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I. DISCRIMINATION AND THE QUASI-RANK 

MULTIPLE CORRELATION COEFFICIENT 

1.1 Basis and History of Discriminant Analysis 

When individuals forming a sample can be classified into 

two or more groups, it is of interest to study how the classi-

fication of a given individual might be based on a set of 

measurements. Which measurable characteristics of an indi-

vidual are relevant for this purpose is largely a matter for 

judgement of a specialist in the field of application. 

An early example from the field of plant taxonomy is 

provided by Fisher {1936). Wishing to classify a given speci-

men of iris as Iris setosa or Iris versicolor, he utilizes 

measurements of sepal length, sepal width, petal length, and 

petal width. 

A second example is given by Rao (1948) of a problem in 

anthropological classification in which an Indian individual 

is to be classified as belonging to one of three castes 

(Brahmin, Artisan, Korwa) on the basis of measurements upon 

four of his physical characteristics. 

More recently, Anderson (1958) describes an example from 

the field of education - the admissions problem. Prospective 

students applying for admission into college are in one of 

two groups - those who have potentialities for successful 
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completion of the work, and those who have not. Classifi-

cation is based on the results of a battery of tests. 

The several measurements can be combined in various ways 

to provide a score for the individual. Under certain standard 

assumptions it happens that a linear combination of the 

measurements is most useful in discriminating between indivi-

duals from distinct groups. In fact, one usually assumes 

that the vector of measurements for individuals selected at 

random from a given group has a multivariate normal distribu-

tion with covariance matrix L, L being the same for each 

group. 

Suppose there are just two groups, TT1 and TT2 • Assume 

as suggested above that the vector-valued measurement ~i for 

an individual selected at random from lTi has a multivariate 

normal distribution with mean H· and covariance matrix~, 
1 

i = i,2. A randomly chosen individual with measurement 

vector JS; may then be from TT1 or from IT2 • Let R1 be the set 

of values of~ for which the individual is classified as 

belonging to TT1 • Considering the problem from the stand-

point of statistical decision functions (an approach first 

used by Wald ( lli~44) )., .. Anderson ( 1958) shows· ·that the bef~t, 

regi.on R1· is of the form: 
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where k depends on a-priori probabilities of TT1 or TT2 and 

also on the relative costs of misclassification. We note 
, -1( ) that the "discriminant function,"~ I: g 1 - g 2 , is a 

linear function of the measurement components. 

To form this discriminant function, one must know 

g 1 , g 2 , and I:, a circumstance which can be assumed in the 

presence of a large amount of relevant data. 

If this prior information is not available, one could 

for calibration purposes employ random samples ~ll' ~12 , 

·••, ~1n1 and ~2l' ~22 , •··, x2n from TT1 , TT; respectively. 
- 2 

With: 

1.1.2 i = 1,2 

n· l 
I: (x .. - x.) (x .. x.) 

-1J -1 -1J -1 j=l 

one might use as criterion of classification (as does Wald) 

the statistic W!' 

W = x's- 1 (x - _x2) - -1 • 

.. 

Wald (1944) gives the large sample distribution of Wand also 

investigates its exact distribution. His results for the 

exact distribution are neither simple nor in a form suitable 

for applicational use. 

' 
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Generalizations can proceed in the direction of: 

i) allowing more than two groups, or 

ii) relaxing even further the assumptions concerning the 

underlying probability distribution. 

Further discussion and references to the work of others 

may be found in excellent summaries by Anderson (1958) and 

Isaacson (1954). 

1.2 Some Difficulties in the Standard Discriminant Analysis 

Recall from above that unless large calibration samples 

are available one is faced with the necessity of developing 

better approximations to the distribution of W than are now 

available. There are other difficulties. 

One is presumed to have a-priori probabilities of TTi~ 

Except in special cases, this information is at best only 

approximately known. 

In the case of animal populations, one has the natural 

dichotomy of male and female. Students of plant taxonomy 

and anthropology proceed from the hypothesis of distinct 

and recognizable species, firmly established as biological 

responses to specialized conditions maintained over long 

periods of time. But one is perhaps less able to defend the 

hypothesis of distinct groups of human beings with respect 

to the possibility of achieving a given educational outcome. 
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Calibration samples are assumed to be drawn at random 

from TT1 and TT2 • To appreciate the force of this assump-

tion, consider the case in which just two measurements (or 

tests) are employed. Typical probability contours for TT1 
and TT2 are represented in Figure I. 

Figure I 

Test Response Probabilities with Two Populations 

Test 2 

Tf2 contours 

Tr1 contours 

Test 1 

In the iris example one can readily conceive how the 

necessary random samples might be selected, utilizing well-

identified pure plantings of iris. 

With the admissions problem the situation is not so 

clear. It has been suggested that for calibration purposes 

one might use two groups - those students who are "unquestion-

ably successful" and those "clearly unsuccessful", leaving 
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out of consideration any students for whom a clear decision 

cannot be made one way or the other. An immediate consequence 

is that assumptions of normality and random selection of the 

measurements are no longer valid. Figure II is included to 

illustrate these remarks. If for example the failure group 

contours are horizontal sections of a normal surface, the 

probability distribution of the "clearly unsuccessful" group 

would hardly be normal. 

Figure II 

Nonnormality of the Probability Surface for Extreme Groups 

Test 2 

SU 
gr 

" 

Test 1 
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The purpose of this thesis is to develop a working model 

for a class of problems, including the admissions problem, 

for which the assumptions can be more adequately justified. 

1.3 Description and Assumptions of the Statistical Model 

A battery of tests T1 , ••• , Tp is administered to each 

of n individuals: Il 1 , ••• ,.fl n. The resulting (observable) 

scores for individual fi i will ·be denoted xli, x2i, • • • ' X . • pl 
In addition,[l i has non-observable score x0i (on a criterion 

test T0 ) which is reflected. in a rank forfl i which can be 

observed. Then individuals are labeled so that this rank 

for.f1 i is i, and we then }?.ave the following array of data: 

INDIVIDUAL 

TEST 111 fl 2 ... .n n 

To (xo1> (x02) . . . (xon) 

T 1 x11 xl2 . . . xln 

• • • • . . • . . . 
• • • . . 
Tp xpl xp2 • • • xpn 
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To give a rather general setting for subsequent choice 

of a mathematical model, we note that for any individual we 

may observe a vector of measurements x and what we shall call 

an "indicator" d. The indicator may take a variety of forms; 

for example, one may put d = 0 if the individual lacks a 

characteristic (e.g., is in a failure group), d = 1 otherwise. 

U:;,ing the language of the admissions problem, we may further 

refine the classification by letting d take one of three 

values according as an individual is unsuccessful, unresolved, 

or successful. The most complete subdivision is by ranks, 

and it is to this situation that the work of this thesis is 

directed. Thus the indicator is itself a random variable 

correlated in some manner with the elements in vector~-

A "discriminant function" which might well be used in 

the admissions problem is that linear combination of part 

scores which produces a maximum simple correlation with ranks. 

This maximum simple correlation, which we denote R, is 

acqually the multiple correlation of ranks with part scores. 

In the sequel we shall study the distribution of R, the 

"Quasi-rank" multiple correlation coefficient. 

In particular, we find in Chapter 2 the null distribu-

tion of R2 , and that the hth moment of R2 for general pis 

expressible as the h1h moment of R2 in the case p = 1 

multiplied by a function of sample size and h alone. Chapter 
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3 is devoted, consequently, to the distribution of R in the 

case p = 1. We find there, for this case of p = 1, the 

first four raw moments of R. We then complete the discussion 

begun in Chapter 2, giving the first two raw moments of R2 

for general p. 

At this stage, we are able to construct tests of 

independence based on the statistic R2 • Fitting a Pearson 

system density to the known moments of R2 we approximate 

in Chapter 5 the power of such tests. In addition, we 

develop the asymptotic relative efficiency of R2 compared 

with the standard multiple correlation coefficient, and 

illustrate our findings in a demonstration study. 

The development in Chapter 3 required a knowledge of 
n 

the first four moments of the statistic X, X = I: ( i - n;l) 
1 

wherein thew. are the standard normal order statistics from 
l 

a random sample of size n. These are found in Chapter 4. 
As a linear combination of quasi-ranges, it was felt that 

the statistic X itself is of sufficient interest to warrant 

inclusion in a final chapter the joint moment generating 
n 

function of X2 and S2 = I: (w. - w) 2 • 
1 l 
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II. SOME FIRST RESULTS ON THE DISTRIBUTION OF R2 

2.1 Invariance Properties of R2 

We first define some terms which are used in the sequel. 

Let V be a p-square positive definite symmetric matrix 

and 1f = (µ1 , µ2 , ••• , µp) be a vector of constants. When we 

require that a p-component vector~: x' = (x1 , x2 , ••• , xp) 

have the p-variate normal distribution with mean g and disper-

sion matrix V; that is, that x have the density: 

p 1 

( ) 2 IV I -2 exp ' 1 2n [-½(~ - g) v- (1f - g) J 

over the domain -co < x. < CD 
l 

(i = 1,2, ••• ,n), we shall write 

for brevity: 

2.1.2 X ,,,.......N [ II. : V J - p i=. 

Let V be a p-square positive definite symmetric matrix 

and C be a p-square matrix with (i,j)-element c .. (= c .. ) lJ Jl 
When we require that matrix C have the Wishart distribution 

with v degrees of freedom and dispersion matrix v; that is, 

that C have the density: 

V V-p-1 
1v1- 2 lei 2 exp [-½tr (v-1 C) J 

v ,\p( p-l) );, f v+l-j] 
2 TT j=l r [ 2 

• 



- 15 -

over the domain of all c .. for which C is positive definite, lJ 
we shall write for brevity: 

2.1.4 C W [V : v] , p 

It will be assumed that random vectors: 

( Xo . ' xl . ' •.. ' X . ) l l pl 
i=l,2, ..• ,n 

have a (p + 1)-variate normal distribution. 

Let d. be any "standardized measure of rank''· That is, 
l 

suppose that d. is a constant or "indicator" associated with 
l 

rank i such that: 
n 

2.1.5 I d. = 0 and 
1 l 

n 2 
I d. = 1 
1 l 

Define: 

2.1.7 • • • ' X . } pl i = 1,2, ••• ,n 

2.1.8 

The square of the multiple correlation of the d. with 
l 

"part scores" x. is then: -l 

2.1.10 
n 
I d. (x.-x) l l -l -
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It may seem that for the most complete generality one 

should assume: 

2.1.11 

That R2 does not depend on g is clear; so we may as 

well take g = Q for the discussion of R2 defined by equation 

(2.1.10). 

It is also easily seen that R2 is invariant under trans-

formations of the type: 

with a f O and D nonsingular. 
1 

Taking a= 0 11- 2 and D such that 

2.1.13 

then: 

2.1.14 

where: 
1 

p = oll-2 D o(l) • 

p 

I 
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Thus, we may actually without loss in generality take: 

for the discussion of the distribution of R2 defined in 

equation (2.1.10). 

Now the square of the population multiple correlation 

coefficient between x0i and ~(i) is, under the assumption of 

equation (2.1.11), given by: 

2.1.17 
,. -1 

0 I: 0{l} R2 = ( 1) 22 __ 
0 

But, from equation (2.1.13) we have: 

I -l = D'D 22 

Thus, R5 may be written as: 

R2 
0 

• 

In view of the equation (2.1.15) we have: 

2.1.19 B,2 
0 = p p • 



18 -

2.2 Lemmas 

We list a series of lemmas which will prove useful in 

the development of the distribution of R2 • Since they are 

little more than special cases of well-known theorems, their 

proofs will be but briefly indicated. 

Lemma 1. 

If: 

( i) 

(ii) 

(iii) 

then: 

2.2.1 

Proof: 

j = 1,2, ••• ,N 

u. is independent of u. for i I J. 
-i -J 

A= (a .. ) is a symmetric idempotent matrix of rank t lJ 
( t > p) 

N N 
I I al. J. l!i· l!J'. r"\ WP ( I : t ) 

i=l j=l 

This is a special case of Corollary 7.4.1, p. 165, 

Anderson (1958). 

Lemma 2. 

If: 

( i) x. ,-.. Np{g(i) . Mj i = 1,2, ••• ,n . -i 

(ii) x. is independent of X. for i f- j -i -J 
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a a 1 

a a2 

(iii) Kl is orthogonal, . . 
a a n 

a-2 n 
= L a. z 

1 l 

(Kl) .. = k .. 
lJ lJ 

~l al rJ 
X 

~2 a2 .!2:1 
(iv) = Kl V = n - 1 . 

X a u -n n -v 

then: 

n a•{£ a.g(i) a'M) 2.2.2a ~ = aZ L x.,..-_N . 
X a. . 

1 l -1 p l \ 1 

2.2.2b u. ~N { f k g(m) . M) i = 1,2, ... ,v -1 p m=l mi . 

2.2.2c u. is independent of u. for i f j -1 -J 

2.2.2d ,.., 
is independent of i 1,2, •.. ,v X u. ' . 

-1 

n V 

2.2.2e L (x. - a. i) (x. - a. ]) = L u. u. 
1 -1 l -1 l 1 -1 -1 



Proof: 

From condition 

al 

a2 
2.2.3 

(iii): 

-1 

Kl 
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. . . 
K , 

1 

Hence condition (iv) can be written in the form: 

,-
X ];l 

Jd1 a2a a 2 a a 2a ];2 ... 
2.2.4 = 1 2 n . 

Kl 
, . . . 

Jd\} ];n 

Thus (2.2.2a) and (2.2.2b) clearly follow from condition (i). 

Next, identify: 

~ X = U , - -n 
( kl ,k2 , ••• ,k ) n n · nn 

Then (2.2.4) may be written in the form: 

Jd1 kll k21 ... knl ];l 

Jd2 k12 k22 . . . k n2 ];2 
2.2.6 = . . . . • . . . . . 

u kln k2n -n ... k X nn -n 
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It is now simple to verify that component a of gs is 

independent of component of gt for s It and a = 1,2, ••• ,p. 

Thus (2.2.2c) and (2.2.2d) are true. 

Finally, (2.2.2e) is an algebraic fact which follows 

easily on writing 

,..., 
2f1 - al X 

r-
2f2 - a2 X 

2.2.7 . . . 
,,..., 

X -n - a n X 

and noting that Kl' Kl 

Lemma 3. 

Suppose that: 

( i ) 

and that 

, 

= 

= Iv 

gl 

g2 

. . 
g\) 

. 

. . 

, 

Kl 
, 

i=l,2, ••• ,n 

[.e.l QI p, j- ·1 J i.. 1 , 2 , ••• , n 
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Then: 

2.2.sa x. I x0 . , ....... N [ P x0 . : IP 
-l l p l 

pp'] i 1,2, .•. ,n 

and: 

2.2.Sb r ( x. , x . I x0 . , x0 . ) = r ( x. I x0 . ) r ( x . I x0 . ) i r j 
-i -J l J -i l -J J 

i.e., ~i and ~j are independent conditional on (x01 , x0 j), and 

the distribution of ~i conditional on (xOi' x0 j) is independent 

of x0 j. 

Proof: 

The strategy is to find the joint density of ~r/x0r and 

~ 3 /x08 for r < s. 

To do this, consider the joint density of all the x .. : lJ 

n! n 
2.2.9 exp t-½ I: (xOi z + Q.)} 

(p+l)n 1 l 

( -/2rr) n 
'T, 

where: 
l 1 

2.2ol0 'T, - I Ip - p p, ! 2 = ( 1 - p'p)2 

and 

2.2.11 
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Integrate out variates (x01 : ~{) for all i except for 

i =rand i = s. 

Dividing this result by the joint density of xOr' xOs' 

we obtain: 

1 

Thus, conclusions (2.2.sa) and (2.2.gb) are both valid. 

2.3 Distribution of R2 : Some First Results Under the Alter-

native _Hypothesis. 

Lemma 3 provides a point of departure in developing the 

distribution of R2 • 

Thus, we discuss the distribution of R2 given by Formula 

(2.1.10), where 

x. /x0 . -l l 

x, lxo· -i 1. 

d. is 
l 

is 

such 

: I - p P} p 

independent of X. lxo. -J J 

n n 
that I: d. - 0 and z 

1 l 1 

for i 7= j 

d. 2 = 1. 
l 

To simplify the form of R2 , we first employ a Helmert 

transformation. 
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with: 

1 1 1 ... 1 1 -11-2 /w ~4 (n-l)n 

-1 1 1 ... 1 1 
,.r:s-:4 I (n-l)n 

-2 1 ... 1 2.3.1 K = 1 0 
-/2:J -l"T-4 (n-l)n 

. . . . . . . . . . . . . . . . 
-( n-1) 

1 0 0 0 ... 
I (n-l)n 

let 

2.3.2 [~l' ~2' • • • , X ] , = K[j, 1!:1, ••• , _g\/]', V = n-1 -n 

Also, let: 

2.3.3 

and: 

Then 

2.3.6 
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and: 

2.3.7 

By Lemma 2, 

2.3.s u. I uo . r, N rs . -l l p -l 
I p 

p p, } 

and: 

u. lu0 . is independent of u. /u0 . for id j 
-i l -J J / 

where: 

Next, let O be orthogonal with first row: 

Then: 

implies that 

2.3.10 w. ju0 ." N -l l p 

r 

J 
l 
l 

1 ... r 2 

0 0 

. . 

0 0 

i=l,2, ... ,n 

£ p.z 
1 l 

i=l,2, ••• ,v 

O' 

I p-1 

j 
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2.3.11 

where: 
V 

2.3.12 .~ = I: e. w. . 
1 l -1 

Let: 

2.3.13 [1-:2 o' J M • 
Ip-1 

Employ transformation: 

2.3.14 i = 1,2, ••• ,v 

Then: 

6 UOi 

0 
2.3.15 y . I u0 . "' N . I . 

-l l p . p . 
• 

0 

where 7 6 = --;=== 
1-72 

In terms of the population multiple correlation 

coefficient R0 , 
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Also, 
\) , J-1,.., R2 =-y'[i: y. y. y 

l l 1 - -

where: 

\) 

2.3.17 -y = i: e. Y· l l _l 

R2 may be written in the alternative form: 

2.3.18 R2 = y' [W + y y']'-1 y 

where: 
\) 

2.3.19 W = i: ( y. - e. y) ( y. - e. y)' 1 -l l - -l l _ 

Finally, introduce ~ii= 1,2, ••• ,v-l by an orthogonal 

transformation: 
,..,, 

Z1 el ' y 

Z2 e2 ~l 

2.3.20 = Kl . . . • . . . . . 0 

Y..v e v z -'V-1 



By Lemma 2 1 

2.3.21 

2.3.22 z. ,-.. N 
-1 p 

0 

• • • 

0 

- 28. -

• 

0 
i = 1,2, •••. ,v-l 

0 

-I and Ai are mutually independent, i = 1,2, ••• ,v-l 

and: 

2.3.23 

Thus, 

where: 

2.3.25 H - ,,_ ,,_~ - y y • 
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We hote that Wand Hare independent, conditional on 

Now: 

2.J.26 1 - R2 = 1 - R2 j 

But: 

1 ~, 
y 
- w + HI = (1 - R2 ) ~ y W+H 

= I W + H - H I 

Hence: 

2.J.27 1 - R2 I w I = . 
W + H 

Partitioning Wand H: 

1 p-1 

w = 
1 [wll WlJ 
p-1 W21 W22 

1 p-1 

H = 1 rll Hll 
p-1 H21 H22 



- 30 -

we may write 

2.3.28 1 - R2 

wll IG/ =----
wll + hll IL/ 

We shall now see with the aid of Lemma 1 that G and L 

have Wishart distributions which are independent of w11 and 

h11 , and that in fact /G/ / /L/ has a Beta distribution. 

Let: 

2.3.29 y -[I;J 
and 

-[zli l 2.3.30 z; -~;;)ij i 1,2, ... ,v-l -1 

so that 

2.3.31 hll ~ 2 = Y1 

v-1 
2.3.32 wll I: zli z . 

1 
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In view of statements (2.3.21) and (2.3.22) we see that 

h11 and w11 are independent noncentral Chi-square variates 

with noncentrality parameters we denote by /\.land 1\.2 

respectively. 

Now /\.land 1\.2 can be related to the x0i. 

Rewriting K, definition (2.3.1), 

K = 

we have: 

2.3.34 

2.3.35 

1 
1 

. . 
1 

p 

1 J 
n n 

where Jn denotes then-square matrix with each element unity. 

Using notions: 

2.3.36 

(d1 ,d2 , ••• ,dn)' = d 

(µOl'Uo2,···,µov)' = u -0 
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and returning to equations (2.3.3) and (2.3.4), we see that: 

2.3.37 

2.3.33 

Thus: 

2.3.39 

and 

, = d'P e 
, = ~o'P Jdo . 

,...,, 
= e'u = d'PP'x uo - -0 - -0 

, 

n 
~l = ½o2 [E d.xO. ]2 l l ·l 

Also, from (2.3.22), 

\1-l \I 
~2 = ½02 E [Ek . u0m] 2 

i=l m=l mi 

In view of the orthogonality of transformation (2.J.20), 

= e e 

P'd d'P 
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Thus, 

= 

and: 

2.3.44 

In summary, conditional on the x0i; h11 ,w11 have 

independent noncentral Chi-square distributions with degrees 

of freedom 1, v-1 and noncentrality parameters ~1 , ~2 
respectively. That is, conditionally: 

2 .3. 45 

In deriving the distribution of G, it is convenient to 

discuss first of all the distribution of G conditional on 

Using notations: 

2.3.47 

D v-1 

= ( 1) 
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G may be written: 

and 

2.3.50 

v-1 v-1 
G= I I a z z" st - ( 2 ) s - ( 2 ) t s=l t=l 

Noting that Jv-l D~-l Jv-l = w11 Jv-l' we see that A 

is idempotent. Also: 

2.3.51 tr (A) = n-3 

Thus, by Lemma 1, 

2.3.52 G ,.-... W l ( I : n-3) • p-

Since the conditional distribution of G given by 

(2.3.52) does not depend upon z11 , z12 , ... , z1 • 1 , it is • v-
actually the unconditional distribution of G. 

In the same way, consider the distribution of L 

conditional on ( z11 , z12 , • • •, z1: v-l' Y1) • 

For ease in discussing this distribution, identify: 

2.3.53 • 
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Then, 

2.3.54 i = 1,2, ••• ,v 

and ~( 2 )i is independent of ~( 2 )j for i # j. 

With 

2.3.55 

L may be 

2.3.56 

where 

ahd 

2.3.57 

that B_ is 

2.3.53 

Thus, by 

2.3.59 

written: 
\J \} 

z , 
z L = z z bst 1 1 -(2)s -(2)t 

bst = (B)st 

B = Iv 
1 D + hll wll \J 

Noting that JV Dz J \} \} 

idempotent. Also: 

tr (B) = n-2 • 

Lemma 1, 

L .-. W l ( I : n-2) , p-

J \} DV • 

= (wll + hll) 

and this is the unconditional distribution of L. 

J v, we see 
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Also, both G and Lare independent of w11 and of h11 , and 

thus from (2.3.28): 

2.3.60 

conditional on the x0i • 

It is our next goal to show that 

distribution. 

/G/ 
/LI 

To this end, consider the expression 

2.3.61 1w1 
/w + H/ 

with 

2 .3. 62 w = , ,-v --, H = y y 

as in the allied expression (2.2.27). 

But this time we assume: 

has a Beta 

2.3.63 z. - N (0 : I) -1. , p - i = 1,2, ••• ,v--l 

z. independent of z. i # J0 

-1 -J 

2.3.64 

-y independent of z. 
- -1 i = 1 , 2 , ••• , v-1 

' 
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Carrying through the same partitioning and discussion 

of expression (2.3.60) as we did for expression (2.3.27), 

one obtains: 

1w1 
/w +HI 

= /G/ 
/1/ 

in which G and 1 have Wishart distributions identical with -those previously obtained, independent of w11 and h11 • 

-But now, w11 and h11 have independent central Chi-square 

distributions: 

2.3.66 

2.3.67 

Thus, 

2.3.68 
/G/ /W/ 

=----
/1/ /w +HI 
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Now, under assumptions {2.3.62) and (2.3.63), 

-W "W (I : v-1) p 

2.3.70 -Hr-.W (I: 1) p 

- -Since Wand Hare independent, 

lwl 
2.3.71 

and thus>:, /wl 
Jw + 1I I 

has the density: 

V-:P -1 
u 2 

-1 
2.3.72 1 ( ,::,. 

1-u) 

[ ..Y.=-12 , 12] B 2 2 

Also, 
IG I 

is independent of -
/LI 

and has the density: 

2 .3. 73 

0 < u < 1 

0<u<l. 

*For .a discussion of the U-statistic, see Anderson, T.W., 
(1958), pp. 191-202. 
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Thus, from equation (2.3.65), 

2.3.74 

If p = 1, then 

2.3.75 e {~\~ 
IL/hf 

and hence 

2.3.76 Pr { = 
/LI 

For p > 1, 

2.3.77 

/G/ 

1 

x} 

/W/ } h 
/w + 1il 

= 1, 

= o, 
X = 1 

X f 1 

[ + h - r) 
[ v~/ + h - ~( h) 

and hence - has the density: 
/LI 

1 u 
B [ ..Y.=.:Q ' .2=1 J 2 2 

..Y=.12:... 1 
2 { 1-u) 

.2=1 - l 
2 0 < u < 1. 
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Moment equation (2.3.60) may howvbe written: 

2.3.79 if p = 1 

or: 

2.3.ao 

if p > 1 • 

In view ef equations {2.3.79) and (2.J •. 80) we have 

complete knowledge of the moments of l-R2 subject only to a 

wll 
discussion of the moments of __ +_h_. 

wll 11 
As a by-product of 

a discussion in Chapter III of the distribution of R in the 

case p = 1, we shall obtain the first two unconditional 

moments of 

2.4 Distribution of R2 Unde~ the Null Hypothesis. 

Recall from Formula (2.1.19) that R5 = £'£ . According 

to the null hypothesis of no correlation in the population, 
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R3 = 0. Thus: 

2 .4.1 p'p = 0 ' 
and consequently: 

= 0 

Returning to statements (2.3.21) and (2.3.22) we now 

see that R6 = 0 implies conditions (2.3.63) and (2.3.64). 

Thus Formula (2.J.65) follows from the null hypothesis, and 

the density of l-R2 is the Beta density recorded in (2.3.72). 
With alternative hypothesis R3 > O, the critical region 

for a size a test of the null hypothesis is R2 >~,where 

is found from: 

O] = Pr[l-R2 < 1-~ IR =OJ= a. 0 

Thus, 1-~ is the lower 100a % point of the Beta distri-

bution with density: 

2.4.4 1 
[~ .12] 

B 2 ' 2 
u 
~-1 p'-'l 

2 ( 1-u) 2 0 < u < 1 
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The lower -5%, 1%, 2.5%, 5%, 10%, 25%, and 50% points of 

this Beta distribution are recorded in Pearson (1958), 

pp 142-155, for: 

p = 1 (1) 10, 12, 15, 20, 24, 30, 40, 60, 120 

v-p = 1 (1) 30, 40, 60, 120, oo • 
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III. DISTRIBUTION OF R IN THE CASE p=l 

A major finding in Chapter 2 is expressed in Formula 

(2.3.80), wherein the hth moment of l-R2 for general p, 

conditional on the set . } n 
lxoi l' is expressed as a multiple 

the hth moment of l-R2 , conditional on the set fxoi}~, in 

of 

the case p=l. The multiplier depends only on n and h; i.e., 

the multiplier is not a function of the x0i. 

In the present chapter we develop formulae for the 

first four unconditional moments of R in the case p=l. We 

can then write down the first two unconditional moments of 

l-R2 when p=l, and thus, through Formula (2.3.80), the 

first two unconditional moments of l-R2 for general p. 

3.1 Conditional Density and Moments of B: when p=l 

3.1.1 

Also: 

Specializing Lemma 3 of Chapter 2 to the case p=l: 

R -

x. lxo. r'\ N(pxo. : 1-pZ) 
J. J. J. 

n 
I: d. x. 
1 J. J. 

i = 1,2, ... ,n 
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In a first transformation of R, let: 

3.1.3 

Thus, 

where 

3.1.5 

and 

3.1.6 

and U· l 
is 

Let 

3.1.7 

x. = px0 . + l-p 2 u. 
l l l 

0 

n 
L'. d . ( ox0 . + u . ) 1 l l l 

i = 1,2, ••• ,n • 

u. r-. N(O,l) i = 1,2, ••• ,n 
l 

independent of u. 
J 

for i 'F j. 

ul + o(xOl xo) 1 -u 

u2 + o (x02 - xo) 1 vl 
- p n-1 \) . . . . . . . . 

Un + o(xOn - xo) 1 V \) 



where 

1 

-lw 

-1 
-lw 

3.1.s p = 0 

. . 
0 

Also, let: 

3.1.9 = 

- 45 -

1. 

1 

1 

1 

v"T-3 

1 

-12.J 

-2 
v"T-3 

. . . 
0 

p 

0 

1 

.IT:4 

1 

J ~4 

1 
.IT:4 

. . . 

. . . 
0 

. . . 

... 

... 

... 

1 
/ (n-l)n 

1 
/ (n-l)n 

1 
(n-l)n 

. . . 
- ( n-1) 

/ ( n-1) n 

The first entry in the vector on the right is zero in 
n 

view of the condition Ed. = O. 
1 l 

Then: 
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\J 
I: e.v. 
1 l l 

3.1.10 R = 

1 

where: 

vl xo1 - XQ 

-
V2 XQ2 - XO 

,.-, N 5p' 3.1.11 . \J . . . . 
V \J xon - xo 

Introducing the notation: 
\) 

3.1.12 v == E 
1 

e.v. 
l l 

, 

V 
I: v. 2 may be expressed: 
1 l 

\J V 
I: v.2 
1 l 

= I: ( V. - e .V) 2 + v2 
l l l 

In a final transformation with 

H orthogonal, let: 

e 
\J 

. I . 
V 
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-vl el V 

v2 e2 wl 
3.1.14 H • . • . . . . 

V 'J e v w v-1 

Then: 

3.1.15 

where: 

3.1.16 1 = 0 p' 

Thus, v and the wi are mutually independent, 

2.1.17 

where 

3.1.18 

and: 

3.1.19 
'J 
I: 
1 

(v. - e. 'v) 2 
l l 

v-1 
I: 
1 

w. 2 
l 

-
XOl - XO 

-
x02 - XO 

. . . 
-

xOn - XO 



Noting that: 

3.1.20 

it follows that 
v-1 

I: 
1 
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w. 2 has a noncentral Chi-square distri-
i 

bution with noncentrality parameter /\,2 : 

3.1.21 PHH'P' 

- ½02 ( [(x0i-X0)2 

...., 
The joint density of v and 

v-1 
I: 
1 

w. 2 
l 

is: 

3.1.22 

over the domain: -m<x<oo,O<y 
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Letting ~l = ½a1 2 and using standard techniques, the 

density of R conditional on the x0i is found to be: 

3.1.23 l - ( ~l + ~2) 0 

-VTT e 

CX) CX) 

I: I: 
i =o j=O 

over the domain: - 1 < r < 1 

The moments of R conditional on the x0i are easily 

derived using density {3.1.23) and the formula: 

3.1.24 
00 CX) 

I: I: 
i=O j=O 

CX) 

I: 
k=O 

f{k+a+b) 

where a and bare nonnegative integers and f is an 

arbitrary function. 
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If we define Ah (i,j) by: 

-+n-4 
r i+h(l'-r 2 )J 2 d (h .. 0 1 2 ) r ,1,J=, , , ... 

it is readily seen on using density (3.1.23) that the 

expected value of Rh conditional on (x01 , x02 , •··, x0n) is 

given by: 

3.1.26 = 

1 . . 
r[j+n+~-1] - ( A.l +A.2) 00 00 ( 4,A. ) 2lA.J 

1 I: I: 
1 .. 2 

Ah(i,j) -Irr e 
r[j+ n22] i=O j=O • T • T l ... J. 

Since Ah{i,j) is an integral over a domain symmetric 

in r=O, it is clear that: 

• 

0 ' h + i = 1 (mod 2) 
3.1.27 

B [h+2i +1 , J. + n-22] , ) h + i = 0 (mod 2 

so that the odd and even conditional moments of Rare best 

considered separately. 
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Case 1: h = 2m + 1 m = 0,1,2, .•• 

Since exponent i+2m+l must be even for A2m+l to be 

nonzero, we replace i by 2a+l in (3.1.25) and obtain: 

3.1.28 

Thus: 

3.1.29 

(J!) 

I I 
a=o j=0 a!j! 

m = 0,1,2, ••• 

Case 2: h = 2m 

r [a + i + m] 
r [a + 1] 

(a,j,m = 0,1,2, •.• ). 

r [a + j + ~] 
[ . n+l] r a+ J + m + -2-

m = 0,1,2, ..• 

Since exponent i+2m must be even for A2m to be nonzero, 

we replace i by 2a in (3.1.25) and obtain: 

A2m = B [ a + m + ½, j + n;/] (a, j ,m = 0, 1,2, •.• ) • 
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Thus: 

3 • 1 • 31 e, [ R zm /[ Xo i } l = 

- (r,.l + i\.2 ) 00 (l) i\.ai\.j r[a + ½ + m] 
r[a + j + n21] 

1 2 e 
t[a + ½] r [a + n-1 + m] a=o j=O a!j! j +-2 

m = 0,1,2, ••• 

For selected values of m, the double series in 

equations ( 3. 1. 2 9) and ( 3.1.31) can be expressed in simple 

series form by applications of summation formula (3.1.24). 

Thus: 

3.1.32 

3.1.33 E, [ R 2 I{ XO i } r] = 

; - ( i\.l + i\.2) (l) 

i\.l e 
k=O 

3 i\.½ + 2 1 e 
.... { i\.l +i\.2) 

CD ( i\.l + i\.2 ) k 

k ! ( k + n;l) 
+ ½ 

k=O 

( i\.l + i\.2) k r[k + n;2J 

k! r (k + n;t5] 

CD (i\.l + k2) k r[k + ~] 
r [k + 113] k=O k! 

r [k + ~] 
r [k + n;1] 



+l 
4 

00 
I: 

k=O 

CX) 

I: 
k=O 

(X) 

I: 
k=O 

- 53 -

(2) 

[ ]
(2} 

k ! k + n;3 . 
• 

These are the first four moments about zero of R 

conditional on the set of unknowns x0i. We now obtain the 

unconditional moments of R. 

3.2 Unconditional Moments of R 

Using notations 

n 
3.2.1 32 = I: (xOi - xO)Z 

1 

~2 =[[ 2 
3.2.2 d. XOi] l 
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the parameters ~land ~2 of Section 1 become: 

3.2.3 

~2 = ½ 52 r s2 

To simplify the exposition to follow, we state: 

Theorem 3.2.1 

If x0i (i = 1,2, •.. ,n) are the standard normal order 

statistics from a sample of size n, then: 

11.: sz is independent of S2 • 

Proof: 

Since x0 and S2 are symmetric in the observations xOi' 

the joint distribution of x0 and S2 is the same whether the 

x0i are ordered or not. For the unordered sample, it is 

well known that (x0 , S2 ) is sufficient for(µ, 0 2 ) and that 

the density of (i0 , S2 ) is complete. Therefore (x0 , S2 ) is 

statistically independent of any statistic which is inde-

pendent of scale and location. 
2 

Now .2l: is clearly independent of scale and 32 is 32 n 
independent of location. Further, since I: d. = o, '172 is also 

1 l 

independent of location. 



Let: 

3.2.6 
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')'")2 ,:, 
Thus, ..:..Lis independent of s~ as stated. 32 

..n.. = 

1 ( i d. =~ -2 
l 

i = 1,2, •.. ,n , 

n 

n 
With this choice of the di., conditions Ed. = 0 and 

1 l 

E d. 2 = 1 are clearly satisfied. 
1 l 

Further, let: 

Then: 

3.2.9 

n 
X = E ( i· - n+l) 

l 2 XOi 

12 
172 = ---

n(n2-l) 
E ( . n+l) - ..n.. X [ n . ] 2 - -1 2 
1 l - 2 XOi 

The first four moments of X are developed in Chapter 4. 

Now: 

3.2.10 = 
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3.2.11 e [ 114] = [ -1['. s4] e 4 s 

= e r -'l'.'. ] e [ s4] = ( n-1) ( n+l ie[;~] l s4 

Thus: 

3.2.12 e[~] = .J:._ .n.. -1 e [ x2] 
n-1 

and: 

3.2.13 e [:~] 
1 -2 e [x4] . ·. .n.. 

fn,-1) ( n+l) . 

For obtaining the unconditional moments of R, it will 

be necessary to find expected values of quantities of the 

form s2k exp[ -½6 2 s2 ] when S2 has a central Chi-square 

distribution with n-1 degrees of freedom. These expected 

values are readily obtained by integration: 

. 
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3.2.14 e [32k e-½ o2 32] = 

(X) n+2k-l -1 -½(l+o 2)x i r[n;1]~ 
2 

½ ( n-1) 
X e dx 

2k+n-l r [ n21 + k] 2k 
2 

(1+0 2 ) • 
r [ n21] 

Using formulae (3.2.12) and (3.2.14) and the indepen-
2 

dence of .:rr: and 32 we then have: 32 

3.2.15 
0 32 e [32k 

- 2 
~2] e = 

[ 32k+2 
52 32 - 2 Ji:] e e = 

32 

e [32k+2 
52 

e -2s2]e[~] 

..cL-1 E[X2] 
2k+n+l 

2 
• 



Similarly: 

3.2.16 

3.2.17 

and: 

3.2.19 
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[ _ .Q.:. s2 ] e 82k e 2 TJ4 = 

e [s2k+1 e 

e [s2k 
-

e 

1 
..o... -z S[X] 

3 
.n.. 2 ecx3J 

r(~ + k] 
r[n;3] 

52 
s2]= - 2 

52 s2 
TJ ] 2 

r[~ + k] 

r [n21] 

== 

F[~ + k] 2k(l+6 2 ) 

r [ ~] 

r[~ + k] 
r[n;2] 

By using the relations: 

3.2.20 . ., 

2k+n+3 
2 

2k+½(l+6 2 )-

2k+n -2-

2k+n+2 
2 

Formula (3.1.31) can be written in the form: 

2k+n -2- , 
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3.2.21 e [RI [xOi ir l = 

(X) [ 522 ]k+½ 2k -½52s2 1 r [k + ~] 
I: s e T) k!. + n;l] 

• 
k=O r [k 

The unconditional expectation, e[R], is then obtained 

immediately on applying Formula (3.2.18). We obtain: 

3.2.22 e[R] = 

1 n r 2 [k + ~] p2k 
[ 6 ;r ( 1 + 6 2 ) - 2 ecxJ (X) 

I: 
r[~] r[k + n;lJ .A- 2 k=O k ! 

Similarly, 

3.2.23 e[R2 ] = 

n+l 
52 -2- ecx2 J 00 - + k - 2k [n+l 

1L 2 ( 1+5 2) 
-"-

I: 2 
n+l k=O k + 2 

n-1 
(X) [n? +: 2L p2k 

+l. (1+5 2 ) 2 I: 2 + n-1 ' k=O 2 

. 
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3.2.24 

and: 

3 .2 .25 E,[R4] = 

n+3 [n? + 1 2k - -Y ecx;J p 2 

.rr±.2.J 2 ) 
~&22] (1+&2) ..n. k=O k lk + n2 

n+l 
1 [n;i+k-1] 2k - -2- ecx2J p +3 ~2 (1+&2) 

[ n+3i 2) 
_n_ k=O k k +-2 

n-1 [n? +: - 2] 2k (X) p - 2 +l (1+&2) I: 
[ +1J 2) 4 k=O k + n2 
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Having available four moments of R, it is now possible 

to fit a Pearson system curve to the distribution of R for 

selected values of n and p, and thus calculate the approxi-

mate power of a test of the null hypothesis, R0 = O. 

It may be noted that these moments are expressible in 

terms of the generalized hypergeometric function attributed 

to Gauss. 

Using the notation: 

(a)n = a(a + 1) ••• (a + n - 1) n = 1,2, •.• 

(a) 0 = 1 

the hypergeometric function of Gauss is the series: 

00 
F[a,b;c;z] = I 

k=O 

It is easy to verify that: 

00 r 2 [k + ¥] 
3.2.26 I 

k=O r [k + n;a] 

r2 [ ¥] 
F [ ¥ ' n 

r [n;aJ 2 

2k p = 
k! 

. n+a . p2 ] 2 , , a = 1,2,3 



3.2.27 

and 

3.2.28 

Then: 

3.2.29 

3 .2 .JO 

1 F 

O'.) [ n;i + r 
k=O 

r [ n;3 - l3] 
r [n;7 - l3] 
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2k p = 
k + n;3 -l3 

k - ~] p2k 
= 

k 
[k + n;5 -l3J 

( 2) 

F [n+3 n+3 -l3; n+7 - l3; p 2] l3=0, 1 , 2 • 2 -l3, 2 2 

c;,[R] [ 
1 n r [-2n] 

= 622] 2 ( 1 +62 ) -2 ~[x_1 J --=---=-- [n n. n+l P 2 ] 
.>.L r[n;1J F 2' 2' -2-; 

F 

F[n+l n+l.n+3. 2 ]· 
2 ' 2 ' · 2 ,P. 

[ n-1 n-1. n+l. 2 ] 2 , -2-, 2' p 



3.2.31 

3.2.32 
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e[R3 ] = 

3 n+2 [ +2] 
f 62ZlI (1+6 2 ) 

- -2- ecx3 J r .n2 
F[n;2, n+2 n+5. p2] 

..n. 1.5 

n 
1 -2 

+ 3 (6;)2(1+62) ecfJ 2 ,.n_2 

n+l 
62 - -2- ecx2 J +3 2 (1+6 2 ) .n. 

n-1 r [n21] 
+1 ( 1 +62 ) 

-2-
4 r [n;3] 

r[YJ 
;r-, 2 ., 

rrn] 
F[¥' 

1]. n+3. p2] r [n;3] 2" -y, 

r 
r 

F[ n+3 n+3.n+7. p2] 
2'2'2' 

[n;l] F [n+l n+l. n+5. 2] 
[~] 2 ' 2 ' 2 " p 

F [n-1 n-1. n+3. p2] 2 , 2 ., -2-., 

However, this generalized hypergeometric function is 

not tabulated in the literature as extensively as we require. 

We have thus found it convenient to program the original 

expressions, formulae (J.2.22) through (J.2.25), for 

numerical evaluation on the electronic computer (IBM 1620). 
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IV. MOMENTS OF X = £ (i - n;l)wi 
1 

A major result in Chapter 3 was the set of expressions 

- Formulae (3.2.22), (J.2.23), (J.2.24), and (J.2.25) - for 

the unconditional moments e[Rh: h=l,2,3,4] in the case p=l. 

Contained in these expressions are moments e[xh : h=l,2,3,4] 

which have not as yet been evaluated. We shall show in this 

chapter that e[xh] is a polynomial of degree 2h inn, 

(h=l,2,3,4), and actually find the coefficients. 

First Raw Moment of X 

Now: 

where w. is the i th standard normal order statistic from a 
l 

random sample of size n. Hence: 

CD 1 n . . n-1 n T. 1· 1 n 1· e[x] I: ( 1 ) ----- if; - ( 1-if;) - x,1 dx = . l - --2- ( . 1 ) T ( . • ) T ;it ;it JO 
-CD 1 l- • n-l • 

where abbreviations¢ and~ are used rather than the more 

cumbersome p(x) and ~(x) for the density and c.d.f. respecti-

vely of the standard normal variate. When multiple integrals 
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are considered, we shall use subscripts 

etc., 

But: 

4.1.3 

and: 

4.1.4 

Hence: 

instead of ¢'{x), 

n z 
2 

n 
z 
1 

n! 
(i-2) ! (n-i) ! 

n! 
{i-l)!(n-i)! 

= _1_ 
2 vrt n 

p(y), { z) , etc. 

m i-1 (1-m)n-i = 

i-1 (l-~)n-i = 

( 2) 

as in p , Py' ~z, X 

n(2)~ 

n . 
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Second Raw Moment of X 
n 

= E ( i - n+l) w. 
l 2 l 

Now: 

+2 

Considering first the term on the right in Formula 

(4.2.1) which is a sum of single integrals, we have: 

+ +. ( n-1) 2 Joo ¥1 n! ~i-1( 1-~) n-ix2¢dx 
LJ. (i-l)!(n-i)! 

-CX) 
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or: 

( . n+ 1) 2 ~c 2 J = 
L... l - 2 v Wi . 
1 

(X) CX) CX) 

n(3) j x 2 ¢~ 2 dx - n(Jj x 2¢~dx + f(n-1) 21 x 2 ¢dx. 
-(X) -CX) -(X) 

The following three integrals are easily evaluated using 

integration by parts with dV = xidx. We obtain: 

4. 2 • 4 j 00 x 2 ~dx = 1 
-(X) 

4 • 2 • 5 J 00 x 2 ¢ ~dx = ½ 
-co 

Hence: 

• 

The second term on the right in Formula (4.2.1) is a 

sum of double integrals which reduces easily to the form: 



But: 

where 
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+ n ( 3 ) J 00 J y x¢ ( - ) • y¢ dxdy 
X X y y 

-CX) -oo 

x¢ .yd~ dxdy = 
XX 'y Y 

100 
y¢ 2 gjz dy +J oo [2 }y ¢ dy 

-00 y y -00 y y y ' 
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Also, 

4.2.11 1:J: x¢ g;j .y ¢ dxdy 1 co Y¢2 ID dy 
XX y y y 

-CX) 

4.2.12 J:I: X¢ • Y¢ m dxdy -f coy ¢2 dy . 
X y y y y 

-CD 

But: 

4.2.13 J: y¢2 dy 1 
- 4n-v3 y y 

!co y¢2 ill2 1 4.2.14 dy - 4rr-v3 y y 
-00 

J_: {2y} y ~\ g)y dy 1 + 1 4.2.15 - 4rr,;:3 8TT 
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Hence: 

i<j 

[ _l_+_l_+l] 
- 4 TT-/.3 4 TT 

+ (3) [-1- + _l_] 
n 4rrv3 4rrv3 

Using results (4.2.7) and (4.2.16) in Formula (4.2.1), 

we obtain: 
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n 
4.3 Third Raw Moment of X = I: (i - n+l) w. 

l 2 l 

Now: 

4.3 .1 

where: 

4.3.2 

+ 3 I ~(i-a)(j-a) 2e[w.w. 2 ]+(i-a} 2 (j-a)e[w~w.]] ·<· l J l J l J 

+6 I {i - a)(j - a}(k - a} e [w.w.wk] , 
i<j<k l J 

a= n+l 
2 

Introducing the normal order statistic densities 

appropriate to each term on the right in Formula (4.3.1) 
and recognizing the resulting sums as expansions of a 

binomial, trinomial, and quadrinomial, respectively, we 

have: 

4.3.3 
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where: 

4.3 .4 

4.3.5 A2 = 3n( 5) [m R2 + m3 + 2m 2 RJ 
X X X 

+ 3n ( 4) [(8-3a) ~2 + X 
(1-a) R2 + {9-4a) R] 

X 

+ 3n ( 3 ) [(2-a)(7-3a) i + (l-a)(5-2a) R] 
X 

+ 3n( 2 ) (l-a)(2-a) 2 

4.3.6 A3 = 3n ( 5) [~2 R + 
X 

~3 J 
X 

+ 3n( 4) [(7-3a) g:)2 + 
X 

(3-2a) m R] 
X 

+ 3n ( 3) [(2-a)(5-3a) ID + ( 1-a.) 2 R] 
X 

+ 3n( 2) (2-a)(l-a) 2 

and: 

+ 6n( 5) [(10-4a) m R+(9-3a)ID 2+(4-2a)m s+(l-a)(RS+R2 )] 
X X X 

+ 6n( 4) [(6-3a)(3-a) ID + (l-a)(6-2a)R + (l-a)(2-a)S] 
X 

+ 6n( 3) (l-a)(2-a)(3-a) 
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where: 

4.3.s R 

and: 

s = m - m z y 

After simplifying the Ai, integrating by parts to 

reduce all multiple integrals to single integrals, and 

evaluating the single integrals, we obtain: 

ecx3 J 

+ -31_ (3) + _3_ (2)] 
32-vrr n 32-vrr n 

I- ( 1 1 ) ( 5) ( 3 11 .2. ) ( 4) + 48-ITT + 8TT-v']ri n +3 8TT-v2TT + 32-vTT - 4 A n 

+ -31-_ n(3) + _3_ n(2)] 
32-vTT 32-vTT 



where: 

4.3.11 A =J_CD ¢2 ~2 dx 

-(X) 
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' 

and terms arising from each of the four integrals on the 

right side of Formula {4.3.3) are indicated separately 

within square brackets. 

Thus: 

4.3 .12 __ l_ n ( 6) + (_1_ + 9 ) n ( 5 ) 
8rrv'n 8-v'n 4n-lJ; 

+(l + _L)n(4) + _2_ n(3) + _L n(2) • 
8-v'n n-hrr 4-v'n 2-v'n 

n 
Fourth Raw Moment of X = ( i - n+l) w. 

l 2 l 

The approach used in producing e[xh] for h = 1,2,3 

would, if employed in this section, lay on our shoulders 

some formidible problems in bookkeeping. Instead, we shall 

show first that ecx4J is a polynomial of degree eight inn 

and find the coefficient of n 8 Then shall demonstrate . we 

the method used in finding each of the other coefficients 

and report the final result. 

Now: 

4.4.1 ' 
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where: 

4.4.3 T2 = 6 I: (i - a) 2 (j - a) 2 e[w. 2 w. 2 ] 
i<j l J 

4.4.4 T3 = 4 I: [ ( i-a) ( j-a) 3ec w. w. 3 ]+( 1-a) 3 ( j-a )e[ w~w. ]] 
i<j l J l J 

4.4.5 T = 12 I: [(i-a) 2 (j-a)(k-a)e[wi 2wjwk] + 4 i<j<k 

T5 = 24 t [(i-a)(j-a)(k-a)((-a) e, [w.w.wkw(J]. 
i<j<k<f l J 

Considering the normal order statistic densities 

appropriate to each term and the effects of summation, we 

conclude: 

Tl is of degree five in n; 

T2 and T3 are of degree six in n; 

T4 is of degree seven in n; and 

T§ is of degree eight in n. 
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Consequently, e[x4J is a polynomial of degree eight in 

n, so we may write: 

• 

Our strategy from this point shall be, first, to find 

a8 • Then, we shall find coefficients ai, i = 1,2, ••. ,7. 

To discover a8 we need consider only the term T5 , since 

T5 is the only term of degree eight. We express: 

Now: 

4.4.9 

( i -a ) ( j -a ) ( k-a ) ( f -a ) = i j kf 
- a ( ijk + ij/ + ik/ + jk/) 

+ a 2 (ij + ik +if+ jk + jf + kf) 
- a3 (i + j + k + f) + a 4 

Additional investigation shows that the coefficient of 

n8 in: 

4.4.10 

is zero. 

I [-a(ijk + ijf + ik/ + jkf) 
i<j<k</ 

+ a 2 (ij + ik +if+ jk + jf + k/) 
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Thus, a8 is the coefficient of n8 in the summation: 

4.4.11 

Now: 

and: 

24 I ijkf e[w.w.wkwo] 
k<j<k<f 1 J J 

ijkf = (i-1)( 4)+2(i-l)(j-i-1)( 2 )(k-j-l) 

+ (i-1Xj-i-l)(k-j-1)( 2 )+(i-l)(j-i-l)(J) 

+ (i-l)(j-i-1)( 2 )(/-k-l)+(i-1)( 2 )(k-j-1)( 2 ) 

+ (i-1)( 2 )(k-j-l)(f-k-l)+J(i-1)( 2 )(j-i-1)( 2 ) 

+ 2(i-1)( 2)(j-i-l)(f-k-1)+4(i-1)( 2 )(j-i-l)(k-j-l) 

+ (i-l)(J)(f-k~l)+2(i-l)(J)(k-j-l) 

+ J(i-l)(J)(j-i-l)+(i-l)(j-i-l)(k-j-l)(f-k-1) 

+ terms with fewer than four factors; 

I ijkf e[w1.wJ.wkwu] = 
i<j<k<f. " 

n(8) J 00 Jw Jz Jy Q(x,y,z,w}x¢ yf; z¢ W'/J dxdydzdw 
-00 -00 -00 -00 X y z W 

+ terms of degree less than eight inn, where: 
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Q( ) = "ilf',4 + 2nm23 + ll'iRS2 + ll'iR3 + mR2T · x,y, z, w Iii! = ::±: ::±: 

+ '5232 + ai2ST + 3 m2R2 + 2 m2RT 

+ 4~2RS + ~3T + 2~3s + 3g?R + ~RST. 

The terms on the right in Formula (4.4.14) have been 

written in the order given to correspond respectively with 

the terms on the right in Formula (4.4.12), and: 

4.4.15 m = 

R = :i6 :i6 y X 

s = iliz iliy 

T = g) illz w • 

Hence: 

and: 

where: 

CD Z 00 y 

A =f f f f x¢ I .w, ill .y~ .z¢ dxdwdydz. X X W W y y Z Z 

-00 -00 -z -CD 
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We now interpose a short list of definite and indefinite 

integrals useful in reducing integral A. 

fu.¢2ill2du = -½ .¢2ill2 + J .¢3~ du 

jf 2 }uf~du = - f 2} ,¢!ii + ½ f2} 2 + J _¢3m du 

j ¢3~du = ½ ¢2~2 + J u¢2m2 du 

Definite integrals: 



ro J l2} 2 u¢mdu 
-00 

Cl) 
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00 

- 2 j l2} u¢2~2 du 
-00 

J ,¢4ill2du + 1 24 TT YTT 
-oo 

Using indefinite integral (2.4.22), we have: 

4.4.31 A = 

f rol z [-¢ ~. +{2 } ]y.¢ [ 2~/. +¢ :ID -l2 } ]z¢ oi dydz • y y y y y y'fT z z z z z 
-00 -00 

Indefinite integrals (4~4.23),(4.4.24), and (4.4.25) are 

now employed to simplify Formula (4.4.31) to the form: 

4.4.32 

00 

i J l 2 } z ¢3 m3 dz 
-00 
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But the definite integrals on the right side of Formula 

(4.4.32) are those which are listed in like order in 

Formulae (4.4.26) through (4.4.30), and we therefore obtain: 

4.4.33 - 1 
A - 384 TT 2 

Hence: 

4.4.34 

We have yet to evaluate the remaining coefficients: 

Returning to Formula (4.4.7), let n = 1. We obtain: 

4.4.35 
1 

a 1 = e[ Z (i-1) w.]4 = O 
1 l 

To find a2 , a 3 , ••. , a 7 the same approach is used: 
n . 

evaluation of e[ r (i n;l)wi]4 for particular values of 
1 

n. As a second (and less trivial) illustration, we now 

Let n = 2 in Formula (4.4.7) to obtain: 



That is, 

But, 

Also, 

and: 

Thus, 
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+ 3e [wl2 w2 2 ln=2] 

- 4£ [w1 w231n=2] 

(X) 

ec w2 4 I n=2] = 2 J x 4¢~dx = 3 • 
-ro 

e[w 2w 2 ln=2] 1 2 

ro Y 

= 2 J J 
-ro -ro 

== 1, 
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The remaining a. are found in like manner, and are 
l 

listed below: 

4.4.42 

4.4.43 

4.4.45 

= 21 + ..2:.1_ + 1 a4 lb TT 11'3 TT 

= 5 + _9 _ + 15 + 125 
a5 lb TT 11'3 2TT 4TT2 11'5 

a = 1 + 9 
7 8rr 4 TT2 -v'J 



i 

2 

3 

4 

5 
6 

7 
8 
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We summarize findings of this chapter in three tables. 

I 
' 

TABLE I 

Decimal Values for Coefficients a. in 
l 

n 8 ( 
e[~ (i - n+21) w.]4 = a.n i) . 

1 l 2 l 

i 
(v - i;l) wv]4 ec 

v=l 

.75000 00000 ' 

26.88588 01785 
1 

307.10662 30236 

1966.55240 4018 

8839-95514 86684 
31269~46197 4647 

a. 
l 

.37500 00000 

4.10593 00298 

s.50262 92628 

5.76981 74225 

1. 55662 84254 

.17140 88133 

.00633 257393_ 
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TABLE II 

: 

i b. c. 
l l 

1 -.28209 47918 -.00946 92671 
2 .28209 47918 -04835 88438 

3 -.11846 70482 

4 .07957 747155 
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TABLE III 

n . n+l 3 6 · 
Values ford. and e. in e[~ (1 - - 2 )w1.] = d.n1 and 

l l l 1 l 

~[n (1· n+l 4 - 8 i G - - 2-)w.] - e. n • 
1 l 1 l 

i d. e. 
l l 

1 -.00148 16030 - .00043 57134 
2 .00324 945134 .00022 93585 

3 -.00393 801022 .00096 98062 

4 .01263 341272 -.00241 33013 

5 -.03291 16411 .00508 83662 

6 .02244 839026 -.00386 78320 

7 -.00590 325817 
8 .00633 2573981 
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V. THE APPROXIMATE POWER OF TESTS BASED ON R2 

Having four exact moments of R in the case p = 1 it is 

now possible to approximate the power of tests based on R2 • 

To do this we employ the Pearson system density which agrees 

in these moments with the true distribution of R. Approxi-

mate power values for a two-sided test of the null hypothesis 

R0 = 0 are shown in Section (5.3) for n = 10 and n = 20. 

In Section (5.4) we obtain twenty random observations 

from a six-variate normal distribution of known structure to 

demonstrate a test of the null hypothesis R0 = O. We derive 

and calculate the sample discriminant function to which we 

referred in Chapter I. 

We find that the asymptotic relative efficiency of the 

squared quasi-rank correlation coefficient compared with the 

squared standard multiple correlation coefficient is inde-

pendent of the number p of predictor variables. 

In a final section we discuss an alternative method of 

obtaining an approximation to the distribution of R2 and thus 

an approximation to the power of tests based on R2 • The 

agreement in the case n = 20 with the results in Section (5.3) 
is excellent indeed, and provides evidence that either method 

will produce good approximations to the exact power. 
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5.1 The Pearson System: Four-Moment Solution 

We are fortunate in having a treatise by w. P. Elderton 

(1938) which provides all formulae needed to select the 

appropriate type of Pearson curve and to calculate the 

distribution constants. The notation used below is that 

of Elderton. 

With: 

5.1.1 

5.1.2 

one calculates the "criterion" k: 

to discover which type of Pearson curve to use. With the 

distribution of R, k will in general be negative, which 

demands a Type I curve. 

Pearson Type I curves are solutions of the differential 

equation: 

y y 

in which: 



- 89 -

Elderton considers for mathematical convenience the sub-

class of solutions of equation (5.1.4) for which the mode is 

at x = o. The curve so obtained will correspond with the 

given distribution in variance and in shape factors B1 and B2 -

A simple translation will produce a curve having in addition 

the same mean as the given distribution. 

We calculate in turn: 

5.1.6 r = ml + 1 + m2 + 1 

= 6( B2 - B1 - 1) (3B1 - 2B2 + 6)-1 

E = (ml+ 1) (m2 + 1) 

= r 2 [ 4 + 
B1 ( r+2) 2]- l -. 
4(r + 1) 

and 

At this point we can calculate m1 + 1 and m2 + 1 as the 

roots of quadratic equation: 

M2 - rM + E = 0 

Now m1 + 1 is the larger of these roots. To see this, 

we record the additional formulae: 

5.1.10 µ 
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Since m1 , m2 , and r-2 are positive while µ3 is negative 

in our calculations, Formula (5.1.11) implies thatµ is 

negative, and thus m2 must be smaller than m1 (according to 

Formula (5.1.10)). Since m1 + 1 is the larger of the two 

roots of Equation (5.1.9), we obtain: 

5.1.12 

Further, 

5.1.14 
m b 

al =_1_ 
r - 2 

m2 b 
a2 =--

r - 2 

This completes the preliminary work of finding the 

Pearson curve which corresponds with the given distribution 

in 0 2 , B1 , and B2 • 

Now e[R] is the mean of the given distribution, whileµ 

is the mean of the fitted curve with mode at x = o. 

5.1.16 S = e[R] - µ 

Sis positive in our calculations, and the density we 

are seeking has the form: 
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over the domain -a1 + s < x < a2 + s • 

Now for values of p2 close to unity the appropriate 

Pearson curve is no longer of Type I. A method is needed to 

provide a supplementary approximation. 

5.2 The Pearson System: Two-Moment Solution 

To obtain a supplementary approximation for large values 

of p2 one might use that curve of the Pearson system which is 

indicated by two moments of R2 • Thus we are led to consider 

the Beta distribution, and adjust its parameters by the first 

two moments of R2 • 

It is worthy of mention that the distribution of R2 

under the null hypothesis is a Beta distribution. Further-

more, as we shall see, a curve of approximate power derived 

from the four-moment solution above appears to agree very 

well with the corresponding power curve derived from the two-

moment solution for values of p2 for which both solutions 

are available. Thus, the two-moment approximation provides 

a smooth extrapolation for larger values of p2 • 

We now adjust the parameters m1 and m2 in the density 

1 0 < X < 1 
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so that the equations 

5.2.2 = E,[R2 J 

and 

5.2.3 

are satisfied. Solving for m1 and m2 , we obtain: 

and 

where 

5.2.6 

5.3 Approximate Power of Tests Based on R2 

-2 0 

-2 0 

A size B test of the null hypothesis R0 = 0 against 

alternativesR5 j O will have a critical region of the type 



- 93 -

where~ is determined from the equation a 

n-2 
1 - - 1 

t2-l (1-t) 2 dt = a 

Solutions for~ can be read directly from Table 13, a 
Pearson (1958), for a = .001, .005, .01, .02, .05, and .1; 

and n - 2 = 1 (1) 20 (5) 50 (10) 100. 

Knowing ~a' the four-moment solution power is easily 

found from the equation 

~ const 2 J 
0 

' 

reading the value of the final integral from the chart of 

Table 17, Pearson ( 1958) • 

Similarly, for the two-moment solution one derives the 

power from 

du 
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where ~a is found as before from Equation (5.3.2), and the 

value of the integral in Equation (5.3.4) is read from the 

chart of Table 17, Pearson (1958). 

Values of the approximate power so derived are shown 

in Table IV for sample sizes n = 10 and n = 20 taking a= .05. 
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TABLE IV 

Approximate Power of the Two-Sided Size .05 Test of R0 = 0 

for n = 10 and n = 20 

Power, n = 10 Power, n = 20 
4-Moment 2-Moment 4- Moment 2-Moment 

p2 Solution Solution Solution Solution 

.oo .05 ,,, .05 ,,, ,,, ,,, 

.05 .os ,,, .15 ,,, ,,, ,,, 

.10 .14 ,,, .25 ,,, ,,, ,,, 

.15 .17 ,,, .37 .37 ,,, 

.20 .22 ,,, .50 .43 ,,, 

.25 .28 ,1, .59 .60 ,,, 

.JO .J6 .35 .70 .70 

.35 .41 .41 .79 .so 

.40 .49 .43 ,1, .37 ,,, 

.45 .55 .55 ,,, -93 ,,, 

.50 • 63 .62 ,,, .96 ,,, 

.55 ,,, .67 ,,, .99 ,,, ,,, 

• 60 ,,, .73 ,,, 

• 65 ,,, .82 ,,, 

.70 ,,, .87 ,,, 

.75 ,,, .93 ,,, 

.80 ,,, .97 ,,, 

.85 ,,, .99 ,,, 

,,, Out of the range of the Pearson Chart. ,,, 
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5.4 Demonstration Study: Test of R2 = o; The Discriminant 
--- 0 
Function. 

In this section we illustrate the computations required 

to test the null hypothesis R0 = 0 against alternatives 

R0 f O. In addition we derive and calculate the vector of 
A A 

coefficients] in the linear combination]'~, 

= (x1 , x2 , ••• , xp)', which would be used to rank subse-
" quently chosen individuals in order of merit. Thus,]'~ is 

the discriminant function to which we referred in Chapter 1 

as an alternative to the classical discriminant function of 

Fisher. 

Given a random sample of size n from a (p + 1)-variate 

normal distribution, we rank the vectors x. = (x1 .,x2 . , ..• ,x •) 
-i l l pl 

in order of size of the x0i: x01 < x02 < ... < x0n. We form 

in turn 

n 
COl = I: di (x. - i)' 

1 -i 

n 
ell = I: (x. - x)(x. - i}, 

1 -i - -i 

and 

• 
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A 

To determine the coefficients] in the linear combination 
A A 

R'_x such that the ]'~i have maximum simple correlation with 

the di' we form the simple correlation coefficient r: 

5.4.4 • 

Since r is independent of scale, we take for convenience 

and maximize unconditionally the expression 

over all possible choices of]. 

Differentiating with respect to], we have 

= • 
.,14.-

Denoting the critical value of] by], we have on setting 
oQ = 
o] 0 that: 

A 

A 

Multiplying both sides of Equation {5.4.s) by]', we have 

by virtue of Equation (5.4.5) that: 
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where R is the maximized simple correlation coefficient. Also, 

Again, since the scale of~ can be chosen for convenience, 

we take 

For a numerical illustration we obtain a random sample of 

size n = 20 of normal 6-component vectors (x0 ., x:) = l -i 

x3i u3i 

X4i = u3i + u4i 

x5i = uli + u4i + u5i 

in which u . is independent of u . for (m, i) f (v, j) and ml VJ 
each u . has the standard normal distribution. mi 
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The squared population multiple correlation coefficient 

is then by virtue of Formula (2.1.17), 

5.4.13 R2 = 2 
O 7 

We find on using Formula (2.J.80) together with Formula 

(3.2.23) that in this case: 

e[R2 ] = .5366 • 

The critical region of the two-sided size a= .05 test 

of the hypothesis R0 = 0 is determined as outlined in Section 

(2.4), and consists of all R2 such that: 

Since the asymptotic relative efficiency of R2 is shown 

(in Section (5.5)) to be independent of p, we obtain an 

indication of the power of this test in the case p = 5 from 

Table IV which was developed for the case p = 1. The esti-

mate so obtained is 0.90. 

The random sample was generated by using Table A-2, 

Dixon and Massey (1957), of random normal numbers withµ= 0 

and 0 2 = 1. 

We obtain: 
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in which 

and 

42.829555 

(4.4519667, -2.9923112, -501151877, .31016855, 

3. 6394635) 

-44-573736 -.678252 -7-368117 10.678235 
-44-573736 125.163006 22.868677 23.759471 6.051730 

-.673252 22.868677 26.460397 26.060996 -1.107908 
-7-368117 23.759471 26.060996 36.349465 8.151393 
10.678235 6.051730 -1.107908 8.151393 34.573935 

Calculation provides the sample value of R2: 

Since R2 is in the example beyond the critical value 

= .514 we would correctly reject the null hypothesis: RB= O. 

The coefficient vector for the sample discriminant 

function turns out to be: 

I\ 

]' = ( .017916, -.032856, .168185, -.11635 , -138306) 

and the sample discriminant function is 

/\ 

]'~ = .017916x1 - .032s56x2 + .168185x3 - .116356x4 

+ .13 8306x5 • 
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We now find the simple correlation coefficients of the 
A 

]>~i with the xli' x2i, xJi' x 4i, and x5i individually. 

These are listed in Table V below as r 1 , r 2 , r 3 , r 4 , and r 5 
respectively. 

TABLE V 

Sample Correlations of the set [i>~i}~ with the sets 

Ixki1r=1' k = 1, 2, ..• , 5. 

r1 r2 rl rl,. r c; 

.7952 -.J164 .1155 .0597 . 7234 

Since in the probability structure of the observations 

x3 and x4 are uncorrelated with x0 , it was to be expected 

that variates x3 and x 4 would have the smallest sample 

correlations with the discriminant function. 

In Table V, r.1 and r 5 are both large. As is the custom 

in the multivariate theory; our attention would be drawn to 

variables x1i and x 5i if it is desired to reduce the dimen-

sions of the predictor variable. This is in accordance with 

the structure of (xOi' xli' •.• , x 5i) wherein x1 i and x5i 

have comparatively large population coefficients with x0i. 
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Finally, by using the sample discriminant function, we 

can rank the 20 individuals in the given sample and compare 

these estimated ranks with their actual ranks based on x0i. 

The following comparative ranks were obtained: 

Rank on x0i 1 2 3 4 5 6 7 8 9 10 I 

Estimated Rank 1 2 4 6 5 3 8 9 13 

Rank on x0i 11 12 13 14 15 16 17 18 19 

Estimated Rank . 10 11 14 12 16 17 18 19 15 

In no case is the discrepancy in rank more than four. 

5.5 The Asymptotic Relative Efficiency of R2 

To avoid some confusion we shall in this section employ 

the notations: 

RQ = the quasi-rank correlation coefficient; 

7 

2( 

2( 

~=the standard multiple correlation coefficient. 
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Now RQ and R~ have identical distributions when Ro = o. 

To see that this is true, recall from Chapter 2 that when 

Ro = o, u = 1 - RQ has a Pearson Type I distribution. In 

particular, u has the Beta distribution of the first kind 

given in Formula (2.3.72). 
F 1-u d urther, u has the Beta distribution of the secon 

kind with density 

½p-1 1 X O<x<oo 
B[~, ~] ( 1 +x)½ V 2 

so that 
R2 v-p 1-u 

= [v;p] 1-~2 p u 
Q 

has the density 

r[½v] 
r[½{ v-p) Jr[½p] 

Thus, when R0 = o, v-p 
p 

tion with p and v-p degrees 

RQ2 

l-RQ2 

O<x<oo 
) -v X 2 

has Fisher's F distribu-

of freedom. But this is 
R 2 

p ( precisely the distribution of p ......;:. __ Anderson (1958), p. 90). 1-R,;, 
p 

Since the null distributions of Ra and Ri are identical, 

the asymptotic relative efficiency of RQ vis-a-vis Riis: 



lim 
n-KO _a_ 

oR 2 
0 
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2 

Now Anderson (1958) presents the moments of Ri in 

Equation (39), page 96. In particular, 

Differentiating with respect to R3, and evaluating this 

derivative at R5 = o, we obtain: 

0 O[ 2] 1 V 5•5•7 oR2 0 RP = -2P + v+2 (½p + 1). 
0 R3 = 0 

0 2 I Thus, lim oR2 e[Rp] is free of p and in fact: 
n-KD O R2 = o 

lim 
n~ 

0 
oR2 

0 

0 

1 • 

Equation (3.2.23) above expresses the expected value 

of R~. Writing this expected value in terms of R5, we have: 
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5.5.9 E,[R~] = 

[½v + k] R2 (k+l) 
1 ecx2 J (1 - 2) 2\J 0 + 

2 ..n. Ro k=O k k + ½v + 1 

1 0) [½v + k - l] R2k 
0 1 ( 1 - R5) 2 v I: 2 k + 2\J k=O k 

' Differentiating with respect to R0 z, and evaluating 

this derivative at R0 z, we obtain: 

0 
oR2 

0 R2 = 0 0 

= ecxzJ 
.n. ( v+2) 

1 
v+2 

As we shall see ( Chapter 4, Equatj,on ( 4. 2 .19)) , 

Hence, 

lim ecx2 J 
n. v+2) 

= l 
TT 

.. 

Using the limits recorded in equations (5.5.8) and 

(5.5.12) in Formula (5.5.5), we have: 

A.R.E. [R~ vs. R,P - ( f = .:}_ 

It is interesting that this result is a constant 

independent of the number of measured variates p. 
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5.6 An Alternative Approximation to the Distribution of R2 

When p = 1. 

Though the density of R found in Chapter III did not 

seem to be usable for finding probabilities, we were able to 

generate four moments of R. In sections 1, 2, and 3 of this 

chapter we used these moments to find an approximate density 

for R2 which does allow calculation of an approximate power 

of tests based on R2 • 

Using a rather different approach, we find in this 

section an alternative approximate density of R2 • It will 

be clear from the derivation that approximate power so 

obtained will be increasingly accurate with larger sample 

sizes. Additional evidence of the asymptotic accuracy of 

this method is shown by comparing approximate moments of 

R2 with exact ones for several values of n. 

Good agreement of the approximate power obtained in this 

section with the corresponding results in Section (5.3) will 

be taken as evidence that either method is indeed satisfactory. 

Consider once more the distribution of 
n 

n 

(I: d.y. )2 
1 l l 

I: (y. - y)2 
1 l 
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under the conditions: 

i) Vectors (x., y.) are randomly selected from the 
l l 

bivariate normal population with correlation 

parameter p, i = 1, 2, •.• , n; 

ii) Subscripts i in the vectors (x. ' y.) are reassigned 
l l 

so that x. 
l is the .th i- smallest of the x's; 

iii) d. = l (i _ n+l} i = 1, 2, . . . ' n 
l v.n. 2 

In the joint conditional distribution of the y's given 

the set of x's, they. are independent. y. depends only on 
l l 

the value of x. and in fact: 
l 

y. /x.,..... N(px. : l-p 2 ) 
l l l • 

In the marginal distribution of the set of x•s, x. is 
l 

th . th 11 d d 1 d . W h · e i- sma est stan ar norma or er statistic. e use t e 

notations: 

e[x. J = £. 
l l 

i = 1, 2, •.. , n 

C is the n-square matrix with (i, j)-element c .. : 
lJ 

e,[ ( X. - s. ) ( X. - S . ) ] = ( C) . . = C .. 
l l J J lJ lJ 

i j = 1, 2, ... , n 

y_ = 

. 
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It is readily shown that 

E,[y J = p s 
and 

5.6.8 

Further, 

and 

i = 1, 2, •.• , n • 

Since µ3 (xi) is of order O(n-2 ) and µ4 (xi) - 3µ~ (xi) 

is of order O (n-3 ) unless i is near to unity or ton 

(David and Johnson (1954), it appears that one might consider 

for approximation purposes that 

unless p2 is very close to unity. 

However, the elements of C .are not simple functions of 

n. To have any success in developing the distribution of R2 

-it seems that we must seek to represent c .. by c .. • 1J 1J 



n+l where ei = i - - 2-
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i=l,2, ••. ,n 

and the a's are constants to be determined by minimizing the 

sum of squares: 

5.6.13 • 

We find: 

5.6.14 
I\ = 1 ao n 

/\ A 

5.6.15 al = a 2 = 0 

2 

5.6.16 
A 

= .n.- 2 recx2 ] 
1 (;) a3 TT 

} 

where 

5.6.17 ( . n+l) X = 1 - - 2- xi i = 1, 2, ••. , n. 

In Chapter IV we found that 

5.6.18 

Hence 

5.6.19 

where 
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5.6.20 V = 1 + 2 (~3 - 2) + 2 (5 - 3-v'J)(n + 1)-1 
I TT TT 

With 

5.6.21 

= .4882547385 

e. 
l 

.3746235346 (n + 1)-l 

i = 1, 2, •.. , n 

and D then-square matrix with (i,j)-element 

5.6.22 ( D) .. = d. d. lJ l J 

,-.., 
we introduce the matrix C . . 
5.6.23 c = 1 J + yD n 

and study the distribution of 

y' Dy - -
y' [I - l J] y 

n -

for 

Now 

5.6.26 

with 

i 
:=;:: 1, 2, ...... , n 

j 

• 
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5.6.27 a = (1 p2) (1 - p2 + yp2)-l 

5.6.28 Ql (1 P2 + yp2)-l y' D y 

5.6.29 ( 1 2)-1 , (I - l D)y Q2 = p X. - J n 

Q1 and Q2 are independent noncentral Chi-square variates 

with degrees of freedom 1 and n-2 and noncentrality para-

meters 

- 1 p2 n 
/\,1 ( z js . ) 2 - 20. 1 - p2 + yp2 1 J 

5.6.31 
p2 n 1 n 

1 [Z s (Z js.) 2 ] /\,2 = 2 l-p2 ii 1 J 1 J 

respectively. 

The density of R2 is easily shown to be: 

5. 6 .J2 

00 00 
/\, if\, j 

z z 1 2 
i=O j=O ' T ' T l . J . 

. +1 · 1 •+l 2 al 2 ul-2(i-u)J 2n-
B [ i +½ , j +½ { n-2 ) J _(_a_u_+...;.l ___ u_)...:..i_+_j_+~½-(_n ___ l) 

It seems infeasible to integrate this density for 

probabilities except when a=l. Setting a=l is equivalent 
A A 

to taking a3 = O. Since by Formula (5.6.19) a 3 is of order 

n~ 3 , the probabilities should not be greatly affected by 
A 

taking a 3 = 0 except possibly for values of n and p such 

that n~l-p 2 ) 2 is very small (by virtue of Formula (5.6.10)). 
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For an example, we taken= 20. The critical region of the 

size a= .05 two-sided test of R6 = 0 is 

5.6.33 R2 > .197 

and its power is 

5.6.34 

1 

B[i+{,j+9] f 
- .197 

· l ·+o l-2 J o u ( 1-u) du • 

Since ~2 is small in this example, we need consider 

only terms for j = O, 1, 2, 3. We obtain the results given in 

the following table. 

TABLE V 

Approximate Power of the Size a=.05 

Two-Sided Test of R2 =o 0 for n=20 

p2 ~l ~2 Power 

.1 .959 982 .022 139 .257 

.2 2.159 960 .049 813 .501 

.3 3.702 789 .085 393 .726 

.4 5.759 893 .132 834 .891 
• 5 8.639 840 .199 251 .974 

A comparison of these values with the corresponding 
values for n = 20 in Table IV shows the agreement to be very 
close for all pZ. 
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As additional evidence of the adequacy of the approxi-

mations in this section, we show in the following table 

exact moments e[(R2 )h] for h = 1,2 and the corresponding 

approximate moments found from the formula: 

m 
;:: 

i=0 

p 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

(X) 

;:: 
j=0 

1 /\, i /\, j 
1 2 

i ! j ! 
1 I i+h-½( )j+8 B[i+½, j+9] u 1-u du 

0 

TABLE VI 

Approximate and True Values of E[R2 ] 

and e[R4]: n = 3 

e[R2 ] e[R4J 
Approx. True % Error Approx. True 

-5018 .5021 -.06 .3768 .3771 

.5074 .5034 -.20 .3824 .3834 

.51s3 .5192 --37 .3923 .3941 

.5326 .5350 --45 .4073 .4098 

.5552 .5566 -.25 .4307 .4312 

.5885 .5854 .53 .4649 .4584 

• 6385 .6237 2.37 .5173 .4965 

.7172 .6759 6.11 .6027 .5460 

.8440 .7524 12.17 .7530 .6171 

% Error 

-.08 

-.26 

- .43 

--49 

-.12 

1.42 

4.19 

10.38 

22.02 



-
p 

.1 

.2 
,.~r 
.4 
.5 
.6 
.7 
.8 
.9 
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TABLE VII 

Approximate and True Values of e[R2 ] 

and e[R4]: n = 10 

e[R2 ] e[R4] 

Approx. True % Error Approx. True 

.1174 .1177 -.25 .0332 .0334 

.1367 .1377 --71 .0424 .0429 

.1699 .1714 -.89 .0590 .0600 

.2185 .2195 -.46 .0852 .0866 

.2851 .2831 .70 .1249 .1257 

.3727 .3636 2.50 .1850 .1820 

.4852 .4631 4.75 .2768 .2633 

.6260 .5849 7.03 .4196 -3819 

.7954 -7338 8.39 .6424 .5603 

; . 

% Error 

--42 
-1.23 
-1-77 
-1.62 

-.57 
. 1.61 

5.12 
9.88 

14.66 



p 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 
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TABLE VIII 

Approximate and True Values of e[R2 ] 

and e[R4]: n = 20 

e[R2 ] 

Approx. True % Error Approx. 

.0604 .0606 -.30 .0096 

.0841 .0846 -.69 .0164 

.1242 .1250 -.66 .0295 

.1818 .1821 -.14 .0522 

.2585 .2566 .75 .0898 

.3560 .3493 1.90 .1505 

.4761 .4616 3.14 .2470 

.6201 .5949 4.23 .3976 
-7880 .7515 4.86 .6255 

e[R4] 
True % Error 

.0096 --55 

.0166 -1.43 

.0301 -1.94 

.0532 -1.81 

.0906 -.88 

.1491 .94 

.2386 3.54 

.3732 6.51 

.5742 8°94 
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n 
VI. Joint Moment Generating Function of S2 = (xi - x) 2 and 

n 1 
..fl.~2 = [I (i - n;1 )xi] 2 , xi= the i th Standard Normal 

1 
Order Statistic inn. 

In a preliminary effort to investigate the distribution 
of Rand develop the moments e[Rh] in the case p = 1, we 

employed the moment generating function of this chapter. 

Though an alternative and less cumbersome method of handling 

the moment problem has been given in Chapter 3, this chapter 

has been included for the additional insight it may provide 

regarding the joint distribution of the important 
1 

S2 and the linear combination of quasi-ranges ..0.2 ~ 

statistic 
n _ "(· n+l) 

- L... l - -2- X. • 
1 l 

No additional light is thrown on the distribution of R however. 

6.1 Expression of ¢(e,¢) = e[e8s 2 + ¢n~ 2] as the Principal 

Quadrant Volume Bounded by an (n-1)-Dimensional Normal 

Surface. 

x.: 
l 

Using the joint density f(x1 , x2 , ••• , xn) of the ordered 

n! 

(2n)2n 

• • • ' X ) n 

n 

= 

exp[-½~ xi 2 ], -oo< x1 < x2 < ••. < xn <@, 
1 
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we have from the definition that: 

6.1.2 

where 

6.1.3 

To benefit from the convenience of matrix notation we 

introduce then-square matrices Jn and E: 

6.1.4 ( J ) .. = 1 i = 1, 2., n n J.J j . . . ' 

6.1.5 ( E) .. = \I ij = {2i n+T) ( 2j n+l) i = 1,2, ••• ,n - - j J.J 

Also, let: 

6.1.6 X = 1 - 28 

6.1.7 = 20 a n 

6.1.8 f3 = i 
2 

6.1.9 
, 

= (xl' xn) X x2' ... ' 
Then, 
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6.1.10 

where 

6.1.11 C xI + a J - ~E n n • 

To obtain a simpler domain of integration we employ the 

nonsingular transformation 

6.1.12 X = B u 

with 

1 

1 

1 

6.1.13 B = 

. 
1 

and 

6.1.14 

Thus 

0 

1 

1 

. . 
1 

0 ... 
0 ... 
1 ... 

1 ... 

• 0 0 ' u ) n 

0 

0 

0 

. (lower triangular). . . 
1 



where 

6.1.16 

Now 

6.1.17 
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-oo< u1< a::, 

U2 
o<:<oo 

Uri 

nr [ 1 ,"-1 J d d --·...- exp - 2 ,!d '-' .!d du1 u2 • • • u 
( 2rr )2n n 

/p - q/] 

+ a (n - p + l)(n - q + 1) 

- (n - p + l){n - q + l)(p - l)(q - 1) 

p = 
q 

1,2, .•• ,n • 

Carrying out the integration over u1 , we obtain 

6.1.18 ::= 

J j 1 
n! /E /2 

• 

[ 1 , ("(11) )-l ] d 
exp -2.!:! ( 2) '-' .!:! ( 2 ) u2 ' • • • du • n 
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where E(ll) is the cofactor of (E) 11 in E and y( 2 ) = 

( u2 , U3 , ••. ' un ) • 

Noting from Formula (6.1.16) that 

6.1.19 

we may now write 

6.1.20 

where Vis the volume in the principal quadrant bounded by 

the (n-1)-dimensional normal surface 

6.1.21 

/I:(11) 1-½ 
(2rr)½(n-l) 

[ 1 , ( ( 11 ) - l J 
exp-~ Y( 2 ) E ) Y(2) 

In preparation for finding a simplified form for E(ll) 

in Section (6.4) we include the next two sections in which 

we evaluate /c/ and express c-l in terms of the latent roots 

and linearly independent eigenvectors of C. 

6.2 Evaluation of /c/. 

/c/ is the product of the latent roots of C. A simple 

corollary of Theorem 28.5, p. 73, Browne (1958) will aid us 

in obtaining these latent roots by inspection. 
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Corollary 6.1 
Let C be an n-square real symmetric matrix. If the rank 

of C - h I is v, then his a latent root of C of multiplic-n 
ity n-v. 

We recall Equation (6.1.11): 

6.2.1 C = xI + a J - ~E n n 

Now 

6.2.2 = a Jn - ~E 

is clearly of rank 2. Thus by Corollary (6.1) Chas latent 

root x of multiplicity n - 2. 

Further, each row sum of C is 1, and hence 1 is a 

latent root of C. 

We denote the final latent root of C as~. There exists n 
an orthogonal matrix P such that 

6 .. 2.3 

Hence 

But 

P'CP = diag(x, x, •.• , x, 1, ~) n 

tr(C) = tr(P'CP) = (n-2)x + 1 + n 

tr(C) = nx + na - 4n~ • 
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Equating these expressions for tr(C), we obtain 

6.2.6 

Finally, 

6.2. 

6..3 Linearly Independent Eigenvectors and the Inverse of _Q. 

Recalling that 

6.3.1 C = xI + a J - ~E , n n 

that x + na = 1, and that the row sums of matrix E are each 

zero, we have: 

6.3.2 
1 1 

C n-2 (1,1, •.• ,1)' = n-2 (1,1, •.• ,1)' • 

That is, a unit eigenvector associated with latent root 

1 
6.3.3 11 = (sl(l)' S1(2)' ••• , Sl(n))' = n-2(1,1, ••• ,1)'. 

We define 

6.3 .4 

6.3.5 

n 

e. = i 
l 

n+l 
2 

Now Le. = O, and consequently 
1 l 

i = 1,2, ••. n. 
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n 
Also, E e. 2 =n, so that 

1 l 

6.3.6 ••• , e )' == n 

••• , e )' • n 

Thus: 
1 

6.J.7 c.rr2 (el, e2' ••• ' en)' = 
1 

( x - 4.nB) .rL z ( e 1, e 2 ' • • • ' en) , • 

That is, a unit eigenvector associated with latent root 

; 1 
6.38 12 = (s2(1)' £2(2)' • • ·' £2(n)) = n-2 (el' e2, • • ·' 

Furthermore, 

6.3.9 

That is, 11 and 12 are mutually orthogonal unit 

eigenvectors of the matrix C associated with latent roots 

i\.=l and i\.= x- 4.0B, respectively. 

/ 

' e J • n 
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From the discussion on p. 90, Browne (1958), we are 

assured that there exist n-2 unit eigenvectors of C, 

(13 , •.• , 1n), associated with the latent root x and 

forming, with 11 and 12 , a mutually orthogonal set. The 

matrix P whose columns are the eigenvectors 11 , 1 2 , ••• , 1n 

is orthogonal and satisfies: 

6.J.10 P'C P = diag (1, x - 4Q~, x, x, .•. , x) 

Thus we may now write Formula (6.1.16) in the form: 

6.J.11 -1 ( 1 1 1) p'(B-1) E = B P diag · 1, x-4n~' x' ... , x , 

where Bis as defined in Equation (6.1.13). 

6.4 E(ll)Writteh as an Explicit Function of & and~ 

As a final step in simplifying Formula (6.1.20) for 

t (6,¢) to a form in which e and¢ appear explicitly, we 

express E ( ll) ( and thus the volume V ) in terms of e and .¢. 

We recall (Formula (6.J.11)) that 

1 ' x' ... , 
where 

1 
-1 1 zeros 

6.4.2 B -1 = -1 1 

zeros 1 
-1 1 



Using the notation 

we have on defining 

that 

f. = 0 
lO 
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i 1, 2, ••• , n 

p = 1, 2 
q , ••• , n 

where sp(q) is the qth element of the pth eigenvector of C. 

Thus 

and 

Now 

6.4.8 

6.4.9 

I: = F' diag ( 1, l 
x-4n.B 

1 , x' 1 ••• -) F 
X 

(I:)pq = (1 - _xl) flpflq + __ 4_~_B __ 
x(x-4n.B) 

n 
+ l L f. f. 

X i=l lp iq 

1 n-2 q = 1 ' 
f1q = 

0 , q > 1 

1 
l{ ) -2 -2 n-1 ..o.. q = 1 , 

f2q 1 -2 q > 1 ..Q , 



n 
6.4.10 I: f. f. = 

i=l lP iq 

Thus 

and 

6.4.13 I: = 

1 
n' 
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1, p = q = 1 

2, p = q > 1 

-1, jp qj = 

o, jp - qj > 

p = q = 1 

O, otherwise 

1 

1 

[½(n-1)] 2 .J'l.-l p = q = 1 

-½(n-l)A -l , 

-1 ..n.. , 

p=l, q>l or p>l, q=l 

p > 1 and q > 1 

l( 1 n - l) 
X 

0 

. . . 
0 

0 

0 

. . . 
0 

. . . 

... 

0 

0 

. . . 
0 

+ 
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[½(n-1)] 2 -½(n-1) ... -½(n-1) 

-½(n-1) 1 ... 1 

2¢ . . . . . . + 
x(x-20..(ll) . . 

-½(n-1) 1 ... 1 

1 -1 0 ... 0 

-1 2 -1 ... 0 

0 -1 2 0 
1 . . . . • X . . . . . . . . 

0 0 0 ... 2 

The cofactor of (I) 11 in the matrix I is thus: 

d e re ... re re 

e d e ... re re 

I(ll) =l re e d ... re re 
6.4.14 

X . . . • . . . • . . . . . . 
re re re ... d e 

re re re ... e d 

where 

6.4.15 d = re + 2 
e = re - 1 
re = 2¢[1 - 28 - 2.n. ¢ T 1 
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6.5 Differentiation of 'f(e, ¢). 

We have at this point found the joint moment generating 
n - n . n+l 

function of sz = I: (x. - x) z andnri 2 = [I: ( i - - 2-) xi J2 in 
1 l 1 

the form: 

= n! V 
( 1-2 8) ½ ( n-2 ) ( l-28-2a~) ½ 

where 
/z:(11) i-½ 

V = __ v,--•-,,.,~ 

(2n)½(n-l) 

CD 

!-·I ' 
0 

) ( 11) . Y(~) = (u~, u3 , •··~ un, and I: is given as an 

explicit function of e and• in formulae (6.4.14) and 

However, we actually deal in Chapter 3 with moments of 

quantities ~l + ~2 = ½o 2 S2 and ~l = ½6 2ri 2 • For this reason, 

it seems somewhat more appropriate to discuss the differentia-

tion of the joint moment generating function of ~l + ~2 and 

~1-
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Accordingly, we shall differentiate the function 

6.5.3 \!1(8,,¢) = E-[e ½5 2932 + ½52¢,/J 

= f(½62El, A .½62¢) . 
Thus 

6.5.4 \J!(B,¢) 
n! V = . . 

(l-5 2e)½{n-2)(1-5 28-6 2¢)½ 

V is still the form given in Equation (6.5.2), except 

that now: 

d e ·1; ) 0 •• 1;" 1;" 

e d e ... 1;" 1;" 

1;" e d ... 1;" 1;" 

6.5.5 z(ll) = 1 . . . 
1-5 20 

. . . . . . . . . . 
1;" 1;" 1;" ... d e 
1;" 1;" 1;" ... e d 

and 

d = 1;" + 2 

6.5.6 e = T - 1 

T = A 52'° [1-5 2 8 - oZ¢ ]-1 . 
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The discussion is somewhat simplified if we notice 

that the volume Vis unaltered if r(ll) is replaced by any 

matrix proportional to E(ll). 

We choose to replace E(ll) by the (n-1)-square matrix P: 

6.5.7 p = ( 1-0 2e) r ( 11) 

d e ri;- ... ri;- ri;-

e d e . . . ri;- ri;-

ri;- e d ... ri;- ri;-

. . . . . . . . . . 
ri;- ri;- ri;- ... d e 
ri;- ri;- ri;- ... e d 

Using the formula 

we then have: 

1 /P/-2 

wherein 

> 

~(2) = (u2, u3, •··, un) • 

Two lemmas are now given to facilitate a proof of 

Theorem (6.1). 
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Lemma 6.1 

If A is the m-square matrix 
m 

2 -1 0 ... 0 0 

-1 2 -1 ... 0 0 

0 -1 2 . . . 0 0 

6. 5 .11 A = = 
pl't"=O m • . . . . . . . . . . . . 

0 0 0 ... 2 -1 

0 0 0 ... -1 2 

theh 

/A I = m + 1 m 
m = 1,2,3, •.. 

Proof: 

It is clear that /A1 / = 2. The proof for general m 

is easily obtained by induction. 

Lemma 6.2 

m m--1 m-2 ... 1.2 

2(m-l) 2(m-2) ... 2.2 

6.5.13 Am 
-1 := 1 3(m-2) ... 3.2 

m+l . . . . . . 
... (m-2).2 

(symmetric) ... (m-1) .2 
... (m-1).1 

1 

2 

3 

. . . 
m-2 
m-1 

m 



Proof: 

We merely verify that A m 

Theorem 6.1 
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-1 A m • 

Let M be the matrix obtained on subtracting the final 

row of P from each of its other rows. We obtain: 

1 -2 

1 -2 

6.5.15 /Pl /Ml A 
. . 

::::: = . . 
n-3 . • 

1 -2 

.-..-.wm 1-2 -2 -
0 0 ... 0 -1, 3 ..,3 

T T . . . T T I T-1 rr+2 

It is now obvious that /P/ is linear in rr: 

/Pl= a+ f3T 

On putting T == 0 and using Lemma (6.1) with m = n-1 we 

have immediately that a= n. 
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We obtain~ as t~ /Pj. Following this differentiation, 

we take advantage of the partitioning indicated in Formula 

(6.5.15) and obtain~= nn. This completes the proof of 

Formula (6.5.16). 

We may now write: 

f·J eU d u2 ••• 

where 

and 
n! 

By inspection of the conditional moments of R given in 

formulae (3.1.32) through (3.1.35) it is clear that the 

derivatives we require are the following: 

ok\j) 

e = -1 

¢ = 0 
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6.5.21 
0k+l 

= e'.,[~1(~1+~2)k e-(~1+~2)] 
o8k 00 

8 = -1 
¢ = 0 

and 

6.5.22 0k+2 = e'.,[~2(~ +~ )k e-(~1+~2)] 
oek o¢z 1 1 2 • 

G = -1 

r/J = 0 

In preparation for finding the first of these it is 

convenient to use the following two lemmas. 

Lemma 6.3 

th -l is The sum of the elements in the j- column of A 
m 

½j(m-j+l). That is, 

j = 1, 2, ••. , m • 

Proof: 

Since Am-l is symmetric, 
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Lemma 6.4 

Let 

1' = [l(n-1), 2(n-2), ••• , (n-1) .l] , 

Then 

• 

Proof: 

Differentiating both sides of the identity P P-l = 

with respect to~, we obtain: 

Thus, 

where 

I n-1 

j' = (1,1, ••• ,1) is an (n-1)-component vector. 

Now 

and hence 

= A -1 
n-1 
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-1 -1 
= (An-1 l_) (An-1 l_)' 

But 

A -1 j = l.-c 
n-1 - 2 J.i. 

[ Lemma ( 6 • 3 ) J 

and hence Formula (6.5.25) is demonstrated. 

We are now ready to state 

Theorem 6.2 

6.5.32 

Proof: 

Noting that 

and 

8 = -1 

¢ = 0 

k = O, 1, 2, ••• 

ok1; = 0 
oek 

e = -1 

¢ = 0 

2k ( n-3 + k) p k! 2 = 
{l+o2)2(n-l) k 

k = 0,1,2, •.. 
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ok (1 - 52 e)-½ (n-1) 
oek 

e = -1 

fl1 = 0 

= 

k = O, 1, 2, ••• 

we obtain from Formula (6.5.17) the derivative given in 

Formula (6.5.32). 

To simplify the development of other derivatives we 

present three lemmas. 

Lemma 6.5 

Suppose that [w.}n is the set of standard normal order 
i l 

statistics from a random sample of size n. 

Let 

i) .. = (ul, un) u u2' ... , 
.. 

ii) ~( 2) = (u2, u3, u ) ... , n 

iii) , = ( wl, w) w w2, ... , n 

iv) 
n n+l) X = I: (i - w 
1 2 i 

Then 
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Joo J n-1 . . . [ i 
0 

V 
j(n-j)uj+l] 

where An-l is the matrix defined in Equation (6.5.11). 

Proof: 

We transform the integral 

f·-f 
by means of: 

w = B u 

with 

1 0 0 

1 1 0 

6.5.33 B = 1 1 1 

. . . . . . . 
1 1 1 

V _.l.w' W Xe 2 - -dw 1 

... 

... 

. . . 

0 

0 

0 

1 



Thus, 

where 
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Joo! Joo n 1 
• ~. -ro [ i 

1 , -1 --u G u e 2 - -du du. 
I -c.z.) 

1 

-1 

G=== 0 

0 

-1 0 

A n-1 

0 

• 

Integrating with respect to u1 , we obtain: 

J?J n-1 
[ 

1 

I • 
IA 12 

n-1 

The conclusion [Formula (6.5.35)] follows on noting 
1 1 

that jGj = 1 and jAn_1 12 = n2 • 



- 140 -

Lemma 6.6 

Let 

i) 

ii) 
, 

j = ( 1, 1, ••• , 1) [(n-1)-components]. 

Then 

oU - 1 n-1 
6.5.42 ()'1" -~ [ I: j(n-j)uj+IJZ 

1 
'1"=0 

and 

o2u ..n n-1 
6. 5. 43 = [ I: j{n-j)uj+l]2 

0 '1" 2 4 1 
'1"=0 

Proof: 

Formula (6.5.42) follows immediately from Lemma (6.4). 

Now 

6.5.44 

But 

6. 5 .45 ( j p-1 _r 'I 
'1"= 0 

= .f"'-



and 

Lemma 6.7 

Let 

i) 

ii) 

iii) 

Then 

6. 5 .47 

6.5.43 

o'f = 
Oil' 

o2'f = 
0'212 
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1; = o '1,"'=o 

n! 

= n! o2 

-v'n ..n. (2n)½(n-l) 

k 2 ( e) f 1 h·) 

(8)f2(1;) 
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where 

Making use of the derivative 
C)'t" = o 2 ( 1 +..0.1:) 2 

Cl¢ .n.. 1 - 628 

we differentiate Formula (6.5.17) and obtain: 

... du n 

6 .5. 53 ~'t'( :;") k 2 ( 8) ( lun) 2 J-:I e U ctu2 • • .ctu0 

Likewise, 

[ Cl'¥ ( e , ¢ ) J 
Cl/! 
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Theorem 6.2 

If 'f1(8,~) is the moment generating function given in 

Formula (6.5.17), then: 

and 

Proof: 

Noting that 

and that 

ok+l \{/ ( 8 ,_gj) 
aek oJf 

ok+2 '{/( e ,¢) 
oek 0.0 2 

8 - -1 
¢ = 0 

e = -1 
¢ = () 

k O, 1, 2, ..• 

e = -1 

ft 0 

0 k o, 1, 2, ••• 



e=-1 

k = 0,1,2, ••• 

we obtain 

o k+ 1 'f' { 8 , 0 ) 

aek 00' 

k = 0,1,2, •.. 

But, by Lemma (6.6), 
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= n! o2p2k k! fl(0) (n21 + k) 
-v'nn (2rr)½(n-l) (1+02)½(n+l} k 

J 00 f n-1 = ½ ... [ i 
0 

and thus, by(Lemma 6.5), 

n½ { 2 TT) ½ ( n - l ) 
2n! 

Replacing f 1 (0) in Formula (6.5.59) by the expression 

in Formula (6.5.61), we obtain Formula (6.5.55). 
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Similarly, we note that 

i/n n.. z 
e = -1 

k = O, 1, 2, ••• 

and obtain 

ok+2 ':!,f ( 8 ,0) 
oek o;1' 

k = O, 1, 2, 

But f 2 (o) is, by use of Lemmas {6.5) and (6.6), 

n½ (2rr)½(n-l) 
4 n! 

ecx4J 

Replacing f 2 (o) in Formula (6.5.63)we obt?,in Formula 

( 6.5 .56). 

We remark that formulae (6.5.34), (6.5.55), and (6.5.56) 

could be used to pass immediately from Formula (3.1.33) 

and Formula (3.1.35) to Formula (3.2.23) and Formula (3.2.25) 

respectively. 
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SUGGESTIONS FOR FURTHER RESEARCH 

A generalization of the model in this thesis is 

obtained by relaxing the requirement that individuals in the 

calibration sample be strictly ranked on the criterion of 

interest. Thus, it may be that these individuals can be 

assigned to groups so that individuals in distinct groups 

are clearly different, but individuals in the same group are 

indistinguishable on the criterion of interest. This 

generalization is the subject of the Ph.D. thesis of 

Mr. Roger Flora now being directed at Virginia Polytechnic 

Institute by Dr. J. G. Saw. 

If the individuals in the calibration sample are 

imperfectly ranked there will be some disturbance in the 

power of tests based on the quasi-rank multiple correlation 

coefficient and in the ranking of subsequently chosen 

individuals. No work has as yet been done to assess the 

magnitude of this disturbance for various errors in ranking 

of the calibration sample. It is clear that if there is 

serious difficulty in obtaining a complete ranking of the 

calibration sample, the generalization of Mr. Flora would 

be useful. 
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It would be of considerable interest to have 

probabilities of errors in ranking subsequently selected 

individuals on the basis of the discriminant function. Thus, 

we should like to know the probability that no predicted 

rank differs by more thank from the true rank, or the 

probability that the rank correlation of predicted ranks 

with true ranks is less than y, etc. 

Again, some work might be done in assessing the practi-

cal value of the method outlined in this thesis. Thus, it 

could well be, at least for large sample sizes, that one 

would lose very little in power by replacing ranks by normal 

scores and using a standard regression analysis of the data. 

Finally, the statistic ~/S introduced in Chapter III 

promises to be useful as a measure of normality sensitive to 

skewness. Much of the groundwork having been laid in this 

thesis, it is the author's intention to investigate this 

problem at a later date. 
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ABSTRACT 

Having available a vector of measurements for each 

individual in a random sample from a multivariate popula-

tion, we assume in addition that these individuals can be 

ranked on some criterion of interest. As an example of this 

situation, we may have measured certain physiological 

characteristics (blood pressure, amounts of certain chemical 

substances in the blood, etc.) in a random sample of 

schizophrenics. After a series of treatments (perhaps shock 

treatments, doses of a tranquillizer, etc.) these individuals 

might be ranked on the basis of favorable response to treat-

ment. We shall in general be interested in predicting which 

individuals in a new group would respond most favorably. 

Thus, in the example, we should wish to know·which individuals 

would most likely bertefit from the 'series of treatments. 

Some difficulties in applying the classical discriminant 

function analysis to problems of this type are noted. 

We have chosen to use the multiple correlation coefficient 

of ranks with measured variates as a statistic in testing 

whether ranks are associated with measurements. We give to 

this coefficient the name "quasi-rank multiple correlation .. 
coefficient", and proceed to .find its first four exact 

moments under the assumption that the underlying probability 

distribution is multivariate normal. 



Two methods are used to approximate the power of 

tests based on the quasi-rank multiple correlation 

coefficient in the case of just one measured variate. The 

agreement for a sample size of twent.y is quite good. 

The asymptotfo relative efficiency of the squared quasi-

rank coefficient vis-~-vis the squared standard multiple 

correlation coefficient is 9/rr2 , a result which does not 

depend on the number of measured variates. 
I 

If the null hypothesis that ranks are not associated 

with measurements is rejected, it is appropriate to use the 

measurements in some way to predict the ranks. The quasi-

rank multiple correlation coefficient is, however, the 

maximized simple correlation of ranks with linear combina-

tions of the measured variates. The maximizing linear 

combination of measured variates is taken as a discriminant 

function, and its values for subsequently chosen individuals 

is used to rank these individuals in order of merit. 

A demonstration study is included in which we employ 

a random sample of size twenty from a six-variate normal 

distribution of known structure (for which the population 

multiple corre'lation coefficient is .655). The null 

hypothesis of no,a-ssociation of ranks with measurements is 

rejected in a two-sided size .05 test. The discriminant 

function is obtained and is used to "predict" the true ranks 

of the twenty individuals in the sample. The predicted 



ranks represent the true ranks rather well, with no predicted 

rank more than four places from the true rank. For other 

populations in which the population multiple correlation 

coefficient is greater than .655 we should expect to obtain 

even better sets of predicted ranks. 

In developing the moments of the quasi-rank multiple 

correlation coefficient it was necessary to obtain exact 

moments of a certain linear combination of quasi-ranges in a 

random sample from a normal population. Since this quasi-

range statistic may be useful in other investigations, we 

include also its moment generating function and some 

derivatives of this moment generating function. 
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