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(ABSTRACT)

Wheel wear profiles are interesting for both economic and performance reasons. A good
wheel profile design should be abile to resist wear and to allow stable vehicle running. The
ability to resist wear reduces the wheel reprofiling and replacement cost. The ability to allow

kstable vehicle running is important for safety and ride quality.

In this work, a wear model based upon the work done in the wheel/rail contact patch is used
to predict wheel wear profiles. The effects of train dynamic response, random rail alignment

and the nonlinearity of wheel/rail contact geometry are inciuded.

The distribution of contact patch work is obtained by a discretized method and applied to the
wheel wear problem. Using the contact patch work wear model, consecutive wheel wear
profiles for tread contact and slight flange contact are predicted. These analytical wear pro-

files match well with experimental resuits and other analytical approaches.
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Chapter 1 : Introduction

1.1 Wear Problem in Wheel/Rail Contact

The wear problem in wheel/rail contact has been of concern for a long time. The cost of wheel
and rail replacement due to wear is substantial. According to Jamison (1982), about $600
million per year are spent on the replacement of rail in American. Roney (1983) studied the
economic aspects of rail wear on Canadian railways and estimated the expense to be $300
million per year. In addition, he reported the wheel reprofiling and replacement costs to be
$125 million annually. Wheel wears in Roney’s study included flange wear, tread shelling, and

tread wear.

In addition to the economic aspects of the wear problem, the dynamic performance of rail
vehicles is significantly affected by the profiles of wheels and rails. In rail vehicles, the car
lateral stability, suspension design, security against derailment, and fatigue or fracture of
wheeis and rails are related to wheel/rail geometry. Hence, it is of importance to be able to

predict wheel/rail wear profiles.
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1.2 Literature Review

The wear in wheel/rail systems is complex, and its behavior depends on many parameters.
A systems approach to the wear problem has been introduced by Czichos (1980). He divided
the tribo-technical system into three components, system structure, input operating variables,
and system outputs. Furthermore, Kalousek et al. (1983) proposes a typical wheei/rail

tribosystem (Fig. 1) for general study that inciudes the following:

® Input parameters

= Operational condition : axie load, car type, truck type, travelling speed.
=  Contact : wheel/rail profile, creep force/moment, creepage/spin.
=  Materials : metallurgy, hardness.

e Rheological : lubricant, roughness.

e Systems Envelope

s Wheelset
s  Rail

= Lubricant in the interface

e  Qutput Parameters

=  Wear form : adhesive wear, abrasive wear, surface fatigue wear.
s Longitudinal and transverse cracks
s corrugations

. plastic deformation
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INPUT TRIBOSYSTEM ENVELOPE | outPuT
Operational Wear Forms
Contact ® Wheelset:  Base Body Longitudinal and
Material ® Rail:  Counter Body Transverse Cracks |
Rheological ¢ Lubricant: Intermediate Matter Corrugations

Plastic Deformation

Figure 1. Wheel/rail tribosystem (Kalousek et al., 1983) |
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Many investigators have researched wheel/rail wear both experimentally and analytically.

Boiton and Clayton (1984) identified three wear regimes and examined the effects of wheel/rail
metallurgy on the wear process. In their categorization, type | wear is due to oxide and me-
tallic flake formation. Also, type | wear is independent of creepage, but it varies with normal
load. Type Il wear includes fracture and plastic deformation, and it depends on both contact

stress and creepage. Wear rate has the form

AL:/,-=K1%+K2 (1.1)
where
w = wear volume
A = contact area
d = distance rolled
T = creep force
y = creepage
K,,K, = constants

Type lll wear occurs with the more severe contact condition, such as high creepages or loads.

Type il wear is also described by eq. (1.1).

Elkins et al. (1983) carried out a series of wheel wear experiments and studied wear by varying
operation conditions, axle load and truck design, and wheel materials. They found that wear
increases with axle load and that the radial truck design has a better resistance of wear than
the traditional three-piece truck designs. They suggested the same wear equation as eq.(1.1)

but without K, .

Contact conditions, such as tangential force and surface conditions, also affect wheel wear.

Kumar et al. (1984) studied the effects of contact conditions on wear, including lateral force,
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and they found that wear increases with lateral load. In eq.(1.1), the creep force, T, contains

the components of longitudinal and lateral creep forces and moment.

Additionally, Kumar et al. (1985) tested the effect of surface conditions on wear by controlling
creepage and with and without sand. The wear rate with sand is larger than the wear rate

without sand.

Lubricants are usually used to reduce flange wear. Olver et al. (1985) studied lubricated roll-
ing contact and concluded that the delamination wear theory is the best approach for lubri-
cated roiling contact. They also indicated that wear is caused by plastic deformation, fatigue

cracking, ductile extrusion and fracture.

In order to predict wheel/rail wear, many wear indices have been developed. A wear index
is a characteristic number that is proportional to the wear rate. Fig. 2 shows the wear indices
tabulated by Nagurka et al. (1982). A few additional entries identified by the symbol * have

been added to Fig. 2.

Marcotte et al. (1978) and Ghonem (1981) used the angle-of-attack, which is wheelset yaw
angle as a wear index. They reported that wear rate increases with angle-of-attack. When
angle-of-attack is zero, the prediction of wear rate tends to zero. However, the wear rate is
not zero even with zero angle-of-attack, so the angle-of-attack fails to predict wear rate for this

case.

Since the slip and creep forces contribute to the wheel/rail wear, considering the normal and
flange forces or the creepage independently is not proper. The contact patch work, (Ty) a
recently developed and experimentally supported wear index, has been suggested as a wear
index. In this wear model, wear is proportional to the energy dissipated in the contact patch

during rolling with slip.
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Wear Index Source

/. angle of attack (Newland, 1969)
{(Boocock, 1969)
(Marcotte et al., 1978)"
(Ghonem and Kalousek, 1981)"

¢ creepage
F, flange force
Fap, flange wear index (Marcotte et al., 1981)

A
u,F,\/(—,:f-)’ + (Y, tan 4,  two-point flange wear index (Marcotte et al., 1981)

V& tread wear index (Doyle, 1979)

W, = E .E contact patch work (Elkins et al., 1979)

(Kumar et al.,1984,1985)"

W, = %‘ °°“;2ﬁ::;t;':e";°'k (Bolton, 1980, 1984)
(Clayton et al., 1983)"
{McEwen and Harvey, 1985)
w, =-§h—";-‘ﬁ- wear volume (Kalkstein and Zaremba, 1981)
3
where
He = coefficient of flange friction
A, = vertical distance between points of flange and tread contact
ry = rolling radius for tread contact
Or = contact angle at contact patch for flange contact
vV = external vertical load
ér = resultant creepage
B = proportionality constant
h, = thickness of wear particles
S = sliding distance
d, = critical plastic displacement

Figure 2. Summary of wear indexes (Nagurka, 1982)
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A number of investigators, such as (Clayton et al., 1983), (Bolton et al., 1984), and (McEwen

Ty
A

T
show that wear rate is linearly dependent on _Zv_ . Similar results are presented by Kumar et

T
al. (1984,1985). They also showed that using Ty is a good approach to predict wear rate and

called this relation the wear-work principle. This wear equation is the same as eq.{1.1) except

and Harvey 1985), used as a wear index, which is shown in eq. (1.1). Their experiments

that K, is omitted. This thesis uses the name contact patch work as was suggested by Elkins

and Eickhoff, (1979).

Knothe and Hung (1985) applied the concept of the contact patch work model and assumed a
sinusoidal wheelset motion to predict the wheel wear rate. Davila (1986) also used the con-
tact patch work model. He included vehicle dynamic response and random rail irregularity,

and he assumed a parabolic distribution of wear across the wheel profile.

1.3 Scope of the Current Work

For the purpose of predicting wheel wear using a more realistic approach, the current work

uses the contact patch work model and including the following:

1. actual distribution of work done at the contact patch
2. nonlinearity of wheel/rail contact geometry

3. random rail alignment irregularities

4. vehicle dynamic response

5. the effect of wheel wear profile changes during running

In addition, the reiationship between the contact patch work model for rolling contact with slip

and Archard’s (1953) wear model for sliding motion is derived.
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Chapter 2 discusses rail vehicle contact mechanics, including wheel/rail contact geometry,
definition of creepage and determination of creep forces and moment. Chapter 3 deals with
railway vehicle dynamics. A wheelset dynamic model is introduced, then a
5-degree-of-freedom half-car model is presented. Chapter 3 also discusses the irregularities

of the track.

Chapter 4 describes the contact patch work model and its application to wheel wear predic-
tion. Chapter 5 presents the simulation method and resuits. Chapter 6 contains conclusions

and recommendation.
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Chapter 2 : The Wheel/Rail Rolling Contact Problem

For any discussion of the wear problem in rolling contact, the contact mechanics problem
should be ur derstood first. The wheel and rail geometry affects the interfacial force between
the wheel and rail, and it therefore has a significant effect on wheelset dynamic behavior. This
chapter includes discussions of wheel/rail contact geometry and aiso the influence of

creepages on creep forces and moment.

Section 2.1 discusses the wheel/rail geometric contact problem. A program called WHRAILA
(Heller and Cooperrider, 1977a) is introduced to caiculate the geometric constraint functions,
including the roll angle of wheelset, contact angle, and rolling radii, in terms of the lateral
displacement of the wheelset. These geometric constraints are necessary for calculating the

creepages and the dynamic response of the wheelset.

Next, the definition of the creepage is presented. The creepages cause in plane forces during
rolling contact, and they are important in both railway vehicle dynamics and wear in rolling

contact.

Kalker's simplified theory in rolling contact, based on the Hertzian contact, is presented as a

method to obtain the creep force and moment. A program called FASTSIM (Kalker, 1982), is
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modified to obtain the creep moment and local creep quantities, including forces, moment,

and creepages.

Finally, a study of the slip/adhesion region at the contact patch is presented. It will become
clear later that it is necessary to distinguish the slip and adhesion regions and to determine
the slip velocity which is used to calculate the contact patch work. This is discussed further

in chapter 4.

2.1 Determination of Wheel/Rail Geometric Constraint

The geometries of wheel and rail have a dominant effect on rail vehicle behavior. The contact
stress and frictional forces depend upon the wheel/rail geometry, especially the rolling radii
and the wheel/rail contact angle. Consequently, the dynamic behavior and the security against
derailment are also dependant upon the wheel/rail geometry. Therefore, the profile of wheel
and rail and the wheel/rail kinematic constraints are of interest. The profiles of an AAR 1:20
wheel (Cooperrider et al., 1981) and a Heumann wheel (Elkins et al., 1986) and a 132-RE rail
(AREA, 1984, which are used in this works are shown in Fig. 3 to Fig. 5 respectively. Fig. 6

defines the terminology of wheel/rail contact.

The wheel/rail geometric constraint relationships are a function of the lateral distance from
the wheelset centerline to the track centerline, y,, and the yaw angular rotation of the
wheelset about the vertical axis, y,, as shown in Fig. 7. The influence of the wheelset yaw
angle, ¥, is small, so y,, can be neglected in finding the contact position of the wheel and rail

and other geometry constraint functions.

WHRAILA is a FORTRAN program developed by Heller and Cooperrider (1977a). It is widely
used to calculate the wheel and rail geometric constraints. Fig. 8 and Fig. 8 are the output

from WHRAILA for an AAR 1:20 wheel and a 132-RE rail. In these figures, the contact position

Chapter 2 : The Wheal/Rail Rolling Contact Probiem 10
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Yw = wheelset lateral displacement

bw =  wheelset roll angle

o, =  contact angle of the left wheel and rail

Or = contact angle of the right wheel and rail

B. = left rail cant angle

Br = right rail cant angle

R, = rolling radius of left wheel at the contact point
Rg = rolling radius of right whee! at the contact point

Figure 6. Wheel/rail contact relationships
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left rail ¥
w

wheelset centerline

right rail

track centerline

Figure 7. Effect of lateral and yaw displacement on wheel/rail contact
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wheelset lateral displacement, y,. It is noted that flange contact occurs when the wheelset

lateral displacement is more than + 0.29 in.

2.2 Definition of Creepage

In rolling contact with slip, the interfacial force and moment between the wheel and rail are
functions of creepages. Therefore, the derivation of the creepage expressions is a funda-
mental issue. The longitudinal (;), lateral (&,), and spin (,,) creepages are defined as

Viw = Vxr
fy= U X @)

Vyw—V
&y = yw= Vvyr

|

J

of the wheel and rail, roll angle, contact angle, and rolling radii are given in terms of the
|

\

\

|

v (2.2) |
|

|

\

|

\

\
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where ‘
Viw = [ongitudinal velocity of wheel at the contact point |
Vir = longitudinal velocity of rail at the contact point ;
Vyw = lateral velocity of wheel at the contact point i
Vyr = lateral velocity of rail at the contact point :
Oz = angular velocity of wheel at the contact point i
wzr = angular velocity of rail at the contact point 1
v = nominal velocity ;
|

|

|

|

|

|

|




A complete derivation of the creepage expressions is shown in Appendix B. By assuming
small angles and neglecting higher-order terms, the creepages for the left whee! in the

wheelset coordinates which are defined in Fig. 47 are

R , .
Ex = V1 = (o)1 - AR — V) 24
Sy = 0 +Rib—Y) (25)
EspL = (¥ = Q6 (26)

The creepages for the right wheel in the wheelset coordinates are

1 RR . o
$xr =3 (V1= (5-)]1-BRr+ Ay} (2.7)
v Rg
1, y
$vr =7 Y +Rpd — WY} (2.8)
1 .
Sspr =7 (¥ +Q6p) (2.9)
where
R, = nominal rolling radius of the wheels
Rq = rolling radius of right wheel at the contact point
R, = rolling radius of left wheel at the contact point
A = half wheel gauge
Q = nominal angular velocity
y = wheelset lateral velocity
n[} = wheelset yaw angular velocity
é = wheelset roll angular velocity
/} = perturbation of wheelset spin angular velocity
Chapter 2 : The Wheel/Rail Rolling Contact Problem 19
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These creepage expressions are used to obtain inputs for the FASTSIM program, which
computes the contact forces and creep distributions. The wheelset spin perturbation velocity,
B, was initially not included in the analysis. However, early results showed that the creepages
calculated when ﬁ was omitted were incorrect. Therefore the spin perturbation angular ve-

locity was included in this work.

2.3 The Hertzian Contact Problem

In wheel/rail contact problems, it is usually acceptable to apply the Hertzian contact theory to
obtain the area of the contact patch. This approximation is routinely made by rail vehicle
dynamicists. The determination of the creep forces and moment by the simplified theory
(Kalker, 1982) is based on the Hertzian contact theory. Simplified theory is discussed in the

next section.

According to Hertzian contact theory (Timoshenko and Goodier, 1970), the contact patch is an
ellipse with the ratio of the semiaxes (%). where a and b are functions of normal force,
curvatures, Young’s modulus and Poisson’s ratio of the contact bodies. The basic assump-

tions of the Hertzian contact theory are summarized as follows:

® homogeneous, isotropic and perfectly elastic materials
¢ contact surfaces are ideally smooth

® curvatures of contact bodies are constant

® no slips between contact bodies

¢ no hydrodynamic film between the interactive surface, i.e., dry surfaces

Since Hertzian contact theory is well known and well documented, the details are not included

here.
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2.4 Creep Forces and Moment in Rolling Contact

The literature is rich with work on the rolling contact problem. A few of the more important
contributions are summarized here. In one of the earliest contributions, Carter (1926) pub-
lished a solution to the problem of two-dimensional rolling with slip. He considered the

problem of traction between cylinders, and he included only longitudinal creepage.

Vermeulen and Johnson (1964) solved the rolling contact problem for three-dimensional
bodies in contact including both the longitudinal and lateral creepage, but excluding the spin

creepage.

Kalker (1967a) took lateral creepage into account, and he obtained a simple approximate
solution of the rolling contact problem. Later, he obtained a solution for the case of general
creepage including spin (Kalker, 1967b). Kalker’s linear theory, which assumes the existence
of vanishingly small creepages and slip areas in the contact patch, provides the carrect re-
lationship between creepages and creep forces for small creepages. Because of its simplicity,

the linear theory has been widely adopted by researchers in rail vehicle dynamics.

More recently, Kalker (1982) developed a fast algorithm, called FASTSIM, that is based upon
the simplified theory. In Kalker’'s simplified theory, a linear relationship is assumed between
the local traction and the local material elastic displacement. FASTSIM computes the creep

forces but not creep moment. In most rail vehicle work, the moment is relatively unimportant.

A number of rail vehicle dynamicists use a heuristic creep force model because of its sim-
plicity and speed of computation. The heuristic model uses the creep coefficients from
Kalker’s (1967a) linear theory, and the form of the creep force saturation curve from the

Vermeulen and Johnson (1964) work. Shen et al. (1983) documented this model and compared
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its accuracy to computations based upon Kalker’s FASTSIM algorithm and another algorithm

called DUVOROL that was formulated by Kalker and Tjoeng (Shen et al., 1983).

Generally speaking, it is not necessary to obtain the distribution of creep force and moment
in the contact patch. Only the resultant force and moment are usually needed to implement
dynamics models. In this work, the local creep force and moment are required so as to cal-
culate the distribution of the work done in the contact patch, and a wear model is employed

that postulates wear to be proportional to the work done between the contacting surfaces.

In this section the program FASTSIM and a recent modification (Wang and Fries, 1988a) to it
are discussed. FASTSIM has been modified to compute the creep moment and aliso the creep

force, moment and slip velocity distributions within the contact patch.

Consider a wheel rolling over a rail at a constant speed, V, as shown in Fig. 10. The contact
patch is an ellipse with the ratio of the semiaxes (—Z-) , according to the Hertzian contact
theory. The creep forces and moment can be obtained by integrating the shear pressures

(Px. Py) over the contact area. Eq.(2.12) has been added to Kalker’s original work in FASTSIM.

Fx= H Px(x.y)dxdy (2.10)
s

Fo=| f Py(x.y)dxdy (2.11)
s

M;= J. j [Py(x.y) x = Px(x.y) y]dxdy (2.12)
s

where
Fyx = |ongitudinal creep force
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contact patch

Figure 10. Force and moment acting on contact area, S
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F, = lateral creep force

M, = creep moment
P, = |ongitudinal shear pressure
P, = lateral shear pressure
P, = normal pressure
S = the region of the elliptical contact patch
and
S={0NI(EP+(L)1sn (2.43)

The velocities of the particles at the surface of either the wheel or rail can be expressed as

A

de
Uxxy) =V +Vy—wzy —— (2.14)
diy
Uy(x.y) = 6Vy +wzXx— at (2.15)
where
U, Uy = the velocities of the particles at the surface of the contact patch
o6V, 6V, = creep (slip) velocities
w0y = spin angular velocity
Uy, U, = tangential elastic deformation
Since Uy = Uyx(x.y.t) and dy = dy(x.y.t), the exact derivatives of U, and d, are
dt ax at dy at at t )
dt  dx at ' o9y at = at t :
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where

did, dd,

=t ' at tangential elastic deformation velocity at a surface point (x,y)

Because the lateral velocity is zero, and longitudinal velocity is V, eq. (2.16) and (2.17) become

dly aly ady
at =V ax + 3t (2.18)
diy aa, ady q
at =V ax t ot (2.19)
By substituting the deformed velocity, eq.(2.14) and (2.15) become
dby ady
Ux(xy)=V+oVy—wzy—(V 3x + 3t ) (2.20)

a by

at

ady
Uy(x.y) = 6Vy +wzXx-— (V'_a‘;' + ) (2.21)

at
patch at position (x,y) between wheel and rail can be obtained by

du
For the case of steady rolling, (—5-f-=0. =0) , the micro-slip velocity of the contact

dlyw  duyr
Wy = (0Vxw — 0Vxr) = (0zw—0zn) Y =V(—3 5~ 3, ) (2.22)

A A
a Uyw a Uyr

Wy = (8Vyw — 0Vy7) + (0zw — @z7) X = V(—5 ———57—) (2.23)
where
Wy, Wy = micro-slip velocities of the particles at the surface of the contact patch
oVyiw, 0Vyy = creep (slip) velocities for wheel
o0Vyr, 6Vyy = creep (slip) velocities for rail
Wz = spin angular velocity of wheel
wzr = spin angular velocity of rail
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By dividing by nominal velocity, V, and substituting the creepage definition, eq. (2.22) and
(2.23) become

Wy duy
Vv =x—dspY -3, (2.24)
Wy duy
T=5Y‘fspx‘ P (2.25)
where
v = nominal velocity
Wy = longitudinal slip velocity at (x,y)
w, = lateral slip velocity at (x,y)
Ux = Uy — Uy
= difference of longitudinal elastic displacement of wheel and rail at (x,y)
Uy = Uy — Uyy
= difference of lateral elastic displacement of wheel and rail at (x,y)
¢x = longitudinal creepage
¢y = lateral creepage
ésp = spin creepage

Notice that W, and W, include the rigid body motions consisting of the translational motion in

the x and y direction { {x, ), the rotational motion in the z direction ({sp ¥, £sp X), and the
u, aduy

—).

x ' dx

a
elastic displacements ( 3

In the simplified theory (Kalker, 1982) for an anisotropic relation, Kalker assumed

uy=L Py (2.26)
uy=LPy (2.27)
where
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L = some constant

By substituting eq. (2.26) and (2.27) and dividing by L, the normalized slip equations, (2.24) and

(2.25), become

where L,, L,, and L, are determined from Kalker’s linear theory (1967a),

8a
Ly= 3C,4,G
___8a
L= 3C4,G
ra /2
Li=—N b
37 4C6G
where
a = length of longitudinal semi-axis of elliptical contact patch
b = length of lateral semi-axis of elliptical contact patch
G = shear modulus of the contact bodies
Cy = the creepage and spin coefficients ( Kalker, 1979)
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(2.31)

(2.32)

(2.33)

(2.34)
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According to Kalker’s suggestion (1982), the variables are nondimensionalized to implement

the calculation of the creep forces and moment in the program FASTSIM.

X
'——-
X"a

N= J. J;Pzdxdy

N = J. I 2'dX'dY’ = J‘J‘ 1- X2 - Y’z)dX'dY' = %

SO

S'={(X" V) Xx?+v?<g1)

N = normal force
u = coefficient of friction

) some nondimensional quantity

By substituting the above nondimensional quantities, the slip equations (2.30) and (2.31) be-

come
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aP'y

'X - E'X —_ Yl 'SPX — a_ __X' (240)
g oyt g 0Py
y =%y +X SPy T X’ (2.41)
where
, aWy
1% =——uZOVL1 (2.42)
, aw,
Y =_—uZoVL2 (2.43)
afx
" o= 2.44
eX #ZQL1 ( )
afy
"= 2.45
ablsp
Eep = 2.46
SPy “ZOL3 ( )
2
a“{sp
. 2.47
€SPy “’ZOL3 ( )
From eq. (2.10) - (2.12), the normalized forces and moment can be obtained.
- ’ r yr 'Y — 1
F'y -IJ.S,PX(X ,YNdXdy' = 2bZgn Fy (2.48)
1
N = Py (X', Y)HdX'dY’ = F 2.49
v= ] Procn e FY (249
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1
abZou

M’y EI.L.{P'Y X, Y)aX —Py(X',Y)bY}dX'dY = Mz (2.50)
FASTSIM (Kalker, 1982) used eq. (2.48) and (2.49) and the nondimensionalized quantities de-
scribed above to compute the nondimensionalized lateral and longitudinal creep forces. Eq.
(2.50) was added to the FASTSIM code to compute the nondimensionalized spin moment
(Wang and Fries, 1988a). Note that M’ in eq. (2.50) is different from the nondimensionalized

moment used by Kalker (1967c). The dimensionai forces and moment are computed by

Fx= ‘,%“#PF'X (2.51)
2 ,

Fy == wPFy (2.52)
2 .

Mz == uPM’ (2.53)

In addition to the creep forces, (Fx, Fy) , and creep moment, M,, the local creep forces and
moment at each subarea, (qu' F"u' Mzu)' and the local normalized slips

w W,
(—Vx-|,,.—vy-|,,). and spin (%l,,) shown in Fig. 11 are computed by the modified FASTSIM.

2.5 Study of Slip/Adhesion Region at the Contact Patch

The contact patch is divided into the slip and adhesion regions, and no relative motion occurs
between the contacting bodies in the adhesion region. From Coulomb law, the slip and ad-

hesion regions are given by

Ssip = {(XY)I(Px(x.y). Py(x.y)) > uPz} (2.54)
Sadh = {(X.¥)|(Px(x.y). Py(x.y)) < uPz} (2.55)
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Figure 11. Local creep force and slip at the contact patch
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Saip = slip region

Sean = adhesion region

The slip and adhesion regions are easily found using eq. (2.54) and (2.55). A general view of

slip and adhesion regions is shown in Fig. 12.

A number of factors affect the size and the distribution of the slip and adhesion regions. When
the load, the geometry and materials of the contacting bodies, and the coefficient of friction
are fixed, the influence of creepage alone on the slip and adhesion regions can be observed.
For wear w.rk, the locations of the slip and adhesion regions are important because no en-

ergy is dissipated in the adhesion region.

Figure 13 shows the distribution of slip and adhesion in a contact patch with a/b = 2. The slip
region is crosshatched, the adhesion region is clear, and rolling is in the x-direction. The spin
creepage is zero for Fig. 13. When the lateral and longitudinal creepages are increased, the
slip region maintains symmetry with respect to the x-axis. With increased creepage, the slip
region moves forward in the contact patch until the creepages are high enough that the slip

region encompasses the entire region.

Figure 14 shows the distribution of slip and adhesion for the same conditions as Fig. 13 except
that the lateral creepage is zero, and cases of small and large spin creepage are shown. The
presence of spin creepage causes asymmetry of the slip and adhesion regions. The large
spin case has sufficient spin creepage that the slip region nearly covers the contact patch.

For small spin, the slip region is thicker on the negative side of the y-axis.

Figure 15 shows the distribution of siip and adhesion for the same conditions as Fig. 13 except
that the longitudinal créepage is zero, and cases of small and large spin creepage are shown.

For small spin creepage, the development of slip region is similar to the pure creepage case.

Chapter 2 : The Wheel/Rail Roiling Contact Problem 32



Resultant
Creep Force

- pure slip

Regions of Slip

Figure 12. Slip/adhesion region related to creep force {Nagurka, 1983)

Chapter 2 : The Wheel/Rail Rolling Contact Problem




S

|
|
rolling direction
|
|
|
|
|

Figure 13. Slip/adhesion regions for zero spin crespage
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Figure 14. Slip/adhesion regions for zero lateral crespage
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Figure 15. Slip/adhesion regions for zero longitudinal creepage
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For large spin creepage, only a small region of adhesion exists. This adhesion region mi-
grates around in the contact patch depending on the amount of lateral creepage present. It
is at the trailing end of the contact patch for large lateral creepage, and at the leading edge

of the contact patch for large negative lateral creepage.

Figure 16 shows the distribution of slip and adhesion for the same conditions as Fig. 13 except
that the longitudinal and lateral creepages are zero. The slip and adhesion regions are
symmetrical with respect to the x-axis for all cases in Fig. 16. For the small spin creepage
case, the slip regions are at the edges of the contact patch. For the large spin creepage case,
only a small region of adhesion exists. This adhesion region becomes progressively smaller

as the spin creepage increases.

In order to visualize the distributions of creep force, moment, slip and work done at the contact
patch, these quantities are plotted on 3-dimensional plots. Figures 17 and 18 show two typical
cases. In these figures, the regions of slip and adhesion are shown in the upper left piot. The
dots indicate regions of slip, so the direction of contact patch velocity vector is to the left. The
upper right plot shows the contact patch work distribution. The remaining plots show the local

creep force and creepage distributions within the contact patch.

The slip region shown in Fig. 17 results from positive longitudinal, lateral, and spin creepages.
The slip region covers the trailing portion of the contact patch. The work is zero in the adhe-
sion region and positive in the slip region, as expected. The longitudinal and lateral forces
are about 2800 and 3800 Ib respectively, and the spin moment is about 2 f-Ib. Obviously, the
net contribution of the spin moment is small, but the spin creepage causes the slip region to

be asymmetrical as shown.

Figure 18 shows resuits of a case with longitudinal creepage equal to zero. The lateral and
spin creepages are sufficiently high to cause slip in the entire contact patch. ‘The longitudinal

and lateral creep forces are 0 and about 3300 Ib respectively, and the spin moment is about
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Figure 16. Slip/adhesion regions for pure spin creepage
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10 ft-Ib. Even though the net longitudinal force is zero, the longitudinal force distribution is

not zero, as shown in the figure.

Summary

1. This chapter discusses the wheel/rail rolling contact mechanics.

2. The concept of creepage is presented for rolling contact with slip and spin. The creepage
expressions for a wheelset are presented.

3. Hertzian contact theory is introduced and used to calculate the contact area and contact
stresses in the wheel/rail contact.

4. Kalker's simplified theory to determine the creep force and moment is discussed. Be-
cause the contact forces and moment are the external forces and moment acting on train,
they are needed in the solutions of rail vehicle dynamics problem.

5. Several three-dimensional plots for the distribution of creep force, creep moment, slip,
spin and work done have been presented for the typical cases of the wheel/rail rolling
contact. These plots help to visualize the force, slip, and work distributions within the
contact satch.

8. A series of plots shows how the slip and adhesion regions depend upon various combi-
nations of longitudinal, lateral, and spin creepages.

7. The work presented in this chapter provides the basis for the wear computations dis-

cussed in chapter 4,
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Chapter 3 : Analytical Dynamics Model for the

Study of Wear Process

Truck or car dynamic response is a problem that causes considerable concern. When the

wear problem is treated, the effect of dynamic response is significant, because the dynamic

response affects the wheel/rail contact position. The influence of the wheel/rail contact posi-

tion on wear was introduced in chapter 2 and will be discussed further in Chapter 4. This

chapter concentrates on the vehicle dynamics problem that must be solved in order to predict

wheel wear.

In railway vehicle dynamics, people are interested in lateral stability and vertical response
on tangent track or curved track. Garg and Dukkipati (1984) presented several dynamic
models for different purposes. A 25-degree-of-freedom linear model was developed to inves-
tigate the h.nting behavior of a freight car on tangent track. A 15-degree-of-freedom linear

model was considered for the lateral stability of a passenger car on tangent track.

Usually, a car body is supported by two trucks each having two wheelsets. A wheelset is the

basic component of a truck. The equations of motion of wheelset are derived in Appendix A

and summarized in this chapter. The lateral and yaw equations are used to determine the
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external force and moment, and the spin equation is used to obtain perturbation spin angle

response.

For the purpose of investigating wheel wear, a 5-degree-of-freedom nonlinear half-car model
is chosen to predict the truck motion on tangent track, and to obtain the contact position of the
wheel on the rail and other wheel/rail geometric constraint functions which are discussed in
Chapter 2. A complete description of the 5-degree-of-freedom half-car model is presented,

and the equations of motion are summarized. See Appendix C for the derivation.

Track irregularity has a significant effect on truck response. A mathematical model generates
random rail alignment as a position input for the system. In addition, the nonilinear Coulomb
friction moment at the vehicle centerplate is simulated by a slider model as proposed by

Heller et al.(1977b) for modeling Coulomb friction.

Finally, Runge-Kutta numerical integration is used to solve the nonlinear differential
equations, and the dynamic response of the 5-degree-of-freedom half-car model is presented.

In addition, The hunting phenomenon in railway dynamics is introduced.

3.1 Nomenclature

The nomenclature used in the development of the equations of motion is as follows:

My = mass of wheelset (slugs) (two for each truck)

M, = mass of sideframe (slugs) (two for each truck)

M, = mass of bolster (slugs) (one for each truck)

M, = mass of car body (slugs)

lwz = mass moment of inertia of wheelset in yaw direction (slugs-ft?)
Iz = mass moment of inertia of sideframe in yaw direction (slugs-ft?)
lax = mass moment of inertia of bolster in roll direction (slugs-ft?)
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laz = mass moment of inertia of bolster in yaw direction (slugs-ft?)

lex = mass moment of inertia of car body in roll direction (slugs-ft?)
lez = mass moment of inertia of car body in yaw direction (slugs-ft?)
Kgy = lateral spring stiffness of suspension (Ib/ft)
Kaz = vertical spring stiffness of suspension (Ib/ft)
Kay = yaw spring stiffness of suspension (Ib/rad)
Key = yaw spring stiffness of car body (Ib/rad)
Cay = lateral damping of suspension (Ib-sec/ft)
Csz = vertical damping of suspension (lb-sec/ft)
Coy = yaw damping of suspension {Ib-ft-sec/rad)
Cw. = yaw damping of car body (Ib-ft-sec/rad)
H, = distance from c.g. of car body to wheelset c.g. (ft)
H, = distance from c.g. of car body to bolster c.g. (ft)
L = half length between front and rear wheelsets (ft)
D = half length between right and left side frame (ft)

= half wheel gauge (ft)

v = train velocity (mph)

\£5 =  truck lateral displacement (ft)

Y, = truck yaw angle (rad)
Yy = truck warp angle (rad)

Ye = car body lateral displacement (in)
O, = car body roll angle (rad)

Yy = truck lateral velocity (in/sec)

¥, = truck yaw angular velocity (rad/sec)
¥, = truck warp angular velocity (rad/sec)
Y, = car body lateral velocity (in/sec)
(bc = car body roll angular velocity (rad/sec)
&x = longitudinal creepage
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Sy
Sse

lateral creepage

spin creepage (1/ft)

radius of right wheel at contact point (in)

radius of left wheel at contact point (in)

nominal radius of wheelset (in)

right contact angle (rad)

left contact angle (rad)

average wheelset roll angle (rad)

average wheelset vertical displacement (ft)
average wheelset roll angular velocity (rad/sec)

average wheelset vertical velocity (ft/sec)
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Coordinates

= longitudinal direction
= lateral direction

= vertical direction

roll angle

= pitch angle

€ ®@ & N < Xx
]

= yaw angie

Subscript

= wheelset
= bolster
sideframe
= car body

= right wheel

~ 3 O m W T
il

= left wheel

-
I

front wheelset

r = rear wheelset

Subscript sequence

Fipe = force at X-direction on right-front wheel
Ksz = bolster spring stiffness at Z-direction
lsz = mass moment of inertia of bolster at Z-direction
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3.2 Wheelset Equations of Motion

The wheelset is a basic and important dynamic component of a truck. There are six degrees

of freedom,
X = longitudinal displacement of wheeiset mass center
y = lateral displacement of wheelset mass center
z = vertical displacement of wheeiset mass center
) = roll angle of wheelset
B = perturbation spin angle of wheelset
¥ = yaw angle of wheelset

The rear view of a wheelset is shown in Fig. 19, and the derivation of the wheelset equations
of motion are presented in Appendix A. A summary of the wheelset equations of motion are
included here:

longitudinal equation

MX = Fy, + Fyg + Ny + Nxg + Fxs (3.1)

lateral equation

My = Fy_ + Fyg + Ny + Nyg + Fys (3.2

vertical equation

Mi = FZL + FZR + NZL + NZR + Fzs (33)
roll equation

lwx® — lwyQ¥ = Ryp(Fzr + Nzg) — Rzr(Fyr + Nyg) + Ry (Fz + Nzp) — Rz1(FyL + Nyp)
+ My + Myg + Mys 3.9
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Figure 19,
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spin equation

lwyB = Rzr(Fxr + Nxg) — Rxr(Fzr + Nzg) + Rz (Fxy + Nx) — Ry (FzL + Nz
+ My,_ + Myg + Mys (3.5)

yaw equation

lwz¥ + lwyQé = Ryg(Fyg + Nyg) = Ryr(Fxr + Nxg) + Ryo(Fyr + Nyp) — Ry, (Fx + Nxo)
+ MZL + Mz + Mzs (3.6)

3.3 Five-Degree-of-Freedom Half-Car Model

A realistic simulation of truck dynamics is required for this work. The suspension system is
modeled by equivalent suspension elements. The configuration of a half-car is adopted from

the 80-ton open hopper car (Davila, 1986) shown in Fig. 20.

The 5 degrees of freedom are

Yy = truck lateral displacement

Y, = truck yaw angle

Yy = truck warp angle

Ye = car body lateral displacement
D, = car body roll angle

The schematic of the 5-degree-of-freedom half-car model are shown in Fig. 21. There are
three degrees of freedom (lateral, yaw, and warp) for the truck, and two degrees of freedom
(lateral and roll) for the half-car. Fig. 21 also defines a few other parameters that appear in
the equations of motion. Assuming the vertical motion is small, it can be neglected as will

be shown later. The wheelset external forces (A.75) and moments (A.76) for the front and rear
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M, = 78.600 (slugs), mass of wheelset (two for each truck)

M, = 24.000 (slugs), mass of sideframe (two for each truck)
M, = 36.100 (slugs), mass of bolster (one for each truck)
M. = 1102.000 (slugs), mass of car body
lwy = 53.100 (slugs-ft2), mass inertia of wheelset in spin direction

lwz = 448.500 (slugs-ft?), mass inertia of wheelset in yaw direction

Iz = 77.600 (slugs-ft?), mass inertia of sideframe in yaw direction
lax = 178.600 (slugs-ft?), mass inertia of bolster in roll direction

lsz = 178.600 (slugs-ft?), mass inertia of bolster in yaw direction

lox = 13000.000 (slugs-f?), mass inertia of car body in roll direction

lez = 234000.000 (slugs-ft?), mass inertia of car body in yaw direction
Kay = 0.61930E +05 (Ib/R), lateral spring stiffness of suspension
Kaz = 0.25715E +06 (Ib/R), vertical spring stiffness of suspension
Kay = 0.37290E +07 (Ib-ft/rad), yaw spring stiffness of suspension

K, = 0.50000E +08 (Ib-f/rad) , Rotation spring stiffness of centerplate (Fig. 23)
F, = 606.000 (Ib-f), breakout friction moment of centerplate
Cay = 0.43248E + 05 (Ib-sec/ft), lateral damping coefficient of suspension
Caz = 0.40803E +05 (Ib-sec/ft), vertical damping coefficient of suspension

8y = 0.80854E + 05 (Ib-R-sec/rad), yaw damping coefficient of suspension
Cey = 0.12280E + 05 (Ib-R-sec/rad), yaw damping coefficient of centerplate
H, = 2.994 (1), distance from c.g. of carbody to wheelset center line

H, = 2.994 (ft), distance from c.g. of carbody to c.g. of bolster

L = 2.833 (ft), half length between front and rear wheelsets

D = 3.250 (ft), half length between right and left sideframe

A = 2.208 (ft), half wheel gauge

Figure 20. Conﬂgﬁntlon of the 80-ton open hopper car
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wheelsets are obtained from the lateral and yaw equations of motion. By omitting the high

order terms, the wheelset external forces become

Fr=(Fxir + Fxrr)(¥w + Y1) + (FyLr + Fyre) = Wa( '(SU—;%L + Oyy) @7
O r— gy
Fr=Fxcr + Fxre)¥w+¥1) + Fyir + Fyre) = Wa(——5——+ D) (3.8)
where
F, = front-wheelset external force
F, = rear-wheelset external force
o = left-front wheel creep force at X-direction
Yo = left-front wheel creep force at Y-direction
"Rt = right-front wheel creep force at X-direction
YRt = right-front wheel creep force at Y-direction
" = left-rear wheel creep force at X-direction
Yo = left-rear wheel creep force at Y-direction
Rr = right-rear wheel creep force at X-direction
YRe = right-rear wheel creep force at Y-direction
W, = load of front wheelset (nearly one-forth total weight)
Oy = left-front wheel contact angle
Ons = right-front wheel contact angle
o = left-rear wheel contact angle
Ors = right-rear wheel contact angle
Dy = front' wheelset roll angle
Dy, = rear wheelset roll angle

and the wheelset external moments become

M= A(F'xpr — F'yrr) + (F'xreBre + FixirALd — (F'xreRre + FixirRiE)Owr
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+Mzir + Mgy (3.9)

Mr = AF'xrr = Fxir) + (F'xrr Orr + Fxir 81r) = (Fxrr Rrr + FxLr RLR)@wr
+ Mz + Mg, (3.10)
where

M, = front-wheelset external moment

M, = rear-wheelset external moment

Y = left-front wheel creep moment at Z-direction

“#¢ =  right-front wheel creep moment at Z-direction

o = left-rear wheel creep moment at Z-direction

Re = right-rear wheel creep moment at Z-direction
Ay = distance from tapeline to contact point for left-front wheel
Agy = distance from tapeline to contact point for right-front wheel
A, = distance from tapeline to contact point for left-rear wheel
Ag, = distance from tapeline to contact point for right-rear wheel
A = half wheel gauge

The equations of motion for the 5-degree-of-freedom half-car model are derived in Appendix

C and summarized as follows:

(M0 0 o o | ]
o It lrw O 0 L
0 hrwlww O 0
0 0 0 Msc MgHy || ¥,
| 0 0 o MgH, e ] &c
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[ gy 0 0 —2Cay —2ayH, ||
0 Cev Ccy O 0
+ 0 Cow Cge O 0
-2Cgy o o gy 20gH,;
i =2CgyH; 0 0 2CgyH; Cec Jii
[ % 0 0 ~2Kgy —2KgyH, |
0 Key Key 0 0
+ 0 Key Kge O 0
-2Kgy o o 2Ky 2KgyH,

—2KgyH,

0 0 2KgyH, Ko

Fi+F,
Mg+ M, + (F;— F))L
M+ M,
0

2C5;D%Dy, + 2KgzD Dy |

Nonlinear Coulomb Friction

(3.11)

The damping in the centerplate is provided by dry or Coulomb friction. A slider model for

Coulomb friction moment is developed to simulate the Coulomb friction nonlinearity (Heller

et al., 1977b) The realistic characteristic curve is shown in Fig. 22. The top of Fig. 22 is the

ideal characteristic curve of Coulomb friction, and the bottom is the characteristic curve of the

slider model. The schematic of the slider model for Coulomb friction moment is presented in

Fig. 23. The model includes an inertialess rotational slider and a stiff rotational spring. The

slider model is valid for the entire frequency without accuracy problems near resonance and
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Figure 23. Scheme of siider model for rotation Coulomb friction
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-

does not require integration step changes as model parameters change. The characteristics

of the model are verified by Heller et al. (1977b).

The characteristics are

if IM| <M,, then =0

if IM| =M, then a=6

where
M = friction moment for centerplate
M, = breakout friction moment
a = rotation angle of inertialess body,/,
) = rotation angle between car body and centerplate

In order to determine «, further restrictions, when M| > M, , are

, M
if a=0>0, then a =0 - —=
Ko

, M,
if a=0<0, then a =0 +—=
Ko

if @4=8=0, then a=49

such that the Coulomb friction moment becomes

Mgc = Kg(a — )
where
Mg = Coulomb friction moment for centerplate
K, = equivalent yaw spring stiffness for centerplate
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By substituting Coulomb friction moment into eq. (3.11), the equations of motion become

(M, 0 0 o o | v |
0 rr hw O 0 8
0 lrw lww O 0 2
0 0 0 Msc MgH Yo

| 0 0 o MgH, e il ®c )

Fr+F,
M+ M, + (Fp~ FL + Mg
- M+ M, + Mgc (3.18)
0

2Cg D%y, + 2KgzD7Dyy

. 4
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3.4 Random Rail Alignment Generation

There are four important irregularities in track geometry, gauge, crosslevel, lateral alignment,

and vertical surface profile. The definitions are as follows:

gauge horizontal distance between two rails measured between the heads of rail

in the plane —g— in. below the top of the rail

crosslevel difference between the elevation of two rails

lateral alignment average of the lateral positions of two rails

vertical surface profile average of elevation of two rails

These definitions are illustrated in Fig. 24. Many mathematical models have been developed
to describe these irregularity properties. White et al. (1978) used a PSD model for both lateral
alignment and vertical surface profile. Detwiler and Nagurka (1983) used a PSD model for
lateral alignment, gauge, and crosslevel. More recently, Fries and Coffey (1986) have devel-

oped a state-space approach to simulate the vertical and crosslevel rail irregularities.

In this work, only the lateral alignment irregularity is taken into account, since the lateral re-
sponse is required when considering the wear problem. The gauge, crosslevel and vertical
surface profiles are assumed uniform. The rail lateral alignment provides the input to the

5-degree-of-freedom half-car model. The PSD model for lateral alignment (White et al., 1978)

is given by

AQ2
@+ Q)2+ Q)

S(Qy) =
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Figure 24. lllustration of truck irregularity (Garg and Dukkipati, 1984) ‘
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ft2

lateral alignment power spectral density, rad/R

spatial frequenc':y,zT’r

wavelength

critical wave number corresponding to a 25-ft wavelength,

—2r  rad
nc— 25( ﬂ )

critical wave number corresponding to a 1000-f, Q, = 1380 iﬂd-)
scale factor for lateral alignment (ft)
class 4 : A, = 4.429 x 10-% (ft)
class 5: A, = 1.102 x 10-5 (ft)
class 6 : A, =4.921 x 10-¢ (ft)
This model was implemented in the algorithm developed by Fries and Coffey (1987) for use in

this work.

3.5 Solution Method

In general, the equations of motion for a multiple-degree-of-freedom system have the form

[M] (X} + [C] {X} + [K] {X} = {(F(0)} (3.20)

M] mass matrix

[c] damping matrix

[K] spring matrix

{X} displacement vector
X} velocity vector

X} acceleration vector

{F()} force vector
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This form is expressed in equation (3.18). Because the equations of motion include the non-

linear Coulomb friction moment, (M,.), the linear approaches, such as Laplace Transforma-
tion, are not suitable. The most common method used to solve this problem is the Runge-Kutta
method. In order to apply the Runge-Kutta method, the equations of motion are manipulated

into simultar.eous first-order ordinary differential equations. The general forms are

dX = \A\ .V1. y2|-"1 yn

dy,
= % Y1, Y Vi)

dyp
ax_ = X Y1, Y20 V) (3.21)

with initial conditions given at a common point, x,

¥1(X0) =¥10

Ya(X0) = ¥20

Yn(X0) =¥Yno (3.22)

An IMSL subroutine named DVERK (IMSL, 1982), which implements a sixth order Runge-Kutta

solver, has been used to solve the differential equations in this work.

For the numerical solution, the five second-order differential equations are transformed into

ten first-order simuitaneous differential equations. Let
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Z,=¥; Z,=¥;
Z,=Yy Zy =Yy
Z,= Y, Zy=Ye
Z5=0¢ 2=

then, the ecuations become

s 1
Zg= s {(Fyor = Wa®(ryn — 2Cgy(Zg = HyZ1o — Zg)
= 2Kgy(Zy = HpZs — Z4) + Fyp{Z; + Z3)}

IrrZy + Irwds = Q4
lrwZy + lwwls = Q;
MgcZg + MgHy240 =S
MgHyZg + lccZio =S,

where

Q1 = (AFyp—1) + LFy(_ry + WaD_p + Fp — Fo + Mz4)
+ (Mer = Kew)(Zy + Z3) + Mec

Q2 =(AFyp_1) + Fao— Fop + Mz) — CgyZs — KewZy — KgeZs
M2y + Z5) + Mg
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(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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S1 = 2Cgy(Zg — HaZ1o — Zg) + 2Kpy(Zy — HoZ5 — Z)

Sy = (2CgzD%®y, + 2KzD’Dyy) — 2CgyHy(Zg — Zg) — CecZio

— 2KgyHx(Z4 — Z9) = KceZs (3.32)

Therefore, Z, , Z, , Z, and Z,y can be solved in terms of ( Z, , Z, ...., Zy, ), SO that the simul-

taneously differential equations similar to (3.21) are

2,=24 (3.33)

; _ 1
Zg= M {Fyrr = WaDryp — 2Cgy(Zg — HpZyo — Zg)

(3.38)

= 2Kgy(Zy = HyZs — Z4) + FelZ; + Z5)}
2= (571’wwA—1 Qolrw) (3.39)
2y = (Qz’rr;Qer) (3.40)
2, = (Salec -A:zMBHz) (3.41)
2= (S2Mpc — S4MgHy) (3.42)

A,
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Irr hrw

2
=lrrlww — Itw

hw  lww

Mgc MgH,

= Mgclee — (MgH,)?
MgH; lec

and the initial condition for t, =0

2,(0) =0

3.6 Result of Dynamic Response

Two cases Jf dynamics response of the 5-degree-of-freedom nonlinear half-car model are
presented. Figure 25, 26 and 27 show the time domain response of the empty car running at
the speed of 45 mph (66 fps). Fig. 25 shows the truck lateral displacement and the rail lateral
alignment. The two thin curves are the rail lateral alignments for the front and rear wheelset 3

and the thick curve is the truck lateral displacement. The rail random lateral alignments vary

along the rail centerline, which is straight, and the truck lateral displacement generally follows

the rail alignments.
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Figure 25. Truck lateral displacement and rail lateral alignment (45 mph)

' Chapter 3 : Analytical Dynamics Model for the Study of Wear Process 66




Front/Rear Wheelset Lateral Displacement ( in }

Figure 26. Front and rear wheelset lateral displacements (45 mph)
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W, Front Wheelset Moiing Angle (rad)
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Figure 27. Vorﬂal displacement and roll angle of the wheelset (45 mph)

Chapter 3 : Analytical Dynamics Model for the Study of Wear Process

= IR




Previously, Fig. 8 shows that flange contact first occurs at about 0.29 in. Fig. 26 shows both
the front and rear wheelset lateral displacements. Since the wheelset lateral displacement
is not more than + 0.21 in., no flange contact occurs in this case. In Fig. 27, the upper two
figures are the wheelset roll angle responses. These quantities are the order of 10 rad. The
middle two figures of Fig. 27 are the vertical displacement response of the wheelset. These
quantities are the order of 107 ft. Both the rolling angle and vertical displacement of the
wheelsets are relatively small, so their effect on dynamics response is negligible. The bottom
figure of Fig. 27 is the Coulomb friction moment in the centerplate between the car body and
boister. The breakout friction moment is 606 (ft-Ib) which is the moment required to cause

relative motion between the carbody and the centerpiate.

Another case for empty car running at the speed of 80 mph (117.3 fps) is shown on Fig. 28 and
Fig. 29. Fig. 28 shows the truck lateral displacement exhibiting hunting. Hunting is a sustained
limit cycle oscillation that occurs when the vehicle travels at speeds in excess of the hunting
threshold speed. Fig. 29 shows the wheelset lateral displacement. Slight flange contact exists
for several time intervals in this case, because the wheelset lateral displacement is more than

0.29 in.

Summary

The wheelset is a basic dynamic component of all railway vehicles. The equations of
motion of a wheelset are derived in Appendix A and summarized in this chapter. The
lateral and yaw equations are used to obtain the external force and moment which act
on the wheelset.

A slider model simulates Coulomb friction moment at the centerplate in the half-car

model.
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Truck Lateral Displacement ( in ) & Rail Lateral Alignment ( in )

Figure 28. Truck lateral displacement and rail lateral alignment (80 mph)
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Front/Rear Wheelset Lateral Displacement ( in )
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Figure 29. Front and rear wheelset lateral displacements (80 mph)
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3. Random rail irregularities provide the input to the model, but only the lateral alignment

is considered in the simulation because the lateral response is of importance in the wear

problem.

4. The Runge-Kutta method is applied to solve the simultaneously differential equations of

the system.

5. Two cases of dynamic response of the 5-degree-of-freedom half-car model show normal

operation and hunting which occurs at high train speed.
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Chapter 4 : Wear Prediction in Wheel/Rail Rolling

Contact

The wear mechanism found in wheel/rail rolling contact is complex, including adhesion wear,
abrasive wear, surface fatigue wear, cracks and plastic deformation. The purpose of this
chapter is not to distinguish the wear mechanism but to develop an algorithm to predict wheel

wear profile by using the contact patch work wear modei.

The basic assumption of the contact patch work model is that the wear is proportional to the
energy dissipation or work done in the contact patch. Recently, the idea of the contact patch
work model have been widely accepted in predicting the wear of wheel/rail rolling contact

because it agrees well with experimental resuits.

This chapter discusses both Archard’s model and the contact patch work model. The appli-
cation of the contact patch work wear model to wheel/rail rolling contact is introduced to
simulate the wheel wear and to obtain wheel wear profile and its wear rate. The relationship
between the contact patch work model for wheei/rail rolling contact and Archard’s model for
the sliding contact is derived. The wear index coefficient for the contact patch work model

and the wear coefficient for Archard’s model are related to each other.
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4.1 Wear Models

Archard’s Model

Archard’s model, developed by Archard (1953), states that wear volume is directly propor-
tional to normal force and sliding distance, but inversely proportional to the hardness of ma-

terial. The expression is

Qo 22 4.1)
where

Q = wear volume (in?

N = normal load (Ib)

D = sliding distance (in)

= b

H hardness ( i )

Furthermore, Archard defined the wear coefficient, K, in the following equation.
=K ND

Contact Patch Work Model

Rail vehicle wheels typically operate with both roiling contact and slip. Many researchers
have attempted to formulate the wear models to describe the wheel/rail wear due to rolling
contact with slip and spin. A general review of these works is discussed in chapter 1. The
contact patch work model is used in this work to predict wheel wear. According to Kumar

(1984),
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"If two contacting surfaces, with a normal load, experience

creepage/slip under the influence of an external tangential

force, the work done by this force is proportiomal to the

volume of wear of the materials produced in the wear pro-
cess, when the work used by other processes in the contact

is small.”

That is

(wear volume at the contact patch) oc (work done at the contact patch)

Q oc Wyone

total wear volume over a time period

total work done over a time period

4.2 Application of Contact Patch Work Model to Wheel/Rail Rolling

Contact |

When slip exists at the contact patch between the wheel and rail, there is energy dissipated
in the contact patch. This dissipative energy is equivalent to the work done in the contact

patch, which is the dot product of the creep force vector and slip vector.

Computation of Work Done in the Contact Patch

The location of the contact patch is a function of time. The work done in the contact patch

during time interval ¢, is
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(Waone)k = Fi* Dy+ Myeyy (4.9)

where
(Wamek =  work done during time interval ¢,
I?,, = creep force during time interval t,
Iﬁ,, = creep moment during time interval ¢,
5,, = slip during time interval ¢,
n-/;,, = spin during time interval ¢,

So the work done over a time period, T, is

N
Waone = Z{Fk Dy + Moy} (4.9)
k=1
and
T=NAt (4.6)
where
N, = number of time steps
At = time interval

The contact patch work can be computed in two ways. The global point of view considers the
wheel as a rigid body. From this point of view, the work done in contact patch is the dot
product of the creep force vector and the creepage vector muitiplied by the contact patch ve-
locity and time interval under consideration. Alternatively, the contact patch work can be
computed by integrating all of the local work done over the entire contact patch. This second

method accounts for the distribution of work done in the contact patch.
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Global work determination

From eq. (4.4) and (4.5), the global work done at the contact patch can be expressed as
(Waonedk = {(Fx)i($x)k + (Fy)il Sy + (M2)i(Esp)i} VAL 4.7)
N N,
Waone lgiobar = Z(wdone)k = VA‘Z{(Fx)k(fx)k + P&y + M2 sp)i} (4.8)
ke k=1
where
Woone lgrosar = global work done over a time period,T
Woonex = global work done during time interval ¢,
(- = some quantity during time interval ¢,

Local work determination

The creep force and moment and the slip and spin creepage at each subarea in contact patch
are known (see Chapter 2), so the work done at each subarea in contact patch can be com-

puted and summed. The work expression is

Wy Wy Q
(Waone, )i = VAH(Fx, )l =7~ e + Fy )l =7~ i + Mz )il 7 1) (4.9)
where
(W,.,,,,”),, = work done at subarea (x, y)) in contact patch during time interval ¢,
W,
(Tx i = normalized longitudinal slip at subarea (x, y,) in contact patch during time
interval ¢,
W, N
(-T/LI’J)" =  normalized lateral slip at subarea (x, y;) in contact patch during time
interval ¢,
(%l,,),, = normalized spin (-'1,(-) at subarea (x, y,) in contact patch during time
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interval t,

(F,U),, = longitudinal creep force at subarea (x, y;) in contact patch during time

interval ¢,

(F,U),, = lateral creep force at subarea (x, y)) in contact patch during time

interval ¢,

(le), = creep moment at subarea (x, y)) in contact patch during time interval ¢,

Nx Ny

N,
Waone liocal = Z Z Z{(Wdone,l)k} (4.10)

ket jmd f=d

Ny = number of the subdivision of the contact patch along X-direction
Ny = number of the subdivision of the contact patch along Y-direction

Two cases of the distribution of contact patch work are presented in Fig. 17 and Fig. 18.
Comparison of Global and Local Work Done

Theoretically,

Waone Igiobar = Waone liocar (4.11)

Actually, because of the contact patch discretization, a discrepancy exists between the global
and local work quantities. Aithough the difference is unavoidable, the distribution of the work
done in the contact patch appear to be reliable. By taking the global quantity to be correct,
the previous equation can be revised to account for the difference between the global and the
local quantities. The local work is multiplied by a factor, k. which is determined from the ratio

of the global and local works as shown below.
A
Waone 'global = KWaone liocal (4.12)
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where

x>
|

= some constant

Computation of Wear Volume

Since the work done in the contact patch is found, the contact patch work model can be ap-

plied to calculate the wear volume in the contact patch. Similarly, there are two views to

compute wear volume, giobal and local point of views.
Global wear volume determination

Recalling the contact patch work model eq. (4.3).

Q |global oc Wyone Iglobal

Substituting We,,, lgeew €4. (4.7) into above equation,

Ne
Q lgionar = VALY {(Exdeni+ FrEni+ MlEse)d

k=1
Local wear volume determination

By applying the contact patch work model, eq. (4.3) can be rewritten
(Qpk o Waone, )i
and sum of the local wear volume can be found

Chapter 4 : Wear Prediction in Wheel/Rail Rolling Contact

(4.13)

(4.14)

(4.15)

79



Ny Nx Ny Ny Nx Ny

Qiocar=, . D@ oc D D > Wetone e (4.16)

k=1 i=1 j=A k=t jml =i

in which (W,,,,,”),, is defined in eq (4.9).
Comparison of Global and Local Wear Volume

From the comparison of global and local work done, similarly, the relationship for the global

and local wear volume is also obtained

A
Q lgiobar = KQ liocar (4.17)

Application to Wheell/Rail Rolling Contact Problem

The work done and the wear volume in contact patch is derived previously, then the same idea
is to be applied to wheel/rail rolling contact problem. Fig. 30 shows the illustration of the
contact patch location in the wheel/rail contact and the scheme of subscripts adopted in the

following derivation.

Computation of Work Done along Wheel Profile

For the purpose of obtaining the distribution of wear volume along wheel profile, the local
work done and only a single strip of work done along X-direction in the contact patch during

time interval ¢, are considered.
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Figure 30. Iliustration of the subscript of contact patch for wheel/rail contact
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Ny
A
(Wdone,)k =K Z(Wdone,l)k
fm=1

where
Womek = sum of work done at a strip of the contact patch along X-direction for y,

during time interval ¢, (y, is the contact patch coordinate)

Furthermore, (W, )« can be expressed in the wheel coordinate, y,,
{Waone)idm = (Wdone)k

where
{(Waenedidm = work done at y,, along wheel profile during time interval ¢,

Ym lateral position expressed in the wheel coordinate

The distribution of the work done along wheel profile over a period of time, T, is

N,
(Waone)m = Z{(Wdone)k}m (4.20)
k=1

and the total work done over a period of time, T, is

Ny Ny N
Waone = Z(Wdone)m = Z Z{(Wdone)k}m (4.21)
m=1 m=1 ki
where
Wine =  total work done of the wheel over a period of time T
Woone)m = distribution of work done along the wheel profile over a period of time T
Nw = number of subdivision of the wheel profile
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Computation of Wear Volume along the Wheel Profile

By applying contact patch work model, the wear volume along the wheel profile can be ex-

pressed as
(Qm = Kw(Waone)m (4.22)
where
Qn = wear volume at y,, along the wheel profile over a period of time T
Ky =  some constant

By substitution of eq. (4.9), (4.18), (4.19) and (4.20), the total wear volume of the wheel over a

period of time, T, becomes

Nw Ny Ny

N
_ Wy Wy Q
Q =KyVvat (P =7~ I+ Fy )l 7 e+ M2 )i 57 i Ym

k=1 m=1 =1 j=1i

(4.23)

where

Ky wear index coefficient (K, = RK;,)

Also, the total wear volume of the wheel over a period of time, T, can be expressed in global

form

N
Q=K wVA‘Z {Fdul&xdi + Fy)ilSy) + M2)(Esp)i} (4.29)
k=1

The wear index coefficient will be discussed more detail later. Note that eq. (4.23) and (4.24)

have the same wear volume.
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4.3 Expression of Wear Rate

Wear rate is an important physical property. In sliding contact, wear rate is usually expressed
by the removed wear volume per unit sliding distance from Archard’s model. Because of the
complexity of wear phenomena, wear rate is not a simple function. Wear is a function of many

variables. Wear rate can be expressed in three forms,

2 _ wear volume _ Q
~ time period T (4.25)

A wear volume Q
Q = Sliding distance — D (4.26)

wear volume _ Q 4.27)

Q= running distance = VT

The total sliding distance, D, can be defined as the sum of the sliding distance during each
time interval ¢, which is the product of the sliding velocity and the time step. The slip velocity

and sliding distance are as follows:

D=/ ()2 + (&g V (4.28)

D, = D(AY) (4.29)

N N Ny
D= Zok = ZbkAt = Z\/ (6202 + (&) vat (4.30)
k=1

[ 3] k=1

where
D, = sliding velocity during time interval ¢,
D, = sliding distance during time interval ¢,
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D =

By substituting eq. (4.24), the three forms of wear rate become

total sliding distance over a time period(T)

N,

Q== =Kw e ;{(Fx)k(em + FEnic+ M sl @3
A Q K &
Q=5 =% “ ;{(Fx)k(fx)k + (Fy)iSy)x + M2 sp)ick (4.32)

Y N+ @k

k=1

Q Q K c

Q=vF= ViNAD N:/ ;{(Fx)k(fx)k+ (Fy)x&y)k + M2 sp)i} (4.33)

4.4 Relation Between Archard’s Model and Contact Patch Work Model

From eq. (4.2), Archard’s model can be expressed

=K ND
Q= 3 “H (4.39)
where K is the wear coefficient which is commonly defined based upon Archard’s relationship.
The wear coefficient can be found in Rabinowicz’s report (1980) for different materials sliding
under specific conditions, and it is an important physical interpretation of wear behavior. Fig.

31 shows the common range of wear coefficients for typical wear mechanisms.

The reiationship between the wear index coefficient and the wear coefficient is interesting.

The wear coefficient is to Archard’s model for sliding contact, as the wear index coefficient is
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Figure 31. Range of wear coefficient for typical wear mechanisms (Rabinowicz, 1980)
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to the contact patch work model for the rolling contact with slip/spin. Recalling the Coulomb

friction taw,
F
p=f (4.35)
where
F = friction force
= friction coefficient
N = normal load

In rolling contact with slip, F can be considered as the creep force and substituted into eq.

{4.2),

K
Q=35 D (4.36)

The wear rate expressed in wear volume per unit sliding distance is

A_Q __K_FD
Q=7 =B3Hp D (4.37)

and is multiplied by VAt in the denominator and nominator respectively,

D
A K VAt . Al
Q=34 5 F (4.38)

By rearranging the above equation and substituting the definition of creepage, eq. (4.38) be-

comes
A K_ VAt
Q=3Hg 0 9 (4.39)
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Based upon the contact patch work model, the wear rate expressed in wear volume per slid-

ing distance is obtained in eq. (4.32) and rewritten

Ne

Q= 'g- = %‘ K wVAt;{(Fx)k(f Wi+ Fr)il&y)ie + (M)l sp)id (4.40)

By comparison of eq. (4.39) based on Archard’s model for sliding contact and eq. (4.40) based

on the contact patch work model for rolling contact with slip, the wear index coefficient is

K

Kw= 3Hu

(4.41)
The above equation is the relationship between the wear index coefficient of the contact patch
work model for rolling contact and the wear coefficient defined in Archard’s model for sliding
contact. It may be stated that the wear index coefficient is equal to the wear coefficient di-

vided by three times the product of the hardness and the friction coefficient of materials.

An example of calculation of wear coefficient is presented. McEwen and Harvey (1985) carried
out a series of field wear tests for class D wheels running on BS11 rails. Friction coefficient
was assumed to be in the range of 0.45-0.55. In their report, Fig. 10 shows the wear index
coefficient is 1.2x10°‘£-. In general, hardness of wheel and rail are about 200 kpsi.

b
Therefore, the wear coefficient is computed

K = 3KyuH
. 2
=3(1.2 10‘9% )(0.5)(200,000 psi)
=36x10"*

Fig. 32 is a collection of the wear index coefficients. The wear coefficients are of the order of

10-% and the calculated wear coefficients are of the order of 10— .

Kumar et al. (1985) used the following wear equation to calculate wear coefficient.
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McEwen and Harvey (1985)

4 =0.45 — 0.55 Ky (%) K
rail tread (Fig.7) 1.18 x 10-° 3.54 x 10
rail flange (Fig. 10) 2.14 x 10-° 6.42 x 10-¢
wheel tread (Fig. 7) 0.78 x 10-° 4.18 x 10-¢
Kumar et al. (1985), Table. 2, (no sand)
in?
rail K ( b ) K
u=0.24 2.14 x 10~ 1.0 x 10~
u =035 484 x 10 3.36 x 10—*
u=0.5 1.53 x 10~ 1.49 x 104
wheel K, (A= K
T
u=0.24 2.18 x 10~° 1.1 x 10
u=035 6.30 x 10~ 463 x 10-¢
u=20.5 1.8 x 10-° 1.89 x 10—

Figure 32. A collection of wear index coefficient and wear coefficient
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Op = yielding stress

They estimated normal force and sliding distance. According to their experiments, o, = 70
kpsi for the wheel and o,, = 65 kpsi for the rail. In order to obtain the wear index coefficient,

the following is caiculated

K

fw= 3poyp

The numerical result is shown in Fig. 32. It can be noted that the wear index coefficients have
the order of 10-? , and that the wear coefficients have the order of 10~ . Both Kumar et al.
(1985) and McEwen and Harvey (1985) present the same order of wear index coefficient and
wear coefficient. According to Fig. 31, these wear coefficients are for identical metal in poor
lubricated adhesive wear. In fact, the experiments were carried out on dry clean surface. This
conflict may be the cause of rolling contact different from sliding contact and the existence of

variant wear mechanism.

Summary

1. Archard’s model for sliding contact and contact patch work model for rolling contact with
slip are introduced.
2. The algorithm of the contact patch work model including both the local and global view

is applied to wheel/rail rolling contact.
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3. Three forms of the wear rate expressed in wear volume per unit running time, per unit

sliding distance and per unit running distance are presented. However, the wear volume
per unit running distance is usually used to represent the wear rate in rail vehicles.
4. The wear index coefficient defined in eq (4.23) is related to the wear coefficient defined

in Archard’s model eq. (4.2).

K

Kw= 3Hu

5. Wear index coefficients found in the rail vehicle literature equates to wear coefficients in

the order of 104,
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Chapter 5 : Wear Computation Method and Resuits

Chapter 2 describes the wheel/rail contact mechanics to calculate the contact area, creep
forces and moment, and creepages. Chapter 3 presents a 5-degree-of-freedom half-car model
to simulate the truck lateral motion. Chapter 4 discusses the contact patch work wear model
which is applied to the wheel/rail rolling contact probiem. This chapter shows the simulation
of the wheel wear process combining the previous discussions of the wheel/rail contact me-

chanics, the truck dynamic response and the contact patch work wear model.

The consecutive wear profiles of the four wheels in the truck are predicted for both tread
contact and ;light flange contact. Several cases of empty and fully loaded cars with AAR and
Heumann wheels running at 45 mph and 60 mph are presented. These wear profiles agree

well with experimental results (Marcotte et al.,, 1980) and a previous analytical approach

(Davila, 1986).
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5.1 Wear Computation method

Fig. 33 shows the flow chart of the simulation of wheel wear process. The simulation is per-
formed by the program WWPPVW (Wang, 1988b) associated with the program WHRAILA
(Heller and Cooperrider, 1977a) to calculate the wheel/rail geometric constraints, the program
RALIN (Fries and Coffey, 1987) to generate random rail alignment, the program FASTSIM
(Kalker, 1981) to compute the creep force and moment and the contact patch work, and the
program DYNAMC (Wang, 1988b) to obtain the dynamic response of the half car model. The
WWPPVW program accounts for the four-wheel wear processes instead of Davila’s assump-

tion (Davila, 1986) of all wheels having the same amount of wear.

Before the simulation, the wheel and rail profiles are digitized as the input data for WHRAILA.
The vehicle specifications, see Fig. 21, and the initial conditions of the half car model and the

program optional numbers (Wang, 1988b) are defined.

To begin the simulation of the wear process, the wheel/rail geometric constraints are calcu-
lated, then the contact position is computed from the dynamic response including the effect
of the random rail alignment. Therefore, the geometric constraints, including rolling radii,
contact angle and roll angle, can be interpolated at the contact position, and the creepages
can be computed. Then the creep force and moment and the contact patch work can be de-

termined.

In the work reported in this thesis actual values of wear index coefficient have not been used.
Instead, a set of scale factors has been used in the wear profile computations. Future work

should incli e the use of wear index coefficients.

If the wear volume is more than 0.03 in?, the wear is distributed around the wheel. When the

wheels are reprofiled, the wheel/rail geometric constraints need to be recalculated. Finally,
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Define wheel/rail profile data

!

Define half car model specification and initial condition

!

Define program optional number

Wheel geometry function calculation

Reprofile
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Calculate W/R contact position and interpolate geometry function

!

Creepage calculation

!

Creep force/moment calculation

{

next time|step

Contact patch work and wear volume calculation

Reprofile wheels

|
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N
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Calculate dynamics response

)

< Is the final time step? >
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Figure 33. Flow chart of the simulation of wheel wear process
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the dynamic response of the half car model is obtained. The simulation goes to the next time

step and repeats the same procedure described above until the setup time is reached.

5.2 Wear in Tread Contact

This section presents several cases of tread contact for the new AAR and Heumann wheels
running on the new 132-RE rail. Both the AAR and Heumann wheel profiles introduced in
Chapter 2 have a linear 1/20 taper over the tread. The main difference between these two
wheels is that the Heumann profile has more curvature at the flange to provide a smoother

transition between tread and flange contact.

Each case was simulated for 10 s using a time step of 0.001 s for an empty car and 0.0004 s
for a fully loaded car by the simulation method discussed in section 5.1. The figures show the
front and rear wheelset lateral positions, final wear profiles of the four wheels in the truck, and
their conse:: itive wear profiles. From the time history of the wheelset lateral positions, the

the contact patch locations on wheel and rail can be computed.

Fig. 34 to Fig. 36 show the case of an empty car with AAR wheels running at 45 mph. In Fig.
34 the front and rear wheelset lateral displacements are shown on the top, and the final wear
profilgs of the four wheels are presented in the remaining plots. The front wheelset has larger
displacement than the rear wheeiset, such that the contact patch positions range more widely

over the front wheels than the rear ones.

Fig. 35 and Fig. 36 show the consecutive wear profiles for the front and rear wheels. The rear
wheels have more wear than the front wheels. The front wheels have 103 profile changes,
and the rear wheels have 125. These wear profiles are similar to Davila’s prediction (see Fig.
37). He assumed that the distribution of wear volume is parabolic across the contact patch and

that each wheel has the same amount of wear.
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Figure 34. The lateral position of wheeisets and final wheel wear profiles (45,AAR,empty,T)
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Left-Front Wheel Profile

2 1 0 - -2
Distance from Tape Line (in )

Left-Rear Wheel Profile

2 1 0 - -2
- Distance from Tape Line (in )
Figure 35. The consecutive wear profiles of the left wheels (45,AAR,empty,T)
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Right-Front Wheel Profile

2 -1 0 1 2
Distance from Tape Line ( in )

Right-Rear Wheel Profile

-2 -1 0 1 2
Distance from Tape Line (in )
Figure 36. The consecutive wear profiles of the right wheels (45,AAR,empty,T)
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Figure 37. The consecutive wheel wear profiles of Davila’s prediction (Davila, 1986)
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The relative wear rates (in%/in), wear volume per unit running distance, are summarized and

scaled in Fig. 38. For 45, AAR, empty, T, the wear rates of the rear wheels are larger than the

wear rates of the front wheels. The front wheels have less wear rates than the rear wheels,

although the contact patch ranges more widely over the front wheels than the rear ones. The

reason may be that the reprofiled rear wheels increase the curvatures and result in large

contact patch work.

Another two cases of tread contact of AAR wheels include a fully loaded car running at 45

mph and an empty car running at 60 mph. These have similar final and consecutive wear
profiles, as does the previous case. For the case of 60 mph (Fig. 39), the small amount of
flange wear which occurs in the front wheels is due to the large oscillating amplitude of the
contact patch position over the front wheels. It is concluded that the wheel wear profiles for
tread contact are nearly independent of train speeds and load conditions; however, different

train speeds and load conditions cause different wear rates.

From Fig. 38, by comparison of the two cases of 45, AAR, empty, T and 60, AAR, empty. T, the

wear rates of the front wheels for 60, AAR, empty, T are less than the wear rates of the front

wheels for 45, AAR, empty, T. However, the wear rates of the rear wheels for 60, AAR, empty.

T are larger than the wear rates of the rear wheels for 45, AAR, empty, T. That is to say the

higher train speed causes more wear on the rear wheels but less wear on the front wheels.

From Fig. 38, by looking at the two cases of 45, AAR, empty, T and 45, AAR, full, T, the wear

rates are not comparable, because they do not have the same scale factors. However, it still

appears that the wear rates of the rear wheels are higher than the wear rates of the front

wheels for both cases. Additionally, for the case of 45, AAR, full, T, the wear rates of the rear
wheels are about twice as much as those of the front ones, but it is not true for the case of

45, AAR, full, T. It can be noted that the more heavily loaded car causes more wear on the

rear wheels.
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Figure 38. Summary of the resuits

Chapter 5 : Wear Computation Method and Results

Case SC | Qe Qs Qre Qu Ne N: | Ref. figures
45,AAR,empty,T | 0.03 | 0.8126 | 0.8212 | 0.9665 | 1 103 125 | Fig.34-Fig.36
45,AAR,full, T 0.04 | 0.5697 | 0.5569 | 1 0.9972 69 123
60,AAR,empty,T | 0.03 | 0.5749 | 0.5444 | 0.9879 | 1 72 135 Fig.39
45,HEU,empty,T | 0.03 | 0.7961 | 0.7966 | 1 0.9971 83 105
45,HEU,full, T 0.05 | 0.7022 | 0.7369 | 0.9648 | 1 80 110
60,HEU,empty,T | 0.06 | 0.8223 | 0.8006 | 1 0.9982 62 75 | Fig.40-Fig.42
45,AAR,empty - | 0.03 | 0.9993 | 1 0.8123 [ 0.8254 130 120 | Fig.43-Fig.45
45,AAR,empty,F | 0.04 | 0.9976 | 1 0.7097 | 0.7035 105 76
45,HEU,empty,F { 0.05| 1 0.9663 | 0.9105 | 0.8999 123 100
SC = scale factor
Qe = relative wear rate (in?/in) for right-front wheel
Q. = relative wear rate (in3fin) for left-front wheel
Qwe = relative wear rate (in%/in) for right-rear wheel
5,, = relative wear rate (in3/in) for left-rear wheel
N: = number of front wheels profile changes
N: = number of rear wheels profile changes
45,AAR,empty,T = empty car running at 45 (mph) with AAR wheels for tread contact
60,HEU,fullLF = fully loaded car running at 60 (mph) with Heumann wheels for flange contact

101



Right-Front Wheel Profile

2 -1 0 1 2
Distance from Tape Line (in )

Right-Rear Wheel Profile

‘é -'1 0 1 2
Distance from Tape Line ( in )
?lgun 39. The consecutive wear profiles of the right wheels (60,AAR,empty,T)
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The same train speed and load conditions are chosen to simulate the Heumann wheel running
on the new 132-RE rail for tread contact. Fig. 40 to Fig. 42 are examples of the empty car with

the Heumann wheels running at 60 mph.

The top of Fig. 40 shows the front and rear wheelset lateral displacements. It can be seen that
flange contact occurs in the front wheels when the front wheelset lateral displacements are
over 0.29 in. Fig. 40 also shows the final wear profiles, and Fig. 41 and Fig. 42 show the con-
secutive wear profiles. There is some flange wear in the front wheels, but only tread wear

occurs in the rear wheels.

From Fig. 38, it can be noted that the three cases of Heumann wheels have similar charac-
teristics as the AAR Wheels generally. However, Heumann wheels tends to reduce the dif-

ference of wear between the front and rear wheels. So, for tread contact the AAR wheels and

the Heumann wheels have similar wear profiles. And the wear profiles are similar no matter

what the train speeds and load conditions are.

5.3 Wear n Flange Contact

Flange contact usually occurs when trains are running at high speed or on curved tracks. Fig.
39 shows that the empty car running at 60 mph has slight flange wear, because of the higher
train speed. In order to simulate flange contact, the random rail alignment magnitude is in-
creased to get the larger wheelset lateral displacement which causes the frequent flange

contact.

Three cases of slight flange contact are shown in Fig. 38. A case of the empty car with AAR
wheels running at 45 mph is presented from Fig. 43 to Fig. 45. Fig. 43 shows the lateral posi-
tion of wheelsets and the final wheel wear profiles. Since there are many time steps when the

front wheeiset lateral position is more than + 0.29 in., flange contact occurs frequently.
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Figure 40. The lateral position of wheeisets and final wheel wear profiles (60,HEU,empty,T)
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Figure 41. The consecutive wear profiles of the left wheels (60,HEU,empty,T)
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Figure 42. The consecutive wear profiles of the right wheeis (60,HEU,empty,T)
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Figure 43. The lateral position of wheeisets and final wheel wear profiles (45,AAR,empty,F)
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Figure 44. The consecutive wear profiles of the left wheels (45,AAR,empty,F)
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Figure 45. The consecutive wear profiles of the right wheels (45,AAR,empty,F)
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Therefore, the wear profiles of the front wheels have a different pattern from the wear profiles

of the rear wheels, because the front wheels have slight flange contact and the rear wheels
have tread contact. Because of the dynamic response, flange contact occurs on the front
wheels at lower speeds than it occurs on the rear wheels and causes higher wear rates on

the front wheels than on the rear wheels.

Fig. 44 and Fig. 45 show the consecutive wear profiles. The rear wheels have the similar wear
profile as demonstrated in Section 5.2, but the front wheels exhibit the flange wear. The larger
lateral displacement of the front wheelset can be seen from the distribution of the lateral po-
sition in Fig. 43. The flange contact occurs in the front wheels occasionally, such that only
three consecutive wear profiles are observed. From Fig. 38, the wear rates for the front
wheels are Iarger than the wear rates for the rear wheels, since the front wheels are subjected
to the flang. contact. The front wheels have 130 profile changes, and the rear wheels have

120.

Fig. 46 shows standard AAR wheel wear profiles from the experimental results of Marcotte
et al. (1980). Comparing Fig. 45 and Fig. 46, the predicted wear profiles for slight flange con-
tact agree qualitatively with the experimental results of Marcotte et al. (1980). However, the
program WWPPVW failed to simulate more severe flange contact. Since the flange contact
causes more contact patch work, the wear volume becomes higher. During the simulation,
the program fails in calculating the contact patch area by the Hertzian contact theory, because
the wheels at the flange become too curved, and the wheel/rail contact becomes conformal

contact which is not treated in this work.

Two additional’ cases for slight flange contact are summarized in Fig. 38. One is the empty
car with AAR wheels running at 45 mph (SC=0.04 different from previous case SC=0.03), and
another is the empty car with Heumann wheels running at 45mph. Both cases have wear

profiles similar to the previous cases.
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Figure 46. The experimental wear profiles of AAR wheels (Marcotte et al., 1980)
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Fig. 38 summarizes the scale factors, the wear rates and the number of profile changes for
all the cases presented in this chapter for the different wheels, train speeds and load condi-
tions. Note 'hat wear rates are scaled, and they are comparable only in the cases having the

same scale factors (SC).

In comparing the cases of 45, AAR,empty.T and 45,AAR.,empty,F, both have the same condi-

tions except the former for tread contact and the latter for slight flange contact. The wear
rates of the front wheels for flange contact are larger than the wear rates of the front wheels
for tread contact, and the wear rates of the rear wheels are nearly the same for both tread

and flange contacts. A comparison of Heumann wheels of 45HEUempty,T and

45,HEU empty,F shows similar wear patterns. It may be concluded that because flange contact

occurs only on the front wheels for slight flange contact, the wear rates of the front wheels
become large. In addition, because there is no flange contact in rear wheels, the wear rates

of the rear wheels remain the same as that for tread contact.

Summary

The wheel wear profile prediction of the tread and slight flange contact for empty and fully

loaded car with AAR and Heumann wheels running at 45 and 60 mph are presented.

For tread contact, the AAR and Heumann wheel wear profiles are slightly curved and
similar. Also the wear profiles are nearly independent of train speeds and load conditions;

however, the different train speeds and load conditions cause different wear rates.

For tread contact, the right and left wheels have nearly the same wear rate, but the rear
wheels have more wear than the front wheels. The higher train speed causes more wear
on the rear wheels but less wear on the front wheels; aiso the higher loaded car causes

more wear on the rear wheels.
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For slight flange contact, the flange wear is predictable, but when the flange contact is

significant, the simulation fails due to the wheel/rail contact becoming conformal.

For slight flange contact, the front wheels encounter flange contact ahead of the rear

wheels, so the wear rates of the front wheels becomes large. No flange contact occurs

in the rear wheels, hence the wear of the rear wheels remains the same as that for tread

contact.

These results agree well qualitatively with previous predictions by Davila (1986).

The AAR slight flange contact results agree well qualitatively with field wear resuits

present by Marcotte et al. (1980).
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Chapter 6 : Conclusion and Recommendation

6.1 Conclusion

The contact patch work wear model is applied to predict the wheel wear profiles in this work.
A discretized method is used to determine the contact patch work, and it allows computation
of the distribution of the work done in the contact patch. 1t is the major difference between the
current work from Davila’s. He assumed that the distribution of the work done in the contact
patch is parabolic. This assumption is valid only under certain conditions, for example the
case of the partial slip on the contact patch shown in Fig. 17, and it is not correct for some

cases, such as the example of full slip region shown in Fig. 18.

The discretized method accounts for the distribution of the contact patch work, so it remedies
the weakness of Davila’s assumption. However, this discretized method requires substantially

more computer time.

All of the results shown in Fig. 38 are performed for 10 seconds. Since the samples collected
in 10 seconds might not be representative enough, a longer period of simulation is desirable.

However, on the basis of considering the CPU time and the accurate prediction of wheel wear
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profiles, a compromise was made. Several cases simulated for 30 s have similar wear profiles
as those predicted for 10 s simulations for tread contact. Therefore, the 10 s simulation ap-

pears to be acceptable.

This work includes the prediction of the wheel wear profile for both tread contact and slight
flange contact, and the outcomes of the simulation agree with the experimental results. Since
flange contact causes more wear, and it results in the wheel profile being too curved, the
wheel/rail contact becomes conformal. The conformal contact makes the Hertzian contact
theory inapplicable in calculating the contact area, and it makes the further simulation im-

possible.

Some characteristics of the wheel wear process of the half car model for the tread and slight
flange contacts are observed. The right and left wheels have nearly the same wear rates, but
the rear wheels have more wear than the front ones. Furthermore, the higher train speed
causes more wear on the rear wheels but less wear on the front wheels. Also, the flange

contact occurs in the front wheels ahead of the rear wheels.

The S5-degree-of-freedom haif-car model is implemented to describe the truck dynamic re-
sponse, and the hunting phenomenon on tangent track is observed. in addition, when wheels
become worn, the perturbation of the spin angular velocity is no longer negligible. The
equation of wheelset spin is added to determine the perturbation of the spin angular velocity.

Both the truck response and the spin angle of wheelset are employed to obtain the creepages.

This work also relates the wear index coefficient for rolling contact and the wear coefficient
for sliding contact. Both of the coefficients are connected with the hardness of materials and

with the friction coefficient of contact area. The wear index coefficient found in rail vehicle

literature are of the order of 10"% for dry clean surface. The wear index coefficient equates

to wear coefficient in the order of 10-4.
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The wear predictions in tread contact agree well qualitatively with previous predictions by
Davila (1986). Also, the AAR slight flange contact results agree well qualitatively with field

wear result:: presented by Marcotte et al. (1980).

6.2 Recommendations

Since the discretized method of the calculation of the contact patch work consumes enormous
CPU time for simulations, it would be beneficial to conduct the simulations from the point of
view of statistics. A statistical method could obtain the probability density function of the
creepages along the wheel profile, and caiculate the distribution of the contact patch work
along the wheel profile according to the density function. This statistical method will not only
reduce the CPU time but also resolve the concern for the shortness of the simulations runs

used in this work.

When the wheel is highly worn, and the wheel and rail contact becomes conformal, then the
Hertzian contact theory is no longer acceptable. In this work, the program WWPPVW fails to
calculate the contact area due to the conformal contact, so further research treating the wheel
and rail contact as non-Hertzian is necessary, and the determination of the contact area and

the creep force and moment needs also to be based on the non-Hertzian contact.

Once the non-Hertzian contact is treated, it is foreseeable that to simulate wheel wear for
much larger wear volume Is possible. It will become more practical to predict wheel flange

wear and to compare to field worn profiles.

The current work focuses on the wheel and rail contact on the tangent track, and the tread
contact is the major concern. For railway vehicles, the flange contact and the curving motion

are equally or even more interesting, since the curving motion causes the flange contact and
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the flange contact has more wear than the tread contact. So, to introduce a curving model for

rail vehicle in predicting flange wear is a worthwhile challenge.

Although the wear index coefficient is related to the wear coefficient, during the simulation the
wear index coefficient is not really used; instead, a scale factor is introduced to perform the
simulation. It is another challenge to explore the employ of the wear index coefficient in the
wear simulation. This would give a measure of the actual distances traveled for a given wear

volume.
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Appendix A. Derivation of Equations of Motion for

a Wheelset

This appendix presents the derivation of the equations of motion of a wheelset by using
Newton-Euler’s equation. Section A.1 defines the nomenclature. Section A.2 describes the
coordinate systems of a wheelset. Section A.3 shows the complete derivation of equations
of motion. In addition, the wheelset external force and moment are defined, and they are the

external force and moment acting on a wheelset.

A.1 Nomenclature

The nomenclature used to develop equations of motion for wheelset are as follows

X',y zZ'" = Equilibrium coordinate, X’’’ aiong the center line of the track
X' y"z" = Intermediate coordinate rotated an angle y about Z'’
X,y z = Wheelset coordinate rotated an angie ¢ about X*’

- -

i, g, k' = Unit vector of equilibrium coordinate system, X’’’, Y'**, Z'"
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-

i”, f", k" = Unit vector of intermediate coordinate system, X"/, Y*', 2’

-

i’ f’, k' = Unit vector of wheelset coordinate system, X’, Y’, Z’

-

51;:. €, 5,, = Unit vector of contact plane axes of right wheel

€. €y €, = Unit vector of contact plane axes of left wheel

-

Dy = angular velocity of wheelset

¢

roll angular displacement about X'’ axis
= yaw angular displacement about 2’’' axis
B = perturbation angular displacement from a nominal angular velocity

€ about Y’ axis

Q = nominal angular velocity, Lo

R, = nominal wheelset rolling radius

Ry = rolling radius of contact point at the right wheel

R, = rolling radius of contact point at the left wheel

v = wheelset moving speed

\7, = velocity of wheel

\7, = velocity of rail

P = angular velocity of wheel

o = angular velocity of rail

ﬁ, = position vector of right contact point

ﬁL = position vector of left contact point

R = angular momentum of wheelset in body coordinate
@ gie = angular velocity of body coordinate relative to equilibrium coordinate

Others are consistent with those in Chapter 3.
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A.2 Coordinate System of the Wheelset

The coordinate systems of the wheelset references to Fig. 47. (X'”’, Y'"*, Z"") are the equilib-

rium coordinates in which the direction of X’*’ is along the center line of track. (X", Y”, Z")

represent the intermediate coordinates which are rotated y about Z’*’. (X’, Y’, Z’) are defined

as the wheelset coordinates which are rotated ¢ about X’’. By assuming small angle and

neglecting the higher order terms, the transformation equations between the unit vectors for

the coordinate systems are

(] [+ o o 7"
f’ =[0 cos¢ sing T"
I-;' 0 —sin¢g cos¢ K"
PT" cosy siny O ] 7"'
f” =| —siny cosy O }""
& o o 1 [k
[T 1y o |[i~
Frl={=v 1 8 |7
il Lo -6 1 |l

(A1)

(A.2)

(A.3)

In additions, the contact patch coordinate system at the right and left wheel are shown in Fig.

48. The transformation equations between the contact patch coordinates and the equilibrium

coordinates ‘or small angle and neglecting higher order terms are

e [ 1 ¥ 0 i
e|=|-¥ 1 G+e) || i
ea| [ 0 —(G+e) 1 k"
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Equilibrium coordinate

right rajj

left rai)

track centerline

Figure 47. Coordinate system of wheelset
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Figure 48. Contact patch coordinate system
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r| {1 ¥ 0

er|=| -V 1 —(6r—9¢)
ear 0 (bp—¢) 1

A.3 Wheelset Equations

Newton-Euler’'s equations is used to derive the equations of motion of the wheelset. The an-
gular velocity and the angular momentum of the wheelset are derived and expressed in the

equilibrium coordinates. The angular velocity of the wheelset is
B=¢ i"+Q+PJ +¥ k"

And @ can be expressed in the body coordinates (X', Y’, Z')

wxi'+60yj'+wzk'

ox= (A.8)
oy=Q+p+ysing (A.9)
@z =y cos ¢ (A.10)

The angular momentum of the wheelset in the body coordinates is

-

H'=’wx(0x T""Iwya)yj"{'lwzwz k'

= H&” 7"' + H'Y" TI'I + le'l ;I'l (A.11)
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Hy' =lyx @y €os § — lyy wy cos ¢ sin Y + Iz wz sin ¢ sin ¥ (4.12)

1" = lyx 0y SiN ¥ + lyy @y COS ¢ COS Y — Iy w7 Sin ¢ oS (A-13)
Hé" =’wy @y Sin¢ +Iwz wz cos ¢ (4.14)

The rate change of the angular momentum of wheelset in the body coordinate is

aH’

B oy T+l oy ]+ gz K+ By X H’ (A.15)
dt wz

where w,,, Is the angular velocity of the body coordinates.
‘;axls= ¢ Tn +J, ;‘.'n
=¢i'+ysing ) +ycosé k' (A.16)

Therefore,

%Lt'ﬂwxg’ T+ lyy(B+ ¥ sin ¢ + ¥ cos §) ]+ lyz( cos ¢ + ¥ sin ¢) k”

+(¢ T'+¢Sin¢ T'+'.ﬁc°s¢ ;')X('wxwx T"‘I"'wywy T"*"szz '-(.') (A17)

By differentiating (A.12)-(A.14) and assuming small angle, the rate change of the angular mo-

mentum in the equilibrium coordinates (X**’, Y’’’, Z'’) becomes

d;;"' _Hur e Hu' T Hon ) A.18
gt = Hx i"+HY jJ+HZ K (A.18)

where
B = lyxd — Iy QY (A.19)
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HY' = lyyB

15" = lyyQ + lyz¥

From Newton-Euler’'s equations,

ZF=M§'

Q
38,

Zm

Based on the Equilibrium Coordinate (X'’, Y'"’, Z'"'),

ZF=F,_+FR+NL+NR+FS-WAk"'

Zmﬁnx(;Rmmax(a+ﬁ0+@+ﬁ,,+ﬁs
ﬁ‘ =k' Tlil+y TIII+2 ;Ill

-—

GH O = g0 T+ B T + Uy + iz} K™
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(A.25)

(A.26)

(A.27)
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F, = creep force at the left wheel

Fg = creep force at the right wheel

lﬁL = creep moment at the left wheel

lﬁ, = creep moment at the right wheel

IV,_ = normal force at the left wheel

ﬁ, = normal force at the right wheel

I-fs = suspension force

lﬁs = suspension moment

E:. = position vector of the contact point for the left wheel
ﬁ, = position vector of the contact point for the right wheel

so the creep forces vector at the left and right wheels are
FL=Fy 8y +Fy oy
= {F'y. cos y — F'y, cos(d, + ¢) sin ¢} i
+ {(Fy, siny + Fy, cos(8, + ¢) cos y} j ™
+{—=Fy sin(6, + )} k"™
=Fy 0 " +Fy ] "+ Fp k™
Fr=Fxr e1r+FyL o
= {(Fxr €08 ¥ — Fyg cos(ég ~ ¢) sin y} 1 "
+ {F'xr sin ¥ + F'yg cos(ég — ) cos ¥} i
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The creep forces between the wheel and rail are considered as the two dimensional forces,

(A.28)

(A.29)

(A.30)

(A.31)
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+{—FYypg sin(6g— ¢)} k" (A.32)
= FXR T"’ + FYR-T"’ + FZR ;nr (A.33)

in which F, F\,, Fks and F; are supported by the program FASTSIM which is discussed in
Chapter 2. The creep moment between the wheel and rail accounts for only the vertical di-

rection, so the creep moments at the right and left wheels are

M =Mz e

= (M, sin(6, + ¢) sin Y} 1 " — (M’ sin(6, + ¢) cos ¥} ] "

+ (M7 cos(d, + )} k"
= MXLI "y MYL-T"' + MZL ,-‘.ln

Mgp=M7g €3

= { — M';p sin(dp — @) sin y} T'” + {M’;g sin(ég — ¢) cos \/1}7'"
+ {M'3g cos(6g— $)} k" (A.36)

= MXRi e + MYRJ e + MZR k' (A37)

in which M%, and M’ are supported by the program FASTSIM. The normal forces and the

position vectors of the contact points for the left and right wheels are
N =N ey
= {N sin(6_ + ¢) sin ¥} T'" — {N_sin(é, + ¢) cos ¥} T"'
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+ (N cos(5, + ¢)} k™

=Ny 17"+ Ny ]+ Ny, k'
Nr=Ng &g
= {—Ngsin(6g — ¢) sin ¥} 1 " + {Ng sin(8g — $) cos ¥} j
+ {Ng cos(dp — #)} k"
= Nyr i Nyr 7 " + Nzg K
EL= [~ (A—Apcos ¢ siny —R, sin ¢ sin v1i™
+ [(A + Ap) cos ¢ cos ¥ + R, sin ¢ cos vl
+[—(A+A)sing—R; cos g1k "
=Ry it Ry_ P Rz, K
ER = [(A + Ag) cos ¢ sin ¥ — Rg sin ¢ sin y] 7
+[ = (A + Ag) cos ¢ cos ¥ + Rg sin ¢ cos y]j "
+[—(A+Ag)sin ¢ —Rgcos g1k ™

o= RXR I' "0 + RYR j o + RZR k "

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

By substituting eq. (A.24) - (A.45) into Newton-Euler’'s equations (eq. (A.22) and (A.23)), the

equations of motion of the wheelset are summarized
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longitudinal equation

MX = Fy, + Fyg + Ny + Nyg + Fxs
lateral equation

My = Fy + Fyg + Ny_ + Nyg + Fys
vertical equation

MZ =Fy + Fzr + Nz + Nzg + Fzs
roll equation

lwx® — lwyQ¥ = Ryg(Fzg + Nzg) = Rzg(Fyg + Nyg) + Ry (Fz + Nz
=Rz (FyL + Nyp + My + Myg + Mxs

spin equation

IwyB = Rzr(Fxr + Nxr) — Rxa(Fzr + Nzg) + Rz (Fxi + Nx))
= Ry (FzL + Nzp) + My + Myg + My

yaw equation

Iwz¥ + lwyQd = Ryp(Fyr + Nyg) = Ryr(Fxr + Nxg) + Rx(FyL + Nyp)
= Ry (Fx + Ny + Mz + Mzg + Mz

(A.45)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

For the purpose of getting N, and N, , the vertical (A.48) and the roll (A.49) equations are re-

arranged

NzL+Nzp = MZ—Fz —Fzr—Fzs

NzrRygr — NyrRzr + Nz Ry, — Ny Rz, = Iwx$ — IyyQy
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= RyrFzr + RzrFyr — Ry Fzy + Rz Fy — My, — Myg — My (A.53)

By substituting the components of the normal forces, (A.39) and (A.41), into (A.52) and (A.53),
eq. (A.52) and (A.53) become

N, cos(8, + ¢) + Ng cos(Sg — ¢) = Fy (A.54)
N_[Ry, cos(é, + ¢) + Rz, sin(6, + ) cos ¥]
+ Ng[Ryg cos(ég — ¢) — Rzg Sin(5g — ¢) cos Y] = M, (A.55)
where

Fz =Mz — Fy, — Fz — Fzs (A.56)

Mg = lyx$ — lwyQ¥ — RyaFzg + RzgFyr — Ry FzL + Rz1FyL
= My — Myg — Mys (A.57)

So N, and Ni can be solved,

-

Nl Fz cos(dg — @) aso
ta Mg [Ryg cos(dg — ¢) — Rzg Sin(6g — ¢) cos ¢] '
oo cos(8, + ¢) Fy “so
"8 [[Ry, cos(8, + $) + Rz sin(d, + $) cos ¥] Mp '
where

cos(d, + ¢) cos(dg — ¢)

[RyLcos(6, + @) + Rz sin(d, + ¢) cos y] [Ryg cos(dg — ) — Rzg sin(dg — ¢) cos ]

(A.60)
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In order to obtain the wheelset external force and moment, the lateral and yaw equations is

considered, and the following components are interested

[ — Ry + Rzg tan(ég — ¢) cos Y IFz + Mg

N, cos(6; + ¢) = A.61

L cos(d, + ¢) RyL — Ryr + [Rzg tan(ég — ¢) + Rz tan(é, + ¢)] cos ¢ (A.61)
[Ry, + Rz, tan(é, + ¢) cos w,b]F;_- - M;,

Ng cos(dp — ¢) = A.62

R OO OR = ) = R Ry + [Rn tan(og — #) + Ry tan(d, + $)] cos ¥ (462
From the position vectors, ﬁ,. and f?l, assuming small ¢, ¥, &g, 6, ,
Rr=(AY)i "™ +(—A—Ap+Rpd)] ™ +(—Ad —Rg) k™ (A.63)
R =(—A¥)i "™+ (A=A +R.$)] " +(Ad—R) k™ (A.64)

Furthermore, the vertical motion is assumed vanishingly, i.e., Z2=0. The roll and yaw motion
can be neglected, i.e., (¢, ) =0. There is no creep force at Z-direction, i.e., (Fy. Fzs) =0.
There is no creep moment at X- and Y-direction, i.e., (My,, My, Mxq, Myg) = 0. Hence eq.(A.56)

and (A.57) become
Fz=W, —Fys (A.85)
Mg = Ad(Fy; = Fyg) = (RgFyr + RFy) (A.66)

By substituting (A.65) and (A.66) into (A.61) and (A.62) and using the fact that A>>A, ,

A > > Ag, F;5 =0 and M, =0 at equilibrium, eq. (A.61) and (A.62) become

w ¢

Ny cos(8, + $)= — + 2 (Fyr = Fy) = 5o (RrFvr + RiFy) (A.67)
Wg ¢ 1

Ng cos(dg — ¢)=~ —; =5 Fy.—Fyr) + 57 (RrFyr + R.Fy) (A.68)

Similarly,
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: w 1
Ny sin(8, + é)= — — 5 (ReFyr + RiFyD(SL + 6) (A69)

, Wa 1
Ng sin(6g — ¢)= —= — - (RpFyr + RiFy)(ér — ¢) (A.70)
and the gre itational force is defined as,

Fg = - NR sin(éR - ¢) + NL SiN((SL + ¢)
1 8, —Og (A.71)
=[Wa— 7 ReFyr + RFy DI (—5—+4¢)

Cooperrider et al.(1975) indicated that the gravitational force has a positive effect on train

stability.

By substituting the components of the forces (eq. (A.24) - (A.45)) and assuming small angle,

the lateral equation (A.47) becomes

My = (Fiy, + F'xp)¥ + (FyL + Fyr)
Wy—+ R RFy1(2LlR F A.72
— Wa— 3 ReFyr + RiFyDI(——5—+ &) +Fys (A.72)
Because —;—(RRF',R + R.F'y,) is relatively smaller than W, , the lateral equation becomes

7 ’ ’ ’ ’ 6 _6R
My = (Fxi + Fyp)¥ + (Fyp +Fyg) = Wa(—5—+ ¢) + Fys (A73)

By operating the similar substitution and assumption, the yaw equation (A.48) becomes

o, + 6g

lwzd + lwyQd = Fy (A + g = Re) = Fxi (A = A+ Ri) + Ay Wy~

+ Mz +M57e +Mzg (A.74)
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From the lateral (A.73) and yaw (A.74) equations, the wheelset external force, F,, , and the

wheelset external moment, M,,, , can be defined respectively.
, - , , 6, — 0
Fext=(FxL + Fxp)¥ + (FyL + Fyp) = Wa(——5——+¢) (A.75)

in which the first two terms are due to the creep forces and the last term is due to the normal

force.

Mext=Fxr(A+ Ag — Rpd) — Fx (A— AL + R $) + M’z + M7

S+0p

+ApW,

(A.76)

in which the last term is due to the normal force, and the others are due to the creep forces

or moments.

I
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Appendix B. Derivation of Creepage and Spin for a

Wheelset

This appendix derives the expression of the creepages for a wheelset including the right and
left wheels. The notation are the same as those in Appendix A. The coordinate system of the

wheelset is ~hown in Fig. 48.
As defined in eq. (2.1) - (2.3), the longitudinal creepage in the body coordinates is

,  Vwx =Virx
' o = (B.1)

The lateral creepage in the body coordinates is

Vigy = V*
. wy — Vv (8.2)

LO v

The spin creepage in the body coordinates is

, o'yz — o'rz
sp=—E T2 (8.3)
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lateral velocity of wheel

lateral velocity of wheel
lateral velocity of wheel

lateral velocity of rail

w'yz = angular velocity of wheel in vertical direction
'y = angular velocity of rail in vertical direction
v = nominal velocity

The position vector of the contact point at the left wheel is

-

Ry =xI"4+y]" +2k" +(A=A)] =Rk’ (B.4)
=[x — (A — A) cos ¢ sin Y — R, sin ¢ sin y]7 "
+ [y +(A—Ap) cos ¢ cos y + R sin ¢ cos w]f"'

+[z+(A—Ay)sing —R, cos $]k " (B.5)

By differentiating the position vector, the velocity of the left wheel is obtained

‘-;w:. =[x-—(A- A‘_)Jz cos ¢ cos ¢]7'" +[y+ R,_é& cos ¢ cos w]f”'
+[2+(A—A)¢ cos g1k (8.6)
= V'WXL ;‘NI + VleL }.ll' + V’WZL ;Ill (8‘7)

The velocity of left rail at the contact point is

-

vy v 7 o v q = " '
VTL=(R—°+5)RLI =(R—°+ﬁ)RLCOS|III =VTXLl (BB)
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By substituting eq. (B.7) and (B.8) into eq. (B.1) and (B.2), the longitudinal and lateral

creepages at the left wheel are obtained

Viwxe =Vrxe  Ywee @L—Vrxe

& = v = v (8.9)
1 RL . N
=V [v(1 - —R—) — PR cos Y —(A— Ay cos ¢ cos y]cos ¢ (B.10)
(]
, Vit =Viye _ Viie 8y =0
v = - = (B.11)

= (—\17- )I¥ cos ¥ + R, cos ¢ cos®y — x sin Y] cos(5, + ¢)

+ ()2 + (A= A cos $]sin(5, + ¢) (8.12)
To find the spin creepage, the angular velocity of the wheelset (A.7) is recalled

Sw=d1'+(Q+p+ysing)] +ycosdk’ (8.13)

and the rail angular velocity is zero for tangent track.
wr=0 (B.14)

Then, substituting (B.13) and (B.14) into (B.3), the splh creepage for the left wheel is

Fopp = AL (8.15)
=-—1‘7-[)// cos(é, +¢) —Qsind ] (8.16)

When assuming small angle and neglecting the higher-order term, the creepages of the left

wheel, eq. (B.10), (B.12) and (B.16), become
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.1 Ry - ;
i =7{V[1-(?0‘)]—ﬂRL‘A'/’} (8.17)
Y= U+ R - Vi) (8.18)
EspL = (¥ — Q6)) (B.19)

Notice that ', . {Y, and ¢, are the input data of the program FASTSIM, they are used to
determine the creep forces and moment (F%, , F\,,, M%) (see Section 2.4 for detail). Similarly,
the creepages, {q, $'yr and {'seq . for the right wheel can be obtained by the following proce-

dures. The position vector of the contact point at the right wheel is

-

RR=xi"+y]" +zk" —(A+Ag)] ' —Ryk" (8.20)
= [X + (A + Ag) cos ¢ sin ¥ — Ry sin ¢ sin 7
+ [y — (A + AR) cos ¢ cos ¥ + Rg sin ¢ cos ulz]f’"
+[2—= (A + Ag) sin ¢ — Rp cos ¢k ' (8.21)
The velocity of right wheel at contact point is
Vwr=[X — (A + Ap)¥ cos ¢ cos ¥17 ™ + [V + Rpé cos ¢ cos 1] "
+[2—(A+AR)d cos $1k " (B.22)
=Viexr 1 " +Vieyr ] "+ Vigzp k" (B.23)
The velocity of right rail at contact point is
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vV s TV T =V 1’
VTR=(R—°+ﬂ)RRI =(R—0+ﬁ)RRCOSlIII =VTxRI

(B.24)

Substitution of eq. (B.21) - (B.24) into eq. (B.1) - (B.3), the creepages for the right wheel can

be derived

Er = Vwxr = V'rxr _VYur* &1r— VxR
XR v vV

= % {tva - 2—': cosy)+(A+ AR)Jz cos ¢ cos ¥ ]} cos

. _Vwyr =V7vrR _ Vwr* €r—0
YR ™ v = v

= (—‘1/- )Ly cos y + Rg cos ¢ cos’;/;& — x sin Y] cos(ég — ¢)
= (77 2+ (A + BR)é cos $] sin(3, — ¢)

a; L4 ; . .
¢'spr = ‘w' = ‘\17 [¥ cos(dg — ¢) + Q2 sin 6g]

(B.25)

(B.26)

(8.27)

(B.28)

When assuming small angle and neglecting the higher-order term, the creepages of the right

wheel become
. A Rr 1 _ & :
Sxr = VI "('k';)]"pRR+A'I‘}
YR =‘\17'{Y+RR$ -}

Espr =7 (V +Qg)
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Appendix C. Derivation of Equations of Motion for

the 5 d.o.f. Half-Car Model

half-car model from Lagrange’s equation. The kinetic energy, potential energy, dissipative
energy and generalized forces are obtained, then they are substituted into Lagrange’s

equation to derive equations of motion.

Lagrange’s equation is as follows

d.9T. 8T . AV 4D _
dt(ad,) (aq,)+aq,+a(7, Qa

This appendix discusses the derivation of the equations of motion for the 5-degree-of-freedom
(C.9)
|

where
T = kinetic energy
v = potential energy
D =  dissipative energy
q = generalized coordinates (Y, ¥y, Wy, Ye, ©c)
Qg = generalized forces
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Kinetic Energy

N
1.2 B 1 =T 16 =
T=){4mBo,+ Ro,++ al-07+3)

=1

total kinetic energy

number of the rigid bodies

mass of the rigid body i

velocity of the c.g. of the rigid body i

angular velocity of the rigid body i

moment of inertia of the rigid body i with respect to its c.g.

kinetic energy of wheelsets:

. . . . 1 i I
Tw= -;—- MuL(Yr +L¥)? + (Vr = L¥p)? ] + 2 @wz)(¥r + )’

kinetic energy of sideframes:

Te= % (@Mp)YF + ';‘ @MV, + ‘%‘ @)V} (C.9)
kinetic energy of bolster:

Tg= % (Mg)(Yc + H,9c)* + % laz(¥r +¥y)* + % lax®% (C.5)

kinetic energy of car body:

1Mo a1 lex o
the total kinetic energy:
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T= TW+TF+TB+TC

d
— = (2My, + 2Mp)Y
(6Y ) =(2My, Y7

d
—( 2%, ) = @MyL? + 2z + 2z + )P 7 + @lyz + Is2) Vi

ot (""—) = (2yz + 12) ¥ + Q@lyz + 2MD? + 1) ¥y

Mc
t (——") Mg +—)Yc + MgH,®c

%( 8 d¢ ) = MgH, Ve + (MgH; + Ipy '*'ICTX)@C
_67Tr‘=°
3"\;—r=o
aa\yrw =0
aayi. =0
3"(’%_0
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(C.8)

(C.9)

(C.10)

(€.11)

(C.12)

(€.13)

(C.14)

(C.15)

(C.16)

(€A7)
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Potential Energy

M N
V=D (S KRR} + D (migh)

=1 =1

total potential energy

number of the springs

spring constant

= number of the rigid bodies

m, = mass of the rigid body i
g = gravitational constant
h, = elevation of the rigid body i

ﬁ, = relative displacement of spring i
strain energy due to Kgy :

Vi, =5 (Kay)(Yr — Hyc = Yo)? (C.19)
strain energy due to K,; :

Vg =3 Kozl + DOc = DBy + 3 Kgz(Zy — D¢ + DBy (C.20)
strain energy due to Ky :

Vige =3 Kaw¥iy (c.21)
strain energy due to Ky :
|

View =5 Kew(¥r + ¥’ (22
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potential energy due to gravity:
V= @My + 2Mp)gZy (C.23)
the total potential energy:

V= VKBY + VKGZ + VKBY + VKCY + VW (C24)

Vv
A = 2Kgy(Yr — Hy®p — Y) (C.25)
IV _k v
a\yr = C‘P(‘yT"" W) (C-26)
Y Kg¥r+ (Kgy + Kog)¥
3y, ~ Ker¥r+ Koy +Key¥w (C.27)
OV Ky (Yr—H D~ Y, | c.28
Ve sy(Yr — Hy®¢ — Y¢) (C.28)
BV oKgyHy(Y = Hy®p = Y() + 2K, DX (D — B
a0, — ~ HKerha(Yr = Hy®c = Yc) + 2KpzD"(Pc = By) (C.29)
Dissipative Energy
M 1 . .
D=)(4+cRi- R ) (C.30)
it
where

D = total dissipative energy

M = number of the dampers

C = damping coefficient

ﬁ, = relative velocity of damper i

-
\

dissipative energy due to C,y :
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1 p : 5 (2
De,, =5 (2Cay)(Y7 — Ho®c = Y¢)
dissipative energy due to C,; :

1 - . - 1 - . —
De,, = Caz(Zw+Dbc - DD,)% + - Coz(Zw— DPc + DD,)?

dissipative energy due to Cyy :

1 32
Deyy =7 Covtw
dissipative energy due to C.y :
_A1 ; iy \2
DCCY = —2' CC‘I’(\YT + \yw)

the total dissipative energy:

D =DCBY+ Dcaz + DCBY+DCCY

a D . . .
——=2Cay(Y7 — HyDpr — Y,

2v, sy(Yr — Ha®¢c - Y¢)

a D . o

—=C +Yv

¥, cv(¥r+ ¥y

aD = CC‘I’\?T -+ (CB‘I’ + CC‘I‘)\PW

W,y

0D o —2Cay(Vr = Hybe = Vo)

3Ye

a D . . . 2, -

|. 7 Y 2CgyHy(Yr — Hy®c — Y¢) + 2Cgz2D° (P — Dy)
c
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(C.34)

(C.35)

(C.36)

(€.37)

(C.38)

(C.39)

(C.40)




Generalized Force

generalized force
N = number of the rigid bodies
I-'., = total external force on the rigid body i
f&, = position vector at any point A
A?i,i = total external moment about point A
w, = angular velocity of the rigid body i
Q,, = generalized forces (Qyr, Qyr. Qvw: Qver Qoc)
Qy,=Fr+F,

Qy, = (Fr— F)L + My+ M,

Q‘!’W=MI+Mr
ch=0
QQ =0

(4

(C.42)

(C.43)

(C.44)

(C.45)

(C.46)

By substituting (3.1)-(3.4) into (C.42)-(C.44), the generalized forces are expressed in terms of

the creep forces and moments. The generalized force for the generalized coordinate Y;,

Qy, =Fxr(¥w + ¥r1) + Fypr — WDy

where
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Fxtr=Fxir + F're + Fxrr + F'xrr

Fytr=FyLr + Fyre + Fyr, + Fygy

Opry=(“EF) 1 O+ (L) 1 0,
The generalized force for the generalized coordinate ¥,
Qy, = AFyp-1) + Fa—Fo + MYy + ¥1) + Mz,
where
Fx®-1) = F'xre + F'xar — Fxir + Fxir
Fa=F'xreBpr+ Fxpe Bre + FxieBre+ Fxir ALr
Fo = (F'xrtRrr + FxutRip)Pwr + (Fxrr RrR + Fxir RLR)Pwr

Or+ Opr + Or+ Opr
2 2

My = AW (

Mzrr=M71r + Mzpr + Mz, + Mz,
The generalized force for the generalized coordinate ¥,
Qp, =Mee(¥y + Y1) + AFyp_r) + LFyq_ry+ Wa®Q(_p+ Fp — Fo + Mz,
where

Fy¢—ry=Fyrr + Fyrr — Fyir — Fyge

Fx—ry = F'xrt + F'xrt = F'xir — F'xrr
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(C.49)

(C.50)

(C.51)

(C.52)

(C.53)

(C.54)

(C.55)

(C.56)

(C.57)

(C.58)

(C.59)
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Mgp =My + LFy_p (C.60)

6, —6 64— 9
Oy = (—5—5) + By — (—H5L) — By (C.61)

By the substitution of partial derivative of kinetic energy (C.8)-(C.17), potential energy
(C.29)-(C.29), dissipative energy (C.36)-(C.40), and generalized forces (C.42)-(C.46) into

Lagrange’s equation (C.1), the equations of motion are obtained

truck lateral (Y;) :

(2My + 2Mp)Yr + 2Cy(Yr = Hyde = Vo) + 2Kgy(Yr — Hy®c — Yo) = Fr+ F,

truck yaw (¥,) :
@MyL? + 2z + 2z + Ig2) ¥r + 2z + 1) Py + Copl¥r + ¥i) + Kew(¥r + )

=M+ M, + (F,— F,)L

truck warp (V) :
@iz +ls2)¥r + @MeD? + 2lyz + Ig) ¥y + Cop¥r + (Cow + Cop) Wy

+ KC‘P‘PT + (KB‘F + KC‘I’)\I’W = Mf+ M,- (064)

car body lateral (V) :

Mco . . . . .
(Mg +—5=)Yc + MgHOc — 2Cy(Y7 — Hy®c — Y¢)
- 2KBY(YT - sz)c - Yc) = 0 . (C.SS)
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car body roll (®.) :

. lex <= . . :
MgH,Ve + (MgH + Igy + —5)®¢ = 2CgyHy(Yr — Hyc — Vo) + 2CgzD°d

— 2KgyHy(Yr — Hy®c — Y¢) + 2KgzD D = 2C5,0%D,, + 2K ,0°Dyy
In order to simplify the equations, the following symbols are defined
My = (2Myy, + 2Mg)
Irr = (@MyL? + 2lyp + 2z + Igz)
lrw= 2lwz +1g2)
lww = @MED? + 217 + Ig7)
Cac = (Cgy + Cev)

Kse = (Kgy + Kcw)
Mc
Mgc = (Mg +—=)
2 lex
lcc = (MgHy +Igy + =)

Cec = (2CayH3 +2C5zD?)

2 2
Kee = (2KgyHy + 2KgzD")
then, the equations of motion become
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(C.67)

(C.68)

(C.69)

(C.70)

(€.71)

(€.72)

(€.73)

(C.74)

(C.75)

(C.76)
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truck lateral :

MpYr+2Cgy (Y1 = Hydc — Y) + 2Kgy (Y7 — Hy®c — Yo) = Fr+ F,

truck yaw :

Irr¥r + Py + Cop(¥r + W) + Kop(¥r + W) = My + M, + (Fr= FL

truck warp :

lrw¥r + lywPw + Cop¥r + CocWyw + KogWr + KgoWy = My + M,

car body lateral :

MgcYc + MgHy®c — 2Cgy(Y7 = Hydc = Ye) — 2Kgy(Yr — Hy®c = Y¢) =0

car body roll :

MgHyY o + loc®g = 2CgyHy(Yr = Ye) + Coc®e — 2KgyHy(Yr — Vo) + Koc®c

= 208202-5W + 2K32026w
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(C.78)

(C.79)

(C.80)

(C.81)
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and the equations of motion are expressed in matrix form,

[ M, 0 0 0 o

o /rmlrw O 0
0 0
Mgc MgH,

Irw ww
0 0
0 0 MgHy Icc

-

2Cgy 0 0 —2Cgy —2CgyH,
0 Cc\y CC\Y 0 0

0  Cey Cge O 0
-26gy o o Gy 2CgyH;

—2CgyH; 0 0 2CgyH;  Cec

2Kgy 0 0 =2Kgy —2KgyH, Yr

0 Key Kewy 0 0 ¥r

+ 0 Key Kge O 0 Yw
=2Kgy g o 2Kgy 2KgyH, Yo

—2KgyH; 0 0 2KgyHy  Kee R |
B ;
Fr+F,
M+ M, + (F,= F )L
= M;+ M, (C.82)
0
2Cp,0%®y + 2K 0%y,
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