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USA transcription, virulence, quorum sensing, and proliferation. While c-di-GMP and
Fulllist of author information is (P)ppGpp are both synthesized from GTP molecules, they play antagonistic roles in
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morphogenesis and cell development. It inhibits cell motility and promotes S-phase
entry by inhibiting the activity of the master regulator, CtrA. Intracellular (p)ppGpp
accumulates under starvation, which helps bacteria to survive under stressful
conditions through regulating nucleotide levels and halting proliferation. (p)ppGpp
responds to nitrogen levels through RelA-SpoT homolog enzymes, detecting glutamine
concentration using a nitrogen phosphotransferase system (PTSN™). This work relates
the guanine nucleotide-based second messenger regulatory network with the
bacterial PTSNT system and investigates how bacteria respond to nutrient availability.

Results: We propose a mathematical model for the dynamics of c-di-GMP and
(P)ppGpp in C. crescentus and analyze how the guanine nucleotide-based second
messenger system responds to certain environmental changes communicated
through the PTSN system. Our mathematical model consists of seven ODEs describing
the dynamics of nucleotides and PTSN' enzymes. Our simulations are consistent with
experimental observations and suggest, among other predictions, that SpoT can
effectively decrease c-di-GMP levels in response to nitrogen starvation just as well as it
increases (p)ppGpp levels. Thus, the activity of SpoT (or its homologues in other
bacterial species) can likely influence the cell cycle by influencing both c-di-GMP and
(P)PpGpp.
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Conclusions: In this work, we integrate current knowledge and experimental
observations from the literature to formulate a novel mathematical model. We analyze
the model and demonstrate how the PTSN system influences (p)ppGpp, c-di-GMP,
GMP and GTP concentrations. While this model does not consider all aspects of PTSN'
signaling, such as cross-talk with the carbon PTS system, here we present our first effort
to develop a model of nutrient signaling in C. crescentus.

Keywords: c-di-GMP, (p)ppGpp, Caulobacter crescentus, Nitrogen starvation, Cell cycle

Background
Caulobacter crescentus is an oligotrophic, Gram-negative a-proteobacterium, frequently
found in freshwater environments. C. crescentus undergoes asymmetric cell division,
yielding two distinct progeny cells (Fig. 1): a non-motile ‘stalked’” cell (st) immediately
re-enters the cell cycle and initiates DNA replication, while a motile ‘swarmer’ cell (sw)
explores its environment before differentiating into a stalked cell and re-entering the
cell cycle [1]. The stalked cell is equipped with a holdfast to attach to solid surfaces
in its environment, whereas the swarmer cell develops a flagellum to move around in
search of a suitable nutrient environment. The asymmetric cell cycle affords C. cres-
centus a certain flexibility to cope with the vagaries of life in an oligotrophic, aquatic
environment [2].

Since asymmetric cell division plays an essential role in survival for C. crescentus, under-
standing how the asymmetry is regulated provides insight into the life cycle of many
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Fig. 1 The asymmetric cell cycle of C. crescentus. A stalked cell is non-motile with a holdfast. A swarmer cell is
motile with pili and a flagellum. A swarmer cell transforms into a stalked cell before DNA replication
commences. CtrA regulates cell cycle progression in time and space. CtrA is eliminated during the G1-to-S
transition. The green intensity indicates increasing concentrations of CtrA during cell cycle progression.
ClpXP, a protease specific for CtrA, shows up at the old pole of a cell to degrade CtrA. c-di-GMP cooperates
with ClpXP for CtrA proteolysis
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bacteria with similar characteristics. Many proteins, genes, and other molecules involved
in the asymmetric pattern have been reported [2, 3]. CtrA, a master regulator of the C.
crescentus life cycle, regulates more than 100 genes involved in flagellum biogenesis, DNA
replication, and cell division [4, 5]. As CtrA inhibits the initiation of DNA replication,
active CtrA (the phosphorylated form) must be eliminated during the swarmer-to-stalked
(G1-to-S) transition. There are two pathways to inactivate CtrA: proteolysis by ClpXP [6]
and dephosphorylation by CckA [7].

In C. crescentus, the spatio-temporally regulated proteolysis of CtrA requires protease
ClpXP and additional factors called adaptors [6, 8]. The adaptor complex consists of
CpdR, RcdA, PopA, and a second messenger c-di-GMP (cdG) (Fig. 2). ClpXP primed by
unphosphorylated CpdR localizes at the old pole (Fig. 1) and recruits the adaptor RedA
which directly interacts with PopA. PopA must be bound with cdG to adapt CtrA to the
entire protease complex (Fig. 2), which means ¢dG is indispensable for CtrA proteolysis.
In addition to regulating CtrA proteolysis, cdG also participates in CtrA dephosporylation
through CckA [7]. CcKA is a bifunctional enzyme, which can act as both a phosphatase
and a kinase to regulate CtrA and CpdR. When cdG binds with CckA, CckA activity favors
the phosphatase state over the kinase state. When ¢dG level peaks during the G1-to-S
transition, the dephosphorylation of CtrA and CpdR is rapidly stimulated, which allows
DNA replication to initiate [9]. In this way, cdG stimulates DNA replication by activating
the dephosphorylation and degradation of CtrA (Fig. 2).

While cdG stimulates the G1-to-S transition, alternative guanine-nucleotide based
secondary messengers, guanosine tetraphosphate and guanosine pentaphosphate
((p)ppGpp), promote mobility and cell cycle arrest in C. crescentus. While the exact mech-
anisms are unknown, it is understood that (p)ppGpp indirectly promotes stablization of
CtrA and degradation of DnaA, as well as interacting with RNA polymerase to influence
global gene expression [10].
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Fig. 2 c-di-GMP regulates DNA replication and cell motility through CtrA. (Left-hand side) cdG directly

stimulates phosphatase activity of CckA, thereby dephosphorylating CtrA to allow the initiation of DNA
replication. (Right-hand side) cdG is also required for CtrA proteolysis
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Additionally, cdG and (p)ppGpp control several key processes to help bacteria adjust
to environmental cues, such as depletion of nutrients [10, 11]. There is evidence that
bacteria accumulate (p)ppGpp in response to carbon and/or nitrogen limitation [10]
by regulating RelA-SpoT homolog (RSH) enzymes. Furthermore, bacteria respond to
the availability of carbon through cdG-regulated signaling processes [11]. However,
the specific mechanisms by which stressful conditions affect cell cycle progression
through the second messenger system and other key proteins in C. crescentus is
not clear.

In this work, we combine cdG, (p)ppGpp, and GTP into one mathematical model to
investigate the dynamics of these second messengers and how they respond to envi-
ronmental changes through the PTSN". Our model suggests that the concentration
of cdG decreases dramatically following nitrogen deprivation in response to increased
synthetase and decreased hydrolase activity of the bifunctional enzyme, SpoT. This obser-
vation suggests a novel mechanism by which C. crescentus may regulate its cell cycle
in response to nitrogen availability. Our model also suggests that (p)ppGpp-associated
stability of CtrA may be a result of reduced cdG activity due to depletion of GTP.
The dynamics of PTSN" enzymes have not yet been measured experimentally, however
our model predicts how they might behave under various levels of nitrogen availabil-
ity. Intracellular glutamine, phosphoenolpyruvate (PEP), and pyruvate (Pyr) affect the
phosphorylation state of PTSN" enzymes in our model, which suggests that a strin-
gent response to nutrient availability by guanine nucleotide-based second messengers
may be enforced through both glutamine level and the concentrations of PEP and
pyruvate.

Methods

Diagram construction

Metabolism and characterization of c-di-GMP

The cellular concentration of ¢dG is regulated by its synthesis by diguanylate cyclases
(DGCs) and its degradation by phosphodiesterases (PDEs) [12]. DGCs (like PleD
and DgcB), whose activities reside in the highly conserved GGDEF domain, act as
dimers to produce cdG from two GTP molecules [13]. cdG negatively regulates its
own synthesis by allosterically binding with the I-site of DGCs to inhibit synthetase
activity [12].

PDEs (such as PdeA and PdeB) cleave c¢dG to linear diguanylate (pGpG) or to GMP,
based on the conserved EAL domain or HD-GYP domain, respectively [13]. As pGpG is
eventually converted into GMP (Fig. 3), we ignore pGpG in the model and consider two
molecules of GMP as the product of cdG degradation. In addition, the activity of some
PDEs in C. crescentus is activated by binding GTP [14]. The initial velocity of hydrolysis
by PDEs reaches Vmax/2 when the concentration of GTP is 4.M. Because GTP concen-
tration in bacteria is much higher than 4uM [15-17], we assume PDEs are constantly
saturated with GTP and do not include this interaction in our model.

Metabolism and characterization of (p)ppGpp

(p)ppGpp accumulates in most bacteria under stressful conditions, such as nutrient
starvation [10, 18]. In C. crescentus, (p)ppGpp delays the entry into S phase and the
swarmer-to-stalked cell transition. This response gives C. crescentus an advantage in
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Fig. 3 Schematic diagram of cdG metabolism. DGCs catalyze the synthesis of cdG. PDEs cleave cdG into
pGpG, which is subsequently cleaved to two molecules of GMP

nutrient-deprived environments by maintaining its mobility to search for better environ-
ments and by delaying DNA replication to conserve energy [11]. C. crescentus utilizes
the bifunctional enzyme SpoT, an RSH homologue, to catalyze the conversion between
(GTP)GDP and (p)ppGpp [18-20] (Figs. 4, 5).

It has been reported that (p)ppGpp inhibits the synthesis of GMP and GDP through
binding the corresponding synthetases, such as HPRT, GMK, and their homologues
[21, 22]. The binding affinity of HPRT for pppGpp is K¢q = 3.38 uM in E. coli, but only
0.24 uM in C. crescentus [22]. We ignored this inhibition (Fig. 5) because the HPRT
homologue should be saturated with basal levels of (p)ppGpp in bacteria (10-50 uM
[11, 22]).

Nitrogen phosphotransferase system

It has been well documented that (p)ppGpp responds to carbon and nitrogen depriva-
tions [11, 19, 21]. While the specific mechanism underlying carbon starvation is not yet
clear, the mechanism responsible for nitrogen starvation has been recently elucidated
[10]. The accumulation of (p)ppGpp following nitrogen starvation is regulated by the
nitrogen phosphotransferase system (PTSN“) (10, 18].

The PTSN" consists of three components (EIN“, NPr, and EIIAN“) which form a
phosphorylation cascade (Fig. 5). The first protein EIN" initiates the cascade through
autophosphorylation using PEP as the phosphoryl donor. Then the phosphoryl group is
transferred from EINY to NPr and then to EIIANY™. This process is reversible, so three
components exchange phosphate groups and reach a steady state. EIIAN" can trans-
fer its phosphate group to other unknown molecules [23]. We assume that the rate of
phosphoryl transfer from EIIANY to these other molecules outside of the PTSN is far

slower than the transfer rate among PTSN'

proteins and the exchange with PEP and
pyruvate. Therefore, we do not include a terminal phosphate sink in our model of the
PTSN,

Glutamine binds to the conserved GAF domain of EIN" (Fig. 6) to prevent its autophos-
phorylation. Because glutamine works as a powerful nitrogen signal, enzymes involved in
the PTSNY become highly phosphorylated under nitrogen starvation when the intracellu-

lar level of glutamine decreases rapidly [10]. The PTSN" influences cdG dynamics by its

pppGpp/ppGpp H.O

SpoT 2 SpoThd
ATP GTP/GDP PPi

Fig. 4 Metabolism of (p)ppGpp. SpoT, a bifunctional enzyme in C. crescentus, catalyzes both the synthesis
and hydrolysis of (p)ppGpp
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Fig. 5 Diagram of our second messenger model. Glutamine (GIn) acts as the nitrogen signal, which regulates
the phosphorylation state of PTSN" enzymes. Solid black arrows represent conversion between molecular
species. Solid purple lines indicate transfer of phosphoryl groups between species. Phosphoryl transfer is
reversible. Dashed lines represent allosteric influences on reaction rates (an arrow-head represents activation
and a bar-head represents inhibition). Dashed line 1 indicates product-inhibition based on cdG binding to the
I-site of DGCs. Dashed line 2-1 indicates that phosphorylated NPr indirectly activates the synthase activity of
SpoT, and dashed line 2-2 indicates that phosphorylated EIIANT directly inhibits the hydrolase activity of SpoT
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Fig. 6 Schematic diagram of EIN structure and phosphate transfer. The C-terminus of EIN' bears a
PEP-binding domain (PBD) and the N-terminus is responsible for binding NPr (NBD). The red dashed arrows
indicate the direction of phosphate transfer. The separate GAF domain senses nitrogen availability by binding
glutamine, which inhibits phosphoryl group transferred from PEP to EIN
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effects on SpoT activity. Bacterial two-hybrid assays and mutant experiments [18] indi-
cate that phosphorylated EITAN' directly interacts with SpoT to inhibit hydrolase activity,
whereas phosphorylated NPr activates SpoT synthetase activity indirectly (Fig. 5). In
this way, the PTSNY, which senses nitrogen availability through glutamine, subsequently
regulates SpoT activity and (p)ppGpp levels.

Mathematical model
Based on the diagram in Fig. 5, the reactions of our model are as follows:

The activity of DGCs is subject to product inhibition through binding of c¢dG. As
two ¢dG molecules bind allosterically to each DGC dimer, we assumed that cdG inhi-
bition of DGC is a cooperative process. Thus we expressed the activity of [DGC] as
a Hill function with a Hill exponent of 2 (Table 1, Eq. (1)). Unlike DGCs, PDEs act
as monomers, which convert cdG to pGpG or GMP [13]. pGpG is subsequently con-
verted into GMP [10]. We assumed this reaction is very fast and ignored the intermediate
pGpG.

2GTP 255 c-di-aMP 225 2GMP.

As GDP and GTP can be interconverted and their products, ppGpp and pppGpp,
behave similarly [11, 19, 24], we lumped GDP and GTP into a single variable, ‘GTP,
and ppGpp and pppGpp are also condensed into one variable, (p)ppGpp. These ‘vari-
ables’ are interconverted by the synthetase and hydrolase activities of SpoT (SpoTsq and
SpoThg, respectively). To take the direct and indirect effects of NPr~P and EITANT ~P
into consideration, we define a variable, « (Table 1), as the synthetase:hydrolase ratio of
SpoT [25].

SpoThg

(p)ppGpp GTP.

SpoTsq
The interconversion of GTP, GDP and GMP is described compactly in our mathemati-

cal model by the reversible reaction

Table 1 Equations of our mathematical model*

K2 2 d
(1) dlcdG] /dt = s 1060 by - o — kacas + (PDE) ity
- GTP [(0)ppGpp]
(2) d[(D)DPGDM /df = ks.(p)ppGpp . {SpOTsd} : m - kd.(p)ppGpp . {SpOThd} : [(p)pﬁg@%

(3)  dIGTP] /adt

ksGtp - [GMP] — kyGrp - [GTP] — Ks (0)ppGpp - {SpOTsd} : %
2

[(PpPGppl o . LK __[cTPp?
+kaerppeep - {SPOTha } * Typataplti — 2+ Kscds - [DGC] KI+lcdGP  [GTPR+K2,

@) dIGMP] /dt = 2-kycde - [PDE] - 28— + kygrp - [GTP] — ksrp - [GMP]

) dEl~Phot/dt = kg - RS EPEI - I~ PP = ko-[El~ Plior INPr k- INPr~ P [E ot
(6)  dINPr~ P]/dt = ky-[EI~P]liot INPr]—k_5-[ NPr~P] [Elltor—(k3-[NPr~PI [EIIA]—k_3-[NPr] [EIIA~P])
(7)  dIENA~Pl/dt = ks:[NPr~ PI[ENIA] —k_3-[NPr] [ElIA ~ P]

@  [ENPEP] = Ky [EPF]

©)  [El~PI[Pyr] = Ky, - [B~PP]

(10) [ENy = [EN+[EPEP]+[EN ~ PPT]+IEI ~ P]

(11)  [NPrly = [NPr]+[NPr ~ P]

(12)  [ENATT = [ENA]4[EIIA ~ P]

"1SpoTs} = 1%, (5p0Tha} = 15, & = KspoT - %/HAL(W‘ {SpoTgy} and {SpoTpy} represent the fraction of total
SpoT for synthetase and hydrolase, respectively
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GTP
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GMP.
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PEP binds to the C-terminal domain of EI and donates a phosphoryl group to His-

189 (Fig. 6). Then the phosphoryl group is transferred to the next two enzymes, NPr

and EIIANY, in sequence [26, 27]. Glutamine binds to an allosteric site of EIN" (the GAF
domain) [28] and inhibits phosphoryl transfer to His-189 [10, 29]. The phosphorylation
cascade is summarized by the following reactions:

IPEP k1 (inhibited by Gln)

k
EI + PEP —= EIFEP,

b_1

EI~PPY,
k 1

Pyr kb_Q}
EI~P"Y" ——=EI~P + Pyr,

kb2

EI~P,., + NPr % El,o; + NPr~P,
—2

NPr~P + EITA % NPr + EITA~P -
3

where EI~Pi;= EI~P + EI~PPY" and Elyo= EI + EIPEP. EIPEP and EI~PPY' indicate EI
bound with PEP and EI~P bound with Pyr, respectively. k1; (i = 1,2,3) are the rate

constants of phosphorylation reactions, while kb, (j = 1,2) are the rate constants of
binding reactions.

Here, we make several assumptions to describe PTSNY reactions effectively:

1)

2)

3)

(4)

As PEP binding to EI is a rapid process [26, 30], we assumed that PEP and Pyr
binding reactions are much faster than phosphorylation reactions (reaching
quasi-steady state) [26]. Therefore, we converted the binding reactions into
algebraic equations (Table 1, Egs. (8, 9)).

We assumed that EI~P and EI~PPY* phosphorylate NPr at the same rate, but EI’Y"
is unstable and immediately dissociates into EI and Pyr. Similarly, we assumed that
EI and EI"FPcan be phosphorylated by NPr~P, but EI~PPEP is unstable and
immediately dissociates into EI~P and PEP.

Since there is limited experimental data for the kinetic rate constants of the
nitrogen PTS, we utilized experiments on the carbon PTS system to estimate these
rate constants in our model. The kinetics of the carbon and nitrogen PTSs are
likely very similar as they are homologues [31, 32].

The total concentrations of EIN®, NPr and EITAN" are assumed to be constants
[33]. We estimated the total concentrations to be: [EIN®]1 = 10uM, [NPr]T =
30uM, and [EITAN"] ¢ = 30uM [34-36].

The resulting mathematical model consists of seven ODEs and five algebraic equations
(Table 1 and Additional file 1). Parameters are defined in Table 2. Whenever pos-
sible, we estimated parameters from experimental data. Initial conditions in Table 3

Page 8 of 19
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were estimated from the intracellular concentrations in bacteria. The maximum con-
centration of ¢dG in C. crescentus is around 0.28uuM [37]. The basal levels of (p)ppGpp
and GTP in Gram-negative bacteria during normal conditions are around 50uM
and 1000uM [15], respectively. The ratio of [(p)ppGpp] to [GTP] in C. crescentus
varies from 0.15 to 1.9 under rich and limited nitrogen conditions [20, 38, 39]. We
used these values to calibrate our model. The ODEs were solved in MATLAB with
odel5s.

Simulations and results

Oscillations of DGCs and PDEs

Two well-known DGCs in C.crescentus are DgcB and PleD [37, 41]. During progres-
sion through the cell cycle, DgcB level stays constant, but the concentration and activity
of PleD vary [41]. Hence, we model [DGC] as the sum of constant [DgcB] and vari-
able [PleD]. Because experimental data on the fluctuation of active (phosphorylated)
PleD over the course of the C. crescentus cell cycle is not available, we used total PleD
flucutations as a substitute. Figure 7a shows immunoblot measurements (red dots) of total
PleD, extracted by Image] from [41], and the corresponding curve fitted by MATLAB
(R-square is 0.66). It appears that the second data point from Abel et al. [41] is inaccu-
rate because PleD activity should peak around t=20, since cdG needs to be produced at a

Table 2 Parameters

Parameter Description Source
Kscde = 33.5/min scaled synthesis rate of cdG this study
kdcdg = 100/min scaled degradation rate of cdG this study
Ky = 0.5uM dissociation constant for product inhibition [40]
Km1=1500uM binding affinity of GTP this study
Km2 = 0.06puM binding affinity of cdG [40]
[DgcBl=0.7uM scaled DgcB level [41]
[basal PDEs]=0.2uM scaled basal PDE level this study
Ks.(pyppGpp = 170M/min synthesis rate of (p)ppGpp this study
Kd.(p)ppGpp = 160pM/min degradation rate of (p)ppGpp this study
Ky =75uM binding affinity of NPr~P this study
K3 = 10uM dissociation constant of ElIA~P this study
KspoT = 4 constant of SpoT activity this study
Km3z = 1000uM binding affinity of GTP this study
Kma = 2000uM binding affinity of (p)ppGpp this study
54 2075’63MM parameters of glutamine inhibition [42]
kst = 1500/min synthesis rate of GTP this study
kdgGte = 100/min degradation rate of GTP this study
[Ellr = 10uM
[NPrlr = 30uM total enzymes levels [34-36]
[ENlA]lT = 30uM
ki = 524/min this study, [27, 42]
k_1 = 672/min
phosphotransfer constants

keo = 1.2 x 10%/(min - uM) 07 33]
kiz = 3.7 x 103 /(min - uM) '

K
Ko = kaT = 350uM dissociation constants [27]

k
Kgp = ij = 670uM
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Table 3 Initial conditions

Variables Initial Conditions (uM)
c-di-GMP 03

GTP 1300

(P)PPGpp 100

GMP 20

El~P 10

NPr~pP 30

EllA~P 30

high level at this time to deplete active CtrA and initiate the G1-to-S transition. Assum-
ing that the second experimental point is an error, we re-fit the total PleD without this
point (Fig. 7b, R-square is 0.84). In agreement with our expectations, the fitted curve in
Fig. 7b increases during G1-to-S transition and peaks around 30 min. The correspond-
ing accuracy of curve fitting improves as well. Additionally, we borrowed the active PleD
simulation of an as-yet unpublished model by Bronson Weston (Fig. 7c, magenta curve)
which captures the dynamics of phosphorylation of PleD. Weston’s simulation of PleD~P
(Fig. 7c) shows a similar trend with the experimental data and re-fitted curve of total PleD
(Fig. 7b,c), which serves to justify our methods for calibrating a curve for PleD activity.
The different scaled levels between Weston’s simulation and experimental points are due
to different normalization methods.

While PdeA is the most active phosphodiesterase enzyme in C. crescentus [44], other
PDEs, including PdeB, PdeC, and PdeD, have been identified in bacterial species B. sub-

tilis, E. coli and L. monocytogenes [45]. Assuming there are other PDEs in C. crescentus
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Fig. 7 Curve-fitting of PleD and PdeA data. a Original experimental data of total PleD [41] and a curve fitted
to the data by MATLAB. Function is 0.1442xsin (%t + 0.5037)+0.7384. b Refitted PleD curve after deleting
the second data point. New function is 0.1 834><sin(%r + O.5587)+O47579. ¢ Weston's simulation
(unpublished) of phosphorylated PleD and comparison with re-fitted curve and experimental data from B.
d Experimental measurements of PdeA [43] and its fitted curve. Function is -0.3605 x sm(%t + 0.1 767)+O.361
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as well, we represented total [PDE] in our model as the sum of [basal PDE] plus a vari-
able [PdeA] estimated by the curve-fitting tool in MATLAB applied to quantitative PdeA
measurements derived from Western blots of [46] using Image]. The PdeA points and the
corresponding curve are shown in Fig. 7d with R-square being 0.77.

Oscillation of c-di-GMP over cell cycle in C. crescentus

We used experimental data of ¢cdG concentration (peak point) [37] and bacterial
nucleotide concentrations to estimate parameters that are not available in publications.
Experimentally, cdG peaks at the swarmer-to-stalked transition (= 0.28+M) and then
decreases until reaching the lowest value (< 0.1xM) in the swarmer cell after cell division.
Our simulation of cdG over time fits experimental data well and shows a stable oscil-
lation through the cell cycle under nutrient-rich conditions (Fig. 8), in agreement with
experimental data [37].

Comparison of simulated PTSN' to carbon-PTS experimental data

PTS and PTSNY have a lot in common. Enzymes of PTSN® (EIN“, NPr, and EIIAN“) are
homologues of carbon-PTS enzymes (EI, HPr, and EIIA/B/C) [31]. They have similar
structures and play parallel roles in nutrient uptake. In addition, these PTSs communicate
with each other by phosphate exchange [28, 47]. PEP acts as the phosphoryl donor for
both carbon and nitrogen PTSs. There are two significant differences between these sys-
tems [28]: (1) Enzymes Il in PTS (juxtamembrane EIIB and transmembrane EIIC) assist in
transmembrane transport of sugars [48] whereas PTSN™ does not aid in sugar transport
[32]. (2) PTSN" is regulated by glutamine levels as part of the nitrogen signaling pathway
in prokaryotes, while PTS senses carbon sources in the environment through regulating
transport and phosphorylation of carbohydrates like glucose [34, 49].

037

© Experimental Data
—Simulated cdG

0.25

0.2

0.15

0.1

cdG concentration/uM

0.05

O 1 1
0 50 100 150
Time/min
Fig. 8 c-di-GMP oscillates during the cell cycle. Blue dots indicate experimental data of c-di-GMP in a single
C. crescentus wild-type cell during one cell cycle [37]. Only c-di-GMP of a swarmer cell is shown. Black line
indicates the simulated c-di-GMP in a swarmer cell at GIn=100004M, PEP=300+M, and Pyr=1500uM
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There is limited quantitative data for PTSN

in publications. Based on the similarities
between PTSN™ and PTS, we introduced some parameters obtained from PTS experi-
ments to simulate PTSN® [27, 33] (Table 2). In order to calibrate the PTSN" model, we set
[GIn] to 0 and compared simulations with carbon PTS experiments.

Kundig and Roseman [26, 50] measured how EI and HPr levels affect phosphorylation of
PTS quantitatively (Table 4). We set our initial conditions to the experimental conditions
of the paper, substituting [Npr] and [EINtr ] for [Hpr] and [EI], respectively. As there is no
information about pyruvate concentrations in their experiments, we estimated the [Pyr]
based on one set of experimental data in Table 4. The Table indicates that our PTSN

simulations fit the experimental data well.

Simulations under different nutrients conditions

Goodwin et al. [42] measured quantitatively how glutamine inhibits EIN' activity. In
Table 5, we show model simulations under a range of glutamine levels. Lee et al.
[51] showed that cellular glutamine in E. coli is very low under nitrogen-starvation
and increases to more than 10000uM when environmental ammonium is increased.
Therefore, in our simulations, we used [GIn]=1uM to represent limited nitrogen and
[GIn]=10000uM to describe abundant nitrogen.

PEP, the phosphoryl donor of PTSNY, is an important indicator of carbon avail-
ability [52]. However, Osanai et al. [53] and Yuan et al. [54] showed that PEP and
Pyr levels are stable under nitrogen shifts. Hogema et al. [55] measured intracellular
PEP and Pyr in E. coli under different carbon conditions: cells were initially grown in
minimal medium (ammonia with limited carbon) and had PEP and pyruvate concen-
trations of 2800uM and [Pyr]=900uM, respectively. After adding 10mM glucose to the
medium (now ammonia with high carbon), PEP and pyruvate concentrations shifted to
300uM and 1500uM, respectively. In consideration of this experimental data, we set
‘[PEP]=300uM, [Pyr]=1500uM, [GIn]=10000.M’ to represent ‘ammonia with high car-
bon’; and ‘[PEP]=300uM, [Pyr]=1500uM, [GIn]=1uM’ to represent ‘nitrogen-starved’
condition. As cells require carbon and nitrogen to synthesize glutamine, we regard
limited glutamine (proposed as 1000-2000uM in Table 5) and ‘[PEP]=2800uM and
[Pyr]=900M’ as ‘ammonia with limited carbon’

Table 5 summarizes the results of our simulations. cdG oscillations peak at 0.28uM
under 'ammonia with high carbon; and peak at 0.02uM under nitrogen depletion. These

Table 4 Effect of El and HPr (NPr) concentrations on phosphorylation of El and HPr (NPr) in PTS system

Condition Experiment” [50] Simulation

El(uM) HPr(NP1)(1M) El~P+HPr~P(uM) El~P+NPr~P (M)
0.157 244 6 6.8

03125 244 6.5 6.9

0.729 244 7 Al

157 244 75 72

0.729 0 >0 02

0.729 122 3 36

0.729 366 91 105

"PEP=160uM
“This row has been used to estimate Pyr level; Pyr=48.5uM
““Too small to recognize the specific value from the original figure [50]
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Table 5 Simulations under different conditions

[GIn] 10000u4M  200014M 100014M 100uM  10uM 1uM
cdG range 001-028"  001-0.26 0.01-0.25 0-009 0003 0002"
(P)pPGpp (M) 118 150 187 582 895 939
GTP (M) 1221 1192 1156 787 493 452
[PEPI=300pM  Lelpeceel 0.10 0.13 0.16 074 18 2.1
[Pyrl=1500uM  GMP (M) 81 79 77 52 33 30
El ~ P (uM) 0.5 06 08 20 32 34
NPr ~ P (M) 16 19 24 6.1 95 102
EIIA ~ P (uM) 16 19 24 6.1 95 102
cdG range 001-020  001-0177  0.01-0.13""  0-002  0-001  0-0.01
(P)ppGpp (M) 294 371 458 993 1160 1178
GTP (uM) 1056 984 902 401 244 227
[PEPI=2800uM  L2lpecpel 0.28 038 0.51 25 48 52
[ Pyrl=900..M GMP (uM) 70 66 60 27 16 15
El ~ P (uM) 11 14 1.6 37 52 54
NPr ~ P (M) 34 42 4.9 1.1 156 163
EIIA ~ P (uM) 34 42 4.9 1.1 156 163

"Proposed to be under condition of ammonia with high carbon
“Proposed to be under condition of nitrogen starvation
"Proposed to be under condition of ammonia with limited carbon

results suggest that depletion of nitrogen should result in cell cycle arrest, which is
consistent with experimental observations [56]. In general, as glutamine concentrations
decrease, cdG, GTP and GMP levels decrease while (p)ppGpp levels increase.

When we simulate conditions of ammonia with limited carbon, we find that cdG oscil-
lations decrease in amplitude; however, concentrations are presumably not so low to
induce cell cycle arrest. Thus, our results are consistent with the fact that C. crescen-
tus continues to grow under such conditions [55]. Interestingly, our results suggest that
(p)ppGpp levels should increase when decreasing carbon availability. Our results sug-
gest that shifts in PEP and pyruvate concentrations due to limiting carbon availability will
make the cell more sensitive to shifts in nitrogen. Table 5 suggests, that shifts in the direc-
tion of increased [PEP] and decreased [Pyr] favor increased activity in SpoT synthetase.
Based on steady state analysis of ODEs in our model, phosphorylation of PTSN" proteins
depends non-linearly on the [PEP]:[Pyr] ratio (Additional file 2). Increases in the ratio
generally trend towards SpoT synthetase activity, while decreases trend toward hydrolase
activity.

Our simulations show that the shift of c-di-GMP and (p)ppGpp levels in response to
changes of nutrients is due to both a shift in internal glutamine concentration and an
adjustment to the PEP and pyruvate levels (Table 5). Our model suggests that the PEP
and Pyr levels regulating PTSN" is one potential pathway of (p)ppGpp response to car-
bon availability. Enzymes within the PTSN" system become highly phosphorylated under
nitrogen starvation (Table 5), which is consistent with the existing qualitative analysis as
well [10]. Additionally, our simulation fits the experimental observations (Table 6) well.

Response to environmental change
Given the oligotrophic environments C. crescentus populates, we postulate that C. cres-
centus would have to respond rapidly to sudden shifts in nutrients in order to increase
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Table 6 Experimental information for concentrations and changes under starvation

Variables Nutrient-rich Nutrient-starved Species Reference
50uM - E.coli [11]
(P)PPGpp . ”
10-30uM millimolar B.subtilis [22]
900uM - E.coli [16]
TP - 3-fold drop (arginine starved) B.subtilis [21]
1000-3000uM - B.subtilis [17]
- 3-fold drop (glucose starved) marine Vibrio [57]
GDP 100uM - E.coli [6]
- 14-fold drop (arginine starved) B.subtilis [21]
GMP 24uM - E.coli [58]
) ~0.1 ~0.3 (arginine starved) B.subtilis [38]
[pppGPpLIGTP] ratio
PPPEPP 0.08 - E.coli [59]
~0.25 ~21.2 (arginine starved) B.subtilis [38]
0.16 - E.coli [59]

[PpPGPpPI[GTP] ratio 15 o d
~0.1 ~15 (arginine starved) C.crescentus [20]

~22.5 (glucose starved)

its fitness in these environments. Figure 9 shows how C. crescentus responds to envi-
ronmental nitrogen-shifts in our simulation. The response time for starvation is within
one cell replication cycle, which means C. crescentus can respond to nutrient deprivation
quickly according to our model. Perhaps even more importantly, our model suggests that
C. crescentus also recovers quite quickly to normal cell cycle oscillations when we reset
glutamine to the starting value. A response within the time frame of one cell cycle would
be a useful characteristic for C. crescentus to survive in oligotrophic environments.

0.3 T T T T T T T T
= [GIn]=10004:M (from time 0)
go02 [GIn]=1004:M (from time 600)
6 [GIn]=10004M (from time 1200)
5 0.1
&
0 1 1 I |
0 200 400 600 800 1000 1200 1400 1600 1800
T T T T T T T T |
% 1200 F a
& 1000 7
9,
800 = 1 L L L L 1 L =
0 200 400 600 800 1000 1200 1400 1600 1800
2 600 T T T T T
>
£ 400t .
o
0]
S 200 .
2
& 0 L L 1 1 1 L 1 L
= 0 200 400 600 800 1000 1200 1400 1600 1800
Time/min

Fig. 9 Response to nitrogen-shifts in our simulation. Blue line indicates simulated levels of cdG, GTP, and
(P)pPGpp when [GIN]=10000uM. Red line indicates simulated levels of these three molecules when
glutamine changes to 100uM at simulation time 600. Yellow line indicates the simulation when the
glutamine recovers to 10000.M. The end point of previous simulation is used to be the initial point of the
following simulation at a different glutamine level
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Discussion

Progression through the cell cycle in C. crescentus requires precise coordination of
metabolic and morphological events. The guanine nucleotide-based second messenger
network, including ¢dG and (p)ppGpp, plays significant roles in regulating bacterial mor-
phology and metabolism, such as controlling the activity of CtrA and adapting bacteria to
environmental changes. In this study, we propose a mathematical model to simulate the
guanine nucleotide-based second messenger network, and investigate how this network
responds to nutrient shifts through PTSN',

We calibrate our model using experimental data, and investigate two aspects influ-
encing phosphorylation of PTSN" in simulations: 1) glutamine levels, which affects
autophosphorylation of EINt [10, 28]; and 2) PEP and Pyr levels, which influence the flux
of phosphorus through the PTSN" system (Table 5, Additional file 2).

Simulations of nitrogen deprivation suggest that as (p)ppGpp accumulates in C. cres-
centus, GTP and ¢cdG concentrations decrease significantly as a result of increasing SpoT
synthetase activity. While it is suggested that (p)ppGpp stabilizes CtrA in C. crescentus
[60], the exact mechanism is unknown. As cdG is essential for CtrA proteolysis, the sta-
bility of CtrA may increase due to diminished ¢cdG concentration as a result of SpoT
synthetase activity, rather than downstream effects of (p)ppGpp signaling. Thus, we pro-
pose that C. crescentus may respond to nitrogen starvation by stimulating the PTSNT
system to induce SpoT synthetase activity, resulting in depletion of GTP and cdG levels
to induce cell cycle arrest via stabilization of the chromosome replication inhibitor, CtrA.

Importantly, our results also suggest that changes to intracellular concentrations of PEP
and pyruvate can have a significant impact on SpoT activity. We find that shifts in PEP and
pyruvate concentrations in response to decreased sugar availability result in an increase
in SpoT synthetase activity and an increase in sensitivity to shifts in glutamine concentra-
tion. Thus, two potential avenues to influence the PTSN" and SpoT are through adjusting
PEP and pyruvate levels as well as glutamine.

Conclusions and future work

Our mathematical model of guanine nucleotide-based second messenger network in C.
crescentus (Fig. 5) agrees with experimental observations compiled from the literature.
Most previous research has focused separately on cdG [14, 37] dynamics or the PTSN
system [10, 42] in bacteria, but has never related the second messenger network with the
PTSNY system in order to study environmental impacts.

In this work, the interactions within the guanine nucleotide-based second mes-
senger network are converted into a set of differential and algebraic equations
(Table 1) to simulate second messenger response to nutrient conditions. ¢cdG and
(p)ppGpp, which play significant roles in cell cycle regulation, are connected with
PTSN" to explain the relationship between bacterial development and environmental
changes.

The current model consists of seven ODEs and five algebraic equations, describing
the synthesis, degradation, activation, inhibition, phosphorylation, dephosphorylation,
binding, and release of physiological variables in C. crescentus. Our resulting simula-
tions are in good agreement with experiments and our model makes several intriguing
predictions, however there are still several exciting directions that we can take this
model:



Xu et al. BMC Bioinformatics 2020, 21(Suppl 14):408 Page 16 of 19

(1)  To better understand how nitrogen signaling influences the cell cycle of bacteria,
we can combine this second messenger model with a detailed regulatory model of
the C. crescentus cell cycle [61]. It will be interesting to see if a shift in cdG
concentration due to changes in SpoT activity will be enough to induce cell cycle
arrest, or if intervention by (p)ppGpp is also necessary.

(2) [PEP] and [Pyr] are adjustable signals in our model rather than variables. In the
future, we hope to expand our model to include [PEP] and [Pyr] as dynamical
variables to provide more insight into cell responses of nitrogen signaling.

(3) Carbohydrate PTS catalyzes the uptake of carbohydrates [49], and it communicates
with PTSNY through transfers of phosphoryl groups [62]. Therefore, including
carbohydrate PTS into our model will help to understand environmental responses
for both carbon and nitrogen shifts.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/512859-020-03687-z.

Additional file 1: Calculations for ordinary differential equations.
Additional file 2: Phosphorylation of PTSM" is non-linearly dependent on the [PEPL:[Pyr] ratio in simulation.
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