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Immersed Finite Elements for a Second Order Elliptic Operator
and Their Applications

Qiao Zhuang

(ABSTRACT)

This dissertation studies immersed finite elements (IFE) for a second order elliptic operator
and their applications to interface problems of related partial differential equations.

We start with the immersed finite element methods for the second order elliptic operator
with a discontinuous coefficient associated with the elliptic interface problems. We introduce
an energy norm stronger than the one used in [111]. Then we derive an estimate for the
IFE interpolation error with this energy norm using patches of interface elements. We prove
both the continuity and coercivity of the bilinear form in a partially penalized IFE (PPIFE)
method. These properties allow us to derive an error bound for the PPIFE solution in the
energy norm under the standard piecewise H2 regularity assumption instead of the more
stringent H3 regularity used in [111]. As an important consequence, this new estimation
further enables us to show the optimal convergence in the L2 norm which could not be done
by the analysis presented in [111].

Then we consider applications of IFEs developed for the second order elliptic operator to
wave propagation and diffusion interface problems. The first application is for the time-
harmonic wave interface problem that involves the Helmholtz equation with a discontinuous
coefficient. We design PPIFE and DGIFE schemes including the higher degree IFEs for
Helmholtz interface problems. We present an error analysis for the symmetric linear/bi-
linear PPIFE methods. Under the standard piecewise H2 regularity assumption for the
exact solution, following Schatz’s arguments, we derive optimal error bounds for the PPIFE
solutions in both an energy norm and the usual L2 norm provided that the mesh size is
sufficiently small.

In the second group of applications, we focus on the error analysis for IFE methods de-
veloped for solving typical time-dependent interface problems associated with the second
order elliptic operator with a discontinuous coefficient. For hyperbolic interface problems,
which are typical wave propagation interface problems, we reanalyze the fully-discrete PPIFE
method in [143]. We derive the optimal error bounds for this PPIFE method for both an
energy norm and the L2 norm under the standard piecewise H2 regularity assumption in
the space variable of the exact solution. Simulations for standing and travelling waves are
presented to corroborate the results of the error analysis. For parabolic interface problems,
which are typical diffusion interface problems, we reanalyze the PPIFE methods in [113].
We prove that these PPIFE methods have the optimal convergence not only in an energy
norm but also in the usual L2 norm under the standard piecewise H2 regularity.



Immersed Finite Elements for a Second Order Elliptic Operator
and Their Applications

Qiao Zhuang

(GENERAL AUDIENCE ABSTRACT)

This dissertation studies immersed finite elements (IFE) for a second order elliptic operator
and their applications to a few types of interface problems.

We start with the immersed finite element methods for the second order elliptic opera-
tor with a discontinuous coefficient associated with the elliptic interface problem. We can
show that the IFE methods for the elliptic interface problems converge optimally when the
exact solution has lower regularity than that in the previous publications.

Then we consider applications of IFEs developed for the second order elliptic operator to
wave propagation and diffusion interface problems. For interface problems of the Helmholtz
equation which models time-Harmonic wave propagations, we design IFE schemes, including
higher degree schemes, and derive error estimates for a lower degree scheme. For inter-
face problems of the second order hyperbolic equation which models time dependent wave
propagations, we derive better error estimates for the IFE methods and provides numeri-
cal simulations for both the standing and traveling waves. For interface problems of the
parabolic equation which models the time dependent diffusion, we also derive better error
estimates for the IFE methods.
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Chapter 1

Introduction

Many simulations in science and engineering are carried out in domains consisting of different

media separated by curves or surfaces, from which interface problems arise. We begin this

introductory chapter with a description of typical second order elliptic interface problems

and a brief survey about their applications. Then, we review some numerical methods for

interface problems, including immersed finite element (IFE) methods. After that, we describe

additional studies of IFEs for a second order elliptic operator and related applications carried

out in this thesis. At last, we outline the layout of the thesis.

1.1 Second Order Elliptic Interface Problems and Some

Applications

We consider a domain Ω ⊆ Rd (d = 1, 2, 3) that is divided by an interface Γ into two

subdomains: Ω− and Ω+. We assume that each of the subdomains is formed by one material

such that the diffusion coefficient β of Ω is a piecewise positive constant function:

β(X) =

 β− for X ∈ Ω−,

β+ for X ∈ Ω+.
(1.1)

1



2 Chapter 1. Introduction

In Ω, we consider the following typical second order elliptic boundary value problem (BVP):

−∇ · (β∇u) = f, in Ω = Ω− ∪ Ω+, (1.2a)

u = g, on ∂Ω. (1.2b)

Because of the discontinuity in the diffusion coefficient β, the exact solution u to the boundary

value problem is a piecewise function

u(X) =

 u− for X ∈ Ω−,

u+ for X ∈ Ω+,

that is assumed to satisfy the following jump conditions across the interface Γ:

[u]Γ := u+|Γ − u−|Γ = 0, (1.2c)[
β∇u · n

]
Γ

:= β+∇u+ · n|Γ − β−∇u− · n|Γ = 0, (1.2d)

where n is the unit normal vector to the interface Γ, and the restriction of a function onto Γ

is in the sense of its trace. From now on, we call the problem described by (1.2) the second

order elliptic interface problem.
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Figure 1.1: The domain of the interface problem

There are many applications that involve this model interface problem. One example is

the particle-in-cell method for plasma particle simulation [40, 70, 87, 88, 151] where the

electrostatic potential field u is modeled by the interface problem described by (1.2). Another

example is to solve some inverse problems associated with the interface problem (1.2) by

shape optimization [61, 65, 125, 133, 146] where we need to minimize a cost functional

J (Γ, u(Γ)) subject to the model interface problem (1.2) whose solution yields a value of

this cost functional for each interface Γ. We note that in a shape optimization, a chosen

optimization algorithm repeatedly drives the interface from one configuration to another

such that the associated interface problem (1.2) has to be solved at each iteration.

1.2 An Overview of IFE Methods

To solve the interface problems numerically with optimal convergence by traditional finite el-

ement methods, body-fitting meshes are usually employed for discretization [16, 23, 37, 142].

An important requirement of body-fitting mesh is that the mesh has to be tailored to fit

the interface: each element is essentially located on one side of the interface. In other

words, the mesh suitable for using a traditional finite element method to solve an interface

problem is interface dependent. This requirement, however, impedes the efficiency of finite
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element methods, especially in applications where the interface varies because of physical

laws [99, 137] or the set-up of specific algorithms (for instance, those for shape optimization

[27, 130]). Under those circumstances, meshes have to be repeatedly regenerated, which can

be very time consuming.

To remove the burden of remeshing, numerical methods based on interface independent

meshes have been developed, such as immersed interface methods (IIM) [97, 101, 102] and

matched interface and boundary method (MIB) [136, 153] in finite difference approach; and

difference potentials methods (DPM) based on difference potentials approach [25, 129]. As

for methods based on finite element approach, they can be classified into two categories. The

methods in the first category modify the weak formulation near the interface, for instances,

unfitted finite element methods [18, 66, 69] using Nitsche’s penalty along the interface and

cut finite element method (CutFEM) [29, 138] adding stabilization terms to control the jump

of the finite element functions near the interface. The methods in the second category modify

the local shape functions on the interface elements, such as the partition of unity method

[15], extended finite element methods (XFEM) [18, 29, 117], and multi-scale finite element

methods (MsFEMs) [39, 80]. Immersed finite element (IFE) methods discussed in this thesis

also belong to the second category.

We now provide an overview about immersed finite element methods (IFE), which are nontra-

ditional finite element methods developed recently for solving interface problems on meshes

independent of the interfaces. The basic idea of IFE methods is, as it is illustrated in Fig-

ure 1.2, to use standard polynomials as local IFE shape functions on non-interface elements,

but employ Hesie-Clogh-Tocher type macro polynomials [22, 41] as the local IFE shape func-

tions on interface elements which satisfy the jump conditions in some weak sense.
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Figure 1.2: IFE shape function on left: non-interface element; right: interface element.

Instead of fitting the interface with the mesh, IFE methods adapt the interface with special

finite element functions constructed on the interface elements, which enable IFE methods to

solve interface problems on highly structured interface-independent meshes, such as Carte-

sian meshes.

A key issue in an IFE method is the construction of an IFE space according to the interface

jump conditions. We use two dimensional IFE spaces to explain the basic ideas for construct-

ing IFE shape functions in terms of macro polynomials. We start from the construction of

lower degree two dimensional IFE spaces, including the linear IFE spaces [54, 94, 100] and

the bilinear IFE spaces [70, 71, 107], that relies on an approach such that all the jump con-

ditions are imposed on a line that connects the intersection points of the interface and the

boundary of the element (i.e., the linear approximation of the curve Γ), as shown in Fig-

ure 1.3. One reason for this approach is that the IFE shape function on an interface element

is supposed to be a piecewise polynomial which does not necessarily satisfy the interface

jump condition across the interface curve unless the interface has a simple geometry. The

IFE spaces constructed using this approach are proved to have the optimal approximation
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capabilities [72, 100]. However, the linear approximation of a curve has an intrinsic O(h2)

limitation that hinders the application of this approach to higher degree polynomials. Thus

imposing the jump conditions along the interface Γ is a viable idea to construct higher degree

IFE spaces. For example, in recent works [57, 59, 67], lower order IFE spaces are constructed

by imposing jump conditions along the interface, and the optimal orders of approximation

capability are proved for those IFE spaces.

But there is still an issue for developing higher degree IFE spaces: the original jump condi-

tions (1.2c) and (1.2d) are not enough to determine the degree of freedom in a higher degree

IFE shape function. To settle this issue, in addition to the original jump conditions (1.2c)

and (1.2d), normal extended jump conditions (1.3) and Laplacian extended jump conditions

(1.4) are proposed [3, 6, 128] for constructing higher degree IFE spaces:

[
β
∂ju

∂nj

]
Γ

= 0, j = 2, 3, · · · p, (1.3)

[
β
∂j4u
∂nj

]
Γ

= 0, j = 0, 1, 2, · · · p− 2. (1.4)

One idea to construct a higher degree IFE shape function is to penalize each interface

condition (including the extended ones) through an L2 inner product of a suitably chosen

polynomial space on the interface, and this approach has been employed to construct arbi-

trary p-th degree IFE shape functions [5, 154].
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Figure 1.3: left: triangular interface element; right: rectangular interface element.

Another key issue is a suitable variational formulation for using an IFE space to solve inter-

face problems at the desirable convergence rates. IFE methods in the literature are mostly

for solving second order elliptic interface problems described by (1.2). The earlier works

[70, 71, 100, 104, 107] use the linear or the bilinear IFE space in the classical Galerkin for-

mulation to solve the elliptic interface problems and it has been demonstrated by numerical

results that the IFE solutions have the optimal orders of convergence to the exact solutions

in H1 and L2 norms. For the purpose of obtaining more stable numerical simulation, inte-

rior penalty ideas are utilized in partially penalized IFE (PPIFE) methods, discontinuous

Galerkin IFE (DGIFE) methods [58, 70, 73, 77, 111, 112, 152], and enriched IFE methods

[8] for solving the elliptic interface problems. It has been proved that these penalized IFE

methods can converge optimally in energy norms provided that the exact solution possess a

sufficient regularity.

IFE methods developed for second order elliptic interface problems naturally extend to in-

terface problems of other related types of partial differential equations, such as the diffusion

interface problems and wave interface problems. For instance, for the diffusion interface prob-

lem based on the standard parabolic equation defined by the second order elliptic operator,
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the authors in [13] investigated IFE methods for semi-linear parabolic interface problems,

proving the optimal convergence for semi-discrete and fully-discrete (backward Euler) solu-

tion. The authors in [113, 144] designed IFE methods with interior penalties (PPIFE and

DGIFE methods) for linear parabolic interface problems, proving the optimal convergence

of the solutions in an energy norm provided that the exact solution has the piecewise-H3

regularity in the space variable. The authors in [56, 76] discussed IFE schemes for parabolic

interface problems with moving interface. For the second order hyperbolic interface prob-

lems, the author in [143] studied PPIFE methods where an optimal error estimate in an

energy norm is provided under the assumption that the exact solution has the piecewise-H3

regularity in the space variable.

IFE methods can also be applied to interface problems based on other types of differential

operators. For example, IFE methods have been applied to solve the interface problems

related to a system of partial differential equations. For interface problems of the time

independent planar elasticity system, authors in [52, 53, 103, 145] investigate linear IFE

methods. Among these works, it has been observed that the proposed nonconforming IFE

methods [52, 103, 145] converge in the L∞ norm at the rate of O(h) at least; while the

optimal order of convergence O(h2) in L∞ norm is observed for conforming IFE methods

in [53]. The authors in [106, 110] also have discussed linear, bilinear and rotated-Q1 IFE

methods for planar elasticity interface problems, and numerical examples indicate that these

IFE methods can converge optimally in the L2 norm and the semi-H1 norm. The optimal

approximation capability of linear, bilinear and rotated-Q1 vector IFE spaces for solving

elasticity interface problems is proved in the recent article [60] by a vector multi-point Taylor

expansion. The authors in [64] then use linear and a bilinear vector IFE spaces to develop

a PPIFE method for the planar elasticity interface problems, and they have proved this
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PPIFE method can converge optimally in both an energy norm and the L2 norm. As

another extension, an IFE method has been developed for solving the interface problems for

the Stokes system in [4, 32] where the authors propose an immersed Q1/Q0 finite element

space according to the location of the interface and the related interface jump conditions.

Numerical results generated by this IFE method demonstrates the optimal convergence in

the L2 norm and the semi H1 norm. Two dimensional Stokes interface problem with moving

interface and axisymmetric three dimensional Stokes interface problem are also solved by

IFE methods in [7, 32]. The authors in [2, 120] propose immersed DG (DGIFE) methods

for solving interface problems described by a first-order hyperbolic system. In these articles,

numerical results demonstrate the optimal orders of convergence and the stability analysis

of the numerical scheme is conducted.

1.3 Topics of the Thesis

The research to be reported in this thesis is for both the development of IFE methods and

their related error analysis. We can put the research projects into two groups.

The first group is about the fundamentals of IFE methods associated with the second order

elliptic operator whose coefficient is discontinuous. We will investigate the conditioning issue

in a least squares framework for the construction of higher degree IFE spaces for solving the

second order elliptic interface problems, which, as we will report later in this thesis, are nec-

essary for solving wave propagation interface problems with a large wave number. Another

research goal in this group is to improve the error estimation for the linear PPIFE method

for the second order elliptic interface problems so that its optimal error bounds follow from

the standard piecewise H2 regularity assumption instead of the fastidious piecewise H3 reg-

ularity used in the related literature.
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The second group of research projects extend the IFE methods and related analysis to other

types of interface problems in which the partial differential equations involve the second

order elliptic operator. For a Helmholtz interface problem that models time-harmonic wave

propagation in a domain consisting of different materials, we develop a PPIFE method and

a DGIFE method and carry out an error analysis for the PPIFE method in a symmetric

configuration. For a hyperbolic interface problem, we analyze a PPIFE method discussed

in [143] for the interface problems of the second order hyperbolic equation modeling time

dependent wave propagation across a domain formed by different materials. Our new anal-

ysis shows that this PPIFE method can converge optimally in both an energy norm and the

L2 with the standard regularity assumption instead of the stringent piecewise H3 regularity.

We then move on to reinvestigate the IFE methods in [113] for a parabolic interface problem

which can be considered as the time dependent counterpart of the fundamental second order

elliptic interface problem. Again, we prove that these PPIFE methods can actually converge

optimally in both an energy norm and the L2 with the standard regularity assumption.

We now provide a little more descriptions for these research projects to be reported in this

thesis.

1.3.1 Research projects for the fundamentals of IFE methods

A stabilized construction for higher order IFE spaces:

Higher degree IFE methods are desirable for accuracy and for their performance in dealing

wave propagation with a large wave number. The authors in [5] proposed an approach

to construct higher degree IFE spaces based on a least squares framework. In this work,
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the authors reported an issue that the local linear system to determine the coefficients of

IFE shape functions can be very ill-conditioned if one of the subelements partitioned by

the interface is very small. As a consequence, the performance of the methods using this

higher degree IFE space can deteriorate. To deal with this conditioning issue, we propose a

stabilized construction for higher order IFE spaces. This construction method is still based

on the original least squares framework, but we will resort to the idea of element extension

for a better stability. This idea, such as a patch of an interface element introduced in

[39] and a triangular annulus introduced in [67], has been used in numerical investigations of

interface problems on non-body fitting meshes [39, 67]. We plan to construct IFE spaces using

fictitious elements, which are extensions of the original elements. Using fictitious elements

can help avoid the situation that one of the sub-elements is very small, thus improve the

conditioning in constructing higher degree IFE spaces.

An improved error estimation for a linear PPIFE method:

For the model second order elliptic interface problem (1.2), the authors in [111] employed a

piecewise H3 regularity assumption for the exact solution to derive an optimal convergence

in an energy norm for the PPIFE solutions. However, given the body force term f ∈ L2(Ω),

the exact solution to the interface problem (1.2) only has piecewise H2 regularity [45] in

general. This motivates us to investigate whether the PPIFE methods developed in [111] can

converge optimally in an energy norm under the standard piecewise H2 regularity assumption

instead of the excessive piecewise H3 regularity. In addition, we note that the piecewise H3

regularity assumption in [111] hinders the derivation of the optimal error estimates in L2

norm, although the optimal convergence in L2 norm has been numerically observed. We will

prove the optimal convergence of the PPIFE solution for the elliptic interface problem in L2

norm under piecewise H2 regularity assumption of the exact solution.
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1.3.2 Research projects for extending IFE methods

There are many real-world interface problems related to the second order elliptic operator.

Two typical applications are of great interest. The first is the wave propagation and the

second is the diffusion process in domains consisting of different materials because partial

differential equations defined by the second order elliptic operator can be used in the related

mathematical models.

Wave propagation is a ubiquitous phenomenon that involves the travels of waves that appear

when an object or a system reacts to a perturbation and transmits it to its neighbors [55].

Interface problems related to wave propagation process can arise in wave diffraction [44, 134],

wave scattering [34, 150], and wave reflection/transmission [21, 38] in composite media. Wave

propagation processes can be simulated by the time-domain and frequency-domain wave

equations, respectively. The second order hyperbolic partial differential equations are typical

time-domain wave equations. Applying the Fourier transform to the hyperbolic equations, we

can convert them to the frequency-domain wave equations such as the Helmholtz equations.

Both the second order hyperbolic equations and Helmholtz equations contain the second

order elliptic operator. Therefore, it is natural to explore how to extend the IFE methods

developed for the second order elliptic interface problems to interface problems arisen in

wave propagation.

Diffusion is the process by which matter is transported from one part of a system to another

as a result of random molecular motions [43]. Interface problems related to diffusion process

can arise in drug transportation [30], geochemical kinetics [140], and molecular dynamics

[116] in heterogeneous media, to name just a few. The diffusion process can be described by

the Fick’s law, the Fick’s first law is used to describe the steady-state diffusion, while the

Fick’s second law is used to describe the non-steady state diffusion [141]. The Fick’s second
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law leads to a parabolic partial differential equation that defines the change in concentration

within a phase due to the process of molecular diffusion [90]. The parabolic equation contains

the second order elliptic operator. Therefore, the techniques used to study IFE methods for

elliptic interface problems are promising for diffusion interface problems governed by the

parabolic equation.

IFE methods and related error analysis for Helmholtz interface problems:

The Helmholtz equation

−∆u− ω2u = f, (1.5)

which arises in many areas in physics such as electromagnetism [91], seismology [92], and

acoustics [50], can be derived by taking the Fourier transformation of the second order

hyperbolic equation which has the following general form

1

c2
∂2φ(x, t)

∂t2
−∆φ(x, t) = q(x, t). (1.6)

The Helmholtz interface problems arise in the process of wave propagation in heterogeneous

media. In a suitable physical configuration, the amplitude of the wave can be described by

the Helmholtz equation. Across the interface between two different materials, the amplitude

is required to satisfy the jump conditions [86, 155] imposed according to pertinent physics,

such as the continuity of pressure, the normal velocity or volume flow [21, 38, 86, 149]. These

considerations lead us to consider the following interface BVP for the Helmholtz equation

[26, 93, 114]: find u(X) that satisfies the Helmholtz equation and the boundary condition

−∇ · (β∇u)− ω2u = f, in Ω− ∪ Ω+, (1.7a)

β
∂u

∂nΩ

+ iωu = g, on ∂Ω, (1.7b)
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together with the jump conditions across the interface [21, 26, 38, 86, 93]:

[u]Γ := u+|Γ − u−|Γ = 0, (1.7c)[
β∇u · n

]
Γ
:= β+∇u+ · n|Γ − β−∇u− · n|Γ = 0. (1.7d)

Here the domain Ω ⊆ R2 is divided by an interface curve Γ into two subdomains Ω− and

Ω+, occupied by a different material each, with Ω = Ω− ∪ Ω+ ∪ Γ, i =
√
−1, ω is the wave

number, nΩ is the unit outward normal vector to ∂Ω, us = u|Ωs , s = ±, n is the unit normal

vector to the interface Γ, and the coefficient β is a positive piecewise constant function

representing different materials such that

β(X) =

 β− for X ∈ Ω−,

β+ for X ∈ Ω+.

There are many numerical methods for solving the Helmholtz boundary value problems

(BVPs), among them are the classic finite element methods [14, 17, 82, 84]. More sophis-

ticated finite element methods such as the interior penalty Galerkin (IPG) method [28, 47]

and discontinuous Galerkin (DG) method (including interior penalty DG, IPDG for abbre-

viation) [49, 50, 51, 85, 95, 122] have been developed for solving Helmholtz BVPs. Penalty

terms in IPG and IPDG methods can enhance the stability, and DG methods allow efficient

refinement in either the mesh or the finite element degree [42]. The main challenge for the

error analysis for Helmholtz-type problem lies in that the coercivity of the corresponding

bilinear form is not necessarily guaranteed, thus the process of the error analysis for the

elliptic problem might not be applied to the Helmholtz problem directly. In some earlier

works [84, 122, 131], the optimal orders of convergence of numerical solution in the energy

norm or broken H1 norm is proved provided that the mesh is fine enough using Schatz’s
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argument. Recently, the authors in [50] show the optimal order of convergence in broken H1

norm and sub-optimal order of convergence in L2 norm without any mesh constraint using

DG method. We note that, when applied to interface problems, traditional finite element

methods in the literature need to use interface dependent meshes.

In recent years, numerical methods based on interface-independent meshes are also applied

to Helmholtz interface problems, such as [150] using IIM and [135, 155] using CutFEM.

As another mesh-independent technique for solving interface problems, we will extend IFE

methods to Helmholtz interface problem. Since the Helmholtz equation contains the elliptic

operator and the interface jump conditions specified in (1.7c) and (1.7d) are the same as those

for the elliptic interface problem (1.2); therefore, it is natural for us to develop IFE methods

for the Helmholtz interface problems by using the IFE spaces constructed for the second

order elliptic interface problems, except for that the IFE solution is complex valued. We will

also apply penalizing techniques in the IFE methods for Helmholtz interface problems. We

will explore higher degree IFE methods because it is well known that higher degree finite

element methods have desirable features for wave propagation problems [10, 20, 132], such as

reducing the numerical dispersion and errors in solution due to the pollution effect caused by

a large wave number [83, 139], and it was found that employing higher degree finite elements

requires less degrees of freedom for numerical solutions to attain a specific accuracy [83].

In the error analysis for finite element methods for Helmholtz interface problems, following

the framework of Schatz argument, the authors in [35, 68] analyzed the stability and proved

the optimal error bounds for the finite element solution under the assumption that the mesh

size is small enough. In this thesis, we aim to conduct error estimation for the proposed

PPIFE methods for Helmholtz interface problems with Robin boundary condition. In par-

ticular, under suitable regularity assumption of the exact solution [119, 135] and a mesh
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constraint, we intend to establish optimal error bounds in both an energy norm and the L2

norm for these IFE methods.

Improved analysis for a PPIFE method for hyperbolic interface problems:

Hyperbolic interface problems appear in the physical processes of wave propagation in in-

homogeneous media [1, 115, 123] in many fields such as acoustics [19, 115], elastodynamics

[115], seismology [19] and electromagnetism [11].

In recent years, numerical methods using interface-independent meshes to solve hyperbolic

interface problems have appear in the literature, for instance, IIM method [147, 148] and

DGIFE [2, 120] method for first-order hyperbolic system. For solving the second order time-

domain hyperbolic interface problems directly without transforming them into a coupled

first-order system, the authors in [98] investigated a hyperbolic BVP with equivalued surface

on a domain with an interface, discussing the existence and uniqueness of the solution. The

authors in [19] studied a second order hyperbolic interface problem with conventional finite

element methods using body fitting meshes.

Recently, the author in [143] investigated a class of PPIFE methods for solving second order

hyperbolic interface problems in the following form: find u(X, t) such that

utt −∇ · (c2∇u) = f, in Ω− ∪ Ω+, t ∈ [0, T ], (1.8a)

u|∂Ω = g(X, t), t ∈ [0, T ], (1.8b)

u(X, 0) = w0(X), ut(X, 0) = w1(X) X ∈ Ω, (1.8c)

together with the usual interface jump conditions:

[u]Γ := u+|Γ − u−|Γ = 0, (1.8d)[
c2∇u · n

]
Γ

:= (c+)2∇u+ · n|Γ − (c−)2∇u− · n|Γ = 0, (1.8e)
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where the domain Ω ⊆ R2 is divided by an interface curve Γ into two subdomains Ω− and

Ω+, with Ω = Ω− ∪ Ω+ ∪ Γ, and the coefficient c is a positive piecewise constant function

such that

c(X) =

 c− for X ∈ Ω−,

c+ for X ∈ Ω+.

In [143], optimal error estimates for these PPIFE methods have been derived in an energy

norm under the assumption that the exact solution to the hyperbolic interface problem has a

piecewise H3 regularity in space. But, to our best knowledge, the L2 error estimates for these

PPIFE methods were not given in any published research works. This motivates us to further

study the error analysis for these PPIFE methods. We aim to reanalyze the fully discrete

PPIFE method proposed in [143] for the second order hyperbolic interface problems, we will

establish optimal error bounds in an energy norm and the L2 norm with less demanding

regularity of the exact solution, i.e., u is assumed to be piecewise H2 in space. Also, we

intend to discuss the stability of the scheme and present numerical examples for realistic wave

propagation with traveling waves including incident, reflected, and transmitted waves. To

our best knowledge, those results are generated by IFE methods for second order hyperbolic

equations for the first time.

Improved analysis for PPIFE methods for parabolic interface problems:

Parabolic equations are used to describe the diffusion phenomenon such as heat conduction,

diffusion of vorticity [124], and dynamics of population densities [121]. Parabolic interface

problems appear in many real world processes such as chemical diffusion in heterogeneous

media [89], channel-flow of a viscous fluid [33], and electrodynamics [46], to name just a few.

IFE methods [13, 76, 105, 108, 109, 113, 144], including penalized IFE methods [113, 144],
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have been applied to solve parabolic interface problems in the following form:

∂u

∂t
−∇ · (β∇u) = f, in Ω− ∪ Ω+, t ∈ [0, T ], (1.9a)

u|∂Ω = g(X, t), t ∈ [0, T ], (1.9b)

u|t=0 = u0(X), X ∈ ∂Ω, (1.9c)

together with the following jump conditions:

[u]Γ := u+|Γ − u−|Γ = 0, (1.9d)[
β∇u · n

]
Γ

:= β+∇u+ · n|Γ − β−∇u− · n|Γ = 0, (1.9e)

where the domain Ω ⊆ R2 is divided by an interface curve Γ into two subdomains Ω− and

Ω+, with Ω = Ω− ∪ Ω+ ∪ Γ and the coefficient β is a piecewise positive constant function

such that

β(X) =

 β− for X ∈ Ω−,

β+ for X ∈ Ω+.

For the above parabolic interface problem, the authors in [113, 144] considered some PPIFE

and DGIFE methods and they proved that these IFE methods could converge optimally

in an energy norm under a piecewise H3 regularity assumption for the exact solution. But

these articles did not address the optimal convergence in the L2 norm for these IFE methods.

Recently, using the patch idea [64], the authors in [63] developed PPIFE method for elliptic

interface problems where optimal orders of convergence of the solutions in an energy norm

and the L2 norm are guaranteed by only requiring piecewise H2 regularity of the exact

solution. Motivated by this work and the patch idea, we will improve the error estimation

for IFE methods developed in [113] for parabolic interface problems. We will show optimal

orders of convergence in both an energy norm and the L2 norm under piecewise H2 regularity
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assumption in the space variable.

1.4 Outline of the thesis

The outline of the thesis is as follows.

In Chapter 2, we introduce notations, assumptions, and recall the linear/bilinear IFE spaces

that will be used throughout this thesis.

In Chapter 3, we introduce a stabilized construction of higher degree IFE spaces based on

least squares framework, which will be utilized to solve Helmhotlz interface problems in

Chapter 5.

In Chapter 4, we provide an improved error analysis for the linear/bilinear PPIFE methods

for second order elliptic interface problems based on the patch idea, which will serve as the

theoretical foundation for the error analysis for their related applications (IFE methods for

wave propagation and diffusion interface problems in Chapters 5, 6 and 7) in this thesis.

In Chapter 5, we study linear/bilinear and higher degree PPIFE and DGIFE methods for

Helmholtz interface problems. The error analysis is conducted for the linear/bilinear PPIFE

methods utilizing the framework of Schatz’s argument. Numerical examples are presented

to demonstrate the features of IFE methods and validate the theoretical results of error

analysis.

In Chapter 6, we study the error analysis of a PPIFE method for the hyperbolic interface

problems. The optimal error bounds are derived in an energy norm and L2 norm under the

assumption that the exact solution has the piecewise H2 regularity in the space variable.

Numerical examples are presented including stationary and travelling waves when the linear

or curved interface is embedded.
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In Chapter 7, we study the error analysis of a group of PPIFE methods for the parabolic

interface problems. The optimal error bounds are derived in an energy norm and L2 norm un-

der the assumption that the exact solution has piecewise H2 regularity in the space variable.

A Numerical example is presented to corroborate the results of error analysis.



Chapter 2

Notations, assumptions, and

linear/bilinear IFE spaces

In this chapter, we will introduce notations, assumptions, and IFE spaces that will be used

throughout the thesis.

2.1 Notations and assumptions

Let Ω be a bounded domain. For every open set Ω̃ ⊆ Ω, let W k,p(Ω̃) be the standard Sobolev

space on Ω̃ with the standard norm ‖ · ‖k,p,Ω̃ and the semi-norm |v|k,p,Ω̃. If Ω̃s := Ω̃∩Ωs 6= ∅,

s = ±, we let the related Sobolev norms and semi-norms be

‖ · ‖2
k,p,Ω̃

= ‖ · ‖2
k,p,Ω̃− + ‖ · ‖2

k,p,Ω̃+ , | · |2
k,p,Ω̃

= | · |2
k,p,Ω̃− + | · |2

k,p,Ω̃+ .

Furthermore, we introduce the following spaces on Ω̃ in the case Ω̃s 6= ∅, s = ±:

PW k,p(Ω̃) =
{
u : u|Ω̃s ∈ W k,p(Ω̃s), s = ±; [u] = 0, [β∇u · nΓ] = 0 on Γ ∩ Ω̃

}
, p ≥ 1,

PC2(Ω̃) =
{
u : u|Ω̃s ∈ C2(Ω̃s), s = ±; [u] = 0, [β∇u · nΓ] = 0 on Γ ∩ Ω̃

}
,

21
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for suitable k and p such that the involved quantities on Γ ∩ Ω̃ are well defined. Here, nΓ is

the unit normal vector of Γ and we adopt the jump notation such that [v] = v+|Γ − v−|Γ for

a function v such that vs = v|Ωs , s = ±. Also, we will omit p = 2 from the pertinent norms

and semi-norms for Hk(Ω̃) = W k,2(Ω̃) and PHk(Ω̃) = PW k,2(Ω̃).

We let Th be a triangular or a rectangular mesh for the domain Ω ⊂ R2, and, without loss of

generality, we assume that Ω = ∪T∈ThT . Let Nh be the collection of the nodes in the mesh

Th. We use T i
h and T n

h to denote the sets of interface elements and non-interface elements,

respectively. We denote the set of interior interface elements as T̊ i
h , the set of boundary

elements (elements who have at least one boundary on the boundary of the domain) as T b
h ,

the set of boundary interface elements (interface elements who have at least one edge on the

boundary of the domain) as T bi
h . Also, we denote the set of interior edges by E̊h, the interface

edges by E i
h, the interior interface edges by E̊ i

h, and the interior non-interface edges by E̊n
h ,

respectively. In addition, we denote the set of boundary edge as Eb
h, the set of boundary

interface edges by Ebi
h . As in [5, 70, 71, 74], we make the following assumptions for the mesh

Th:

(H1) The interface Γ cannot intersect an edge of any element at more than two points unless

the edge is part of Γ.

(H2) If Γ intersects the boundary of an element at two points, these intersection points must

be on different edges of this element.

(H3) The interface Γ is a piecewise C2 function, and the mesh Th is formed such that on

every interface element T ∈ T i
h , Γ ∩ T is C2.

(H4) The interface Γ is smooth enough so that PC2(T ) is dense in PH2(T ) for every interface

element T ∈ T i
h .
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In general, these assumptions can be satisfied when the mesh size is small enough.

We will also adopt the following standard notations for the penalty terms on edges of a mesh

Th. Let v be a piecewise function defined by elements of Th. Then, on each e ∈ E̊h shared

by two elements T e
1 and T e

2 , we let

[v]e = (v|T e
1
)|e − (v|T e

2
)|e and {v}e =

1

2

(
(v|T e

1
)|e + (v|T e

2
)|e
)
. (2.1)

But for e ∈ Eb
h, we define

[v]e = {v}e = v|e. (2.2)

For each interface element T , let T s, s = ± be the two subelements of T partitioned by Γ and

let v be a piecewise function defined on these subelements. Then, we can similarly define

the jump and average of v on the interface inside this interface element as follows:

[v]Γ∩T = v+|Γ∩T − v−|Γ∩T and {v}Γ∩T =
1

2

(
v+|Γ∩T + v−|Γ∩T

)
, (2.3)

where vs = v|T s , s = ±. And we also recall the following underlying piecewise H1 function

spaces:

Vh(Ω) =
{
v ∈ L2(Ω) : v|T ∈ H1(T ), ∇v · n|∂T ∈ L2(∂T ), ∀T ∈ Th,

[v]e = 0, ∀ e ∈ E̊n
h

}
,

(2.4)

and

Vh,0(Ω) =
{
v ∈ L2(Ω) : v|T ∈ H1(T ), ∇v · n|∂T ∈ L2(∂T ), ∀T ∈ Th,

[v]e = 0, ∀ e ∈ E̊n
h , v|∂Ω\Ebi

h
= 0
}
.

(2.5)
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2.2 Local linear and bilinear IFE spaces

For each element T ∈ Th, its index set is either IT = {1, 2, 3} when T is triangular or

IT = {1, 2, 3, 4} when T is rectangular. Let Ai, i ∈ IT be the vertices of an element

T ∈ Th. Then, the interface partitions the index set I into I−
T = {i : Ai ∈ T−} and

I+
T = {i : Ai ∈ T+}. On each element T ∈ Th, we consider the standard linear or bilinear

Lagrangian shape functions:

ψj,T (Ai) = δij, ∀i, j ∈ IT . (2.6)

As usual in IFE methods, we use the polynomial space

P1(T ) = Span {ψj,T , j ∈ IT} or Q1(T ) = Span {ψj,T , j ∈ IT} (2.7)

as the local IFE space on the non-interface T according to whether T is triangular or rect-

angular. For simplicity, P1(T ) and Q1(T ) are denoted as P(T ) and Q(T ) in this thesis.

On the other hand, on each interface element T , we will use the linear and bilinear IFE shape

functions [70, 71, 75, 100, 104, 107]. To be specific, let the interface Γ intersect the edges of

T at the points D and E, as shown in Figure 1.3. Let l be the line passing through points

D and E with the normal vector n̄ = (n̄x, n̄y). This line partitions T into two subelements

T±
l . When this interface element T is triangular, a linear IFE shape function φT (x, y) is a
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piecewise linear polynomial specified by [75, 100, 104]:

φT (x, y) =



φ−
T (x, y) = a−x+ b−y + c−, if (x, y) ∈ T−

l ,

φ+
T (x, y) = a+x+ b+y + c+, if (x, y) ∈ T+

l ,

φ−
T (D) = φ+

T (D), φ−
T (E) = φ+

T (E),

β+ ∂φ+
T

∂n̄ − β− ∂φ−
T

∂n̄ = 0.

(2.8)

When T is a rectangular interface element, a bilinear IFE shape function φT (x, y) is a

piecewise bilinear polynomial specified by [71, 75, 107]:

φT (x, y) =



φ−
T (x, y) = a−x+ b−y + c− + d−xy, if (x, y) ∈ T−

l ,

φ+
T (x, y) = a+x+ b+y + c+ + d+xy, if (x, y) ∈ T+

l ,

φ−
T (D) = φ+

T (D), φ−
T (E) = φ+

T (E), d
− = d+,∫

DE
(β+ ∂φ+

T

∂n̄ − β− ∂φ−
T

∂n̄ )ds = 0.

(2.9)

It has been shown [70, 71, 100] that there is a unique IFE shape function φi,T (x, y), i ∈ IT

in the format of (2.8) or (2.9) satisfying the nodal value conditions

φi,T (Aj) = δij, ∀i, j ∈ IT . (2.10)

Then the local IFE space on an interface element T is defined as

S1
h(T ) =


Span{ψi,T , i = 1, 2, ..., |I|}, T ∈ T n

h ,

Span{φi,T , i = 1, 2, ..., |I|}, T ∈ T i
h .

(2.11)

For simplicity, the linear/bilinear IFE space S1
h(T ) is denoted as Sh(T ) in the thesis.



Chapter 3

Stabilized construction of higher

degree IFE spaces

3.1 Introduction

In this chapter, by following the least squares framework proposed in [5], we will study

a stabilized construction of higher degree IFE spaces for solving the second order elliptic

interface problems described by (1.2). The stabilization is to overcome the conditioning

issue reported in [5] caused by the situation that one of the sub-elements is too small. Using

fictitious elements in constructing the IFE spaces can avoid this situation and thus improving

the conditioning; therefore, we propose a stabilized construction of higher degree IFE spaces

in this chapter with fictitious elements. This chapter consists of four additional sections. In

Secton 3.2, we recall a construction method proposed in [5] for local higher degree IFE spaces.

In Section 3.3, we present a stabilized construction of higher degree IFE shape functions using

fictitious elements. In Section 3.4, we numerically test the approximation capabilities of the

proposed higher degree IFE spaces. Finally, we make some brief conclusions in Section 3.5.

26
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3.2 A least squares method for constructing higher de-

gree IFE spaces

Here we briefly review the work from [5] for constructing the local higher degree IFE spaces

with a least squares framework. Let Th be a triangular mesh of the domain Ω on which the

second order elliptic interface problems described by (1.2) are considered. On each element

T ∈ Th, we first introduce the index set I = {1, 2, · · · , (p+1)(p+2)
2

} for an integer p ≥ 1, and

denote the usual local Lagrange nodes on T by Ni, i ∈ I. Let ψj,T , j ∈ I be the standard

p-th degree Lagrange finite element shape functions on T such that

ψj,T (Ni) = δij, ∀i, j ∈ I. (3.1)

We use the standard p-th degree polynomial space

Pp(T ) = Span {ψj,T , j ∈ I} (3.2)

as the local IFE space on each non-interface elements T ∈ T n
h .

For each interface element T ∈ T i
h , the interface Γ splits it into two subelements T− = Ω−∩T

and T+ = Ω+ ∩ T . Consequently, Γ also divides the index set I into two subsets:

I− = {i : Ni ∈ T−} and I+ = {i : Ni ∈ T+}, with I = I− ∪ I+. In [5], the IFE shape

functions are chosen from the following space

Pp(T ) =
{
q : q|T− ∈ Pp(T−) and q|T+ ∈ Pp(T+)

}
, (3.3)

which is isomorphic to the product polynomial space Sp(T ) =
[
Pp(T )

]2, through a map

FT : Sp(T ) → Pp(T ), with FTv|T i = vi, i = ±, ∀v = (v1, v2) ∈ Sp(T ). This isomorphism
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enables one to develop the IFE shape functions by working on Sp(T ) =
[
Pp(T )

]2 instead of

Pp(T ). Based on this configuration, the fundamental idea in [5] is to partition Sp(T ) into

two subspaces

V1 = Span {ξi,T ∈ Sp(T ) : i ∈ I} , V2 = Span {ηi,T ∈ Sp(T ) : i ∈ I} , (3.4)

where

ξi,T =


(ψi,T , 0), if i ∈ I−,

(0, ψi,T ), if i ∈ I+,

and ηi,T =


(0, ψi,T ), if i ∈ I−,

(ψi,T , 0), if i ∈ I+,

(3.5)

in which the subspace V1 is used to handle the nodal degrees of freedom imposed on shape

functions and V2 is utilized to handle the jump conditions. In addition, Sp(T ) is the direct

sum of V1 and V2, i.e., Sp(T ) = V1

⊕
V2. Furthermore, for any Γ̃ ⊆ Γ, we consider a linear

operator [[·]]Γ̃ defined on Sp(T ):

[[v]]Γ̃ := v1|Γ̃ − v2|Γ̃, ∀v = (v1, v2) ∈ Sp(T ). (3.6)

According to the two types of extended jump conditions (1.3) and (1.4), the authors in [5]

considered two bilinear forms Jk : Sp(T ) × Sp(T ) → R, k = 1, 2 defined on a portion of

interface ΓT satisfying Γ ∩ T ⊂ ΓT : for the normal extended jump conditions (1.3),

J1(v, w) = ω0

∫
ΓT

[[v]]ΓT
[[w]]ΓT

ds+

p∑
j=1

ωj

∫
ΓT

[[
β
∂jv

∂nj

]]
ΓT

[[
β
∂jw

∂nj

]]
ΓT

ds; (3.7)



3.2. A least squares method for constructing higher degree IFE spaces 29

and for the Laplacian extended jump conditions (1.4),

J2(v, w) =ω0

∫
ΓT

[[v]]ΓT
[[w]]ΓT

ds+

∫
ΓT

ω1

[[
β
∂v

∂n

]]
ΓT

[[
β
∂w

∂n

]]
ΓT

ds

+

p−2∑
j=0

ωj+2

∫
ΓT

[[
β
∂j4v
∂nj

]]
ΓT

[[
β
∂j4w
∂nj

]]
ΓT

ds,

(3.8)

where ω0 = max{β−, β+}2 and ωj = |Γ ∩ T |2j, j > 1. Under the isomorphism FT , given a

component ξT =
∑

i∈I viξi,T ∈ V1 determined by the nodal degrees of freedom vi, i ∈ I, each

IFE shape function, expressed by ξT + ηT with ηT =
∑

i∈I ciηi,T , is defined as a minimizer

over ξT + V2 in terms of the semi-norms | · |Jk
induced from the bilinear forms Jk, k = 1, 2.

The minimizer is solved from the least squares formulation by letting Jk(ξT + ηT , ηi,T )=0,

i ∈ I, which satisfies the linear system

A(k)c = b, (3.9)

with b = −B(k)v, v = (v1, v2, ..., v|I|)
T and c = (c1, c2, ..., c|I|)

T , where

A(k) = (Jk(ηi,T , ηj,T ))i,j∈I ∈ R|I|×|I|, (3.10)

B(k) = (Jk(ξi,T , ηj,T ))i,j∈I ∈ R|I|×|I|. (3.11)

The existence of solutions to (3.9) is guaranteed by Theorem 2.1 in [5]. The authors in [5]

also provided some conditions of the uniqueness of the minimizer. Then the IFE function

associated with the nodal value vector v is defined as

φT =


φ−
T =

∑
i∈I− vi ψi,T +

∑
i∈I+ ci ψi,T , on T−,

φ+
T =

∑
i∈I+ vi ψi,T +

∑
i∈I− ci ψi,T , on T+.

(3.12)
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Specifically, choosing v = ei, with ei = (0, · · · , 1 · · · , 0)T , i =, 1, 2, ..., |I|, the φT in (3.12)

becomes a local IFE shape function φi,T on the interface element T .

In summary, the local IFE space on an element T ∈ Th, which is either an interface element

or a non-interface element, can be defined as

Sp
k,h(T ) =


Span {φi,T , i = 1, 2, · · · , |I|} , for T ∈ T i

h ,

Span {ψi,T , i = 1, 2, · · · , |I|} , for T ∈ T n
h ,

(3.13)

where k = 1, 2 according to the given jump condition. Again we refer readers to [5] for more

details in this formulation.

The similar idea is also used in CutFEM [29] which minimizes an energy globally involving

the Nitsche’s penalty on the interface. In that method, if one of the subelements is too

small, the whole scheme becomes unstable and some special weights related to the area of

the subelements need to be added in the penalty for stablization. Similar phenomena is also

observed in [5] that A(k) in the linear system (3.9) becomes extremely ill-conditioned when

T− or T+ is too small. So instead of imposing the bilinear forms on Γ ∩ T , the authors in

[5] considered an extended interface ΓT out of the interface element. By such a strategy,

the conditioning can be improved, but still not satisfactory in some extreme cases that the

condition number can be as bad as 1016 according to the example given in [5].

3.3 IFE shape functions by a fictitious element

To further improve the conditioning of the linear system (3.9), we propose not only to

extend the local interface, but also extend the element, i.e., for the purpose of constructing

IFE shape functions on an interface element, we consider a fictitious element associated with
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this interface element. The motivation behind this idea is that the subelements on a fictitious

element can not have an extremely small size.

3.3.1 Construction of fictitious elements

In this subsection, we describe the construction of fictitious elements by a similarity trans-

formation. Specifically, for each interface element T = 4A1A2A3 whose center of gravity

is denoted by G, we define its fictitious element as Tλ = ∆A′
1A

′
2A

′
3 such that A′

i is on the

line determined by GAi with |A′
iAi|/|GAi| = λ, where λ is a non-negative parameter, see

the illustration in Figure 3.1. Here λ is used to control the size of Tλ and we call it the

extension ratio. It is obvious that the constructed fictitious element Tλ is similar to the

interface element T such that

|A′
iA

′
j|

|AiAj|
= 1 + λ, i, j ∈ {1, 2, 3}, i 6= j. (3.14)

Figure 3.1: sketch of the construction of the fictitious element

On an interface element T , an unfavorable case may happen that one of the subelements T−

and T+ is too small, which may make the linear system (3.9) ill conditioned. To investigate
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how small a subelement can be compared to the whole element, given any measurable set Ω̃

such that Ω̃ ∩ Γ 6= ∅, we define

r(Ω̃) = min
s=−,+

{
|Ω̃s|
|Ω̃|

}
. (3.15)

Obviously r(Ω̃) 6 1. In the following, we show that it is possible to choose a suitable

extension ratio such that both of the two subelements in the fictitious element Tλ are not

too small so that r(Tλ) is lower bounded by a certain positive constant.

Lemma 3.1. For λ ∈ [0, 3], assume that Γ is a straight line inside the fictitious element Tλ

of an interface element T , then the following holds:

r(Tλ) >
4λ2

9(λ+ 1)2
. (3.16)

Proof. Without loss of generality, we assume Γ cuts the edges A1A3 and A2A3. Consider an

auxiliary element T̃λ with the same vertices as Tλ and an auxiliary linear interface Γ̃ such

that Γ̃ is parallel to Γ but goes through the vertex A3. It is clearly that r(Tλ) > r(T̃λ).

In addition, we shall note that the function r is invariable under linear transformation.

Therefore, without loss of generality, we only consider the case that the fictitious element

Tλ is the reference element, i.e., A′
1 = (0, 0), A′

2 = (1, 0), A′
3 = (0, 1) and Γ cuts through the

vertex A3. In the following, we let the equation of the linear interface be y = kx + b and

separate our discussion into three cases.



3.3. IFE shape functions by a fictitious element 33

Figure 3.2: case 1 Figure 3.3: case 2 Figure 3.4: case 3

Case 1: the interface Γ cuts the edges A′
1A

′
3 and A′

3A
′
2, as shown in Figure 3.2. In this case,

the interface can only vary above the two rays A3A
′
1 and A3A

′
2 which have the slope 1 + 3

λ

and − 3+λ
3+2λ

, respectively. Hence we have k ∈ [− 3+λ
3+2λ

, 1 + 3
λ
]. Then, by direct computation,

we have
|∆DEA′

3|
|∆A′

1A
′
2A

′
3|

=
λ2(k + 2)2

9(1 + λ)2(k + 1)
:= f(k).

One can directly verify that the minimal and maximal values of f(k) over k ∈ [− 3+λ
3+2λ

, 1+ 3
λ
]

are given by

fmin = f(0) =
4λ2

9(λ+ 1)2
, fmax = f

(
1 +

3

λ

)
= f

(
− 3 + λ

3 + 2λ

)
=

λ

3 + 2λ
.

Therefore

r(Tλ) > min{fmin, 1− fmax} =
4λ2

9(λ+ 1)2
. (3.17)

Case 2: the interface Γ cuts the edges A′
2A

′
3 and A′

2A
′
1, as shown in Figure 3.3. By an

argument similar to above, we have k ∈ (−∞,−2] ∪ [λ+3
λ
,∞) and

|∆DEA′
2|

|∆A′
1A

′
2A

′
3|

=
(3 + λ+ 3k + 2λk)2

9(1 + λ)2k(k + 1)
:= f(k).
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It can be directly verified that for k ∈ (−∞,−2] ∪ [λ+3
λ
,∞), λ 6 3,

fmin = f(−2) =
1

2
, fmax = f

(
λ+ 3

λ

)
=

3 + λ

3 + 2λ
.

Therefore, for this case we have

r(Tλ) > min {fmin, 1− fmax} =
λ

3 + 2λ
. (3.18)

Case 3: Γ cuts the edges A′
3A

′
1 and A′

1A
′
2, as it is shown in Figure 3.4. In this case, the

slope k can only vary over [−2,− λ+3
2λ+3

] and we have

|∆DA′
1E|

|∆A′
1A

′
2A

′
3|

=
(λ− λk + 3)2

−9k(1 + λ)2
:= f(k).

For k ∈ [−2,− λ+3
2λ+3

], the straightforward calculation yields

fmin = f(−2) =
1

2
, fmax = f

(
− λ+ 3

2λ+ 3

)
=

3 + λ

3 + 2λ
.

Hence, we have

r(Tλ) > min{rmin, 1− rmax} =
λ

3 + 2λ
. (3.19)

Then the desired result (3.16) follows from the estimates (3.17), (3.18) and (3.19).

Utilizing the above lemma, we can derive the following theorem that can provide a lower

bound for r(Tλ) when Γ is a generic curve and when mesh size h is sufficiently small.

Theorem 3.1. For λ ∈ [0, 3], there exists a constant C independent of the interface location
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such that the following holds for an interface independent mesh Th with h small enough:

r(Tλ) >
4λ2

9(1 + λ)2
− Ch, ∀T ∈ T i

h (3.20)

Proof. According to the assumptions (H1) and (H2), we can let D and E be the intersection

points of Γ with ∂T . Assume the line DE partitions the fictitious element Tλ into T−
λ and

T
+

λ . Lemma 3.1 shows that

min
s=−,+

{
|T s

λ|
|Tλ|

}
>

4λ2

9(1 + λ)2
. (3.21)

Consider the region ωλ = (T
−
λ ∩ T+

λ )∪ (T
+

λ ∩ T−
λ ) which is the subelement of Tλ bounded by

the segment DE and the interface Γ. From [100], there exists a constant C independent of

the interface location such that |ωλ| 6 Ch3. Using (3.21) and the fact |Tλ| = O(h2), we have

min
s=−,+

{
|T s

λ |
|Tλ|

}
> min

s=−,+

{
|T s

λ| − |ωλ|
|Tλ|

}
>

4λ2

9(1 + λ)2
− Ch. (3.22)

Theorem 3.1 suggests that, for a mesh fine enough, the subelements of fictitious elements

partitioned by the interface curve can not be extremely small for a suitably chose λ > 0.

As an example, provided that the mesh is fine enough (h is small enough), when λ = 0.5

and λ = 1, the most unfavorable situation is that the smaller Tλs (s = −,+) will account

for about 1/20 and 1/10 of the total area of Tλ, respectively. We believe the fundamental

geometric estimation in Theorem 3.1 might be useful for establishing theoretical analysis of

the conditioning of (3.9) related to fictitious elements.
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3.3.2 Local IFE shape functions on interface elements

Now we discuss the construction of local IFE spaces on interface elements through their

fictitious elements. For simplicity of presentation, in the following discussion, we denote J λ
k ,

k = 1, 2 as the bilinear forms Jk in (3.8) defined on ΓT = Γ ∩ Tλ, λ > 0. In particular, J 0
k

is defined on the portion of interface inside the original interface element, i.e., ΓT = Γ ∩ T .

After choosing a suitable extension ratio λ, we can use the following procedure to construct

the proposed local IFE shape functions on every interface element T ∈ T i
h :

Algorithm 3.1 Construction of local IFE shape functions

step 1: construct a fictitious element Tλ associated with T , then generate the local basis
functions ξi,Tλ

and ηi,Tλ
on Tλ;

step 2: form the bilinear forms Jλ
k , k = 1, 2 in (3.7) and (3.8) according to the given

extended jump conditions on ΓT = Γ ∩ Tλ;

step 3: form the matrices A(k)
λ = (J λ

k (ηi,Tλ
, ηj,Tλ

))i,j∈I and
B(k)

λ = (J λ
k (ξi,Tλ

, ηj,Tλ
))i,j∈I , and solve for the coefficients ci from A(k)

λ ci =

−B(k)
λ ei with ei = (0, · · · , 1 · · · , 0)T being the i-th unit vector;

step 4: use c = ci, i ∈ I, in step 3 to form φi.Tλ
as a piecewise polynomial on T−

λ and
T+
λ by (3.12), then generate the shape functions on the interface element T by

restricting φi.Tλ
to T :

φi,T = φi,Tλ
|T . (3.23)

Then using (3.23), the new local IFE space Sp
k,h(T ) on the interface element T ∈ T i

h is defined

as

Sp
k,h(T ) = Span {φi,T , i = 1, 2, · · · , |I|} , k = 1, 2. (3.24)

Compared to the original construction approach in [5], in the proposed approach in Algorithm

3.1, the computations in the least squares framework for constructing the p-th degree IFE
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shape functions are carried out on the fictitious element Tλ instead of the interface element

T itself such that the involved matrices are

A(k)
λ = (J λ

k (ηi,Tλ
, ηj,Tλ

))i,j∈I , and B(k)
λ = (J λ

k (ξi,Tλ
, ηj,Tλ

))i,j∈I .

We note that these matrices are not only generated by the bilinear forms defined on a rela-

tively larger interface portion ΓT = Γ∩Tλ, but also formed by the Lagrange polynomials ξi,Tλ

and ηi,Tλ
associated with a relatively larger element Tλ. Furthermore, according to Theorem

2.1 in [5], the local IFE shape functions also always exist in this approach.

To demonstrate the effectiveness of the proposed construction method based on the fictitious

element, we apply the method to a particular interface element T with vertices (−0.6, 0),

(−0.4, 0), (−0.6, 0.2) and its fictitious elements Tλ with λ = 0.5, 1 and 1.5. We assume to

use the Laplacian extended jump conditions, i.e., using the bilinear form J λ
2 and we present

numerical results to show the effects on the condition numbers of the corresponding matrices

A(2)
λ . In these numerical results, we consider a series of circular interfaces Γ : x2+y2−r2 = 0

with r = 0.42, 0.41, 0.405 and 0.401. The interface element (fictitious element) is cut by

the interface curve Γ into the left sub-element T+ (T+
λ ) and the right sub-element T− (T−

λ ).

An extreme case was shown in Figure 3.5 with r = 0.401 where we can see the original right

sub-element T− is very small while the right sub-elements T−
λ of fictitious ones are relatively

larger.

In addition, we fix β− = 1, let β+ = 10 or 50 and compute the condition numbers of A(2)
λ

for the quadratic and cubic polynomials associated with the original element T , see Table

3.1, and the fictitious elements, see Tables 3.2-3.4. The numerical results clearly confirm our
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expectation that the conditioning of A(2)
λ , λ = 0.5, 1, 1.5, is significantly better than the con-

ditioning of A(2)
0 , especially for the cases that T− is extremely small. In particular, the results

show the pattern that the condition numbers will stay around a certain magnitude depend-

ing on the ratio β+/β− and the polynomial degree, as λ increases beyond some value. This

observation suggests that it is not necessary to choose λ to be very large in real computation.

We also have carried out numerical experiments for computing the condition numbers of

A(1)
λ (the normal extended jump conditions) with various λ, β− and β+, and we have ob-

served similar phenomena. The improved conditioning of the linear system to determine

the coefficients of IFE shape functions by using fictitious elements inspires us to discuss

the approximation capabilities of the constructed higher degree IFE spaces, which will be

presented in the next section.
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Figure 3.5: left: the interface curve Γ intersects the original element T and its fictitious
elements Tλ for different λ; right: the zoom-in view of Γ intersecting original element T .
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β2 = 10, p = 2 β2 = 10, p = 3 β2 = 50, p = 2 β2 = 50, p = 3

r = 0.42 9.3408E+06 1.7619E+12 2.1177E+08 4.4394E+13

r = 0.41 1.9990E+08 5.4211E+14 4.5242E+09 1.3255E+16

r = 0.405 3.8133E+09 1.5957E+17 8.6070E+10 1.2160E+18

r = 0.401 2.7868E+12 2.8297E+18 6.2597E+13 7.5143E+19

Table 3.1: Condition number of A(2) on the original interface element T .

β2 = 10, p = 2 β2 = 10, p = 3 β2 = 50, p = 2 β2 = 50, p = 3

r = 0.42 6.0635E+04 1.2803E+08 1.2778E+06 2.7307E+09

r = 0.41 1.0988E+05 2.8910E+08 2.3339E+06 7.3167E+09

r = 0.405 1.5183E+05 4.7575E+08 3.2372E+06 1.2299E+10

r = 0.401 1.9962E+05 7.5319E+08 4.2688E+06 1.9469E+10

Table 3.2: Condition number of A(2)
λ on Tλ when λ = 0.5.

β2 = 10, p = 2 β2 = 10, p = 3 β2 = 50, p = 2 β2 = 50, p = 3

r = 0.42 1.3469E+04 8.0643E+07 2.4519E+05 1.7465E+09

r = 0.41 1.8638E+04 1.3409E+08 3.4575E+05 2.8925E+09

r = 0.405 2.2237E+04 2.7091E+07 4.1502E+05 5.0375E+08

r = 0.401 2.5759E+04 3.3369E+07 4.8269E+05 6.2290E+08

Table 3.3: Condition number of A(2)
λ on Tλ when λ = 1.
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β2 = 10, p = 2 β2 = 10, p = 3 β2 = 50, p = 2 β2 = 50, p = 3

r = 0.42 6.6256E+03 2.4006E+07 9.9996E+04 4.4647E+08

r = 0.41 7.9543E+03 3.6492E+07 1.2334E+05 6.9655E+08

r = 0.405 8.7862E+03 4.4968E+07 1.3817E+05 8.5857E+08

r = 0.401 9.5606E+03 5.3157E+07 1.5194E+05 1.0142E+09

Table 3.4: Condition number of A(2)
λ on Tλ when λ = 1.5.

3.4 Approximation capabilities

We can use the local IFE space constructed by the least squares method with fictitious

elements to construct a global p-th degree IFE space as follows:

Sp
k,h(Ω) =

{
v ∈ L2(Ω) : v|T ∈ Sp

k,h(T ) ∀T ∈ Th

}
, (3.25)

where k = 1, 2 according to the given extended jump conditions. We use the L2 projection to

demonstrate that this IFE space has the optimal approximation capability. Specifically, for

a function u smooth enough, we define its p-th degree local IFE projection on each element

T ∈ Th as Ph,Tu ∈ Sp
k,h(T ) such that

(u− Ph,Tu, v)T = 0, ∀v ∈ Sp
k,h(T ), (3.26)

where (·, ·)T is the standard L2 inner product on each element T ∈ Th. Accordingly, we can

define the p-th degree global IFE projection of u as Phu ∈ Sp
k,h(Ω) such that

(Phu)|T = Ph,Tu, ∀T ∈ Th. (3.27)
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We perform the computations of projection errors on the domain Ω = (−1, 1)× (−1, 1) with

the circular interface Γ : x2 + y2 − r20 = 0, r0 = π/6.28 and the subdomains

Ω− =
{
(x, y) : x2 + y2 < r20

}
, Ω+ = Ω\Ω−.

We consider the following function u:

u(x, y) =


1

β− r
α, (x, y) ∈ Ω−,

1

β+
rα +

(
1

β− − 1

β+

)
rα0 , (x, y) ∈ Ω+,

(3.28)

where r =
√
x2 + y2, α = 7, β− = 1, β+ = 5 or 50. We note that this function (3.28)

satisfies both types of the extended jump conditions.

The computations are carried out on a sequence of triangular Cartesian meshes, with the

size specified in Table 3.5 . We use λ = 0.5 for the fictitious elements in the construction

of the local IFE spaces on interface elements. The convergence rates are generated by the

projection errors on two consecutive meshes.

Clearly, the numerical results demonstrate that with the stabilization using fictitious el-

ements, IFE spaces constructed with either the normal or the Laplacian extended jump

conditions show the optimal approximation capabilities in terms of the L2 norm and H1

semi-norm. We have also carried computations with other choices of λ, β±, and similar

behaviors can be observed.
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β, h normal Laplacian

β+ h ‖u− Phu‖0,Ω rate |u− Phu|1,Ω rate ‖u− Phu‖0,Ω rate |u− Phu|1,Ω rate

1/10 1.8506e-04 NA 7.9069e-02 NA 1.8329e-04 NA 7.9002e-02 NA

1/20 1.0445e-05 4.1471 1.0027e-02 2.9793 1.0329e-05 4.1493 1.0023e-02 2.9786

5 1/40 6.3384e-07 4.0425 1.2590e-03 2.9934 6.2787e-07 4.0401 1.2588e-03 2.9932

1/80 3.8887e-08 4.0268 1.5765e-04 2.9975 3.8578e-08 4.0246 1.5762e-04 2.9975

1/160 2.3968e-09 4.0201 2.9991e-05 2.9991 2.3871e-09 4.0144 1.9717e-05 2.9989

1/10 4.7679e-05 NA 1.0041e-02 NA 4.2242e-05 NA 9.8978e-03 NA

1/20 2.8530e-06 4.0628 1.6140e-03 2.6372 2.7934e-06 3.9186 1.6081e-03 2.6218

50 1/40 1.6521e-07 4.1101 2.1477e-04 2.9098 1.6131e-07 4.1141 2.1435e-04 2.9073

1/80 9.6341e-09 4.1000 2.7995e-05 2.9396 9.4858e-09 4.0879 2.7979e-05 2.9376

1/160 5.6426e-10 4.0937 3.5774e-06 2.9681 5.6644e-10 4.0658 3.5841e-06 2.9646

Table 3.5: Projection errors and convergence rates for cubic IFE spaces using normal and
Laplacian extended jump conditions, β− = 1, β+ = 5 and 50, λ = 0.5.

3.5 Conclusion

Using the fictitious finite elements, we propose a stabilized construction of higher degree

IFE spaces based on the least squares framework proposed in [5]. Significant improvement

of conditioning in constructing the local IFE shape functions is observed through numeri-

cal experiments. And we have also observed the optimal approximation capability of the

constructed higher degree IFE spaces in the numerical experiments.



Chapter 4

Improved error estimation for some

IFE methods for elliptic interface

problems

4.1 Introduction

In this chapter, we study the error estimation for IFE methods for the model elliptic interface

problem (1.2) under piecewise H2 regularity of the exact solution. Our study will focus on

the following fundamental elliptic interface problems:

−∇ · (β∇u) = f, in Ω = Ω− ∪ Ω+, (4.1a)

u = g, on ∂Ω, (4.1b)

where the domain Ω ⊆ R2 is divided by an interface curve Γ into two subdomains Ω− and

Ω+ on which the coefficient β is a positive piecewise constant function defined as

β(X) =

 β− for X ∈ Ω−,

β+ for X ∈ Ω+,
(4.1c)

43
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with the following jump conditions

[u]Γ := u+|Γ − u−|Γ = 0, (4.1d)[
β∇u · n

]
Γ

:= β+∇u+ · n|Γ − β−∇u− · n|Γ = 0, (4.1e)

where n is the unit normal vector to the interface Γ.

In the error estimation to be presented, we first introduce a new energy norm stronger than

the one used in [111]. Inspired by [67], we derive an estimate for the IFE interpolation

error gauged by this energy norm by using the patches of interface elements. Furthermore,

under this energy norm, the continuity and coercivity both hold for the bilinear form in the

PPIFE method developed in [111]. Thanks to these properties, we are able to derive an error

bound for the PPIFE solution in the energy norm under the standard piecewise H2 regularity

assumption. The improved estimation further enables us to show the optimal convergence

in the L2 norm, which, to our best knowledge, has not been reported in the literature for

this PPIFE method. This chapter consists of four additional sections. In Secton 4.2, we re-

derive the PPIFE method for the elliptic interface problems. In Section 4.3, we introduce the

patches for the interface elements and discuss the approximation capabilities of IFE spaces

on these patches. In Section 4.4 we show the optimal convergence of the PPIFE solution.

Finally, we make some conclusions in Section 4.5.

4.2 PPIFE methods for elliptic interface problems

Here, we re-derive the PPIFE methods discussed in [111] in a slightly more general configura-
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tion that allows the interface to intersect with the boundary of the domain (i.e. Γ∩∂Ω 6= ∅).

As usual, multiply equation (4.1a) by a function v ∈ Vh,0(Ω) and integrate on each element

T ∈ Th, where Th is either a triangular mesh or a rectangular mesh on the domain Ω. Then,

by Green’s formula and the interface jump condition (4.1e), it follows:

∫
T

β∇u∇vdX −
∫
∂T

β∇u · nT vds−
∫
Γ∩T

{β∇u · nΓ}[v]ds =
∫
T

fvdX, (4.2)

where the third term on the left hand side of (4.2) disappears because v|T ∈ H1(T ), ∀T ∈ Th.

We recall some set notations about the edges in Chapter 2: the set of interior edges is E̊h,

the set of interface edges is E i
h, the set of interior interface edges is E̊ i

h, the set of boundary

edges is Eb
h, the set of boundary interface edges is Ebi

h . Then, summing (4.2) over all T ∈ Th

leads to

∑
T∈Th

∫
T

β∇u∇vdX −
∑
e∈E̊h

∫
e

{β∇u · ne}[v]ds−
∑
e∈Eb

h

∫
e

β∇u · nevds =

∫
Ω

fvdX. (4.3)

By assuming that u is in PH2(Ω) so that [u]e = 0, ∀e ∈ E̊h , we have

ε
∑
e∈E̊i

h

∫
e

{β∇v · ne}e[u]eds = 0,
∑
e∈E̊i

h

σ0
e

|e|

∫
e

[u]e [v]eds = 0, (4.4)

with parameters ε, and σ0
e ≥ 0. Add these two terms in (4.4) to the left side of (4.3). Also

add the terms ε
∑

e∈Ebi
h

∫
e
{β∇v · ne}e[u]eds and

∑
e∈Ebi

h

σ0
e

|e|

∫
e
[u]e [v]eds on both sides of (4.3), then

we can see that the solution u to the elliptic interface problem (4.1) satisfies the following

weak form:

ah(u, v) = Lf (v), ∀v ∈ Vh,0(Ω), (4.5)

where the bilinear form ah(·, ·) : Vh(Ω) × Vh(Ω) → R and the linear form Lf : Vh(Ω) → R
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are given by

ah(u, v) =
∑
T∈Th

∫
T

β∇u · ∇vdX −
∑
e∈E̊i

h

∫
e

{β∇u · ne}e[v]eds

+ε
∑
e∈E̊i

h

∫
e

{β∇v · ne}e[u]eds+
∑
e∈E̊i

h

σ0
e

|e|

∫
e

[u]e [v]eds (4.6)

−
∑
e∈Ebi

h

∫
e

β∇u · nevds+ ε
∑
e∈Ebi

h

∫
e

β∇v · neuds+
∑
e∈Ebi

h

σ0
e

|e|

∫
e

u vds,

Lf (v) =

∫
Ω

fvdX +
∑
e∈Ebi

h

σ0
e

|e|

∫
e

vgds+ ε
∑
e∈Ebi

h

∫
e

β∇v · negds. (4.7)

By enforcing the continuity on the mesh nodes, we can define the global IFE space as

Sh(Ω) =
{
v ∈ L2(Ω) : v|T ∈ Sh(T ), ∀T ∈ Th, v is continuous at eachAi ∈ Nh

}
,

Sh,0(Ω) =
{
v ∈ L2(Ω) : v ∈ Sh(Ω), v|∂Ω\Ebi

h
= 0
}
,

(4.8)

where Sh(T ) is the local IFE space on the element T ∈ Th defined by (2.11). Then, as

in [111], the weak form (4.5) suggests us to consider the following PPIFE schemes for the

interface problem (4.1): find uh ∈ Sh(Ω) such that

ah(uh, vh) = Lf (vh), ∀vh ∈ Sh,0(Ω). (4.9)

We follow [111, 127] to consider the PPIFE methods associated with three common choices

ε = 0,−1, 1, respectively, and we call the corresponding PPIFE method the incomplete

PPIFE (IPPIFE), the symmetric PPIFE (SPPIFE), and the non-symmetric PPIFE (NPPIFE)

method, respectively.
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4.3 Approximation capabilities on a patch

In this section, following similar ideas in [63, 64, 67], we consider the approximation capability

of the IFE spaces locally around an interface element. We recall some notations about the

set of elements defined in Chapter 2 that will be used in the later discussion: the set of

interface elements T i
h , the set of interior interface elements T̊ i

h , and the set of boundary

interface elements T bi
h . For each interface element T ∈ T i

h , we consider a patch around it

defined as follows [63, 64]:

Definition 4.1. (Patch of an interface element) For each interface element T ∈ T i
h , its

patch is defined as the union of the neighbor elements:

ωT = ∪
{
T ′ ∈ Th : T ′ ∩ T 6= φ

}
. (4.10)

Figure 4.1 and Figure 4.2 illustrate the patch of an interior interface element and a bound-

ary interface element, respectively. In the analysis presented later, we make the following

assumption on these patches [63]:

Patch Assumption: As it is shown in Figure 4.1 and Figure 4.2, for every interface element

T and its patch ωT , let e be an interface edge of T . We assume that for s = ±, there exists

a triangle T s
e ⊂ Ωs ∩ωT and two constants C1, C2 independent of the interface location such

that e ∩ T s is one edge of T s
e and

C1|e ∩ T s|h ≤ |T s
e | ≤ C2|e ∩ T s|h, s = −,+. (4.11)

For example, for the interface element T = 4A1A2A3 and the interface edge e = A1A2 in
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Figure 4.1 and Figure 4.2, it is easy to see that

T+
e = 4A1DP, T−

e = 4A2DQ

can be used to fulfill the Patch Assumption for this interface element T , here, D ∈ e is the

intersection point of the interface Γ and ∂T , P ∈ ωT and Q ∈ ωT are points whose distance

to the line passing A1 and A2 is about h. Basically, the inequality (4.11) to be satisfied

in the Patch Assumption means that: the auxiliary triangle T s
e corresponding to the edge

e ∩ T s has a height O(h). We then summarize the conditions for the Patch Assumption to

be satisfied in the following two remarks:

Remark 4.1. As it is shown in Figure 4.1 for the interior interface elements T ∈ T̊ i
h , when

the mesh size h is sufficient small so that the interface is locally flat enough, the Patch

Assumption can be satisfied.

Remark 4.2. As it is shown in Figure 4.2 and Figure 4.3 for the boundary interface elements

T ∈ T bi
h , the Patch Assumption can be satisfied under the following conditions (i) The mesh

size h is sufficient small so that the interface is locally flat enough. (ii) The mesh is

sufficiently fine such that the interface Γ does not cut the corner of the domain, i.e., only

one edge of a boundary interface element is on the boundary of the domain. (iii) There is

a constant m independent of Th, such that min{A1D,DA2} ≥ mh; (iv) Let the acute angle

between the interface and the boundary is α, and tan(α) ≥ m/2 (This condition is derived

based on MN ≥ mh in Figure 4.3).
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Figure 4.1: The patch of a triangular interior interface element

Figure 4.2: The patch of a triangular boundary interface element

Figure 4.3: The patch of a triangular boundary interface element and the acute angle between
the interface and the boundary
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We now proceed to investigate the approximation capability of the IFE space on the patch

of each interface element. As a preparation, we first consider a few subsets formed according

to the interface geometry inside the patch of an interface element. Let T be an interface

element. We recall l is the line that passes through the two intersection points of Γ and ∂T .

The interface Γ and the line l split the patch ωT into the sub-patches ωs
T and ω̂s

T (s = ±),

respectively. Let ω̃s
T = ωs

T ∪ ω̂s
T , s = ±, and we can see that ω̃T = (ω̃+

T ∩ ω−
T ) ∪ (ω̃−

T ∩ ω+
T ) is

the sub-patch sandwiched between l and Γ. Following [59, 60], we consider the sub-set

ωint
T = ∪{lt ∩ ωT : lt is a tangent line to Γ ∩ ωT} . (4.12)

For every vertex Ai of T , i ∈ IT , and each point X ∈ ωT\ωint
T , the line segment AiX has

either zero or one intersection point with Γ ∩ ωT . When there is no intersection point, Ai

and X have to be on the same side of Γ∩ ωT ; while when there is one intersection point, Ai

and X are on the different sides of Γ∩ ωT . We further denote ω∗,s
T = (ω̂s

T ∩ ωs
T )\ωint

T , s = ±,

and ω∗
T = ωT\(ω∗,−

T ∪ω∗,+
T ). By Lemma 3.4 of [60], when the mesh size is small enough, there

holds

|ω∗
T | ≤ Ch3. (4.13)

For every X ∈ ω∗,s
T , we let Yi(t,X) = tAi + (1 − t)X. When X and Ai are on different

sides of Γ, we let t̃i = t̃i(X) ∈ [0, 1] such that Ỹi = Yi(t̃i, X) is on the curve Γ ∩ T . Let

n(X̃) = (ñx(X̃), ñy(X̃)) be the normal vector to Γ at every point X̃ ∈ Γ ∩ ωT . Recall

n̄ = (n̄x, n̄y) be the normal vector to l and denote X̃⊥ as the projection of a point X̃ onto l.

It can be shown, by the similar discussion as the Lemmas 3.1 and 3.2 in [57], that, for any

X̃ ∈ Γ ∩ ωT , there holds

‖X̃ − X̃⊥‖ ≤ Ch2, ‖n(X̃)− n̄‖ ≤ Ch. (4.14)
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As in [71, 100], for a function u ∈ H2(Ω− ∪Ω+), we let Ihu ∈ Sh(Ω) be its IFE interpolation

defined by

Ihu|T = Ih,Tu, with


Ih,Tu(X) =

∑
i∈IT u(Ai)φi,T (X), ∀X ∈ T, ∀T ∈ T i

h ,

Ih,Tu(X) =
∑

i∈IT u(Ai)ψi,T (X), ∀X ∈ T, ∀T ∈ T n
h .

On each interface element T , every IFE shape function φi,T (X), i ∈ IT can be naturally

considered as a piecewise polynomial defined on the patch ωT according to the sub-patches

ω̂s
T , s = −,+. Therefore, for a function u ∈ H2(Ω− ∪ Ω+), we can consider its local IFE

interpolation Ih,Tu(X) on an interface element T as a piecewise polynomial defined on the

patch ωT according to sub-patches ω̂s
T , s = ±, and we proceed to the analysis of its accuracy

in the rest of this section. In the discussions below, we denote s = ±, s′ = ∓, namely, s

and s′ take opposite signs whenever a formula have them both. Also, we adopt the following

notations: X = (x, y) and x1 = x, x2 = y.

Following the same arguments in [57], we have the following expansions for Ihu− u:

∂xd
(Ih,Tu(X)− u(X)) =

∑
i∈Is′

(Es
i + F s

i )∂xd
φi,T (X) (4.15)

+
∑
i∈I

Rs
i∂xd

φi,T (X), ∀X ∈ ω∗,s
T , s = ±,

∂xdxd′
Ih,Tu(X) =

∑
i∈Is′

(Es
i + F s

i )∂xdxd′
φi,T (X) (4.16)

+
∑
i∈I

Rs
i∂xdxd′

φi,T (X), ∀X ∈ ω∗,s
T , s = ±,
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∂xd
Ih,Tu =

∑
i∈I

R̃i∂xd
φi,T (X), ∀X ∈ ω∗

T , (4.17)

∂xdxd′
Ih,Tu =

∑
i∈I

R̃i∂xdxd′
φi,T (X), ∀X ∈ ω∗

T , (4.18)

where d, d′ = 1, 2 and

Rs
i (X) = Rs

i1(X) +Rs
i2(X) +Rs

i3(X), i ∈ Is′ , X ∈ ω∗,s
T , with (4.19)

Rs
i1(X) =

∫ t̃i

0

(1− t)
d2us

dt2
(Yi(t,X)) dt,

Rs
i2(X) =

∫ 1

t̃i

(1− t)
d2us

′

dt2
(Yi(t,X)) dt,

Rs
i3(X) = (1− t̃i)

∫ t̃i

0

d

dt

((
M s(Ỹi)− I

)
∇us(Yi(t,X)) · (Ai −X)

)
dt,

(4.20)

Es
i =

((
M s(Ỹi)−M

s
)
∇us(X)

)(
Ai − Ỹi

)
, i ∈ Is′ , (4.21)

F s
i = −

((
M

s − I
)
∇us(X)

) (
Ỹi − Ỹi

⊥
)
, i ∈ Is′ , (4.22)

R̃i(X) =

∫ 1

0

d

dt
u (Yi(t,X)) dt, i ∈ I, (4.23)

in which M− = (N+)−1N−, M+ = (N−)−1N+, M−
= (N

+
)−1N

−, M+
= (N

−
)−1N

+, with

N s = N s(X̃) =

 ñy(X̃) −ñx(X̃)

βsñx(X̃) βsñy(X̃)

 and N̄ s =

 n̄y −n̄x

βsn̄x βsn̄y

 , s = ±. (4.24)

Now we show the optimal approximation capabilities for the IFE spaces in terms of the

interpolation errors on the patch ωT for each interface element T . This result is stated in

the following theorem and it is complementary to that given in [57, 71, 100].

Theorem 4.1. Assume that the mesh Th is sufficiently fine, then there exists a constant C
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independent of the interface location such that the following estimate holds on each patch ωT

associated with every interface element T :

‖∇(Ih,Tu− u)‖L2(ωT ) + h
∥∥∇2(Ih,Tu− u)

∥∥
L2(ωT )

≤Ch
(
‖u‖PH2(ωT ) + ‖u‖PW 1,6(ωT )

)
, ∀u ∈ PH2(ωT ).

(4.25)

Proof. Using Lemma 4.1 in [57] and the fact ‖Ai −X‖ ≤ Ch for i ∈ I, X ∈ ωT , we directly

have

‖Rs
i‖L2(ω∗,s

T )

=

(∫
ω∗,s
T

(∫ 1

0

(1− t)(Ai −X)THs
u(Yi(t,X))(Ai −X)dt

)2

dX

)1/2

≤Ch2
∫ 1

0

(∫
ω∗,s
T

(1− t)2
2∑

k,l=1

|∂xk
∂xl
us(Yi, t)|2 dX

)1/2

dt

≤Ch2 ‖u‖PH2(ωT ) ,

(4.26)

where Hs
u is the Hessian matrix given by

Hs
u(Yi(t,X)) =

usxx(Yi(t,X)) usxy(Yi(t,X))

usyx(Yi(t,X)) usyy(Yi(t,X)))

 . (4.27)

Note that (4.14) implies the ‖M s(Ỹi) −M
s‖ ≤ Ch, s = ±. Then, because of (4.21), we

further have

‖Es
i ‖L2(ω∗,s

T ) ≤‖M s(Ỹi)−M
s‖‖∇us‖L2(ω∗,s

T )‖Ai − Ỹj‖

≤Ch‖M s(Ỹi)−M
s‖‖∇us‖L2(ω∗,s

T )

≤Ch2‖u‖PH2(ωT ).

(4.28)
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Next, (4.14) yields

‖F s
i ‖L2(ω∗,s

T ) ≤‖M s − I‖‖∇us‖L2(ω∗,s
T )‖Ỹi − Ỹi

⊥‖

≤Ch2‖u‖PH2(ωT ).

(4.29)

In addition, using |ω∗
T | ≤ Ch3 from (4.13) and the similar argument as the one used in

Lemma 3.2 in [59], we have

‖R̃i‖L2(ω∗
T ) ≤ Ch2‖u‖PW 1,6(ωT ),

‖∂xd
u‖L2(ω∗

T ) ≤ Ch‖u‖PW 1,6(ωT ),

(4.30)

where d = 1, 2. Note that the IFE shape functions have the following bounds [57, 71, 100]

|φi,T |Wk,∞(ωT ) ≤ Ch−k, k = 1, 2. (4.31)

Based on the estimations above, it follows from the expansions (4.15)-(4.18) that

‖∂xd
(Ih,Tu− u)‖L2(ω∗,s

T ) (4.32)

≤Ch−1

∑
i∈Is′

(
‖Es

i ‖L2(ω∗,s
T ) + ‖F s

i ‖L2(ω∗,s
T )

)
+
∑
i∈I

‖Rs
i‖L2(ω∗,s

T )


≤Ch ‖u‖PH2(ωT ) ,

∥∥∂xdxd′
(Ih,Tu− u)

∥∥
L2(ω∗,s

T )
(4.33)

≤Ch−2

∑
i∈Is′

(
‖Es

i ‖L2(ω∗,s
T ) + ‖F s

i ‖L2(ω∗,s
T )

)
+
∑
i∈I

‖Rs
i‖L2(ω∗,s

T )

+‖∂xdxd′
u‖L2(ω∗,s

T )

≤C ‖u‖PH2(ωT ) ,
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‖∂xd
(Ih,Tu− u)‖L2(ω∗

T ) (4.34)

≤Ch−1
∑
i∈I

‖R̃i‖L2(ω∗
T ) + ‖∂xd

u‖L2(ω∗
T ) ≤ Ch‖u‖PW 1,6(ωT ),

‖∂xdxd′
(Ih,Tu− u)‖L2(ω∗

T ) (4.35)

≤Ch−2
∑
i∈I

‖R̃i‖L2(ω∗
T ) + ‖∂xdxd′

u‖L2(ω∗
T ) ≤ C

(
‖u‖PW 1,6(ωT ) + ‖u‖PH2(ωT )

)
,

where d, d′ = 1, 2. Note that ωT = ω∗
T ∪ω

∗,−
T ∪ω∗,+

T , thus (4.25) follows from (4.32)-(4.35).

4.4 Error estimation for the PPIFE methods

In this section, we will derive optimal estimates for the errors of PPIFE solutions under the

usual piecewiseH2 regularity assumption for the exact solution. As usual in the error analysis

and without loss of generality, we assume that the interface problem has a homogeneous

Dirichlet boundary condition, i.e., g = 0 in (4.1b). We use the following quantities to gauge

the errors of PPIFE solutions:

‖v‖2h =
∑
T∈Th

∫
T

β‖∇v‖2dX +
∑
e∈Ei

h

σ0
e

∫
e

∥∥|e|−1/2[v]
∥∥2 ds, ∀v ∈ Vh(Ω), (4.36)

|||v|||2h = ‖v‖2h +
∑
e∈Ei

h

(σ0
e)

−1

∫
e

‖|e‖1/2 {β∇v · ne}‖2ds, ∀v ∈ Vh(Ω). (4.37)

In fact, the following lemma shows the quantities defined in (4.36) and (4.37) are indeed

energy norms on the underlying space Vh(Ω).

Lemma 4.1. ‖ · ‖h and |||·|||h are both norms on Vh(Ω).
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Proof. We only present the proof for |||·|||h and the argument for ‖ · ‖h is similar. Suppose

|||v|||h = 0 for some v ∈ Vh(Ω). Due to the construction in (4.36), it is easy to see that v is

a piecewise constant on each element and sub-elements of interface elements. Besides, from

|||·|||h = 0, it follows easily that v = 0 on Ebi
h and v is continuous across Ebi

h . Thus v = 0 on

T ∈ T bi
h . v is continuous across all the non-interface edges, we have v = 0 on ∪T∈T n

h
T . In

addition, the second term in (4.36) vanishing implies that v is actually continuous over all

the interface edges, and thus, v = 0 on ∪T∈T i
h
T . Hence, v = 0 on the whole Ω. Since it is

easy to verify that |||·|||h is a semi-norm, we conclude that |||·|||h is a norm.

We note that the energy norm (4.36) was already used for the analysis in [111]. It is easy to

see that

‖v‖h 6 |||v|||h, v ∈ Vh(Ω). (4.38)

The following lemma shows the norms respectively defined by (4.36) and (4.37) are actually

equivalent when restricted on the IFE space Sh(Ω).

Lemma 4.2. For sufficiently large σ0
e , there exists a constant C independent of the interface

location such that |||v|||h 6 C‖v‖h, ∀v ∈ Sh(Ω).

Proof. For each e ∈ E̊ i
h, let T e

1 and T e
2 be the two elements sharing the same edge e. By the

trace inequality given by Lemmas 3.2 and 3.5 in [111], there exists a constant C independent

of the interface location on both T e
1 and T e

2 , such that for each v ∈ Sh(Ω), there holds for

e ∈ E̊ i
h∫

e

∥∥|e|1/2{β∇v · ne}
∥∥2 ds 6 Ch

(∥∥β∇v|T e
1
· ne
∥∥2
L2(e)

+
∥∥β∇v|T e

2
· ne
∥∥2
L2(e)

)
6 C

∥∥∥√β∇v
∥∥∥2
L2(T e

1∪T e
2 )
,

(4.39)
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for e ∈ Ebi
h

∫
e

∥∥|e|1/2{β∇v · ne}
∥∥2 ds 6 Ch

(
‖β∇v · ne‖2L2(e)

)
≤ C

∥∥∥√β∇v
∥∥∥2
L2(T )

. (4.40)

Therefore, for e ∈ E i
h, adding and subtracting the term

∑
e∈Ei

h
(σ0

e)
−1
∫
e

∥∥|e|1/2{β∇v · ne}
∥∥2 ds

in ‖ · ‖h yields

‖v‖2h >

(
1− 3C

σ0
e

) ∑
T∈Th

∫
T

β ‖∇v‖2 dX +
∑
e∈Ei

h

σ0
e

∫
e

∥∥|e|−1/2[vh]
∥∥2 ds

+
∑
e∈Ei

h

(σ0
e)

−1

∫
e

∥∥|e|1/2{β∇v · ne}
∥∥2 ds, (4.41)

where the constant C is from (4.40). It is easy to see that the desired result follows from

taking σ0
e large enough in (4.41).

The following theorem derives an optimal bound for the error in the flux of the IFE inter-

polation of a piecewise H2 function on interface edges.

Theorem 4.2. Assume that the mesh Th is sufficiently fine and satisfies the Patch Assump-

tion. Then there exists a constant C independent of the interface location such that:

∑
e∈Ei

h

‖{β∇(u− Ihu) · ne}‖2L2(e) ≤ Ch‖u‖2PH2(Ω), ∀u ∈ PH2(Ω). (4.42)

Proof. For each interface element T ∈ T i
h , let e ∈ E i

h be one of its edges and let es =

e∩Ωs, s = ±. According to the Patch Assumption, there exists an auxiliary triangle T s
e ⊂ ωT ,

possessing es as one of its edges, such that T s
e ⊂ Ωs and |es|/|T s

e | ≤ Ch−1, s = ±. Letting

βmax = max{β−, β+}, applying the standard trace inequality on T s
e and using the estimation



58
Chapter 4. Improved error estimation for some IFE methods for elliptic

interface problems

in (4.25), we have

‖β∇(u− Ihu) · ne‖L2(e)

≤βmax

(
‖∇(Ih,Tu− u)‖L2(e−) + ‖∇(Ih,Tu− u)‖L2(e+)

)
≤C

∑
s=−,+

(|es|/|T s
e |)

1/2
(
‖∇(Ih,Tu− u)‖L2(T s

e )
+ h

∥∥∇2(Ih,Tu− u)
∥∥
L2(T s

e )

)
≤Ch1/2

(
‖u‖PH2(ωT ) + ‖u‖PW 1,6(ωT )

)
.

(4.43)

For each interface edge e ∈ E̊ i
h, let T e

1 and T e
2 be the two neighbor elements. Then (4.43)

implies

∑
e∈E̊i

h

‖{β∇(u− Ihu) · ne}‖2L2(e)

6C
∑
e∈E̊i

h

(∥∥β∇(u− Ih,T e
1
u) · ne

∥∥2
L2(e)

+
∥∥β∇(u− Ih,T e

2
u) · ne

∥∥2
L2(e)

)
6Ch

∑
T∈T i

h

(
‖u‖2PH2(ωT ) + ‖u‖2PW 1,6(ωT )

)
.

(4.44)

For each interface edge e ∈ Ebi
h and the corresponding boundary interface element T ∈ T bi

h ,

∑
e∈Ebi

h

‖{β∇(u− Ihu) · ne}‖2L2(e)

6C
∑
e∈Ebi

h

(
‖β∇(u− Ih,Tu) · ne‖2L2(e) + ‖β∇(u− Ih,Tu) · ne‖2L2(e)

)
6Ch

∑
T∈T i

h

(
‖u‖2PH2(ωT ) + ‖u‖2PW 1,6(ωT )

)
.

(4.45)

Then from (4.44) and (4.45) we have:

∑
e∈Ei

h

‖{β∇(u− Ihu) · ne}‖2L2(e) 6Ch
(
‖u‖2PH2(Ω) + ‖u‖2PW 1,6(Ω)

)
, (4.46)
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where we have utilized the finite-overlapping property of the patches ωT , T ∈ T i
h . Then (4.42)

is obtained by applying the standard embedding inequality [126] ‖w‖1,6,Ωs ≤ C‖w‖2,Ωs , s = ±

to (4.46).

Remark 4.3. Note that, in Theorem 4.2 and the rest parts of the thesis, Th is sufficiently

fine means that: for some fixed parameter ε ∈ (0,
√
2/2) and κ ∈ (0, 1], the mesh size h is

such that [57]:

h < min
{ √

κ√
2(1 + (1− 2ε2)−3/2)κ

,
ε

κ

}
,

where κ is the curvature of the interface Γ.

The following theorem is about the approximation capabilities of the IFE spaces in the

energy norms on the whole domain Ω.

Theorem 4.3. Assume that the mesh Th is sufficiently fine and satisfies the Patch Assump-

tion. Then there exists a constant C independent of the interface location such that

‖Ihu− u‖h ≤ Ch‖u‖PH2(Ω), ∀u ∈ PH2(Ω) (4.47)

and

|||Ihu− u|||h ≤ Ch‖u‖PH2(Ω), ∀u ∈ PH2(Ω). (4.48)

Proof. By (4.38), estimate (4.47) follows from (4.48). Estimate (4.48) simply comes from

the estimate (4.42) and the definition (4.37) together with the global optimal approximation

capabilities of the linear and bilinear IFE spaces given in [71, 100].

Now we prove the coercivity and continuity for the bilinear form ah(·, ·) defined in (4.6) in

terms of the energy norm |||·|||h.
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Theorem 4.4. For ah(·, ·) defined in (4.6), if σ0
e is sufficiently large, then there exists a

constant κ such that

ah(vh, vh) ≥ κ|||vh|||2h, ∀vh ∈ Sh(Ω). (4.49)

Proof. Note that

ah(vh, vh) =
∑
T∈Th

∫
T

β∇vh · ∇vhdX

+ (ε− 1)
∑
e∈Ei

h

∫
e

{β∇vh · ne}e[vh]eds+
∑
e∈Ei

h

σ0
e

|e|

∫
e

[vh]e [vh]eds. (4.50)

For an interior interface edge e ∈ E̊ i
h, we have

∑
e∈E̊i

h

∫
e

{β∇vh · ne}[vh]ds 6 C
∑
e∈E̊i

h

∥∥∥√β∇vh
∥∥∥
L2(T e

1∪T e
2 )

1

‖e‖1/2
‖vh‖L2(e)

6
δ

2

∑
T∈Th

∥∥∥√β∇vh
∥∥∥2
L2(T )

+
C

2δ

∑
e∈E̊i

h

1

|e|
‖[vh]‖2L2(e) ,

(4.51)

for a boundary interface edge e ∈ Ebi
h and its corresponding boundary interface element

T ∈ T bi
h

∑
e∈Ebi

h

∫
e

{β∇vh · ne}[vh]ds 6 C
∑
e∈Ebi

h

∥∥∥√β∇vh
∥∥∥
L2(T )

1

|e|1/2
‖vh‖L2(e)

6
δ

2

∑
T∈T bi

h

∥∥∥√β∇vh
∥∥∥2
L2(T )

+
C

2δ

∑
e∈Ebi

h

1

|e|
‖[vh]‖2L2(e) .

(4.52)

Therefore

ah(vh, vh) ≥
∑
T∈Th

∫
T

β∇vh · ∇vhdX +
∑
e∈Ei

h

σ0
e

|e|
‖[vh]e‖L2(e)
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+ (ε− 1)

δ ∑
T∈Th

∥∥∥√β∇vh
∥∥∥2
L2(T )

+
C

2δ

∑
e∈Ei

h

1

|e|
‖[vh]‖2L2(e)

 (4.53)

≥ (1 + δ(ε− 1))
∑
T∈Th

∥∥∥√β∇vh
∥∥∥2
L2(T )

+

(
1 +

C(ε− 1)

2δσ0
e

)∑
e∈Ei

h

σ0
e

|e|
‖[vh]‖2L2(e) .

Consider the least favorable situation (ε is smallest) where ε = −1, by choosing δ = 1
4

and

σ0
e = 5C, we have:

ah(vh, vh) ≥ κ|||vh|||2h, ∀v ∈ Sh(Ω). (4.54)

The proof for other values of ε follows similarly.

Theorem 4.5. For ah(·, ·) defined in (4.6), there exists a constant C such that

ah(w, v) ≤ C|||w|||h|||v|||h, ∀w, v ∈ Vh(Ω). (4.55)

Proof. Note that

|a(w, v)| ≤

∣∣∣∣∣∑
T∈Th

∫
T

β∇w∇vdX

∣∣∣∣∣+
∣∣∣∣∣∣
∑
e∈Ei

h

∫
e

{β∇w · ne}[v]ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
e∈Ei

h

∫
e

{β∇v · ne}[w]

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
e∈Ei

h

∫
e

σ0
e

|e|α
[w][v]ds

∣∣∣∣∣∣ .
(4.56)

Denote each term on the right in (4.56) as Qi(i = 1, 2, 3, 4). Applying Hölder inequality on

Qi, we have

|Q1| ≤ C‖w‖L2(T )‖v‖L2(T ) ≤ C|||w|||h|||v|||h, (4.57)
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|Q2| ≤
∑
e∈Ei

h

‖{β∇w · ne}‖L2(e) ‖[v]‖L2(e)

≤

∑
e∈Ei

h

(σ0
e)

−1
∥∥|e|1/2{β∇w · ne}

∥∥2
L2(e)

1/2∑
e∈Ei

h

σ0
e

∥∥|e|−1/2[v]
∥∥2
L2(e)

1/2

≤ |||w|||h|||v|||h.

(4.58)

Using the similar argument above, we obtain

|Q3| ≤ |||w|||h|||v|||h, (4.59)

|Q4| ≤ |||w|||h|||v|||h. (4.60)

Thus, (4.55) follows from applying (4.57)-(4.60) to (4.56).

We note the estimate for ‖Ihu − u‖h given in (4.47) was also established in [111], but we

prove it here by alternative arguments such that (4.47) follows from (4.48), which is the

optimal approximation capability of the IFE space in the stronger energy norm |||·|||h. More

importantly, adopting the stronger norm |||·|||h in the error estimation allows us to establish

both the coercivity and continuity for the bilinear form ah(·, ·) employed in the PPIFE

methods, which are critical components in obtaining the optimal error estimates for the

PPIFE solutions with the standard PH2(Ω) regularity in the following theorems.

Theorem 4.6. Assume that the exact solution u to the interface problem (4.1) is in PH2(Ω)

and uh is the related PPIFE solution with σ0
e in ah(·, ·) large enough on a mesh Th fine

enough. Then there exists a constant C such that

|||u− uh|||h ≤ Ch‖u‖PH2(Ω). (4.61)
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Proof. From (4.5) and (4.9) we have

ah(uh − Ihu, v) = ah(u− Ihu, v), ∀v ∈ Sh(Ω). (4.62)

Letting v = uh − Ihu and using both the coercivity and the continuity of ah(·, ·), we have

κ|||uh − Ihu|||2h ≤ ah(uh − Ihu, uh − Ihu) =ah(u− Ihu, uh − Ihu) (4.63)

≤C|||u− Ihu|||h|||uh − Ihu|||h.

Thus, |||uh − Ihu|||h ≤ C|||u− Ihu|||h. Then, by (4.48), we have

|||u− uh|||h ≤ |||u− Ihu|||h + |||uh − Ihu|||h ≤ (1 + C)|||u− Ihu|||h ≤ Ch‖u‖PH2(Ω),

which proves (4.61).

Because of (4.38), the estimate given by (4.61) leads to

‖u− uh‖h ≤ Ch‖u‖PH2(Ω), (4.64)

which is not only an optimal error estimate for the PPIFE solution uh in the energy norm

‖ · ‖h but also a better estimate than the one given in Theorem 4.3 of [111] because (4.64)

requires a standard and less stringent regularity assumption for the exact solution u.

Furthermore, using the standard regularity assumption in the error analysis allows us to

derive an optimal error estimate in the L2 norm in the following theorem, which could not

be accomplished by the analysis approaches employed in [111] that relied on the excessive

PH3(Ω) regularity.
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Theorem 4.7. Under the conditions of Theorem 4.6, there exists a constant C such that

‖u− uh‖L2(Ω) ≤ Ch2‖u‖PH2(Ω). (4.65)

Proof. The proof is based on the standard duality argument. Let w ∈ PH2(Ω) be the

auxiliary function that is the solution to (4.1) with f at the right hand side replaced by

u− uh. Then, following standard arguments we have

‖u− uh‖2L2(Ω) = ah(w, u− uh). (4.66)

Let Ihw be the interpolent of w in IFE space. Since Ihw ∈ Sh(Ω), by (4.5) and (4.9) we have

ah(Ihw, u−uh) = 0 which leads to ah(w, u−uh) = ah(w− Ihw, u−uh). Then, by (4.66) and

the continuity of ah(·, ·), we have

‖u− uh‖2L2(Ω) = ah(w − Ihw, u− uh) ≤ C|||w − Ihw|||h|||u− uh|||h. (4.67)

According to (4.48) and the regularity for the elliptic interface problem [45], we have

|||w − Ihw|||h ≤ Ch‖w‖PH2(Ω) ≤ Ch‖u− uh‖L2(Ω). (4.68)

Putting (4.68) to (4.67) leads to

‖u− uh‖L2(Ω) ≤ Ch|||u− uh|||h, (4.69)

which yields (4.65) by applying (4.61).

To finish this section, we present a numerical example to corroborate the optimal error

estimates obtained in Theorems 4.6 and 4.7. Consider the domain Ω = (−1, 1) × (−1, 1)
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that is separated by the circular interface Γ : x2 + y2 − r20 = 0, r0 = π/6.28 into two

subdomains

Ω− =
{
(x, y) : x2 + y2 < r20

}
, Ω+ = Ω\Ω−.

On Ω, we choose functions f and g such that the interface problem (4.1) has the following

exact solution:

u(x, y) =


1

β− r
α, (x, y) ∈ Ω−,

1

β+
rα +

(
1

β− − 1

β+

)
rα0 , (x, y) ∈ Ω+,

(4.70)

in which α = 1.5, r =
√
x2 + y2, β− = 1, and β+ = 10. It can be verified that u ∈

PH2(Ω)\PH3(Ω). Table 4.1 presents errors of the PPIFE solution uh generated on a se-

quence of uniform triangular meshes Th of Ω in which h = 2/N with the integer N listed in

the first column in Table 4.1. The data in this table clearly demonstrates that the PPIFE

solutions converge optimally in both the L2 and H1 norms to the exact solution u that is a

function in the Sobolev space PH2(Ω) but not in PH3(Ω).

N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate

10 2.9428e-03 NA 3.2747e-02 NA

20 8.4280e-04 1.8039 1.5430e-02 1.0856

40 1.9635e-04 2.1018 7.8261e-03 0.9793

80 4.5931e-05 2.0958 3.9244e-03 0.9958

160 1.1242e-05 2.0305 1.9596e-03 1.0019

320 2.9990e-06 1.9064 9.7966e-04 1.0002

640 7.7099e-07 1.9597 4.8967e-04 1.0005

1280 1.9814e-07 1.9602 2.4490e-04 0.9996

Table 4.1: Errors of SPPIFE solutions, β− = 1, β+ = 10, α = 1.5.
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4.5 Conclusions

In this chapter, we have employed a new analysis framework to derive the error bounds

for the PPIFE methods developed in [111]. This new framework uses an energy norm |||·|||h

which is stronger than ‖·‖h norm originally used [111]. There are two key-components in this

analysis framework. First, it employs a patch technique to show the optimal approximation

capability on interface edges for the flux of the IFE interpolation of a function with the

standard piecewise H2 regularity. Second, it shows that the bilinear form ah(·, ·) in the

PPIFE methods is both coercive and continuous in terms of the stronger energy norm |||·|||h.

Benefitted from these two key-components, not only can we show that the IFE space has the

optimal approximation capability gauged by the energy norm |||·|||h, but also we can show the

PPIFE solution converges optimally in both |||·|||h and ‖ · ‖h with the standard piecewise H2

regularity for the exact solution. As a very important consequence of the standard piecewise

H2 regularity assumption, we can further show that the PPIFE solution converges optimally

in the L2 norm, which the analysis techniques used in [111] could not achieve. The error

analysis for IFE for the second order elliptic operator based on the patch will serve as the

theoretical foundation for the analysis of the IFE methods for Helmholtz, hyperbolic and

parabolic interface problems in the coming chapters.



Chapter 5

IFE methods for Helmholtz interface

problems

5.1 Introduction

In this chapter, we present our exploration for applying IFE methods to solve the Helmholtz

interface problem described by (1.7), which we recall here for easy reference: find u(X) that

satisfies the Helmholtz equation and the boundary condition

−∇ · (β∇u)− ω2u = f, in Ω− ∪ Ω+, (5.1a)

β
∂u

∂nΩ

+ iωu = g, on ∂Ω, (5.1b)

together with the jump conditions across the interface [21, 26, 38, 86, 93]:

[u]Γ := u+|Γ − u−|Γ = 0, (5.1c)[
β∇u · n

]
Γ
:= β+∇u+ · n|Γ − β−∇u− · n|Γ = 0. (5.1d)

Here the domain Ω ⊆ R2 is divided by an interface curve Γ into two subdomains Ω− and

Ω+, occupied by a different material each, with Ω = Ω− ∪ Ω+ ∪ Γ, i =
√
−1, ω is the wave

number, nΩ is the unit outward normal vector to ∂Ω, us = u|Ωs , s = ±, n is the unit outward

67
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normal vector to the interface Γ, and the coefficient β is a positive piecewise constant function

representing different materials such that

β(X) =

 β− for X ∈ Ω−,

β+ for X ∈ Ω+.

Both the PPIFE methods and the DGIFE methods, including the higher degree schemes, will

be developed to solve the Helmholtz interface problems. As for the error estimation, we follow

the framework of Schatz’s argument to carry out the error analysis for the linear and bilinear

symmetric PPIFE methods. To be specific, we utilize the coercivity and continuity of the

bilinear form corresponding to the elliptic operator [63, 111] to establish Gårding’s inequality

and continuity of the bilinear form in these PPIFE methods which are key ingredients in

Schatz’s argument. We also derive a special trace inequality that is valid for IFE functions

which are not H1 functions in general. Consequently, under suitable assumptions about the

regularity of the exact solution and the mesh size, we are able to establish the optimal error

bounds in both an energy norm and the standard L2 norm for these PPIFE methods for

solving the Helmholtz interface problems.

The layout of this section is as follows: In Section 5.2, PPIFE and DGIFE methods are

derived for the Helmholtz interface problem (5.1). In Section 5.3, optimal error bounds are

derived for the linear/bilinear symmetric PPIFE method in both the energy norm and L2

norm with Schatz’s argument [62]. We present numerical examples to show the features of

the proposed IFE methods in Section 5.4. Some concise conclusions and remarks are given

in Section 5.5.
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5.2 IFE methods for Helmholtz interface problems

All the IFE methods developed for the elliptic interface problems such as those in [3, 73,

100, 104, 111, 112] are expected to be extended to Helmholtz interface problems since they

share the same second order elliptic operator. We will herein focus on the PPIFE methods

and DGIFE methods because it has been observed that these methods have the enhanced

stability and accuracy with the added penalty terms in the schemes.

To describe the IFE spaces to be used to solve Helmhotlz interface problems, we specify the

collection of the nodes Nh for a mesh Th of Ω as follows:

Nh =



⋃
T∈Th

{Xi,T , 1 ≤ i ≤ (p+ 1)(p+ 2)/2} when Th is a triangular mesh,

⋃
T∈Th

{Ai,T , 1 ≤ i ≤ 4} when Th is a rectangular mesh,

where Xi,T , 1 ≤ i ≤ (p + 1)(p + 2)/2 are the local nodes associated with the standard p-th

degree Lagrange finite element shape functions in a triangular element T and Ai,T , 1 ≤ i ≤ 4

are vertices of a rectangular element T .

Then the complex local IFE space to be used is

Sp
h(T ) =

{
v = v1 + iv2 : v1, v2 ∈ S̃p

h(T )
}
, ∀T ∈ Th, (5.2)

where the real linear/bilinear local IFE space S̃1
h(T ) is the same as S1

h(T ) in (2.11), and the

real higher order IFE space S̃p
h(T ) (p ≥ 2) is the same as Sp

1,h(T ) in (3.13) (we only consider
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normal extended jump condition herein when constructing higher degree IFE spaces). Ac-

cordingly, the complex global IFE space used in the PPIFE method for Helmholtz interface

problems is defined as:

Sp
h(Ω) =

{
v ∈ L2(Ω) : v|T ∈ Sp

h(T ), ∀T ∈ Th, v is continuous at eachX ∈ Nh

}
, (5.3)

while the complex global IFE space for the DGIFE method is defined as:

DSp
h(Ω) =

{
v ∈ L2(Ω) : v|T ∈ Sp

h(T ), ∀T ∈ Th

}
. (5.4)

We note that vh ∈ Sp
h(Ω) is either a piecewise p-th degree polynomial or a piecewise bilinear

polynomial. The continuity of vh ∈ Sp
h(Ω) at every X ∈ Nh implies that vh is continuous

across every non-interface edge e ∈ E̊n
h , but, in general, vh ∈ Sp

h(Ω) can be discontinuous

across each interface edge e ∈ E̊ i
h, see [73, 100] for more related explanations. As usual, each

function vh ∈ DSp
h(Ω) can be discontinuous across all edges of the mesh.

Furthermore, for each function vh ∈ Sp
h(Ω) or DSp

h(Ω), it can be shown that vh|T ∈ H1(T )

for p = 1 because vh|T is continuous across l = DE, see Figure 1.3, and vh|T 6∈ H1(T ) for

p ≥ 2 because the piecewise polynomial vh cannot be continuous across an interface curve Γ

in general.

5.2.1 PPIFE methods for Helmholtz interface problems

First we derive the PPIFE scheme. For simplicity, we assume that Γ ∩ ∂Ω = ∅. Multiply

equation (5.1a) by the complex conjugate of a function vh ∈ Sp
h(Ω) and integrate on each

element T ∈ Th. Then, by Green’s formula and the interface jump condition (5.1d), it
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follows:∫
T

β∇u∇vhdX −
∫
∂T

β∇u · nT vhds−
∫
Γ∩T

{β∇u · nΓ}[vh]ds− ω2

∫
T

uvhdX

=

∫
T

fvhdX,

(5.5)

where the third term on the left of (5.5) disappears when T ∈ T n
h .

Here we recall some set notations from Chapter 2 for sets of edges and elements to be used

in the later discussions: the set of interior edges is E̊h, the set of interface edges is E i
h, the set

of interior interface edges is E̊ i
h, the set of boundary edges is Eb

h, the set of boundary interface

edges is Ebi
h ; the set of interface elements T i

h , the set of interior interface elements T̊ i
h , and

the set of boundary interface elements T bi
h .

Summing (5.5) over all T ∈ Th leads to

∑
T∈Th

∫
T

β∇u∇vhdX −
∑
e∈E̊h

∫
e

{β∇u · ne}[vh]ds−
∑
e∈Eb

h

∫
e

β∇u · nevhds

−
∑
T∈T i

h

∫
Γ∩T

{β∇u · nΓ}[vh]ds− ω2

∫
Ω

uvhdX =

∫
Ω

fvhdX. (5.6)

Because of the continuity of vh ∈ Sp
h(Ω) across non-interface edges, we can write (5.6) as

∑
T∈Th

∫
T

β∇u∇vhdX −
∑
e∈E̊i

h

∫
e

{β∇u · ne}[vh]ds−
∑
e∈Eb

h

∫
e

β∇u · nevhds

−
∑
T∈T i

h

∫
Γ∩T

{β∇u · nΓ}[vh]ds− ω2

∫
Ω

uvhdX =

∫
Ω

fvhdX.
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Applying the boundary condition (5.1b), we can reduce the above equation to

∑
T∈Th

∫
T

β∇u∇vhdX −
∑
e∈E̊i

h

∫
e

{β∇u · ne}[vh]ds+ iω
∑
e∈Eb

h

∫
e

uvhds

−
∑
T∈T i

h

∫
Γ

{β∇u · nΓ}[vh]ds− ω2

∫
Ω

uvhdX =

∫
Ω

fvhdX +
∑
e∈Eb

h

∫
e

gvhds.

(5.7)

By assuming that u is in PH2(Ω) so that [u]e = 0, ∀e ∈ E̊h and applying the interface jump

condition (5.1c), we obtain

ε
∑
e∈E̊i

h

∫
e

{β∇vh · ne}e[u]eds = 0, i
∑
e∈E̊i

h

σ0
e

|e|

∫
e

[u]e [vh]eds = 0,

ε
∑
T∈T i

h

∫
Γ∩T

{β∇vh · nΓ}Γ[u]Γds = 0, i
∑
T∈T i

h

σ0
e

|e|

∫
Γ∩T

[u]Γ [vh]Γds = 0,

(5.8)

with parameters ε, and σ0
e ≥ 0. Adding these four terms to the left hand side of (5.7), we

can see that the solution u to the Helmholtz interface problem (5.1) satisfies the following

weak form:

bPP
h (u, vh) = Lf (vh), ∀vh ∈ Sp

h(Ω),

with bPP
h (u, vh) = aPP

h (u, vh) + iω(u, vh)∂Ω − ω2(u, vh)L2(Ω)

(5.9)

where the bilinear form aPP
h (·, ·) : PH2(Ω)×Sp

h(Ω) → C and the linear form Lf (·) : Sp
h(Ω) →

C are defined as:

aPP
h (u, vh) =

∑
T∈Th

∫
T

β∇u · ∇vhdX −
∑
e∈E̊i

h

∫
e

{β∇u · ne}e[vh]eds+ ε
∑
e∈E̊i

h

∫
e

{β∇vh · ne}e[u]eds

+iω
∑
e∈Eb

h

∫
e

uvhds+ i
∑
e∈E̊i

h

σ0
e

|e|

∫
e

[u]e [vh]eds−
∑
T∈T i

h

∫
Γ∩T

{β∇u · nΓ}[vh]Γds
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+ε
∑
T∈T i

h

∫
Γ∩T

{β∇vh · nΓ}Γ[u]Γds+ i
∑
T∈T i

h

σ0
e

|e|

∫
Γ∩T

[u]Γ [vh]Γds, (5.10)

Lf (vh) =

∫
Ω

fvhdX +
∑
e∈Eb

h

∫
e

gvhds. (5.11)

The weak form (5.9) suggests the PPIFE method for the Helmholtz interface problem (5.1):

find uh ∈ Sp
h(Ω), p ≥ 1 such that

bPP
h (uh, vh) = Lf (vh), ∀vh ∈ Sp

h(Ω). (5.12)

Remark 5.1. The continuity of vh|T , ∀T ∈ Th for every vh ∈ S1
h(Ω) implies that the last

three terms in the bilinear form aPP
h (·, ·) defined in (5.10) can be ignored in the PPIFE

method based on the linear and bilinear IFE spaces.

We will proceed to derive the DGIFE method for the Helmholtz interface problems in the

next subsection

5.2.2 DGIFE methods for the Helmholtz interface problems

For the DGIFE methods, we begin with (5.6) by using vh ∈ DSp
h(Ω) instead of vh ∈ Sp

h(Ω).

Then, similar to the derivation of PPIFE scheme for Helmholtz interface problems, by as-

suming that u is in PH2(Ω) so that [u]e = 0, ∀e ∈ E̊h and applying the interface jump

condition (5.1c), we have

ε
∑
e∈E̊h

∫
e

{β∇vh · ne}e[u]eds = 0, i
∑
e∈E̊h

σ0
e

|e|

∫
e

[u]e [vh]eds = 0,

ε

∫
Γ

{β∇vh · nΓ}Γ[u]Γds = 0, i
σ0
e

|e|

∫
Γ

[u]Γ [vh]Γds = 0.

(5.13)



74 Chapter 5. IFE methods for Helmholtz interface problems

Similar to the derivation of the PPIFE scheme, we add the four terms above to the left hand

side of (5.7), then we can see that the solution u to the Helmholtz interface problem (5.1)

satisfies the following weak form:

bDG
h (u, vh) = Lf (vh), ∀vh ∈ DSp

h(Ω),

with bDG
h (u, vh) = aDG

h (u, vh) + iω(u, vh)∂Ω − ω2(u, vh)Ω,

(5.14)

where the bilinear form aDG
h (·, ·) : PH2(Ω)×DSp

h(Ω) → C and the linear functional Lf (·) :

DSp
h(Ω) → C are defined by

aDG
h (u, vh) =

∑
T∈Th

∫
T

β∇u · ∇vhdX −
∑
e∈E̊h

∫
e

{β∇u · ne}e[vh]eds+ ε
∑
e∈E̊h

∫
e

{β∇vh · ne}e[u]eds

+iω
∑
e∈Eb

h

∫
e

uvhds+ i
∑
e∈E̊h

σ0
e

|e|

∫
e

[u]e [vh]eds−
∫
Γ

{β∇u · nΓ}[vh]Γds (5.15)

+ε

∫
Γ

{β∇vh · nΓ}Γ[u]Γds+ i
σ0
e

|e|

∫
Γ

[u]Γ [vh]Γds,

Lf (vh) =

∫
Ω

fvhdX +
∑
e∈Eb

h

∫
e

gvhds (5.16)

The weak form (5.14) suggests the DGIFE method for the Helmholtz interface problem: find

uh ∈ DSp
h(Ω), p ≥ 1 such that

bDG
h (uh, vh) = Lf (vh), ∀vh ∈ DSp

h(Ω). (5.17)

Remark 5.2. Similar to the PPIFE method, the continuity of vh|T , ∀T ∈ Th for every

vh ∈ DS1
h(Ω) implies that the last three terms in the bilinear form aDG

h (·, ·) defined in (5.15)

can be ignored in the DGIFE method based on the linear and bilinear IFE spaces.
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The following section will provide the error analysis for the linear/bilinear PPIFE methods

for Helmholtz interface problems.

5.3 Error analysis of symmetric linear/bilinear PPIFE

methods

The error estimation to be presented here is for the symmetric linear/bilinear PPIFE methods

described by (5.12) (when p = 1 and ε = −1). In addition to the energy norm ‖ ·‖h and |||·|||h

defined in (4.36) and (4.37), we will also use the following new energy norm and broken H1

norm for functions v ∈ Vh(Ω) (Vh(Ω) is defined in (2.4)):

|||v|||2H = |||v|||2h + ω2‖v‖2L2(Ω), (5.18)

‖v‖21,Ω =
∑
T∈Th

‖v‖21,T , |v|21,Ω =
∑
T∈Th

|v|21,T . (5.19)

For simplicity, we assume that: the interface does not intersect the boundary, i.e., Γ∩∂Ω = ∅.

Also, we make the following assumption on the regularity of the exact solution

Assumpsion 5.3.1. Assume that the exact solution u to the interface problem (5.1) is in

PH2(Ω) and the following estimate holds for some constant C:

‖u‖2,Ω ≤ C
(
ω + ω−1

) (
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
. (5.20)

Assumption 5.3.1 can be satisfied when the ∂Ω and Γ are sufficiently smooth, see [50, 118]

and [119] for more details. Next we recall a standard estimate for the trace of a H1 function

on ∂Ω in the following lemma.
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Lemma 5.1. Assume that v ∈ H1(Ω), then there exists a constant C such that

‖v‖2L2(∂Ω) ≤ C ‖v‖L2(Ω)

(
‖v‖L2(Ω) + |v|1,Ω

)
. (5.21)

Proof. This result is given in (4.37) in [96].

For each function v ∈ PH2(Ω) ⊕ Sh(Ω), we let Jhv be its interpolation in the standard

continuous (i.e., H1) linear or bilinear finite element space defined on the same mesh Th such

that

Jhv|T = Jh,Tv, with Jh,Tv(X) =
∑
i∈IT

v(Ai)ψi,T (X), ∀X ∈ T, ∀T ∈ Th, (5.22)

where ψi,T (X), i ∈ IT is the linear or bilinear shape functions on the element T . Upper

bounds of Jhv are given in the following lemma.

Lemma 5.2. There exists a constant C such that the following hold for all v ∈ PH2(Ω)⊕

Sh(Ω):

‖Jhv‖L2(Ω) ≤ ‖v‖L2(Ω) + Ch|v|1,Ω, (5.23)

|Jhv|1,Ω ≤ C|v|1,Ω. (5.24)

Proof. Let v ∈ PH2(Ω)⊕ Sh(Ω). Then v|T ∈ H2(T ) on T ∈ T n
h and v|T ∈ PH2(T )⊕ Sh(T )

on T ∈ T i
h . Denote Yi(t,X) = tAi + (1− t)X, t ∈ [0, 1]. By the first order Taylor expansion,

we have

v(Ai) = v(X) +

∫ 1

0

∇v (Yi(t,X)) · (Ai −X) dt. (5.25)

Using (5.25) and the partition of unity of the linear and bilinear finite element shape functions
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on T ∈ Th, we have

Jhv(X) = Jh,Tv(X) = v(X)+
∑
i∈IT

(∫ 1

0

∇v(Yi(t,X)) · (Ai −X)dt

)
ψi(X), ∀X ∈ T. (5.26)

Since there exists a constant C such that ‖ψi‖L∞(T ) ≤ C and ‖Ai −X‖ ≤ Ch, from (5.26),

we have

‖Jhv‖L2(T ) ≤‖v‖L2(T ) + C

∫
T

(∑
i∈IT

∫ 1

0

∇v(Yi(t,X)) · (Ai −X)dt

)2

dX

1/2

≤‖v‖L2(T ) + Ch

∫ 1

0

(∑
i∈IT

∫
T

‖∇v(Yi(t,X))‖2dX

) 1
2

dt

≤‖v‖L2(T ) + Ch|v|1,T .

(5.27)

Similarly, by ‖∇ψi,T‖L∞(T ) ≤ Ch−1, we have

‖∇Jhv‖L2(T ) =

∥∥∥∥∥∑
i∈IT

v(Ai)∇ψi,T (X)

∥∥∥∥∥
L2(T )

=

∫
T

(∑
i∈IT

∫ 1

0

∇v(Yi(t,X))(Ai −X)dt∇ψi,T (X)

)2

dX

1/2

≤Ch−1Ch|v|1,T

≤C|v|1,T .

(5.28)

Then, summing (5.27) and (5.28) over all elements T ∈ Th leads to estimates (5.23) and

(5.24), respectively.

Since the IFE space Sh(Ω) is not a subspace of H1(Ω) in general [71, 100], the trace inequality

cannot be applied to functions in PH2(Ω)⊕ Sh(Ω), for which, nevertheless, we can derive a

similar trace inequality as follows.
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Theorem 5.1. There exists a constant C such that for every v ∈ PH2(Ω) ⊕ Sh(Ω) the

following inequality holds:

‖v‖2L2(∂Ω) ≤ C
(
‖v‖L2(Ω) + h|v|1,Ω

)
‖v‖1,Ω . (5.29)

Proof. Let v be a function in PH2(Ω) ⊕ Sh(Ω) and let Jhv be its standard finite element

interpolation described by (5.22), and we have

‖v‖2L2(∂Ω) ≤ 2
(
‖v − Jhv‖2L2(∂Ω) + ‖Jhv‖2L2(∂Ω)

)
. (5.30)

We estimate the second term on the right hand side of (5.30) first. Since Jhv is in H1(Ω),

by Lemma 5.1 and Lemma 5.2, we have

‖Jhv‖2L2(∂Ω) ≤C ‖Jhv‖L2(Ω)

(
‖Jhv‖L2(Ω) + |Jhv|1,Ω

)
≤C

(
‖v‖L2(Ω) + Ch|v|1,Ω

)(
‖v‖L2(Ω) + Ch|v|1,Ω + |v|1,Ω

)
≤C

(
‖v‖L2(Ω) + h|v|1,Ω

)
‖v‖1,Ω.

(5.31)

For the first term on the right hand side of (5.30), we note that v ∈ H2(T ) on T ∈ T b
h

(where we recall that T b
h is the set of boundary elements) because of the assumption that

the interface Γ does not touch boundary elements when h is small enough. Then, using

the standard trace inequality on T ∈ T b
h and the approximation capability of finite element



5.3. Error analysis of symmetric linear/bilinear PPIFE methods 79

space, we have

‖v − Jhv‖2L2(∂Ω) ≤
∑
T∈T b

h

‖v − Jhv‖2L2(∂T )

≤Ch−1
∑
T∈T b

h

(
‖v − Jhv‖2L2(T ) + h2 ‖∇(v − Jhv)‖2L2(T )

)
≤Ch−1

∑
T∈T b

h

(
Ch2|v|21,T + h2 · C|v|1,T

)2
≤Ch

∑
T∈T b

h

|v|21,T

≤Ch|v|21,Ω.

(5.32)

Finally, the inequality (5.29) follows from applying (5.31) and (5.32) to (5.30).

For each function u ∈ PH2(Ω), we recall that its interpolation in the IFE space Sh(Ω) is as

[70, 71, 100]

Ihu|T = Ih,Tu, with


Ih,Tu(X) =

∑
i∈IT u(Ai)φi,T (X), ∀X ∈ T, ∀T ∈ T i

h ,

Ih,Tu(X) =
∑

i∈IT u(Ai)ψi,T (X), ∀X ∈ T, ∀T ∈ T n
h .

(5.33)

The following theorem provides a description about the approximation capability of the IFE

spaces in terms of the energy norm |||·|||H.

Theorem 5.2. There exists a constant C such that the following estimate holds for every

u ∈ PH2(Ω):

|||Ihu− u|||H ≤ Ch‖u‖2,Ω, ∀u ∈ PH2(Ω), (5.34)

provided that ωh ≤ C0 for some constant C0.
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Proof. By Theorem 3.14 in [71], Theorem 3.7 in [100], and Theorem 4.3, it follows

|||Ihu− u|||2H = |||Ihu− u|||2h + ω2‖Ihu− u‖L2(Ω),

≤ Ch2‖u‖22,Ω + Cω2h4‖u‖22,Ω ≤ Ch2‖u‖22,Ω,

which proves (5.34).

We now proceed to the error estimation for the symmetric PPIFE methods described by

(5.12), and we will follow Schatz’s argument [131]. We start from the Gårding’s inequality

for bPP
h (., .) in the following lemma.

Lemma 5.3. There exist constants C1 and C2 such that the following inequality holds for

σ0
e sufficiently large

|bPP
h (v, v)| ≥ C1|||v|||2H − C2ω

2‖v‖L2(Ω), ∀v ∈ Sh(Ω). (5.35)

Proof. First of all, we note that

|bPP
h (v, v)| ≥ 1√

2

(
Re
(
bPP
h (v, v)

)
+ Im

(
bPP
h (v, v)

))
=

1√
2

(
Re
(
aPP
h (v, v)

)
+ Im

(
aPP
h (v, v)

)
+ ω ‖v‖2L2(∂Ω) − ω2 ‖v‖2L2(Ω)

)
.

(5.36)

Next, we introduce the bilinear form ãh(., .) : Vh(Ω)× Vh(Ω) → C such that

ãh(u, v) = aPP
h (u, v)− i

∑
e∈E̊i

h

σ0
e

|e|

∫
e

[u]e [v]eds, ∀v ∈ Vh(Ω).

For each v ∈ Sh(Ω), we let v = v1 + iv2 with v1 = Re(v) ∈ S̃h(Ω) and v2 = Im(v) ∈ S̃h(Ω).
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Since ah(., .) and ãh(., .) are both bilinear and symmetric, we have

aPP
h (v, v) = aPP

h (v1, v1) + aPP
h (v2, v2).

It follows that

Re
(
aPP
h (v, v)

)
+ Im

(
aPP
h (v, v)

)
= ãh(v1, v1) + ãh(v2, v2) +

∑
e∈E̊i

h

σ0
e

|e|

∫
e

[v1]e [v1]eds

+
∑
e∈E̊i

h

σ0
e

|e|

∫
e

[v2]e [v2]eds.

(5.37)

Because v1, v2 ∈ S̃h(Ω), we can apply Theorem 4.4 to (5.37) so that there exists a constant

κ > 0 such that

Re
(
aPP
h (v, v)

)
+ Im

(
aPP
h (v, v)

)
≥ κ(|||v1|||2h + |||v2|||2h) = κ|||v|||2h. (5.38)

Therefore, applying (5.38) to (5.36) we have

|bPP
h (v, v)| ≥ 1√

2

(
κ|||v|||2h + κω2‖v‖2L2(Ω) − ω2(1 + κ)‖v‖2L2(Ω)

)
,

≥ 1√
2

(
κ|||v|||2H − ω2(1 + κ)‖v‖2L2(Ω)

)
,

which proves (5.35).

The following lemma is about the continuity of the bilinear form bPP
h (·, ·).

Lemma 5.4. There exists a constant C such that for every y, v ∈ PH2(Ω) ⊕ Sh(Ω) the

following inequality holds

|bPP
h (y, v)| ≤ C|||y|||H|||v|||H, (5.39)

provided that ωh ≤ C0 for some constant C0.
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Proof. By the same arguments used for proving Theorem 4.5, we can show that there exists

a constant C such that

|aPP
h (y, v)| ≤ C|||y|||h|||v|||h.

Since ‖y‖H ≥ k‖y‖L2(Ω), then

|bPP
h (y, v)| ≤ C|||y|||h|||v|||h + ω2‖y‖L2(Ω)‖v‖L2(Ω) + Cω‖y‖L2(∂Ω)‖v‖L2(∂Ω)

≤ C|||y|||H|||v|||H + |||y|||H|||v|||H + Cω‖y‖L2(∂Ω)‖v‖L2(∂Ω).

(5.40)

For the third term on the right hand side of (5.40), applying Theorem 5.1, we have

ω2 ‖y‖2L2(∂Ω) ‖v‖
2
L2(∂Ω) ≤Cω

2
(
‖y‖L2(Ω) + h|y|1,Ω

)(
‖v‖L2(Ω) + h|v|1,Ω

)
‖y‖1,Ω ‖v‖1,Ω

=C
(
ω ‖y‖L2(Ω) + ωh|y|1,Ω

)(
ω ‖v‖L2(Ω) + ωh|v|1,Ω

)
‖y‖1,Ω ‖v‖1,Ω

≤C|||y|||2H|||v|||
2
H.

(5.41)

Thus, applying (5.41) to (5.40) leads to (5.39).

Following Schatz’s argument [131], we now derive a posteriori error estimate for the sym-

metric PPIFE solution in the following lemma.

Lemma 5.5. Let u ∈ PH2(Ω) be the exact solution to the problem (5.1), and let uh be the

solution produced by symmetric PPIFE method (5.12) with σ0
e large enough, then there exists

a constant C such that

‖u− uh‖L2(Ω) ≤ C (ω + 1/ω)h|||u− uh|||H, (5.42)

provided that ωh ≤ C0 for some constant C0.
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Proof. We define an auxiliary function z ∈ PH2(Ω) as the solution to the problem (5.1),

with f replaced by eh = u− uh and g replaced by the zero function. In the weak form (5.9)

for z, choosing v = eh as the test function yields

‖eh‖2L2(Ω) = bPP
h (z, eh).

Let Ihz be the interpolant of z in IFE space Sh(Ω) defined by (5.33). Then, it follows

bPP
h (Ihz, eh) = bPP

h (Ihz, u)− bPP
h (Ihz, uh)

= (f, Ihz)Ω + (g, Ihz)∂Ω − (f, Ihz)Ω − (g, Ihz)∂Ω

= 0.

Thus bPP
h (z, eh) = bPP

h (z− Ihz, eh). Therefore, by Lemma 5.4, Theorem 5.2 and Assumpsion

5.3.1, we have

‖eh‖2L2(Ω) =b
PP
h (z − Ihz, eh)

≤ C|||z − Ihz|||H|||eh|||H

≤ Ch‖z‖2,Ω|||eh|||H

≤ C (ω + 1/ω)h‖eh‖L2(Ω)|||eh|||H,

which proves (5.42).

Now, we are ready to derive the optimal error bounds in both the energy norm and L2 norm

for the symmetric PPIFE methods described by (5.12).

Theorem 5.3. Under the conditions of Lemma 5.5, there exists a constant C such that

|||u− uh|||H ≤ Ch‖u‖2,Ω, (5.43)
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provided that (ω2 + 1)h is sufficiently small.

Proof. First, we assume that (ω2 + 1)h is sufficiently small such that kh ≤ C0 for some

constant C0. Denote eh = u − uh, ẽh = uh − Ihu, then by Lemma 5.3 and Lemma 5.4, we

have

C1|||ẽh|||2H − C2ω
2‖ẽh‖2L2(Ω) ≤ bPP

h (ẽh, ẽh) = bPP
h (u− Ihu, ẽh) ≤ C|||u− Ihu|||H|||ẽh|||H.

By the fact that |||ẽh|||H ≥ ω‖ẽh‖L2(Ω), we then have

|||ẽh|||2H ≤ C|||u− Ihu|||H|||ẽh|||H + Cω2‖ẽh‖2L2(Ω)

≤ C|||u− Ihu|||H|||ẽh|||H + Cω|||ẽh|||H‖ẽh‖L2(Ω).

Therefore, using Theorem 5.2, we have

|||ẽh|||H ≤ C|||u− Ihu|||H + Cω‖ẽh‖L2(Ω),

≤ Ch‖u‖2,Ω + Cω
(
‖eh‖L2(Ω) + ‖u− Ihu‖L2(Ω)

)
.

Furthermore, by Lemma 5.5 and the approximation capability of IFE spaces [71, 100], we

have

|||ẽh|||H ≤Ch ‖u‖2,Ω + Cω
(
C(ω + 1/ω)h|||eh|||H + Ch2 ‖u‖2,Ω

)
≤Ch‖u‖2,Ω + Cω(ω + 1/ω)h|||eh|||H + Cωh2‖u‖2,Ω,

≤Ch‖u‖2,Ω + C(ω2 + 1)h|||eh|||H.

(5.44)
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Hence, by (5.44), we have

|||eh|||H ≤ |||u− Ihu|||H + |||ẽh|||H

≤ |||u− Ihu|||H + Ch‖u‖2,Ω + C(ω2 + 1)h|||eh|||H.

Then, by Theorem 5.2 again, the inequality above becomes

(
1− C(ω2 + 1)h

)
|||eh|||H ≤ Ch‖u‖2,Ω,

which proves (5.43) provided that (ω2 + 1)h is sufficiently small.

Remark 5.3. According to [131], if uh is a PPIFE solution corresponding to u = 0, then

from Theorem 4.6 it follows that uh = 0 provided that h is sufficiently small guaranteeing

(ω2 + 1)h is sufficiently small. This implies that the linear system to solve uh induced from

the symmetric PPIFE scheme (4.9) is nonsingular; therefore, the PPIFE solution uh defined

by (5.12) exists and is unique.

Theorem 5.4. Under the conditions of Theorem 5.3, there exists a constant C, such that

‖u− uh‖L2(Ω) ≤ C (ω + 1/ω)h2 ‖u‖2,Ω . (5.45)

Proof. The estimate (5.45) follows directly from Lemma 5.5 and Theorem 5.3.

5.4 Numerical Examples

We now present two numerical examples for the Helmholtz interface problems. The first

example (to be precise, the first group of examples) aims to illustrate the feature of the IFE

methods, especially the higher degree methods. While the second example aims to corrob-
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orate the theoretical results of error analysis in Section 5.3. In these numerical example,

the solution domain is Ω = (−1, 1) × (−1, 1) on which we form a rectangular mesh Th by

partitioning Ω into N × N congruent squares of size h = 2/N or we construct a Cartesian

triangular mesh Th by further dividing each rectangular element in the previous rectangular

mesh into two congruent triangles along its diagonal line. The Helmholtz interface problem

to be considered is such that it has an interface Γ : x2 + y2 − r20 = 0, r0 = π/6.28 separating

Ω into two subdomains

Ω− =
{
(x, y) : x2 + y2 < r20

}
, Ω+ = Ω\Ω−.

Example 5.4.1. Functions f and g in the Helmholtz interface problem (5.1) are chosen

such that its exact solution is:

u(x, y) =


1

β−U(r), (x, y) ∈ Ω−,

1

β+
U(r) +

(
1

β− − 1

β+

)
U(r0), (x, y) ∈ Ω+,

(5.46)

where r =
√
x2 + y2, U(r) = cos(ωr)

ω
− cos(ω)+i sin(ω)

ω(J0(ω)+iJ1(ω))
J0(ωr), and Jγ(z), γ = 0, 1 are the 0-th

and 1-st order Bessel functions of the first kind.

For the PPIFE and DGIFE scheme, we choose ε = −1, so the PPIFE and DGIFE schemes

are symmetric PPIFE (SPPIFE)/symmetric DGIFE (SDGIFE) schemes, respectively, and

we choose the penalty parameter σ0
e = 30max{β−, β+}. We apply these IFE methods to

Helmholtz interface problems with β− = 1, β+ = 5 or 50 representing small and moderately

large discontinuity in the coefficient β, and to Helmholtz interface problems with ω = 10 or

50 for small and larger wave numbers.

Figures 5.1-5.4 compare the cubic DGIFE solutions to the exact solutions of two groups
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of Helmholtz interface problems. Figures 5.1 and 5.2 are for the interface problems whose

coefficient β is such that β− = 1, β+ = 50, but Figures 5.3 and 5.4 are for β− = 50, β+ =

1. These plots demonstrate that the proposed IFE methods can satisfactorily solve the

Helmholtz interface problems with either a small wave number ω = 10 or a moderately large

wave number ω = 50.

(a) cubic DGIFE solution (b) exact solution (c) error

Figure 5.1: magnitude of cubic DGIFE solution, exact solution and errors between them at
finite element nodes when ω = 10, β− = 1, β+ = 50, N = 160.

(a) cubic DGIFE solution (b) exact solution (c) error

Figure 5.2: magnitude of cubic DGIFE solution, exact solution and errors between them at
finite element nodes when ω = 50, β− = 1, β+ = 50, N = 160.
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(a) cubic DGIFE solution (b) exact solution (c) error

Figure 5.3: magnitude of cubic DGIFE solution, exact solution and errors between them at
finite element nodes when ω = 10, β− = 50, β+ = 1, N = 160.

(a) cubic DGIFE solution (b) exact solution (c) error

Figure 5.4: magnitude of cubic DGIFE solution, exact solution and errors between them at
finite element nodes when ω = 50, β− = 50, β+ = 1, N = 160.

From Figures 5.1-5.4, we also observe that the solution u oscillates more for the Helmholtz

interface problem with a larger wave number, and u has a smaller magnitude in the subdo-

main where β has a larger value. It is well known that the oscillation in the exact solution

u to the Helmholtz equation dictates the mesh size for its numerical solution; otherwise, the

accuracy or convergence of the numerical solution cannot be guaranteed if the mesh size is

not sufficiently small to resolve the oscillation. For the convergence, we recall the critical

mesh size discussed in [50] that indicates when the numerical solutions start to converge:

Definition 5.1. (critical mesh size) For fixed ω and f , the critical mesh size is defined

to be the maximum mesh size H(ω, f) such that
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(C1) e(h, ω) < 1 for h < H(ω, f),

(C2) e(h, ω) → 0 as h→ 0,

where e(h, ω) = |u− uh|1,Ω/|u|1,Ω is the relative error in semi-H1 norm.

By the data in Table 5.1, we can see that the linear PPIFE solution converges from a coarse

mesh with h = 2/10 when the wave number in the interface problem is small ω = 10, and

this suggests the critical mesh size H(10, f) / 2/10. However, for the interface problem with

a large wave number ω = 50 but a small discontinuity in β, the critical mesh size for the

PPIFE solution seems to be much smaller H(50, f) / 2/170. When the discontinuity in β

is larger, the critical mesh size for the linear IFE solution H(50, f) / 2/230 which is even

smaller. Even though not presented here for the sake of controlling the page consumption,

we have observed in our numerical experiments that, for either small or large discontinuity in

β, the critical mesh size for the cubic PPIFE solution is about 2/10 when the wave number

is small ω = 10, but for a large wave number ω = 50 it becomes about 2/30. Therefore,

higher degree IFE methods can start to converge on rather coarse mesh even for higher wave

numbers. Similar behaviors are also observed for the DGIFE solutions.

From the data in Table 5.1, we can see that IFE solutions do not converge optimally until

the mesh is further reduced beyond the critical mesh size, and this motivates us to introduce

the optimal mesh size to characterize this phenomenon:

Definition 5.2. (optimal mesh size) For fixed ω and f , the optimal mesh size is defined

to be the maximum mesh size H̃(ω, f) such that

(O1) ‖u− uh‖0,Ω ≈ Chp+1 for h < H̃(ω, f),

(O2) |u− uh|1,Ω ≈ Chp for h < H̃(ω, f),

where p ≥ 1 is the degree of polynomials used in Sp
h(Ω) and DSp

h(Ω).
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From the data presented in Table 5.1 and Table 5.2, we can see that when the wave number

is small ω = 10 and the discontinuity in β is small, the optimal mesh size for the linear

PPIFE solution seems to be H̃(10, f) / 2/360. But when the discontinuity in β is larger, the

optimal mesh size for the linear PPIFE solution seems to be a little smaller H̃(10, f) / 2/420.

However, for a larger number ω = 50, the data in Table 5.1 indicate that the optimal mesh

size for the linear PPIFE solution seems to be drastically smaller such that H̃(50, f) /

2/1280, and we note that H̃(50, f) � H(50, f), i.e., the optimal mesh size for the linear

PPIFE solution is much smaller than its critical mesh size. Similar characteristics is observed

for bilinear PPIFE solution, linear DGIFE solution, and bilinear DGIFE solution, and this

clearly demonstrates the inefficiency of using lower degree method to solve a Helmholtz

interface problem with a large wave number.

On the other hand, for this Helmholtz interface problem with a small wave number ω = 10,

the data in Table 5.3 show that the optimal mesh size for cubic PPIFE solution seems to be

such that H̃(10, f) / 2/40 when β has a small discontinuity, and H̃(10, f) / 2/80 when β has

a larger discontinuity. For a large wave number ω = 50, the data in Table 5.3 show that the

optimal mesh size for cubic PPIFE solution seems to be such that H̃(50, f) / 2/260 which

is much larger than the optimal mesh size for the linear PPIFE solution. Therefore, the

higher degree IFE methods are advantageous because they can converge optimally on much

coarser mesh than lower degree PPIFE methods. Similar behavior has also been observed

for DGIFE methods in our numerical experiments.

We can also see the advantage of higher degree IFE methods from the point of view of the

global degrees of freedom and accuracy. According to the discussions above, for a small wave

number ω = 10 and a small discontinuity in β, the linear PPIFE solution starts to converge

optimally once its mesh size is such that h = H̃(10, f) / 2/360, and on such a mesh, the

global degrees of freedom (GDOF) in this linear PPIFE solution is about (361)2 = 130321.
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In comparison, the cubic PPIFE solution starts to converge optimally once its mesh size

is such that h = H̃(10, f) / 2/40, and the GDOF in this cubic PPIFE solution is about

(3× 40 + 1))2 = 14641 which is about 9 times smaller than the GDOF of the linear PPIFE

solution.

Far more importantly, by comparing data in Table 5.1, Table 5.2, and Table 5.3, we can

see that, on meshes whose mesh sizes are smaller than the optimal mesh sizes, the cubic

PPIFE solution is obviously far more accurate than the linear PPIFE solution even though

the GDOF of the linear PPIFE solution is much larger. Similar advantages are also observed

for higher degree DGIFE methods. Therefore, for wave propagation interface problems, the

higher degree IFE methods should be preferred even though the development of higher degree

IFE methods is still in its early stage, its research deserves more attention.

By design, the linear and bilinear IFE spaces are consistent with their corresponding FE

spaces, i.e., the linear/bilinear IFE space becomes linear/bilinear FE space when β− = β+.

Also, the formulations for the PPIFE method and the FE method are quite close to each

other, they differ only on interface elements whose union forms a small band around the

interface. Therefore, it is interesting to know how the PPIFE and FE solutions behave from

the point of views of the critical mesh size and the optimal mesh size. From the data in

Table 5.4, when the wave number is small ω = 10, the critical mesh size for the linear FE

solution is about 2/10 which is not much different from the critical mesh size for the linear

IFE solution according to the data in Table 5.1. For a larger wave number ω = 50, the data

in Table 5.4 indicate that the critical mesh size for the linear FE solution is about 2/140

which is again not much different from the critical mesh size for the linear IFE solution which

is about 2/170 when the discontinuity in β is small according to the data in Table 5.1, but

the difference becomes a little more obvious when the discontinuity is larger. We also have

observed that the critical mesh size of a cubic IFE method is just slightly smaller than that
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of its FE counterpart.

As for the optimal mesh size, by Table 5.4, when the wave number is small ω = 10, the

optimal mesh size for the linear FE solution seems to be about 2/100 which is obviously

larger than the optimal mesh for the linear PPIFE solution which is about 2/360 when the

discontinuity in β is small. However, for a large wave number ω = 50, the data in Table 5.5

suggest that the optimal mesh for the cubic FE solution is about 2/260 which is comparable

to the optimal mesh size for the cubic PPIFE solution suggested by the data in Table 5.3.

Similar behaviors are also observed for DGIFE and DG methods. In summary, for Helmholtz

problems, higher degree IFE methods and FE method behave somewhat similarly, especially

when the discontinuity in β is small or from the point of view of the optimal mesh size.

Example 5.4.2. In the second example, we let functions f and g in the interface problem

(5.1) be generated with the following exact solution:

u(x, y) =


2 + i

β− rα, (x, y) ∈ Ω−,

2 + i

β+
rα +

(
2 + i

β− − 2 + i

β+

)
rα0 , (x, y) ∈ Ω+,

(5.47)

where α = 1.5, r =
√
x2 + y2. This numerical example is designed to validate the error

estimates in Theorems 5.3 and 5.4. We note that the group of examples in Example 5.4.1

provides quite a few numerical examples to illustrate the features of the PPIFE methods

developed there for solving the Helmholtz interface problems, showing optimal convergence

rates.

However, the exact solutions in the examples presented in Example 5.4.1 have a regularity

better than piecewise Hr with r > 2. Hence, it is interesting to see how the PPIFE solu-

tion converges when the exact solution only has piecewise H2 regularity. Actually, for the

chosen α value in this example, it can be verified that, u ∈ PH2(Ω)\PH3(Ω). By choosing
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σ0
e = 30max{β−, β+} for the parameter required in (5.10), Table 5.6 presents errors of the

symmetric linear PPIFE solutions uh generated on a sequence of uniform triangular meshes

Th of Ω in a certain configuration of ω, β−, β+.

The results demonstrate that, for fixed ω, the symmetric PPIFE solutions converge optimally

in both the semi-H1 and the L2 norms to the exact solution u ∈ PH2(Ω)\PH3(Ω), and this

validates the theoretical results established in Theorem 5.3 and Theorem 5.4 in Section 5.3.

5.5 Conclusion

In this chaper, we have considered two IFE methods: the PPIFE and DGIFE methods for

solving the Helmholtz interface problem. For the Helmholtz interface problem with a small

wave number, the proposed PPIFE and DGIFE methods can produce optimally convergent

approximate solutions on interface-independent meshes whose mesh size is fine enough.

However, when the wave number is large, the lower degree (linear or bilinear) IFE methods do

not seem to be good choices because they usually do not demonstrate the optimal convergence

unless the mesh size is extremely small. Instead, our explorations strongly suggest to use

higher degree IFE methods because they can quickly start to converge optimally and produce

far more accurate numerical solutions when the mesh size is reduced. Numerical experiments

demonstrate that a large discontinuity in the coefficient β will challenge the PPIFE and

DGIFE methods, but this kind of challenge seems to be at a level far lower than the challenge

from a large wave number. We also have observed that higher degree IFE methods and higher

FE methods behave somewhat similarly from the point of view of the critical mesh size and

the optimal mesh size.

For the error analysis, we have conducted an error estimation for the symmetric linear/-
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bilinear PPIFE methods. Under the assumption that the exact solution possesses a usual

piecewise H2 regularity, the optimal error estimates for the PPIFE solutions are derived in

an energy norm and the usual L2 norm provided that the mesh size is sufficiently small. The

follow-up numerical example validates the theoretical results of error estimates.
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ω β+ N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)

10 8.2104e-02 NA 7.4639e-01 NA 7.2748e-01

20 4.9816e-02 0.7208 4.7736e-01 0.6448 4.6526e-01

10 5 40 1.6991e-02 1.5519 2.0544e-01 1.2164 2.0023e-01

80 4.5312e-03 1.9068 8.7699e-02 1.2281 8.5477e-02

160 1.1495e-03 1.9789 4.1293e-02 1.0867 4.0247e-02

320 2.8953e-04 1.9892 2.0298e-02 1.0245 1.9784e-02

640 7.2356e-05 2.0005 1.0106e-02 1.0062 9.8499e-03

1280 1.8062e-05 2.0021 5.0476e-03 1.0015 4.9197e-03

10 6.4644e-02 NA 7.5030e-01 NA 7.5659e-01

20 3.3762e-02 0.9371 4.0855e-01 0.8769 4.1197e-01

10 50 40 2.0716e-02 0.7047 2.4551e-01 0.7347 2.4756e-01

80 1.0567e-02 0.9712 1.2749e-01 0.9454 1.2856e-01

160 3.4762e-03 1.6039 5.1411e-02 1.3102 5.1841e-02

320 9.1923e-04 1.9190 2.1448e-02 1.2612 2.1627e-02

640 2.3301e-04 1.9800 1.0022e-02 1.0976 1.0106e-02

1280 5.8619e-05 1.9910 4.9165e-03 1.0275 4.9576e-03

80 3.9451e-02 -0.3967 1.6817e+00 -0.3401 1.4876e+00

160 2.8478e-02 0.4702 1.1843e+00 0.5059 1.0357e+00

50 5 170 2.5688e-02 1.7007 1.0693e+00 1.6846 9.4531e-01

180 2.2661e-02 2.1937 9.4548e-01 2.1536 8.3582e-01

190 1.9804e-02 2.4923 8.2939e-01 2.4231 7.3319e-01

200 1.7282e-02 2.6557 7.2717e-01 2.5642 6.4283e-01

320 5.1669e-03 2.5689 2.3826e-01 2.3740 2.1095e-01

640 1.2047e-03 2.1006 7.5049e-02 1.6666 6.6484e-02

1280 2.7773e-04 2.1170 3.0119e-02 1.3171 2.6673e-02

2560 6.8813e-05 2.0129 1.4235e-02 1.0813 1.2664e-02

160 4.0513e-02 0.0049 1.8752e+00 0.0178 1.7055e+00

210 3.3354e-02 0.7150 1.5637e+00 0.6680 1.4222e+00

50 50 220 2.7486e-02 4.1599 1.2931e+00 4.0842 1.1761e+00

230 2.2856e-02 4.1500 1.0792e+00 4.0680 9.8156e-01

240 1.9322e-02 3.9462 9.1595e-01 3.8543 8.3306e-01

250 1.6556e-02 3.7845 7.8804e-01 3.6846 7.1673e-01

320 7.5321e-03 3.1904 3.7059e-01 3.0562 3.3705e-01

640 1.4355e-03 2.3915 8.6787e-02 2.0943 7.8931e-02

1280 3.3874e-04 2.0833 3.1457e-02 1.4641 2.8610e-02

2560 8.3515e-05 2.0201 1.4101e-02 1.1576 1.2825e-02

Table 5.1: Errors in linear SPPIFE solution and convergence rates for β− = 1, different β+

and ω
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ω β+ N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)

320 2.8953e-04 NA 2.0298e-02 NA 1.9784e-02

330 2.7060e-04 2.1969 1.9676e-02 1.0115 1.9178e-02

10 5 340 2.5617e-04 1.8364 1.9092e-02 1.0099 1.8608e-02

350 2.4053e-04 2.1725 1.8540e-02 1.0115 1.8070e-02

360 2.2829e-04 1.8539 1.8022e-02 1.0064 1.7565e-02

370 2.1555e-04 2.0964 1.7529e-02 1.0129 1.7084e-02

380 2.0469e-04 1.9384 1.7066e-02 1.0037 1.6633e-02

390 1.9430e-04 2.0050 1.6622e-02 1.0129 1.6201e-02

400 2.0469e-04 2.0265 1.6206e-02 1.0029 1.5795e-02

410 1.9430e-04 1.9657 1.5806e-02 1.0114 1.5405e-02

400 5.9551e-04 NA 1.5353e-02 NA 1.6780e-02

420 5.4036e-04 1.9919 1.5761e-02 1.1128 1.5893e-02

10 50 440 4.9144e-04 2.0400 1.4969e-02 1.1085 1.5094e-02

460 4.5041e-04 1.9613 1.4260e-02 1.0924 1.4379e-02

480 4.1440e-04 1.9577 1.4260e-02 1.0840 1.3731e-02

500 3.8156e-04 2.0225 1.3617e-02 1.0848 1.3136e-02

520 3.5217e-04 2.0434 1.3027e-02 1.0795 1.2591e-02

540 3.2554e-04 2.0840 1.1996e-02 1.0773 1.2090e-02

560 2.8306e-04 1.9568 1.1538e-02 1.0611 1.1207e-02

580 2.6451e-04 1.9994 1.1118e-02 1.0574 1.0812e-02

Table 5.2: Errors in linear SPPIFE solution and convergence rates for β1 = 1, different β2
and ω
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ω β+ N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)

40 1.7107e-06 NA 4.1486e-04 NA 4.1486e-04

50 6.9536e-07 4.0343 2.1274e-04 2.9930 2.1274e-04

10 5 60 3.3424e-07 4.0180 1.2326e-04 2.9937 1.2326e-04

70 1.7995e-07 4.0168 7.7668e-05 2.9960 7.7668e-05

80 1.0543e-07 4.0033 5.2073e-05 2.9941 5.2073e-05

80 1.0522e-07 NA 5.1511e-05 NA 5.1942e-05

90 6.5444e-08 4.0319 3.6176e-05 3.0005 3.6478e-05

10 50 100 4.2864e-08 4.0164 2.6386e-05 2.9950 2.6607e-05

110 2.9224e-08 4.0187 1.9829e-05 2.9973 1.9995e-05

120 2.0628e-08 4.0033 1.5276e-05 2.9982 1.5404e-05

130 1.4951e-08 4.0218 1.2009e-05 3.0060 1.2110e-05

50 5 160 1.0869e-06 4.3450 9.8166e-04 2.9970 8.6781e-04

180 6.5893e-07 4.2427 6.8980e-04 2.9983 6.0979e-04

200 4.2458e-07 4.1736 5.0307e-04 2.9978 4.4472e-04

220 2.8662e-07 4.1252 3.7808e-04 2.9972 3.3423e-04

240 2.0079e-07 4.0882 2.9128e-04 2.9976 2.5750e-04

260 1.4498e-07 4.0646 2.2913e-04 2.9993 2.0256e-04

280 1.0736e-07 4.0497 1.8349e-04 3.0001 1.6220e-04

300 8.1240e-08 4.0363 1.4921e-04 2.9984 1.3190e-04

320 6.2625e-08 4.0245 1.2296e-04 2.9963 1.0870e-04

50 50 160 1.0830e-06 4.4365 9.4940e-04 2.9972 8.6348e-04

180 6.5049e-07 4.3017 6.6717e-04 2.9970 6.0680e-04

200 4.1663e-07 4.2111 4.8660e-04 2.9963 4.4257e-04

220 2.8016e-07 4.1513 3.6573e-04 2.9960 3.3263e-04

240 1.9577e-07 4.1099 2.8179e-04 2.9962 2.5629e-04

260 1.4112e-07 4.0807 2.2170e-04 2.9956 2.0164e-04

280 1.0438e-07 4.0646 1.7754e-04 2.9965 1.6147e-04

300 7.8916e-08 4.0491 1.4437e-04 2.9958 1.3131e-04

320 6.0794e-08 4.0364 1.1898e-04 2.9948 1.0821e-04

Table 5.3: Errors in cubic SPPIFE solution and convergence rates for β1 = 1, different β2
and ω
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ω β+ N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)

10 1.4494e-01 NA 1.5230e+00 NA 9.2162e-01

20 6.4454e-02 1.1692 7.9105e-01 0.9450 4.7870e-01

10 1 40 1.8912e-02 1.8572 3.1627e-01 1.3221 1.9139e-01

80 4.9128e-03 1.9713 1.3738e-01 1.1335 8.3135e-02

90 3.8919e-03 1.9778 1.2056e-01 1.1089 7.2956e-02

100 3.1583e-03 1.9823 1.0748e-01 1.0901 6.5040e-02

110 2.6138e-03 1.9856 9.7007e-02 1.0755 5.8703e-02

80 4.2659e-02 NA 2.1287e+00 NA 1.2300e+00

90 4.1340e-02 0.2668 2.0649e+00 0.2584 1.1931e+00

50 1 100 4.0504e-02 0.1937 2.0246e+00 0.1874 1.1698e+00

110 3.9731e-02 0.2023 1.9877e+00 0.1929 1.1485e+00

120 3.8340e-02 0.4094 1.9218e+00 0.3876 1.1104e+00

130 3.6248e-02 0.7011 1.8218e+00 0.6671 1.0527e+00

140 3.3800e-02 0.9438 1.7040e+00 0.9021 9.8458e-01

150 3.1281e-02 1.1224 1.5821e+00 1.0758 9.1415e-01

160 2.8836e-02 1.2611 1.4632e+00 1.2106 8.4544e-01

Table 5.4: Errors in linear FE solution for β1 = β2 = 1

ω β+ N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)

240 3.1879e-07 4.1290 4.6238e-04 2.9985 2.6717e-04

250 2.6955e-07 4.1100 4.0911e-04 2.9986 2.3638e-04

260 2.2952e-07 4.0982 3.6372e-04 2.9987 2.1016e-04

50 1 270 1.9674e-07 4.0840 3.2480e-04 2.9987 1.8767e-04

280 1.6963e-0 4.0763 2.9124e-04 2.9989 1.6828e-04

290 1.4708e-07 4.0655 2.6215e-04 2.9989 1.5147e-04

300 1.2816e-07 4.0607 2.3680e-04 2.9990 1.3683e-04

310 1.1222e-07 4.0518 2.1463e-04 2.9990 1.2401e-04

320 9.8681e-08 4.0491 1.9513e-04 2.9991 1.1275e-04

Table 5.5: Errors in cubic FE solution for β1 = β2 = 1.
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N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate

10 3.6019e-02 NA 5.2313e-01 NA

20 1.6412e-02 1.1340 2.5292e-01 1.0485

40 6.6539e-03 1.3025 1.1802e-01 1.0997

80 1.3425e-03 2.3092 5.1500e-02 1.1964

160 2.7744e-04 2.2747 2.4983e-02 1.0436

320 7.7328e-05 1.8431 1.2427e-02 1.0075

640 1.9455e-05 1.9909 6.1961e-03 1.0040

1280 4.7698e-06 2.0281 3.0947e-03 1.0015

Table 5.6: Errors of the linear PPIFE solution, ω = 10, β− = 1, β+ = 10.



Chapter 6

IFE methods for hyperbolic interface

problems

6.1 Introduction

In this chapter, we investigate the error estimation for a fully discrete PPIFE method pre-

sented in [143] under piecewise H2 regularity assumption in space for the second order

hyperbolic interface problems described by:

utt −∇ · (c2∇u) = f, in Ω− ∪ Ω+, t ∈ [0, T ], (6.1a)

u|∂Ω = g(X, t), t ∈ [0, T ], (6.1b)

u(X, 0) = w0(X), ut(X, 0) = w1(X) X ∈ Ω, (6.1c)

together with the following jump conditions across the interface:

[u]Γ := u+|Γ − u−|Γ = 0, (6.1d)[
c2∇u · n

]
Γ

:= (c+)2∇u+ · n|Γ − (c−)2∇u− · n|Γ = 0. (6.1e)

Here the domain Ω ⊆ R2 is divided by an interface curve Γ into two subdomains Ω− and Ω+

with Ω = Ω− ∪ Ω+ ∪ Γ, and the coefficient c is a piecewise positive constant function such

100
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that

c(X) =

 c− for X ∈ Ω−,

c+ for X ∈ Ω+.

We will prove that this PPIFE method is unconditionally stable and establish optimal a

priori error estimates in both an energy norm and the L2 norm under the standard regu-

larity assumption for the exact solution [9], i.e., u is piecewise H2 in space. To validate

the theoretical error analysis, numerical results are presented for standing waves as well as

realistic traveling wave propagations with incident, reflected and transmitted waves around

a material interface.

This chapter is organized as follows: In Section 6.2, we recall the fully discrete PPIFE scheme

from [143] for the hyperbolic interface problem and discuss its stability. In Section 6.3, we

conduct an error analysis of this PPIFE method and derive optimal error bounds for this

method in an energy norm and the L2 norm. In Section 6.4 we present several numerical

examples to validate the theoretical results. We discuss our results and conclude with a few

remarks in Section 6.5.

6.2 A Fully discrete PPIFE method

In the rest of this thesis, we will use K instead of T to denote an element in Th since we use

T to represent the endpoint of the time interval.

For functions of both the spatial variable X in a domain Ω̃ and temporal variable t ∈ [0, T ],

we will use the standard function spaces L2(0, T ;L2(Ω̃)) and L2(0, T ;PH2(Ω̃)) whose norms
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are defined by:

‖v‖L2(0,T ;L2(Ω̃)) =

(∫ T

0

‖v(X, t)‖2
L2(Ω̃)

dt

)1/2

, ∀v(X, t) ∈ L2(0, T ;L2(Ω̃)),

‖v‖L2(0,T ;PH2(Ω̃)) =

(∫ T

0

‖v(X, t)‖2
2,Ω̃
dt

)1/2

, ∀v(X, t) ∈ L2(0, T ;PH2(Ω̃)).

Besides, we also consider the space L∞(0, T ;PH2(Ω̃)), equipped with the norms

‖v‖L∞(0,T ;PH2(Ω̃)) = ess sup
t∈[0,T ]

‖v(X, t)‖2,Ω̃ , ∀ v(X, t) ∈ L∞(0, T ;PH2(Ω̃)).

We recall some set notations about the edges in Chapter 2: the set of interior interface edges

is E̊ i
h, the set of boundary edges is Eb

h, and the set of boundary interface edges is Ebi
h .

Then we recall the PPIFE method which has been discussed in [143] for solving the hyperbolic

interface problem (6.1). Assume that the initial and boundary data and the source term f

in (6.1a) have enough smoothness such that the exact solution u(., t) of (6.1) is in PH2(Ω)

for all t ≥ 0. Then, a weak formulation of (6.1) can be derived similarly as the elliptic

interface problem in Section 4.2, which is slightly more general than that in [143], allowing

the interface to intersect with the boundary of the domain (i.e. Γ ∩ ∂Ω 6= ∅). Specifically,

the weak form is to find u: [0, T ] → PH2(Ω) that satisfies (6.1d), (6.1e), and

(utt, v) + ah(u, v) = Lf (v), ∀v ∈ Vh,0(Ω), t > 0,

u(X, 0) = w0(X), ut(X, 0) = w1(X), ∀X ∈ Ω,

(6.2a)



6.2. A Fully discrete PPIFE method 103

where the bilinear form ah : Vh(Ω)× Vh(Ω) → R is defined as

ah(u, v) =
∑
K∈Th

∫
K

c2∇u · ∇vdX −
∑
e∈E̊i

h

∫
e

{c2∇u · ne}e[v]eds

+ε
∑
e∈E̊i

h

∫
e

{c2∇v · ne}e[u]eds+
∑
e∈E̊i

h

σ0
e

|e|

∫
e

[u]e [v]eds−
∑
e∈Ebi

h

∫
e

c2∇u · nevds

+ε
∑
e∈Ebi

h

∫
e

c2∇v · neuds+
∑
e∈Ebi

h

σ0
e

|e|

∫
e

u vds, ∀u, v ∈ Vh(Ω),

(6.2b)

and the linear form Lf : Vh(Ω) → R is defined by

Lf (v) =

∫
Ω

fvdX + ε
∑
e∈Ebi

h

∫
e

c2∇v · ne gds+
∑
e∈Ebi

h

σ0
e

|e|

∫
e

vgds, ∀v ∈ Vh(Ω), (6.2c)

where ε is the penalty parameter, the constant σ0
e ≥ 0, and the spaces Vh(Ω) and Vh,0(Ω) are

defined by (2.4) and (2.5).

To discretize the temporal variable t, we introduce a uniform partition of [0, T ]:

Πτ = {0 = t0 < t1 < · · · < tM = T}, τ = tn − tn−1, n = 1, 2, . . . ,M.

For a function v(X, t), we let vn = v(X, tn) and introduce the following notations

vn,1/4 =
vn+1 + 2vn + vn−1

4
, vn+1/2 =

vn+1 + vn

2
,

∂tv
n =

vn+1 − vn−1

2τ
, ∂tv

n+1/2 =
vn+1 − vn

τ
, ∂ttv

n =
vn+1 − 2vn + vn−1

τ 2
.

(6.3)

Since the IFE space Sh(Ω) (Sh,0(Ω)) defined by (4.8) is a subset of Vh(Ω) (Vh,0(Ω)), the above

weak formulation suggests the following fully-discrete PPIFE method discussed in [143] for
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the interface problem (6.1): find a sequence {unh}Mn=1 ⊂ Sh(Ω) such that

(∂ttu
n
h, vh) + ah

(
u
n,1/4
h , vh

)
= L

fn, 14
(vh), ∀vh ∈ Sh,0(Ω),

u0h = w̃h0, u1h = ũ∗h, ∀X ∈ Ω,

(6.4)

where w̃h0 and ũ∗h are the elliptic projections (to be defined in Definition 6.1) of w0 and

u∗, respectively, with u∗ = w0 + τw1(X) + τ2

2
utt(X, 0) in which utt(X, 0) is provided by

(6.1a). Following the convention of interior penalty discontinuous Galerkin methods [127],

we consider three typical choices for the parameter ε in ah(·, ·): ε = −1, 0, 1, which leads (6.4)

to the symmetric PPIFE method, incomplete PPIFE method, and non-symmetric PPIFE

method (SPPIFE, IPPIFE,NPPIFE), respectively.

We now discuss the stability of this PPIFE method. Following the standard convention

in the stability/error analysis, we assume that the interface problem has a homogeneous

boundary condition such that g = 0 in (6.1b). Also, we let N̊h be the set of interior nodes

of the mesh Th, and we assume that all the nodes of Th are indexed such that the first∣∣∣N̊h

∣∣∣ of them are interior nodes. Using the basis functions {φi}|Nh|
i=1 of the IFE space Sh(Ω)

described by (4.8), we can write this PPIFE method in the matrix form as follows. First,

we express the IFE solution unh defined by (6.4) as unh =
|N̊h|∑
i=1

cni φi, let M be the mass matrix

such that (M)i,j = (φi, φj), let K be the stiffness matrix such that (K)i,j = ah(φi, φj), and

let F be the vector such that (F)i = L
fn, 14

(φi), with 1 ≤ i, j ≤
∣∣∣N̊h

∣∣∣. Then, the coefficients

c(n) = (cn1 , c
n
2 , . . . , c

n
|N̊h|

)T of the IFE solution unh are determined by the fully discrete PPIFE

scheme in the matrix form as follows:

(
M +

τ 2

4
K
)

c(n+1) =

(
2M − τ 2

2
K
)

c(n) −
(

M +
τ 2

4
K
)

c(n−1) + τ 2F. (6.5)

We will still use the energy norms in (4.36) and (4.37) (with β replaced by c2) to discuss the
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PPIFE method. We recall the coercivity [111] and the continuity [63] of the bilinear form

ah(·, ·): for σ0
e in (6.2b) large enough, there exists some constants κ > 0 and C > 0 such that

ah(v, v) ≥ κ ‖v‖2h , ∀v ∈ Sh,0(Ω), (6.6a)

|ah(u, v)| ≤ C|||u|||h |||v|||h, ∀u, v ∈ Vh,0(Ω). (6.6b)

The coercivity given in (6.6a) guarantees that the PPIFE method described by (6.4) or

by its matrix form (6.5) is well defined. Also, we note that the PPIFE method (6.4) is

similar to the well known Dupont’s finite element method [48]; hence, this PPIFE method

has properties similar to those of its finite element counterpart. For example, following the

standard stability analysis [31], we can show that the SPPIFE method is unconditionally

stable.

Theorem 6.1. The fully discrete symmetric PPIFE method (6.4) is unconditionally stable.

Proof. By the symmetry and the coercivity of the bilinear form, we know that the generalized

eigenvalue problem Kv = λMv has a set of
∣∣∣N̊h

∣∣∣ eigen-pairs (λ1,v1), (λ2,v2), . . . , (λ∣∣∣N̊h

∣∣∣,v∣∣∣N̊h

∣∣∣)
such that λi > 0 and vT

i Mvj = δij, 1 ≤ i, j ≤
∣∣∣N̊h

∣∣∣. From (6.5), assume the source term

f = 0 and use c(n) =
∑|N̊h|

i=1 α
(n)
i vi to obtain

|N̊h|∑
i=1

((
M +

τ 2

4
K
)
α
(n+1)
i −

(
2M − τ 2

2
K
)
α
(n)
i +

(
M +

τ 2

4
K
)
α
(n−1)
i

)
vi = 0,

which yields

((
1 +

τ 2λi
4

)
α
(n+1)
i −

(
2− τ 2λi

2

)
α
(n)
i +

(
1 +

τ 2λi
4

)
α
(n−1)
i

)
Mvi = 0, i = 1, 2, . . . , |N̊h|.
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Assuming α(n)
i = χn, we obtain the principal equation

(1 + ρ)χ2 − 2(1− ρ)χ+ (1 + ρ) = 0, ρ =
τ 2λi
4
,

with roots

χ± =
(1− ρ)± 2

√
ρ i

1 + ρ
.

A direct computation shows that |χ±| = 1, which implies the absolute stability of the PPIFE

method.

Then we will proceed to derive error estimates for the PPIFE methods.

6.3 Error estimates for the PPIFE method

In this section, we will conduct an error analysis for the PPIFE method discussed in Section

6.2. Without loss of generality and following usual convention in error analysis of finite

element methods, we still make the following assumption: (i) the interface problem has a

homogeneous Dirichlet boundary condition, i.e., g = 0 in (6.1b); (ii) the interface does not

intersect the boundary, i.e., Γ ∩ ∂Ω = ∅. To proceed, we herein introduce the definition of

elliptic projection:

Definition 6.1. (elliptic projection) For a function u ∈ PH2(Ω), its elliptic projection is

the IFE function ũh ∈ Sh,0(Ω) determined by:

ah(ũh, vh) = ah(u, vh), ∀vh ∈ Sh,0(Ω). (6.7)

The elliptic projection ũh for every u ∈ PH2(Ω) exists and is unique because of the coercivity
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of ah(·, ·). Assuming that the exact solution u to the interface problem (6.1) is such that

u(·, t) ∈ PH2(Ω), we can then use the elliptic projection ũh(·, t) of the exact solution u at

the time level t ∈ [0, T ] to split the error in the IFE solution uh determined by (6.4) as:

u(X, t)− uh(X, t) = η(X, t)− ξ(X, t), with

η(X, t) = u(X, t)− ũh(X, t), ξ(X, t) = uh(X, t)− ũh(X, t). (6.8)

We derive the bound for η which is the error in the elliptic projection. We first consider the

estimation in the energy norm ‖·‖h.

Lemma 6.1. Assume that σ0
e in ah(., .) defined by (6.2b) is large enough and the mesh is

fine enough. Then there exists a constant C such that for every t ∈ [0, T ], the following

estimates hold

∥∥∥∥∂kη(·, t)∂tk

∥∥∥∥
h

≤ Ch

∥∥∥∥∂ku(·, t)∂tk

∥∥∥∥
2,Ω

, if ∂
ku(·, t)
∂tk

∈ PH2(Ω), k = 0, 1, . . . 4, . (6.9)

Proof. By definition of elliptic projection, we note that

ah(u, vh) = ah(ũh, vh), ∀vh ∈ Sh,0(Ω).

Then, following the same arguments for proving Theorem 4.6, we have

‖η‖h ≤ |||η|||h ≤ Ch ‖u‖2,Ω , (6.10)

which leads to the estimate in (6.9) for k = 0. The other estimates in (6.9) can be proved

similarly by using the fact that the time differentiation and elliptic projection commute [113].
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The estimation of the elliptic projection in the L2 norm follows the usual duality argument.

Specifically, we consider the following auxiliary elliptic interface problem for fixed t ∈ [0, T ]:

find w such that

−∇ · (c2∇w) = f̃ , in Ω− ∪ Ω+, (6.11a)

w|∂Ω = 0, (6.11b)

[w]Γ = 0,
[
c2∇w · n

]
Γ
= 0. (6.11c)

According to [45] and assuming that Γ has piecewise C2 smoothness, we know that this

auxiliary elliptic interface problem has a solution w ∈ PH2(Ω) such that

‖w‖2,Ω ≤ C
∥∥∥f̃∥∥∥

L2(Ω)
, ∀f̃ ∈ L2(Ω). (6.12)

Then we have the following lemma about the elliptic projection error in L2 norm

Lemma 6.2. Under the conditions of Lemma 6.1, there exists a constant C such that for

every t ∈ [0, T ], the following estimates hold

∥∥∥∥∂kη(., t)∂tk

∥∥∥∥
L2(Ω)

≤ Ch2
∥∥∥∥∂ku(., t)∂tk

∥∥∥∥
2,Ω

, if ∂
ku(·, t)
∂tk

∈ PH2(Ω), k = 0, 1, . . . , 4. (6.13)

Proof. For fixed t ∈ [0, T ], consider the auxiliary elliptic problem (6.11) and let

f̃ = η, (6.14)

then it can be derived that w is the solution of the following weak problem

ah(w, v) = (η, v)Ω, ∀v ∈ Vh,0(Ω).
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Choosing v = η, it follows ah(w, η) = ‖η‖2L2(Ω). Then, following the same arguments in

proving Theorem 4.7 and utilizing (6.12), together with (6.9), we have

‖η‖L2(Ω) ≤ Ch|||η|||h ≤ Ch2 ‖u‖2,Ω ,

which yields the estimate in (6.13) for k = 0. By letting f̃ = ∂kη
∂tk

(k = 1, 2, 3, 4), respectively,

in (6.14), we can prove the other estimates in (6.13) in a similar way.

We now present the estimation for the finite difference approximations of time derivatives of

η(X, t).

Lemma 6.3. Under the conditions of Lemma 6.1 and utt ∈ L∞(0, T ;PH2(Ω)), then there

exists a constant C > 0 independent of the interface location such that the following estimates

hold

‖∂ttηn‖L2(Ω) ≤ Ch2 ‖utt‖L∞(0,T ;PH2(Ω)) , n = 1, 2, . . . ,M − 1, (6.15)

τ
N−1∑
n=1

∥∥∂tt(∂tηn+1/2)
∥∥2
L2(Ω)

≤ Ch4 ‖uttt‖2L2(0,T ;PH2(Ω)) , N = 2, 3, . . . ,M − 1. (6.16)

Proof. From the estimate (3.37) in [113], the following holds

‖∂ttηn‖2L2(Ω) ≤
1

3τ

∫ tn+1

tn−1

‖ηtt‖2L2(Ω) dt,

from which (6.15) follows easily by using (6.13). For the estimate in (6.16), by the Taylor

expansion at t = tn with integral remainder, we have

ηn+2 = ηn + 2τηnt + 2τ 2ηntt +

∫ tn+2

tn
ηttt

(tn+2 − t)2

2
dt,

ηn+1 = ηn + τηnt +
τ 2

2
ηntt +

∫ tn+1

tn
ηttt

(tn+1 − t)2

2
dt,
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ηn−1 = ηn − τηnt +
τ 2

2
ηntt +

∫ tn

tn−1

ηttt
(t− tn−1)2

2
dt,

which in turn yields

(ηn+2 − ηn+1)− 2(ηn+1 − ηn) + (ηn − ηn−1)

=

∫ tn+2

tn
ηttt

(tn+2 − t)2

2
dt+ 3

∫ tn+1

tn
ηttt

(t− tn+1)2

2
dt+

∫ tn

tn−1

ηttt
(t− tn−1)2

2
dt.

Therefore

τ
∥∥∥∂tt(∂tηn+ 1

2 )
∥∥∥2
L2(Ω)

=
1

τ 5
∥∥(ηn+2 − ηn+1)− 2(ηn+1 − ηn) + (ηn − ηn−1)

∥∥2
L2(Ω)

≤ C ‖ηttt‖2L2(tn−1,tn+2,L2(Ω)) ,

where we have used the Cauchy-Schwarz inequality. Then, summing the estimate from n = 1

to n = N − 1 and applying Lemma 6.2 leads to (6.16).

We now discuss estimates about ξ. We note that ξ is an IFE function. For a preparation,

we recall the patch of each element K ∈ Th defined in (4.10)

ωK =
{
∪K̃ | K̃ ∈ Th such that K̃ ∩K 6= ∅

}
.

We assume that the mesh Th satisfies the Patch Assumption defined in Section 4.3, i.e., there

exists a constant C such that for each interface edge e ∈ E̊ i
h associated with an interface

element K with es = e∩Ωs, s = ±, there exist auxiliary triangles Ks
e ⊂ ωK , possessing es as

one of its edges, such that Ks
e ⊂ Ωs and |es|/|Ks

e | ≤ Ch−1, for s = ±, respectively. Then, on

each interface edge e ∈ E̊ i
h associated with an interface element K, by applying the standard
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trace inequality on es = e ∩ Ωs, s = ±, we have the following estimate for v ∈ PH2(Ω):

∥∥c2∇v · ne

∥∥
L2(e)

≤ c2max

(
‖vxne,x + vyne,y‖L2(e)

)
≤

√
2c2max

(
‖∇v‖L2(e−) + ‖∇v‖L2(e+)

)
≤ C

∑
s=−,+

(|es|/|Ks
e |)

1/2
(
‖∇v‖L2(Ks

e )
+ h

∥∥∇2v
∥∥
L2(Ks

e )

)
≤ Ch−1/2 ‖v‖2,ωK

,

(6.18)

where cmax = max{c−, c+}. Summing (6.18) over all interior interface edges we obtain

∑
e∈E̊i

h

∥∥{|e|1/2c2∇v · ne}
∥∥
L2(e)

≤ C ‖v‖2,Ω , ∀ v ∈ PH2(Ω). (6.19)

Lemma 6.4. Let u be the solution of (6.1) such that

u(., t) ∈ PH2(Ω), t ≥ 0, and uttt ∈ L∞(0, T ;PH2(Ω)).

and σ0
e in (6.2b) large enough. Then there exists a constant C independent of interface

location such that

∥∥ξ1∥∥
L2(Ω)

≤ Cτ 3 ‖uttt‖L∞(0,T ;PH2(Ω)) , (6.20)∥∥ξ1/2∥∥
L2(Ω)

≤ Cτ 3 ‖uttt‖L∞(0,T ;PH2(Ω)) , (6.21)∥∥ξ1/2∥∥
h
≤ Cτ 3 ‖uttt‖L∞(0,T ;PH2(Ω)) , (6.22)∥∥∂tξ1/2∥∥L2(Ω)
≤ Cτ 2 ‖uttt‖L∞(0,T ;PH2(Ω)) . (6.23)

Proof. By the coercivity of the bilinear form ah(·, ·) in (6.6a) and the elliptic projection in

(6.7) we obtain

∥∥ξ1∥∥2
h
≤ Cah

(
ξ1, ξ1

)
= Cah

(
u1h − ũ1h, ξ

1
)
= Cah

(
ũ∗h − ũ1h, ξ

1
)
= Cah

(
u∗ − u1, ξ1

)
.
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Then, by the boundedness of ah(·, ·) given in (6.6b), it follows

∥∥ξ1∥∥2
h
≤ C

∣∣∣∣∣∣u∗ − u1
∣∣∣∣∣∣

h

∣∣∣∣∣∣ξ1∣∣∣∣∣∣
h
. (6.24)

Since u∗ − u1 ∈ PH2(Ω), the jump [u∗ − u1]|e = 0 for e ∈ E̊ i
h and

∣∣∣∣∣∣u∗ − u1
∣∣∣∣∣∣2

h
=
∑
K∈Th

∫
K

c2
∥∥∇(u∗ − u1)

∥∥2 dX +
∑
e∈E̊i

h

(σ0
e)

−1

∫
e

∥∥|e|1/2{c2∇(u∗ − u1) · ne}
∥∥2 ds

≤ C
∥∥u∗ − u1

∥∥2
2,Ω
,

where we have used (6.19). Substituting this bound into (6.24) and using the equivalence of

the norms |||ξ1|||h and ‖ξ1‖h for ξ1 ∈ Sh(Ω) (see Lemma 4.1), lead to

∥∥ξ1∥∥
h
≤ C

∣∣∣∣∣∣u∗ − u1
∣∣∣∣∣∣

h
≤ C

∥∥u∗ − u1
∥∥
2,Ω
.

Next, by the Taylor expansion with integral remainder, we have

∥∥ξ1∥∥
h
≤ C

∥∥u∗ − u1
∥∥
2,Ω

= C

∥∥∥∥∫ τ

0

(τ − t)2

2
uttt(., t)dt

∥∥∥∥
2,Ω

≤ Cτ 3 ‖uttt‖L∞(0,T ;PH2(Ω)) . (6.25)

On the other hand, applying piecewise Poincaré-Friedrichs inequality [12, 24], we have

‖ξ‖L2(Ω) ≤ C ‖ξ‖h , ∀ξ ∈ Sh(Ω). (6.26)

By definition, ξ0 = 0; hence, ξ1/2 = 1
2
ξ1 and the estimates in (6.20), (6.21) and (6.22) follow

directly from (6.25). Furthermore, estimate in (6.23) also follows from (6.25) by the fact

that ∂tξ
1
2 = ξ1

2τ
= ξ

1
2

τ
.

In the next lemma we state and prove estimates for time discretizations of u and utt
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Lemma 6.5. Let u be the exact solution of (6.1) satisfying the conditions specified in Lemma

6.3. Then there exists a constant C independent of the interface location such that

∥∥∥un, 14 − un
∥∥∥
L2(Ω)

≤ Cτ 2 ‖utt‖L∞(0,T ;PH2(Ω)) , n = 1, 2, . . . ,M − 1, (6.27)

τ
N∑

n=1

‖∂ttun − untt‖
2
L2(Ω) ≤ Cτ 4 ‖utttt‖2L2(0,T ;PH2(Ω)) , n = 1, 2, . . . ,M − 1. (6.28)

Proof. To prove (6.27), we apply Taylor’s theorem with integral remainder to write

un+1 = un + τunt +

∫ tn+1

tn

(
tn+1 − t

)
uttdt, un−1 = un − τunt +

∫ tn

tn−1

(t− tn−1)uttdt,

then

∥∥∥un, 14 − un
∥∥∥
L2(Ω)

=
1

4

∥∥∥∥∥
∫ tn+1

tn
(tn+1 − t)uttdt−

∫ tn

tn−1

(t− tn−1)uttdt

∥∥∥∥∥
L2(Ω)

≤ Cτ 2 ‖utt‖L∞(0,T,PH2(Ω)) .

Similarly, for (6.28), we can use the following Taylor expansions:

un+1 = un + τunt +
τ 2

2
untt +

τ 3

6
unttt +

∫ tn+1

tn

(tn+1 − t)3

6
uttttdt,

un−1 = un − τunt +
τ 2

2
untt −

τ 3

6
unttt +

∫ tn

tn−1

(t− tn−1)3

6
uttttdt,

so that

‖∂ttun − untt‖
2
L2(Ω) =

1

τ 4

∥∥∥∥∥
∫ tn+1

tn

(tn+1 − t)3

6
uttttdt+

∫ tn

tn−1

(t− tn−1)3

6
uttttdt

∥∥∥∥∥
2

L2(Ω)

≤ Cτ 3 ‖utttt‖2L2(tn−1,tn+1,PH2(Ω)) ,

(6.29)

where we have used Cauchy-Schwarz inequality.
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The following lemmas establish estimates for three inner products to appear in the error

estimation for the PPIFE methods. The first one involves η and ξ and the second one

involves u and ξ.

Lemma 6.6. Let u be the exact solution of (6.1) satisfying the conditions specified in Lemmas

6.1, 6.3 and 6.4, then the following estimates hold for all δ > 0 and N = 1, 2, . . . ,M − 1:

τ
N∑

n=1

|(∂ttηn, ∂tξn)Ω| ≤ C
(
h4 ‖uttt‖2L2(0,T ;PH2(Ω)) + h4 ‖utt‖2L∞(0,T ;PH2(Ω))

+τ 6 ‖uttt‖2L∞(0,T ;PH2(Ω))

)
+ δ

∥∥ξN+1/2
∥∥2
L2(Ω)

+
τ

2

N−1∑
n=0

∥∥∥ξn+ 1
2

∥∥∥2
L2(Ω)

,

(6.30)

where C is a constant such that C = max{C1, C2/δ}, with generic constants C1 and C2

independent of δ.

Proof. When N = 1, we use (6.3) to write

∂tξ
1 =

ξ2 − ξ0

2τ
=

(ξ2 + ξ1)− (ξ0 + ξ1)

2τ
=
ξ1+

1
2 − ξ

1
2

τ
,

therefore,

τ
∣∣(∂ttη1, ∂tξ1)Ω∣∣ = ∣∣∣(∂ttη1, ξ1+ 1

2 − ξ
1
2

)
Ω

∣∣∣ ≤ ∣∣∣(∂ttη1, ξ1+ 1
2

)
Ω

∣∣∣+ ∣∣(∂ttη1, ξ1/2)Ω∣∣
≤
(

1

4δ

∥∥∂ttη1∥∥2L2(Ω)
+ δ

∥∥ξ1+1/2
∥∥2
L2(Ω)

)
+

(
1

2

∥∥∂ttη1∥∥2L2(Ω)
+

1

2

∥∥ξ1/2∥∥2
L2(Ω)

)
,

(6.31)

where we used Young’s inequality

|(u, v)| ≤ δ‖u‖2L2(Ω) +
1

4δ
‖v‖2L2(Ω), for δ > 0.

Applying (6.15) and (6.21) to (6.31), we establish (6.30) for N = 1. For case N > 1, by
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(6.3), we have

∂tξ
n =

ξn+1 − ξn−1

2τ
=

(ξn+1 + ξn)− (ξn + ξn−1)

2τ
=
ξn+

1
2 − ξn−

1
2

τ
.

Therefore

τ

∣∣∣∣∣
N∑

n=1

(∂ttη
n, ∂tξ

n)Ω

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=1

(
∂ttη

n, ξn+1/2 − ξn−1/2
)
Ω

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=1

(
∂ttη

n, ξn+1/2
)
Ω
−

N−1∑
n=0

(
∂ttη

n+1, ξn+1/2
)
Ω

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
n=1

(
∂ttη

n − ∂ttη
n+1, ξn+1/2

)
Ω
+
(
∂ttη

N , ξN+1/2
)
Ω
−
(
∂ttη

1, ξ1/2
)
Ω

∣∣∣∣∣ .
By the definition of the finite difference operator ∂t given in (6.3), we then have

τ

∣∣∣∣∣
N∑

n=1

(∂ttη
n, ∂tξ

n)Ω

∣∣∣∣∣ =
∣∣∣∣∣τ

N−1∑
n=1

(
∂tt
(
−∂tηn+1/2

)
, ξn+1/2

)
Ω
+
(
∂ttη

N , ξN+1/2
)
Ω
−
(
∂ttη

1, ξ1/2
)
Ω

∣∣∣∣∣
≤ τ

2

N−1∑
n=1

∥∥∂tt(∂tηn+1/2)
∥∥2
L2(Ω)

+
τ

2

N−1∑
n=1

∥∥ξn+1/2
∥∥2
L2(Ω)

+

(
1

4δ

∥∥∂ttηN∥∥2L2(Ω)
+ δ

∥∥∥ξN+ 1
2

∥∥∥2
L2(Ω)

)
+

(
1

2

∥∥∂ttη1∥∥2L2(Ω)
+

1

2

∥∥ξ1/2∥∥2
L2(Ω)

)
.

Again, we have used Cauchy-Schwarz and Young’s inequalities. We complete the proof by

using (6.15), (6.16) and (6.21) to the right hand side of the above inequality to establish

(6.30) for N > 1.

Lemma 6.7. Let u be the exact solution to (6.1) satisfying the conditions specified in Lemma
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6.1 and utttt ∈ L∞(0, T ;PH2(Ω)). Then the following estimates hold for δ ≤ 1,

∣∣∣∣∣τ
N∑

n=1

(∂ttu
n − untt, ∂tξ

n)Ω

∣∣∣∣∣ ≤ Cτ 4 ‖utttt‖2L2(0,T ;PH2(Ω)) +
τ

2

N−1∑
n=0

∥∥∥∂tξn+ 1
2

∥∥∥2
L2(Ω)

+
τδ

4

∥∥∂tξN+1/2
∥∥2
L2(Ω)

, N = 1, 2, . . . ,M − 1,

(6.32)

∣∣∣∣∣τ
N∑

n=1

(u
n,1/4
tt − ∂ttu

n, ∂tξ
n)Ω

∣∣∣∣∣ ≤ Cτ 4 ‖utttt‖2L2(0,T ;PH2(Ω))

+
τ

2

N−1∑
n=0

∥∥∥∂tξn+ 1
2

∥∥∥2
L2(Ω)

+
τδ

4

∥∥∂tξN+1/2
∥∥2
L2(Ω)

, N = 1, 2, . . . ,M − 1,

(6.33)

where C is a constant such that C = max{C1, C2/δ}, with generic constants C1 and C2

independent of δ.

Proof. To prove (6.32), we use (6.3) for n ≥ 1 and Young’s inequality to obtain

‖∂tξn‖2L2(Ω) =

∥∥∥∥ξn+1 − ξn−1

2τ

∥∥∥∥2
L2(Ω)

=

∥∥∥∥ξn+1 − ξn + ξn − ξn−1

2τ

∥∥∥∥2
L2(Ω)

=
1

4

∥∥∂tξn+1/2 + ∂tξ
n−1/2

∥∥2
L2(Ω)

≤ 1

2

(∥∥∂tξn+1/2
∥∥2
L2(Ω)

+
∥∥∂tξn−1/2

∥∥2
L2(Ω)

)
.

(6.34)

When N = 1, by Young’s inequality, we have

∣∣∣∣∣τ
N∑

n=1

(∂ttu
n − untt, ∂tξ

n)Ω

∣∣∣∣∣ = ∣∣τ (∂ttu1 − u1tt, ∂tξ
1
)
Ω

∣∣
≤ τ

2δ

∥∥∂ttu1 − u1tt
∥∥2
L2(Ω)

+
τδ

2

∥∥∂tξ1∥∥2L2(Ω)
.

Next, using (6.28) and (6.34) to the previous inequality we obtain

∣∣∣∣∣τ
N∑

n=1

(∂ttu
n − untt, ∂tξ

n)Ω

∣∣∣∣∣ ≤ Cτ 4 ‖utttt‖2L2(0,T ;PH2(Ω)) +
τδ

4

(∥∥∥∂tξ1+ 1
2

∥∥∥2
L2(Ω)

+
∥∥∂tξ1/2∥∥2L2(Ω)

)
,

which leads to the estimate in (6.32) for N = 1 if δ ≤ 2. When N > 1, by Young’s inequality
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again, we have

∣∣∣∣∣τ
N∑

n=1

(∂ttu
n − untt, ∂tξ

n)Ω

∣∣∣∣∣ ≤ τ

2

N−1∑
n=1

‖∂ttun − untt‖
2
L2(Ω) +

τ

2

N−1∑
n=1

‖∂tξn‖2L2(Ω)

+
τ

2δ

∥∥∂ttuN − uNtt
∥∥2
L2(Ω)

+
τδ

2

∥∥∂tξN∥∥2L2(Ω)
.

(6.35)

Next we apply (6.28) to the first and third terms and apply (6.34) to the second and fourth

terms of the right hand side of (6.35) to yield

∣∣∣∣∣τ
N∑

n=1

(∂ttu
n − untt, ∂tξ

n)Ω

∣∣∣∣∣ ≤ Cτ 4 ‖utttt‖2L2(0,T ;PH2(Ω))

+
τ

4

N−1∑
n=1

(∥∥∂tξn+1/2
∥∥2
L2(Ω)

+
∥∥∂tξn−1/2

∥∥2
L2(Ω)

)
+
τδ

4

(∥∥∂tξN+1/2
∥∥2
L2(Ω)

+
∥∥∂tξN−1/2

∥∥2
L2(Ω)

)
≤Cτ 4‖utttt‖2L2(0,T ;PH2(Ω)) +

τ

4

N−1∑
n=0

∥∥∂tξn+1/2
∥∥2
L2(Ω)

+
τ

4

N−2∑
n=0

∥∥∂tξn+1/2
∥∥2
L2(Ω)

+
τδ

4

(∥∥∂tξN+1/2
∥∥2
L2(Ω)

+
∥∥∂tξN−1/2

∥∥2
L2(Ω)

)
.

Taking δ ≤ 1 in the estimate above leads to

∣∣∣∣∣τ
N∑

n=1

(∂ttu
n − untt, ∂tξ

n)Ω

∣∣∣∣∣ ≤ Cτ 4 ‖utttt‖2L2(0,T ;PH2(Ω)) +
τ

2

N−1∑
n=0

∥∥∂tξn+1/2
∥∥2
L2(Ω)

+
τδ

4

∥∥∂tξN+1/2
∥∥2
L2(Ω)

,

which proves (6.32) for N > 1. To prove (6.33), we first note that u
n,1/4
tt − ∂ttu

n =(
u
n, 1

4
tt − untt

)
+ (untt − ∂ttu

n). Thus, for n = 1, 2, . . . ,M − 1, we have

∣∣∣∣∣τ
N∑

n=1

(
u
n,1/4
tt − ∂ttu

n, ∂tξ
n
)
Ω

∣∣∣∣∣ ≤
∣∣∣∣∣τ

N∑
n=1

(
u
n, 1

4
tt − untt, ∂tξ

n
)
Ω

∣∣∣∣∣
+

∣∣∣∣∣τ
N∑

n=1

(untt − ∂ttu
n, ∂tξ

n)Ω

∣∣∣∣∣ .
(6.36)
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By (6.27), we obtain

∥∥∥un, 14tt − untt

∥∥∥
L2(Ω)

≤ C0τ
2‖utttt‖L∞(0,T ;PH2(Ω)), n = 1, 2, . . . ,M − 1, (6.37)

where C0 is a constant independent of δ. Finally, the estimate in (6.33) follows from applying

(6.37) together with the Cauchy-Schwarz and (6.32) to (6.36).

With all the preparations above, we can now derive an error estimate for ξn+1/2.

Theorem 6.2. Let u be the exact solution of (6.1) and ∂ku
∂tk

∈ L∞(0, T ;PH2(Ω)), k =

0, 1, . . . , 4 . Then, for σ0
e in (6.2b) large enough, there exists a constant C such that the

following estimate holds:

∥∥∥∂tξn+ 1
2

∥∥∥
L2(Ω)

+
∥∥∥ξn+ 1

2

∥∥∥
h
≤ C

(
h2 + τ 2

)
, n = 1, 2, . . . ,M − 1, (6.38)

where C is a constant such that C = max{C1, C2/δ}, with generic constants C1 and C2

independent of δ.

Proof. When n = 0, (6.38) is an immediate consequence of Lemma 6.4. When n ≥ 1, we

note that ah(ηn, vh) = 0,∀ vh ∈ Sh(Ω), and we write

(∂ttξ
n, vh)Ω + ah

(
ξn,1/4, vh

)
− (∂ttη

n, vh)Ω

= (∂tt (ξ
n − ηn) , vh)Ω + ah

(
ξn,1/4, vh

)
− ah

(
ηn,1/4, vh

)
= (∂tt (u

n
h − un) , vh)Ω + ah

(
u
n,1/4
h , vh

)
− ah

(
un,1/4, vh

)
(6.39)

= (∂ttu
n
h, vh)Ω + ah(u

n,1/4
h , vh)−

(
ah(u

n,1/4, vh) +
(
u
n,1/4
tt , vh

)
Ω

)
+
(
u
n,1/4
tt − ∂ttu

n, vh

)
Ω
, ∀vh ∈ Sh,0(Ω).
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By (6.2) and (6.4), the first three terms on the right hand side of (6.39) vanish and we have

(∂ttξ
n, vh)Ω + ah

(
ξn,1/4, vh

)
− (∂ttη

n, vh)Ω =
(
u
n,1/4
tt − ∂ttu

n, vh

)
Ω
, ∀vh ∈ Sh,0(Ω). (6.40)

It is easy to check the following identities

(∂ttξ
n, ∂tξ

n)Ω =

(
ξn+1 − 2ξn + ξn−1

τ 2
, ∂tξ

n

)
Ω

=

(
∂tξ

n+1/2 − ∂tξ
n−1/2

τ
,
∂tξ

n+1/2 + ∂tξ
n−1/2

2

)
Ω

=
1

2τ

(∥∥∂tξn+1/2
∥∥2
L2(Ω)

−
∥∥∂tξn−1/2

∥∥2
L2(Ω)

)
,

(6.41)

and

ah(ξ
n,1/4, ∂tξ

n) =
1

2τ

(
ah

(
ξn+1 + ξn

2
,
ξn+1 + ξn

2

)
− ah

(
ξn + ξn−1

2
,
ξn + ξn−1

2

))
=

1

2τ

(
ah

(
ξn+

1
2 , ξn+

1
2

)
− ah

(
ξn−

1
2 , ξn−

1
2

))
.

(6.42)

Letting vh = ∂tξ
n in (6.40) and then using (6.41) and (6.42), we have

1

2τ

(∥∥∥∂tξn+ 1
2

∥∥∥2
L2(Ω)

−
∥∥∥∂tξn− 1

2

∥∥∥2
L2(Ω)

)
+

1

2τ

(
ah(ξ

n+ 1
2 , ξn+

1
2 )− ah(ξ

n− 1
2 , ξn−

1
2 )
)

=(∂ttη
n, ∂tξ

n)Ω + (u
n,1/4
tt − ∂ttu

n, ∂tξ
n)Ω.

(6.43)

Summing (6.43) over n, by the telescoping property, we obtain

∥∥∥∂tξN+ 1
2

∥∥∥2
L2(Ω)

+ ah

(
ξN+ 1

2 , ξN+ 1
2

)
=
∥∥∂tξ1/2∥∥2L2(Ω)

+ ah

(
ξ

1
2 , ξ

1
2

)
+ 2τ

N∑
n=1

(
(∂ttη

n, ∂tξ
n)Ω +

(
u
n,1/4
tt − ∂ttu

n, ∂tξ
n
)
Ω

)
.
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By the coercivity and continuity of ah(·, ·) described in (4.49) and (4.55), we obtain

∥∥∥∂tξN+ 1
2

∥∥∥2
L2(Ω)

+ κ
∥∥∥ξN+ 1

2

∥∥∥2
h

≤
∥∥∂tξ1/2∥∥2L2(Ω)

+ C
∣∣∣∣∣∣∣∣∣ξ 1

2

∣∣∣∣∣∣∣∣∣2
h
+ 2τ

N∑
n=1

(
(∂ttη

n, ∂tξ
n)Ω +

(
u
n,1/4
tt − ∂ttu

n, ∂tξ
n
)
Ω

)
≤
∥∥∂tξ1/2∥∥2L2(Ω)

+ C
∥∥∥ξ 1

2

∥∥∥2
h
+ 2τ

N∑
n=1

(
|(∂ttηn, ∂tξn)Ω|+

∣∣∣(un,1/4tt − ∂ttu
n, ∂tξ

n
)
Ω

∣∣∣) ,
(6.44)

where we used the equivalence of ‖ξ‖h and 9ξ9h for ξ ∈ Sh(Ω). Applying (6.22),(6.23),(6.30)

and(6.33) to the right hand side of (6.44) with δ ≤ 1 we obtain

∥∥∥∂tξN+ 1
2

∥∥∥2
L2(Ω)

+ κ
∥∥∥ξN+ 1

2

∥∥∥2
h
≤ C(τ 4 + h4) +

τδ

2

∥∥∥∂tξN+ 1
2

∥∥∥2
L2(Ω)

+ 2δ
∥∥∥ξN+ 1

2

∥∥∥2
L2(Ω)

+ τ
N−1∑
n=0

(∥∥∂tξn+1/2
∥∥2
L2(Ω)

+
∥∥ξn+1/2

∥∥2
L2(Ω)

)
.

(6.45)

Applying the piecewise Poincaré-Friedrichs inequality (6.26) to
∥∥ξn+1/2

∥∥
L2(Ω)

on the right

hand side of (6.45), then the following holds for δ small enough:

∥∥∥∂tξN+ 1
2

∥∥∥2
L2(Ω)

+
∥∥∥ξN+ 1

2

∥∥∥2
h
≤ C(τ 4 + h4) + Cτ

N−1∑
n=0

(∥∥∂tξn+1/2
∥∥2
L2(Ω)

+
∥∥ξn+1/2

∥∥2
h

)
≤C(τ 4 + h4) + Cτ

N−1∑
n=0

(∥∥∂tξn+1/2
∥∥2
L2(Ω)

+ κ
∥∥ξn+1/2

∥∥2
h

)
.

By the standard discrete Gronwall-Bellmann inequality and Lemma 6.4, we have

∥∥∥∂tξN+ 1
2

∥∥∥2
L2(Ω)

+
∥∥∥ξN+ 1

2

∥∥∥2
h
≤ C(τ 4 + h4) + CNτ

(∥∥∂tξ1/2∥∥2L2(Ω)
+ κ

∥∥ξ1/2∥∥2
h

)
≤C(τ 4 + h4) + CT

(∥∥∂tξ1/2∥∥2L2(Ω)
+ κ

∥∥ξ1/2∥∥2
h

)
≤ C(h4 + τ 4), N = 1, 2, . . . ,M − 1,

which proves the estimate in (6.38).
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We are now ready to state and prove our main theorems which provide the optimal a priori

error estimates for the PPIFE solution to the hyperbolic interface problem (6.1) in the energy

norm ‖ · ‖h and the L2 norm, respectively.

Theorem 6.3. Let u be the exact solution of (6.1) satisfying the conditions of Theorem 6.2,

then we have the following estimate

∥∥∥un+1/2
h − un+1/2

∥∥∥
h
≤ C

(
h+ τ 2

)
, n = 0, 1, . . . ,M − 1, (6.46)

where C is a constant such that C = max{C1, C2/δ}, with generic constants C1 and C2

independent of δ.

Proof. From Theorem 6.2, we have

∥∥ξn+1/2
∥∥
h
≤ C

(
h2 + τ 2

)
, n = 0, 1, . . . ,M − 1.

Then, applying the triangle inequality and (6.9), we have

∥∥∥un+1/2
h − un+1/2

∥∥∥
h
≤
∥∥ξn+1/2

∥∥
h
+
∥∥ηn+1/2

∥∥
h
≤ C(h+ τ 2), n = 0, 1, . . . ,M.

Theorem 6.4. Let u be the exact solution of (6.1) satisfying the conditions of Theorem 6.2,

then we have the following estimate

‖unh − un‖L2(Ω) ≤ C(h2 + τ 2), n = 0, 1, . . . ,M, (6.47)

where C is a constant such that C = max{C1, C2/δ}, with generic constants C1 and C2

independent of δ.
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Proof. From Theorem 6.2, we have

∥∥∂tξn+1/2
∥∥
L2(Ω)

=

∥∥∥∥ξn+1 − ξn

τ

∥∥∥∥
L2(Ω)

≤ C(h2 + τ 2), n = 0, 1, . . . ,M − 1,

which for τ < 1 yields ∥∥ξn+1 − ξn
∥∥
L2(Ω)

≤ C(h2 + τ 2). (6.48)

On the other hand, by Theorem 6.2 and Inequality (6.26), we also have

∥∥ξn+1/2
∥∥
L2(Ω)

≤ C
∥∥ξn+1/2

∥∥
h
≤ C(h2 + τ 2),

which can be written as ∥∥ξn+1 + ξn
∥∥
L2(Ω)

≤ C(h2 + τ 2). (6.49)

Combining (6.48) and (6.49) we have

‖ξn‖L2(Ω) ≤ C(h2 + τ 2), n = 0, 1, 2, . . . ,M. (6.50)

Applying the triangle inequality we have

‖unh − un‖L2(Ω) ≤ ‖ξn‖L2(Ω) + ‖ηn‖L2(Ω), n = 0, 1, . . . ,M.

Finally, applying (6.50) and Lemma 6.2 to the above inequality yields the estimate in (6.47).
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6.4 Numerical Examples

Numerical examples demonstrating the optimal convergence feature of the PPIFE method

were already reported in [143]. We present a few numerical examples in this section to

demonstrate other features of this PPIFE method. Without loss of generality, all the exam-

ples are posed on rectangular domains which are partitioned by Cartesian triangular meshes.

Such a mesh Th is obtained by dividing a rectangular domain into Ns×Ns rectangles and

each rectangle is further divided into 2 right-angle triangles by the line connecting the lower

right vertex to the upper left vertex.

Example 6.4.1.

We note the exact solutions in those examples reported [143] all have a piecewise H3 regular-

ity in the space variable. The main purpose of this example is to show, as predicted by the

error analysis in the previous section, that the PPIFE method actually converges optimally

if the exact solution has a piecewise H2 regularity in the space variable. Specifically, let us

consider the hyperbolic interface problem (6.1) posed on the domain Ω = (−1, 1) × (−1, 1)

which is divided by the circular interface Γ = {(x, y)|x2+ y2− r20 = 0} with r0 = π/6.28 into

two sub-domains:

Ω− =
{
(x, y) : x2 + y2 < r20

}
, and Ω+ = Ω\Ω−.

We select c− = 1, c+ =
√
10, T = 1, and let f , g, w0(X), w1(X) in the interface problem (6.1)

be generated such that the following u(X, t) is the exact solution of the interface problem:

u(X, t) =


1

β− r
α cos(2t), (X, t) ∈ Ω− × [0, 1],(

1

β+
rα +

( 1

β− − 1

β+

)
rα0

)
cos(2t), (X, t) ∈ Ω+ × [0, 1].

(6.51)
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where α = 1.5, r =
√
x2 + y2. We note that u(X, t) represents a standing wave, and it can

be verified that u(X, t) ∈ PH2(Ω)\PH3(Ω) for each fixed t. Therefore, u(X, t) does not

possess the regularity required by the error analysis in [143], but it satisfies the regularity

requirement in Section 6.3.

We apply the SPPIFE with σ0
e = 30max{(c−)2, (c+)2} = 300 to solve the interface problem

configured above on the Cartesian triangular meshes Th for t ∈ [0, 1], uniformly divided

as 0 = t0 < t1 < t2 < · · · < tM = 1, with M = Ns, i.e., h = 2/Ns and τ = 1/Ns.

We present the PPIFE errors ‖(u − uh)(·, t)‖0,Ω and |(u − uh)(·, t)|1,Ω at t = 1 and their

rates of convergence in Table 6.1. The data presented in Table 6.1 clearly demonstrate the

optimal convergence, in both semi-H1 and L2 norms, of the PPIFE method for the second-

order hyperbolic interface problem whose exact solution is just in PH2(Ω)\PH3(Ω), and

this example corroborates the error analysis of the PPIFE method presented in Section 6.3.

Numerical results presented in Table 6.2 are generated on a mesh for the domain Ω with

Ns = 640 but with a variety of time steps. On this fixed spatial mesh, the IFE method

produces numerical solutions whose errors are within the bounds given in Theorem 6.3 and

Theorem 6.4 for time step sizes chosen from τ = 0.25 to τ = 0.0015625, and of course, the

numerical result with a smaller time step size is more accurate. These results suggest that

the stability of the IFE method is not influenced by the ratio of the time step size and the

mesh size for the space variable, and this corroborates the unconditional stability of the IFE

method given in Theorem 6.1
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Ns ‖u− uh‖0,Ω rate |u− uh|1,Ω rate

10 2.0414e-03 NA 3.4810e-02 NA

20 2.9650e-04 2.7835 7.3560e-03 2.2425

40 8.1983e-05 1.8546 4.3716e-03 0.7508

80 1.9021e-05 2.1077 1.8753e-03 1.2210

160 4.6367e-06 2.0364 8.9223e-04 1.0716

320 1.1541e-06 2.0063 4.2540e-04 1.0686

640 2.9069e-07 1.9893 2.0765e-04 1.0347

1280 7.4786e-08 1.9586 1.0297e-04 1.0120

Table 6.1: SPPIFE Errors and convergence rates at t = 1 for Example 6.4.1 when M = Ns.

τ/h ‖u− uh‖0,Ω |u− uh|1,Ω

80 2.1499e-03 1.1510e-02

40 1.8691e-04 1.2218e-03

20 1.0086e-05 8.2378e-04

10 4.8491e-06 1.0108e-03

5 1.4629e-06 3.8330e-04

2.5 3.7134e-07 2.7363e-04

0.5 2.9069e-07 2.0765e-04

Table 6.2: SPPIFE Errors for different time step sizes at t = 1 for Example 6.4.1 when
Ns = 640.

Example 6.4.2.

The second example is a hyperbolic interface problem simulating travelling waves with a

linear interface across which the jump conditions are determined by the well known Snell’s
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law. Specifically, we consider the interface problem (6.1) on the domain Ω = (−10, 10) ×

(−10, 10) split by the interface Γ = {(x, y) ∈ Ω | x = 0.37} into

Ω− = {(x, y) ∈ Ω | x− 0.37 < 0}, and Ω+ = Ω\Ω−.

The exact solution u consists of an incident wave uI starting in Ω− and travels at speed c− in

the direction of v = (2, 1) until it hits the interface Γ which causes it to split into a reflected

wave uR and transmitted wave uT [120, 147]:

uI(X, t) =
1

(c−)2
ζ

(
t− xcos(θI) + ysin(θI)

c−

)
,

uR(X, t) =
R

(c−)2
ζ

(
t− −xcos(θI) + ysin(θI)

c−

)
,

uT (X, t) =
Tr

(c+)2
ζ

(
t− xcos(θT ) + ysin(θT )

c+

)
,

(6.52)

with R = ρ+c+cos(θI)−ρ−c−cos(θT )
ρ+c+cos(θI)+ρ−c−cos(θT )

, Tr = 2ρ−c+cos(θI)
ρ+c+cos(θI)+ρ−c−cos(θT )

, ζ(ξ) = sin(ξ)exp(−4ξ2), where

ρ− = 1/(c−)2, ρ+ = 1/(c+)2, θI = arctan(1/2), and θT determined by sinθT
c+

= sinθI
c−

. The

functions f , g, w0 and w1 in the interface problem (6.1) are generated such that the following

function u(X, t) is the exact solution:

u(X, t) =


uI(X, t) + uR(x, y, t), (X, t) ∈ Ω− × [0, 0.6],

uT (X, t), (X, t) ∈ Ω+ × [0, 0.6].

(6.53)

Also we choose c− = 1.5 and c+ = 0.34 in (6.1) for simulating an acoustic wave propagation in

the domain Ω formed with air-water-like materials. We apply the SPPIFE method to solve

this interface problem on Cartesian triangular meshes and present the related numerical

results at time t = 0.6 in Table 6.3 which clearly indicate the optimal convergence of the

PPIFE method when the mesh is fine enough. We also plot the PPIFE solution with Ns =
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160 and τ = 0.00375 and the corresponding pointwise errors t = 0.6 in Figure 6.1. Both

the data and the plots presented here suggest that the PPIFE method can handle traveling

waves in interface problems.

Ns ‖u− uh‖0,Ω rate |u− uh|1,Ω rate

40 4.5917e-01 NA 2.9764e+00 NA

80 1.9732e-01 1.2185 2.3571e+00 0.3366

160 6.6826e-02 1.5621 1.3879e+00 0.7641

320 2.0061e-02 1.7360 6.7514e-01 1.0397

640 5.1868e-03 1.9515 3.2171e-01 1.0694

1280 1.3067e-03 1.9890 1.5845e-01 1.0217

Table 6.3: Errors of SPPIFE solutions, c− = 1.5, c+ = 0.34 at t = 0.6.

Figure 6.1: SPPIFE solution uh (left) and the error u − uh (right) at t = 0.6 for Example
6.4.2 with c− = 1.5, c+ = 0.34, Ns = 160.

Example 6.4.3.

In this example, we consider an application of the PPIFE method to a hyperbolic interface

problem with a more sophisticated material interface. Specifically, we consider a non-square

domain Ω = (−2, 2)×(−2, 3) split by an elliptic interface Γ =
{
(x, y)| (x−x0)2

r2x
+ (y−y0)2

r2y
− 1 = 0

}



128 Chapter 6. IFE methods for hyperbolic interface problems

into:

Ω− =

{
(x, y) |(x− x0)

2

r2x
+

(y − y0)
2

r2y
< 1

}
, and Ω+ = Ω\Ω−,

where (x0, y0) = (1.15, 0), rx = π/4.84, ry = π/1.97. Let c− = 1, c+ = 2, and let f = 0, g =

0, w1 = 0, T = 0.6 in the interface problem (6.1) and utt(X, 0) = 0 in (6.4), but the initial

pulse w0 = u(X, 0) is selected to be

u(X, 0) =

 0, X /∈ S,

a · exp
(

−r2

|(x−xc)2+(y−yc)2−r2|

)
, X ∈ S,

where S = {(x, y)|(x−xc)
2+(y− yc)

2− r2 < 0}, with r = 0.2, a = 20, (xc, yc) = (0, 0.8). We

note that the exact solution to this interface problem is not easy to derive, if not impossible.

Hence, instead of using actual numerical errors to demonstrate the performance of the PPIFE

method, in Figure 6.2, we compare the numerical results generated by the PPIFE method

against the corresponding numerical results produced by the standard linear finite element

method with a fitted mesh for this interface problem which are theoretically supposed to be

accurate. The meshes, both the Cartesian meshes and body-fitting meshes, used to generate

numerical results in this example are illustrated in Figure 6.3.

For the numerical results presented in Figure 6.2, the PPIFE method uses σ0
e = 120 on the

Cartesian mesh with Ns = 641 with τ = 0.6/Ns and this mesh has 821762 elements. On the

other hand, the fitted mesh used by the finite element solution has 1343488 elements. The

plots in Figure 6.2 compare numerical results before and after the wave hits the interface,

we can see that the PPIFE solution simulates the wave propagation as well as the standard

finite element solution even though the PPIFE solution uses a much simpler Cartesian mesh

with significantly less degrees of freedom than the finite element solution.
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Figure 6.2: SPPIFE solution uh on Cartesian mesh with Ns = 641 (left) and FE solution u
(right) at t = 0, 0.305, 0.6 (top to bottom) for Example 6.4.3 with c− = 1, c+ = 2.
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Figure 6.3: Cartesian mesh for PPIFE methods (left) and the body-fitting mesh for standard
FE method (right)

6.5 Conclusion

We have investigated a fully discrete PPIFE methods for solving second-order hyperbolic

interface problems in inhomogeneous media. This method is able to solve the interface

problems on Cartesian meshes which do not align with the interface in general. We have

performed an a priori error analysis for this method under a piecewise H2 regularity as-

sumption in space, proving that it converges optimally in an energy norm and the L2 norm.

Numerical examples with both simple linear and more sophisticated interfaces as well as both

standing and traveling wave solutions are presented, and these numerical results corroborate

the theoretical error analysis.



Chapter 7

IFE methods for parabolic interface

problems

7.1 Introduction

We now study the error estimation of the PPIFE methods for parabolic interface problems

under piecewise H2 regularity assumption in space. We recall the interface problem herein:

∂u

∂t
−∇ · (β∇u) = f, in Ω− ∪ Ω+, t ∈ [0, T ], (7.1a)

u|∂Ω = g(X, t), t ∈ [0, T ], (7.1b)

u|t=0 = u0(X), X ∈ ∂Ω, (7.1c)

together with the following jump conditions:

[u]Γ := u+|Γ − u−|Γ = 0, (7.1d)[
β∇u · n

]
Γ

:= β+∇u+ · n|Γ − β−∇u− · n|Γ = 0, (7.1e)

where the domain Ω ⊆ R2 is divided by an interface curve Γ into two subdomains Ω− and

Ω+, with Ω = Ω− ∪ Ω+ ∪ Γ and the coefficient β is a piecewise positive constant function

131
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such that

β(X) =

 β− for X ∈ Ω−,

β+ for X ∈ Ω+.

By adopting a patch technique for the essential error analysis on each element [63], we present

a new error analysis for PPIFE methods considered in [111] and we are able to show that

these methods can converge optimally in a suitably designed energy norm and the standard

L2 norm under the usual piecewise H2 regularity assumption. To be specific, we will show

that a standard semi-discrete PPIFE method and two typical fully discrete PPIFE methods

converge optimally in both the energy norm and the L2 norm under the usual piecewise H2

regularity assumption in the space variable for the exact solution.

The layout of this chapter is as follows. In Section 7.2, we recall a group of PPIFE schemes

from [113] for parabolic interface problems, including a semi-discrete scheme and two typi-

cal fully discrete schemes: the Backward Euler scheme and Crank-Nicolson scheme. Error

estimates for these PPIFE methods are derived in Section 7.3. In Section 7.4, a numerical

example is presented to validate the theoretical results established in Section 7.3.

7.2 PPIFE methods to be analyzed

In this section, we recall PPIFE methods for parabolic interface problems developed in [113].

Throughout this chapter, as we stated in Chapter 6, since we will use T to represent the

endpoint of the time domain, we use K instead of T to denote element in the mesh Th of

Ω. We also recall some set notations about the edges from Chapter 2: the set of interior

interface edges is E̊ i
h, the set of boundary edges is Eb

h, the set of boundary interface edges is

Ebi
h .
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Similar to the elliptic interface problem in Section 4.2, we can derive a weak form of the

parabolic interface problem described in (7.1), which is essentially the same as that in [113],

with a slightly more general configuration that allows the interface to intersect with the

boundary of the domain, i.e., Γ ∩ ∂Ω 6= ∅. These considerations lead to the following weak

formulation of the parabolic interface problems (7.1): find u: [0, T ] → PH2(Ω) that satisfies

(7.1d), (7.1e) and

(ut, v) + ah(u, v) = Lf (v), ∀v ∈ Vh,0(Ω),

u(X, 0) = u0(X), ∀X ∈ Ω,

(7.2)

in which the bilinear form ah(·, ·) : Vh(Ω)× Vh(Ω) → R is defined by

ah(u, v) =
∑
K∈Th

∫
K

β∇u · ∇vdX −
∑
e∈E̊i

h

∫
e

{β∇u · ne}e[v]eds

+ ε
∑
e∈E̊i

h

∫
e

{β∇v · ne}e[u]eds+
∑
e∈E̊i

h

σ0
e

|e|

∫
e

[u]e [v]eds−
∑
e∈Ebi

h

∫
e

β∇u · nevds

+ ε
∑
e∈Ebi

h

∫
e

β∇v · neuds+
∑
e∈Ebi

h

σ0
e

|e|

∫
e

u vds, ∀u, v ∈ Vh(Ω),

(7.3)

with Vh(Ω) and Vh,0(Ω) defined in (2.4) and (2.5), and the linear form Lf : Vh(Ω) → R is

defined by

Lf (v) =

∫
Ω

fvdX + ε
∑
e∈Ebi

h

∫
e

β∇v · ne gds+
∑
e∈Ebi

h

σ0
e

|e|

∫
e

vgds, ∀v ∈ Vh(Ω). (7.4)

Since the linear/bilinear global IFE space Sh(Ω) defined in (4.8) is a subspace of Vh(Ω), the

above weak form of the interface problem naturally suggests the following PPIFE methods

[113] to be analyzed in the next section.
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Semi-discrete PPIFE methods: find uh : [0, T ] → Sh(Ω) such that

(uh,t, vh) + ah(uh, vh) = Lf (vh), ∀vh ∈ Sh,0(Ω),

uh(X, 0) = ũh0(X), ∀X ∈ Ω,

(7.5)

where ũh0 ∈ Sh(Ω) is either an IFE function defined as the elliptic projection as defined in

(6.7) or the interpolation of u0 in the IFE space Sh(Ω).

Fully discrete PPIFE methods: we will use a uniform partition in time such that

Πτ = {0 = t0 < t1 < ... < tM = T},

τ = tn − tn−1, n = 1, 2, ...,M,

(7.6)

with M a positive integer. For a function φ(X, t), as usual, we let φn(X) = φ(X, tn), and let

∂tφ
n(X) =

φn(X)− φn−1(X)

τ
. (7.7)

A group of fully-discrete PPIFE methods can be described as: find a sequence {unh}Mn=1 ⊂

Sh(Ω) such that

(∂tu
n
h, vh) + ah

(
θunh + (1− θ)un−1

h , vh
)
= θLfn(vh)

+ (1− θ)Lfn−1(vh), ∀vh ∈ Sh,0(Ω),

u0h(X) = ũh0(X), ∀X ∈ Ω,

(7.8)

where θ ∈ [0, 1]. Two cases are of special interests when θ = 1 and θ = 1/2, and the

above reduces to the backward Euler PPIFE method and Crank-Nicolson PPIFE method,

respectively.
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We note that the bilinear form ah(·, ·) in (7.3) is almost the same as that used in the

interior penalty DG finite element methods for the standard elliptic boundary value problem

[36, 78, 127] except that the penalties are applied only over interface edges instead of all the

edges. Following the convention in DG finite element methods, we usually consider three

choices for the parameter ε in this bilinear form: ε = −1, 0, or 1, which leads to a symmetric

bilinear form ah(·, ·) when ε = −1, and a nonsymmetric bilinear form, otherwise. The related

PPIFE methods described either by (7.5) or (7.8) will be called SPPIFE methods or NPPIFE

methods, respectively.

The PPIFE methods in this paper can be extended to the parabolic interface problem with a

non-homogeneous flux jump condition by constructing an additional IFE function according

to the technique presented in [74]. In addition, these PPIFE methods can be extended to

the parabolic interface problem where β(X) in (7.1a) is a variable matrix. Indeed, we may

employ the averaging idea presented in [79, 81] by which β± can be specified as the average

of β(X) on K± respectively, for constructing the needed IFE functions on each interface

element K. However, the remaining issue is the related error analysis.

7.3 Error analysis of parabolic PPIFE methods

In this section, we will derive a priori error estimates for the PPIFE methods recalled in the

previous section. Without loss of generality and following usual convention in error analysis

of finite element methods, we assume that: (i) the interface problem has a homogeneous

Dirichlet boundary condition, i.e., g = 0 in (7.1b); (ii) the interface does not intersect the

boundary, i.e., Γ∩∂Ω = ∅. We note that assumption (ii) here is just a technicality for a clear

presentation of main ideas in the error estimations and the analysis can be extended to the

case without assumption (ii). This is because the error estimations for the related elliptic
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interface problems given in the previous chapter have such an extension under a suitable

assumption about how the interface intersects with the boundary of Ω.

We will still use the energy norms ‖v‖h and |||v|||h defined in (4.36) and (4.37) for v ∈ Vh(Ω)

in the error analysis. Recall that ‖ · ‖h and |||·|||h are norms on Vh(Ω) [63] such that

‖v‖h ≤ |||v|||h, ∀v ∈ Vh(Ω) and |||v|||h ≤ C‖v‖h, ∀v ∈ Sh,0(Ω), (7.9)

for a certain constant C, where Sh,0(Ω) is defined in (4.8). The following lemma recalls

coercivity of the bilinear linear form ah(·, ·) defined in (7.3) with respect to either of these

two energy type norms.

Lemma 7.1. If σ0
e is sufficiently large, then there exists a positive constant κ such that

ah(v, v) ≥ κ‖v‖2h and ah(v, v) ≥ κ|||v|||2h, ∀v ∈ Sh,0(Ω). (7.10)

Proof. These results follow directly from Lemma 4.1 in [111] and Theorem 4.4.

From (6.7), we can see that the elliptic projection ũh of a function u also satisfies

ah ((ũh)t, vh) = ah(ut, vh), ah((ũh)tt, vh) = ah(utt, vh), ∀vh ∈ Sh,0(Ω), (7.11)

provided that ut(·, t) ∈ PH2(Ω) and utt(·, t) ∈ PH2(Ω) are suitably defined. Note that here

we also have the error estimates for the elliptic projection as it is stated in Lemma 6.1 and

Lemma 6.2, except for that the bilinear form ah(., .) is defined by (7.3), where the coefficient

β is used, rather than c2.

Error estimate for the semi-discrete PPIFE method:

In the following discussions, we will use the standard splitting u−uh = η−ξ with η = u− ũh,
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ξ = uh− ũh and ũh is the elliptic projection of u defined by (6.7). We first estimate the error

in the ‖·‖h norm for the PPIFE solutions.

Theorem 7.1. Assume that the exact solution u to the parabolic interface problem (7.1) is

in H1(0, T ;PH2(Ω)) for ε = −1 but in H2(0, T ;PH2(Ω)) for ε = 0, 1, and u0 ∈ PH2(Ω).

Let uh be the PPIFE solution defined by the semi-discrete method (7.5) and uh(·, 0) = ũh,0

being the elliptic projection of u0. Then there exists a constant C such that, for ε = −1, we

have

‖u(·, t)− uh(·, t)‖h ≤ Ch
(
‖u0‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω))

)
, ∀t ≥ 0, (7.12)

and for ε = 0 or 1, we have

‖u(·, t)− uh(·, t)‖h

≤Ch
(
‖u0‖2,Ω + ‖ut(·, 0)‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω)) + ‖utt‖L2(0,T ;PH2(Ω))

)
, ∀t ≥ 0.

(7.13)

Proof. For ε = −1, by arguments similar to those for (3.16) in [113], we have

1

2

∫ t

0

‖ξt‖2L2(Ω)dt+
1

2
ah(ξ, ξ) ≤ C

∫ t

0

‖ηt‖2L2(Ω)dt. (7.14)

By the piecewise Poincaré-Friedrichs inequality [12, 24], there holds

‖ηt‖L2(Ω) ≤ C‖ηt‖h. (7.15)

Then, applying (7.15), Lemma 4.1, and the coercivity of ah(·, ·) to (7.14), we have

‖ξt‖L2(0,t;L2(Ω)) + ‖ξ‖h ≤ Ch‖ut‖L2(0,T ;PH2(Ω)). (7.16)



138 Chapter 7. IFE methods for parabolic interface problems

Because u− uh = η − ξ, by the triangle inequality, (6.9) with k = 0, and (7.16), we have

‖u(·, t)− uh(·, t)‖h ≤ Ch
(
‖u‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω))

)
, ∀t ≥ 0. (7.17)

By u ∈ H1(0, T, PH2(Ω)), we have

‖u(·, t)‖2,Ω ≤ ‖u0‖2,Ω +

∫ t

0

‖uτ‖2,Ωdτ

≤ ‖u0‖2,Ω + C‖ut‖L2(0,T,PH2(Ω)).

(7.18)

Then, estimate in (7.12) follows from applying (7.18) to (7.17).

For ε = 0 or 1, by arguments similar to those for the second last inequality in the proof for

Theorem 3.1 in [113], we have

∫ t

0

‖ξt‖2L2(Ω)dτ + ‖ξ‖2h ≤ C

∫ t

0

(
‖ηt‖2h + ‖ηtt‖2h

)
dτ + C‖ηt(·, 0)‖2h, (7.19)

where we have used the estimate in (7.15). Applying (6.9) with k = 1 and k = 2 to (7.19)

leads to

‖ξ‖h ≤ Ch
(
‖ut(·, 0)‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω)) + ‖utt‖L2(0,T ;PH2(Ω))

)
. (7.20)

From u−uh = η−ξ again, applying the triangle inequality and estimates in (6.9) with k = 0

and (7.20), we have

‖u− uh‖h ≤ Ch
(
‖u‖2,Ω + ‖ut(·, 0)‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω)) + ‖utt‖L2(0,T ;PH2(Ω))

)
. (7.21)

Finally, the estimate in (7.13) follows by applying (7.18) to (7.21).

We now estimate the error in the usual L2 norm.
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Theorem 7.2. Assume that the exact solution u to the parabolic interface problem (7.1) is

in H1(0, T ;PH2(Ω)). Let uh be the PPIFE solution defined by the semi-discrete method

(7.5) and uh(·, 0) = ũh,0 being the elliptic projection of u0. Then, there exists a constant C

such that

‖u(·, t)− uh(·, t)‖L2(Ω) ≤ Ch2
(
‖u0‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω))

)
. (7.22)

Proof. By (7.2) and (7.5), we have

(ut − uh,t, v) + ah(u− uh, v) = 0, ∀v ∈ Sh,0(Ω),

which leads to

(ξt − ηt, v) + ah(ξ − η, v) = 0, ∀v ∈ Sh,0(Ω). (7.23)

Because η = u− ũh, by (6.7), we have ah(η, v) = 0 for v ∈ Sh(Ω). Thus, by (7.23), we have

(ξt, v) + ah(ξ, v) = (ηt, v), ∀v ∈ Sh,0(Ω). (7.24)

Using v = ξ in (7.24) and applying the coercivity of ah(·, ·) given in (7.10), we have

1

2

d

dt
‖ξ‖2L2(Ω) ≤ ‖ηt‖L2(Ω)‖ξ‖L2(Ω). (7.25)

Then, integrating (7.25) leads to

‖ξ(t)‖L2(Ω) ≤ ‖ξ(0)‖L2(Ω) +

∫ t

0

‖ηt‖L2(Ω)dt, (7.26)

in which ‖ξ(0)‖L2(Ω) = 0 since ũh,0 is assumed to be the elliptic projection of u0. Therefore,
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applying (6.13) with k = 1 to (7.26) we have

‖ξ(t)‖L2(Ω) ≤
∫ t

0

‖ηt‖L2(Ω)dτ ≤ Ch2‖ut‖L2(0,T ;PH2(Ω)). (7.27)

Then, by the triangle inequality, (7.27), and (6.13) with k = 0, we have

‖u− uh‖L2(Ω) ≤ ‖ξ(t)‖L2(Ω) + ‖η(t)‖L2(Ω) ≤ Ch2
(
‖ut‖L2(0,T ;PH2(Ω)) + ‖u(., t)‖2,Ω

)
. (7.28)

Finally, the estimate in (7.22) follows from applying (7.18) to (7.28).

We now proceed to conduct the error analysis for the fully discrete PPIFE methods.

Error estimates for fully discrete PPIFE methods:

We provide error estimates for two types of fully discrete PPIFE methods: backward Euler

methods and Crank-Nicolson methods.

Backward Euler methods: The backward Euler methods correspond to the scheme in

(7.8) when θ = 1. First we have the following error estimate on backward Euler PPIFE

solutions in the energy norm ‖ · ‖h.

Theorem 7.3. Assume that the exact solution u to the parabolic interface problem (7.1) is

in H2(0, T ;PH2(Ω)) ∩H3(0, T ;L2(Ω)) and u0 ∈ PH2(Ω). Let the sequence {unh}Mn=0 be the

solution to the backward Euler PPIFE method described by (7.8) with θ = 1. Then for σ0
e in

ah(·, ·) large enough, there exists a positive constant C independent of h and τ such that, for

ε = −1, we have, for n = 1, 2, ...,M ,

‖unh − un‖h ≤

C
(
h
(
‖u0‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω))

)
+ τ ‖utt‖L2(0,T ;L2(Ω))

)
,

(7.29)



7.3. Error analysis of parabolic PPIFE methods 141

and for ε = 0 or 1, we have

‖unh − un‖h ≤

Ch

(
‖u0‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω)) + ‖utt‖L2(0,T ;PH2(Ω)) +

(
1

τ
‖ut‖L2(0,τ ;PH2(Ω))

) 1
2

)

+ Cτ

(
‖utt‖L2(0,T ;L2(Ω)) + ‖uttt‖L2(0,T ;L2(Ω)) +

(
1

τ
‖utt‖L2(0,τ ;L2(Ω))

) 1
2

)
.

(7.30)

Proof. The proof follows the same arguments as those used in the proof of Theorem 3.2 in

[113] except for using Lemma 6.1 for all the estimates about ‖ηt‖h and ‖ηtt‖h.

Then, we consider the error estimates in L2 norm for the backward Euler PPIFE solutions.

Theorem 7.4. Assume that the exact solution u to the parabolic interface problem (7.1) is

in H1(0, T ;PH2(Ω)) ∩H2(0, T ;L2(Ω)) and u0 ∈ PH2(Ω). Let the sequence {unh}Mn=0 be the

solution to the PPIFE backward Euler methods described by (7.8) with θ = 1 and u0h = ũh,0

being the elliptic projection of u0. Then for σ0
e in ah(·, ·) large enough, there exists a positive

constant C independent of h and τ such that for n = 1, 2, ...,M ,

‖unh − un‖L2(Ω) ≤

C
(
h2
(
‖u0‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω))

)
+ τ ‖utt‖L2(0,T ;L2(Ω))

)
.

(7.31)

Proof. Recall the following identity from [113] ((3.24) in that article):

(∂tξ
n, vh) + ah(ξ

n, vh) = (∂tη
n, vh) + (rn, vh), ∀vh ∈ Sh,0(Ω), (7.32)

where rn = −(unt − ∂tu
n). Letting vh = ξn in (7.32) yields

(
ξn − ξn−1

τ
, ξn
)
+ ah(ξ

n, ξn) = (∂tη
n, ξn) + (rn, ξn).
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Using the coercivity of ah(·, ·) in Lemma 7.1, and applying Hölder inequality to the right

hand side of the above equation, we have

(ξn, ξn)− (ξn−1, ξn)

τ
+ κ ‖ξn‖2h ≤ C

(
‖∂tηn‖L2(Ω) ‖ξ

n‖L2(Ω) + ‖rn‖L2(Ω) ‖ξ
n‖L2(Ω)

)
.

By Hölder inequality again, we have

‖ξn‖2L2(Ω) −
∥∥ξn−1

∥∥
L2(Ω)

‖ξn‖L2(Ω) ≤ Cτ
(
‖∂tηn‖L2(Ω) ‖ξ

n‖L2(Ω) + ‖rn‖L2(Ω) ‖ξ
n‖L2(Ω)

)
,

which leads to

‖ξn‖L2(Ω) −
∥∥ξn−1

∥∥
L2(Ω)

≤ Cτ
(
‖∂tηn‖L2(Ω) + ‖rn‖L2(Ω)

)
.

Summing the inequality above from n = 1 to k, we have

∥∥ξk∥∥
L2(Ω)

−
∥∥ξ0∥∥

L2(Ω)
≤ Cτ

k∑
n=1

(
‖∂tηn‖L2(Ω) + ‖rn‖L2(Ω)

)
. (7.33)

According to (3.28) in [113], and using the estimate in (6.13) with k = 1, we have

‖∂tηn‖2L2(Ω) ≤
1

τ

∫ tn

tn−1

‖ηt‖2L2(Ω)dt ≤
Ch4

τ

∫ tn

tn−1

‖ut‖22,Ωdt. (7.34)

From (3.29) in [113], it follows

‖rn‖2L2(Ω) ≤
τ

3

∫ tn

tn−1

‖utt‖2L2(Ω)dt. (7.35)

Applying (7.34) and (7.35) to (7.33), and noting the fact that ‖ξ0‖L2(Ω) = 0 since ũh0 is
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chosen to be the elliptic projection of u0 in (7.8), it follows

‖ξk‖2L2(Ω) ≤ Ch4‖ut‖2L2(0,T ;PH2(Ω)) + Cτ 2‖utt‖2L2(0,T ;L2(Ω)) (7.36)

Then the estimate in (7.31) follows from applying the triangle inequality, (6.13) with k = 0,

together with (7.18), and (7.36) to the standard splitting u− uh = η − ξ.

Crank Nicolson methods: We now consider the error in the IFE solutions produced by

the Crank-Nicolson schemes described by (7.8) with θ = 1/2. First, we have the following

error estimate in the energy norm for the SPPIFE Crank-Nicolson scheme.

Theorem 7.5. Assume that the exact solution u to the parabolic interface problem (7.1) is

in H1(0, T ;PH2(Ω)) ∩H3(0, T ;L2(Ω)) and u0 ∈ PH2(Ω). Let the sequence {unh}Mn=0 be the

solution to the PPIFE Crank-Nicolson methods described by (7.8) with θ = 1/2 and ε = −1 .

Then for σ0
e in ah(·, ·) large enough, there exists a positive constant C independent of h and

τ such that for n = 1, 2, ...,M ,

‖unh − un‖h ≤

C
(
h
(
‖u0‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω))

)
+ τ 2 ‖uttt‖L2(0,T ;L2(Ω))

)
.

(7.37)

Proof. The proof follows the same arguments as those used in the proof of Theorem 3.3 in

[113] except for using Lemma 4.1 for all the estimates about ‖ηt‖h and ‖ηtt‖h.

We then consider the L2 error estimate of the Crank-Nicolson PPIFE solutions.

Theorem 7.6. Assume that the exact solution u to the parabolic interface problem (7.1) is

in H1(0, T ;PH2(Ω)) ∩H3(0, T ;L2(Ω)) and u0 ∈ PH2(Ω). Let the sequence {unh}Mn=0 be the

solution to the PPIFE Crank-Nicolson methods described by (7.8) with θ = 1/2 and u0h = ũh,0

being the elliptic projection of u0. Then for σ0
e large enough, there exists a positive constant
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C independent of h and τ such that for n = 1, 2, ...,M ,

‖unh − un‖L2(Ω) ≤

C
(
h2
(
‖u0‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω))

)
+ τ 2 ‖uttt‖L2(0,T ;L2(Ω))

)
.

(7.38)

Proof. By (7.5) and (7.8), and the definition in (6.7), we have

(∂tξ
n, vh) +

1

2
ah
(
ξn + ξn−1, vh

)
= (∂tη

n, vh) + (rn1 , vh) + (rn2 , vh) , ∀vh ∈ Sh,0(Ω), (7.39)

where rn1 = −un−1/2
t + 1

2
(unt + un−1

t ), rn2 = ∂tu
n − u

n−1/2
t .

Letting vh = ξn + ξn−1 in (7.39) yields

∂t ‖ξn‖2L2(Ω) +
1

2
ah
(
ξn + ξn−1, ξn + ξn−1

)
=
(
∂tη

n, ξn + ξn−1
)
+
(
rn1 , ξ

n + ξn−1
)
+
(
rn2 , ξ

n + ξn−1
)
.

(7.40)

By the coercivity of ah(·, ·) given in Lemma 7.1 and applying Hölder inequality to the right

hand side of (7.40), we have

∂t‖ξn‖2L2(Ω) +
1

2
κ‖ξn + ξn−1‖2h

≤ ‖∂tηn‖L2(Ω)‖ξn + ξn−1‖L2(Ω) + ‖rn1‖L2(Ω)‖ξn + ξn−1‖L2(Ω)

+ ‖rn2‖L2(Ω)‖ξn + ξn−1‖L2(Ω).

(7.41)

By the piecewise Poincaré-Friedrichs inequality [12, 24] we have

‖ξn + ξn−1‖L2(Ω) ≤ C‖ξn + ξn−1‖h.
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Therefore, from (7.41), we have

∂t ‖ξn‖2L2(Ω) +
1

2
κ
∥∥ξn + ξn−1

∥∥2
h

≤ C
(
‖∂tηn‖L2(Ω) + ‖rn1‖L2(Ω) + ‖rn2‖L2(Ω)

)∥∥ξn + ξn−1
∥∥
h
,

≤ C
(
‖∂tηn‖L2(Ω) + ‖rn1‖L2(Ω) + ‖rn2‖L2(Ω)

)2
+

1

4
κ
∥∥ξn + ξn−1

∥∥2
h
,

(7.42)

which yields

∂t‖ξn‖2L2(Ω) ≤ C
(
‖∂tηn‖2L2(Ω) + ‖rn1‖

2
L2(Ω) + ‖rn2‖

2
L2(Ω)

)
. (7.43)

According to (3.48) and (3.49) in [113], we have

‖rni ‖2L2(Ω) ≤ Cτ 3
∫ tn

tn−1

‖uttt(., t)‖2L2(Ω)dt, i = 1, 2. (7.44)

Then, applying (7.34) and (7.44) to the right hand side of (7.43), we have

‖ξn‖2L2(Ω) − ‖ξn−1‖2L2(Ω)

τ
≤ C

(
h4

τ

∫ tn

tn−1

‖ut‖22,Ωdt+ τ 3
∫ tn

tn−1

‖uttt(., t)‖2L2(Ω)dt

)
. (7.45)

Summing (7.45) from n = 1 to k and using the fact that ξ0 = 0, we have

‖ξk‖2L2(Ω) ≤ C

(
h4
∫ T

0

‖ut‖22,Ωdt+ τ 4
∫ T

0

‖uttt(., t)‖2L2(Ω)dt

)
. (7.46)

Finally, the estimate in (7.38) follows from utilizing the triangle inequality, (6.13) with k = 0,

together with (7.18), and the estimate in (7.46) to the standard splitting u−uh = η− ξ.

Remark 7.1. We note that Theorem 7.5 gives an error estimate in an energy norm that

is comparable to the usual semi-H1 norm for the SPPIFE Crank-Nicolson scheme. With

the error estimate in the L2 norm given in Theorem 7.6, we can derive the error estimate

in semi-H1 norm for the NPPIFE Crank-Nicolson schemes subject to a CFL condition.
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Specifically, we start from the fact that ξn ∈ Sh,0(Ω), n = 0, 1, ...,M . Then, by the inverse

inequality of IFE function [72, 111],

|ξn|1,T ≤ Ch−1‖ξn‖L2(T ), ∀T ∈ T i
h ,

together with the standard inverse inequality on the non-interface elements, we have

|ξn|1,Ω ≤ Ch−1‖ξn‖L2(Ω).

Thus, by (7.46), we have

|ξn|21,Ω ≤ Ch2
(∫ T

0

‖ut‖22,Ωdt+
τ 4

h4

∫ T

0

‖uttt(., t)‖2L2(Ω)dt

)
.

By definition, we have |v|1,Ω ≤ ‖v‖h for v ∈ Sh(Ω). Hence, by (6.9) with k = 0 and the

inequality above, we have

|u− unh|21,Ω ≤ |ξn|21,Ω + |ηn|21,Ω ≤ Ch2
(
‖ut‖2L2(0,T ;PH2(Ω)) +

τ 4

h4
‖uttt‖2L2(0,T ;L2(Ω)) + ‖u‖22,Ω

)
.

Finally, applying (7.18) to the inequality above, we obtain the following error estimate under

the conditions of Theorem 7.6: for n = 1, 2, ...,M,

|unh − un|1,Ω ≤

Ch

(
‖u0‖2,Ω + ‖ut‖L2(0,T ;PH2(Ω)) +

τ 2

h2
‖uttt‖L2(0,T ;L2(Ω))

)
.

(7.47)

The result in (7.47) guarantees the optimal order of convergence in semi-H1 norm for the

NPPIFE Crank-Nicolson method provided that the time step τ satisfies the CFL condition

τ ≤ Ch.
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7.4 Numerical Example

In this section, we will numerically demonstrate the optimal convergence of the PPIFE

methods proved in Section 7.3. We note that several numerical examples were reported

in [113] that showed the optimal convergence of these PPIFE methods for the parabolic

interface problems, but the exact solutions in those numerical examples are piecewise H3

functions. In contrast, the numerical examples to be presented in this section are for an

exact solution in the function space PH2(Ω)\PH3(Ω). In preparing numerical results, we

approximately compute the L2 and H1 semi-norm of the errors in IFE solutions element by

element using Gaussian quadrature with a sufficient accuracy, and we compute the L∞ norm

of the errors approximately as the maximal absolute value of the errors at all the Gaussian

quadrature points in all elements.

Consider the domain Ω = (−1, 1)× (−1, 1) separated by an elliptical interface Γ defined by

x2/r2x + y2/r2y − 1 = 0 into two subdomains

Ω− =
{
(x, y) : x2/r2x + y2/r2y < 1

}
, Ω+ = Ω\Ω−,

where rx = π/4.28, ry = π/6.28. Each Cartesian triangular mesh Th in our numerical

examples is obtained by first partitioning Ω into N ×N congruent squares and then cutting

each square into two triangles by its diagonal line. And the time domain is t ∈ [0, 1], which

is uniformly partitioned by 0 = t0 < t1 < t2 < ... < tM = 1, with M = N . Functions f , g,

and u0 in the interface problem (7.1) are generated with the following exact solution:

u(t, x, y) =


1

β− r
αet, (x, y) ∈ Ω−,(

1

β+
rα +

(
1

β− − 1

β+

))
et, (x, y) ∈ Ω+,

(7.48)
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where α = 1.5, r =
√
x2/r2x + y2/r2y. It can be verified that, for fixed t, u ∈ PH2(Ω)\PH3(Ω);

hence, this function u(t, x, y) does not have the regularity required by the error analysis in

[113], but it has a sufficient regularity for the error estimates derived in the previous section.

Table 7.1 presents errors of the SPPIFE (ε = −1 in (7.3)) solution uh(1, x, y) generated on

a sequence of uniform triangular meshes of Ω for two typical configurations of β− and β+,

where β− : β+ = 1 : 20 represents a moderate discontinuity in the diffusion coefficient β,

while β− : β+ = 1 : 1000 represents a larger discontinuity. The data in this table clearly

demonstrate that the SPPIFE solutions converge optimally in both the L2 and the semi-H1

norms to the exact solution u which has the usual PH2(Ω)\PH3(Ω) regularity instead of

the excessive PH3(Ω) regularity in the space variable. On the other hand, the data in Table

7.1 indicate that the SPPIFE solutions converge only sub-optimally in the L∞ norm for this

example. Similar behaviors have been observed for the NPPIFE methods.
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β+/β− N ‖u− uh‖0,∞,Ω rate ‖u− uh‖0,Ω rate |u− uh|1,Ω rate

10 3.6118e-02 NA 1.7086e-02 NA 1.7581e-01 NA

20 1.2235e-02 1.5617 4.1852e-03 2.0294 8.5439e-02 1.0410

40 4.2133e-03 1.5380 9.8575e-04 2.0860 4.2826e-02 0.9964

20 80 1.4966e-03 1.4933 2.3491e-04 2.0691 2.1337e-02 1.0051

160 5.4176e-04 1.4660 6.1620e-05 1.9306 1.0670e-02 0.9998

320 1.9582e-04 1.4681 1.5943e-05 1.9505 5.3278e-03 1.0019

640 7.0744e-05 1.4689 4.2719e-06 1.9000 2.6620e-03 1.0010

1280 2.5523e-05 1.4708 1.1748e-06 1.8625 1.3307e-03 1.0003

10 4.5293e-02 NA 2.4431e-02 NA 1.9352e-01 NA

20 1.5672e-02 1.5311 7.4969e-03 1.9415 1.0234e-01 1.5182

40 6.4667e-03 1.2771 2.1756e-03 2.0436 5.2366e-02 1.0397

1000 80 1.8625e-03 1.7958 4.4670e-04 2.0230 2.3942e-02 1.0151

160 9.9846e-04 0.8994 1.1160e-04 1.9908 1.1737e-02 1.0039

320 2.4385e-04 2.0337 2.0782e-05 1.8822 5.5251e-03 1.0012

640 7.1122e-05 1.7776 5.1545e-06 2.0114 2.7282e-03 1.0181

1280 2.5569e-05 1.4759 1.3078e-06 1.9786 1.3471e-03 1.0181

Table 7.1: Errors of SPPIFE Crank-Nicolson solutions at t = 1 with rx = π/4.28, ry =
π/6.28.
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