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SUMMARY 

Three parameters must be controlled to assure that a near-Earth 

trajectory will coincide with a desired interplanetary trajectory. These 

parameters are c3 (energy), ¢8 (declination), e8 (right ascension). 

This paper shows that c3 is an Earth-centered term proportional to 

the energy of a particle in orbit about the Earth but independent of the 

weight of the particle and the path taken to achieve the orbit. It then 

shows that there is a unique value of c3 associated with each inter-

planetary trajectory. These characteristics of allow the presenta-

tion of vehicle performance in a parametric manner suitable for making 

vehicle comparisons and useful for preliminary planning of missions to 

any of the other planets in our solar system. 

Declination, ¢8 , is explained in terms of celestial equatorial co-

ordinates and shown to be essentially equivalent to the latitude on Earth. 

The right ascension is explained in terms of the celestial equatorial 

coordinate system and shown to be a measure of the Earth's orbital 

position. 

Mission ground rules and vehicle and range constraints affect the 

performance capability for a specific mission. Some of these are the 

required declination range, the vehicle maximum parking orbit coast 

capability, the available azimuth range, duration of daily launch window 

and choice of launch site. These constraints are discussed briefly and 

an example given, for a 1973 mission to Mars which shows the effect on 

the launch period, of limiting parking orbit coast time and specifying 

a minimum daily launch period. 
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INTRODUCTION 

Interplanetary mission studies require information interchanges 

between different areas such as mission analysis, launch vehicle, 

spacecraft and experiments. 

This study attempts to define the space launch vehicle trajectory 

parameters and constraints which will affect the other design areas. 

The parameters are presented with figures and brief discussions which 

explain the parameters and their importance in interplanetary mission 

planning. It is assumed that the reader will be a technically 

educated person with an understanding of basic energy- methods, but 

with no prior experience related to interplanetary trajectories or 

launch vehicle performance. 
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THE VIS-VT.VA INTEGRAL 

Launch vehicle capability is commonly presented parametrically as 

a curve of spacecraft weight versus c3 where spacecraft or payload 

weight is defined as the total weight remaining after separation from 

the final stage of the launch vehicle. c3 is an orbit energy 

parameter. 

The parameter c3 indicates the difficulty of achieving a 

particular interplanetary trajectory in the same manner that the 

number of levels in a building indicates the effort required to climb 

the stairs from bottom to top. The higher c3 values are more 

difficult to attain and, therefore, for a given launch vehicle, result 

in a lower spacecraft weight capability. 

c3 was first recognized by Isaac Newton, in his consideration and 

expansion of Kepler's laws, as a vis-viva integral which relates the 

velocity of a body in an elliptical orbit about a larger body to the 

distance from the focus (center of the large body) of the ellipse. It 

can be developed by considering conservative forces acting on the body 

in orbit. This assumption is quite accurate for satellites in orbit 

about Earth with orbital altitudes somewhat greater than 180 km and for 

orbital coast periods of less than two orbits. 

The orbital energy is determined as follows: 

Potential energy is determined from Newton's law of Gravitation 

which states, "Any two particles attract each other with a force which 

acts along the line joining them and has a magnitude that is directly 

proportional to the product of their masses and inversely proportional 
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to the square of the distance between them." This is shown graphically 

in figure 1. For a spacecraft in orbit about Earth, this may be written 

as 

-F r 

The constant G is the universal gravitational constant and is required 

to make the terms equal. 

m1 represents the mass of the Earth 

~ represents the mass of the spacecraft 

r is the Earth radius plus spacecraft altitude. That is the 

distance from the center of mass of the Earth to the center of 

mass of the spacecraft. 

-F is the attracting force (negative sign signifies attraction) r 

The potential energy is equal to the attracting force multiplied by 

the distance through which it would act to achieve a zero potential. 
mlm2 

This may be written as (-F )(r) = G -----r r 

The kinetic energy is taken along the direction of travel and is 

1 2 -;:; m.....V. 
c::. c 1 

Vi denotes inertial velocity or velocity relative to a nonrotating 

Earth. 

The total orbital energy for the spacecraft is then 

e = kinetic energy plus potential energy 

or 
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We now introduce the Earth's gravitational coefficient',;"~, which equals 

the mass of the Earth multiplied by the universal gravitational constant 

e = 1 rn,_V 2 - ft-~ 
2 c 1 /--- r 

We can operate on this further to get the desired form of 

twice the unit energy per unit spacecraft mass. 

C = 2 ~ = V. 2 - ¥ 3 ~ i r 

This is the classical definition for 

2; 2 km sec when 

and gives 

V. is expressed in km/sec 
l 

;'-',l,, is expressed in km3/sec 2 

r is expressed in km 

which is 

in units of 

Note that it is possible to derive similar energy expressions for bodies 

in orbit about other celestial bodies by the proper definition of m1 

and ~· 
Examination of the equation for c3 shows three possibilities: 

1. c3 will be negative. For this case the spacecraft is in 

an elliptic orbit. It cannot escape the Earth's gravity and must remain 

in orbit about the Earth or reenter the Earth's atmosphere. The special 

case of a circular Earth orbit exists when c3 = -~. 

2. will be zero. This is a borderline case between 

elliptic and hyperbolic orbits. It is called a parabolic orbit but has 

no significance for interplanetary missions. 
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3. c3 will be positive. This is called a hyperbolic orbit 

because as r approaches infinity the potential function,~, ·r 
approaches zero. Thus for c3 positive, c3 represents the square of 

the magnitude of the spacecraft velocity (relative to Earth) which 

remains after the Earth's gravity ceases to affect the spacecraft. 

The velocity, relative to Earth, remaining upon escape from the 

Earth's gravity is called the hyperbolic excess velocity. It is 

designated by VhL in this paper. Its magnitude is equal to the 

square root of c3. Thus the velocity of the spacecraft in its orbit 

about the Sun (after Earth gravity effects are accounted for) is simply 

the vector sum of the hyperbolic excess velocity and the orbital 

velocity of the Earth. 

This is a very important result because it establishes the 

hyperbolic excess velocity as one of three parameters necessary to 

patch the near-Earth trajectory into the heliocentric trajectory which 

considers only the Sun and the spacecraft as another two-body system. 



RIGHT ASCENSION AND DECLINATION 

If one were to attempt to hit a moving target with a baseball it 

would be necessary to control the direction of throw as well as the 

speed. A similar requirement exists for interplanetary travel where 

the speed is controlled by c3 and the direction is established by two 

parameters called declination and right ascension of the radial asymptote. 

This section attempts to explain what declination and right 

ascension mean in a physical sense. 

Celestial Coordinate Systems 

Astronomers have defined two celestial coordinate systems, both 

based on a celestial sphere, with the Earth as the center. An ecliptic 

coordinate system denoted by celestial latitude and celestial longitude 

is used for calculations when the Earth's rotation is not important. 

The equatorial coordinate system is used when the Earth's rotation must 

be considered. These two systems are depicted in figure 2 which has 

been taken from reference 4. 

The Celestial Sphere.- The celestial sphere is defined in 

reference 4 and is essentially as follows: 

For the purpose of identifying directions in space, it is 

customary to image that all of the distant stars lie on a vast sphere, 

called the celestial sphere, which has its center at the Earth's 

center. 
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On the celestial sphere, two great circles known as the ecliptic 

and celestial equator are used as reference circles for the ecliptic and 

celestial coordinate systems, respectively. The ecliptic is formed by 

the intersection of the Earth's orbital plane with the celestial sphere. 

The celestial equator is formed by extending the plane of the Earth's 

equator until it intersects the celestial sphere. 

The ecliptic and celestial equator intersect at two points called 

the equinoxes. The vernal equinox which is used as a reference point is 

that point of intersection at which the Sun, in its apparent motion along 

the ecliptic, crosses the celestial equator moving from south to north. 

This happens on about March 21 of each year. 

In the ecliptic coordinate system, points on the celestial sphere 

are identified by celestial latitude, measured northward or southward 

from the ecliptic and by celestial longitude, measured eastward and west-

ward along the ecliptic fran the vernal equinox. 

In the equatorial coordinate system a point on the celestial sphere 

is located by declination and by right ascension. Declination, measured 

in degrees northward or southward from the celestial equator, corresponds 

(except for minor effects of gravitational deviation and of the Earth's 

slightly non-spherical shape) to the parallel or latitude on the surface 

of the Earth along which the given celestial point passes directly over-

head. Right ascension is measured eastward along the celestial equator 

from the vernal equinox. It is usually expressed in hours, minutes, and 

seconds from zero and 24 hours, where one hour equals 15 degrees of arc. 

Eastward in celestial coordinates is prograde to, or in the direction of, 

the Earth's orbit about the Sun; it is counterclockwise when viewing the 

equatorial plane from the north celestial pole. 
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Thus, right ascension designates a radial direction from the center 

of the Earth in the equatorial plane and declination defines an angle 

above or below the equatorial plane. A vector, which is directed radially 

from the Earth at a prescribed declination and has a projection onto the 

equatorial plane which is coincident with a prescribed right ascension, 

is uniquely oriented for a given day. 

The spacecraft trajectory, from a few hours to a few days after 

injection, represents such a vector. Figures 3, 4, and 5 illustrate 

this condition. 

Flight Path 

Figure 3 shows the projection of the spacecraft flight path upon 

the surface of the Earth. In this figure the direction of vernal 

equinox is identified and the right ascension of the S vector, e' is s 

shown. The vector S is called the radial asymptote and is explained 

later. 

The launch site is located by its right ascension, eL, declination 

(or latitude) ¢L, and the radius from the center of the Earth RL. 

The vehicle flight plane projection onto the surface of the Earth 

starts at the launch site along the direction of the launch azimuth, 

5:L. Azimuth is measured in degrees of arc with zero and 360 degrees 

towards the north, 90 degrees towards the east, and 180 degrees to the 

south. The inclination of the flight plane, i, is the angle between 

the plane of flight, projected to the equatorial plane and the equator. 

The angle through which the spacecraft would travel from launch until 
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it appears to be going directly away from the Earth is called the central 

range angle,¢, and is measured in the plane of the trajectory. 

The spacecraft appears to be going directly away from Earth as it 

approaches the limit of the Earth's sphere of influence. The Earth's 

sphere of influence may be considered a sphere whose radius is such 

that the Earth's gravity (determined by~) is no greater than the 

gravity force of the Sun. This is at approximately 925,000 km. 

The declination, ¢8 , of the radial asymptote (also called the launch 

asymptote) is the angle measured between the radial asymptote, S, and 

the equatorial plane, positive towards north. 

It can be considered to be the latitude of the ground trace of the 

spacecraft as the spacecraft escapes the Earth's sphere of gravity 

influence. Stated another way, if there were an observer at the center 

of the Earth looking at the spacecraft as it leaves the Earth's sphere 

of influence, the latitude at which his line of sight pierced the Earth's 

surface could be considered the declination of the departure asymptote. 

Actually this is not a correct representation, but it is sufficiently 

accurate for most mission planning. 

In actuality the spacecraft will be traveling on a hyperbola and 

the asymptote of that hyperbolic trajectory will not pass through the 

center of the Earth. 

The basic geometry for launch and ascent profile is shown in 

figure 4 which was taken from reference 3. This figure is drawn in the 

plane of the trajectory so it does not show the right ascension and 

declination of the radial asymptote. It does, however, show those events 

which occur within the plane of the trajectory. 
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The launch phase or boost phase starts at liftoff (at the launch 

site) and continues through the first powered flight phase, ¢1 , the 

coast in parking orbit and the final stage burn, ¢2 , terminating at 

injection into the interplanetary trajectory which will intercept the 

target planet on the desired arrival day. 

After injection the spacecraft coasts in a hyperbolic orbit which 

continues to turn toward the Earth until it becomes parallel to the 

departure asymptote. The coast arc, VS, is measured from the perigee 

of the hyperbola to the radial asymptote. The radial asymptote is 

parallel to the departure asymptote and passes through the center of 

the Earth. 

The point of injection is a function of the final stage flight 

direction and may vary from one vehicle to another. But, the departure 

hyperbola always has a theoretical point of closest approach to Earth 

called the perigee of the hyperbolic conic. So the coast arc, JS, is 

always defined from the perigee and not from the point of injection. 

Similarly, the point of injection is identified by the angle, 0 1 , 

called the true anomaly of injection. The true anomaly is used to 

signify the position of a point on an orbit from the lowest point of 

the orbit; it is positive when taken in the direction in which the 

spacecraft is traveling. 

Since the perigee and the departure hyperbola are fixed for a 

particular orbit, it is possible to define a line in the orbital plane 

which passes through the center of the Earth and the perigee of the 

orbit and intersects the departure asymptote. This line is called the 

line of apsides. For an elliptical Earth orbit, the line of apsides 

would pass through the point of closest approach (perigee) and the point 



of maximum altitude (apogee). For a hyperbolic orbit the angle between 

the line of apsides and the departure asymptote is designated by the 

symbol 1;'. It varies with the energy of the orbit, but is always 

greater than zero and less than 90 degrees. 

There are an infinite number of departure trajectories for any 

specific declination of radial asymptote as is shown in figure 5. The 

asymptotic velocity and actual velocity relative to Earth are assumed 

identical in magnitude and direction for each of these trajectories. 

This assumption can be made with good accuracy because the radius of the 

Earth's sphere of influence, approximately 925,000 km, is very large 

when compared to the perigee radius (usually less than 200 km) and yet 

is quite small when compared to the Earth-Sun distance of approximately 

150,000,000 km, The sphere of influence of any celestial body (other 

than the Sun) may be considered to be the radius at which the gravita-

tional force of the body is just equal to the gravitational force of 

another body or bodies. 

If the declination and right ascension of the asymptote of the 

spacecraft hyperbolic excess velocity and the day of the launch is 

known, then it is possible to determine with sufficient accuracy the 

initial conditions of the spacecraft orbit about the Sun. 

The curve of payload versus c3 must specify the applicable range 

of declinations because a particular launch vehicle and launch site will 

not allow all values of ¢S. 



DETERMINATION OF LAUNCH OPPORTUNITY 

It has been stated that c3, ¢s, es are the three parameters 

necessary to match the near-Earth trajectory to an interplanetary 

trajectory. The method for selecting a launch opportunity will now be 

described to illustrate the use of these parameters. 

The complete trajectory problem will be broken down into three 

separate but dependent simplified parts as follows: 

1. A near-Earth phase considering only the spacecraft and the 

Earth. This includes all of the powered launch phases and the early 

interplanetary coast phase. 

2. A heliocentric (Sun-centered) phase which includes most of the 

trip time. An actual flight would require course correction maneuvers 

during this phase. 

3. A near-target phase where the target planet and spacecraft are 

considered as a two-body system. This phase is handled in a manner 

similar to the near-Earth phase. 

Heliocentric Trajectory Phase 

Figure 4 shows the near-Earth phase and figure 6 shows the helio-

centric or Sun-centered phase. If all planet orbits were in a single 

plane, then a minimum energy trajectory (one for which a given launch 

vehicle could deliver a maximum spacecraft weight to the transfer orbit) 

would be an ellipse about the Sun just large enough to include the 

Earth (at launch) at one end of the major axis and the target planet 

(at arrival) at the other end of the major axis. The spacecraft would 

travel 180 degrees around the Sun and there would be only one launch 

13 
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day and one arrival day corresponding to this minimum energy trajectory 

for each period of planet conjunction. 

In reality, the other planet orbits are inclined slightly to the 

plane of the ecliptic and for practical reasons space missions require 

a launch period of several days. However, it is still desirable to 

launch near the minimum energy requirement to get the best use from the 

launch vehicle. To determine an acceptable period for mission considera-

tion the heliocentric trajectory phase is examined parametrically about 

the period of planet conjunction to identify specific launch day-arrival 

day combinations for which the launch vehicle can deliver an acceptable 

spacecraft weight. These particular launch days selected for further 

mission studies are called the launch period or launch opportunity. 

Use of Lambert's Theorem.- Once a launch day and trip time or 

arrival day has been selected Lambert's Theorem is solved to determine 

the trajectory which satisfies these conditions. Reference 2 was the 

source for much of the following: Lambert's Theorem states the transfer 

time between any two points on an elliptical orbit is a function of the 

sum of the distances of each point from the focus, distance between the 

points, and the semi-major axis of the ellipse. Functionally, this is 

represented as 

The Sun is located at one focus of the heliocentric orbit. 

TF = Trip time from launch planet to target planet, days 

R1 = Radius from Sun to launch planet at time of launch 

~=Radius from Sun to target planet at time of arrival 

C = Distance from launch planet at time of launch to target 
planet at time of arrival (see figure 6) 
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For a specific launch day and arrival day, RL and ~ are 

determined from the American Ephemeris Almanac, and C is determined 

by vector subtraction (see fig. 6, C = RL - ~). A digital computer 

is then used to solve for a , the semi-major axis of the heliocentric 

trajectory which intersects the center of the launch planet on the day 

of launch and the center of the target planet on the day of arrival. 

These calculations are made in celestial equatorial coordinates. 

Velocities (magnitude and direction) are determined for the trajectory 

at launch and arrival times. 

Near-Earth Phase 

The heliocentric trajectory is matched to the planet centered 

trajectory as follows: The launch planets heliocentric velocity is 

subtracted vectorially from the heliocentric velocity of the transfer 

trajectory (see fig. 7) leaving VhL the hyperbolic excess velocity 

of the spacecraft. 
2 (vh1) is equal to c3 and this data can be plotted as c3 

contours for various launch day-arrival day combinations. These (c 3) 

energy contours are then examined and a launch period selected for 

further mission study. It is necessary to limit mission planning to 

near the minimum possible c3 values to assure a reasonably efficient 

use of the launch vehicle (i.e., near maximum payload weight). But 

other mission objectives and requirements will tend to shift the launch 

day-arrival day choice away from the absolute minimum energy trajectory, 

so a total launch period of 60 to 120 days may be considered for early 

planning purposes. 



Figure 8 is a c3 contour plot for a 1973 mission to Mars, taken 

from reference 3. The launch period covered is from about June 13 to 

September 3, 1973, while arrival dates vary from November 1973 to May 

1974. Declinations of the radial asymptotes are also shown. This 

particular planning chart is for type I transfer trajectories and shows 

that there are two arrival days for each launch day and each energy 

level. 

A type I trajectory is a trajectory which travels less than 180 

degrees around the Sun. Type II trajectories require the spacecraft to 

travel more than 180 degrees around the Sun. 

The two different arrival dates for each launch day and c3 level 

may be considered as different orientations of the trajectory ellipse. 

The heliocentric trajectory, except in the vicinity of the planets, is 

an elliptical trajectory; it contains the Sun at one focus and the posi-

tion of the Earth at launch and the planet at arrival as points on the 

ellipse. For the shortest trip time, called class I trajectories, the 

trace of the ellipse would not cross the orbital trace of Mars before 

arrival. For the longest trip time, the ellipse must be reoriented 

such that the trajectory trace will cross the Mars orbital trace before 

the spacecraft intersects Mars; the spacecraft then intersects Mars on 

the second time its trajectory crosses the Mars orbit. 



MISSION CONSTRAINTS 

It has been shown so far that launch vehicle payload capability 

can be presented as a function of c3 and that this manner of presenta-

tion is especially useful for interplanetary mission planning. The 

orientation of the hyperbolic excess velocity vector has been shown to 

be determined by right ascension and declination. 

Since is independent of the ascent profile it can be used as 

a common parameter to compare launch vehicles. Each launch vehicle 

capability is determined for the optimum ascent trajectory and this 

capability is then plotted as spacecraft weight versus c3. 

There are, however, many constraints which will affect the launch 

vehicle capability for a particular mission. These include launch 

vehicle system limits, launch site and launch range constraints, and 

mission ground rules. 

Some of these will be discussed briefly to identify their effect 

on launch vehicle capability. The Eastern Test Range (Cape Kennedy, 

Florida) will be assumed to be the launch site. 

Range and Tracking Constraints.- The Eastern Test Range is responsi-

ble for the safety of property and personnel at the launch site and 

along the launch vehicle flight path. Launch azimuths between 45 degrees 

and 114 degrees east of north have been established for Eastern Test 

Range launches. In addition, both the spacecraft and the launch vehicle 

may have requirements for radar tracking and communications, such as 

receiving and sending flight data and guidance commands, during the 

ascent. These requirements, because of the location of tracking and 
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data stations, may limit the azimuths available for a particular launch 

to approximately 65 degrees to 114 degrees east of north. 

Mars Mission 

Some aspects of a mission to Mars with a 1973 launch will be dis-

cussed to demonstrate the effects of various constraints. 

Figure 8 shows c3 requirements about the minimum energy point for 

type I trajectories and the declination associated with various arrival 

days. A maximum acceptable c3 of 24 km2/sec 2 will be assumed. For 

this case, the launch period appears to start on about August 25, with 

required declinations greater than +15 degrees and less than 55 degrees. 

The earliest arrival date is December 7, 1973. One other target related 

constraint to be considered is the spacecraft hyperbolic excess velocity 

at arrival at the target. This affects the speed of a flyby or impact 

mission and the orbit insertion velocity requirement for an orbital 

mission. The hyperbolic excess velocity at the target planet is designa-

ted as V...:, to avoid confusion with the launch planet terms discussed 

previously. A line on figure 11 indicates a V°" = 3.5 km/sec. All 

points below and to the left of this line represent higher arrival 

velocities and are unacceptable. 

The first possible launch day becomes June 27 to satisfy the target 

planet arrival velocity and the corresponding earliest arrival date is 

about January 15, 1974, instead of December 7, 1973. 

Yaw Ascent.- Figure 3, which has been discussed previously, depicts 

the vehicle flight plane for a planar ascent. That is the trajectory 

from liftoff through injection. Another type of trajectory called a yaw 

or dogleg ascent is possible and is sometimes used to achieve a desired 



19 

orbit inclination when range or other constraints would not allow a 

planar ascent. A yaw ascent occurs when the vehicle is launched along 

a preselected azimuth and then, sometime during the powered phase of 

flight, executes a left or right turn, called a yaw maneuver, to change 

the plane of the final trajectory. The yaw ascent is less efficient 

than an equivalent planar ascent, resulting in less spacecraft weight 

capability. 

Planar Ascent.- A planar ascent to orbit will result in an orbital 

plane which contains the center of the Earth and the launch site lati-

tude; during one complete orbit the spacecraft will have a ground trace 

which will include at least all latitudes from the launch site latitude 

to the corresponding latitude on the opposite side of the equator. Thus, 

if the capability existed to restart the launch vehicle after a coast in 

orbit, it would be possible to launch at any time of the day and select 

a parking orbit coast time such that a declination (¢8 ) less than or equal 

to the magnitude of the launch site latitude could be achieved. However, 

if the required declination is greater than the launch site latitude, ¢L, 

then launch azimuths must be chosen to assure that the orbital plane will 

intersect the required declination or a yaw maneuver will be required 

during the ascent trajectory. 

Launch Azimuths.- The choice of launch azimuth, 5:L, affects 

spacecraft weight capability because the surface of the Earth is moving 

eastward, due to the Earth's rotation, at approximately 380 m/s at the 

Eastern Test Range. A due east launch(~ L = 90 degrees) takes full 

advantage of this rotational effect whereas launches at azimuths other 

than 90 degrees east of north will get correspondingly less assist. 
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Geometrical restrictions of the launch azimuth is discussed in 

reference 3 as follows: 

"If the absolute value of the departure asymptotic declination is 

greater than the latitude of the launch site (28.3 degrees for the 

Eastern Test Range), then there is a band of azimuths symmetric about 

90 degrees east of north which cannot be utilized for planar ascents. 

The limits of this band are determined by 

" sin 

This effect is plotted on figure 9 which shows some geometrical 

relationships for the Eastern Test Range. Figure 9 is plotted for a 

hypothetical right ascension; however, due to the Earth's rotation, 

every right ascension is available for a launch at some time during each 

day. Launch is assumed to occur at 24 hours on the right-hand side of 

the figure with the vehicle flight path proceeding to the left along the 

launch azimuth. The time scale at the bottom of the figure represents 

15 degrees of Earth rotation per hour; it could be considered degrees of 

longitude at the equator. Central range angles of 170 and 290 degrees 

have been plotted for later use. The central range angle trace is curved 

from vertical because of the inclination effect of orbits at different 

launch azimuths. 

Declinations between plus and minus 50 degrees are available for 

the band of launch azimuths from 45 to 135 degrees east of north. The 

50-degree declination limit to satisfy range safety constraints does not 

change the total launch opportunity assumed for a c3 of 24 but does 

remove some arrival dates from our mission consideration. 
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Parking Orbit Coast.- Parking orbits are generally chosen to be 

circular at about 185 km altitude. The circular orbit velocity at 185 

km is approximately four degrees of arc per minute. The circular orbit 

simplifies the design and control of the flight trajectory. The altitude 

represents a compromise, it must be of sufficient height to avoid 

excessive drag effects and allow adequate view periods for tracking, but 

it is desirable to keep the parking orbit as low as possible to maximize 

the launch vehicle's payload weight capability. Also the lower orbits 

are slightly faster in terms of coast arc per unit of time. 

The maximum parking orbit coast time is determined by the capability 

of the spacecraft and launch vehicle systems. The current Centaur launch 

vehicle stage has a maximum parking orbit coast capability of about 30 

minutes. This is equivalent to 120 degrees of orbital arc at a coast 

velocity of four degrees of arc per minute. 

We will assume a Titan/Centaur launch vehicle with a maximum 

parking orbit coast capability of 120 degrees of arc. Figure 4 illustrated 

the various segments of the central range angle ¢. For our launch vehicle 

choice the powered phases of flight, ¢1 and ¢2 , are essentially constant 

at 18 and 25 degrees, respectively. We will define the true anomaly of 

injection to be a constant 11 degrees and, 'V8 , the arc from the perigee 

of the hyperbolic conic to the radial asymptote will be approximately 

136 degrees for a c3 of 24 as shown in figure 10. 

With these vehicle related assumptions the available central range 

angle values can be established as 
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¢maximum = ¢. . + parking orbit coast capability mnimum 

= 170° + 120° = 290° 

Thus, for a Titan/Centaur launched from the Eastern Test Range we 

have available only declinations which can be achieved with a central 

range angle variation of 170 to 290 degrees. Figure 9 has been marked 

with these approximate range angle limits. Examination of figure 9 

within the band of available central range angles shows that launch 

azimuths must be greater than 95 degrees to achieve the minimum required 

declination of +15 degrees while the maximum declination available to a 

planar ascent is about +30 degrees at a launch azimuth of 114 degrees 

east of north. To reach declinations greater than +30 degrees we may 

increase the parking orbit coast arc or utilize a yaw maneuver ascent to 

achieve equivalent azimuths greater than 114 degrees east of north. The 

true anomaly of injection may also be varied but the payload effect may 

be more severe than a yaw maneuver. 

11 degrees for this exampleJ. 

( ,"\ is assumed to be a constant Yr 

Assume that we can utilize yaw maneuvers to an effective azimuth of 

130 degrees east of north and that this allows a declination range of 

+15 degrees to +40 degrees. This change further restricts the available 

arrival days but still does not reduce the launch period. However, our 

launch azimuths must be greater than 95 degrees. 

Daily Firing Window.- All of the preceding has ignored the amount 

of time available to accomplish a launch each day. It is possible to 

launch an interplanetary mission, with restraints on declination, right 

ascension and launch azimuth, only during a small part of the day. The 

time during which a launch is possible is called the daily launch window 

or daily firing window. 
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Reference 3 states: 

"An adequate firing window should be provided during each launch 

date, because the launching of a vehicle at a precise instant in time 

is improbable due to the complexity of both the booster and the 

spacecraft. 

"The available firing window for each launch day is a function of 

(1) launch site latitude, (2) launch azimuth interval, and (3) 

declination of the departure radial asymptote." 

Figure 9 can be used to indicate the effect of a minimum daily 

window upon launch azimuth requirements and the available declination. 

Assume a two-hour daily launch window, as a mission ground rule, 

and a required declination of +25 degrees. Referring to figure 9, it 

is seen that a central range angle of approximately 290 degrees 

(equivalent to a 30-minute parking orbit coast time) would limit the 

azimuth to 108 degrees minimum. The launch time for this case is 5.3 

hours. 

The time scale on figure 9 is for a hypothetical launch date and 

right ascension of the radial asymptote; however, the daily firing 

window for any interplanetary mission can be extracted as the change 

in time as follows: recognize that a chosen launch day-arrival day 

combination for the target planet specifies the trajectory in terms 

of c3 , declination and right ascension. The right ascension represents 

a radial direction in the celestial equatorial plane; but, the Earth is 

the center of the celestial coordinate systems. A given longitude will 

intersect every right ascension during the daily rotation of the Earth. 

We must select launch azimuths such that the launch trajectory intersects 
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the required declination within the central range angle limits. The 

projection of the available central range angles onto the equatorial 

plane will sweep across the required right ascension as the Earth 

rotates. The daily launch window is that time during which the 

equatorial projection of an available range angle is aligned with the 

required right ascension. Thus, the daily launch window for any inter-

planetary mission is the projection of the available central range 

angles onto the equator, divided by the Earth's rotation rate; it can 

be extracted as the change in launch time on figure 9. 

Having established the minimum azimuth to be 108°, we follow the 

25° declination line in the direction of increasing azimuth and 

decreasing central range angle to a relative time of 7,3 hours. The 

corresponding azimuth is 123°, 

Since range safety limits planar ascent trajectories to launch 

azimuths of about 114°, this example would require a yaw maneuver (dog 

leg) ascent trajectory. 

It was previously shown that a declination of +30 degrees was 

available at an azimuth of 114 degrees with a 30-minute parking orbit 

coast capability when there were no requirements on daily window 

duration. Thus, for the example shown, the requirement for a two-hour 

daily window resulted in significant effects on available declination, 

useful azimuth range and ascent trajectory shaping. 

Following the previous assumption that we could utilize a yaw 

maneuver ascent to an equivalent azimuth of 130 degrees, we can make an 

approximation of the maximum declination available with the two-hour 

daily window restraint. By following the 35 degree declination line 
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from the limiting range angle (equivalent time of 5,6 hours) to the 

130 degree azimuth line (equivalent time of 7,3 hours), we see that 

approximately 1.7 hours would be available as a daily window at a 

declination of 35 degrees. This is only a rough approximation of the 

daily window for the yaw ascent maneuver so assume that 35 degrees 

declination is available. This limits even further the choice of 

arrival days available for the early launch days. 

The final launch period has been drawn on figure 11 to demonstrate 

how the constraints considered have reduced the available launch day-

arrival day combinations. 
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m, : MASS OF EARTH 
mz : MASS OF SPACECRAFT 
R'1 .: EARTH'S RADIUS 
h : SPACECRAFT ALTITUDE 
r = RAD1US FROM CENTER OF EARTH TO CENTER OF 

SPACECRAFT 
G = UNIVERSAL GRAVITY CONSTANT 
µ = SYSTEM GRA':/ITATIONAL COEFFICIENT= G(m 1 •mz) 
IF mt .c.< m,. THEN ,,u. ~ Gm, 

FIGURE t. A TWO BODY SYSTEM 



EQUATORIAL  COORDINATES 

RIGHT 

ASCENSION\ 

PA RA L LE L ~~ \ 
DECLINATION 

\ 

FROM  REFERENCE  4 

28 

ECLIPTIC  CO ORDI NATE"S 

PAR AL LE L OF 
.---- CELESTIAL 

ECLIPTIC 

PLANE 

AV"TUMNAL 

EQUINOX 

LAi11U DE 

CELESTIAL 

/LONGITUDE 
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EQUATOR 

ZL :: LAUNCH AZIMUTH 
e>L = RIGHT ASCENSION OF LAUNCH SITE 
c:f>L = LATITUDE OF LAUNCH SITE 
RL = RADIUS TO LAUNCH SITE FROM EARTH'S CENTER 
S = RADIAL ASYMPTOT-E 
~ = DECLINATION . OF RADIAL ASYMPTOTE 
®s = RIGHT ASCENSION OF RADIAL ASYMPTOTE 
cf, : CENTRAL RANGE ANGLE 
i = INCLINATION OF ORBIT 

FIGURE 3 TRACE OF VEHICLE FLIGHT PLANE 
ON EARTH'S SURFACE 
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ASCENT LAUNCH SITE 
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FINAL ,, ,1'-/- ~~€.-- ,..,,.., 
STAGE BURN~/ PERIGEE OF HYPERBOLIC __ -. 

/~--CONIC ----

"'vtl;.-_ ~l::C~ION ..- - - DEPARTURE 
I ASYMPTOTE 

Q>1 IS BURMING ARC OF LAUNCH VEHICLES INTO PARKING 
ORBIT 

Q)2 IS BURNING ARC OF FINAL STAGE 
<f IS CENTRAL· ANCLE BETWEEN LIi.UNCH SITE ANO 

RADIAL ASYMPTOTE 
"\).s IS ANGLE BETWEEN PERIGEE AND RADIAL ASYMPTOTE 
1'x IS TRUE ANOMALY OF INJECTION 
'1' IS ANGLE BETWEEN DEPARTURE ASYMPTOTE AND LINE 

OF APSIDES 

FIGURE 4 BASIC GEOMETRY FOR ASCENT 
PROFILE 
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' / '-._ ~VIIL 

POSSIBLE DEPARTURE---~ 
TRAJECTORIES ~/ .'\ 

LOCATIONS 

!.--- --\ 

/\ 
I ----1. 

\ 

~\ -~, 
' I _____ ... ~ - j~ Vu __ -_- - - -----; 

-

I 

~SPHERE OF 
INFLUENCE 

VhL 15 HYPERBOLIC EXCES5 VELOCITY OF 
SPACECRAFT RELATIVE TO EARTH 

FIGURE 5. POSSIBLE DEPARTURE. 
TRAJECTORIES 
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CENTER 
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TARGET PLANET 
CENTER 

RL 15 HELIOCENTRIC RADIUS OF LAUNCH PLANET AT 
TIME OF LAU NCH 

Rp IS HELIOCENTRIC RAC)IUS OF TARGET PLANET 
AT ARRIVAL 

1/1" IS HELIOCENTRIC CENTRAL ANGLE 
R IS SPACECRAFT POSITION VECTOR 
C IS DISTANCE BETWEEN LAUNCH PLANET AT 

LAUNCH AND TARGET PL ANET AT 
ARRIVAL C =/ Rp -RL / 

FIGURE G IN-PLANE TRANSFER GEOMETRY 
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v, 

V IS HELIOCENTRIC VELOCITY OF SPACECRAFT AT 
LAUNCH 

V1 IS £ARTH 1S ORBITAL VELOCITY ABOUT THE 
SUN APPRO)llMATELY 29.8 KM/SEC. 

VhL IS SPACECRAFT HYPERBOLIC EXCESS 
VE:. LOCITY 
(IT IS Tl~EORETICALLY POSSIBLE TO HAVE 

SPACECRAFT TRAJECTORlE S TRAVEL 
ABOUT THE SUN HJ THE DI RECTI ON 
OPPOSITE THE LAUNCH PLANE.TS ORBITAL 
ROTATION BUT THE V,.L REQUIRED FOR 
SUCH Ml SSI ONS MA'1<E5 THEM IMPRACTICAL) 

flCURE 7. DETERMINATION OF HYPERBOLIC-
EXCESS VELOCITY VECTOR 
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