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Abstract. The Chow-Yorke algorithm i= 5 homotopy method that has been proved globally convergent for Brouwer fixed point
problents, certain classes of zero finding and nonlinear programming problems, and two-point benndary value approximations
based on shooting, finite differences, and spline coliocation. The method is numerically stable and has been successfully zpplied
to & wide range of practical engineering probiems. Here the Chow-Yorke algorithm is proved globally convergent for a class of
Gaolerkin approximations o nonlinear twe-point boundary vahie problems. Several numerical implementations of the algorithm
are briefly described, and computational results are presented for @ fairly difficult magneto-hyvdrodynamics boundary value
problem.
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1. Introduction. The Chow-Yorke algorithm {actually a family of algorithms} for nonlinear systems
of equations was proposed in 1976, and since that time both the theory and the scope of its practical
applicability have been greatly extended. This homotopy algorithm is accurately described as a
globally convergent, probability-one algorithm. It is truly globally convergent in the sense that it
will converge to a sclution of the problem from an arbitrary starting point. The phrase “probability
one” refers to the rigorous theoretical results which guarantee convergence for almost all choices of
some parameter vector, l.e., with probability one.

Homotopy methods (both continuous [1} and simplicial [10, 24]} were originally very inefficient,
and dismissed by some as inherently inferior to quasi-Newton algorithms. A common misconception
is that homotopy algorithms are just continuation or an obvious extension of classical continua-
tion. While this is superficially true, there are fundamental philosophical differences between these
probability-one algorithms and standard continuation. These differences result in an elegant and
rigorous theoretical foundation for globally convergent probability-one homotopy algorithms, and
have subtle yet important implications for computer implementations [56]. Furthermore, there has
been a series of practical engineering problems, successfully solved by homotopy methods, on which
continuation and quasi-Newton methods either totally failed or experienced great difficulty [28-46].
Current implementations {as in HOMPACK [55]} of these globally convergent probability-one ho-
motopy algorithms are reasonably efficient, and their robustness, stability, and accuracy have never
been-in doubt.

There are three distinct, but interrelated, aspects of homotopy methods: 1) construction of
the right homotopy map, 2) theoretical proof of global convergence for this homotopy map, and 3)
tracking the zero curve of this homotopy map. The first aspect is currently still an art, although
this is much better understood now due to the accumulation of computational experience [28-46,
49]. Although much remains to be dome, significant progress has been made on the second aspect.
Global convergence has been proved for Brouwer fixed point problems [4, 48], certain classes of zero
finding [48] and nonlinear programming (both unconstrained and constrained) problems [49], and
two-point boundary value approximations based on shooting [51], finite differences [52], and spline
collocation [54]. Recently Morgan [21-22] obtained some elegant results for polynomial systems,
and the present work considers Galerkin approximations to nonlinear two-point boundary value
problems. Various curve tracking algorithms have been around for a long time (e.g., [14-16]), but
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there g an Important distinction between general curve tracking alsorithms and homotopy curve
tracking algorithms. The object of the former is the zero curve itself, whereas the object of the
latter is a point at A = 1. This difference was emphasized in [47], [48], and 56], and the algorithms

described here are more in the spirit of homotopy methods than a general tracker.

Section 2 outlines the theoretical foundation of globally convergent, probability-one homotopy
methods, and proves some convergence theorems for Galerkin approximations to nonlinear two-
point boundary value problems. Section 3 discusses several algorithms for tracking the homotopy
curves, as well as some pertinent details of the software package HOMPACK used to obtain the
numerical results. Section 4 considers a nontrivial two-point boundary value problem from fluid
dynamics, presents numerical results, and illustrates the dependence of the solution on the problem

parameters.

2. Theory. Consider the two-point boundary value problem
V(@) =flzu(z),v'(2), ©0<z<, (1)

y(0) = y(1) =0, (2)

PR - . y . n" oy . 9 .
where y(z) is an #i-dimensional vector function and f(z, u, v) is an #-dimensional C* vector function.
This is naturally posed in a weak form via a variational formulation using the space

V= {fe&Z0,1]|f0) = f(1) =0},

where H*[0, 1] is the Hilbert space of all absolutely continuous functions cn [0,1] whose derivative
lies in. L*[0,1]. Let S, © V be a finite-dimensional vector space with basis ¢1,...,dn.

Using the finite-dimensional approximations

: (3}

=

n
Yl ) & Ap(z) = Zamgqb,-(x), m=1,...,
=1
the standard Galerkin approximation to equations {1-2) is the nonlinear system of equations

Zam{<¢21 ¢;L> + <fm(;A; Ar)) ¢A.> - O)
=1

(4)

IS

Here

15 the inner product.

Ezample 1. Continuous piecewise linear functions
Let 0 = 29 < 31 < *++ < &y < &ye1 = 1 be a partition of [0,1], and let S, be the space of
continucus, piecewise linear functions f(z) with breakpoints zg,..., 2,3 and f(0} = f{1) = 0. The
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basis functions ¢y, 1= 1,...,n, are defined by ¢;{z;) = &;. Observe that in this case the equations
{4) correspond to the difference equations

2 Am(zk—i—l) - Am(xk) _ Am(zk} W Am(zk—l}
b + hiiy figy1 hy

——{ul, A, AT, i) = Fmlms, Alzy), A () + O(R)
by + gy

where h; = 2, — 2,_1, b = max, h;. This is a standard finite difference approximation to (1) (¢f [52]
for the case of a uniforrn mesh). :

Example 2. Chebyshev series (spectral methods).
Using the Chebyshev polynomials { T,(2}}22, for the interval |1, 1], take

Gim1(2) = Tu(2z — 1) ~ 1, k even
P T (22 - 1) - (22— 1), kodd

for k= 2,3,.... These ¢(z) satisfy the zero boundary conditions, are dense in V', and are relatively
well conditioned. The equations (4) in this case are not sparse. See Gottlieb and Orszag [12] for
details.

A third example, generalizing Example 1, would be a space &, C Ck“z[O, 1] consisting of
piecewise polynomials of order k > 2 with B-splines for the basis functions ¢;. This spline space 1s
developed in Section 4.

The accuracy and convergence of the Galerkin approximation (3} to the exact solution ¢(z)
of {1-2) can be shown under various assumptions on the nonlinear right hand side f(z,u,v) and
generalizations of y" to elliptic operators L[w(z}] = E;-\;O(—I)J'“Dj (p;(2)Fw(z)). To illustrate,
some typical theorems from Ciarlet, Schultz, and Varga [5-9] will be quoted here. Following [5],
assume that # — 1, a classical solution @(z} of (1-2) exists, the nonlinear right hand side has the
form f(z,y) (i.e., does not involve '), and

1

5(z, ) ] (w'(t)) " dt

>y > A= 0
371. = > A UI)IEi%' 1 2 (6)
w0 [ (w(t)) dt
a

for all z € [0,1] and all real u. The appropriate norm (derived from an inner product based on a
linearization of (4)) in this context is

1 1/2
ol = | [ @) 2o e wey,
0
where the constant = is the same as that in (6). The accuracy of the Galerkin approximation A(z)
is given by

Theorem. Let ¢{z) be the solution of {1-2) subject to the assumptions above, let 5, be any finite
dimensional subspace of V of dimension n with basis ¢1,...,0,, and let Anlz) = 200 | Gndi{e),

o
(V)



where &y is the (unique under the above assumptions} solution to (4). Then there exist constants
C and X independent of n and 5, such that

1A= 8lleo € KiiAp—dllq < € inl [lw— ¢l
wE Sy

Theorem. Let ¢(z) be the solution of (1-2) subject to the assumptions zbove, let {S,,,}:C:I be any
sequence of finite dimensional subspaces of V' such that |J;_, S, is dense in V in the norm |} - |j,,
and let {An(z)}:; be the sequence of functions obtained by solving (4} over the subspaces S,

respectively. Then {An(x)}:il converges untformiy to $(z).

Generalizations of these theorems [5-9, 26| tend toward generalizing the differential operator
on the left hand side in (1), weakening the smoothness assumptions on the right hand side in
(1), and generalizing the boundary conditions (2), rather than the form of and growth conditions
on f(z,u,v). The homotopy theorems derived here require C? smoothness {piecewise C? is the
absolute minimal requirement), and have rather mild growth restrictions on f{z, ¢, v) compared to
(6). Furthermore the f considered here can involve y'(z) in a highly nonlinear way, whereas the
f=f(z,u) in (6) cannot involve y'(z) at all. Roughly speaking, with the exception of smoothness,
the limitations of the theoretical foundations for applying globally convergent homotopy methods
to Galerkin appreximations to nonfinear two-poini boundary value problems derive more from the
applicability of the Galerkin method itself than from the convergence conditions of the homotopy
methods.

Let Y = (all,alg,...,almagl,...,agn,... _,Qﬁl,...,ﬂiﬁn)t. Then the system of equations (4)
has the form
PlY)=MY+NY)=0, (T)
where _
M 0o ... O
0

M ... 0 - \

M - H MIJ - <¢g‘) ¢;>;

0 o ..
N(Y) = ({5 A, A'(2)), 61(5)), -, (o, 4(2), 4'(2), 8u(a),
(s, 4(2), (), 61(2)), .-, (ol A(2), 4'(9)), $ul2)),

(e, A(), A'(=), @1(2)), -, (ol Als), 4'(9)), 6n(2)).

Thus the two-point boundary value problem (1-2) is approximated by the nonlinear system of
equations (7), which has dimension
p=an.

A homotopy method is used to solve (7).

Since {u,v) -» {¢',¢') is an inner product on V and ¢1,.-.,¢x are linearly independent, the
“Gram matrix M is symmetric and positive definite. Therefore M is also symmetric, positive definite.
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Let £ denote p-dimensional real Euclidean space. The following four lemmas from [51], [51],
501, [52] respectively will be useful.

Lemma 1. Let F : EP — E* be a C* map, a € E, and deline g, : [0,1} x E? — E¥ by
pa(A,¥) = AP{y) = {1 - M)y — a).

Then for almost all a € EF there is a zero curve 7 of g, emanating from (C, a) along which the
Jacobian matrix Dpg(X, y) has full rank.

Lemma 2. If the zero curve v in Lemma 1 is bounded, it has an accurmulation point (1,7}, where
F(3) = 0. Furthermore, if DF(y) is nonsingular, then - has finite arc length.

Lemma 3. Let F - EP — EP be a C° map such that for some r > 0, £ F(z) > O whenever ||z]| = r.
Then F has a zero in {z € EF | |izl] < r}, and for almost all ¢ € E?, |lal} < r, there is a zero curve

~ of
polh, ) = AP(x) + (1 — A)(z - a),

along which the Jacobian matrix Dpy{A, r) has full rank, emanating from (0, a) and reaching a zero
% of F at A = 1. Furthermore, « has finite arc length if DF{Z) is nonsingular.

Lernma 3 is a special case of the following more general lemma.
Lemma 4. Let F: E? — E' bea €? map such that for some 7 > 0 and 7 > 0, F{z) and £ e do
not point in opposite directions (pF(z) + (z - a) #0Vp > 0) for Yz} = r, [[al] <7 Then F has a
zero in {z€ EP | ||z]| < r}, and for almost all e & EP, l|al| < %, there is a zero curve 7y of

pa(h, ) = AF(z) + (1 = A)(z - a),
along which the Jacobian matrix Dpa(X, 2) has full rank, emanating from (0, ¢) and reaching a zero
7 of F at A = 1. Furthermore, v has finite arc length if DF(z) is nonsingular.

Theorem 1. Let N{Y) in (7) be a C? mapping, and suppose there exist constants C and v such

that v
limsup M =C, 0<wv <l (8)
¥ hy—oo Y2

For W € EP, define pw : [0,1) X EP — EP by
o, ¥) = AE(Y)+ (1= A)(Y = W),

Then for almost all W & E? there exists a zero curve 7 of pw, along which the Jacobian ma-
trix Dpw(X, ¥) has full rank, emanating from (0, W) and reaching a zero Y of F {at A = 1).

Furthermore, if DF(Y) is nonsingular, then 7 has finite arc length.

Proof. As observed above, the matrix M in (7) is symmetric and positive definite. Therefore all
its eigenvalues are real and positive. Let I' > 0 be the smallest eigenvalue of M. Then a simple

argument shows that for ¥ # 0,
YiIMY >T| Y[ > o0. (9)

Choose € > 0. Using {8) and (9) yields
VER(Y) = VIMY + VON(Y) 2 TIY | [Vl (C+o) il Y]; >0
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for | Y|}, sufficiently large. Therefore there exists r > 0 such that YIF{Y) > Cfor ||
result now follows directly from Lemma 3. Q.E.D

Theorem 2. Let N{Y ) in (7) be & C* mapping and I' > 0 defined by (9). If

N(Y
limsup |—!—(—)w C<T,

‘IYi\Q—"'OC Jf “2

then the conclusion of Theorem 1 holds.
Proof. This foliows immediately from the proof of Theorem 1. QED.

Observe that Theorem 2 is stronger than Theorem 1, but since Theorem 2 requires knowledge
of I', Theorem 1 is casier to verify. The next two theorems, giving conditions on the right hand
side f{z, u, v) in (1), are what one would use in practice.

Theorem 8. If f(z,u,v) in {1) is C? and bounded, then the conclusion of Theorem 1 holds.

Proof. f(z,u,v) bounded and C* implies that N{Y¥) is also bounded and €2, and thus (8) holds
with € == 0 and v = 1/2. Therefore the conclusion of Theorem 1 holds. Q.ED.

Theerem 4. Let flz,u,v) in (1} be a C* mapping, and suppose there exist constants i, £, and ¥
such that

1z w, )l < ple+ (ull, = o)), 0<v<n,
for all 0 < z< 1 and u, v € E* Then the conclusion of Theorem 1 holds.

Proof. Let

kA
= Vpenmi®ila), k=1,...,% 0<z<l, (10a)

and

n
=Y Zpeymitil), k=14 0<z<L (108)
Since the basis functions ¢; are in V| it follows from the equivalence of norms in finite dimensional
spaces that there exist constants K; > 0 and Ky < oo such that

Z a1¢t

a)V? < < Kz(dfa)lfz, | (11)

wlle

where & = {ai,...,an)! is a real n-vector and W110,1] is the Sobolev space of functions whose
{weak) derivatives lie in L#[0,1], and the Sobolev norms are (cf. [26])

Wl = [ 1+ war e L 1< pecn
{[vm , o=t}

”””W(}O[qﬂ = Sup |z — gl

0=z y<1

For instance, the constant K corresponding to Example 1 in Section 2 has the form Ky =

constant)/\/ min; h;.




Now using (10), (11), the theorem hypothests, the Cauchy-Schwarz inequality, Jensen’s inequal-
ity, and the relation (a+ 8)* < 2(a® + %) gives

IN)= sp NYYZ= sip 32 (il ot} oml)

12[g=1 41 R—
< sup Z ¥y 12n 0]l
TE |2 lm"

l2

Susﬁ FIOrR2INES!
172

< U Az y(@), v'(2D) + o+ filo p(a), v/ (1) e Ko |2
a=1
<o [ €428 (1@l + |01,)"
. 1/2
# (late)le+ @) de
1//2
<#m{8=2””%]'uy M+ 15 (=)]3)
1/2
2 [ (= Iy ) 9y i
1/2
Ky {62 22yl wy + 2l ]
= it (&4 2l
<k (6+ 2 | YY) (12)
Therefore for ¢ > 0 and ||Y||, sufficiently large it follows from (12) that
IIN(, )”2 < 2!//2 KU'+‘1 “L‘E
[Rgis
which s precisely the condition (8) in Theorem 1 for some constant
C< Ry Q.E.D.

Even though the growth conditions on f(z, u, v) in Theorems 3 or 4 do not hold, it may turn out
that for some constant K > 0, the solution to (1) is the same as the solution to (1) with f(z, 4, v)

replaced by
Hzu,v) = {f(a:, %, v); if [lull, < K and ||v}j, < K,
4, Ao w(u),(v), i [ull, > Kor |lv], > &,

where ¢ : B* — E* is C?, bounded, and (1) = u for llull, £ K. Since the theorems apply to
}’(x, «, v), a globally convergent homotopy algorithm can still be successfully applied to the problem.
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3. Algorithm. The general idea of the algorithm is apparent from Theorem 1: just follow the zero
curve  emanating from (0, W) until a zero Y of F(Y) is reached {at A = 1). Of course it is
nontrivial to develop a viable numerical algorithm based on that idea, but at least conceptually,
the algorithm for solving the nonlinear system of equations (7) is clear and simple. The homotopy
map 1s

pw(XA, YI=AF(YVi+(1 - AY - W), (13)

which has the same form as a standard continuation or embedding mapping. However, there are two
crucial differences. In standard continuation, the embedding parameter A increases monotonically
from O to 1 as the trivial problem ¥ — W = 0 is continuously deformed to the problem F(Y ) = 0.
The present homotopy method permits A to both increase and decrease along ~ with no adverse
effect; that is, turning points present no special difficulty. Of course, methods have been developed
[14-19, 23] to navigate turning points, but the method considered here does so automatically. The
second important difference is that there are never any “singular points” which afflict standard
continuation methods. The way in which the zero curve =y of pw is followed and the full rank of
Dpw along v guarantee this, Observe that Lemma 1 guarantees that + cannot just “stop” at an
interior point of [0,1) x EP.

The zero curve 7 of the homotopy map pw(A, Y} in {13) can be tracked by many different
technigues; refer to the excellent survey [1] and recent work by Rheinboldt and Burkhardt (23]
and Mejia [18]. The numerical results in Section 4 were obtained with the software package HOM-
PACK, currently under development at Sandia Natiomal Laboratories, General Motors Research
Laboratories, Virginia Polytechnic Institute and State University, and the University of Michi-
gan. HOMPACK 1s a suite of codes for tracking zero curves of probability one homotopy maps,
and provides both high-level and low-level subroutines for three different approaches to tracking
7. The three algorithmic approaches provided by HOMPACK are: 1) an ODE-based algorithm
derived from that in [47], with several refinements; 2} a predictor-corrector algorithm whose cor-
rector follows the flow normal to the Davidenko flow (a “normal flow” algorithm); 3) a version
of Rheinboldt’s linear predictor, quasi-Newton corrector algorithm [23] (an “augmented Jacobian”
method). There are qualitatively different algorithms for dense and sparse Jacobian matrices; only
algorithms for dense Jacobian matrices are discussed here. See [56] for a discussion of sparsity in
relation to homotopy methods.

First the ODE-based algorithm will be discussed. Assuming that F(Y) is C* and W is such
that Theorem 1 holds, the zero curve 7y is ¢ and can be parametrized by arc length s. Thus
A= A(s), Y = Y {s) along =, and

pw(M(s), ¥ (5)) = 0 (14
identically in s. Therefore
d dA
Low (e, () = DowlA(), ¥ () (2 =0, (15)
v
ds

=1. (16)




IT we take

Aoy =0, Y(0)=W, (17)
the zero curve 7 is the trajectory of the initial value problem (15-17). When A(8) = 1, the corre-
sponding Y (&) is a zero of # (V). Thus all the sophisticated ODE techniques currently available
can be brought to bear on the problem of tracking « [27], 48]

ODE software requires (dA/ds, dY/ ds) explicitly, and (15), (16) only implicitly define the deriva-
tive (dA/ds, dY/ds). This can be calculated by finding the kernel of the p (p+ 1) Jacobian matrix

Dpw(X(s), Y (8)),

which has full rank by Theorem 1. It is here that a substantial amount of computation 18 incurred,
and it is imperative that the number of derivative evaluations be kept small. Once the kernel
has been calculated, the derivative (d\/ds, dY /ds) is uniguely determined by (16) and continuity.
Complete details for solving the initial value problem (15-17) and obtaining Y (3) are in [47] and
(51}

Remember that tracking - was merely a means to an end, namely a zero ¥ of F(Y). Since v
itself is of no interest (usually}, one chould not waste computational effort following it too closely.
However, since 7 s the only sure way to ¥, losing «y can be disastrous. The tradeoff between
computational efficiency and reliability is very delicate, and a fool-proof strategy appears difficult
to achieve. This is the reason OMPACK provides several algorithms; no single algorithm s
superior overall, and each of the three beats the other two (sometimes by an order of magnitude)
on particular problems.

The normal flow algorithm due to Georg [11] has three phases: prediction, correction, and step
size estimation. (13) and (14) are the relevant equations here. For the prediction phase, assume
that several points PO = (A(s1), Y{s1))s P = (A(sy), Y(s2)) on 7y with corresponding tangent
vectors (dA/ds(s1), 4Y/ds(s1)), (dr/ds(sz), dY/ds(sz)) have been found, and h is an estimate of
the optimal step (in arc length) to take along v . The prediction of the next point on 18

20 = p(sy + b), (18)
where p(s) is the Hermite cubic interpolating (A(s), Y (s)) at &1 and $. Precisely,

pls) = (A(s1), Y (1)), Pla) = (d\/ds(s1), Y/ ds(s1)),
plss) = (Mer), V() Ple2) = (dr/ ds(s2), dY/ds(s2)),

and each component of p(s) is a polynomial in ¢ of degree less than or equal to 3.

Starting at the predicted pomt 70 the corrector iteration 1s
.I.
Z[n+1} :Z{n) - [DPW(Z(n))] pw(Z(n}), n=0,1,... (19)

where {Dp W(Z(”})]T is the Moore-Penrose pseudoinverse of the p x (p + 1) Jacoblan matrix Dpw.
~ Small perturbations of W produce small changes in the trajectory 7 , and the family of trajectories
~ for varying W is known as the “Davidenko flow”. Geometrically, the iterates given by (19)
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returs to the zero curve along the flow normal to the Davidenko flow, hence the name “normal flow
algorithm”.

A corrector step AZ is the unique minimum norm solution of the equation

[DowlAZ = —py. (20)
Fortunately AZ can be calculated at the same time as the kernel of iDpw}, and with just a
little more work. Normally for dense problems the kernel of { Dp w] is found by computing a QR
factorization of {Dpw], and then using back substitution. By applying this QR factorization to
—pw and using back substitution again, a particular solution o to {20) can be found. Let w3 0 be
any vector in the kernel of [Dpw]. Then the minimum norm solution of {20) is

fe

vy

AZ=v-—u. (21)
Since the kernel of [Dp W] is needed anyway for the tangent vectors, solving (20} only requires
another O(p?) operations beyond those for the kernel. The number of iterations required for
convergence of (19) should be kept small {say < 4} since QR factorizations of (Dp W] are expensive,

The alternative of using [ Dow (Z (O))J for several iterations, which results in linear convergence, Is
rarely cost effective.

When the iteration (19) converges, the final iterate Z("*U is accepted as the next polnt on 7y
, and the tangent vector to the integral curve through Z(™ is used for the tangent—this saves a
Jacobian matrix evaluation and factorization at Z("*1)_ The step-size estimation described next
attempts to balance progress along -y with the effort expended on the iteration (19).

Define a contraction factor ,
2020

Hz(l) - zO’
a residual factor

_ llow(2M)]]

B = Tow (o))

a distance factor (2" = lim,—, Z(")

_ W -z

il pomea

{24)

and ideal values L, R, D for these three. Let A be the current, step-size (the distance from Z* to the
previous point found on v ), and A the “optimal” step-size for the next step. The goal 15 to achieve

L R D H
Sy 3
L R D W (23)
for some ¢. This leads to the choice
h= (min{I/L, k/R, D/D})"*4, (26)

10




a worst case choice. To prevent chattering and unreasonable values, constants Amy, (minimum al-
lowed step-size), finqy {maximum allowed step-size), By, {contraction factor), and By, {expansion
factor) are chosen, and % is taken as

FL = rain {maX{hmin,. Bmin h; il}: Bmax f&, h'max} . (27)

There are eight parameters in this process: L, R, D, bonin s frnae, Broin, Binax, 9. HOMPACK permits
the user to specify nondefault values for any of these. The choice of % from (27) can be refined
further. If {19) converged in one iteration, then % should certainly not be smaller than k. hence set

k= max{k, i} (28)

if (19) only required one iteration.

To prevent divergence from the iteration (19}, if (19) has not converged after K iterations, A is
halved and a new prediction is computed. Every time k is halved the old value holg 1s saved. Thus
if (19) has failed to converge in K iterations sometime during this step, the new % should not be
greater than the value A,y known to produce failure. Hence in this case

b= min{hyq, k}. (29)

Finally, if (19) required the maximum K iterations, the step-size should not increase, so in this
case set

b= min{h, &}. {30}
The logic in (28-30) is rarely invoked, but it does have a stabilizing effect on the algorithm.

Rheinboldt’s augmented Jacobian algorithm together with step size strategies has been de-
scribed very well elsewhere [2, 23], and will not be repeated here.

4. Numerical results. As a first example, consider Jeffery-Hame! flow [17] given by

y'+dy -+ 6y’ =

3(0) = y(1) =0,
where ¢ is a constant. Using the piecewise linear basis functions {6} described in Example 1 in
Section 2, the Galerkin approximation for y{z} ~ Y (2} = PR Yi¢:(2) is the nonlinear system of
equations

Do VdSL B (c—4Y — 6V ¢) =0, k=1, . 1.
i=1

The remark following Theorem 4 applies to this situation, and the homotopy algorithm can be
applied with no difficulty. Rather than presenting numerical results for Jeffery-Hamel flow {(which
are well known, cf. [17]), we instead tackle a problem where y is a vector, the boundary conditions
are unbalanced (so integration by parts does not give (— A", d1) = (4, 8%)), the interval is 0, co),
and shooting and finite difference rnethods are known to have difficulty [25].
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Consider the magneto-hydronamics (MHD) nonlinear two-point boundary value problem [25]:

2
o =HaH" - _—(ﬁ;) e mH + 2 G (31)
G'=HG-HG+mG (32)
8" = Pr HY' (33)

with the boundary conditions

H{O)=-4, H(@©)=0, GO}=1, 00)=1,(34)
Hn —0, Gn)—0, 6(n)—0 asn— o0,(35)

where Pr denotes the Prandt! number and m is a magnetic parameter. Note that H{n) and G{n)
are determined by equations (31} and (32) independent of #(n), and thus #{5) can be uncoupled
from the system. Once H{n) has been found from (31), (32), (34), and (35), 6(n) can be determined
from the one-dimensional two-point boundary value problem constituted by (33} and the # parts
of {34), (35). The (routine) computation for #(n) will not be discussed here.

In practice the boundary conditions {35) are replaced by
H({r)=G(r)=6(r} =0 (35a)
for some 7 sufficiently large.

Let S, be the finite dimensional vector space with basis {Bj; k() };:1, where B (z) is the j-th
B-spline of order k (degree < k— 1) defined on the knot sequence t = (f1,t2,..., tnyi). When there
is no ambiguity B;xi(z) is simply written as B;{z). For this problem the knot sequence t is based
on the breakpoint sequence

¢ = {0,.25, 50,.75,1.0,1.25,1.50,1.75, 2.0,2.25, 2.50, 2.75,
3.0,3.5,4.0,4.5,5.0,5.5,6.0,7.0,8.0,9.0,11.0,13.0,15.0,
18.0,21.0, 24.0, 28.0, 32.0, 36.0, 41.0, 46.0,51.0, 60.0,

70.0, 80.0,90.0,100.0),

following the convention

tlzﬁzz"'—tk and tn-+1:tn+2:“':tn+k-

Depending on the values of n and &, only an initial subsequence of £ may be needed.

The approximations are
N2

H(n) = Y a;Bi(n), (36)
=1

A BL(0) —ani1 By, (1)
— — A = st S50 A = *
165 ;O B’Z(O) ; QN2 B}\;+2(T—) ;
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Table 1.

A m k N+2 —H{r) —H{o) NFE CPU time arc length
~1.0 1.0 6 12 —.80700 —.43166 26 15:28 1.309
~1.0 2.0 6 12 —.88173 —. 78158 29 13:28 1.387
—1.0 4.0 6 12 —.94477 —.03015 30 14:37 1.518

0.0 1.0 6 12 11991 2533 25 11:13 1.067

0.0 2.0 6 12 07372 108358 25 11:24 1.103

0.0 4.0 6 12 03558 .04G78 2 9:07 1.198

1.0 1.0 6 12 1.06079 1.0898 21 9:38 1.141

1.0 2.0 6 12 1.03959 1.0481 20 8:57 1.187

1.0 4.0 6 12 1.02103 1.6235 15 6:42 1.272

2.0 1.0 6 12 2.02744 2.0318 18 £:00 1.257

20 2.0 6 12 2.01968 20213 24 10:38 1.206

20 4.0 6 12 2.01193 2.0123 15 6:37 1.365

4.0 1.0 6 12 4.00625 4.0064 18 7:08 1.471

4.0 2.0 6 12 4.00530 4.0054 18 7:58 1.491

4.0 4.0 (§] 12 4.00402 4.0041 15 6:38 1.530
—-1.0 1.0 6 24 — 43877 -.43166 52 1:09:37 1.916
—-1.0 2.0 6 24 —.78196 —.78156 27 58:20 1.604
~1.0 4.0 G 24 —.93019 —.93015 24 51:32 1.958

0.0 1.0 6 24 25286 25331 26 95:45 1.986

0.0 2.0 6 24 10852 10858 21 44:53 1.804

0.0 4.0 6 24 04073 04078 25 53.27 1.903
—1.0 1.0 6 32 ~.43165 ~.43166 3 2:15:48 2.765
-1.0 2.0 6 32 —.78158 —~.78156 3 2:20:28 2.334
—1.0 4.0 6 32 —.03018 —.03015 27 1:52:50 2.752
-1.0 1.0 4 24 —.42854 —.43166 41 95:37 2.196
-1.0 2.0 4 24 —~.78043 —~.78156 38 51:12 1.810
—1.0 4.0 4 24 —-.93062 —.93015 29 39.08 2.128

N+2

Gn) = >_ BiBi(n), (38)
=1

Bi=1, Bnis=0. - (39)

The boundary conditions (34-35) force the equations {37} and (39). The Galerkin approximation
is the nonlinear system of equations

(-H"+HE" - (H')V/24 mH +26, B) =0, i=3,...,N+1,

: 40
<—G"+HG’_H’G+mG,B,->:o, i=2,...,N+1, 49)

where

(u, v) = fDT u(n)o(n) dy.

Let ¥V = (a3, a4,... raN+1, 82,83, ..., Bne)t and F(Y)=0be given by the p = 2N ~ [ =25 — 5
equations (40).

Table 1 shows some numerical results obtained by applying HOMPACK to {40). The values
H(co) are from [25], and 7 can be inferred from n, k, and the breakpoint sequence ¢ listed above.
The integrals in (40) were computed by 10-point Gaussian quadrature over each subinterval, and
are are thus essentially exact. NFE is the number of Jacobian matrix evaluations, and the format
of the CPU time (on a VAX 11/ 780} is hh:mm:ss. The local curve tracking tolerance was 107 * and
the final accuracy (the end game tolerance [55]} was 1078,

Although the theory in Section 2 is not directly applicable to this MHD problem, these nu-
merical results suggest that the homotopy algorithm is more widely applicable than the theory

13



indicates, and the accuracy is exactly what would be expected given the spline order and knot
spacing.
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