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Abstract

Data assimilation is the process of integrating observational data and

model predictions to obtain an optimal representation of the state of the

atmosphere. As more chemical observations in the troposphere are becoming

available, chemical data assimilation is expected to play an essential role

in air quality forecasting, similar to the role it has in numerical weather

prediction. Considerable progress has been made recently in the development

of variational tools for chemical data assimilation. In this paper we assess the

performance of the ensemble Kalman filter (EnKF). Results in an idealized

setting show that EnKF is promising for chemical data assimilation.

1 Introduction

Significant advancements have been made in recent years in our ability to measure and

model the chemistry of the atmosphere. It is now possible to measure at surface sites

and on mobile platforms many of the important primary and secondary atmospheric trace

gases and aerosols. The spatial coverage is also expanding through growing capabilities to

measure atmospheric constituents remotely using sensors mounted at the surface and in
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aircraft. From the modeling perspective chemical transport models (CTMs) have advanced

to the point where they now specifically follow on the order of one hundred chemical species,

interacting through chemical mechanisms involving hundreds of chemical reactions. However,

while significant advances have occurred, atmospheric chemistry analyzes are hampered by

the fact that chemical measurements and models are not closely integrated.

Data assimilation is the process by which model predictions utilize measurements to ob-

tain an optimal representation of the state of the atmosphere. Data assimilation is recognized

as essential in weather/climate analysis and forecast activities. As more chemical observa-

tions in the troposphere are becoming available chemical data assimilation is expected to

play an essential role in air quality forecasting, similar to the role it has in numerical weather

prediction.

In this work we focus on data assimilation in chemical transport models (CTMs), which

are designed to describe the fate and transport of atmospheric chemical constituents as-

sociated with the gas and aerosol phases. CTMs are an essential element in atmospheric

chemistry studies, including important applications such as providing science-based input

into best alternatives for reducing pollution levels in urban environments, designing cost-

effective emission control strategies for improved air quality, for air-quality forecasting and

assessments into how we have altered the chemistry of the global environment. Atmospheric

chemical transport models pose specific challenges to data assimilation. The chemical inter-

actions take place on a wide range of temporal scales (from < 10−6 seconds to days). This

makes the system numerically stiff. Moreover, the errors associated with misspecification

of the initial conditions are often dominated by highly uncertain emission factors and un-

certainty regarding the time-space distribution of anthropologically and naturally emitted

pollutants. In regional models uncertainty in the specification of lateral boundary conditions

considerably affects the solution. Therefore, to improve the analysis capabilities of CTMs, it

is necessary to consider the estimation of emission parameters and lateral boundaries through

data assimilation [Stewart, 1993, Menut, 2003].

In the variational approach (3D-Var, 4D-Var) the mismatch between model predictions

and observations is quantified by a cost functional. Data assimilation is then formulated

as an optimization problem where the model state and model parameters are adjusted to

minimize this cost functional. Chemical data assimilation has advanced considerably in the

past decade using the variational approach [Elbern and Schmidt, 1999, 2001, Elbern et al.,

1997, 2000, 1999, Fisher and Lary, 1995, Menut et al., 2000, Sandu et al., 2003, 2005, Liao

et al., 2005, Chai et al., 2006, Constantinescu et al., 2006a].

In this study we focus on the ensemble Kalman filter (EnKF) approach to chemical data

assimilation, which has several highly attractive features. The computational model need
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not be modified, as there is no need for the tangent linear or adjoint models. The effects

of non-linear dynamics are better captured than with the variational approaches (which are

intrinsically linear). EnKF allows to easily account for model errors, and the calculations

are almost ideally parallelizable. A detailed comparison of the relative merits of EnKF and

4D-Var in the context of Numerical Weather Prediction (NWP) can be found in [Lorenc,

2003, Kalnay et al., 2005].

EnKF has attracted considerable attention in meteorology. Houtekamer et. al. [Houtekamer

and Mitchell, 2001, Houtekamer et al., 2005] have shown that significant gains can be ob-

tained by applying ensemble Kalman filter (EnKF) to operational numerical weather predic-

tion models. The sequential EnKF proposed in [Houtekamer and Mitchell, 2001] organizes

observations into batches that are assimilated sequentially, thus increasing the computational

efficiency. In [Mitchell and Houtekamer, 2002] the authors investigate three issues related

to sequential EnKF, namely include ensemble size, balance, and model-error representation.

Substantial imbalance in the analyzes can appear when the localization (the cutoff distance

for correlations) is severe, but decreases as the localization is relaxed. Hunt et. al. de-

veloped 4D-EnKF [Hunt et al., 2004], a technique which allows observations to occur at

times different than assimilation times. The linearized model dynamics is inferred from the

ensemble, and the observational increments at intermediate times are propagated using the

ensemble. Blond and Vautard [Blond and Vautard, 2004] used statistical interpolation to

recover the surface ozone over Western Europe. They concluded that correcting only the

initial conditions yields limited results, and other sources of uncertainty (like emissions or

boundary conditions) need to be addressed in order to increase the prediction capability.

Ensemble Kalman filter has been used in chemical data assimilation to recover ozone

and emissions [Van Loon et al., 2000, Heemink and Segers, 2002]. This work shows that

it is possible to successfully apply the ensemble Kalman filter to an atmospheric CTM for

data assimilation, and to improve the quality of the forecasts. The results also showed

that although the data assimilation can significantly improve ozone estimates, it degrades

the estimates of other important chemical species. A comparison among different flavors of

reduced Kalman filters is given in [Heemink and Segers, 2002].

In this study we investigate the application of “perturbed observations” EnKF to chemical

data assimilation. Here, we analyze the performance of EnKF data assimilation in an ideal

setting, where a reference solution is considered the “truth” and is used to generate the

initial ensemble, to obtain artificial observations, and to asses the quality of the results. The

contributions of this work are: an analysis of EnKF on large scale chemical models, the use

of model singular vectors and autoregressive background models to form the initial ensemble,

study the effects of the ensemble size, emissions, and boundary conditions on chemical data
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assimilation.

The paper is structured in two parts. In the first part we analyze the performance of

EnKF data assimilation in an ideal setting, where a reference solution is considered the

“truth” and is used to generate the initial ensemble, to obtain artificial observations, and to

asses the quality of the results. The second part of this study [Constantinescu et al., 2006b]

continues the analysis in a real setting with real observations, discusses various strategies for

covariance inflation, and compares the EnKF performance with a state-of-the art 4D-Var.

In the third part of this study [Constantinescu et al., 2006c] we investigate the ”localization”

of EnKF.

This paper is structured as follows: In Section 2 we review the Kalman, ensemble Kalman,

and chemical and transport models. Section 3 presents the construction of the initial en-

semble. The analysis scheme is presented in Section 4. Our numerical results with EnKF

data assimilation applied to a CTM are shown and discussed in Section 5. Conclusions and

future research directions are given in Section 6.

Throughout this paper we use the notations from [Ide et al., 1997], where applicable.

2 Background

In this section we introduce the chemical transport models (Sec. 2.1) and review the theory

of the ensemble Kalman filter (Sec. 2.2) used in our numerical experiments.

2.1 Chemical and Transport Models

Atmospheric chemistry and transport models solve the mass-balance equations for concen-

trations of trace species in order to determine the fate of pollutants in the atmosphere [Sandu

et al., 2005]. Let cs be the mole-fraction concentration of chemical species s, Qs be the rate

of surface emissions, Es be the rate of elevated emissions, and fs be the rate of chemical

transformation for this species. Further, u is the wind field vector, K the turbulent dif-

fusivity tensor, and ρ is the air density. The evolution of cs is described by the following
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equations

∂cs

∂t
= −u∇cs +

1

ρ
∇(ρK∇cs) +

1

ρ
fs(ρc) + Es, t0 ≤ t ≤ tF , 1 ≤ s ≤ Nspec,

cs(t
0, x) = c0s(x),

cs(t, x) = cins (t, x) for x ∈ Γin, (1)

K
∂cs

∂n
= 0 for x ∈ Γout,

K
∂cs

∂n
= V dep

s cs −Qs for x ∈ Γground .

The model solution operator will be denoted compactly as

ci =Mti−1→ti

(

ci−1, ui−1, c
in
i−1, Qi−1

)

. (2)

where subscripts represent time, ci = c(ti) etc.

A major difference between CTMs and NWP models is the presence of stiff chemical

kinetic terms [Sandu et al., 1997] (represented as fs in (1)). Stiff systems are very stable, and

small perturbations of their state are rapidly damped out. Another difference between CTMs

and NWP models is that the former does not solve the dynamic (momentum) equations.

In practice CMTs are derived by prescribed meteorological fields (computed and analyzed

off-line). In the future, however, it is expected that CTMs will be coupled with dynamic

atmospheric models.

In our numerical experiments, we use the Sulphur Transport Eulerian Model (STEM)

[Carmichael et al., 2003], a state-of-the-art chemical and transport atmospheric model. A

further discussion of STEM’s numerical methods and settings is presented in section 5.1.

2.2 The Ensemble Kalman Filter (EnKF)

Consider the discrete model (1)Mti−1→ti : R
N → R

N that evolves the system’s state vector

c ∈ R
N from time ti−1 to time ti (i ≥ 1). The model is an imperfect representation of a real

system having the “true” state ct ∈ R
N. The model predictions are not exact and therefore

ci = Mti−1→ti

(

ci−1

)

+ ηi , (3)

where the random variable ηi = ct
i − c

f
i represents the model error. The model error is

typically assumed to be Gaussian with mean zero (the model is unbiased) and covariance Q,

ηi ∈ N (0, Qi).

Observations y ∈ R
P of the true state ct ∈ R

N are available at discrete times ti, i ≥ 0

yi = Hi

(

ct
i

)

+ εi, (4)
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where the random variable εi represents the observation error. The observation operator

H : RN → R
P maps the state space into the observation space. Let 〈 · 〉 denote the statistical

average. The observation error is typically assumed to be Gaussian with mean zero and

covariance R, εi ∈ N (0, Ri).

The Kalman filter [Kalman, 1960, Fisher, 2002] gives an optimal estimate of the true

state ct using the model approximate solution (the forecast) cf ∈ R
N, and the observations

y ∈ R
P. This optimal estimate of the state is called the analysis ca ∈ R

N. The analysis is

obtained as a linear combination of the forecast and observations that minimize the variance

of the analysis

ca
i = c

f
i +Ki di , di = yi −Hi

(

c
f
i

)

, (5)

where Ki is the Kalman gain matrix and di the innovation vector. Assuming that the model

and observation errors are uncorrelated the Kalman gain is given by

Ki = P
f
i H

T
i

(

HiP
f
i H

T
i +Ri

)−1
, (6)

where H = H′ is the linearized observation operator and P
f
i = 〈ηiη

T
i 〉 is the forecast error

covariance. We denote by 〈 · 〉 the statistical average.

The filter works as follows. The best estimate of the state at ti−1 is the analysis c
a
i−1.

This state is propagated to ti using the model (3) to obtain the model forecast c
f
i . The filter

(5)–(6) is then applied to combine the forecast state and the observations and obtain the

analysis ca
i

c
f
i =Mti−1→ti

(

ca
i−1

)

+ ηi , ca
i = c

f
i +Ki

(

yi −Hi (c
f
i )
)

.

The forecast covariance matrix P f
i is evolved from the previous step

P
f
i =Mti−1→ti P

a
i−1 M

∗
ti→ti−1

+Qi , (7)

where M =M′ is the tangent linear model of (3) and M ∗ the adjoint of M . The analysis

covariance matrix P a
i is given by the filter as

P a
i = P

f
i −KiHiP

f
i . (8)

The Kalman filter is not practical for large systems, because of the prohibitive computa-

tional cost needed to invert the large matrix in (6) and to propagate the covariance matrix

in time (7). Approximations are needed to make the Kalman computationally feasible. One

such approximation is provided by the ensemble Kalman filter (EnKF).

First proposed by Evensen [Evensen, 1994], and then later clarified by Burgers [Burgers

et al., 1998], the ensemble Kalman filter [Fisher, 2002] uses a Monte-Carlo approach to

propagate covariances. An ensemble of E states (labeled e = 1, · · · , E) is used to sample
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the probability distribution of the background error. Each member is advanced in time and

analyzed separately to produce an ensemble of analyzed states

c
f
i (e) =Mti−1→ti

(

ca
i−1(e)

)

+ ηi(e) , ca
i (e) = c

f
i (e) +Ki

(

yi(e)−Hi (c
f
i (e))

)

, e = 1, · · · , E .

The forecast and the analysis covariances are estimated from the statistical samples

P
{a,f}
i ≈

1

E− 1

E
∑

e=1

(

c
{a,f}
i − 〈c{a,f}

i 〉E
) (

c
{a,f}
i − 〈c{a,f}

i 〉E
)T

. (9)

where 〈·〉E represents the ensemble average.

The ensemble Kalman filter raises several issues. First the rank of estimated covariance

matrix is usually several orders of magnitude smaller than the dimension of the matrix. Two

methods have been used to fix the rank-deficiency problem: splitting the analysis increment

into two parts and increasing the rank of estimated covariance [Houtekamer and Mitchell,

2001]. Next, the random errors in the statistically estimated covariance decrease slowly,

only by the square-root of the ensemble size. Furthermore, the subspace spanned by random

vectors for expressing the forecast error is not optimal. In spite of the problems, ensemble

Kalman filter has many attractive features.

Evensen [Evensen, 1992, 1993] discussed the implementation of the extended Kalman fil-

ter for data assimilation in a multilayer quasi-geostrophic model. In [Evensen, 1994] Evensen

proposed to replace the error covariance equation in the extended filter by a Monte-Carlo

solution to the “full” Kolmogorov equation. The error statistics needed in extended Kalman

filter can be calculated directly from the ensemble. The numerical results presented in this

study are based on the practical EnKF implementation presented by Evensen in [Evensen,

2003].

3 The Initial Ensemble

One of the challenges with ensemble forecasting is the specification of the initial ensem-

ble. For a correct ensemble, each member is drawn from the same probability distribution

function (pdf) that produced the true system state, and is impossible to distinguish between

ensemble members and truth. Hansen [Hansen, 2002] argues that the initial ensemble should

sample the (local) system attractor. A good approximation of the background error statis-

tics, and a correct initialization of the ensemble are essential for the success of ensemble data

assimilation.

In the ECMWF ensemble prediction system [Molteni et al., 1996] the ensemble pertur-

bations are generated from the leading singular vectors of the linearized propagator. These

vectors identify the directions in phase space associated with maximum perturbation growth.
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In this section we consider the autoregressive models for background errors and discuss

the construction of model singular vectors. A more detailed discussion can be found in

[Constantinescu et al., 2006a, Liao et al., 2005].

3.1 Flow-Dependent Models of Background Error

Our current knowledge of the state of the atmosphere (at the beginning of the simulation) is

represented by the “background” field and its error. In practice, little is known about about

the background error; a typical assumption is that it has a Gaussian distribution with zero

mean (the model is unbiased) and covariance B. In EnKF the background covariance is used

to generate the initial ensemble. A good approximation of the background error statistics is

therefore essential for the success of data assimilation.

The initial state of each member e, e = 1, · · · , E is formed by adding a different pertur-

bation δcB(e) to the initial “best guess” (background) state

c0(e) = cB + δcB(e) , e = 1, · · · , E .

The ensemble of perturbations should correctly sample the probability distribution of back-

ground errors. Building the initial ensemble based on the distance and flow dependence has

been discussed in [Riishojgaard, 1998, Hamill and Whitaker, 2001, Buehner, 2004].

In this study the background covariance is modeled by autoregressive (AR) processes

[Constantinescu et al., 2006a] of the form

δcBi,j,k + α
(±1)
i,j,k δcBi±1,j,k + β

(±1)
i,j,k δcBi,j±1,k + γ

(±1)
i,j,k δcBi,j,k±1 = σi,j,k ξi,j,k, (10)

where α, β, and γ are the autoregressive coefficients, subscripts refer to the spatial coordi-

nates, and σ represents the error variance. The AR process can be represented compactly

as

AδcB = S ξ , S = diag(σi,j,k) , (11)

The AR background accounts for spatial correlations, distance decay, and chemical lifetime.

For more details on the construction of the AR background model the reader is referred to

[Constantinescu et al., 2006a].

The perturbation that defines the initial state of the e-th member of the ensemble is

δcBAR(e) = A−1 S ξ(e) , e = 1, · · · , E .

where ξ(e) ∈ (N (0, 1))N is a vector of N independent normal random variables of mean 0 and

standard deviation 1. This perturbation is generated by scaling the normal variables ξ with
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the proper standard deviations, then solving a linear system with the AR coefficient matrix

A. The background covariance matrix is B = A−1 S2 A−T . The AR model (10) is constructed

using the coefficients A of a discretization of the advection–diffusion–reaction operator. A

computationally efficient approach is to obtain A via operator splitting of the chemistry

and transport, followed by dimensional splitting of the three-dimensional advection-diffusion

equation. This model of the background covariance accounts for spatial correlations, distance

decay, and chemical lifetime [Constantinescu et al., 2006a].

3.2 Model Singular Vectors

Model singular vectors are the directions of the most rapidly growing perturbations over a

finite time interval. We measure the magnitude of the perturbations in the concentration

fields using L2 weighted norms. The ratio between perturbation energies at the final (tF)

and initial time (t0) offers a measure of error growth:

σ2 =
‖δx(tF)‖2

F

‖δx(t0)‖2
G

=
〈δx(t0),M ∗

tF→t0
FMt0→tFδx(t

0)〉

〈δx(t0), Gδx(t0)〉
(12)

Here G is a positive definite and F a positive semidefinite matrix. In (12) we use the fact

that perturbations evolve in time according to the dynamics of the TLM. Model singular

vectors are defined as the directions of maximal error growth, i.e. the vectors sk(t
0) that

maximize the ratio σ2 in equation (12). These directions are the solutions of the following

generalized eigenvalue problem:

M∗
tF→t0 F Mt0→tF sk(t

0) = σ2
k Gsk(t

0) (13)

The left side of (13) involves one integration with the tangent linear model followed by one

integration with the adjoint model.

The eigenvalue problem (13) is solved by software packages like ARPACK [ Maschhoff

and Sorensen ] using Lanczos iterations. The symmetry of the matrix M ∗ F M required by

Lanczos imposes to use the discrete adjoint M ∗ of the tangent linear operator M in (13).

The computation of discrete adjoints for stiff systems is a nontrivial task [Sandu et al., 2003].

In addition, computational errors (which can destroy symmetry) have to be small. A more

detailed discussion can be found in [Liao et al., 2005].

An initial random perturbation can be constructed in the space of the model singular

vectors as follows

δcBSV =
∑

k

αk ξk sk(t
0)

9



where ξk ∈ N (0, 1) are normal random variables and αk are appropriate scaling coefficients.

Adding an initial perturbation in the space spanned by dominant singular vectors ensures

that the ensemble spans the directions of maximal error growth.

4 The Analysis Scheme

In this paper we follow closely the classical implementation of “perturbed observations”

EnKF as described in [Evensen, 2003].

The initial state of each ensemble member is obtained by adding to the background both

an autoregressive perturbation (which captures flow-dependent error correlations, see Section

3.1) and a perturbation in the space of dominant model singular vectors (which samples the

directions of maximal error growth, see Section 3.2)

c0(e) = cB + δcBAR(e) + δcBSV(e) , e = 1, · · · , E . (14)

Emissions and lateral boundary conditions are major sources of uncertainty in regional

atmospheric CTMs. After some simulation time the solution is driven less by the initial

conditions and more by emissions and boundary conditions. EnKF can be extended to

include the emission and lateral boundary condition in the assimilation process (and solve

the state-parameter estimation problem [Derber, 1989, Annan et al., 2005, Evensen, 2005]).

Correction coefficients αEM and αBC are used to adjust the (prescribed) emission rates and

lateral boundary conditions, respectively, in each grid point. The correction coefficients can

be viewed as model parameters, and are padded to the controlled state variables to form and

extended state vector







ci

αEM

i

αBC

i






=







Mti−1→ti

(

ci−1, ui−1, c
in
i−1, Qi−1

)

αEM

i−1

αBC

i−1






. (15)

An uncorrelated unbiased perturbation is used for the initial emission and lateral boundary

conditions. The ensemble propagates and the filter corrects the extended state vector. The

corrected emissions and boundary values are then used during the forecast.

A correct estimation of model errors is important in data assimilation in order to quantify

the correct level of “trust” in the model forecast. A direct approach to accounting for

model errors is to add noise to the ensemble of model forecasts. In this study we have

taken a different approach, namely we have randomly perturbed the emissions and boundary

conditions for each member run.
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5 Numerical Results

In this section we experimentally investigate the performance and the feasibility of EnKF

data assimilation in the context of photochemical and transport models. For this purpose we

consider an idealized setting in which the “truth” is a reference solution computed with the

model, and artificial observations are generated by perturbing the “true” (reference) values.

5.1 The Test Problem

The test problem is a simulation of air pollution in South-East Asia using the STEM model

and TraceP [Carmichael et al., 2003] conditions.

The chemical reaction and transport equation (1) is solved using an operator splitting

approach. STEM uses linear finite difference discretization of the transport terms. Horizontal

transport is solved using a directional x and y split approach, and a third order 1D upwind

finite difference formula [Sandu et al., 2005]. The diffusion terms are discretized using second

order central differences. The advection inflow boundary uses a first order upwind scheme,

which makes the order of whole scheme quadratic for the interior points. The vertical

advection scheme by first order upwind finite difference and the diffusion term is discretized

by the second order central differences [Sandu et al., 2005]. Atmospheric chemical kinetics

result in stiff ODE equations that use a stable numerical integration that preserve linear

invariants.

The gas phase mechanism is SAPRC-99 [Carter, 2000] which accounts for 93 chemical

species (88 variable and 5 constant) involved in 235 chemical reactions. The chemistry

time integration is done by Rosenbrock 2 numerical integrator [Sandu and Daescu, 2005],

implemented using the kinetic preprocessor (KPP) [Damian et al., 2002].

The numerical experiment is a real-life simulation of air pollution in South-East Asia in

support of the TraceP field experiment (NASA TRAnsport and Chemical Evolution over the

Pacific) [Carmichael et al., 2003]. The meteorological fields, boundary values, and emission

rates correspond to TraceP starting at 0 GMT of March 1st to 0 GMT March 3rd, 2001.

The simulated region (shown in Figure 1.a) covers 7200× 4800× 20 Km, and is covered by

a 3-dimensional computational grid with 30 × 20 × 18 points; the grid has 240 × 240 Km

horizontal resolution and varying vertical height.

The following numerical experiments consider a 24 hour assimilation window (0 GMT of

March 1st to 0 GMT March 2nd, 2001) followed by a 24 hours forecast window (0 GMT of

March 2nd to 0 GMT March 3rd, 2001) in order to assess the performance of the analysis

scheme.
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(a) South-East Asia (b) Observations and verification area

Figure 1: a) The simulated physical domain (East Asia); b) The computational domain and

the location of the ground observations (dark), the column observations (light o), and the

ground projection of the parallelipipedic verification area (light).

5.2 Analysis Setting

An idealized ensemble is constructed by adding perturbations to the “true” (reference) solu-

tion ct. The idealized ensemble together with artificial observations, Hct, allow us to study

performance of EnKF applied to chemical transport models in isolation from other issues

like data and model errors.

A parallelipipedic verification area is defined above Korea (Figure 1.b). We are interested

to improve the estimates of the concentration fields within the verification area. We will

assess the quality of the assimilated fields for ozone (O3), nitrogen dioxide (NO2), as well as

for species that are not observed directly: formaldehyde (HCHO), peroxyacyl nitrate PAN,

and carbon monoxide CO. The verification region is chosen away from the model boundaries

in order to avoid the boundary artifacts in the assimilation process.

The analysis setting used in the numerical experiments has the following characteristics:

• Reference solution. The reference solution is started at 0 GMT of March 1st and ends

at 0 GMT March 3rd, 2001 (48 hours) with the TraceP initial concentrations.

• Assimilated solution. We follow the assimilation results for one particular ensemble

member, based on the principle that the ensemble members cannot be statistically

distinguished between them and they equally well represent the truth. Note that in the

idealized setting used here the ensemble is unbiased (is constructed about the “truth”)

and remains essentially unbiased throughout the simulation. Thus the ensemble mean

is essentially indistinguishable from the reference solution.

• Observations. Artificial observations are obtained from the reference run for ozone

(O3) and one of its chemical precursors, nitrogen dioxide (NO2) on the ground level in

Korea, Japan, and part of China, and along a vertical column above Korea. In total
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there are 24 observed grid points on the ground, and 17 observed gridpoints along the

column. The location (grid coordinates) of the observations is presented in Figure 1.b.

• Assimilation window. The assimilation window starts at 0 GMT March 1st, and ends

at 0 GMT March 2nd (denoted from now on as the interval [0, 24] hours). Observations

are available at 6, 12, 18, and 24 hours.

• Forecast: The forecast window starts at 0 GMT March 2nd, and ends at 0 GMT March

3rd (denoted as the interval [24, 48] hours).

• States. The control states are the concentrations of 66 different species, including the

observed ones.

• Parameters. The correction factors applied to the emission rates and lateral boundary

conditions are considered model parameters, and are assimilated in the state-parameter

estimation experiments.

• Model singular vectors. Model singular vectors are computed for the assimilation win-

dow with respect to the verification region at the final time. The dominant 40 model

singular vectors were used to initialize the ensemble.

5.3 Ensemble Bias

In the numerical results we present the concentrations of several chemical species (O3, NO2,

CO, HCHO, and PAN) averaged over the verification area. The concentration units are parts

per billion (volumetric) – ppbv. Among the selected species only O3 and NO2 are directly

observed; CO, HCHO, and PAN are adjusted by assimilating the observations of ozone and

nitrogen dioxide.

Figure 2 shows the absolute ensemble bias for the selected species during the assimilation

and forecast windows. The ensemble has a very small bias and this bias does not increase

over time.

5.4 Ensemble Size

The ensemble size determines the accuracy to which the forecast error covariance is approx-

imated. A small ensemble size leads to under-prediction of the forecast error [Houtekamer

and Mitchell, 1998, Mitchell and Houtekamer, 1999, 2002], and ultimately may lead to fil-

ter divergence. Filter divergence [Houtekamer and Mitchell, 1998, Hamill, 2004] is caused

by progressive underestimation of the model error covariance and coerces filter to neglect

the observations in the analysis process. A large ensemble is expensive (the cost increases

linearly with the ensemble size while the accuracy of the covariance estimate improves by
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Figure 2: Ensemble bias (ensemble average minus the reference solution) for 48 hours of

simulation. The first 24 hours are the assimilation window, the next 24 hours are the

forecast. The ensemble remains essentially unbiased.
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its square root). An important question is how large should the ensemble be, and how to

determine its size.

The appropriate ensemble size depends on the application and model. We performed

several simulations with ensembles of 10, 22, and 50 members. The results are presented in

Figure 3. The reference and the analysis concentration fields of O3 (directly observed) and

CO (not observed) are averaged over the verification area. Smaller ensembles (Figure 3.a,d)

have smaller spreads and under-represent model errors. Figures 3.c and 3.e show that the

large ensemble (50 members) provides analysis solutions that are very close to the reference

for both for the observed and not observed species. In the next experiments we will consider

50-member ensembles.

5.5 Ensemble Convergence

Figure 4 shows the convergence of the assimilated solution for several chemical species (O3,

NO2, CO, HCHO, and PAN). Only O3 and NO2 are directly observed. Note that the

ensemble spread is decreasing slowly during the ensemble evolution in time. As expected,

sharp reductions in the ensemble spread are seen at the assimilation times. Both directly

observed and unobserved species are assimilated correctly. Short lived species like NO2 (in

Figure 4.b) do not show considerable difference between the assimilated and non assimilated

solution.

5.6 Improvements in Forecast Capability

We now investigate the impact that EnKF data assimilation has on the forecast capability

of the model. The estimation of state only and the combined estimation of parameters

and state are discussed. The numerical results present the error fields, i.e., the differences

between the perturbed (assimilated or non-assimilated) fields and the reference solution.

A comparison between the errors in the assimilated and in the non assimilated solutions

are shown in Figure 5 (O3), Figure 6 (NO2), Figure 7 (CO), Figure 8 (HCHO), and Figure

9 (PAN). The two-dimensional plots are obtained by averaging the errors across all vertical

layers. The errors are shown at the end of the assimilation window (24h) and at the end of the

forecast window (48h). Data assimilation considerably improves the estimates of chemical

species, both directly observed (Figures 5, 6) and unobserved (Figures 7, 8, 9). The filter

is capable of correctly accounting for the inter-species correlations formed during the model

(chemistry) integration.

Boundary conditions play an important role in determining the concentration fields in

regional models. Since we use unperturbed numerical boundary conditions, a very small
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Figure 3: Assimilation with different ensemble sizes. The convergence of the 50-member

ensemble is considered sufficient for both the observed and not observed species.
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Figure 4: Assimilated solution averaged on the verification region – 24 hours assimilation,

24 hours forecast. The ensemble converges.
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Figure 5: Comparison of errors in O3 non assimilated and assimilated fields (vertically

averaged). The O3 estimate is considerably improved by data assimilation.

error is noticed near the inflow boundary – East, North-East side of the domain – as the

ensemble members and the reference solution are all determined by the same inflow boundary

values.

We next study the effect of assimilating the emissions and the lateral boundary conditions

together with the model states. Specifically, we append the model state a vector of correction

factors for the emissions and the lateral boundary conditions. One scalar correction factor

is added for each gridpoint and chemical species. A comparison between the errors in the

state-only assimilated solutions and the errors in the combined state-parameter assimilated

solutions are shown in Figure 10 (O3), Figure 11 (NO2), Figure 12 (CO), Figure 13 (HCHO),

and Figure 14 (PAN). The errors fields are shown at ground level (first model layer) at the

end of the assimilation window (24h) and at the end of the forecast window (48h). For all the

chemical species the combined state-parameter estimation leads to improvements in analysis

accuracy over the state-only estimation.
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Figure 6: Comparison of errors in NO2 non assimilated and assimilated fields (vertically

averaged). The NO2 estimate is considerably improved by data assimilation.

6 Conclusions and Future Work

In this paper we investigate the application of the ensemble Kalman filter technique to chem-

ical data assimilation in atmospheric photochemical and transport (atmospheric) models.

To focus on the basic algorithmic issues the analysis is carried out in an idealized setting.

A reference solution is considered to be the “true” state of the atmosphere and is used to

generate artificial observations and to assess the quality of the analysis. Our analysis focuses

on a verification region above Korea, chosen away from the boundaries in order to avoid

the interference of boundary effects with the filter performance. An idealized ensemble is

constructed by adding unbiased perturbations to the reference solution. Initial perturbations

are constructed by the superposition of two processes. An autoregressive model of the

background errors that account for flow-dependent correlations developed before the starting

time of the assimilation. The second set of perturbations is along the dominant singular

vectors computed with respect to the verification region above Korea. These perturbations

undergo a maximum growth in 24 hours of evolution (among all directions in state space at

the initial time).

In our experiment the ensemble bias remains insignificant at least for 48 hours. This
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Figure 7: Comparison of errors in HCHO non assimilated and assimilated fields (vertically

averaged). The HCHO estimate is considerably improved by data assimilation.

characteristic greatly helps the EnKF data assimilation. The ensemble bias can become

an issue in real/operational circumstances where the addition of perturbations may lead to

negative concentrations; setting these perturbed concentrations to zero may result in biased

estimates.

In the numerical experiments carried out here the ensemble spread is always positive, and

there was no need for covariance inflation. The ensemble spread slowly decreases with time

even without assimilation. The chemical kinetic system is stiff and therefore very stable –

small perturbations are damped out quickly in time. Without simulating the atmospheric

dynamics (meteorological fields are prescribed) this stiff effects are important. The decrease

of the ensemble spread in time is different than what is typically observed in data assimilation

with numerical weather prediction models. The shrinking spread may pose the danger of

filter divergence if the spread becomes too small. Different approaches to covariance inflation

will be discussed in the second part of this study. As atmospheric models are slowly evolving

toward solving chemistry and dynamics together, future studies should consider ensemble

data assimilation with integrated numerical weather prediction and chemistry models.

Ensemble size is an important parameter to represent correctly the distribution of error

probabilities. Small ensembles underestimate the forecast errors, while large ensembles are
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Figure 8: Comparison of errors in CO non assimilated and assimilated fields (vertically

averaged). The CO estimate is considerably improved by data assimilation.

costly. In our idealized experiment 50 members proved to be a good choice, requiring no

covariance inflation.

The concentration fields of both directly observed an unobserved species are considerably

improved by EnKF data assimilation. Improvements are assessed by directly comparing the

analyzed fields with the reference solution. Moreover, data assimilation has improved the

forecast for at least 24 hours after assimilation. Improvements in the chemical species that

are not directly observed shows that the ensemble is capable of correctly representing inter-

species error correlations, established through the chemical interactions.

Additional improvements are possible by assimilating for state, emissions, and lateral

boundary conditions simultaneously. Emission rates and lateral boundary conditions cor-

rection factors integration in the assimilation process is immediate and a straight forward

process.

The EnKF assimilation scheme is very simple to implement with no changes to the

original model code. Although no assessment on the computational cost was carried out,

the scheme is well suited for parallel computation. The cost scales linearly with the size

of the ensemble, pending that with the growing number of ensemble members the filter

computational expense can be neglected.
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Figure 9: Comparison of errors in PAN non assimilated and assimilated fields (vertically

averaged). The PANestimate is considerably improved by data assimilation.
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Figure 10: Ground O3 state and state + emissions assimilated error levels
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Figure 11: Ground NO2 state and state + emissions assimilated error levels
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Figure 12: Ground HCHO state and state + emissions assimilated error levels
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Figure 13: Ground CO state and state + emissions assimilated error levels
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Figure 14: Ground PAN state and state + emissions assimilated error levels
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