As before, all justification scenarios can be bit-packed and simulated together to

enable faster simulation. We incorporated this kind of learning as the first strategy (JEnum) of our tool. Note

that these implications cannot be captured by the propositions in [77] because of two main reasons: (1) the

result is limited to only identifying equivalent variables where as ours can identify one-way implications as

well and (2) no concrete procedure is used for selecting variables fordouble unit-propagation look ahead,

where as ours uses the justification scenarios for unjustified gates which increases the specified region within

the circuit. Similarly the work in [78] is limited to only equivalence reasoning. In the next subsection, we

describe an improved learning strategy that has more extraction capability thanJEnum.

3.3.2 Learning via Justification Frontier

Consider Figure 3.3(a). NodeA0 is a direct backward implication of the nodeX0. Since neither gateB nor

gateC is specified to logic0, gateA is an unjustified gate. Learning based on EBL would use the justification

scenariosB = 0 andC = 0. However, gateB is not a fanout stem and hence no new implications would

be learned forX0, using EBL. We extend the justification scenarios for gateA to its Immediate Justification

Frontier (which is comprised of the complete set of nodes farthest away from gateA that would individually

justify assignmentA = 0).

The Immediate Justification Frontier (IJF) of a gate’s assignment can be obtained by taking the immediate

input justification scenarios for that assignment and recursively extending them backward until all the gates

achieve their non-controlling values or a primary input is reached. For example, using Figure 3.3(a) again,

extending the immediate justification scenarios forA = 0 would give the node-set{C0, D1, F1, G1} as

the IJF. Extending in such a way has two main advantages: First, any fanout stems along the backward

path (for example,C, D andE in Figure 3.3(a)) would be covered automatically. Secondly, the number

of implications of the nodes in the IJF would be greater than the number of implications of nodes in the

Chapter 3. Increasing Deductibility in SAT Instances 34

immediate input justification scenarios. Hence, this would lead to capturing more complex relations that

might not be obtained even whenJEnumlearning is enumerated forn > 2. According to this new procedure,

the new gate assignments in the set{(X0∧C0) ∩ (X0∧D1) ∩ (X0∧F1) ∩ (X0∧G1)} are also implications

of X0 in Figure 3.3(a).

Again, we consider the application of Lemma 1 here, which can be directly applied to the nodes in the IJF

of the unjustified gate. Similar toJEnum, any node in the IJF and its opposite node can be bit-packed and

simulated together to reduce the simulation time. However if an unjustified gate hasm nodes in its IJF,

then we would need2 ×m bits for simulation using Lemma 1. In general,m can be much larger than the

number of inputs (say,n) of the unjustified gate. In such cases, the pre-processing time can be very high. To

avoid this and to obtain even more non-trivial learning, we propose a new technique by modifying the above

procedure, which is explained below.

F

0

0

0

B

A

X
E

F

G

D

C

(a) (b)

XvC 1

B=0

A=0
IJF(A=1)

IJF(B=1)

IJF(C=1) = IJF(A=1) U IJF(B=1)

Figure 3.3. Example Learning via Justification Frontier

Consider Figure 3.3(b). Let the set IJF(A=1) containi nodesA1v1, A2v2, ...,Aivi and the set IJF(B=1)

containj nodesB1v1, B2v2, ..., Bjvj respectively. Note that the set IJF(C=1) is the union of the sets

IJF(A=1) and IJF(B=1). LetXv → C1 which makes gateC unjustified. According to Lemma 1, using input

A, we would compute{(Xv ∧ A0) ∩ (Xv ∧ A1)}. ReplacingA1 with its IJF, we would like to compute the

set{(Xv∧A0) ∩ (Xv∧A1v1) ∩ (Xv∧A2v2) ∩ ... ∩ (Xv∧Aivi)}. Note that this set represents the complete

possible assignment cases forA, and hence assignments in this set are implications ofXv. Similarly, using

all possible assignment cases forB, we can compute the set{(Xv ∧ B0) ∩ (Xv ∧ B1v1) ∩ (Xv ∧ B2v2) ∩

... ∩ (Xv ∧ Bjvj)} which can be added as implications of nodeXv. Apart from these, the assignment set

{(Xv ∧ A1v1) ∩ (Xv ∧ A2v2) ∩ ... ∩ (Xv ∧ Aivi) ∩ (Xv ∧ B1v1) ∩ (Xv ∧ B2v2) ∩ ... ∩ (Xv ∧ Bjvj)}

(using the IJF forC1) are also implications of nodeXv. We incorporated this kind of learning as our second

Chapter 3. Increasing Deductibility in SAT Instances 35

strategy (JFron) in our tool. Note that this new procedure requires onlym + n bits for simulation (m

for IJF(C=1),n for (A0, B0)) to process one unjustified gate as opposed to2 × m needed earlier. At the

same time, since nodesA0 andB0 have more implications than each of{A1v1, A2v2, ...Aivi} and each of

{B1v1, B2v2, ...Bjvj} respectively, this will provide superior learning as compared to the direct application

of Lemma 1 on IJF(C=1). However, the enumeration step done inJEnummay sometimes lead to new

implications that cannot be obtained throughJFron. WhetherJEnumextracts more non-trivial implications

or JFrondoes, depends on the underlying circuit structure.

3.4 Efficiency Issues

We have integrated the above two learning strategies into our tool Static Extraction Techniques for SAT-

based BMC (SET-SAT), which computes the sequential implication graph of a circuit and then generates

the final CNF instance for BMC. Converting a learned implication into a clause is straight-forward. For

example, the four implicationsX0 → Y0, X0 → Y1, X1 → Y0 andX1 → Y1 would be converted to the

clauses (X ¬Y), (X Y), (¬X ¬Y) and (¬X Y) respectively. Note that adding a clause for an implication

automatically takes care of the contrapositive implication as well.

There are three important implementation issues involved in SET-SAT. The first is concerned with the or-

dering of nodes for which the static logic implications are learned. Initially, we have only direct implication

edges. More edges are learned as the learning process progresses. Experience from other researchers [75]

as well as our own experiments support that learning in a levelized fashion (i.e., breadth-first manner) leads

to best case of learning. Given a gate-level net list, we first levelize it and compute the implications for

the nodes in a levelized manner starting from the inputs level to the outputs level. Secondly, since we add

the learned implications as extra clauses, the BMC formula sizes can grow very large. Similar to [79], we

employ a sequential implication graph for efficient implication storing (refer to [79] for its construction

details) and then convert the implications to clauses. However, the final implication graph obtained during

the learning can have many redundant edges. For example, edgeXv → Zv will be redundant if the edges

Xv → Yv andYv → Zv already exist in the graph. Hence, we first process the implication graph to remove

all such redundant edges and then create the final CNF formula. Note thatdeductibilityremains the same

Chapter 3. Increasing Deductibility in SAT Instances 36

before and after the edge reduction process, but the new number of clauses added to the BMC formula can

reduce significantly. Another implementation issue concerns with the number of iterations (sweeps across

the circuit). In general, we have observed that only a small fraction of implications are newly learned after

the first iteration. Hence we limit our tool to only one iteration so that the pre-processing time is effective

for overall BMC run times.

The overall flow for SET-SAT is as follows: First the implication graph is computed for a circuit using a

user-defined window size and then redundant edges are removed to make the graph efficient. The CNF

formula for the given initial state(s), property, and the expansion bound is then generated to be solved by a

SAT solver.

3.5 Experimental Evaluation

Experiments for circuits from the ISCAS89 and ITC99 benchmark suites were conducted using the zChaff

SAT solver (version 2004.11.15) on a Pentium-4 3.2GHz machine having 1GB RAM and running RedHat

Linux operating system. We have taken few safety properties for each circuit and selected the top two

properties which are hard for zChaff with the original CNF. We ran all of the available techniques and ours

on these hard safety properties. Our main aim is to show the relative robustness of our learning as compared

to the existing techniques.

Table 3.1 shows the deductibility information in the pre-processing phase. For each circuit, we show the

number of gates in columnGatesand the learning window size used bywin. We used a window size of 5

for all circuits except for the large circuit s35932 for which 3 was used. We report thedeductibilitynumbers

(for the middle time-frame variables amongwin) obtained via the original CNF and our two strategies under

the columnsOrig, JEnumandJFron respectively. Apart from the circuit b10, learning viaJFron always

resulted in higher deductibility as compared to that ofJEnum. Next, we show our average improvement in

deductibility over the original CNF in the columnX. As seen, deductibility can be increased up to 4.9 times

using our learning. Note that this improvement is from the non-trivial implications learned and can lead to

greater speedups in BMC instances, as seen next.

Chapter 3. Increasing Deductibility in SAT Instances 37

Table 3.1. Improvement in Deductibility
Circuit Gates win Orig JEnum JFron X

s400 194 5 13.5K 39.5K 39.9K 2.9

s420.1 253 5 32.2K 112K 113K 3.5

s444 211 5 15.2K 46.6K 48.5K 3.1

s510 243 5 28K 103K 109K 3.8

s526 223 5 18.8K 61.6K 63.6K 3.3

s820 331 5 86.3K 215K 227K 2.6

s832 329 5 86K 217K 226K 2.6

s967 462 5 96.2K 315K 315K 3.3

s9234.1 5883 5 1.43M 3.52M 3.59M 2.5

s13207.1 8803 5 7.32M 13.7M 13.9M 1.9

s15850.1 10533 5 4.2M 8.4M 8.6M 2.0

s35932 18148 3 8.95M 9.94M 9.94M 1.1

b10 206 5 15.2K 67.6K 66.8K 4.4

b11 770 5 55.1K 271K 272K 4.9

b12 1076 5 139K 490K 501K 3.6

b13 362 5 17.5K 59.8K 60K 3.4
win: learning window size X: Our Average / Orig

Chapter 3. Increasing Deductibility in SAT Instances 38

Table 3.2. BMC results for safety properties for ISCAS and ITC Benchmarks

Circuit k Prop Orig NiVER [30] Simp2C [74] EBL [75]
SET-SAT

JEnum JFron
Xavg

(SAT) Tt Tp Tt Tp Tt Tp Tt Tp Tt Tp Tt

s400 200
1(S) 19 0.02 6.6 0.01 17.3 0.1 2.9 0.3 4.0 0.4 1.2 7.2

2(U) 15 0.02 0.9 0.01 10.2 0.1 1.4 0.3 0.7 0.4 0.8 20

s420.1 200
1(U) 393 0.02 40.8 0.03 55.3 0.2 29.2 0.5 20.5 0.8 9.8 26

2(U) 144 0.02 10.9 0.03 103 0.2 32.2 0.5 33.5 0.8 8.6 7.8

s444 200
1(S) 74 0.03 10.5 0.03 20 0.1 14.5 0.3 5.6 0.5 5.1 13.8

2(U) 28 0.03 7.5 0.03 31 0.1 1.1 0.3 0.7 0.5 2.1 20

s510 200
1(S) 223 0.02 256 0.02 380 0.2 5.0 1.6 1.8 3 3.5 84

2(S) 1284 0.02 156 0.02 1136 0.2 409 1.6 11.6 3 3.5 170

s526 200
1(S) 1033 0.03 678 0.02 1063 0.5 47.5 3.2 18.2 6.7 23.7 48.3

2(U) 833 0.03 342 0.02 541 0.5 16.5 3.2 4.4 6.7 8.7 127

s820 200
1(U) 511 0.04 134 0.03 489 0.5 294 3.1 27.4 6.7 8.6 28

2(U) 317 0.04 59 0.03 266 0.5 193 3.1 14.1 6.7 9.8 26

s832 200
1(U) 610 0.04 118 0.03 542 0.5 339 3.3 56.3 6.6 19.1 16

2(S) 272 0.04 44.7 0.03 190 0.5 30.5 3.3 19.8 6.6 10.4 18

s967 200
1(U) 236 0.05 84.3 0.05 235 1.1 22.7 3.4 7.6 8 9.9 27

2(U) 148 0.05 46.6 0.05 146 1.1 11.6 3.4 6.91 8 9.1 18.5

s9234.1 60
1(S) 5893 0.5 3388 0.53 4589 18 1296 32 36.2 46 148 64

2(S) 4712 0.5 1566 0.53 3821 18 49 32 33 46 46.5 118

s13207.1 100
1(U) 852 0.5 287 1.9 154 37 55 132 141 112 117 6.6

2(U) 701 0.5 285 1.9 157 37 68 132 142 112 116 5.4

s15850.1 80
1(S) 2155 0.6 274 1.2 949 36 281 73 217 108 174 11

2(S) 2559 0.6 317 1.2 1085 36 601 73 564 108 252 6

s35932 80
1(S) -TO- 1.0 1539 8.4 6301 103 2510 145 2544 149 2546 >4

2(S) 4796 1.0 848 8.4 4160 103 1026 145 1068 149 1072 4.4

b10 150
1(U) 172 0.03 52 0.01 123 0.2 59.2 0.9 30.9 1.1 14.4 7.5

2(U) 208 0.03 74 0.01 123 0.2 202 0.9 23.9 1.1 18.1 9.8

b11 150
2(S) 502 0.1 237 0.03 75 1.7 8.3 3.4 5.7 6 6.4 83

2(S) 593 0.1 185 0.03 318 1.7 27.7 3.4 4.5 6 7.2 111

b12 100
1(U) 1566 0.2 696 0.05 1392 2.6 486 18 461 24 324 4

2(U) 1262 0.2 631 0.05 1158 2.6 449 18 229 24 394 4

b13 150
1(U) 35 0.1 14.8 0.01 28.2 0.2 18.6 0.4 2.5 0.6 3.3 12

2(U) 40 0.1 10.1 0.01 28 0.2 13.1 0.4 2.4 0.6 2.0 18

Tp: Preprocessing time Xavg: Our average speed-up (ofJEnumandJFron) overOrig.

Tt: Total execution time (includesTp) TO: Instance timed out after 10000 seconds.

Chapter 3. Increasing Deductibility in SAT Instances 39

Table 3.2 reports the actual BMC experimental results. An all-zero initial state is used for all circuits. For

each circuit,k gives the BMC bound used, which was selected based on the circuit size and its complexity.

The columnProp(SAT)shows the property number followed by its satisfiability (S for SAT andU for UN-

SAT). The columnsOrig, NiVER, Simp2C, EBL, JEnumandJFron report the times taken by zChaff with

the original CNF, [30], [74], [75] and our two strategies, respectively. The sub-columnsTp andTt report

the pre-processing and total times (Tp + solving time) respectively in seconds. For a fair comparison with

NiVER (since it works on an entire unrolled instance where as all others work on a learning window), we

usedTp of NiVER as (originalTp × win/k). The columnXavg shows our average speed-up (ofJEnum

andJFron) obtained overOrig. As seen from the table, our learning strategies can significantly decrease

the overall BMC run times. For most circuits, a consistent speed-up of more than an order of magnitude

was achieved over the original BMC run. Since our learning enables the deduction of more implied literals

at each decision, it increases the efficiency of the SAT-solver for both satisfiable as well as unsatisfiable

instances. Next, we will compare our tool with NiVER [30]. Although NiVER is very fast in reducing

the CNF formula, the overall improvement NiVER achieves over the original CNF is limited for most cir-

cuits. Except for circuit s35932, our tool consistently outperformed NiVER for all other circuits. Similar to

NiVER, SIMP2C’s preprocessing cost is also low. However, the main drawback is that most of the added

clauses help the SAT engine in only one direction whereas the other direction incurs additional BCP costs.

Though our tool adds more clauses compared to Simp2C, the clauses are highly non-trivial and the resulting

deductive power is superior. For many circuits, our tool outperformed Simp2C by an order of magnitude or

more.

Finally, consider our performance with respect to EBL. It can be seen from Table 3.2 that EBL performs

better for some instances, although more implications can be learned usingJEnumandJFron. One possible

reason for this is that the newly added clauses increase the correlation among the CNF variables and the

number of clauses each variable appears in. In some cases, the benefit gained due to the added learning

might be lost due to a (possibly) inferior ordering followed by the SAT engine. Note that even in such cases,

our tool performs much better thanOrig, thus revealing the robustness of the proposed learning strategies.

For circuit s13207.1, although the total times for EBL are better, the actual solving times are smaller for

JEnumandJFron. For most other circuits shown in the table, adding the learned non-trivial relations to the

Chapter 3. Increasing Deductibility in SAT Instances 40

original CNF instance has shown consistent improvements over EBL.

Let us now look into the differences betweenJEnumandJFron. As seen in the theory, the learning obtained

by JFron is in general superior thanJEnum(though strictly not a superset). However,JFron requires more

computational cost in the pre-processing phase. For most of the cases whereJEnumoutperformedJFron,

the actual solving times differed only marginally. With an intuition in the design and the property being

checked, a verifier can chooseJFron for hard properties andJEnumfor reduced learning and pre-processing

times. For large industrial circuits, the CNF instances generated for BMC can be huge and hence both of

our learning strategies might be very effective in reducing the total solving times.

In Figure 3.4, we show example cumulative runtimes for property 2 for circuit s820 and for property 1

for circuit s9234.1. The main intention here is to demonstrate the superiority of our learning techniques

compared with others. As we can see, the cumulative runtimes for the original BMC run, run with NiVER,

Simp2C and EBL increase drastically as the bound is increased, whereas via our techniques we were able to

contain the runtimes even at larger depths. This shows the efficiency of our techniques in enabling deeper

BMC runs, under given resource limits.

3.6 Summary

In this chapter, we have presented new and efficient learning techniques based on powerful combination of

binary resolution and static implication learning to extract non-trivial relations from a circuit. These se-

quential logic implications act as constraint clauses and turn away the SAT engine from reaching unwanted

regions. Experimental results show that our learning increases the deductibility and hence provides con-

sistent performance improvement over a wide variety of circuits and properties. Our approach can be used

as a pre-processing step for the SAT-based BMC problem and can complement dynamic/property-specific

techniques.

There are several directions possible for future work. First, note that in some cases, the solving times

actually increase due to the added clauses. This might be because, due to the added clauses, the number of

occurrences of each variable is increased, which leads to a possibly different decision order chosen by the

Chapter 3. Increasing Deductibility in SAT Instances 41

SAT solver. It will be definitely interesting to study the effect of added clauses upon the variable order and

find a better ordering strategy. Secondly, all the clauses being added might not be useful in the same way. For

example, some clauses might be trivial and can be easily learned by the SAT solver, given the other clauses.

Careful elimination of such clauses might reduce the burden on the SAT solver and avoids overheads in

BCP. Finally, new ways to learn non-trivial implications would definitely be a promising future-work.

Chapter 3. Increasing Deductibility in SAT Instances 42

Cumulative BMC Runtimes for s820

0

100

200

300

400

500

600

20 40 60 80 100 120 140 160 180 200

Bound

Ti
m

e
(s

ec
on

ds
) Orig

NiVER
Simp2C
EBL
JEnum
JFron

 (a) Cumulative BMC runtimes for s820

Cumulative BMC Runtimes for s9234.1

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80

Bound

Ti
m

e
(s

ec
on

ds
) Orig

NiVER
Simp2C
EBL
JEnum
JFron

(b) Cumulative BMC runtimes for s9234.1

Figure 3.4. Example Cumulative BMC Runtimes

Chapter 4

Illegal State Identification

In this chapter, we will first explain the limitations within the SAT-based induction framework, followed

by outlining the work done in the past. We will then describe a novel framework developed to quickly

extract the illegal (i.e. unreachable) states of a sequential circuit, which are used to improve the SAT-based

induction runs. We also provide experimental results based on our framework and identify potential future

research areas.

4.1 Motivation

There is a main drawback for SAT-based induction, which is the lack of knowledge about the illegal state-

space of the design. This limitation manifests itself in two ways. First, since the SAT-solver relies on a

branch-and-bound procedure, the SAT engine may make poor decisions and later learn that the decisions

lead to a functionally impossible (i.e. unreachable) space. This problem is critical in an induction step run

since the initial state space is not constrained to any reachable state(s). Hence, the knowledge of illegal

states before-hand can constrain the SAT-search. Second, if the formula for the induction step at a depthk

is satisfiable, the satisfying solution forms a simple paths1, s2, ...,sk+1 such that the firstk states satisfyφ

but the last statesk+1 does not. In such a scenario, two cases are possible: (i) the first states1 is a reachable

state, and henceφ is definitely not an invariant. (ii) the first states1 is an illegal state in which case the

43

Chapter 4. Illegal State Identification 44

counter-example obtained is spurious and nothing can be concluded aboutφ. However, it is very difficult to

identify the reachability ofs1.

Due to the reasons discussed above, SAT-based induction runs can be improved by learning as many illegal

states as possible. Since a thorough reachability analysis (even over-approximate) can be prohibitively

expensive, we try to gather under-approximate illegal state information of a design, via an alternative, low-

cost analysis.

4.2 Related Work

Whenever a counter-example (as explained above) is obtained in the induction step run, the authors in [80]

assumes1 to be an illegal state and obtain a strengthened propertyφ ∧ ¬s1. The main intuition behind it is

that the new property is stronger than the original one and might be proved at an earlier depth via induction.

However, if the induction run has several such counter-examples (which can be exponential in the number

of state elements), the new property obtained might not be strong enough.

Another technique for improving induction runs has been explored in the form of Incremental learning

[6, 7, 8]. Due to the incremental nature of the induction runs, the idea here is to identify relevant conflict

clauses that can be carried over to the successive iterations. As a consequence, the effectiveness of these

techniques depends largely on the learning ability of the underlying SAT solver. Another limitation is that

all the conflict clauses that arelocal to the property constraints cannot be carried to higher bounds.

4.3 Fast Illegal State Extraction

In this section, we describe our techniques for learning illegal states. We use the termtime-frameto represent

one transition relation of a sequential circuit. LetB={0, 1} represent the set of Boolean logic values. The

notationXv.τ is used to represent a signalX set to valuev ∈ B in a given time-frameτ . If the parameterτ is

not relevant, we simply useXv. Also, we assume all the designs are initializable (either by an initialization

sequence or via an explicit reset signal). This ensures that the system has only one terminally strongly

Chapter 4. Illegal State Identification 45

connected component (TSCC)1.

We refer to logic simulation as 3-valued logic propagation done using the three values{0, 1, U}, where

U is the unknown logic value. A signalX is said to bespecifiedif it attains a known logic valuev ∈ B;

otherwise it isunspecified(or unknown). A composite signal assignment,F = {X1v1∧X2v2∧ ...∧Xnvn},

wherev1, v2, ..., vn ∈ B, is said to beachievableif starting from an all unknown initial state, there exists

at least onefinite input vector sequence that can setF = 1 in a finite time-frameτ (i.e. to specifyX1 = v1,

X2 = v2, ...,Xn = vn in τ). Otherwise,F is said to beunachievable. For an initializable design, at least

one ofF or¬F will be achievable. IfF is unachievable,¬F will be an invariant.

4.3.1 Learning Using An ATPG

In this subsection, we will explain our ATPG based illegal state identification technique. The following

definition forms the basis of our learning.

Definition 4.1: (n-Cycle-Unreachable) A states is said to ben-cycle-unreachable if thenth-level preimage

of s is empty.

In other words, if there does not exist any state that can reachs in n cycles, thens is unreachable. Note that

this definition is a simpler form of the complete induction seen in chapter 2. If a state isn-cycle-unreachable,

it is also (n+1)-cycle-unreachable, and so on. We employ a combinational ATPG-based method (using the

PODEM2 algorithm [81]) to quickly identify a subset of such states. The main advantage is that the learned

information can be used repeatedly to constrain all the state-spaces without any additional analysis. Another

added benefit is that, states that can be reachable only from the learned unreachable states can also be

avoided by the SAT-solver during its search.

We unroll a circuit forn time-frames (similar to an Iterative Logic Array expansion) as shown in Figure

1A TSCC comprises a set of states of a design such that any state in the TSCC is reachable from all other states in the TSCC

and once the design enters a state in the TSCC, it remains in the TSCC until powered off
2PODEM backtraces from a given objective (say,Xv) and makes decisions on the primary inputs to justify it (i.e. to setX = v)

Chapter 4. Illegal State Identification 46

I1 01

I2I3

I4

1
I5 I6

1 0 1

0

001 011 010 110

1

011

0

010

0

(b) Free−BDD decision strcuture

Level
Dec
Max

= 3

1 0
100

frame
2

PI(2)

PO(2)

frameframe
1 n

PI(n)

PO(1) PO(n)
(a) Circuit Expansion

NS(1)

PS(3)

NS(2)

PS(2)

NS(n)

PS(n+1)PS(1)

NS(0)

PI(1)

Figure 4.1. Learning via ATPG

5.1(a), where the unrolled frames are numbered1, 2, ...,n. The lines PI(i), PO(i), PS(i), NS(i) represent the

primary inputs, primary outputs, present-state elements, next-state elements for framei respectively. All the

present-state elements for frames2 to n are simply treated as buffers. We can embed a states at PS(n+ 1)

and try to justify it while treating the state elements at PS(1) as pseudo-primary inputs (PPIs). In such a

scenario, if no input assignment can justify the states, it is n-cycle-unreachable. This is because, allowing

the flip-flops at PS(1) to be fully controllable assumes all the states are possible at that boundary and hence

guarantees¬s is an invariant. However, pre-image computations usually have exponential complexity and

it will be infeasible to compute them even for a small subset of states. In order to identify unreachable states

in an efficient manner, we propose astate-independentprocedure as explained below.

Without loss of generality, consider the flip-flops at PS(n + 1) be arranged in an order{X1, X2, X3,

.., Xnff}, wherenff is the number of flip-flops. Our main goal is to perform an ATPG search without

targeting any particular state. We start with the first flip-flopX1 set to an objective logic value (say,1) and

start the search process (i.e. justifications via PODEM). IfX11.n+1 is justified during the decision process,

we proceed to justifyX2 to a value (say,0) and continue. In this way, the entire decision tree is constructed

Chapter 4. Illegal State Identification 47

like a free-BDD3 as shown in Figure 5.1(b), where the nodes represent the decision variables (I1, I2, ..,

I6 can be any primary input or a PPI) and the leaves indicates the logic values attained by the flip-flops at

PS(n+ 1).

Consider a group of 3 flip-flops (X1, X2, X3) at PS(n + 1) wereall specified atall leaves of the decision

structure. Figure 5.1(b) shows some example values. It can be seen that the partial-states000, 101 and111

were not achieved at any of the leaves. Since the decision tree is complete forspecifyingall these 3 flip-flops,

these three states can be concluded as illegal. In other words,{(X1∧X2∧X3)∨ (X1∧X2∧X3)∨ (X1∧

X2∧X3)∨ (X1∧X2∧X3)∨ (X1∧X2∧X3)} is an invariant. One way of strengthening this invariant

is by increasingn, due to which more illegal states can be ruled out. Another way is to eliminate the already

known illegal paths (and the corresponding leaves) of the decision structure. For example, ifI1 andI2 of

Figure 5.1(b) are PPIs and if we know that{I10∧I20} is an illegal partial-state, then{X11∧X20∧X30} is

also an illegal partial-state. This is because the partial-state100 can be obtained via only illegal paths of the

free-BDD (in this case, only one such path). In our implementation, we store the illegal states learned in the

iterationsn = 1, 2, .., i−1 and use them to eliminate the illegal paths of the free-BDDs in the iterationn = i.

All the illegal partial-states accumulated till the end of the last iterationN (user-defined) are converted into

constraint clauses.

Algorithm 1 shows our learning algorithm for a givenn. Due to space limit, we do not show the above

invariant strengthening technique. To keep the computational cost low, we limit the maximum decision

level (MDL) to a user-defined value (currently set to 20). After each ATPG run, we obtain a free-BDD

from which unreachable partial-states are extracted. We use a technique similar to that of [82] to form the

free-BDD. We refer the reader to [82] for details. All the flip-flops that are specified atall the leaves of the

free-BDD are removed from the order and are not considered in the remaining ATPG runs. Within a given

MDL limit, if no such flip-flop exists, we forcefully remove the first flip-flop in the order. This is done to

ensure that the algorithm terminates within a maximum ofnff calls to the ModifiedPODEM() procedure.

We use the SCOAP measures [83] to identify if a flip-flop is most controllable to logic0 or logic1. Heuristi-

cally, we always try to justify a flip-flop to its most controllable value. This is done to specify a value at that

3a BDD where all the paths need not have the same variable order

Chapter 4. Illegal State Identification 48

Algorithm 1 n-Cycle Unreachable Learning Algorithm
1: Givenn, MDL; Unroll circuit n times

2: Order flip-flops at PS(n+ 1) and unmark them

3: Compute SCOAP values (C0, C1) for each flip-flop

4: while (not done) do

5: currDL=0; Initialize all signals to valueU

6: ModifiedPODEM(); // build a free-BDD

7: LearnIllegalStatesFromFreeBDD();

8: Mark flip-flops for which free-BDD is complete

9: If all flip-flops are marked, then done

10: end while

11: ModifiedPODEM()

12: if (currDL=MDL) then return;

13: currDL = currDL+1;

14: X=Next unspecified flip-flop in the order

15: if (C0(X) ¿ C1(X)), then obj=0; else obj=1

16: (pi,val)=Backtrace(X,obj);

17: LogicSim(pi=val);

18: ModifiedPODEM(); // recurse

19: LogicSim(pi=not(val));

20: ModifiedPODEM(); // recurse

21: LogicSim(pi=U);

22: currDL = currDL-1;

23: return

Chapter 4. Illegal State Identification 49

flip-flop with as few decisions as possible (recall the MDL limit). The MLP procedure [84] is used to obtain

the initial ordering of the flip-flops. This procedure computes the input supports for the flip-flops and clus-

ters the ones with closer supports. For our purpose, note that an initial ordering is important, because, once a

flip-flop is specified, the next flip-flop that we choose should be co-justifiable easily. The overall complexity

of the above algorithm isO(nff .2MDL), which can be be adjusted according to the user-specified value for

MDL.

Dynamic Regrouping. Since MLP uses only structural analysis to order flip-flops, we have observed that

the ordering may not always help us in justifying a suitable group of flip-flops together. For example, if

flip-flops X1 andX2 are adjacent in the order produced by MLP, it is possible that within MDL, there

exists several paths of the free-BDD, at whose leavesX1 is specified but notX2. This happens when the

flip-flop X2 does not group well withX1 and more decisions are needed along those paths to specifyX2.

In such cases, we will not learn anything illegal involvingX1 andX2. We use a procedure to dynamically

regroup the flip-flops as our analysis progresses. Essentially, if we were not able to specifyX2 at the leaf of

a pathp during the decision process, we check if any other flip-flops in the lower order have been specified

at all the leaves of the previously constructedp − 1 paths and as well at the current pathp. If so, all such

flip-flops are moved to the position next toX1, andX2 is moved down the order. If no such flip-flop exists,

however, we continue as shown in our regular algorithm (see Algorithm 1). The main intuition behind this

dynamic approach is to group flip-flops which are closely related in the Boolean space rather than via circuit

structure. The final ordering obtained at the end of unroll depthn − 1 is used as the initial ordering for the

next iterationn.

At each leaf,L, of a free-BDD built in Algorithm 1, we obtain a set of assignments to the flip-flops at

PS(n+1). Let this be partial-stateF1. Let the flip-flop assignments along the path of the free-BDD for leaf

L form a partial stateF2. We take the intersection of the assignments inF1 andF2 (say,F3) and store

them as a list,LIST . All such stored partial-states are used in our unified framework as explained in section

4.3.4.

Chapter 4. Illegal State Identification 50

B

A

E

D

C

(a) D=1 −> E=0 (Not suff)

(b) D=0 −> E=0 (Suff)

(c) B=0 −> E=0 (Not Suff)

(d) B=1 −> E=0 (Not Suff)

(f) C=1 −> E=0 (Suff)

(e) A=1 −> E=0 (Suff)

Figure 4.2. Sufficient Implication Examples

4.3.2 Unachievable Partial-State Learning

In this subsection, we explain our necessary assignment looping theory to learn additional unachievable

partial-states. First, consider the concept of a general logic implication, which describes the logical depen-

dencies among the signals in a circuit. For example, the implicationX0.τ → Y1.τ+1 means that whenever

signalX is set to logic0 in frameτ , the only possible value at signalY in frameτ + 1 is a logic1. We

define the concept of asufficientimplication as follows.

Definition 4.2: (Sufficiency). Starting at an all unknown initial state, letI be an input vector sequence

of lengthτ . The implicationXv.τ → Yw.τ−k (v, w ∈ B, k ≥ 0) is termedsufficientif any input vector

sequenceI that impliesXv.τ , also impliesYw.τ−k. Formally,∀I : I → Xv.τ ⇒ I → Yw.τ−k.

Not all the logical implications inside a circuit are sufficient. For example, consider the simple circuit shown

in Figure 4.2 whereE0 is a constant assignment. The implicationD1 → E0 holds true but is not sufficient.

This is becauseD1 can be achieved by an input vector{A = U , B = 1} which doesn’t causeE0 via logic

simulation. The figure shows a few other sufficient and non-sufficient example implications.

Next, we use the above sufficiency condition and define the following lemma for obtaining unachievable

assignments to flip-flops.

Next, we use the above sufficiency condition and propose the following theorem for obtaining unachievable

partial-states.

Theorem 4.1:A partial-stateF = {X1v1∧X2v2∧ ..∧Xnvn}, (v1, v2, ..,vn ∈ B), consisting ofn flip-flop

Chapter 4. Illegal State Identification 51

assignments is unachievable, if for anyτ , the following sufficient implication exists: (X1v1.τ ∧ X2v2.τ ∧

... ∧Xnvn.τ) → (X1v1.τ−k ∧X2v2.τ−k ∧ ... ∧Xnvn.τ−k), k > 0.

Proof: We prove this by contradiction. Starting from an all unknown initial state at frame1, let a finite input

vector sequenceI of lengthl achievesF = 1 in framel. According to our sufficient implication above,I

should also setF = 1 in framel − k, which in turn requiresF = 1 in framesl − 2k, l − 3k, ..., l − nk and

so on, wheren→∞. For some value ofn, nk ≥ l which means thatF has to be true in a frame≤ 1. This,

however, requiresI to have a length> l.

[(length(I) = l) → (length(I)> l) ⇒ (length(I) =∞)].

In other words, no finite input vector sequence can achieveF . �

For example, let for anyτ , (X0.τ ∧ Y1.τ) → (X0.τ−1 ∧ Y1.τ−1) be a sufficient implication. Then, by the

contrapositive law, (X1.τ−1 ∨Y0.τ−1)→ (X1.τ ∨Y0.τ). In other words, flip-flopsX andY can be initialized

and remain only in the following states:{00, 10, 11}. Note that Theorem 1 holds true only if the implication

is a sufficientone. Otherwise, we might not conclude unachievability. For example, if the combinational

logic shown in Figure 4.2 is a part of a sequential circuit, thenE0.τ → E0.τ−k holds true for anyτ , any

k > 0. However, itcannotbe asufficientimplication according to definition 2. Simply put, an invariant

cannot sufficiently imply itself backward. Otherwise, it will not be an invariant.

In a naive manner, we can inject a partial-state onto the circuit, imply its necessary logic values and check if

it satisfies the criteria given in Theorem 1. However, checking this for all possible partial-state assignments

is impractical even for medium-sized designs. While Theorem 1 is proposed with respect to partial states, it

is equally applicable for any composite signal assignment in a circuit. Hence, we apply it efficiently during

the static implication computation process and in our unified framework, as explained in the following sub-

sections.

Chapter 4. Illegal State Identification 52

4.3.3 Exploiting Logic Implications

Since the circuit information is encoded into a Boolean formula for performing the induction runs, it be-

comes beneficiary to extract non-trivial relations existing among the circuit signals (i.e., those that cannot

be deduced by the SAT solver directly through Boolean Constraint Propagation(BCP)) and inject them as

learned clauses into the formula. This has been put to use in [74], where the implications learned via direct

logic simulation are converted to clauses for enhancing the SAT runs. In our framework, we make use of

the Extended Backward learning (EBL) procedure described in [75]. There are two main advantages behind

this: First, the learning procedure used in [74] might miss many complex relations existing inside a circuit.

Although the time consumed by the EBL procedure can be higher than that of [74], it has the potential to

identify new non-trivial relations. Second, the unachievability theory described in the above sub-section

can be efficiently employed during the EBL computation process. Note that the use of EBL is not a main

contribution of this paper, but the means of applying our technique via EBL is.

Algorithm 2 Algorithm for Unachievability Learning
1: GivenN (odd), Unroll circuitN times;n = (N + 1)/2

2: Order signals in framen from PIs to POs

3: for each signalX in order, for eachv in {0,1} do

4: LogicSim(X = v)

5: UG = Set of unjustified gates due toX = v

6: for each gateG in UG with controlling valuecv do

7: for each unspecified faninFi of G do

8: Si = Set of assignments due to LogicSim(X = v, Fi = cv)

9: if (X = v, Fi = cv) hold Theorem 1, add (X = v)→(Fi = cv)

10: end for

11: Add (X = v)→
⋂
Si // EBL step

12: end for

13: if (X = v) holds Theorem 1, storeX = v̄ as invariant

14: end for

Algorithm 2 shows our unachievability learning algorithm. GivenN , the circuit is unrolled forN time-

frames. Each signal assignmentXv (v ∈ B) in the middle framen is logic simulated and the set of

Chapter 4. Illegal State Identification 53

unjustified gates4 due toXv are identified. IfG is an unjustified gate with controlling valuecv, each of its

unspecified faninFi is set to valuecv and logic simulated together withXv. The EBL procedure (step 11)

computes the intersection of signal assignments in all such logic simulations and stores them as implications

of Xv. As soon as the logic simulation ofXv ∧ Ficv is done, we check if it holds the criteria of Theorem

1. If so, the implicationXv → Ficv is learned. At the same time, the contrapositive relationFicv → Xv

is also learned. Note that all such implications learned via Theorem 1 are highly non-trivial since a SAT

engine might not be able to deduce them during its decision making process. In our implementation, we

store all the implications learned and use them to identify more signal assignments during logic simulations

(at steps 4 and 8). The advantage of doing so is to learn more non-trivial implications when the algorithm

proceeds for the remaining signals.

Finally, after all the implications are computed for a given signal assignmentXv, we check ifXv satisfies

the criteria of Theorem 1. If so,Xv is stored as an invariant. All such invariants and learned implications are

converted to clauses. For example, for a learned implicationX0 → Y1, the clause (X ∨ Y) is created. The

original EBL algorithm has quadratic complexity in terms of the number of signals of the circuit. Checking

our unachievability criteria only requires a small fraction of the run-time needed by EBL.

Figure 4.3 shows 2 time-frames of an example sub-circuit. The copy of a gateX in framen is namedX
′

in framen− 1. The implicationsX10.n → H
′
1.n−1 andF0.n → I1.n already exist in the circuit (shown by

dotted lines). For simplicity, we do not show all the gates in both the frames. Consider the assignmentE1.n

due to which the gateC (with logic value0) is unjustified. The two possible justifications forC0.n areJ0.n

andF0.n (since both faninsJ andF are unspecified currently). WhenF0.n is logic simulated along with

E1.n, the figure shows how the assignmentsF
′
0.n−1 andE

′
1.n−1 are also implied. Since we are implying

the necessary values in the circuit, these are sufficiently implied and hence we can conclude{E1 ∧ F0}

as unachievable according to Theorem 1. Encoding this as a clause (¬E ∨ F) into the induction formula

helps in rejecting states that can cause these unachievable signal combinations. In the example shown,

{X10 ∧X21 ∧X31} is one such illegal state.

4a gate isunjustifiedif it has a specified value but the current logic values of its fanins do not justify it

Chapter 4. Illegal State Identification 54

1

0

1
0

0

0
11

1I

E1

F’

E’
0
0

0

01

B’

K

X2

X3

0

X1

A’

D

0

JF
0 C 0

frame n−1 frame n

1H’

Figure 4.3. Unachievability Learning Example

4.3.4 Unified Framework

In this sub-section, we provide a unified framework which helps us in extracting more illegal states by using

the information learned so far. First, for each partial stateF3 stored inLIST (obtained from the ATPG

procedure), we check if it satisfies Theorem 1. If so,F3 is marked unachievable and the corresponding

clause is learned, which can be used to constrain the induction runs.

Second, we do the following: By performing the ATPG procedure in Section 4.3.1, we obtain groups of

flip-flops and impossible combinations among the flip-flops in each group. From the procedure described

in Section 4.3.3, we obtain non-trivial implications (from EBL as well as via Theorem 1). For each group

of flip-flops obtained at the end of our ATPG analysis, we construct an ordered BDD as shown in Figure

4.4, where each BDD node shows a flip-flop with logic assignments1 and0 respectively. At each decision

along a path, all the logic implications of the corresponding assignment are injected onto the circuit and

logic simulated.

If the new signal assignments due to that decision are not consistent in the circuit, we store the partial-state

(so far) as illegal and continue with the opposite assignment for that flip-flop. Otherwise, we check if the

partial-state satisfies the criteria of Theorem 1. If so, we store the partial-state as illegal and continue as

before. This process is repeated until the whole BDD is enumerated. In Figure 4.4, let the three flip-flops

X1, X2, X3 be in one group (in that order) and let{X10 ∧ X21 ∧ X30} be an unreachable partial-state

learned via our ATPG analysis. As shown in the figure, let the assignment combination{X11∧X21∧X30}

Chapter 4. Illegal State Identification 55

X1

X2

X3 X3

X2

1 0

1 0 01

X3

1 0 1 0 1 0

CACS NRNRNR NR

CU

NR = No Result
CA = Conflict from ATPG analysis
CU = Conflict due to unachievability
CS = Conflict during simulation

Figure 4.4. Enumeration BDD Example

cause a conflict during logic simulation where as the combination{X10∧X20} satisfies the unachievability

criteria. Converting each illegal partial-state to clause form will lead to the three clauses(X1∨¬X2∨X3),

(¬X1 ∨ ¬X2 ∨X3) and(X1 ∨X2) respectively.

Finally, we simplify all the clauses learned so far. Since we utilized BDD structures, there might be re-

dundancies present in the resulting clauses. For example, from Figure 4.4, we can see that the partial-state

{X21 ∧X30} itself is illegal (irrespective ofX1). Thus the first two clauses learned above has a redundant

literal in them. We utilize binary resolution [19] to remove such redundancies. For example, resolving on

the variableX1 using those two clauses would lead to the clause(¬X2 ∨X3) which captures the unreach-

able core and maximizes the conflicting probability. Similarly, given the ATPG learning from Figure 5.1(b),

we would learn the clause (¬X1 ∨ ¬X3).

Thus, once we obtain all the constraint clauses, we resolve on each variable at a time and eliminate the

redundant literals in them. The final set of clauses maximizes the learned constraints. Recent clause sim-

plifying techniques such as NiVER [30] can as well be used for further simplification, however are not

currently employed in our tool.

4.4 Experimental Results

We have integrated all the above learning mechanisms into our framework IFILL (Induction using Fast IL-

Legal states). In IFILL, the procedures described in Sections 4.3.1, 4.3.3 and 4.3.4 are performed and the

Chapter 4. Illegal State Identification 56

constraint clauses are obtained. Experiments for sequential circuits from the ISCAS89 and ITC99 bench-

mark suites were conducted using the zChaff [22] SAT solver (version 2004.11.15 taken from [85]) on a P4

3.2GHz machine with 1GB RAM and running Linux OS. We experimented with the hard safety properties,

which are based on aborted state-justifications from a sequential ATPG. An aborted state is a state that the

ATPG failed to justify within its resource limit. Ifs is an aborted state, the property was formulated as

AG(¬s). We have neglected all those properties which can be proved easily using induction.

For the smaller circuits (< 5000 gates), maximum unroll limit was set to 4 and 5 for the ATPG analysis

and EBL procedure, respectively, whereas it was set to 3 and 3 for the larger ones. The induction depthk is

increased by 25 frames per iteration up to a maximum of 250 frames for the smaller circuits. For the larger

ones, these were set to 10 and 100 respectively. Time-out limit for each property was set to 30,000 seconds.

Table 4.1 reports the experimental results. For each instance shown, we report the induction run-times

required by the original run (no learning), learning from [74], learning from EBL [75] and with our learning

under columnsOrig, [74] , EBL andIFILL respectively. In columnEBL, only implications learned via EBL

are added, where-as in ours, all the learned illegal states are added in addition. The sub-columnsTp andTt

denote the pre-processing and total times (Tp + solving time) in seconds. As a first observation, we can see

that the pre-processing times needed by our method is only few seconds higher than that of EBL. In most

cases, they are negligible when compared with the actual induction run-times.

If a property is verified via our technique, we report the corresponding bound in brackets under our sub-

columnTt. Among the 26 properties shown, we were able to complete the proof at an early bound for

11 properties whereas the other three approaches could not. For example, for s13207.1, the original run,

[74] and EBL took more than 30000, 28000, 10000 seconds respectively without any result, whereas we

completed the proof within a total of 129 seconds. Note that, by being able to complete the proofs at smaller

depths, the high run-times incurred in solving the higher depth instances are avoided.

For most other properties for which nothing is concluded within the maximum depth, we were able to speed-

up the induction runs. For example, for b15850.2, the original run, [74] and EBL took more than 30000,

30000 and 16000 seconds, respectively, whereas we were able to reduce it to 8803 seconds. For the two

Chapter 4. Illegal State Identification 57

Cumulative induction runtimes

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100

Depth

T
im

e
(s

e
c
o

n
d

s
)

Orig

[17]

EBL

Ours

Figure 4.5. Cumulative run-times for b14.2

properties b15.1 and b15.2, adding the new clauses caused negative effects when compared with the original

runs. This is because, all the added clauses increase the burden on the SAT engine during BCP and also

possibly lead to a different decision ordering, which reduces its efficiency.

Next, we illustrate a cumulative run-time analysis (excludingTp) for b14.2 with respect to the depth in Figure

4.5. Note that, we want the cumulative increase in run-time with depth to be as slow as possible. For smaller

depths, all the runs seemed competitive (differing only little). But when the depth is increased beyond a

certain limit (say, 60-70 in this case) the run-times for the other approaches increased almost exponentially,

whereas we were still able to contain it. This demonstrates the efficiency of IFILL in enabling a deeper

inductive search, under given resource limits.

4.5 Summary

We have proposed novel, low-cost learning techniques to extract illegal partial-states of a design for im-

proving SAT-based induction. These illegal partial-states are replicated as constraint clauses to aid the SAT

engine in pruning the search-space. Experiments revealed that our learning can prove many properties at

early depths where the conventional runs failed. We were also able to reduce the induction run-times for a

Chapter 4. Illegal State Identification 58

variety of other properties.

There are several directions for future work. First, the above framework aims atlow-costand does not

guarantee finding all illegal states. For further hard to solve properties, it would be interesting to generalize

this learning to capture additional illegal states. Secondly, since only logic implications are employed, the

relations might not go deeper. Employing sophisticated techniques such as SAT-based induction itself would

be more helpful in extracting the invariants. Finally, the learning regions can be limited for a given property

to reduce the pre-processing times further.

Chapter 4. Illegal State Identification 59

Table 4.1. Induction runs for safety properties

Circuit.φ Gates Orig [74] EBL [75] IFILL(Ours)

Tt Tt Tp Tt Tp Tt

b10.1 206 83 118 1 8 2 3

b10.2 206 86 131 1 7 2 3

s526.1 223 3565 3434 1 1291 3 3[50]

s526.2 223 4034 4386 1 1599 3 3[50]

b13.1 362 534 89 1 16 2 13

b07.1 441 193 42 1 11 2 8

b07.2 441 219 43 1 20 2 9

b04.1 737 580 563 0 491 1 509

b04.2 737 768 491 0 465 1 507

s1423.1 753 7371 7616 1 8943 4 7259

s1423.2 753 7162 9874 1 7475 4 6013

b11.1 770 5154 4864 1 3405 2 2[50]

b11.2 770 5575 4800 1 2386 2 2[25]

b05.1 998 151 46 0 41 1 1[50]

b05.2 998 192 32 0 44 1 1[50]

s9234.1 5883 28015 21912 18 3033 25 26[20]

s9234.2 5883 21319 18682 18 6252 25 26[20]

s13207.1 8803 -TO- 28613 108 10712 129 129[20]

s13207.2 8803 -TO- -TO- 108 8258 129 130[20]

b15.1 8922 9037 11985 490 18120 523 10188

b15.2 8922 7547 16851 490 10849 523 8398

b14.1 10098 597 505 48 101 57 80

b14.2 10098 1357 1110 48 594 57 73

s15850.1 10533 -TO- -TO- 35 12124 46 7387

s15850.2 10533 -TO- -TO- 35 16051 46 8803

s38417.1 23949 10211 7254 34 4787 48 48[10]

Tp: Preprocessing timeTt: Total time (withTp) TO: Tt > 30000 sec

Chapter 5

Property Strengthening

As seen from the previous chapters, SAT-based BMC/Induction techniques suffer as the depth is increased.

In other words, for properties that can be proved only at larger depths, these techniques are not effective.

Strengtheninga property allows it to be falsified/verified at an earlier depth compared to the depth needed

to proving the original property. In this chapter, we propose new preprocessing techniques for explicitly

identifying co-invariants for a given safety property which are then added to the verification instance for

strengthening. First, we employ a path-oriented decision making engine to quickly identify several states

which has paths to states violating the property. Next, we generate a set of candidate co-invariants and

propose a induction based technique to learn true co-invariants among those candidates. All the learned

co-invariants are minimized using resolution and added to the original property to strengthen it.

Below, we first provide our motivation in detail followed by the proposed strengthening techniques and

algorithms.

5.1 Motivation

Incremental learning techniques for improving bounded model checking and induction have been exploited

in [6, 7, 8]. Since the clause databases over multiple iterations have much similarity, the idea here is to

60

Chapter 5. Property Strengthening 61

extract conflict clauses while solving smaller depths and use them to reduce the complexity of solving the

larger instances. However, these techniques do not have the capability to reduce the induction depth needed

to prove a property when compared with the conventional induction runs. Strengthening a property, on the

other hand, involves enlargement of the property such that a counter-example can be seen faster or that it can

be verified at a smaller depth. In [86], target enlargement using BDD-based pre-image computations have

been explored. However, this technique lacks the ability to learn over various portions of the state-space

which affects the final strengthening. Furthermore, since canonical BDDs are needed, this could be memory

intensive. In [80], the counter-example obtained during an induction step run is automatically added to

the property to strengthen it. Whereas this technique does not require additional run-times, the resulting

strengthening power is limited since it largely depends on the counterexample produced by the underlying

SAT engine.

Let φ be a false property that can be refuted at a depthk from the initial state(s),I. If we are able to

extract a set of statesS that can reach̄φ in steps≤ m (m < k), then strengtheningφ with ¬S to form a

new propertyφ ∧ ¬S can aid in refuting the new property at a depth as low ask −m. Similarly, for true

properties, strengthening a property will enable it to be proved at an earlier depth, which in turn depends on

the quality of the strengthening proposition. This is because as more states are added to the target property,

the number of solutions in the induction-step run becomes smaller. For hard to prove properties, it becomes

highly beneficial to pre-process it such that it can be proved at smaller depths, thereby avoiding the excessive

run-times incurred at the higher depths.

In [80], a propertyφ is strengthened automatically using the counter-example obtained from the induction

step run. For example, ifs is the first state in the solution for the induction step run, a strengthened property

φ∧¬s is obtained. There are two main limitations in doing so. First, if the induction step run has several such

spurious counter-examples (which can be exponential in the number of state-elements), the new property

obtained might still require a high induction depth to be proved. Second, the provability of the new property

depends on the added strengthening,i.e., addings̄1 alone might not be sufficient. If we are able to collect

several such states, they can be simplified to improve the strengthening. Note that the larger the state-cube

added, the better the chances of refuting/proving the resulting property. We exploit the structure of the

Chapter 5. Property Strengthening 62

frame
2

PI(2)

PO(2)

frameframe
1 k

PI(k)

PO(1) PO(k)
NS(1)

PS(3)

NS(2)

PS(2)

NS(k)

PS(k+1)PS(1)

NS(0)

PI(1)

PHI PHI PHI PHIbar

Figure 5.1. Circuit Unrolling

circuit to accomplish this as detailed in the following sections.

5.2 Property Strengthening Using an ATPG

In this section, we propose our ATPG-based framework which aims at explicitly strengthening the property

while trying to limit the learning costs. Our main idea is to extract as much information as possible at

smaller depths which can be used to improve the quality of strengthening. For simplicity of explanation, we

assume a safety propertyφ to be combinational, (i.e., it involves state-elements within a single time-frame)

though all our discussions/algorithms can be applied directly to general temporal properties.

We employ a combinational ATPG-based method (using the PODEM algorithm1 [81]) to identify a subset

of states that can violateφ. Algorithm 1 outlines our overall procedure. We first unroll a circuit fork time-

frames (similar to an Iterative Logic Array expansion) as shown in Figure 5.1, where the unrolled frames

are numbered1, 2, .., k. The lines PI(i), PO(i), PS(i), NS(i) represent the primary inputs, primary outputs,

present-state elements, next-state elements for framei respectively. All the present-state elements for frames

2 to k are simply treated as buffers, while those at PS(1) are treated as pseudo-primary inputs (PPIs).

As shown in Figure 5.1, the present-state elements at frames1, 2, ..., k are constrained withφ, whereas the

framek + 1 is constrained tōφ. This can be simply done by constructing single-output monitor circuits

according to the property clauses and constraining their output to logic0 or 1. To constrainφ at a framei,

1PODEM makes decisions by backtracing from a given objective (say,gateX = v) and makes decisions only on the primary

inputs and pseudo primary inputs to justify it, (i.e., to setX = v)

Chapter 5. Property Strengthening 63

we need to set the output of the corresponding monitor at framei to logic1, whereas for̄φ it needs to be set

to logic0. This is shown in line 4 of Algorithm 1.

In such a setup, we set a series of objectives{φ̄ = 1 at framek+1, φ = 1 at framesk, k−1, ...,1} and start

our decision making process. For the complete algorithm and implementation details of PODEM, the reader

is referred to [81]. During the decision making process, we obtain a vector (involving logic assignments to

PIs and PPIs) with one of the following three results: (i) that vector setsφ = 0 in at least one of the frames

1, 2, ..., k, (ii) that vector sets̄φ = 0 at framek + 1, or (iii) that vector satisfies all the set of objectives

φ = 1 for frames1...k and φ̄ = 1 for framek + 1. Among these three cases, we are interested in the

vectors belonging to case (iii) because these are the vectors that satisfyφ in time-frames1 to k, but not in

k + 1. Once such a vector is obtained during the decision process, we quantify away the PI assignments in

that vector since we only need the PPI assignments for strengthening a property. The PPI assignments in

that vector form a state-cube which is used to strengthenφ. In essence, ifVPPI∧PI is one such a vector,

the new property will beφ = φ ∧ V PPI . Note that the complement of the state-cubeVPPI , V PPI , forms

a disjunction of state-element assignments which can be directly added as a clause to the existing property

clauses,φ. All those vectors belonging to cases (i) or (ii) do not contribute to strengthening and we simply

backtrack and continue our decision making process. The above process is shown in line 9 of Algorithm 1.

For efficient search in PODEM, we use the SCOAP measures [83] to identify if a signal in the circuit is

most controllable to logic0 or logic 1. In SCOAP, two controllability parametersCONT0 andCONT1

are computed for each signal, assuming that the primary inputs are fully controllable. In our setup shown

in Figure 5.1, we initially set theCONT0, CONT1 of PIs and PPIs to0 (i.e., fully controllable) and

compute the SCOAP values for the rest of the internal signals in the unrolled circuit. These are used during

backtracing from the objective to find a suitable PI/PPI logic assignment. To limit the strengthening costs

and obtainbigger state cubes (i.e., involving a small number of state-elements), we limit the maximum

decision level (MDL) in PODEM to a small user-specified value. Note that our main intention is to capture

as many state cubes as possible but not to complete the entire search, since a complete search may have

exponential complexity.

Chapter 5. Property Strengthening 64

Algorithm 3 Property Strengthening using PODEM
1: Forφ, do base, ind step runs at depth0; If result, DONE

2: GivenK, ITER,MDL; k = 1

3: while (k ≤ K) do

4: Unroll circuit k times, set property constraints

5: SetCONT0 andCONT1 of PIs, PPIs to0

6: Compute SCOAP values for all internal signals

7: iter = 1

8: while (iter ≤ ITER) do

9: Use PODEM to strengthenφ : limit decisions to MDL

10: Simplify newφ using resolution

11: Modify CONT0, CONT1 values for PPIs usingφ

12: Recompute SCOAP values for all internal signals

13: iter = iter + 1

14: endwhile

15: Do base run at depthk; If failed, DONE; Else, continue

16: k = k + 1

17: endwhile

Chapter 5. Property Strengthening 65

5.2.1 Property Simplification and Reordering

Given a propertyφ, an unroll lengthk, and a maximum decision limitMDL, the above process yields a

strengthenedφ. However, the state cubes that we obtain are skewed according to the PPIs chosen during

the decision process. For example, if a pseudo-primary inputPPIi is chosen at the first decision, then all

the state-cubes that we obtain will involvePPIi. At the same time, for quality strengthening, we need

bigger state cubes that cover different regions of the state-space. To achieve this, we perform property

simplification and input reordering as follows.

First, we employ binary resolution [19] to simplify the strengthened property. Binary resolution is a process

in which two impossible assignments can be used to deduce a new impossible assignment. For example, if

(S ∨Xn) and (S ∨ ¬Xn) are two clauses (where,S is any disjunction of a set of literals), the last variable

Xn can be resolved to obtain a newer and stronger clause (S). In line 10 of Algorithm 1, we simplify the

strengthenedφ using resolution. If two clausesC1 andC2 in newφ can be resolved to eliminate a variable,

then they are removed fromφ and the new clause obtained via resolution (say,C3) is added toφ. We

perform the resolution iteratively, wherein each variable inφ is resolved to remove any redundant literals in

the clauses and the process is repeated until no more resolution is possible. Note that if at least one variable

is eliminated via resolution, the resultingφ is expected to be stronger than the already strengthened one.

Newer simplification techniques such as NiVER [30] could be further used but are not currently employed

in our framework. The following theorem ensures the correctness of our approach.

Theorem 5.1: Property simplification using cross-timeframe resolution is safe, (i.e., it does not produce

false negatives or false positives during the induction runs).

Proof: We prove this for the case where the original propertyφ is a single CNF clause and we perform

a single resolution, which can be inductively used to prove complex properties or performing multiple

resolutions.

Let φ consists of a clauseC1 = (S ∨ Xn), whereS is a disjunction of a set of literals andXn is a state

variable. Upon performing our PODEM procedure at an unrolled lengthk, letC2 = (S ∨ ¬Xn) be a new

Chapter 5. Property Strengthening 66

clause that is added to strengthenφ. In other words,¬C1 can be reached ink steps from¬C2. According

to our above procedure,C1 andC2 can be resolved to produce a new clauseC3 = (S). We removeC1 and

C2 from φ but addC3 to it.

First of all, since clauseC3 consists of a subset of literals ofC1, it follows directly that (originalφ is false)

→ (newφ is false) and by contrapositivity, (newφ is true)→ (original φ is true). The two relations that

remain to be proved are (newφ is false)→ (originalφ is false) and (originalφ is true)→ (newφ is true).

Let the newφ be refuted at a base case depthk′ from I(s). In other words, there exists an input vector

sequence that can violate the clauseC3 at depthk′. If that sequence sets state elementXn to logic0 at depth

k′, thenC1 is also violated at depthk′. On the other hand, if that sequence setsXn to logic 1 at depthk′,

thenC2 is violated at depthk′ which in turn means thatC1 will be violated at depthk′ + k. Thus, we can

conclude (newφ is false)→ (originalφ is false).

Now, let us consider the originalφ to be a true property which can be verified at an induction step depth

k′′. In other words, the CNF formulaF1 ={C1∗(1, 2, ..., k′′) ∧ T ∗(1, 2, ..., k′′ + 1) ∧ ¬C1k′′+1} is not

satisfiable. Clearly,k′′ > k, since we already know that¬C1 can be reached ink steps from¬C2. This

implies that there is no input sequence inF1 that can violateC2 at depthk′′ − k. Due to induction, this in

turn follows that there does not exist any input sequence inF1 that can violateC2 at any depth> k′′ − k.

SinceC3 constrains2 more state space thanC1, there also does not exist an input sequence that can violate

C2 at any depth> k′′−k in CNF formulaF2 = {C3∗(1, 2, ..., k′′)∧T ∗(1, 2, ..., k′′+1)∧¬C3k′′+1}. Due

to the same reason as above and similar toF1, C1 cannot be violated at depthk′′ + 1 in formulaF2. From

the above two arguments, we can conclude that, there does not exist an input sequence that can violateC3

at depthk′′ + 1 in F2. In other words, the formulaF2 is also not satisfiable. Thus, (originalφ is true)→

(newφ is true). �

Via performing resolution on the learned state-cubes, we obtain a further enlarged propertyφ. However, the

quality of strengthening can be improved further by capturing cubes from different parts of the state-space.

As a consequence, we want to explore the unexplored PPI space of Figure 5.1 (remember that due to the

2the number of possible state assignments decreases as the constrained clause is made smaller

Chapter 5. Property Strengthening 67

MDL limit, we do not exhaust the search). In the following, we use an adaptive procedure to modify the

SCOAP values such that backtracing via PODEM leads to a unexplored state-spaces.

Let lmax be the maximum clause length inφ. Initially, all the CONT0 andCONT1 values for the

PPIs are set to0. For each negative literalL in each clauseC of φ, we computeCONT1(var(L)) =

CONT1(var(L)) + length(C)/lmax, wherevar(L) is the PPI corresponding to literalL. Similarly, for

each positive literal, we computeCONT0(var(L)) = CONT0(var(L)) + length(C)/lmax. The main

intuition behind this is to increase the controllabilities of the PPIs in the already found solutions such that

newer PPI spaces are favored in the future searches. This is done in line 11 in Algorithm 1.

The SCOAP measures for the entire circuit are recomputed (line 12) and the PODEM procedure is repeated

to learn more state-cubes and further strengthenφ. The entire process is repeated until a user-defined number

of iterationsITER at a depthk. The resulting propertyφ after processing at a depthk is given as the input

at depthk + 1 and the process is repeated until a maximum user-defined depthK.

The overall complexity of the above algorithm isO(K × ITER × 2MDL), which can be be adjusted

according to the user-specified values forK, ITER andMDL.

5.3 Pre-selection and Derivation of Co-invariants

In the previous section, we have presented a procedure to quickly strengthen the property and further im-

prove the quality of strengthening. Its efficiency depends on the decision making process which in turn

depends on the accuracy of the SCOAP measures for that circuit. In this section, we present a new tech-

nique to identify more co-invariants for a propertyφ via a pre-selection based technique. The main idea

here is to generate a set of candidate propositions and check if they are co-invariant withφ (i.e., to find if

the candidate propositions have to be invariant forφ to be invariant). The following theorem forms the basis

of our new strengthening algorithm.

Theorem 5.2: A propositional formulaψ can be used to strengthenφ if the following two conditions hold

true: (i) the CNF formula,F = {ψ∗(1, 2, ..., k) ∧ φ∗(1, 2, ..., k + 1) ∧ T ∗(1, 2, ..., k + 1) ∧ ¬ψk+1} is not

Chapter 5. Property Strengthening 68

satisfiable and (ii) no input sequence can violateψ within depthk from I(s).

Proof: First, considerψ to be an invariant. Because strengthening a property with an invariant cannot cause

false negatives or false positives, strengtheningφ with ψ will always be sound.

Next, considerψ not to be an invariant,i.e, letψ be refuted at a depthk′ from I(s) via a pathP = s1, s2, s3,

...,sk′+1, wheres1 ∈ I(s). Clearly, since the theorem states that no input sequence violatesψ within a depth

of k from I(s), k′ ≥ k. Next, consider a CNF formulaF1 = {ψ∗(1, 2, ..., k)∧T ∗(1, 2, ..., k + 1)∧¬ψk+1}.

Sinceψ is not an invariant,F1 will be satisfiable. Now, ifF is unsatisfiable andF1 is satisfiable, we can

conclude that at least one of the finalk + 1 states in pathP (which has a lengthk′ + 1) must violatephi.

Since such a state starts froms1 ∈ I(s), we can also conclude thatphi is not an invariant, thereby reducing

the induction depth. �

If the two conditions of Theorem 2 are satisfied, thenφ can be strengthened usingψ to formφ∧ψ. In order

to efficiently utilize this, we first generate a set of propositionsψ as given in line 1 through 8 of Algorithm

2. Essentially, we order the state elements of the design according to their structural connectivity using the

MLP3 procedure [84]. All the combinations among groups ofM adjacent state elements are enumerated

whose disjunctions are treated as suitable candidates. For example, ifX1, X2 andX3 are 3 adjacent state-

elements in the order, we obtain (X1 = 0 ∨ X2 = 0 ∨ X3 = 0), (X1 = 0 ∨ X2 = 0 ∨ X3 = 1), ...,

(X1 = 1 ∨ X2 = 1 ∨ X3 = 1) as the 8 potential co-invariants. Given a depthk, we initially check each

candidate if they can be reached from the initial state(s). If so, that candidate is removed and not considered

anymore. On the other hand, if refutation is seen, we check that candidate for co-invariancy using Theorem

2. As in Algorithm 1, we use a maximum decision limit, MDL, in the PODEM algorithm to limit the

amount of time spent in identifying the co-invariants. If at least one solution is found forF (see Theorem

2 statement), then we can conclude the correspondingψ is not a co-invariant and abort the search. On the

other hand, if no solution is found, we can concludeψ to be a co-invariant and use it to strengthenφ (line

15). The resultingφ at the end of depthk can be further simplified using resolution (line 17) which is then

used as the input property at depthk+ 1. This process is repeated until the user-defined maximum depthK

is reached.
3MLP orders state elements according to their input support affinity

Chapter 5. Property Strengthening 69

Algorithm 4 Property Strengthening using Pre-selection
1: Given Max candidate size,M

2: Order the state elements using MLP

3: for each elementXi in ascending orderdo

4: Xi+1, Xi+2, .., Xi+M−1 = NextM − 1 elements in order

5: Enumerate all2M combinations amongXi, Xi+1, .., Xi+M−1

6: Add disjunction of each enumeration to CAND-LIST

7: RemoveXi from the order

8: end for

9: GivenK,MDL; k = 1

10: while (k ≤ K) do

11: for eachψ ∈ CAND-LIST do

12: If base run at depthk failed, removeψ; Else continue

13: Unroll circuit k times

14: Check Theorem 2 using PODEM : limit decisions to MDL

15: If Theorem 2 holds, setφ = φ ∧ ψ and removeψ

16: endfor

17: Simplify φ using resolution

18: k = k + 1

19: endfor

Chapter 5. Property Strengthening 70

5.4 Overall Flow and Discussion

In our current implementation, we combined both algorithms such that the strengthened property can be

alternated. For a given unrolled depthk (k = 1, 2, ...,K), we first run Algorithm 1 and use the obtained

strengthened property as input to Algorithm 2. The strengthened property from Algorithm 2 is again used

as input at depthk + 1 for Algorithm 1, and so on. After reaching the maximum user-defined depthK, the

resulting strengthened property is checked using conventional SAT-based induction.

For true safety properties, a successful induction run is sufficient. In other words, the depth at which they

are proven is often immaterial to the designer. However, for false properties, it is important to generate

the counter-example that refutes the property so that the design can be debugged accordingly. Note that,

when we strengthen a false property, it is guaranteed to be refuted at a depthk′ (≤ k), wherek is the

depth at which the original property could be refuted. Whereas the new clauses added to strengthen the

property might increase the intuition on the part of the designer, the shorter counter-example might not help

in tracing the cause for the original bug. Since we strengthen a property by searching the state transitions

and simplifying them using resolution, the original counter-example can be reconstructed completely from

the new counter-example obtained. Since we know the cause for adding a new clauseC to strengthenφ, a

counter-example forC can be appended with the input vector sequence that caused¬φ to be reached from

¬C. This can be automated according to the proofs of Theorems 1 and 2.

5.5 Experimental Results

We have developed a prototype tool for explicit property strengthening, which takes a safety property as

input and produces the strengthened property. Induction runs were conducted using a general purpose SAT

solver zChaff [85] and a special purpose incremental solver for induction called Temporal Induction Prover

(TIP) [7]. The main motivation is to evaluate the proposed property strengthening with respect to both the

general purpose learning mechanisms used in the modern SAT solvers and the state-of-the-art incremental

learning techniques for induction.

All the experiments were conducted on a 3.2GHz Pentium 4 machine running Linux OS with 1GB of RAM.

Chapter 5. Property Strengthening 71

We experimented with the safety properties for the ISCAS89 and ITC99 benchmarks which are properties

representing aborted states from a Sequential ATPG. Ifs is an aborted state, AG(¬s) is formulated as a

safety property. For each property, we ran zChaff and TIP until a maximum induction depth of 250 or until

a time out limit of 7200 seconds. For all the circuits, we have set the maximum unroll depthK to 3, the

maximum decision limit,MDL to 20 and the number of iterations,ITER to 3. In Algorithm 2,M is set

to 3.

Table 5.1 shows the experimental results. For each circuit,FFsandGatesshow the number of flip-flops and

gates respectively. The results for the properties with the conventional runs are shown under the column

Original, while those with the proposed techniques are shown underOurs. The columns termedTimegives

the induction run-times in seconds whereas the columnTime(str) reports the preprocessing runtime for

strengthening. The column#Cls(str)reports the number of strengthening clauses learned for the respective

property. The columnsResultreport the final result whereF means “failed”,P means “passed” andN

means “nothing concluded”. The number next indicates the depth at which the result is obtained or the

maximum depth solved until the time limit is reached. Among all the techniques, we highlight the lowest

run-times and the lowest depths for those proven properties inbold.

First, consider our processing run-times needed to strengthen the property. These depend mainly on the

size and structure of the circuit and varies according to the target property. The maximum pre-processing

time taken is around 57 seconds for the circuit s15850.1. Note that in most of the cases, these times are

insignificant when compared to the actual induction run-times. Similarly, the number of strengthening

clauses depends on the complexity of the circuit and the number of total solutions present for that property.

A maximum of 426 clauses were learned for the instance s444.1.

Next, consider the actual property checking results. Depending on the performance of our technique, we

classify the results into 3 categories. The first category are those where our property strengthening was able

to improve the total run-times required to falsify/verify the property. This is mainly due to its ability in

reducing the depths required to produce a result. As an example of a false property, consider s1512.1. When

the original property is checked using zChaff and TIP, they both timed out while reaching depths of 123 and

188 respectively. On the other hand, the strengthened property was falsified at a depth of only 2 time-frames.

Chapter 5. Property Strengthening 72

Note that if resolution is not performed but the learned state-cubes are simply added for strengthening, the

improvement in the proving depth for false properties can only be linear. For example, ifN is the depth

needed to refute a property using the conventional run and we learn state-cubes up to a depthK, then the

lowest depth at which the enlarged property can be refuted is onlyN −K. Since we employ resolution to

improve the quality of strengthening, we were able to reduce the proving depths significantly for the proven

false properties (such as s1512.1, b11.2, s15850.1etc). Next, consider the passing properties. For example,

for s526.2, zChaff timed-out after depth 176 while TIP took 888 seconds until the maximum depth of 250

without any conclusion. On the other hand, the strengthened property was proved at a depth of 107 with

31 and 22 seconds with zChaff and TIP respectively. In several cases, due to the reductions in the proving

depths required, the run-times have been improved by more than an order of magnitude. Also, note that the

improvements achieved over the general purpose solver zChaff is in general more when compared with the

prover TIP, since TIP already obtains performance improvement due to its incremental solving capability.

Next, consider the second category where we were able to reduce the induction depths but could not improve

the run-times compared to TIP. For example, for s444.1, the original property was proved false at a depth

of 139 in 53.8 seconds by TIP. Although the strengthened property was proved false at a depth of 84, the

runtime needed was around 93.5 seconds. This is because, all the clauses that are added to strengthen the

property can become a burden on the SAT engine during BCP. At the same time, they skew the number

of clauses each variable appears in, which possibly leads to a different variable order chosen by the SAT

solver, thereby reducing its efficiency. For the passing property b05.1, our total runtime was higher due to

the pre-processing time, though the actual proving time is negligible. In all these cases, however, we were

still able to obtain considerable improvement over zChaff.

Finally, consider the last category, where our technique could not reduce the induction depths. Most of these

properties are hard and could not be proved within the maximum depth of 250 or until the timeout limit. In

these cases, again, the new clauses added for property strengthening incur additional computational costs

and hence the depth reached within the time limit is reduced.

Chapter 5. Property Strengthening 73

5.6 Summary

In this chapter, we proposed new and low-cost techniques for explicitly strengthening a safety property such

that it can be proved at earlier induction depths. Experiments revealed that our techniques can be robust in

complementing the incremental learning techniques for induction and improve the run-times for both failing

and passing properties. We used PODEM as a basis of our implementation, although our algorithms can be

used in conjunction with the newer solvers such as the hybrid SAT solver proposed in [87].

There are two important directions for future work. First, it has been observed that property strengthening

can sometimes be a overhead due to the additional clauses added. Clever minimization of the added clauses

would be interesting to pursue. For example, some of the added clauses might not present any value for

strengthening when certain other clauses are added. Secondly, it will be interesting to exploit ways of

automatically identifying co-invariants for a given safety property (using Theorem 5.2) as opposed to pre-

selecting them as done in our work.

Chapter 5. Property Strengthening 74

Table 5.1. Results for induction runs for safety properties

Circuit.φ FFs Gates
Original OURS

zChaff [85] TIP [7] Time #Cls zChaff [85] TIP [7]

Time Result Time Result (str) (str) Time Result Time Result

b10 66 189 1876 N:250 -TO- N:23 1.4 3 1.4 P:1 1.4 P:1

s382.1 21 266 71.1 P:100 1.6 P:100 0.5 144 0.5 P:1 0.5 P:1

s400.1 21 276 11.6 P:61 0.7 P:61 0.6 174 0.6 P:1 0.6 P:1

b13.1 53 362 70.1 F:75 29.2 F:75 1.1 103 48.5 F:73 26.2 F:73

b13.2 53 362 -TO- N:212 898 N:250 1.0 95 -TO- N:218 575 N:250

s526.1 21 368 -TO- N:174 209 P:187 1.7 175 59 P:127 41 P:127

s526.2 21 368 -TO- N:176 888 N:250 1.9 161 31 P:107 22 P:107

b11.1 30 396 -TO- N:115 -TO- N:121 2.1 142 2.1 P:1 2.1 P:1

b11.2 30 396 1801 F:73 228 F:73 2.3 168 75 F:38 188 F:38

b07 51 433 -TO- N:192 4018 N:250 3.2 29 4476 N:250 3372 N:250

s641 19 510 20.5 N:250 -TO- N:149 2.4 45 2.4 P:1 2.4 P:1

s713 19 529 22.1 N:250 -TO- N:158 2.5 43 2.5 P:1 2.5 P:1

b04.1 66 546 -TO- N:188 3984 N:250 2.3 28 6991 N:250 953 N:250

b04.2 66 546 -TO- N:202 3301 N:250 2.3 29 -TO- N:247 1502 N:250

s1423 74 779 -TO- N:86 -TO- N:138 3.5 122 3.8 F:7 3.6 F:7

s1512.1 55 967 -TO- N:123 -TO- N:188 3.7 33 3.7 F:2 3.7 F:2

s9234 170 6331 -TO- N:58 -TO- N:82 36 216 36 F:1 36 F:1

s15850.1 506 11055 1437 F:32 293 F:32 57 191 57 F:1 57 F:1

s15850.2 506 11055 558 F:27 145 F:27 53 167 53 F:1 53 F:1

s382.2 21 266 129 F:91 7.1 F:91 0.6 137 24.2 F:77 10.4 F:77

s400.2 21 276 133 F:91 6.9 F:91 0.6 78 26.1 F:68 9.9 F:68

s444.1 21 293 1133 F:139 53.8 F:139 1.1 426 61 F:58 92.3 F:58

s444.2 21 293 16.7 F:56 2.1 F:56 1.2 225 2.7 F:25 4.2 F:25

b05.1 34 642 9.8 P:58 0.9 P:58 2.4 16 2.4 P:3 2.4 P:3

b05.2 34 642 6.7 P:31 0.7 P:31 2.6 17 6.1 P:30 4.5 P:30

s1512.2 55 967 -TO- N:134 -TO- N:180 3.9 72 -TO- N:119 -TO- N:164

s3384 183 1937 -TO- N:64 -TO- N:51 6.2 30 -TO- N:58 -TO- N:42

s13207 550 9517 -TO- N:48 -TO- N:86 47 12 -TO- N:45 -TO- N:73

F: Failed P: Passed N: Not known; Next # shown is the depth reached (max=250); -TO-: Time Out after 7200 seconds

Chapter 6

Interleaving BMC and Bounded

Reachability Analysis

In this chapter, we present a novel SAT-based framework that has the potential to search exponentially

more new states than those traversed via conventional approaches. Our technique employs forward and

backward bounded reachability analysis together with a bounded model checker to efficiently traverse the

state-space. The most important feature of our technique is the controllability-analysis-based guidance that

utilizes the knowledge from the previous searches to direct the current search in order to reach the target

state(s) faster. In the following sections, we first present our motivation followed by the proposed framework

and experimental results.

6.1 Motivation

As mentioned in chapter 2, the efficiency of induction techniques depends mainly on the underlying SAT

solver employed. As the induction depth is increased, the number of variables and clauses increase linearly.

This in turn increases the search complexity exponentially, and it may become unmanageable for the SAT

engines. Due to practical resource limitations, this bound is often restricted to a small value depending on

75

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 76

the size of the design. Thus, all the reachable states that lie beyond this bound would not be traversed via

conventional bounded model checkers.

The sequential SAT solver proposed in [88] tries to avoid this problem by doing a prioritized search back-

ward from the target state. Although the presented heuristics try to maximize the solution sizes, the number

of states they traverse might still be limited because they obtain few solutions at a time and check if the

solution spaces contain the initial state. Furthermore, if the backward search reaches a very long path in the

illegal state space, all the solutions that were computed would be futile.

To overcome the above problems, we combine depth-first forward and backward bounded reachability anal-

ysis together withk-induction. We use induction in order to make our framework efficient for passing prop-

erties; however, the proposed algorithm can be restricted by the user to just the base case runs if obtaining a

counter-example is the primary goal.

6.2 Proposed Searching Framework

In this section, we describe the proposed framework where we augment bounded reachability analysis to-

gether with bounded model checking. The basic idea is given in the next subsection followed by our con-

trollability based guiding heuristic.

6.2.1 Basic Idea

The number of reachable states in a design could be exponential in the number of state-elements. Suppose

we can extract a set of states,Sk, from the state-transition graph such that any state6∈ Sk can be reached from

at least one state∈ Sk within a distancek. In other words, the shortest distance between a state6∈ Sk and a

state∈ Sk is at mostk. Whenk = 0, the setS0 has all reachable states in it and is unique. On the other hand,

for k ≥ 1, there can be more than one such sets that can be extracted from the state transition graph. Let

Lk represent the minimal-sized set possible for a givenk. As the distancek is increased,Lk either remains

the same or decreases. For example, consider the state transition graph shown in figure 6.1(a). There are 8

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 77

s0 s1Init s2 s3 s4 s5 s6 s7

s0 s1Init s2 s3 s4 s5 s6 s7

(a)

(b)

Figure 6.1. Example STGs

reachable states and henceL0 = 8. Further, since each state has at most one out-going edge,S1 could be

one of{s0, s2, s4, s6} or {s1, s3, s5, s7}. Hence,L1 = 4. Similarly,L2 = L3 = 3, L4 = L5 = L6 = 2 and

L7 = 1. Now, consider the STG in Figure 6.1(b), where two new edges s0→ s2 and s3→ s5 are added.

Now, S1 can just be{s0, s3, s6}, thus makingL1 = 3 in this new graph. Consequently, as more edges are

present in an STG, the corresponding minimal set sizes can be smaller. In a hardware design, the number of

states reachable in one step from a given states can be exponential in the number of primary inputs. As a

result, the reduction inLk could be exponential ask is increased.

Clearly, if we can extract one such set for an appropriatek, we can employ bounded model checking by

setting the initial states to all those inSk and search within a maximum bound ofk. If a targetT was not

found withink distance from any state inSk, then we can conclude thatT is not present in the STG, i.e.,

it is unreachable. The value ofk poses a trade-off in such a scenario. Ifk is small, the maximum bound

needed for verification will be small but the size ofSk might be huge to compute. On the other-hand, ifk

is made larger, the setSk might be smaller but the maximum depth needed for verification might be higher.

However, the main bottleneck here would be the computation ofSk since guaranteeing that all states outside

Sk are withink distance is itself another reachability problem. As a result, an exact computation ofSk

would be impractical even for medium sized designs.

In our approach, we try to approximateSk such that the computation time is less intensive. The main idea

behind our approach is shown in Figure 6.2 where three unrolled circuit blocks are shown. The first one

represents the forward reachability analysis engine, the middle one represents a bounded model checker and

the last one represents the backward reachability analysis engine. First, consider the forward reachability

engine where each circuit blocks be numbered0 toDf . LetFWD represent the set of initial states we have

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 78

at any given time. We constrain the0th state-space toFWD and the remaining1 toDf to¬FWD. Under

such constraints, we run the SAT engine to obtain a satisfying solution. If a solution indeed exists, then the

satisfying assignments for state elements at blocks1 toDf form new reachable statess1, s2, ..., sDf
which

can be added toFWD and the process can be repeated.

Since the bounded model checker performs breadth-first search, we obtain solutions in the forward analysis

engine in a depth-first manner. Initially, we haveFWD = {I}, the original initial (or reset) state. After

obtaining one solution, we haveFWD = {I, s1, s2, ..., sDf
}. When computing the next solution, we

always try to satisfysDf
first in the0th frame. If no solution exists, we continue to satisfysDf−1 and so on.

At a given time, if there does not exist a solution starting from any state∈ FWD, then we have reached a

boundedfixed point. In other words, it would be sufficient to search for the targetT within a depthDf from

states∈ FWD using the bounded model checker.

By using the depth-first search in this manner, we obtain a state-sequence in the state transition graph.

The main intuition here is that, by constraining the state-elements at frames1 throughDf to ¬FWD, the

SAT solver implicitly eliminates all states that can be reached from those states∈ FWD within a distance

Df − l and canonly reach those states∈ FWD within a distancel, where1 ≤ l ≤ Df . Such states can

be exponential in number and would be covered by the bounded model checker whenFWD is used as the

initial state set. Thus, the new states obtained in a solution would add value to the existing setFWD. There

are two main points to be noted here: (i) As more depth-first states are added to the setFWD, the number

of states rejected by the SAT engine can increase exponentially and (ii) the effectiveness of resulting states

in FWD depends on the depthDf . Clearly, largerDf would be beneficial in rejecting more states but at

the cost of higher computation times.

Likewise, the backward reachability analysis can be formulated in a similar fashion. Initially, the set of

target states,BWD is set to{T} which is the first target state. We constrain the state-space at frameDb to

BWD (refer to Figure 6.2) while those at frames0 throughDb − 1 to¬BWD. Once we obtain a solution,

the resulting states are added toBWD to become{T , sDb−1, ...,s1, s0}. The process can be repeated and

more states are added toBWD.

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 79

Once a given number of states have been computed toFWD andBWD, we employ the bounded model

checker to verify if any state∈ BWD can be reached from any state∈ FWD within a boundDbmc. This

framework can potentially be very powerful because the setsFWD andBWD approximate the previously

explainedSk and by using a bounded model checker, we are verifying exponential number of states at one

time. However, we have observed that repeating the bounded model checking for depthDbmc after every

iteration could be time consuming. So, initially we start withDbmc = 1, and then gradually increase this

bound as more states are added toFWD andBWD.

fD DbDbmc

Forward Reach Bounded Model Check Backward Reach

TI

Figure 6.2. Basic idea of proposed method

6.2.2 Controllability-based Guiding

In the previous subsection, we have presented a basic framework for computingFWD andBWD. How-

ever, the states inFWD andBWD are computed independently and the new solutions obtained largely

depend on the decision order followed by the underlying SAT solver. In this work, we try to guide the com-

putation ofFWD andBWD using controllability measures such that the target can be reached faster. In

other words, we computeFWD keeping in mind those states that cannot lead to states∈ BWD. Similarly,

BWD is computed by avoiding states that cannot be reached fromFWD. The main idea is based on our

observation that certain state assignments are hard to be justified from the initial state and that the target

state is hard to be reached from certain state assignments. For example, some state elements may remain in

the same initial state value within a certain bound. If the target state requires the opposite values on those

elements, it would be difficult for conventional bounded model checkers because they might need to unroll

deeper.

Initially, we compute SCOAP measures [83] for the circuit. Each internal signal in the circuit is initially

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 80

associated with very large forward controllability index values for logic0 and logic1. Since the primary

inputs are fully-controllable, their indices are set to0. These indices are propagated onto the circuit to obtain

new controllability values. This process is repeated until all values converge in the forward direction. Let

M0 andM1 be the maximum forward controllability indices for any state-element. We identify all those

that has an index greater than a threshold (say, 70%) of the maximum values to be hard to control in the

forward direction. All these assignments are stored as a listFWD−Cont. Similarly, we set large backward

controllability values for all signals by setting the backward controllability for primary outputs to be0. The

values are propagated backward until they converge. Again, we identify a set of state elements that are hard

to control in the backward direction. All these assignments are stored in a listBWD − Cont.

During our forward bounded reachability computation, we assert each of the hard-to-control assignments

∈ FWD − Cont at frameDf and try to obtain a solution. If one exists, we add the solution states to

FWD and the corresponding assignment is removed fromFWD−Cont. On the other hand, if no solution

exists, we mark the corresponding state-variable assignment as truly hard in the forward direction. When

performing backward bounded reachability computation, we assert the opposite values for these marked

state assignments at frame0 such that the solutions obtained forBWD will be biased toward those in

FWD.

Likewise, during backward bounded reachability computation, we assert each of the hard to control assign-

ments∈ BWD − Cont at frame0 and try to obtain a solution. If one exists, we add the solution states to

BWD and the corresponding assignment is removed fromBWD−Cont. On the other hand, if no solution

exists, we mark the corresponding state-variable assignment as truly hard in the backward direction. When

performing forward bounded reachability computation, we assert the opposite values for these marked state

assignments at frameDf such that the solutions obtained forFWD will be biased toward those inBWD.

Thus, our overall flow is as follows: Initially, we obtain the two setsFWD − Cont andBWD − Cont.

At the start of every iteration, we check these for controllability and identify those truly hard ones. Then we

perform forward and backward bounded reachability computations followed by bounded model checking

with induction. If a result is not obtained, then we goto the next iteration where we try to justify the still

remaining hard to control assignments. If a solution is found for a state assignment, instead of simply

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 81

removing it from the control lists, we also form new candidates by conjoining those for which a solution has

already been found. This way, we enhance the setsFWD−Cont andBWD−Contwith multi-literal state

assignments. For example, letF1 = 0 andF2 = 1 be our initial candidates inFWD − Cont. Once we

find a solution for both of these, we remove these from the list and obtain a new candidateF1 = 0∧F2 = 1

and add it toFWD − Cont. To avoid excessive overheads, we limit each candidate size to 4.

6.3 Overall Algorithm

Our overall algorithm for augmenting bounded reachability analysis with bounded model checking is shown

in Algorithm 5, where we assume the target state(s)st to be those satisfying the propertyφ. During forward

reachability, we obtainN number of solutions per iteration and store it in the listFWD. Similarly, in

backward reachability, we obtainN number of solutions per iteration and store it in the listBWD. After

each iteration, we use our BMC checker to see if any state inBWD can be reached from any state inFWD.

If so, we can conclude thatφ is not invariant. Otherwise, we do the induction step run usingBWD. If this

run is UNSAT, then we conclude thatφ is invariant. If nothing is concluded, then we perform next iteration

by computing and adding more states toFWD andBWD.

6.4 Experimental Results

All the proposed techniques are built on top of the zChaff SAT solver [85] (version 2004.11.15). We com-

pare the performance of our techniques with the conventional induction runs and with two other existing

techniques TIP [7] and Sequential SAT solver [88]. TIP performs induction runs using incremental learning

and other optimizations for specifying unique-state constraints on the fly. Experiments are conducted for

justifying partial-states that are aborted after 10,000 seconds during test generation. We check the efficiency

of the SAT-based methods in solving these hard problems. In our technique, the bound for forward/backward

reachability is set to 5 and the number of solutions obtained per iteration is set to 100.

Table 6.1 shows the state justification results with a time-out limit of 3600 seconds set for each run. For each

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 82

Algorithm 5 Interleaving Bounded Reachability with Bounded Model Checking
1: Given initial states0 and propertyφ. Let target state(s)st satisfiesφ̄

2: Given depthsDf = Db = k and number of solutionsN ; setDbmc = 1

3: setFWD = s0 andBWD = st

4: while (not DONE) do

5: ObtainFWD(Df , N)

6: ObtainBWD(Db, N)

7: DoBMC(Dbmc, FWD, BWD)

8: If result seen, then DONE

9: Dbmc = Dbmc + 1

10: end while

11: ObtainFWD(Df , N) {

12: numSolutions = 0

13: while (numSolutions< N) do

14: ConstrainT0 to last state inFWD

15: ConstrainT ∗(1, 2, ..., Df) to¬FWD

16: SAT-Check(ForwardReach)

17: Append solution states (s1, s2, ...,sDf) to FWD

18: numSolutions = numSolutions + 1

19: end while

20: }

21: ObtainBWD(Db, N) {

22: numSolutions = 0

23: while (numSolutions< N) do

24: ConstrainTDb to last state inBWD

25: ConstrainT ∗(0, 1, ..., Db − 1) to¬BWD

26: SAT-Check(BackwardReach)

27: Append solution states (sDb−1, sDb−2, ...,s0) to BWD

28: numSolutions = numSolutions + 1

29: end while

30: }

31: DoBMC(Dbmc, FWD, BWD) {

32: sets0 = FWD andφ = ¬BWD

33: SAT-Check(BaseCase)

34: If SAT, counter-example found

35: Else SAT-Check(IndStep)

36: If UNSAT, property is true

37: Else, nothing is concluded

38: }

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 83

instance, we first show the number of primary inputs, flip-flops, and the number of gates in columns 2, 3 and

4, respectively. The columnState Resultshows the nature of the corresponding state, wheresat/unsatmean

that the state is reachable/unreachable, respectively. The statusunknownmeans that no technique could

classify that state within the time-limit. Each of the remaining of the columns first report the runtime for the

corresponding technique, and then report in brackets the counter-example length for satisfying properties for

the Conventional Induction, TIP, and SeqSAT, respectively. Whenever any of the induction based techniques

timed out (TO), the number in brackets indicate the depth reached. UnderOURScolumns, in addition to

the execution time, we report in brackets (i) the counter-example length, (ii) induction depth at which the

result is obtained, and (iii) the iteration number at which we obtained the result. Take instance s1423.2, for

example. This is a second aborted state for s1423, which has 17 primary inputs, 74 flip-flops, and 779 gates.

The conventional induction method timed out at depth 110, TIP timed out at depth 142, SeqSAT also timed

out. Our base-line method timed out at iteration 16. On the other hand, with controllability based guiding,

our technique was able to reach the target state with a length of 6823 time-frames, which was obtained at

induction depth of 4 at iteration #13. Out of the 14 instances, our techniques were able to classify 10. On

the other hand, the three other techniques could not finish for many of these instances.

Consider the instance b15.1. Though the target was reached within a depth of 14 via regular BMC, our

base-line took 1520 seconds while the controllability based guding timed out. This clearly indicates that our

technique is not an alternative to BMC but can complement it well.

In Table 6.2, we report additional analysis regarding the reachability of the states obtained by our technique.

We obtain 1000 forward solutions using a bound of 5 (i.e., a total of 5000 unique states) and contrast this

with 5000 unique states obtained using random simulation. For example, consider s1423. The first 100

unique states obtained by the random simulation can be reached from the initial state within a depth of 10.

This is intuitive since the random simulation starts from the initial state, and the states reached would not

be very far. Likewise, in our technique, the first 100 unique states obtained are also not too far from the

initial state. 91 (81+10) of these 100 states obtained by our technique are within a distance of 10 from the

initial state while only 9 are beyond a distance 10. When the last 100 are checked, we can see that most of

those obtained by random simulation can still be reached within a distance of 10 from the initial state. On

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 84

Table 6.1. State Justification Experiments on ISCAS and ITC Benchmarks

Instance PIs FFs Gates
State

Conv Ind TIP [7] SeqSAT [88]
OURS

Result Base-line With Cont

s1423.1 17 74 779 sat 1(5) 1(5) TO 3(108, 2, 0) 3(108, 2, 0)

s1423.2 17 74 779 sat TO(110) TO(142) TO TO(-, -, 16) 2369(6823, 13, 4)

s3384 43 183 1937 unkwn TO(34) TO(41) TO TO(-, -, 26) TO(-, -, 24)

s9234 77 170 6331 sat TO(51) TO(73) 319(2811) TO(-, -, 35) TO(-, -, 30)

s13207.1 62 638 9517 unkwn TO(43) TO(55) TO TO(-, -, 23) TO(-, -, 21)

s13207.2 62 638 9517 sat TO(51) TO(64) TO TO(-, -, 24) 177(1033, 2, 1)

s15850.1 77 534 11055 sat TO(45) TO(53) TO TO(-, -, 23) 778(4675, 6, 2)

s15850.2 77 534 11055 unkwn TO(51) TO(65) TO TO(-, -, 24) TO(-, -, 20)

s35932 35 1728 18148 sat 161(8) 88(8) TO 106(532, 2, 0) 106(532, 2, 0)

s38584 38 1426 23706 sat 182(12) 101(12) TO 88(698, 2, 1) 88(698, 2, 1)

b07* 2 51 433 unsat TO(192) TO(387) 59 1(-, -, 3) 2(-, -, 3)

b12 6 121 1119 sat 206(29) 145(29) TO 368(4324, 8, 3) 288(3726, 7, 3)

b15.1 36 447 7378 sat 638(14) 239(14) TO 1520(8073, 15, 3) TO(-, -, 19)

b15.2 36 447 7378 sat TO(25) TO(30) TO 412(3236, 8, 2) 1221(5723, 10, 2)

All times are in seconds. TO: Runtime exceeded 3600 seconds. *Ours reached bounded fixed point at iteration 3

the other hand, by our technique, the last 100 are significantly farther from the initial state. For s1423, all

of these last 100 states are beyond the distance of 30 from the initial state. Note that the actual distance can

be much longer, but we did not verify exhaustively due to exceeding runtimes required. Similarly, for the

larger circuits s35932 and b15, the actual distances could be much greater than 10.

Table 6.3 shows the analysis for maximum induction depth reached as more reachable states are learned

and added to the initial states. In the experiments, the bound for reachability analysis is again set to 5, and

a given number of states are learned using our base-line forward analysis which are then used to perform

the induction runs. For the number of states given in each column, we report the corresponding runtime

required to compute these states followed by the maximum bound reached within a time limit of 3600

seconds. There are two main observations: (i) It is clear that the time required to compute new solutions

increases super-linearly. For example, in instance s1423.2, it took 1 second to compute 1000 unique states,

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 85

Table 6.2. Reachability of First/Last 100 States among 5000 states

Circuit Type States Distance from Init State

0-4 5-9 10-29 ≥30

s1423

Rand First 100 86 14 - -

Ours First 100 81 10 9 -

Rand Last 100 96 4 - -

Ours Last 100 - - - 100

s35932

Rand First 100 99 1 - -

Ours First 100 4 5 91 (≥10)

Rand Last 100 99 1 - -

Ours Last 100 - - 100 (≥10)

b12

Rand First 100 100 - - -

Ours First 100 23 36 41 -

Rand Last 100 98 2 - -

Ours Last 100 - 19 81 -

b15

Rand First 100 99 1 - -

Ours First 100 13 5 82 (≥10)

Rand Last 100 100 - - -

Ours Last 100 - - 100 (≥10)

2 seconds to compute 2000 unique states, but it took 18 seconds to obtain 10000 unique states. This is

because, as more states are used to constrain the state-spaces, the SAT solver takes more time to search for

new solutions. (ii) The maximum induction depth reached varied insignificantly as more initial states are

injected. For example, in instance 1423.2, with 1000 initial states, we were able to reach the depth of 109

time-frames within the time-limit. When we start with 10000 initial states, we were able to reach a depth

of 101 time-frames. This is because, most of the runtime is consumed at the higher induction depths, and

adding more initial states caused not reaching only a few of these higher depth instances. This shows that

our technique can also be used to statically obtain a certain set of states via forward/backward analysis, and

then conventional induction can be used for furthering the proof. One such case is s15850.1, where after the

first 1000 solutions were obtained, the target was reached at a bound of 25.

Chapter 6. Interleaving BMC and Bounded Reachability Analysis 86

Table 6.3. Maximum induction depth reached in one hour

Instance
#InitStates

1000 2000 3000 4000 5000 10000

s1423.2 1:109 2:105 3:105 4:105 6:104 18:101

s3384 1:33 4:33 7:33 11:32 17:32 55:31

s9234 5:50 11:49 18:49 25:48 33:48 83:46

s13207.1 7:43 14:43 23:43 32:43 43:43 109:42

s15850.1 6:25 16:25 27:25 39:25 53:25 132:25

Each entry→ Time taken to extract the states : Max depth reached

6.5 Summary

In this chapter, we have presented a new SAT-based framework for state-space traversal that combines depth-

first bounded reachability analysis together with bounded model checking. Experimental results show that

our technique complements conventional bounded model checking in tracking down targets and can reach

states beyond the bounds that can be reached by practical solvers. This enabled more than an order of

magnitude runtime improvements than existing approaches.

There are several directions for future work. First, due to its search in a depth-first manner, our technique

does not guarantee the minimal-length counter-example. More sophisticated heuristics might be employed

to direct the search, for example, by using the functionality of the design. Second, there is no obvious

evidence for setting an appropriatedepthfor performing the bounded reachability analysis. The depth of

interest would be the one that can reject many states thereby improving the overall runtime. Finally, it would

be interesting to incorporate techniques such as interpolation [70] and proof-based abstraction [69] within

our bounded model checker and see the effectiveness as more initial states are added.

Chapter 7

Static Invariant Extraction

In this chapter, we propose a novel framework that statically extracts invariants of a synchronous sequen-

tial circuit and uses them to enhance SAT-based induction runs. First, we quickly generate a number of

candidate invariants. Among these, many of the false and redundant candidates are eliminated via two low-

cost techniques. For the remaining candidates, we employ a SAT-based induction method to establish an

inductive-proof. All the candidates that are proved to be invariants are converted into constraint clauses

which are applied in all the transition relations during the SAT checks for a given safety property.

7.1 Motivation

Before going to the motivation part, first consider the result of using induction to verify a propertyφ as given

in Table 7.1. There exists three scenarios: (i)φ is of Type 1 if the base case is satisfiable, (ii)φ is of Type

3 if both the base case and the induction step runs are unsatisfiable and (iii)φ is of Type 2 if the base case

is unsatisfiable but the induction step is satisfiable. Note that the notion of Type2 is with respect to a given

depthik. As the depthk is increased,φ might be classified into Type1 or Type3.

In the induction-step run, note that the initial-state is not constrained to any of the reachable state(s). When

verifying a true safety-property, we want this induction-step run to be unsatisfiable at as smaller depth as

87

Chapter 7. Static Invariant Extraction 88

Table 7.1. SAT Runs for φ at depth k

Type Base Case Ind Step Result

1 SAT - φ is not an invariant

2 UNSAT SAT Nothing concluded. Increasek

3 UNSAT UNSAT φ is an invariant

possible. However, since there are no initial state constraints, these runs tend to be satisfiable most of the

time. This has been observed in the case of several industrial circuits as well [8].

If the formula for the induction step at a depthk is satisfiable, then the satisfying solution forms a simple

paths1, s2, ...,sk+1 such that the firstk states satisfyφ but the last statesk+1 does not. In such a scenario,

two cases are possible: (i) the first states1 is a reachable state, and henceφ is definitely not an invariant. (ii)

the first states1 is an illegal state in which case the counter-example obtained isspuriousand nothing can

be concluded aboutφ. However, in general, it is hard to identify the reachability ofs1. In [80], the authors

assumes1 to be an illegal state and obtain a strengthened propertyφ ∧ s̄1. The main intuition behind it is

that the new property is stronger than the original one and might be proved at an earlier induction-depth.

However, if the induction run has several such spurious counter-examples (which can be exponential in the

number of state-elements), the new property obtained might still require a very high induction depth to be

proved.

From the above discussion, the induction-step runs can be improved by learning as many invariants as

possible and restricting the SAT search with these invariants. For example, if we learn sufficiently many

invariants that can voidall the spurious counter-examples for a given safety property, then we would be

directly proving that property. Another important benefit behind learning of such invariants is that they can

be repeatedly asserted in all the unrolled transition relations, which further constrains the search close to the

reachable space. Since a thorough reachability analysis (even over-approximate analysis using unbounded

model checking) can be prohibitively expensive, we try to extract invariants of a sequential design via an

alternative analysis. Whereas our technique does not guarantee the learning ofall the possible invariants

Chapter 7. Static Invariant Extraction 89

FF

PO

PI

COMB
frame

2

PI(2)

PO(2)

(b) Circuit Unrollment for T time−frames(a) Sequential Circuit

frameframe
1 T

PI(T)

PO(1) PO(T)
NS(1)

PS(3)

NS(2)

PS(2)

NS(T)

PS(T+1)PS(1)

NS(0)

PI(1)

Figure 7.1. Sequential circuit and its expansion

in a circuit, it identifies many temporal onesi.e. those which relates circuit signals across different clock-

cycles. Such invariants might be useful for a better understanding of the circuit behavior and for proving

other temporal properties.

7.2 Static Invariant Extraction

In this section, we provide our contributions and algorithms for candidate generation, pruning and veri-

fication. In all the following descriptions, we consider a transition relation in the form of a synthesized

sequential circuit consisting of Boolean gates and flip-flops. A typical sequential circuit with primary inputs

(PIs), primary outputs (POs) and flip-flops (FFs) is shown in Figure 7.1(a). A circuit unrolled forT frames is

shown in Figure 7.1(b), where the next-state(NS) elements of previous frame are fed to the present-state(PS)

elements of the next frame.

As mentioned before, we wish to extract as many invariants as possible via static analysis to improve SAT-

based induction. In this work, we try to automate this at a gate-level description of a sequential circuit. We

represent a logic value assignment,v ∈ {0, 1}, to a gateG in time-framet with Gv.t. For each gate in a

time-frame, there exists two assignments, one with logic0 and the other with logic1. Each candidate,φ, is

represented as a disjunction of such gate-value assignments in the circuit. The complement,φ̄ is simply the

conjunction of the opposite gate-value assignments. For example, ifφ = G1v1.t1 ∨G2v2.t2 ∨ ... ∨Gnvn.tn,

thenφ̄ = G1v1.t1 ∧ G2v2.t2 ∧ ... ∧ Gnvn.tn, wherev1, v2, .., vn ∈ {0, 1} andt1, t2, .., tn ∈ {1, 2, .., T}.

We refer to the number of elements in each candidate as thesizeof that candidate. The first stage of our

framework is the candidate generation process which is given below.

Chapter 7. Static Invariant Extraction 90

GI1

I2
I3

I5

I4

ZC
A

B

D

E
F

C
A

B

D

E

FF

B

G

0

0

0

0
0

0E

11

1

C

I5
I5

0

Frame t−1 Frame t+1Frame t

Z

0

(a) Example circuit (b) ROI for C=0 in frame t

Figure 7.2. Region Of Influence for a Gate-value assignment

7.2.1 Generation of Candidate Invariants

In this section, we use two models, namely the Region-based model and Cut-based model, for generating

the candidate invariants. In the Region-based model, we employ logic implications1 to identify the suitable

candidates. For each gate-value assignment,Gv.t, we define the Region Of Influence (ROI) as the topolog-

ical circuit region within which the logic implications ofGv.t encompass. Figure 7.2(a) shows an example

circuit with one flip-flopF . Consider a gate-value assignmentC0.t as shown in Figure 7.2(b). The logic

implications ofC0.t includeG0.t, A1.t, I11.t, I21.t, B0.t, I30.t, F0.t, E0.t−1, E0.t andF0.t+1. All these

assignments form the ROI forC0.t. Now, consider the outer connected region for this ROI, which includes

output of gateC andI5 in framet− 1, output of gateD in framet and output of gateB in framet+ 1. We

call this signal set as the Outer Region of Influence (OROI) ofC0.t. Formally put, an OROI consists of the

unspecified fanins of gates in ROI and the output signals of unspecified gates which has at least one fanin

in ROI. The OROI for a conjunction of gate-value assignments can be obtained by logic implying all those

assignments together in the circuit and then gathering the ROI.

Steps 1 through 11 of Algorithm 1 describes the candidate generation process via Region-based model. The

algorithm takes as input the maximum number of time-frames (T) to be considered for propagating the logic

implications. We form an initial set of candidates of size1 using each gate in the center time-frameτ (step 4).

Note that, here, we need to consider gate-value assignments only to the four primitive gates AND, NAND,

OR and NOR, since assignments to other gates such as inverters and buffers are automatically covered by

these. We employ these initial candidates as seeds and recursively generate larger-sized candidates using

their OROIs. Given a candidate seedφ, we form 2 × n new candidates (φ ∨ Gv.t) where eachGv.t ∈
1Logic implications ofGv.t are those gate-value assignments that are set whenGv.t is set to true

Chapter 7. Static Invariant Extraction 91

OROI(φ̄), v ∈ {0, 1} and |OROI(φ̄)| = n. For example, given a seed candidateC1.t in Figure 7.2(b),

we compute OROI(C0.t) and obtain the corresponding 8 new candidates. The reason behind this kind of

candidate selection is to explore the unspecified region beyond the region-of-influence. Note that if the seed

candidate itself is an invariant, so will be its successors.

Next, in the Cut-based model, we use a cut in the circuit to obtain the candidates. The idea here is to gather

potential candidates that might not be covered in the Region-based model. In the current framework, we

use the cut comprised of all the flip-flops. Other cuts such as the min-cut(s) or a designer specified cut can

also be used in addition to this. Once the cut signals are obtained, they are ordered so that each signal in

the order is structurally near to its adjacent ones. We employ the MLP procedure [84] for this purpose. The

MLP procedure first computes the input-support for each (next-state) flip-flop and then orders them such that

the dependency matrix attains a block-triangular form. We refer the reader to [84] for its implementation

details. Once the signals in the cut are ordered, we enumerate all possible combinations among groups of

adjacent signals and form the candidates using their disjunctions. In contrast to the region-based model, all

the elements in each candidate here belongs to the same time-frame. The pseudo-code for the Cut-based

candidate generation is given in steps 12 through 18 of Algorithm 1, which are self-explanatory.

7.2.2 Pruning the Candidate Set

Depending on the size of the circuit and the size-limits supplied, the number of candidates generated in

Algorithm 1 can be many. In this section, we provide two low-cost techniques to quickly prune the initial

candidate list so that the computational complexity in verifying them in the next (third) stage is minimized.

In the first technique, we use the logical dependencies among the candidates to prune the redundant ones. If

φ1 andφ2 are two candidates and ifφ1 → φ2, thenφ2 is covered byφ1 and hence can be removed. This is

because, ifφ1 is an actual invariant, so will beφ2 and hence we need not checkφ2. However, note that the

reverse is not true,i.e., it is possible forφ2 to be an invariant, but not forφ1. Nevertheless, each suchφ1 can

cover several other candidates, all of which can also be pruned out. This gives rise to a trade-off between

the verification runtime required and the amount of learning that can be obtained. In our current framework,

Chapter 7. Static Invariant Extraction 92

Algorithm 6 Candidate Generation
1: Given oddT , τ = (T − 1)/2; Initialize CAND-LIST =NULL

2: Given Max Region-based candidate size,N ; setn = 1

3: while (n ≤ N) do

4: if n = 1, CAND-LIST = All G0.τ , G1.τ : GateType(G) ∈ {AND, NAND, OR, NOR}

5: else // steps 6 through 9

6: for each candidateφ ∈ CAND-LIST with sizen− 1 do

7: LogicImply(φ̄); ObtainOROI(φ̄)

8: Form new candidates, (φ ∨Gv.t) ∀G ∈ OROI(φ̄), v ∈ {0, 1}

9: end for

10: n = n+ 1

11: end while

12: Given Max Cut-based candidate size,M

13: Order the cut signals using MLP // currently flip-flop cut

14: for each signalS1 in ascending orderdo

15: S2, S3, ..., SM = NextM − 1 signals in order

16: Enumerate all2M combinations amongS1, S2, ..., SM

17: Add disjunction of each enumeration to CAND-LIST; RemoveS1 from the order

18: end for

Chapter 7. Static Invariant Extraction 93

we allowed the above pruning to lower the computational costs. In practice, given enough time, one can still

check for the invariance ofφ2 and eliminate it only ifφ1 is proved invariant.

Since learningφ1 → φ2 is not straightforward, we individually check each of the elements ofφ1 andφ2 for

cover. Letφ1 = X1vx1.tx1 ∨X2vx2.tx2 ∨ ...∨Xnvxn.txn andφ2 = Y 1vy1.ty1 ∨Y 2vy2.ty2 ∨ ...∨Y nvyn.tyn,

both having sizen. If X1vx1.tx1 → Y 1vy1.ty1, X2vx2.tx2 → Y 2vy2.ty2, ...,Xnvxn.txn → Y nvyn.tyn, then

we can concludeφ1 → φ2 and removeφ2. The pseudo-code for this is shown in Algorithm 2 (steps 1

through 8). Note that, due to the recursive nature of the candidate generation process, we can only eliminate

those having equal sizes. Otherwise, we will simply end up with candidates with size1, since all the

candidates of sizen are automatically covered by those having sizes< n.

Algorithm 7 Candidate Pruning
1: for each candidateφ ∈ CAND-LIST do

2: Let φ = X1vx1.tx1 ∨X2vx2.tx2 ∨ ... ∨Xnvxn.txn

3: Si = Set of gate-value assignments due to LogicImply(Xivxi.txi)

4: for each candidateφ
′ ∈ CAND-LIST do

5: Let φ
′
= Y 1vy1.ty1 ∨ Y 2vy2.ty2 ∨ ... ∨ Y mvym.tym

6: If m = n and if eachY ivyi.tyi ∈ eachSi, removeφ
′

7: end for

8: end for

9: Given vector limit,N ; n = 1

10: while (At least one candidate removed) or (n < N) do

11: Generate Random VectorVn; LogicSimulate(Vn)

12: Remove allφ such that̄φ is achieved

13: n = n+ 1

14: end for

After the above candidate pruning process, the remaining candidates can belong to any of Type1, Type2 or

Type3 described in Table 7.1. Among these the ones that we are interested in are Type3 (invariants that can

be proved at a given depth). Whereas no direct technique exists for pruning out Type2 candidates, Type1

Chapter 7. Static Invariant Extraction 94

I1

I2

A
B

C

D

E

Z

F1

F3

First Invariant: (D
Second Invariant: (A

F2

0.t)

0.t V E 1.t−1)

Figure 7.3. Example Invariant Extraction

candidates can be eliminated if the base case is satisfiable. In other words, ifφ is a candidate and̄φ can

be reachable from the initial state(s), thenφ is definitely not an invariant. In our framework, we employ

random vector simulation to filter those Type1 candidates. Steps 10 through 14 of Algorithm 2 gives the

pseudo-code. Essentially, we start with one known initial state. A random vector is applied at the primary

inputs and logic simulated on the circuit. All the violated candidates are removed from the candidate list.

The resulting state-assignment after each logic simulation is carried over as the initial state for the next

random vector. This process is repeated for a given number of random vectors or until no more candidates

are pruned in an iteration. The above process results in eliminating many of the false (Type1) candidates

which need not be carried to the verification stage.

7.2.3 Verification of Candidates

After the end of above pruning process, we end up with a set of candidates which are highly probable to

be Type2 or Type3. Given a maximum induction depthN (user-specified), we first conduct the base case

run for each candidate. If this run is satisfiable for any candidate, then that candidate is false and hence

eliminated. We use the corresponding satisfying solution to check if any other candidates are also violated.

If so, all such candidates are immediately removed to save the computation time incurred in verifying them

later. This process is given in steps 1 through 6 of Algorithm 3.

After the base-case run, all the Type1 candidates withinN are removed and we are left with Type2 or Type3.

Now, we can proceed directly to the induction step run with the maximum induction depthN for each of

Chapter 7. Static Invariant Extraction 95

these candidates. However, as mentioned earlier, the induction depths needed for certain candidates can

be exponentially reduced when other known invariants are applied. Consider the example circuit shown in

Figure 7.3 which has 3 flip-flops (F1, F2, F3) and 2 primary inputs (PI1, P I2). First, it can readily seen

thatD0.t is an invariant since the flip-flopF3 can never achieve a logic1. The induction depth needed to

prove this invariant is just1. Now consider the single-gate candidateA0.t. The ROI ofA1.t includesB1.t−1

and henceA0.t ∨E1.t−1 is generated as a candidate of size2. This candidate is a true invariant and requires

an induction depth of8 to be proved. However, if we assert the invariant thatD = 0 in each transition

relation, the above candidate can be proved at a depth of just1. Furthermore, this second invariant is a

temporal one and asserting it together with the first one might prove more invariants, that are temporal in

nature, in a larger circuit.

In other words, using the already proved invariants as constraints leads to more effective results. For this

reason, rather than directly conducting the induction step runs at the maximum depthN , we start with the

depth of1 and then progress towardN . The pseudo-code for this process is shown in steps 7 through 15 of

Algorithm 3. If the induction step for a candidateφ at stepn is unsatisfiable, we conclude it as an invariant,

remove it from the list and add it as a clause to the databaseC. At the same time, all other larger candidates

that are covered byφ are also eliminated. For example, ifGv.t is an invariant, so will be any other candidate

containing elements implied byGv.t. All the invariants learned so far are added to the CNF formulas when

checking the other candidates for efficiency. The conversion of an invariant to a clause is straightforward

since the candidates are already in disjunctive form.

7.3 Experimental Results

We have developed a prototype for candidate generation and pruning in C++ and integrated it with the zChaff

SAT solver (version 2004.11.15) [85] for performing both the invariant extraction and the induction runs for

the safety properties. Experiments for various sequential circuits from the ISCAS89 and ITC99 benchmark

suites were conducted on a 3.2GHz Pentium 4 machine with 1GB RAM and running Linux OS.

First, we report the results for extracting the invariants in Table 7.2. To limit the initial number of candidates

Chapter 7. Static Invariant Extraction 96

Algorithm 8 Candidate Verification
1: Given Max Induction depth,N

2: for each candidateφ ∈ CAND-LIST do

3: φ̄any = φ̄1 ∨ φ̄2 ∨ ... ∨ φ̄N

4: SAT-CHECK(I(1) ∧ T ∗(1, 2, .., N) ∧ φ̄any)

5: If SAT, removeφ; Use solution to prune other false candidates

6: end for

7: Clause databaseC = NULL

8: for eachn from 1 toN

9: for each candidateφ ∈ CAND-LIST do

10: C∗(1, 2, .., n) = C1 ∧ C2 ∧ ... ∧ Cn

11: SAT-CHECK(T ∗(1, 2, .., n) ∧ φ∗(1, 2, .., n− 1) ∧ φ̄n ∧ C∗(1, 2, .., n))

12: If UNSAT, removeφ and all other candidates covered byφ; Add φ as a clause toC

13: end for

14: end for

15: Clauses inC are the learned invariants

Chapter 7. Static Invariant Extraction 97

Table 7.2. Results for Invariant Extraction

Circuit Gates Initial Cand. After Init. Pruning Verified Cand. Time

Comb Seq Total Comb Seq Total Comb Seq Total %Seq

b10 189 8068 4799 12997 45 63 108 7 16 23 69.5 2

b13 362 7308 8178 15486 384 2117 2501 161 447 608 73.5 17

s526 368 12540 12528 25068 321 1035 1356 76 164 240 68.3 22

b11 396 18252 15097 33349 217 538 755 40 108 148 72.9 12

b07 433 19741 18534 38275 508 2993 3501 53 281 334 84.1 25

b04 546 24683 15823 40506 131 5290 5421 131 5289 5420 97.6 9

s832 622 65336 17082 82418 132 291 423 0 20 20 100 14

b05 642 21135 10156 31291 757 1512 2269 369 509 878 57.9 64

s1423 779 12659 10064 22723 454 1001 1455 43 55 98 56.1 31

b14 3708 882214 590372 1472586 1211 14375 15586 613 427 1040 41.1 426

s9234 6331 300994 94226 395220 1268 7560 8828 92 700 792 88.4 221

s13207 9517 436368 129511 565879 5249 31562 36811 309 1937 2246 86.2 449

s15850 11055 221002 99997 320999 4197 25420 29617 1066 4455 5521 80.7 402

Comb: Num combinational candidates Seq: Num sequential(temporal) candidates

obtained, we used a maximum region-based candidate size of 2 and a maximum cut-based candidate size of

3. The maximum induction depth is set to 5 for smaller circuits (< 1000 gates) and 3 for the larger ones. For

each circuit, the columnGatesshows the number of gates in it. The remaining columns report the number of

initial candidates, those remaining after initial pruning and those verified as invariants. The columnsComb

andSeqreport the number of corresponding combinational and sequential (i.e. temporal) candidates. The

column%Seqgives the percentage of sequential candidates among the total verified candidates. Finally the

columnTimereports the run time in seconds.

It can be observed that the number of initial candidates tend to be very large. This number grows with

the circuit size and with the size-limit of each candidate. However, in the pruning stage, many of the false

and redundant ones are quickly eliminated, thus leaving only a set of candidates with higher probability.

One interesting thing to notice in most of these circuits is that, the amount of pruning in combinational

candidates is much higher than that of the sequential ones. This might be due to the fact that we use simple

Chapter 7. Static Invariant Extraction 98

Table 7.3. Results for Induction Runs for Safety Properties

Circuit.φ Gates Original Simp2C [74] EBL [75] Incr [7] OURS

Tt Tie Tt Tie Tt Tt Tie Tt Proved?

b10.1 189 83 0 118 1 8 5 2 3 Yes[25]

b10.2 189 86 0 131 1 7 14 2 3 Yes[25]

b13.1 362 534 0 89 1 13 86 17 18 No

s526.1 368 3565 0 3434 1 1291 841 21 22 Yes[25]

s526.2 368 4034 0 4386 1 1599 1451 21 22 Yes[50]

b11.1 396 5154 1 4864 1 3405 1471 12 13 Yes[50]

b11.2 396 5575 1 4800 1 2386 1053 12 13 Yes[25]

b07.1 433 193 0 42 1 11 52 25 71 No

b07.2 433 219 0 43 1 20 42 25 26 Yes[25]

b04.1 546 580 0 563 0 491 133 9 10 Yes[25]

b04.2 546 768 0 491 0 465 128 9 10 Yes[25]

s832.1 622 610 0 542 1 339 145 14 234 No

s832.2 622 272 0 190 1 31 33 14 29 No

b05.1 642 151 0 46 0 41 60 64 65 Yes[25]

b05.2 642 192 0 32 0 44 45 64 66 Yes[50]

s1423.1 779 7371 0 7616 1 8942 1651 31 32 Yes[25]

s1423.2 779 11107 0 8324 1 3798 1379 31 32 Yes[25]

b14.1 3708 597 3 505 48 101 270 426 427 Yes[10]

b14.2 3708 1357 3 1110 48 594 474 426 427 Yes[10]

s9234.1 6331 28015 1 21912 18 3033 2836 221 223 Yes[20]

s9234.2 6331 21319 1 18682 18 6252 2364 221 222 Yes[10]

s13207.1 9517 -TO- 2 28613 108 10712 5558 449 450 Yes[10]

s13207.2 9517 -TO- 2 -TO- 108 8258 11451 449 451 Yes[20]

s15850.1 11055 -TO- 3 -TO- 35 12092 3689 402 13806 No

s15850.2 11055 -TO- 3 -TO- 35 16019 3778 402 18570 No
(i) None of Original, Simp2C, EBL, and Incr could complete proof for any property

(ii) Smallest run-times for those proved properties arebold-faced

(iii) Smallest run-times for those unproved properties areitalicized

(iv) Tie: Invariant extraction time Tt: Total time (withTie) TO: Tt > 30000

Chapter 7. Static Invariant Extraction 99

logic implications for pruning in Algorithm 2, which simply might not extend into the other time-frames. For

the same reason, the number of initial combinational candidates tend to be higher than that of the sequential

ones. Next, when we look at the number of verified candidates, it averaged around 21.4% of the candidates

remaining after pruning. In other words, 78.6% of them belong to either Type1 or Type2. Among these, we

observed that 70 to 90% are Type2, even though the exact numbers are not reported in the table due to space

limitations. This is encouraging, because, given more time resources, one might extract more invariants out

of these Type2 candidates at greater unrolled depths.

Consider the circuit b04. In this circuit, 5420 out of the 5421 candidates were proved to be invariant. In

other words, there was almost no execution time wasted in verifying the Type1/Type2 candidates. Finally,

when we looked at the percentage of sequential candidates among the total verified ones, the average turned

out to be 76.5%. This is significant because such invariants enable a better understanding of the design and

may be helpful in proving other temporal safety properties. Within the total run-time, less than 5% was spent

by Algorithms 1 and 2 during candidate generation and pruning, whereas the rest was spent in Algorithm 3

for candidate verification.

Next, we report the results for safety-property verification by embedding the extracted invariants. The

experiments were conducted for hard safety properties, which were based on aborted partial-states2 from

a sequential ATPG. An aborted state is a state that the ATPG failed to justify within its resource limit. If

s is an aborted partial-state, the property was formulated asAG(s̄). For smaller circuits, we increased the

induction depthk by 25 frames per iteration up to a maximum of 250 frames. Whereas for the larger ones,

these were set to 10 and 100 respectively. The time-out limit for each property was set to 30,000 seconds.

Table 7.3 reports the experimental results. We compare our technique with the original induction run (i.e.,

without any learning), learning from Simp2C [74] and EBL [75] and Incremental learning as done in [7].

All the invariants learned are replicated as clauses in all the transition relations. For each property instance

shown, we report the induction run-times required by the corresponding techniques, whereTie andTt show

the invariant extraction and the total (Tie + solving) run times, respectively, in seconds.

2A partial-state is a set of assignments to a group of flip-flops (not necessarily all of them)

Chapter 7. Static Invariant Extraction 100

As a first observation, we can see that the invariant extraction times needed by our method is in general

higher than that of others (Simp2C and EBL). However, in most cases, they are small when compared

with the actual induction run-times. If a property is proved as an invariant via our learning, we report the

corresponding bound in brackets under the columnProved. Among the 28 properties tested, we were able

to complete the proof for 22 properties. In contrast, all the other approaches could not prove any of the

28 properties. For example, for s13207.1, the original run, Simp2C, EBL and Incremental learning took

more than 30000, 28000, 10000 and 5000 seconds, respectively, without proving the property; on the other

hand, we verified it as an invariant in only 450 seconds. Note that in proving these properties, we have

achieved more than an order of magnitude improvement in run-times. For the cases where none of the

techniques could prove the property, our overall runtime tended to be higher than techniques. This might

be due to two reasons: If these properties are not actually invariants, our added clauses might not be as

efficient as the other techniques in pruning the combinational search-spaces. On the other hand, if these

properties are indeed invariants, the extra clauses we add prunes many of the satisfying solutions and hence

finding one solution among the remaining less number of solutions may need more time. Nevertheless, in

all these unproved cases, our total run-time was smaller than that of theoriginal run-time, displaying the

effectiveness of the added clauses.

7.4 Summary

We have proposed a novel framework that automates the extraction of a set of invariants of a sequential

design and applies them to enhance SAT-based induction. All the learned invariants are converted to con-

straint clauses and inserted into all transition relations to restrict the SAT search as close as possible to the

reachable space. Experiments revealed that our learning can prove many properties at early induction depths

where as the conventional runs failed. This lead to more than an order of magnitude savings in the property

checking run-times.

There are two possible directions for future research. In our current framework, all the invariants are com-

puted before-hand irrespective of the property. In practice, one might dynamically compute only those re-

quired for a given property. For example, the cone-of-influence (COI) of a property might be used to reduce

Chapter 7. Static Invariant Extraction 101

the number of initial candidates. Secondly, it will be interesting to explore the candidates forkth-invariants.

For example, some of the Type1 candidates that we eliminate might actually turn out to be invariants after a

given number of clock-cycles.

Chapter 8

Conclusions and Future Work

In this dissertation, we have outlined the main limitations in SAT-based formal verification approaches

including SAT-based Bounded Model Checking and SAT-based Induction. These can be summarized as

follows: (i) Lack of ability of the SAT solver to learn internal variable relationships, (ii) Exponential increase

in run-time at higher depths that prohibits complete verification of a property, (iii) Lack of knowledge about

non-trivial invariants of a design, and (iv) Lack of information about co-invariants for a given property.

In Chapter 3, we have proposed two new techniques for increasing the deductibility in CNF instances for

enhancing SAT-based Bounded Model Checking. All the logic dependencies learned via those techniques

are converted to constraint clauses and replicated in the transition relations during the SAT runs. Experi-

mental results on a variety of circuits and properties have shown that significant improvements in runtime

can be consistently achieved. Whereas implication learning helps in speeding-up the SAT runs, it doesnt

enable the reduction in depths required to prove a property. There are several directions for future work.

First, note that in some cases, the solving times actually increase due to the added clauses. This is because,

due to the added clauses, the number of occurrences of each variable is increased, which leads to a possibly

different decision order chosen by the SAT solver. It will be interesting to study the effect of added clauses

upon the variable order and research a better ordering strategy. Secondly, all the clauses being added might

not be useful in the same way. For example, some clauses might be trivial and can be easily learned by the

102

Chapter 8. Conclusions and Future Work 103

SAT solver, given the other clauses. Careful elimination of such clauses might reduce the burden on the SAT

solver and avoids overheads in BCP. Finally, new ways to learn non-trivial implications would definitely be

a promising future-work.

Chapter 4 proposes novel technqiues for fast identification of illegal state spaces. We employed ATPG based

learning, exploited logic implications and used an enumerative framework to learn more illegal states. All

the learned states are used as constraints at the state-boundaries in order to improve the SAT-based induction

runs. Experiments have shown that these constraints often reduce the run-times and at the same time can

reduce the depth required to prove a property thereby achieving more than an order of magnitude runtime

improvements. One limitation of this technique is that it can only be helpful for true properties and does not

have the ability to reduce the depth for false properties. There are two directions for future work. First, the

above framework aims atlow-costand might miss crucial illegal states. For further hard to solve properties,

it would be interesting to generalize this learning to capture additional illegal states. Second, the learning

regions can be limited according to a given property to reduce the pre-processing times further.

In Chapter 5, we proposed techniques using ATPG-based pre-image computations and co-invariant extrac-

tions to strengthen a property. Resolution and Dynamic variable ordering are further employed to improve

the quality of strengthening. Once a property is strengthened, it can be verified using BMC/Induction similar

to the original property. Experimental results have shown that the proof-depths can be reduced significantly

thereby achieving several orders of magnitude runtime improvements. As opposed to the above two tech-

niques, strengthening enables in proving both passing as well as failing properties faster. There are two

important directions of future work. First, it can be seen that property strengthening can sometimes be a

overhead due to the additional clauses added. Clever minimization of the added clauses would be interest-

ing to pursue. For example, some of the added clauses might not present any value for strengthening when

certain other clauses are added. Secondly, it will be interesting to exploit ways of automatically identifying

co-invariants for a given safety property as opposed to pre-selecting them as done in our work.

In Chapter 6, we presented a novel approach that augments bounded reachability analysis with bounded

model checking. The main idea here is to learn a sequence of states, from the initial state(s) in the forward

direction and from the target state(s) in the backward direction, and use bounded model checking to check

Chapter 8. Conclusions and Future Work 104

if atleast one backward state can be reached from atleast one forward state. Such a framework is very

powerful because of the exponential number of new states it can cover compared to conventional bounded

model checking. While doing so, for true properties, the strengthened target states can also be proved earlier

via induction runs. Comparison with state-of-the-art incremental learning techniques and sequential SAT

solvers showed that our technique out-performs them in most cases by providing the result faster. There

are few directions for future work. First, due to its search in a depth-first manner, our technique does not

guarantee the minimal-length counter-example. More sophisticated heuristics might be employed to direct

the search, for example, by using the functionality of the design. Second, there is no obvious evidence

for setting an appropriatedepthfor performing the bounded reachability analysis. The depth of interest

would be the one that can reject many states thereby improving the overall runtime. Finally, it would be

interesting to incorporate techniques such as interpolation [70] within our bounded model checker and see

the effectiveness as more initial states are added.

Finally, in Chapter 7, we proposed two models for extracting candidate invariants and using induction to

prove them. The region-based model aims at using logic implications to obtain a set of non-trivial candidates

in the circuit, where as the cut-based model aims at obtain candidates at a given cut in the circuit (say, the

flip-flop cut). Once the candidates are obtained, the false ones among them are eliminated and the proof

for the remaining ones is established using induction. All the invariants that were proved can be used as

constraints during the induction runs which will help in proving complex or difficult properties. There

are two possible directions for future research. In our current framework, all the invariants are computed

before-hand irrespective of the property. In practice, one might dynamically compute only those required

for a given property. For example, the cone-of-influence (COI) of a property might be used to reduce the

number of initial candidates. Second, it will be interesting to explore the candidates forkth-invariants. For

example, some of the Type1 candidates that we eliminate might actually turn out to be invariants after a

given number of clock-cycles.

Bibliography

[1] N. H. E. Weste and D. Harris,CMOS VLSI Design: A Circuits and Systems Perspective. Addison-

Wesley, Third Edition, 2005.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model Checking without BDDs,” inPro-

ceedings of International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pp. 317–320, 1999.

[3] M. Sheeran, S. Singh, and G. Stalmarck, “Checking Safety Properties using Induction and a SAT

Solver,” in Proceedings of International Conference on Formal Methods in Computer Aided Design,

pp. 108–125, 2000.

[4] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan, “An Analysis of SAT-Based

Model Checking Techniques in an Industrial Environment,” inProceedings of Conference on Correct

Hardware Design and Verification Methods, pp. 254–268, 2005.

[5] N. Amla, R. Kurshan, K. McMillan, and R. Medel, “Experimental Analysis of Different Techniques

for Bounded Model Checking,” inProceedings of International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pp. 34–48, 2003.

[6] O. Strichman, “Accelerating bounded model checking of safety properties,”Formal Methods in System

Design, vol. 24, pp. 5–24, Jan 2004.

[7] N. Een and N. Sorensson, “Temporal Induction by Incremental SAT Solving,” inInternational Work-

shop on Bounded Model Checking, July 2003.

105

Bibliography 106

[8] L. Zhang, M. R. Prasad, and M. S. Hsiao, “Incremental Deductive & Inductive Reasoning for SAT-

based Bounded Model Checking,” inProceedings of International Conference on Computer Aided

Design, pp. 502–509, 2004.

[9] O. Shacham and E. Zarpas, “Tuning the vsids decision heuristic for bounded model checking,” in

International Workshop on Microprocessor Test and Verfication, 2003.

[10] B. Li and F. Somenzi, “Efficient Computation of Small Abstraction Refinements,” inProceedings of

International Conference on Computer Aided Design, pp. 518–525, 2004.

[11] M. N. Velev, “Exploiting Signal Unobservability for Efficient Translation to CNF in Formal Verifica-

tion of Microprocessors,” inProceedings of Conference on Design Automation and Test in Europe,

pp. 266–271, 2004.

[12] A. Kuehlmann, “Dynamic Transition Relation Simplification for Bounded Property Checking,” inPro-

ceedings of International Conference on Computer Aided Design, pp. 50–57, 2004.

[13] V. C. Vimjam and M. S. Hsiao, “Increasing the Deductibility in CNF Instances for Efficient SAT-

based Bounded Model Checking,” inProceedings of High Level Design, Validation and Test Workshop,

pp. 52–59, Nov 2005.

[14] V. C. Vimjam and M. S. Hsiao, “Fast Illegal State Identification for Improving SAT-based Induction,”

in Proceedings of Design Automation Conference, pp. 241–246, July 2006.

[15] V. C. Vimjam and M. S. Hsiao, “Static Invariant Extraction for Fast Verification of True Properties,” in

To be submitted, 2007.

[16] V. C. Vimjam and M. S. Hsiao, “Explicit Safety Property Strengthening in SAT-based Induction,” in

Proceedings of International Conference on VLSI Design, Jan 2007.

[17] V. C. Vimjam and M. S. Hsiao, “Augmenting Bounded Model Checking and Bounded Reachability

Analysis,” inSubmitted to an anonymous conference, 2007.

[18] S. Cook, “The Complexity of Theorem Proving Procedures,” inACM SIGACT Symposium on the

Theory of Computing, 1971.

Bibliography 107

[19] M. Davis and H. Putnam, “A computing procedure for quantification theory,”ACM Journal, vol. 7,

pp. 201–215, 1960.

[20] J. P. Marques-Silva and K. A. Sakallah, “Grasp: A search algorithm for propositional satisfiability,”

IEEE Trans. on Computers, vol. 48, pp. 506–521, May 1999.

[21] H. Zhang, “SATO: An Efficient Propositional Prover,” inProceedings of International Conference on

Automated Deduction (CADE), 1997.

[22] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an Efficient

SAT-Solver,” inProceedings of Design Automation Conference, pp. 530–535, 2001.

[23] E. Goldberg and Y. Novikov, “BerkMin: a Fast and Robust SAT-Solver,” inProceedings of Conference

on Design Automation and Test in Europe, pp. 142–149, 2002.

[24] L. Ryan, “http://www.cs.sfu.ca/ loryan/personal,” inSiege SAT solver version 4.

[25] N. Een and N. Sorensson, “Minisat a sat solver with conflict-clause minimization,” inInternational

Conference on Theory and Applications of Satisfiability Testing, Poster, 2005.

[26] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, “Efficient Conflict Driven Learning in a Boolean

Satisfiability Solver,” inProceedings of International Conference on Computer Aided Design, Nov

2001.

[27] “htpp://www.satisfiability.org : International Conference on Theory and Applications of Satisfiability

Testing,”

[28] “http://www.satcompetition.org : The International SAT Competition,”

[29] F. Bachhus and J. Winter, “Effective Preprocessing with Hyper-Resolution and Equality Reduction,”

in Proceedings of Workshop on Satisfiability, pp. 341–355, 2003.

[30] S. Subbarayan and D. Pradhan, “NiVER: Non-Increasing Variable Elimination Resolution for prepro-

cessing SAT instances,” inProceedings of Workshop on Satisfiability, pp. X–Y, 2004.

Bibliography 108

[31] N. Een and N. Sorensson, “Effective preprocessing in sat through variable and clause elimination,” in

Proceedings of International Conference on Theory and Applications of Satisfiability Testing, 2005.

[32] D. Brand, “Verification of Large Synthesized Designs,” inProceedings of International Conference on

Computer-Aided Design, pp. 534–537, 1993.

[33] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for Combinational Equivalence Check-

ing,” in Proceedings of Conference on Design Automation and Test in Europe, pp. 114–121, 2001.

[34] W. Kunz and D. K. Pradhan, “Recursive learning: A new implication technique for efficient solutions

to cad problems - test, verification and optimization,”IEEE Transactions on Computer Aided Design

of Integrated Circuits and Systems, vol. 13, pp. 1149–1158, Sept 1994.

[35] J. Marques-Silva and T. Glass, “Combinational Equivalence Checking using Satisfiability and Recur-

sive Learning,” inProceedings of Conference on Design Automation and Test in Europe, pp. 145–149,

1999.

[36] Y. Novikov, “Local Search for Boolean Relations on the Basis of Unit Propagation,” inProceedings of

Conference on Design Automation and Test in Europe, pp. X–Y, 2003.

[37] F. Lu, L.-C. Wang, K.-T. Cheng, and R. C.-Y. Huang, “A Circuit SAT Solver with Signal Correlation

Guided Learning,” inProceedings of Conference on Design Automation and Test in Europe, pp. 892–

897, 2003.

[38] F. Lu, L.-C. Wang, K.-T. Cheng, J. Moondanos, and Z. Hanna, “A Signal Correlation Guided ATPG

Solver And Its Applications For Solving Difficult Industrial Cases,” inProceedings of Design Automa-

tion Conference, June.

[39] I.-H. Moon and C. Pixley, “Non-Miter-Based Combinational Equivalence Checking by Comparing

BDDs with Different Variable Orders,” inProceedings of Formal Methods in Computer-Aided Design,

2004.

[40] M. Syal and M. Hsiao, “VERISEC: VERIfying Equivalence of SEquential Circuits using SAT,” in

Proceedings of High-Level Design Validation and Test Workshop, pp. 52–59, 2005.

Bibliography 109

[41] V. Singhal, C. Pixley, A. Aziz, and R. K. Brayton, “Theory of Safe Replacements for Sequential

Circuits,” in IEEE Transcations on CAD of Integrated Circuits and Systems, vol. 20, pp. 249–265, Feb

2001.

[42] C. Pixley, “A Theory and Implementation of Sequential Hardware Equivalence,” inIEEE Transactions

on Computer Aided Design, vol. 11, pp. 1469–1494, Dec 1992.

[43] K. T. Cheng, “Redundancy Removal for Sequential Circuits Without Reset States,” inIEEE Transac-

tions on Computer Aided Design, vol. 12, pp. 13–24, Jan 1993.

[44] S. Y. Huang, K. T. Cheng, and K. C. Chen, “Verifying sequential equivalence using atpg techniques,”

in ACM TODAES, vol. 6, pp. 244–275, April 2001.

[45] F. Lu and K.-T. Cheng, “Sequential Equivalence Checking Based on K-th Invariants and Circuit SAT

Solving,” in Proceedings of High Level Design Validation and Test Workshop, pp. 45–51, 2005.

[46] F. Lu and K.-T. Cheng, “IChecker: An Efficient Checker for Inductive Invariants,” inProceedings of

High Level Design Validation and Test Workshop, 2006.

[47] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite state concurrent systems

using temporal logic,” inACM Trans. on Programming Languages and Systems, vol. 8, pp. 244–263,

1986.

[48] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking. The MIT Press, 2000.

[49] K. L. McMillan, Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[50] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” inIEEE Trans. on Com-

puters, vol. 35, pp. 677–691, 1986.

[51] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Implementation of a BDD package,” inPro-

ceedings of Design Automation Conference, pp. 40–45, 1990.

[52] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Logic Verification Using

Binary Decision Diagrams in a Logic Synthesis Environment,” inProceedings of International Con-

ference on Computer Aided Design, 1988.

Bibliography 110

[53] H. Fujii, G. Ootomo, and C. Hori, “Interleaving Based Variable Ordering Methods for Ordered Binary

Decision Diagrams,” inProceedings of International Conference on Computer Aided Design, pp. 38–

41, 1993.

[54] P. Y. Chung, I. N. Hajj, and J. H. Patel, “Efficient Variable Ordering Heuristics for Shared ROBDD,”

in Proceedings of ISCAS, 1993.

[55] S. Panda and F. Somenzi, “Who are the variables in your neighbourhood,” inProceedings of Interna-

tional Conference on Computer Aided Design, 1995.

[56] M. Thornton, J. Williams, R. Drechsler, and N. Drechsler, “Variable re-ordering for shared Binary

Decision Diagrams using output probabilities,” inProceedings of Conference on Design Automation

and Test in Europe, 1999.

[57] F. Aloul, I. Markov, and K. Sakallah, “MINCE: A Static Global Variable-ordering for SAT and BDD,”

in Proceedings of International Workwhop on Logic and Synthesis, 2001.

[58] F. Aloul, I. Markov, and K. Sakallah, “FORCE: A Fast and Easy-To-Implement Variable Ordering

Heuristic,” inProceedings of Great Lakes Symposium on VLSI, 2003.

[59] P. A. Abdulla, P. Bjesse, and N. Een, “Symbolic Reachability Analysis based on SAT-Solvers,” in

Proceedings of International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, 2000.

[60] A. Gupta, Z. Yang, P. Ashar, and A. Gupta, “SAT-Based Image Computation with Application in

Reachability Analysis,” inProceedings of International Conference on Formal Methods in Computer

Aided Design, 2000.

[61] B. Li, M. S. Hsiao, and S. Sheng, “A Novel SAT All-Solutions Solver for Efficient Preimage Compu-

tation,” in Proceedings of Conference on Design Automation and Test in Europe, pp. 272–277, 2004.

[62] K. L. McMillan, “Applying SAT methods in unbounded Symbolic Model Checking,” inProceedings

of International Conference on Computer Aided Verification, Vol. 2404 of Lecture Notes in Computer

Science, pp. 250–264, 2002.

Bibliography 111

[63] H. J. Kang and I. C. Park, “SAT-based Unbounded Model Checking,” inProceedings of Design Au-

tomation Conference, 2003.

[64] J. Baumgartner and A. Kuehlmann, “Enhanced Diameter Bounding via Structural Transformation,” in

Proceedings of Conference on Design, Automation and Test in Europe, 2004.

[65] M. K. Ganai, A. Gupta, and P. Ashar, “Beyond Safety: Customized SAT-based Model Checking,” in

Proceedings of Design Automation Conference, pp. 738–743, 2005.

[66] C. Wang, H. Jin, G. D. Hatchel, and F. Somenzi, “Refining the SAT Decision Ordering for Bounded

Model Checking,” inProceedings of Design Automation Conference, pp. 535–538, 2004.

[67] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar, “Learning from BDDs in SAT-based Bounded

Model Checking,” inProceedings of Design Automation Conference, pp. 824–829, 2003.

[68] G. Cabodi, S. Nocco, and S. Quer, “Improving SAT-based Bounded Model Checking by Means of

BDD-based Approximate Traversals,” inProceedings of Conference on Design Automation and Test

in Europe, pp. 898–903, 2003.

[69] K. L. McMillan and N. Amla, “Automatic Abstraction without Counterexamples,” inProceedings of

International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2003.

[70] K. L. McMillan, “Interpolation and SAT-based Model Checking,” inProceedings of Conference on

Computer Aided Verification, pp. 1–13, 2003.

[71] L. Zhang, M. R. Prasad, M. S. Hsiao, and T. Sidle, “Dynamic Abstraction Using SAT-based BMC,” in

Proceedings of Design Automation Conference, pp. 754–757, 2005.

[72] C. A. J. van Eijk, “Sequential Equivalence Checking without State-Space Traversal,” inProceedings

of Conference on Design, Automation and Test in Europe, 1998.

[73] P. Bjesse and K. Claessen, “SAT-based Verification without State-Space Traversal,” inProceedings of

Conference on Formal Methods in Computer Aided Design, 2000.

Bibliography 112

[74] R. Arora and M. S. Hsiao, “Enhancing SAT-based Bounded Model Checking using Sequential Logic

Implications,” inProceedings of International Conference on VLSI Design, pp. 784–787, 2004.

[75] J. Zhao, M. Rudnick, and J. Patel, “Static Logic Implication with application to fast redundancy iden-

tification,” in Proceedings of VLSI Test Symposium, pp. 288–293, 1997.

[76] A. Church, “Introduction to Mathematical Logic,” inPrinceton, NJ: Princeton Univ., 1956.

[77] D. LeBerre, “Exploiting the Real Power of Unit-Propagation Lookahead,” inProceedings of Workshop

on Satisfiability, 2001.

[78] C. M. Li, “Integrating Equivalency Reasoning into Davis-Putnam procedure,” inProceedings of AAAI

Conference, pp. 291–296, 2000.

[79] J. Zhao, J. A. Newquist, and J. H. Patel, “A Graph Traversal Based Framework for Sequential Logic

Implication with an Application to C-Cycle Redundancy Identification,” inProceedings of Interna-

tional Conference on VLSI Design, pp. 163–169, 2001.

[80] L. de Moura, H. Rueß, and M. Sorea, “Bounded Model Checking and Induction: From Refutation to

Verification,” in Proceedings of Conference on Computer Aided Verification, 2003.

[81] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic circuits,”IEEE

Transactions on Computers, vol. C-30, pp. 215–222, Mar 1981.

[82] S. Sheng and M. S. Hsiao, “Efficient Preimage Computation Using a Novel Success-Driven ATPG,” in

Proceedings of Conference on Design Automation and Test in Europe, pp. 822–827, 2003.

[83] H. Goldstein and E. L. Thigpen, “Scoap: Sandia Controllability/Observability analysis program,” in

Proceedings of Design Automation Conference, 1980.

[84] I.-H. Moon, G. Hachtel, and F. Somenzi, “Border-block Triangular Form and Conjunction Schedule in

Image Computation,” inProceedings of Conference on Formal Methods in Computer Aided Design,

2000.

Bibliography 113

[85] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient Conflict Driven Learning in

a Boolean Satisfiability,” inProceedings of International Conference on Computer Aided Design,

pp. 279–285, 2001.

[86] J. Baumgartner, A. Kuehlmann, and J. Abraham, “Property Checking via Structural Analysis,” in

Proceedings of International Conference on Computer Aided Verification, 2002.

[87] M. K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik, “Combining Strengths of Circuit-based and

CNF-based algorithms for a High-Performance SAT Solver,” inProceedings of Design Automation

Conference, pp. 747–750, June 2002.

[88] F. Lu, M. K. Iyer, G. Parthasarathy, and K.-T. Cheng, “An Efficient Sequential SAT Solver With

Improved Search Strategies,” inProceedings of Design Automation and Test In Europe Conference,

2005.

Vita

Vishnu C. Vimjam was born on May 24, 1981 in Kavali, a small town in coastal Andhra Pradesh in India. He

had his primary education in the Railway Mixed English Medium High School (Bitragunta - AP) till 1991

and then higher education in Ongole Public School (Ongole - AP) till 1996. He recieved the best out-going

student award from Ongole Public School in 1996. He then joined Narayana Residential Junior College

(Brahmadevam - AP) and completed his Intermediate college studies for two years. In 1998, he joined

Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology (affiliated to Jawaharlal

Nehru Technological University, Hyderabad - AP, India) and obtained his Bachelor of Technology Degree

in Electronics and Communications Engineering in April 2002. In 2002, he recieved the Justice Punnaiah

Gold Medal for his excellent academic achievements and also the best out-going male student award for

his overall undergrad performance. Later, he joined Virginia Tech in Fall 2002 and was admitted into the

direct PhD program in Computer Engineering in Spring 2004. He obtained his Masters Degree in Computer

Engineering from Virginia Tech in Decemeber 2004 and is currently pursuing his PhD on SAT-based Formal

Verification. His other research interests include BDD-based Model Checking and Sequential ATPG. After

the completion of his PhD, he will be joining Real Intent, a company specializing in functional verification

based in California.

114

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Design Flow
	Design Verification and Complexity Issues
	Why Formal Verification?
	Contributions of this Dissertation
	Dissertation Organization

	Chapter 2 Preliminaries
	Terms and Notations
	The Boolean Satisfiability Problem
	SAT-based Equivalence Checking
	SAT-based Model Checking
	SAT-based Unbounded Model Checking
	SAT-based Bounded Model Checking
	SAT-based Induction

	Summary

	Chapter 3 Increasing Deductibility in SAT Instances
	Motivation
	Related Work
	Increasing the Deductibility for SAT-based BMC
	Learning via Justification Enumeration
	Learning via Justification Frontier

	Efficiency Issues
	Experimental Evaluation
	Summary

	Chapter 4 Illegal State Identification
	Motivation
	Related Work
	Fast Illegal State Extraction
	Learning Using An ATPG
	Unachievable Partial-State Learning
	Exploiting Logic Implications
	Unified Framework

	Experimental Results
	Summary

	Chapter 5 Property Strengthening
	Motivation
	Property Strengthening Using an ATPG
	Property Simplification and Reordering

	Pre-selection and Derivation of Co-invariants
	Overall Flow and Discussion
	Experimental Results
	Summary

	Chapter 6 Interleaving BMC and Bounded Reachability Analysis
	Motivation
	Proposed Searching Framework
	Basic Idea
	Controllability-based Guiding

	Overall Algorithm
	Experimental Results
	Summary

	Chapter 7 Static Invariant Extraction
	Motivation
	Static Invariant Extraction
	Generation of Candidate Invariants
	Pruning the Candidate Set
	Verification of Candidates

	Experimental Results
	Summary

	Chapter 8 Conclusions and Future Work
	Bibliography

	Vita

