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I. INTRODUCTION

In the development of the theory of vibrations of continuous elastic bodies a great

deal of effort has been made to formulate and solve boundary value problems and obtain

exact mathematical solutions. The most powerful method of obtaining solutions has been

by the method of modal analysis. The technique of modal analysis consists of solving

the related free vibration problem to obtain infinite sets of eigenfunctions and associated

eigenvalues. The dynamic response is then obtained in the form of an infinite series as

the product of the eigenfunctions and a corresponding set of generalized time functions.

A large class of problems has been solved in a straightforward manner using this approach.

In some cases, however, although the boundary value problem can be rigorously formu-

lated, mathematical difficulty is encountered in solving the differential equations governing

the eigenfunctions. In other cases, although the differential equation can be solved to

yield the eigenfunctions, difficulty is encountered in solving for the generalized time

functions required for the dynamic response.

The class of problems for which closed form solutions exist for the eigenfunc-

tions is usually characterized by relatively simple distributions of stiffness and mass. For

the most part closed form solutions exist for the eigenfunctions only for cases with uniform

distributions because they lead to differential equations with constant coefficients. Some

mathematical solutions for the eigenfunctions also exist for special non-uniform distributions

leading to differential equations with variable coefficients that possess solutions expressible

in terms of power series.

The difficulty encountered in obtaining exact solutions to problems with non-

uniform mass and stiffness distributions has led to the development of a variety of

schemes for finding approximate solutions for the eigenvalue problem. Generally these

methods are characterized by replacing the contmuous system by a finite-degree-of-

1
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freedom system. By various techniques the eigenvalue problem for the continuous system

can be converted intoa matrix eigenvalue problem analogous to the eigenvalue problem

for a discrete system.

The dynamic response of a continuous elastic system may be initiated or sustained

by three classes of excitations: (1) initial distributions of displacements and velocities

throughout the system, (2) foreing functions applied to the system, or (3) motions in-

üoduced by the time dependence of the supports of the system. With the use of modal

analysis, the determination of the generalized time functions associated with the first two

types of excitations is relatively straightforward. For many problems with time-dependent

boundary conditions, modal analysis can also be used to obtain the generalized time

functions provided a transformation of the dependent variable is made. This transforma-

tion converts the problem with non-homogeneous boundary conditions into another

problem with homogeneous boundary conditions.

Another way of solving problems with time-dependent boundary conditions is to use

an integral transform, e.g., the finite sine or cosine, which will remove the dependence

upon spatial variables by integration and yields the integral transform of the generalized

time function. The inversion of the transformed problem then leads to the desired

solution of the original problem. In the past, the method of integral transforms has been

limited to only a few selected types of transforms chosen to satisfy simple boundary con-

ditions; in each case the kernel of these transforms has coincided with the eigenfunctions

of the system.

In general if the eigenfunctions for a particular eigenvalue problem are selected as

the kernel, it is possible to introduce the concept of a generalized integral transform and

to state its corresponding inversion series. The fundamental objective of this dissertation

is to demonstrate that the concept of a generalized integral transform gives a unified and
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systematic approach to solving three general classes of problems in the vibrations of

continuous media.

A method for determining the eigenfunctions and eigenvalues and dynamic

response for a continuous media with non-uniform mass and stiffness distributions will

be developed. The integral transform of a general partial differential equation will be

performed for a self-adjoint eigenvalue problem. The general theory will be estab-

lished, and then applications wiH be given for a number of selected boundary value

problems. For convenience, the general case with both non-uniform stiffness and

mass distributions will be treated first, and then the special case with only a

non-uniform mass distribution will be considered.

Finally the dynamic response of continuous media with time·dependent boundary

conditions will be considered. The integral transform for the governing partial differ-

ential equations will be performed to obtain the general time functions. One

dimensional continuous media will be treated as well as isotropic and orthotropic

flat plates with time-dependent boundary conditions.-



II. LITERATURE REVIEW

This chapter will present a chronological account of the significant previous investi-

gations which have been made in this subject. For convenience, the review of literature

is subdivided into four sections corresponding to the main chapters of this dissertation.

Finite Integral Transforms

In the past the method of integral transforms has been applied with advantage to

the solution of a number of boundary value and initial value problems in mathematical

physics. In a problem for which one of the independent variables is, say X , the use of

an integral transform of the type

- F
fg) = /

/(x)/<(i,x}Jx
•(

will reduce a partial differential equation in TL independent variables to one in TI.- I

independent variables. The quantity f) is the integral transform of
/‘(X}

corresponding

to the kernel K(f;X) . In several instances repeated application of the integral trans-

form will reduce the partial differential equation to an ordinary differential equation

which then can be solved by elementary methods for the transformed variable. For

certain kernels, inversion theorems are available which may be used to obtain the desired

solution.

For an interval •(= O to /0 = M , the kernel K(ß XI=
6-fX

defines the well-

known Laplace transform. In this case the inversion is performed by means of a contour

integral in the complex plane. Numerous engineering applications of this transform have

been made for both ordinary and partial differential equations [1]
.°’

Frequent use of

*Numbers in brackets [ ] denote references in the bibliography.
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the Laplace transform has been made in the study of transient phenomena and wave pro-

pagation problems. Experience has shown that difficulties are frequently encountered in

evaluating the inversion integral. Quite often these difficulties lead to a numerical

evaluation of definite integrals in the final solution.

Vibrations of semi-infinite and infinite bodies have been studied by means of the

Fourier transform. In these problems the kernel is usually a sine or cosine function.

Solutions to a number of vibrations problems for strings, beams, and plates were given by

Sneddon [2]. Important applications of the Fourier transform have also been made in

other areas such as heat conduction. For the Fourier transform the inversion is performed

by an integration in the real domain.

Numerous other transforms have been employed for an infinite range of the inde-

pendent variable. The kernel chosen depends upon the partial differential equation and

the coordinate system used. For problems in cylindrical coordinates, for example,

frequent use has been made of the Hankel transform whose kernel involves a Bessel

function.

In cases where the range of X is finite, integral transforms have been utilized to a

lesser degree. This fact is somewhat surprising since they possess the advantage of per-

forming the inversion by means of an infinite series. The finite transforms involving the

trigonometric functions were first suggested, according to Scott [1], by Doetsch [3] in

1935. The extension to finite transforms involving Bessel functions was attributed to

Sneddon [4] in 1946. In his text [2], Sneddon applied the finite Fourier sine transform

to vibrations of a beam with simple supports and a rectangular membrane and the finite

Hankel transform to the symmetrical vibrations of a circular plate. Later, the Legendre

transform was introduced by Tranter [5] and the jacobi transform by Scott [6]. In

1954 Eringen [7] considered in a general manner the finite transform associated with the

second order Sturm-Liouville system. With mathematical rigor he established the
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Sturm-Liouville transform for a general kernel and obtained a solution for a heat con-

duction problem for a region bounded by two conical surfaces. A generalization of finite

transforms for solving boundary value problems in rectangular, cylindrical, and spherical

coordinates for the wave equation and the heat conduction equation was presented by

Kaplan and Sonnemann [8]. In addition a brief general treatment of generalized integral

transforms for second order ordinary differential equations was given by Churchill in his

text [9].

The application of more general finite integral transforms to the partial differential

equations governing the vibrations of elastic solids apparently did not receive attention

until the first part of this decade. In 1960, Solecki [10] considered a generalized finite

transform to investigate the harmonic vibrations of a triangular plate on an elastic founda-

tion subjected to in-plane forces and edge moments. As the kernel in the integral trans-

form, he used the eigenfunctions for the corresponding boundary value problem with

homogeneous boundary conditions. In a later paper [11] he investigated the harmonic

vibrations of an orthotropic plate on an elastic foundation supporting an arbitrary mass

distribution. Using the same technique, he obtained a general expression for the trans-

formed variable for non-homogeneous boundary conditions. In this pair of papers,

Solecki called the generalized transform the eigentransform and the method of obtaining

solutions the eigentransform method.

In 1966, Cinelli [12] applied the finite transform technique to the vibration of the

Euler beam. He considered in detail the transient response of a viscously damped canti-

lever beam subjected to external loading and time-dependent boundary conditions. In an

appendix he listed the appropriate transforms and eigenfunctions for several combinations

of beam boundary conditions. Later in 1966, Pilkey [13] , in a discussion to a paper,

extended Cinel1i’s work to the vibration of a viscoelastic Timoshenko beam with time-

dependent boundary conditions. In 1967 [14] Piikey treated the case of an elastic
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Timoshenko beam and showed how to obtain the general solution for time-dependent

boundary conditions. ln other recent papers, Sharp [15, 16] investigated the symmetrical

and nonsymmetrical vibration problem for the annular membrane, and Cobble and Fang

[17] examined the damped vibrations of an elastically supported cantilever beam.

Vibration of Non-Uniform Continuous Media

The formulation of the eigenvalue problem associated with the non-uniform contin-

uum is considered in detail in the Appendix. However, since the problem concerns a

differential equation with variable coefficients, only a few problems exist for which exact

solutions have been found. Most of the exact solutions result from problems having

cross-sectional variation such that the solution leads to a differential equation for which a

series solution has been tabulated, e.g., Bessel’s equation. Kirchhoff [18] in 1879 treated

the vibration of wedge-shaped and cone—shaped beams in this way. Considerable work on

the vibration of variable cross-sectional bars has been done since then. A long list of

references on these problems was presented in a recent paper by Wang [19] ._

The more difficult problem of plates of variable thickness has received a more

limited treatment. Bounds for the first eigenvalue of a rectangular plate were given by

Appl and Byers in [20]. Circular plate problems with linearly varying thickness were

solved by Conway, Becker and Dubil [21]; in this case the differential equation was a

form of Bessel’s equation and exact solutions were obtained.

Vibration of Continuous Media with Non-Uniform Mass Distribution

The vibration of one dimensional structural elements including supported masses

has been treated extensively in the literature by a variety of methods. The classical

technique is to isolate a concentrated mass as a free body and write its equations of
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motion. These equations, together with pertinent continuity conditions at the mass

location, are sufficient to formulate the eigenvalue problem. This approach has been

illustrated in several books, including Prescott’s [22]. A number of papers in the litera-

ture have demonstrated this technique, especially for the flexural vibrations of beams,

[23, 24, 25, 26, 27, 28, 29]. In recent years, integra] transform techniques have also

been used to analyze the one dimensional problem. Symbolic functions, such as the

Dirac function, have been used to represent concentrated masses as part of the structural

element’s mass distribution. With Laplace transforms the string [30] and Euler beam

[31, 32, 33] have been effectively treated in this mamier. Amba-Rao [34, 35] has also

demonstrated that the finite Fourier sine transform can be employed to solve the Euler

beam with concentrated masses.

In the solutions for the vibrations of plates with concentrated masses, similar

techniques have been applied. In an article by Das and Navaratna [36] the harmonic

vibrations of a rectangular plate with a concentrated mass, spring and dashpot were

examined by isolating the single-degree-of-freedom system. This system and the plate

were subjected to a harmonic forcing function and the resulting displacements were

matched. Stokey and Zorowski [37] treated the rectangular plate by an energy approach

using Lagrange’s equations. Wah [38] investigated vibrations of rectangular plates with

Levy supports by expanding Dirac representations of the concentrated masses into infinite

series of the eigenfunctions for the uniform plate. Amba-Rao [39] analyzed vibrations of

the simply supported rectangular plate with a concentrated mass using a finite double

Fourier sine transform. Solecki [11] considered the orthotropie plate with concentrated

masses by the eigentransform. In each of the last four papers, the frequency equation

derived was an infinite series which required a laborious trial and error solution. Because

of the amount of work involved, only limited numerical results were obtained. Circular

plates bearing a concentrated mass have been treated in two papers by Roberson [40,41].
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The vibration of shells with attached masses has become of interest in applications to

submarines and space vehicles. In a company report [42] Chen considered the vibrations of

a cylindrical panel in a method similar to Wah [38]. Geers and others [43, 44, 45] have

investigated circular cylinders with concentrated masses by the energy approach. Lee [46]

made an analysis of the vibration of a shallow spherical shell with a concentrated mass by

expanding the mass in terms of the eigenfunctions.

Vibration of Continuous Media with Time-Dependent Boundary Conditions

The earliest investigation of the vibrations of structures with time-dependent boundary

conditions was conducted by Nothmann [47]. This investigation treated beams with time-

dependent boundary conditions using the Laplace transform. However, to avoid the

difficulty encountered by Nothmann in performing the inversion of the Laplace trans-

form, a new approach was published by Mindlin and Goodman [48]. The Mindlin-

Goodman technique consists of separating the solution into two parts of the form

4

¢=/

where the second part is a product of unknown spatial functions 3.; (X) and the specified

boundary functions U . The jq (X} functions are chosen so that the boundary

conditions on TÜV, V'] become homogeneous.

The method of Mindlin and Goodman was extended to the general elastic body by

Berry and Naghdi [49]. Ojalvo [50] prepared a similar paper for a general boundary

value problem.

In his dissertation Falgout [51] applied the Mindlin-Goodman technique to ortho-

tropic flat plates with time-dependent boundary conditions. In his solution, the bound-

ary conditions were restricted to a uniform variation along each plate edge. Six cases of
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Levy type supports were considered and the eigenfunctions and },; functions were

tabulated. For four of the six cases, the jg functions corresponding to certain types

of time·dependent boundary conditions were not given. In his book Meirovitch [52] also

applied the method of Mindlin-Goodman for the case of general one-dimensional

structural elements.

The finite integral transform has been applied in some special cases of problems with

time-dependent boundary conditions. As mentioned earlier, CineHi [12] has considered

the Euler beam, Pilkey [13, 14] the Timoshenko beam; and Sharp [15, 16] the annular

membrane.



III. THE GENERALIZED INTEGRAL TRANSFORM IN

VIBRATIONS OF CONTINUOUS MEDLA

In this chapter the definition and some fundamental properties of the eigentransform

wiH be presented. Then the specific classes of vibration problems that will be considered

in Chapters IV, V, and VI will be described.

The Eigentransform

In this dissertation a one dimensional continuous media is specified by a single space

variable, say X ; a two dimensional media will require two spatial coordinates to

specify a general point. When either a one or two dimensional region E is intended

the space variable(s) will be denoted by P .

For a given boundary value problem where there exist eigenfunctions Ä, (P)

which are orthogonal with respect to a weighting function I’(
P) , the eigentransform of

a function {(P) is given by the definition, [11] ,

R
The inverse transform is determined by means of the inversion series

..| _ —

{U;) = T {TT} : fr (Pl §r(P) (3.02)
r H fr

where the norm of the eigenfunction is

2
H Ö, =

T/l
VC?) QT (P) JR. (3-03)

R

For convenience in the remainder of this dissertation the eigenfunctions will be

normalized so that I[ T : | J (3.04)

ll
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and (3.02) will be correspondingly Simplified.

One other result due to Solecki [11] will be introduced at this point. In the deriva-

tions that follow in Chapter IV, it wiH bc necessary to calculate the eigentransform of the

product of two functions, say P) Gl?) . Starting from the definition (3.01), it

follows that

T{„((P)o.(P)) = J
'°(P) »[(P)@·(F’) €P,(P)JR.

(3.06)
R

Since the eigenfunctions és (P) form a complete set (See Appendix A) then the

function can be expanded in a series of the eigenfunctions to yield

a.(P) §, (P) = 2 hrs Ö, (P) . (3-06)
5

Next (3.06) is multiplied by Y'( P) §'.( P) and integrated over the region R . Since

the eigenfunctions arc orthogonal and are normalized according to (3.04) then

f rm @(6-) gb, ()¤)4.e = Sr: , (3.07)
R

where Ä)-; is the Kronecker delta. Thus the coefficients br; are found to be given

by
Är; = /‘P’(/°) ¤(P)§·(P)f’.5 (P)JR- (3~()8)

i
R

Then Substitution of (3.06) in (3.05) results in

f (P tl P}=T{) () b„$5
R

and with the definition (3.01) the transform of the product of two functions reduces to

T {)0(P)a(P)} : (,,,5 T‘5(p)_ (3.09)
5



13

Applications to the Vibrations of Continuous Media

The eigentransform will be applied to the class of vibrations problems governed by

partial differential equations of the type

2L[»•/(Riß + Mw ig/gif)
= FU; L) <3.w>

where L. is a linear homogeneous differential operator of the type

6 6 6*

LandAe (P), .. . are known functions. Here M(P) is associated with the mass

distribution of the continuum. The external forcing function F ( E Ü} is assumed ex-

pressible as a product of a function of the space variables and a function of time, t

The boundary conditions, in general, may either be homogeneous or specified as a func-

tion of time and position on the boundary. The equation of motion (3.10) assumes the

motion to be undamped.

The approach to be followed consists of transforming the partial differential equation

(3.10) into a set of ordinary differential equations in the transformed dependent variable
W-, (t} . These equations are then solved and the result is substituted into an inversion

series of the form of (3.02). The success of the method depends upon performing the in-

tegral transform of each term in (3.10). The technique followed will make use of the

definition of a self-adjoint eigenvalue problem and the transformation formula for the

product of two functions derived above. Three classes of problems are considered:

(1) Vibration of non-uniform continuous media: The cross section of the

continuous media is a function of position and a non~homogeneous material

is permitted. Thus Ao (P), and MU?) are variables. The
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boundary conditions will be homogeneous.

(2) Vibration of continuous media with an arbitrary mass distribution: The

cross section is uniform but a variation in VN?) is considered. The

boundary conditions will be homogeneous.

(3) Vibrations with time—dependent boundary conditions: The cross section

is uniform and the mass distribution is also uniform. The medium is

excited by time-dependent boundary motions.

These problems may be treated together in a general manner; however, for clarity

they will be treated separately in Chapters IV, V, and VI.



IV. VIBRATION OF NON-UNIFORM CONTINUOUS MEDIA

In this chapter the vibrations of non·uniform continuous media will be considered

using the eigentransform to establish the basic equations. The theory will be developed

first and then as an application, the eigenvalues and eigenfunctions will be obtained for

a particular problem.

General Development of Theory

Application of the Eigentransform

A number of problems of vibrations of continuous media with variable cross sections

are governed by a partial differential equation of the type
1

Pt M P P.."@' = P 4.01

Here L is a linear differential operator with variable coefficients consisting of deriva-

tives of the order through ZP , where ,9 is an integer. The boundary conditions

are homogeneous and of the form

BL [WU:) {-)]:0 L: 1, 2,..,): (4.02)

where BL are linear differential operators of order 2f-!

The associated problem of a uniform continuous media is governed by a similar

partial differential equation but with constant coefficients and a similar set of boundary

conditions. The solution of the associated problem consists of a set of eigenvalues dr

and their corresponding eigenfunctions ¢,. (P) . The eigenfunctions are orthogonal with

respect to a constant weighting function and can be normalized so that

{p) (4.03)

K

I5
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where the weighting function is taken as one for eonvenience and E is the region

under consideration.

The transformed differential equation is obtained by taking the eigentransform of

(4.01) with ¢r(P) as the kernel:

I-

(4.04)

R R
To evaluate the transform of L it is assumed that the partial differential equation

(4.01) and boundary conditions (4.02) together pose a self-adjoint eigenvalue problem

(see Appendix). Then, since ¢,- (P) of the associated system satisfies the boundary

conditions on W(Ö f/, equation (A5) of the appendix gives by the definition of self-

adjointness,

f1_[w(gt1]¢, (r).L,< .-:
f

w!/;t)L[¢„(/’/]«’/Z . (4.05)
R K

Now L [¢r(P)] is expanded into a series of the eigenfunctions, ¢_f . From the

orthogonality condition there results,
as

L [¢,.(P§ = ltr: ¢:(P} (4-06)
J'=/

where

kr. 4- / L [¢.0¤)] 49, (L1 az. (400
K

By equation (A11) it can be seen that the coefficients kr; are symmetric. Substitution

of (4.06) into (4.05) gives the desired t1·ansformation of the first term in (4.04):

0 cu
fL[w<8f)]<MP)d£ = im/W(8*)¢,(P/JR = kr, WM) „ (408)
K 5:} E 5:/

To transform the remaining term in (4.04) use is made of the transformation for the

product of two functions, equation (3.09). This transformation gives
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ß 5:/

where

m„,= *4*
MtP)¢$,(/>)@(.¤) JE. (4.09)

Now, using (4.08) and (4.09), the final form of the transformed equation (4.04) is

an ev „___
(4.10)

5:/ 5:/
Ji

Equation (4.10) represents an infinite set of coupled differential equations of the

same form as those obtained in the analysis of the Vibration of discrete masses. Because

of this analogy, it is possible to perform a transformation of coordinates leading to a set

of uncoupled equations that can easily be solved.

Eigenvalue Problem

Before an analysis of the dynamic response is made, the free Vibration problem must

be considered. For convenience, equations (4.10) can be written in matrix form as

(4.11)
where

[m] is a square symmetric matrix with elements vnr; ,

[K] is a square symmetric matrix with elements ltr; ,

braces indicate column matrices, and

dots denote differentiations with respect to time.

For free Vibrations a solution of the form
_ iwf
W5 =

aj E
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can be assumed. Substitution of this in (4.11) yields a set of linear, homogeneous

algebraic equations:

[[k] —w1°[M]} {IL} : 0 _ (4.12)

By Cramer’s rule, for a non-trivial solution, the determinant of the coefficients must

vanish;

hence

I
[k]- 1.,*5.] ) = O _ (4.13)

Equation (4.13) is the frequency equation for a non-uniform continuous media. Since

the matrices involved are of infinite size, only approximate values of the frequencies can

be obtained from (4.13).

If equations (4.12) are approximated by, say an 11. x Tl system, then the

resulting set of equations is sometimes denoted in the literature as Galerkin’s equations.

This set of equations is mathematically associated with the problem of minimization of a

function of several variables [53]. In vibration theory, this set of equations has been

derived by means of the Rayleigh-Ritz method and also by Galerkin’s method, [52]. It

has been shown that if the system is positive definite the eigenvalues obtained from (4.13)

will provide upper bounds for the true eigenvalues. It has been further established that

as VL is increased these eigenvalues approach the true values from above. In vibration

theory, this result is customarily reasoned from the fact that the larger mathematical

representation reduces the constraints imposed on the system and consequently the
U

approximate values converge from above.

If each of the eigenvalues w,-1 are substituted back into (4.12) the corresponding

eigenvectors are obtained. Each eigenvector is a column matrix denoted aslu"'} ·
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Each column matrix is determined within only a multiplicative constant since (4.12) is

homogeneous. If it is required that the eigenvectors satisfy the relation

) T (rl (J (4.14)

then the elements are determined uniquely. The eigenvectors are orthogonal with respect

to the mass matrix [ml] ,

thus T
{tf"} [m] {um} Z 0. (4.15)

The last two equations can be combined into a single equation:

·r{46*)} [„.] (M) Z $„, _ (4-16)

Dynamic Response

With the eigenvalues and eigenvectors determined, equations (4.10) can be solved.

Written in matrix form these are

+ [lg] {T;} = · (4.17)

These equations may be uncoupled by forming a square transformation matrix of the

eigenvectors determined above. The matrix [LL] is introduced which is defined as

Next, a new time function 7 Ü') is introduced and is related to W- by the
transformation equation

{W} = [et] {70:)} . (4.19)
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The last equation substituted into (4.17) gives

[-~][=-Wi} + [¤<]l¤]{*1}= {tl 1
which when premultiplied by yields

T «•

M 1»«1M[~1} + [¤1'L¤<1l-1[-1} = MT {14} ·
From the orthogonality conditions of (4.16), the following equality results:

1-M [ml M =
M.andfrom normal mode theory (see [52]) it follows that

r (4-24)

For convenience, let

[N} = [u]T[«l,] (4.22)

then the transformed equation becomes, using (4.20) and (4.21),

[N} · (422)

The last equation represents a set of uncoupled ordinary differential equations of the type

·· 2.

These equations have the solution

0ri (I t
4 (4-24)

0

where *7,- (0) and Ü)- (0) can be determined from the initial conditions on M/(ß { ) .

From (4.19) these are found by premultiplying by the inverse of [IL] so that

[wlw] „ [11.]-[ [-v7(<>)} (4.25:1)
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and ·
_'

" (4.25b)

To proceed to the final solution (4.19) is written as

°° (SJ

S-!

and hence,
°’ w a (O; „ t

ur (4.26)
S-!

The inversion series (3.02) yields the final solution:

vr/( P,t ) =

° ° cs) · t
u.,- 4*,. (P){*),(o) c¤su,t + Mg),,,,,4t ,.Lf N,(@ xmaj, (-I:-},'}JZ]_ (4.27)

.s=! nn N5 w' v _

This solution may be interpreted as expanding the true but unknown mode shapes in

terms of a series of known mode shapes from the eigenvalue problem for the uniform

continuum. Hence from (4.27) the mode shapes W; (P) of the non-uniform continuum

may be written as

°° (SJ
%(P)= LL,. ¢,.(P) (4.28)

rg]

and then (4.27) becomes

=

ao _
*

(t') (4-29)
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Application to the Vibration of a Non-Uniform Rod

The procedure for solving for the frequencies and mode shapes for a problem with a

non-uniform cross section consists of using the eigenfunctions from the associated uniform

problem to calculate the elements of the stiffness and mass matrices, (4.07) and (4.09).

The eigenvalues and eigenvectors are then computed to the desired degree of accuracy by

taking successively larger arrays for the eigenvalue problem (4.12). With the eigenvectors

from this result, the mode shapes are found by summation using (4.28).

To illustratc this procedure the example of the longitudinal vibrations of a tapered

rod is considered. Although the problem illustrated here is an elementary one, it possesses

an exact solution for comparative purposes. The rod under consideration is shown in

Figure 1.

The governing equation for the axial displacement ‘u(X, f) is

am t) J" (xt- -§?[EA<x) f-1+/AIX) %J-*= o (4.30)
where ,0 is the density and A is the cross—sectional area. In this case

A<¤)=A»<¤ ·{—) (4-3*)
where Ao is the area at X = O.

Hence, in this case, by comparison with (4.01), the resv*t is

L = — %[EA<¤)%l J M cx): [AM. (4.32)
The boundary conditions are

ZA. (0, { ): 0

0. (4·33)
x=1
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§ X

Figure 1 - Longitudinal Vibration of a Tapered Rod
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This eigenvalue problem can be solved in closed form to yield the normalized

eigenfunctions

J [x (J- *1
fi CX) = (4.34)

[M .60421

where rl; are the roots of

JL (A1!) 4 0 (4.35)

and the frequencies are

wi = ls · (4.36)

For the associated uniform rod the normalized eigenfunctions are

4;,4);} 4. s«~/3,.x (4.37)

and
(2r-I) r

= — - 4.38Fr 2 x ( )

The stiffness coefficients are thus calculated from (4.07) as

,0 a 64
kw: Ä- (439)

and the mass coefficients are determined by (4.09) as

X
Mrs Atx) 49,.00 ¢,(x) .402, (4.40)

0

Substitution of (4.37) and integration leads to

1.., 4 3 4(—•j""44,2*
2

5-V s+r.|
hs 4. EA.(2r—«)(2s-u) e- (-0 •—<—n

(M1
4,2*
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and
_ Ac l ·-

I
_"

‘ XL; Tft (‘1Y-|)£

S-r 5+ r-\
mp,-: .¤i.-£.__ r§;s_ (4.42)

TT (s-r)'· (sw- 1)*

Equations (4.41) and (4.42) are then used to calculate the elements in the frequency

determinant, equation (4.13). This determinant has the form,

k‘|•U1-m1|
k|1-wzmli '

‘
'

U)
As a first approximation to the fundamental frequency, Cu I , a 1 X 1

determinant is taken. This gives

J mit

Now kn and m-11 from (4.41) and (4.42) give the approximate frequency, that is,

0)
..1, =

—Z·4'f‘°
Ji . (4.44)

X /"
This value is a good approximation to the first mode; it is about 0.5 percent higher than

the actual value. To ascertain the rate of convergence and the higher modes, the eigen-

value problem was solved on the IBM 1130 for successively larger arrays. The eigenvalues

from these calculations are shown for the first four modes in Table I. For comparison

the exact values from equation (4.35) are also given in Table I.

The results of Table I demonstrate that the convergence is monotonic from above,

and a 12 X 12 matrix is required for the first mode frequency to agree to six significant

figures. The second, third, and fourth modes then agree to five figures. This degree of
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TABLE I

Comparison of Eigenvalues of a Tapered Rod

Eigenvalues

Mode 1 Mode 2 Mode 3 Mode 4

Matrix Al! X2! A3! A4!
Size

1 x 1 2.41460

2 x 2 2.40619 5.52974

3 x 3 2.40526 5.52167 8.66310

4 x 4 2.40502 5.52066 8.65536 11.80070

5 x 5 2.40493 5.52036 8.65435 11.79316

6 x 6 2.40489 5.52024 8.65404 11.79217

7 x 7 2.40487 5.52018 8.65391 11.79186

8 x 8 2.40485 5.52014 8.65385 11.79173

9 x 9 2.40484 5.52012 8.65381 11.79166

10 x 10 2.40484 5.52011 8.65379 11.79162

11 x 11 2.40484 5.52010 8.65377 11.79160

12 x 12 2.40483 5.52010 8.65376 11.79158

Exact

Values

Eq(4.35) 2.40483 5.52008 8.65372 11.79153
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accuracy is, however, stringent for engineering applications and a smaller matrix would

give acceptable answers. The eigenvectors from the 8 X 8 solution were then used with

equations (4.37) and (4.28) to calculate the mode shapes for comparison with the exact

mode shapes, equation (4.34). The approximate results, the sum of eight terms, agree

with (4.34) to three significant figures. These mode shapes are plotted in Figures 2 and

3. The circled points are the approximate values and for the accuracy of the plot they

coincide with the exact values.

This problem has demonstrated the application of the theory developed in the

previous section. For this case the convergence to acceptable values for the frequencies

was reasonably rapid and with the aid of a digital computer higher approximations were

found without difficulty.

This example concludes the treatment of the vibration of non-uniform continuous

media. In the next chapter the vibration of continuous media with a non-uniform mass

distribution will be considered.
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V. VIBRATION OF CONTINUOUS MEDIA WITH

ARBITRARY MASS DISTRIBUTION

In this chapter the eigentransform is used to obtain solutions for the vibration of

structural elements with uniform stiffness but an arbitrary mass distribution. The

general problem is considered first and then several applications to beams and plates

with concentrated masses are presented.

General Development of Theory

Application of Eigentransform

Consider a one or two dimensional continuous media with an arbitrary mass distri-

bution. The density of the material may be variable and the structural element may be

loaded by an arbitrary mass distribution. The cross section of the element is uniform.

The behavior of such a system is characterized by a partial differential equation of

order 2P , 1L[w(/ZM +Mw ät}
= Fg;) (5.01)

and boundary conditions of order lf -/ ,

Bi (M/(P,fÜ= 0 _ (5.02)

The problem is assumed to be self-adjoint.

Corresponding to the problem posed above is an associated problem with uniform

mass distribution. The associated problem is characterized by a set of eigenvalucs Är-

and a set of cigcnfuhctions ¢„ (P) which satisfy the diffcrchtial equation

L [¢„m] -.1. ¢„ (P1 (5-¤3>
and the boundary conditions (5.02). The operator L is the same for both problems

due to assumption of a uniform cross section. The eigenfunctions are orthogonal and

are normalized so that

30
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IL
¢,_(;7¢,(p)4,<„ 5,;;, (5.04)

Using ¢,. as the kernel, the eigentransform of (5.01) is performed. This gives
‘

1

l
}_[w(Rt)] ¢,(P)JR + -?-E/M(P)w(5t)¢,(p)4ß = irlfl, (5.05)

2 E
Since w(/Z t) and ¢,- (P} satisfy the same boundary conditions, the definition of a

self-adjoint eigenvalue problem can be used to write

f L[w<6 +2] ¢,m an = fwo; #1 L L¢,.(p;]4e
R K

and then (5.03) can be substituted to give

/L[~l’8éÜ¢,-(P)Jß = dr Är *76-6*)- (5-06)
R E

The transform of the mass term may be performed using the transformation for the

product of two functions, (3.09);

thus U __,
(507)

z >°=/

”*"*'° mr, = fwrw 45.02 ¢,(»·2-«x- <5-<>8>
R

Substitution of (5.06) and (5.07) into (5.05) yields the transformed equation,
M

,1,W,m + Z
m„ w,(+) = {rtf} , (5.09)

$=l
which can be written in matrix form as

1»·~1{#}+1>1(~i}= {1} · 99
Thus, the problem with an arbitrary mass distribution is converted into an infinite set of

coupled differential equations in a manner similar to the problem of variable cross section.

In the present problem, however, only the set of mass coefficients must be calculated; the
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stiffness matrix is a diagonal matrix of the eigenvalues known from the associated

uniform problem.

Eigenvalue Problem and Dynamic Response

With the procedure of Chapter IV, (5.10) can be uncoupled by means of a trans-

formation matrix of the eigenvectors for the matrix eigenvalue problem. Proceeding in

the same way, the final solution is obtained as

oo
w(P,£)= ZV, (07,/1*) (5.11)

5:/

where 77, (f} are the solutions to the uncoupled set of ordinary differential equations

Ö), +
wi:

1), -.= N;(‘t)
(5.12)

and N; (f} are the generalized forces found from

(5.13)
As before, the eigenfunctions are found from“’

(:1
(P). (5.14)

)"=/
uIt is again seen that the solution amounts to expanding the true but unknown mode

shapes into an infinite series of known mode shapes. For small deviations from the uni-

form continuum it is reasonable to expect the uniform solutions to be an approximate

representation. Equation (5.14) gives a mathematical procedure for finding this repre-

sentation when the deviation is not small. The above solution, of course, is inexaet to

the extent of approximating the eigenvalues and eigenvectors of the infinite matrices.

The practicality of these approximations will be examined by specific applications to a

number of problems in the following sections.



33

Applications to the Euler Beam

Fundamental Frequency for Beams with Concentrated Masses

In this section an approximate expression is derived for the fundamental frequency

of an Euler beam supporting an arbitrary number of concentrated masses located arbi-

trarily along the beam. The beam considered can have any combination of the customary

beam boundary conditions, and the transverse defleetion W is governed by

atv atvEI 37+ + /"l(X}§?—,_=O

where E is the modulus of elasticity, I is the moment of inertia of the cross-

sectional area, and MO!) is the mass distribution per-unit-length. For a uniform beam

loaded by a total of N point masses, /*7; located at X5 , the mass distribution has

the form
N

MU) ,_. m + Z /*1; S(X-X:) (5.15)
£=/

where 8(X - X;} is the Dirac delta function, and m, is the mass per-unit·length of

the uniform beam.

The associated uniform beam together with the same boundary conditions has a set

of eigenfunctions ¢,. (x) and eigenvalues Äp . The eigenvalues are related to the

natural frequencies Ur- by

Ar = Mur}-

The general frequency equation for the beam with non—uniform mass is the

determinant
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1- 2. °L
mw,-m„w -m|1w _ __

2.
" mit U1- mut °° mu U1-

•

·
=

O,Asthe first approximation a determinant of one element gives

GJ : 7.;, /"* _ (5.17)
mu

The elements of the mass matrix are found by substituting (5.15) into (5.08) which

gives, after integration,
N

m,, = mx., + Z Mz ¢„<-vz) 4*, (Ke)- (5-18)
L=l

From (5.18) mu is found and is substituted into (5.17) to give"’1

M M _ 1jf£=/

Equation (5.19) gives the fundamental frequency cu for a beam loaded with N

arbitrary point masses Mz. located at points X L . The fundamental frequency for

the associated uniform beam is W, . When used with a table of eigenfunctions, such

as Young and Felgar [54], the formula (5.19) gives a convenient way of estimating the

fundamental frequency.

To determine the accuracy of this result, a number of comparisons with known exact

solutions were made. Comparisons were made with existing solutions for the simply

supported and clamped-clamped beam with a single mass M and a cantilever with a

tip mass. These comparisons are given in Table II, where Ä is defined by

w = xl Q. . <5-2<>>
1* M
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TABLE II

Comparison of Approximate Fundamental Frequencies for

Beams with Concentrated Masses

Problem Reference Mass Exact Approximate Percent

No. Ratio Eigenvalue Eigenvalue Error

ll., X 7\(Equation 5.19)
m 1

[26] 1 3.440 3.453 0.38
]*‘

% "]"
jf

"l 10 2.074 2.090 0.77

100 1.176 1.186 0.85

[26] 1 2.3832 2.3871 0.16
l°°— é-

*l‘- Ja- _°l
10 1.4627 1.4676 0.33

100 0.8314 0.8344 0.36

[29] 1 2.4867 2.4984 0.43
10 1.5514 1.5708 1.25

100 0.8837 0.8962 1.42

[23] 1 1.2479 1.2540 0.49
l‘—— x —l°l

6 0.8328 0.8386 0.70
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From these results it can be seen that generally (5.19) gave very good results. In each
case, of course, the approximate frequency was higher than the exact value. For small
mass ratios the agreement was excellent, but it became progressively poorer as the mass

ratio increased. This is logical since (5.19) is based upon representing the first mode of

the beam with additional mass in terms of the first mode of the uniform beam. As the
mass ratio becomes larger additional modes of the ·uniform beam will be required for an

accurate representation of the true mode shape.

In the next section the effect of including higher approximations will be considered

and correlations of several frequencies and modes shapes with an exact solution will be
made.

Frequencies and Mode Shapes for the Simply Supported Beam with Central Mass

In the last section it was seen that a good estimate of the fundamental frequency

could be found by using a one element approximation of the frequency determinant. In

this section the effect of higher approximations will be investigated. The problem of the

simply supported beam with a central mass was chosen since an exact solution for the

frequencies and mode shapes can be easily obtained, see [26] or [32].

The beam under consideration is shown in Figure 4. It is governed by
z.

EI Q+[M+M€(X·jg)]·ü:=O

where m denotes the beam mass per-unit-length and SU ' é } is the Dirac delta

function representing the concentrated mass M at mid-span.

The associated problem of the uniform beam has normalized eigenfunctions given by

¢r (X)
=‘/Qi.;-i

5/N
ä (5.21)
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Figure 4- - Simply Supported Beam with Central Mass
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and eigenvalues

Är = mw} (5.22)
where

ran"6.;,. = -1- ‘/El . (5.23)
I m

Substitution in (5.08) gives,
P

2mr; Jx
o

which yields

mr; = Tflgys +
ig SIN-ll
SIN1Z 2

The matrix eigenvalue problem in this case has the form

where the frequency equation is the determinant of the square matrix. The determinant

has the form
1 1“""1'"'·•¤‘·-*

° —M,;t.;’* .. .
°*• 'Lo mw, - muw a

: O „ (5.26)
I

- mia,} o mw}
-m„u‘

In this problem the mass is located at the midpoint of the span, and it will affect only

the symmetric modes of vibration. It is located at a nodal point for the antisymmetric

modes and since rotatory inertia is neglected the antisymmetric modes will be identical to

those of the uniform beam. These results would appear automatically from (5.25); how-

ever, recognizing this fact reduces the size of the eigenvalue problem to be solved. For
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this reason it is expedient to delete the antisymmetric modes from (5.25) by striking out
the even rows and columns prior to performing the numerical computations. The solution
for the eigenvalue problem then gives the eigenvalues and their corresponding eigenvectors

for the symmetric modes. Using the eigenvectors the mode shapes for the beam with the
mass Ü; (X) are found as a summation of the modes for the uniform beam.

The exact solution for the symmetric modes of this problem is given by the

frequency equation [26]
1

1.15 = k EI (5.27)
1* M

where Ä; are the roots of

2-1 .4g(z‘«„äz-z‘.„„1„1a}=¤ 16-26)
mi Z Z

and the mode shapes are [32]

for 0< x a

H- [ Ä
I 1

4’"
ml. 2;; W jz;

I _
. XfOl' Z¢X‘/()

é (X)- M h
"'I 4 ( mi £ ca; Ez 2.

· X --L - · L1-2 (5.29)

The mode shapes of (5.29) are normalized in this particular case so that
! -f= (5} ·

’
·

To compare the present method to the exact solution, (5.28) and (5.29), numerical
computations were performed on the IBM 1130 computer. For the comparison, the
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ratio of supported mass M to beam mass ml was taken as 2, and the frequencies

and mode shapes for the first four symmetric modes were calculated from (5.28) and

(5.29). Next the eigenvalue problem was solved repeatedly, increasing the matrix size

starting from a 2 X 2 matrix until agreement with the exact first mode frequency was

obtained. The successive approximations for the first four eigenvalues and the exact

values are shown in Table III.

The results of Table III demonstrate that the approximate frequencies converge to

the exact values monotonically from above as expected. For engineering accuracy it can

be seen that using the rule that the matrix size be two times the number of required

modes gives very good accuracy in this case. Selecting an 8 X 8 matrix, for example,

gives an error of only 0.25 percent in the fourth symmetric frequency.

With the eigenvalues known, the mode shapes were calculated by summation using

equations (5.21) and (5.14) and summing eight terms. These results are shown as points

plotted on the exact shapes in Fig11res 5 and 6 where Osjl 5é since the shapes are

symmetric. The solid line denotes the exact solution, and the circled points denote the

values obtained by summation.

The agreement, as expected, is excellent for the first mode with the values identical

to four significant figures. This agreement decreases slightly with each successive mode;

the typical error for the fourth symmetrical mode is about 2 percent. Hence, for the

mode shapes, the rule of adding a number of terms equal to two times the number of

required modes gives answers that are within engineering accuracy, although not quite as

accurate as the eigenvalues.

In this section the effect of higher approximations has been investigated for a beam

with relatively simple and symmetric mode shapes. To illustrate the generality of the
method, a problem with more complex boundary conditions is considered in the next

section.
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TABLE III

Convergence of Eigenvalues for Simply Supported Beam

with Central Mass

Eigenvalues for Mass Ratio, = 2
ml

Mode 1 Mode 3 Mode 5 Mode 7

Matrix Ä! X3 XS Ä7
Size

2 x 2 4.39641 66.4695

3 x 3 4.39417 65.5679 208.230

4 x 4 4.39359 65.3429 205.467 430.125

5 x 5 4.39337 65.2613 204.540 425.246

6 x 6 4.39327 65.2248 204.135 423.327

7 x 7 4.39322 65.2061 203.928 422.382

8 x 8 4.39319 65.1955 203.812 421.856

9 x 9 4.39317 65.1891 203.742 421.540

10 x 10 4.39316 65.1851 203.697 421.338

ll x 11 4.39314 65.1823 203.666 421.203

12 x 12 4.39313 65.1804 203.646 421.109

Exact

Values

Eq(5.28) 4.39313 65.1740 203.575 420.793
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Frequencies and Mode Shapes for a Clamped-Supported Beam with Central Mass

To iHustrate the generality of the method, the problem of a clamped~supported beam

is considered (Figure 7). The solution of this particular problem and other beam problems

is greatly facilitated by the use of tables, such as those of Young and Felgar [54]. In this

case the associated problem has as its normalized eigenfunctions,

/ . .56,, (x): E/(ml/ß„)?l-c¤:lA„‘%‘,.) .. ,4,, (4«J/,,}-,4,,/1,,5.)} (5.30)
where ,8,, are the roots of

t¤·o,H,,! = llianlßnl (5.31)and

Ü;] I4,, = . (5.32)

The natural frequencies are given by
L

«.;,, = la [fl . (5.33)1* M
Both •(„, and /81; are tabulated in [54].

The mass distribution in this case is

/*70) = m+ /‘7$(X·§} ·
Substitution of the mass distribution into (5.08) and integration gives the elements of the

mass matrix, i.e.,
1

M (5.34)

With the eigenvalues fg and the mass matrix (5.34) known, the problem reduees to

solving the eigenvalue problem to the degree of accuracy required. In the present case an

8 X 8 array was selected, and computations were performed for various ratios of
:1}%

The first four frequencies are given in Table IV and are plotted in Figure 8. The corre-

sponding mode shapes are shown in Figures 9 and 10.
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TABLE IV

Eigenvalues for Clamped-Supported Beam

with Central Mass

Eigcnvalues

Frequency, con = \/E-Tm

Mass Mode 1 Mode 2 Mode 3 Mode 4

Ratio

R Af Ä: kg A:

0 15.42 49.96 104.3 178.3

0.01 15.26 49.89 103.4 178.0

0.02 15.11 49.81 102.6 177.8

0.05 14.67 49.59 100.5 177.2

0.1 14.02 49.29 97.65 176.4

0.2 12.93 48.80 93.78 175.3

0.5 10.73 47.94 88.21 173.8

1 8.699 47.29 84.85 172.9

2 6.696 46.79 82.63 172.4

5 4.489 46.40 81.07 171.9

10 3.242 46.24 80.50 171.8
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The accuracy of the present solution corresponds to that of the simply supported

beam. This was verified by using as a check, for -7;-E = Z , a 12 X 12 eigenvalue

problem. This solution differed from the results of the 8 X 8 problem by less than

0.01 percent in the first mode, and 0.1 percent in the fourth mode and hence the 8 X 8

solution given in Table IV was found to be acceptable.

Figure 8 shows that increasing the supported mass has an appreciable effect on the

fundamental frequency but significantly less effect on the higher modes. In this partic-

ular problem the second mode is altered only slightly since the nodal point is very close

to the mass as can be seen in Figure 9.

This problem completes the applications that will be given for beams. In the next

section applications will be made to the vibrations of rectangular plates with concentrated

masses.

Applications to Isotropic Plates

Fundamental Frequencies for Plates with Concentrated Masses

In this section an approximate formula for the fundamental frequency of isotropic

plates with concentrated masses will be derived. This is analogous to that developed

previously for the Euler beam. An isotropic plate loaded by a total of N concentrated

masses NL located at points P; is considered. The governing equation on the

transverse displacement W( P, Ü] for free vibrations and general boundary conditions

is 4 1
pvu/(et) +f(P)%’(g+)=o (5.35)

where ß is the flexural rigidity and
f is the mass distribution per-unit-area.

For the problem under consideration the mass distribution takes the form
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N

Z=/

where /9, is the mass per-unit-area of the associated uniform plate and ÜUL Ü} is

the Dirac delta function.

The associated problem of the uniform plate with the same boundary conditions

leads to a set of e' envalues Ä; ' and a set of normalized ei enfunctions ¢; - (P) .lg
f g in

The eigenvalues are related to the natural frequencies by
2

,l··= cu.-, (5.37)7
/”·

7
As the first approximation to the general frequency equation (5.16) a determinant

of one element gives in this case

w = (.1,, L _ (5.38)
M11

To find WL}; (5.36) is substituted into (5.08) which gives

N
1mu: + /*7; $(1%/%)] ¢„ (pj ,},43

R z.=/

hence
N

2

m,, = /¤, + Z N: ¢, (P) (5.39)
Z=/

after integration. Substitution of (5.39) into (5.38) gives the desired result

Q) ·; (5.40)
N 2

/ [ + Z E agp;
Z=/

/0°
which is exactly analogous to the equation developed for beams (5.19).

The simplest example of applying (5.40) is for the problem of a simply supported

rectangular plate (Figure ll) with a central mass, /*1 . For this case the normalized
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eigenfunctions are

¢;i(¤4}[ = E-7% Al}; 4,;, jf; ' (5.41)

and the natural frequencies are given by

= ($2+%) ”‘ · sa
Substituting (5.41) into (5.40) yields

,0 : —— - (5.43)
II [ + 4. ."L.ßeß

This result, again showing the analogy between beams and plates, appears in the paper

[38] by Wah. A comparison of this result with more extensive solutions of the general

eigenvalue problem shows that for = I , (5.43) gives a result about 3.5 percent

too high.
fo

As a second example a clamped circular plate with a central mass is considered.

The plate-mass system is shown in Figure 12. For symmetric modes the normalized

eigenfunctions are

¢£(,„)=;[~7Ä(/lir) _

L,(.lzr))wherethe eigenvalues [\ 5 are the roots of

J.;([,¤[L(4;«[ + [ima) I. (144) :0 (5-45)

and the natural frequencies are 1
0;; : Az \/E . (5.46)

fo
Substitution of (5.44) evaluated at V" = O in (5.40) gives

,0 : ———l——— - (5-47)
I [ + %

2 -7.; (Aw-)



54

0

I

I

P

r

Figure 12 - Clamped Circular Plate with Central Mass



55

The first root of (5.45) is Ä, cl. = Ä/75-73 and (5.47) reduces to

J? . (5..8)az
If /+ 4-7/ Ä

fo
In this section an approximate formula for the estimation of fundamental frequencies

has been derived and applications to two particular problems have been made. In the

next section the effect of higher approximations will be considered by solving the general

eigenvalue problem.

Simply Supported Plate with Central Mass

In this section the general eigenvalue problem will be solved to demonstrate the rate

of convergence and to obtain values for some higher eigenvalues. The plate under con-

sideration was shown in Figure 11, and the eigenfunctions ¢; were given in (5.41)

and the natural frequencies cu;} are found from (5.42). In the present problem for Z

or even the central mass lies on a nodal line and consequently it has no effect on

these modes. Thus these modes need not be considered, and only the symmetrical modes

will be treated.

To calculate the coefficients of the mass matrix, it is convenient to convert the two

dimensional arrays for Ä; and ¢; into one dimensional arrays. Thus the

eigenvalues and eigenfunctions are arranged in ascending order and are denoted by 1),;

and ¢,; , respectively. Using as the mass distribution

,¤=,o° +M5(X—§)6(}—2é) (5.49)

and substituting in (5.08),

(5.50)

After using the last equation to calculate the mass matrix, the general eigenvalue problem

was solved on the IBM 1130. To examine the rate of convergence numerical calculations
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were performed for a square plate with the ratio of the supported mass to the plate

mass, = / . The results of these calculations are shown in Table V forlthe fi1·st

four modes, where the natural frequencies are

Z
eu : . (5.51)

a." f,
From an examination of these results it can be seen that the rate of convergence is

not as rapid as was experienced for beams with masses. This is undoubtably due to the

more complex nature of the mode shapes for plates and is, of course, dependent upon the

mass ratio. For smaller mass ratios convergence is more rapid. The results, however, are

sufficiently accurate for engineering calculations and if greater accuracy is required then

larger eigenvalue problems may be solved leading to more terms in the expansions for the

mode shapes.

The variation of the first four frequencies with the mass ratio is shown in Figure 13.

These frequencies have been non-dimensionalized with respect to the corresponding fre-

quencies without the supported mass, equation (5.42). The corresponding mode shapes

are shown in Figures 14 through 17. These were calculated by summation, (5.14), using

nine terms.

From these figures it can be seen that the third mode is independent of the mass

ratio. This is a consequence of choosing a square plate. The square plate without a mass

has repeated frequencies 0./,3 = 0.13/ , etc. so that two distinct eigenfunctions ¢,3

and ¢J/ correspond to the same frequency. For repeated eigenvalues any linear com-

bination of the corresponding natural modes is also a natural mode, [55]. The mode

shown in Figure 16 represents one of these possible modes, the difference of the ¢13

and ¢3, modes, ¢,_g — ¢_;/ . Its nodal lines are the diagonals of the square,

and consequently the mass lies at a nodal point and exerts no influence on the response.
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TABLE V

Convergence of Eigenvalues for Simply Supported

Square Plate with Central Mass

Eigenvalues for Mass Ratio ä = 1
Mode I Mode II Mode HI Mode IV

Matrix

Size AI Au Am 7\ IV

1 x 1 0.8944

2 x 2 0.8830 7.5497 10.0

3 x 3 0.8720 6.3616 10.0

4 x 4 0.8686 6.1766 10.0 16.2745

5 x 5 0.8670 6.0962 10.0 16.0643

6 x 6 0.8654 6.0173 10.0 15.8311

7 x 7 0.8645 5.9730 10.0 15.7145
8 x 8 0.8636 5.9291 10.0 15.5934

9 x 9 0.8632 5.9093 10.0 15.5432

10 x 10 0.8627 5.8897 10.0 15.4924

11 x 11 0.8623 5.8702 10.0 15.4410

12 x 12 0.8620 5.8558 10.0 15.4035
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In this section frequencies and mode shapes for the simply supported plate with a
central mass have been derived. These converge to acceptable accuracy with a reasonable
size eigenvalue problem and the numerical calculations were performed in a straightforward
way on the IBM 1130 computer.

The next section will consider a problem with more complex eigenfunctions to

illustrate the generality of the present method.

Clamped-Supported Plate with Central Mass

This section will consider the problem of a plate supporting a central mass having
two opposite edges simply supported and two opposite edges clamped. The associated
eigenvalue problem without the mass is a special case of the more general Levy solutions.
For plate problems with two opposite edges simply supported and any combination of
boundary conditions on the other two edges the frequency equations and eigenfunctions
have been listed in references [38, 51, and 56].

The plate with the central mass is shown in Figure 18. For antisymmetrical modes
the mass will lie on a nodal line and the mass will not affect the response. For symmetry
about the X axis the frequency equation [38], is

ii 1. 1
wi = (5.52)

2 6 /ä
where

4;- = 1- évé 1 (5.53)1 L1, + Z ( -E-„ }

and ¤( ij}; and /9;;; satisfy

pr} tm 0. (5-54)
The normalized eigenfunctions for modes symmetrical about the X axis are
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.. (5.55)

wheremi}:/(/+

@7}+ Y£j{;+ (5.56)
Ü} F?

and uu/6Yi= .

A square plate was selected for numerical calculations and the first 15 roots of

(5.54) were found for symmetrical vibrations. These values were then arranged, in

ascending order, and the corresponding values of the eigenfunctions for (5.50) were cal-

culated using (5.55) and (5.56). Then using the eigenvalues and the mass matrix found

from (5.50) as input, the general eigenvalue problem was solved for successively larger

arrays.

The results of these computations showed that the rate of convergence was com-

parable to that for the simply supported plate. For example, an increase in the matrix

size from 9 X 9 to 12 X 12 produces a change of 0.16 percent in the first mode frequency,

and 0.60 percent in the fourth mode.

The variation of the first four natural frequencies with the mass ratio is given in

Table VI. A non-dimensional plot of these results is shown in Figure 19. The

corresponding mode shapes are shown in Figures 20 through 23.

This section concludes the treatment of continuous media with non-uniform mass

distributions. In the next chapter the vibration of continuous media with time—dependent
boundary conditions will be considered.
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TABLE VI

Eigenvalucs for Simply Supported-Clamped Plate

with Central Mass

Eigenvalues

Mass Mode I Mode II Mode III Mode IV
Ratio

01 ÄII )‘m Ä iv

0 28.95 102.2 129.1 199.8

0.01 28.27 99.85 126.8 195.9

0.02 27.63 97.53 125.1 192.7

0.05 25.90 91.46 122.1 186.4

0.1 23.55 84.66 120.1 181.6

0.2 20.22 77.80 118.8 177.9

0.5 15.02 71.37 117.9 175.1

1 11.34 68.66 117.6 174.1

2 8.305 67.19 117.4 173.6

5 5.370 66.27 117.3 173.3

10 3.826 65.95 117.3 173.2
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VI. VIBRATIONS OF CONTINUOUS MEDIA WITH

TIME-DEPENDENT BOUNDARY CONDITIONS

This chapter will consider the application of the eigentransform technique to the

solution of problems involving time-dependent boundary conditions. Two classes of

problems are considered: (1) one dimensional continuous media such as the rod, string

or Euler beam, and (2) isotropic and orthotropic flat plates.

One Dimensional Media with Time-Dependent Boundary Conditions

The vibration problems of the uniform rod, string, and Euler beam are governed by

partial differential equations which are of even order in the derivatives with respect to

the spatial variable. This is true, for example, for the Euler beam supported on an

elastic foundation with constant in-plane forces. It is convenient then to consider this

class of problems together by suitably generalizing a differential operation in even spatial

derivatives. The solutions given by Cinelli [12] will then be given as a special case of

the present solution. The problem will be treated by giving first a general development

of the theory which is followed by applications to the vibrations of a rod and a beam.

General Development

The partial differential equation is taken in the form

[[W(X,1‘)] + Mo ;.·
Z_(x,z‘j

(6.01)

where

L is a linear differential operator in even derivatives of order zlp having the form

r r rr ”’ in
[_: (6.02)

'71=q2.

M, is constant, and

72
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3- (X, U is the forcing function.

In taking the eigentransform, the integral

I‘/l

L [M/(X,{)] ¢r (X) Jx (6.03)
0

must be evaluated where ¢r (X) are the eigenfunctions corresponding to (6.01) with

homogeneous boundary conditions. The eigenfunctions thus satisfy

L [¢r(x)] .: Ä). ¢,.(X) (6.04)

where /lp-= W:Mg; wr are the natural frequencies of the system. In this case the eigen-

functions are orthogonal with respect to a weighting function of 1. Substitution of (6.02)

into (6.03) gives

I 2f ·n ZP *0 Tr

Z0,._
B x Ix

which after repeated integrations by parts can be expressed as

I ZP ,,‘ 2f 1 2P ,.3

aß V/(XJÜJX (6-05)
X

0.),:0,1 nz ZI4 9 7|= ¢,2.

where

(0) (n~|) (1) (rn-2.)
[LG'): ¢,(X) w(¤9t)— ¢,(¤) w(x,t) + ·· ·

I
0:-2) 0) (I") (0)

. .. + d>,.. (x) W(¤(.f) - ¢, (X) W (x,t) (6-06)
0

in which numbers in parenthesis denote differentiations with respect to X . The last

term on the right hand side of (6.05) can then be simplified using (6.02) and (6.04) to

yield the result
ß LP 1

f L[“’0~’;*7]¢r(X/JK = Zdnädf) + Ä»-/V(X,*) ¢r(x)Jx;
0 ns 2)+ 0
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hence
I zw __

(6.07)
g "=2}4'

Thus by means of the eigentransform, the original equation is reduced to the

ordinary differential equation

2P J2-..

Mo71:7-,4-

0r 2.__ ZP
#*2;. eu: W,. =-L (6.08)
dt Mc 71.=Z,4-

Let zp
N»(t)= irtt) — 411. f;,_(t)I (6-09)

° 1],:2)+

then (6.08) reduces to
2- 2. ..

+ (Ur wr

:whichhas the general solution
1f

w,t 1- (6,10)(Jr Ur
°where

1
@(0} = f

w<X,¤) 49, (x} JK (6.11)
0

and I
.:. MV
w,.(0) :.-. 5?(X:0) ¢,·(^’]¢/X .

0
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The final solution to the problem can be written as

oo
W,. (£·)¢,.(x) (6,12)

V‘=/

where 1)/1
¢$,.(X) ¢,(x)Jx : Ürs,

o

Applications

1. Longitudinal Vibration of a Uniform Rod

As the first example the longitudinal vibration of a uniform rod clamped at the end

X = O with a time-dependent force, PG) , acting at X = Ä is considered. The

classical method of treating this problem is to compute the kinetic and potential energies

in terms of a generalized time coordinate and apply Lagrange’s equations of motion. It

has also been solved by the Laplace transform [57] or the Mindlin—Goodman technique

[52].

For the rod shown in Figure 24 the governing equation on the longitudinal

displacement u (X, tl is

Alu.
31

u.[A (6.13)

where W1. is the mass per·unit-length. The boundary conditions require

a (o, f ) = 0

Au tEA 5; (P, ) = P(f). (6-14)

In this case

fu
L: EA;-1 M,=—M. Z,(x,t)·=¤

and hence from (6.02),
ßa : O
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and az = E A ·

With these results the generalized foreing function is found from (6.09) to be

N, (i-). EG) (6.15)
where from (6.06)

X

jC£(-t) ,_. /¢,(x}
ä“(x){-) — %”(x) u(X,1"J · (6,16)

O

The eigenvalue problem associated with the free vibration of the rod eonsists of

solving
ll ^' 1

é =
—

Är ¢r

subject to the homogeneous boundary conditions

¢r f¤) = O
/

¢r (Y} : O
~ Z 7-

W!-<··' . . . .where dr = F , for convemenee. This problem has as its solution the
eigenvalues

yl, =
(2/‘-dj';

(6.17)

and normalized eigenfunctions

¢r (g) : SL", Äzx _ (6.18)
I

Using the eigenfunetions (6.18) and the specified boundary conditions, (6.14), FQ ff) is

found from (6.16) to be given by

'°—I
f;(·[-) :. i (-/) Ä (6.19)

1 EA
and hence from (6.15)

r-I
N,- (t) : .£ (./) E . (6.20)

1 ‘m.
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For homogeneous initial conditions (6.10) then gives
'l’

(
UM_

: .L i. 4% E (6-21)
0

and with the inversion series, the final result is obtained:

ao V-! ·£·
u_(x)f)= L 4.L„l2r—r);L,/ /’(z·}u-};w„(t~2:)Jz·_ (622)

I
wr X 0

2. Transverse Vibration of a Beam

As the second illustration, a clamped-supported beam with the end displacement

specified as a function of time will be considered. This problem is solved by Mindlin and
Goodman in their paper [48]. Following their conventions, the coordinates are shown in
Figure 25.

The governing equation is

& + Ä. - O (6 23))x‘
EI biz —

°

and the boundary conditions are

w(o,i·): [ff) w(.ß£)=0
EI Wl?@‘Ü/=0 w'(,@f'}=0 (6-24)

where E is the modulus of elasticity,

I is the moment of inertia, and

WI. is the mass per-unit-length. The beam is assumed to start from rest so all of the
initial conditions are zero. In this case

L- M - Ä
ar'- °

‘
EI

and hence
Go = dz : O Q4 =

/_
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w(¤,¢)=m)
x -+—·

XFigure25 - Clamped-Supported Beam with Prescribed Support Motion
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Referring to (6.09),

N.~(t)= —
ä Qu} (625)

where from (6.06),

m / II 0 , m
I

/L-,j,(t)
= ¢,(¤}W(x,t) · ¢,(X}W(X;t) + ¢,. (X)k/(X,·l')- ¢,_ (X) W(x,£·)} _ (6.26)

0

The associated eigenvalue problem consists of solving
~¢

¢:_v(x)= Ä, Q (X) (6.27)

subject to the homogeneous boundary conditions

(0):0 ¢,.(„()=0
Il /¢'_ (o):o ¢r(!)=0 (6.28)

where, for convenience, ·~/4, ·;,
,\,. .. .° EI

The solution to this problem yields the normalized eigenfunctions

Z (6 )(X) ,29I" X {adam, .. dnzm,.) V1

where mr are the roots of
fu, pn,. = Üuui Mp (6.30)

and mr = dr!.

From the boundary conditions given in (6.24) and (6.28), F} (Ü) is found from

(6.26) to reduce to

3 ,g;„Am mbtm/;_(£) fg) _ (6.31)

Substitution of this in (6.25) then gives N, H') , and this result in (6.10) gives
1 . *__ ' M .w,. (t) = /1(i(2')4l«¢J,(i‘·t)JZ‘, (662)’° X I (.4urÄ m,.-4bnm·) 1 O
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Finally, from (6.12) the desired solution is
t$ zo W ou .

(6.33)
rs} mr — dälmr 0

where
Mm: au/.m„„i1„."ii‘-4«;„m„4z„A@, (6.34)

Ä Ä
and the natural frequencies are given by

z
(Jr = Ä; Jg.

- (6.35)Aa m

The expansion given in (6.33) represents the solution within the region 0< X < Ä .

The displacement at X = Ä is the specified displacement.

Isotropic Plates with Time-Dependent Boundary Conditions

General Development

An isotropic flat plate of arbitrary boundary of uniform thickness and mass per-unit-

area /2 will be considered. The plate is subjected to a transverse load Z. (P, tl ,

per-unit-area which can be expressed as a product of space and time functions. The

governing equation on the transverse displacement w for general forced vibrations is

4·
O V W(;‘:‘f')+f„ I (6.36)

where 3, ( P, fi} is the forcing function per-unit—plate—area. For generality, the pro-

blem will be expressed in curvilinear coordinates, normal and tangential to the boundary

of the plate. The conventions are shown in Figure 26 where the radius of curvaturc of

the boundary is E .
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I\

S

Figure 26 — Coordinates for Arbitrary Isotropic Plate
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The stress resultants in these coordinates can be expressed [52] as·„ 2 7 aw fwM = - uvv (6.37a)"‘ äzw bw: —· D — - -L —-M U W ( mas R ls ) (637}))
Tt Ö 1

Q = — 9 2. (V w) (6.376)an.

where 2. 2.2 b r a a= —— — — ‘*— 6.3 dV a»t*+na>t"as* (7)

and the Kirchhoff shear is
ns

TI, '|\
MV = Q - 9- . (6.37as °)

The positive conventions for these resultants are shown in Figure 27.

The method of separation of variables leads to the eigenvalue problem associated

with 4. 4
V 4: = A 4: (6.38)

and homogeneous boundary conditions. This problem leads to the eigenvaluesÄi.and

eigenfunctions ¢,; . The eigenvalues Ä; are related to the natural

frequencies UL · byÜ Ä 2 )——D
aJ··= V —

· (6.39)

blTheeigenfunctions are orthogonal with respect to a weighting function of 1 and are

normalized so that

f
9); (P) ¢m„_(P)¤/A = 6},,, Sin, (6.40)

A
where A is the plane area of the plate.

In taking the transform of (6.36) the crucial step is to transform the first term.

For a non—isotropic plate the integration must be performed by parts. In this case an
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n

W

Figure 27 - Positive Stress Resultants for

Arbitrary Isotropic Plate
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integral theorem of vector analysis can be used. The eigentransform of this term is

defined by
4

V 1/(8 H (P) JA .
A

Using some identities of vector analysis, the integrand may be rewritten so that
4 4

Af
V u/(At) ¢;Ag(P),/A = j w(/fi) V¢;A;(P)JA

A A

+ - 7(Vtw) - (Vx/I V‘¢;· — w•?(v_?;S; - ) + v‘¢.. {7],/)} JA , (6-41)
A 1 1 1 *1

The last integral on the right-hand side can then be transformed into a line integral

around the boundary by using the divergence theorem. Hence, (6.41) reduces to
4 4Y W(8f)¢>zj(P)•/A =/ w(6£)V¢,¥(/7JA

A A

/¢
Xvlwl

') V? W
’°

W} J5 6+ " Ä- — ' " - - " - .427 an an 7+ ‘/an W auf ( )
As a consequence of (6.38), the first term on the right-hand side of the last equation

reduces to

4- 4- 4. __f-««-1-»v¢,A.(»»».1„
= 1LA;/w(g1>«;g-#194;

-
,1% Mia), (6.43)

4 A
Equation (6.37) can be rewritten in the form

D R A7!. )5"
and

W)
BW- D ts JMS E

Ö-Yandcan be used to rewrite the last term of (6.42). After some rearrangement, these

simplifications yield
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4- * -fvw JA = Wgifi')

A '^ n n; (»1v~·- --v *° "- HM- .1;7
¢‘f + 61tM an 7)

(6.44)
I- I-

6Ir/ 6¢" . 6V 1 6VT-
Ä-

B.
__°iÄ

“ L
‘

••l+(
65*

gb}!
UMS R

35)
672 6s* *$(

6;:1): R
6sl H5

}|; N
where the Kirchhoff shear V; and moment Mg]; associated with the homogeneous

boundary conditions have been introduced. If the last integral is integrated by parts it

can be evaluated at the end points of the path of integration, say Os S5 1 . Introducing
NS

the twisting moment M;} associated with the homogeneous boundary conditions,

the transform for v4w finally reduces to
4 4- jf E H, In__

=
_ y/M.__ sM_Q! ..7+0 ( 7*¢7A

"’ M I 4. 4, "1 WM--_¢..M 6··6w an/xp+ — (/-1/ — - - • 6.45D[ L; ti as M 0
( )

Then for convenience let
7\- 'TL n 71.. -4 14114-- .v

61: an. 7

4 I7\51 .
"‘

6¢·· aw aw 649-·— w · - ;·M -
*—-——¢‘ 6.46+ ß[ M7 +0 y)[—i?täl'l

as lr!. e
( )

and hcnce,

4- + ...V w(Bf)¢;f(P)JA = vw;/{(1é) + [E}{£)_ (6.47)

A

In the evaluation of the terms in (6.46) for a particular plate a distinction

must be made between plates with corners and those without corners. For plates

with corners, to find (1;) , the line integration must be broken up into
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segments and the %-— evaluated as the corners are approached from the interior.

For plates with no corners, the terms evaluated at S= 0 and
5=»€

will cancel

identically as the integration is performed around a closed path.

Using (6.47), the transform of the governing plate equation (6.36) becomes

* *‘ 0% —_ _ ,
f

• . _—- ' '
:

_

'D Ä,} ,},( )+ ÜFZJÜ) +/g #,7 j.,} (fl
or Z__

1 —

df

where
I — D. . =
_ . . { _ __ _ , _N,}(f)

/2,
Z,_}( )

ß,
Ä}(f) , (6 49)

Then the solution for the transformed variable can be written as
f

14; = mz 00)- t+ -4- ««w·-z‘ +
—j‘

N· 6.50w,}l) ,}¤)<¤ „}, wp „} Ur ~{ ·{ ( )
J J ¤

where

A

and -# Jh/(/30)W..( = é. · (/’)<//l . 6_5},} 0) f bt ¢,}1 z >

The final solution for the plate response can be found by substituting (6.50) into the

inversion series m Q,

w<F$f) = 2 VV%(¢)¢,;}(I’) , (6-52)
Z.= / j=/

Applications to Rectangular Plates

As the first application of the procedure described above a rectangular plate will be

considered. The plate under consideration is shown in Figure 28.
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X=0

v=b

V

Figure 28 - Path of Integration for Rectangular Plate
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The possible time-dependent boundary conditions on an edge, such as 7 -; 0

include any consistent pair of

w(x,o,t) ;~1Ü(x,o,t·)

¥(X„¤,*) v7(x,o,£·) .
Ü

_ The solution for the rectangular plate can be expressed in terms of these edge values by

evaluating (6.46) for the given plate. This involves evaluating line integrals along each

edge and evaluating the normal derivatives at each corner from two directions. As a

result of these operations, the last term in (6.46) vanishes but contributions are received

from the term containing the twisting moments. Thus,
4,

Ü Ü 00 ·· aw..
3f 0

°
Ü i ay 0} j v

Ü Ü 0¢·· av 7 0/xÜ 7 a; 0; 7 7:6
‘

xL wuf .,;/ ä¢c‘ ^' aw Ö']+ — — /*1 — /*1„//f 0fr0
X . j V

X
+ VV-- ·-V+ —-ja‘ /*1 -Ä-/1;] }J¢‘f

ax dx } J,
[:4.

+—[w··- -- (.53
’

R ¢ K
all

6 )0 ·r ·0 /.,. »

where the corner reactions have been introduced by the definition
I.

K =ax
y
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If the customary sign convention for the Kirchhoff shear is used the result given in (6.53)

can be written more compactly. Thus let
J 1x Ä V Ä WV ·-3

1I W I w[/7 ; -D/ -7 +(Z—V) -1} (6.54)I 7, I, IX

then (6.53) car;be written as

1**__ __ I _t y J °°
Y.- ·« ‘**¤=··°L (6.55)

X: G1 0,
6X _

x X IL VV}- --V 6 ~- .+ß//[ 7 ¢‘f +)x IX 7,:0 KDc

Numerous applications of the last result can be made. One of the most important

includes the determination of the plate response due to known boundary motions.

Another is the determination of frequencies and mode shapes for other boundary

conditions by appropriately selecting the boundary inputs.

1. Response of Plates with Prescribed Input Motions

Equation (6.55) can be used to calculate the plate response due to a variety of input

motions. These may include time-dependent displacements, slopes, moments, and shears.

Any spatial distribution of these may be specified subject to the evaluation of the integrals

which appear. Any type of plate boundary condition may be treated assuming that the

corresponding eigenvalue problem can be solved.

To illustrate the procedure consider the problem of a rectangular plate with two

edges simply supported and the two opposite edges clamped. The two simply supported

edges are subjected, for simplicity, to a uniform time-dependent moment M ( t ) . The

plate under consideration is shown in Figure 29, where the coordinate system has been
located to take advantage of symmetry.
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-
b

C Io m pcdE
X

0

ä
A C I ¤ m psd A

Y

Figure 29 — Clamped-Supported Plate with Edge Moments
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The normalized eigenfunctions for this problem were given in Chapter V, but they

are repeated here, for convenience,

—l- (ml: Y; (6.566)aj mi. Ü b I' I 6 O-
I

where

I. /1.u«Ä«£6 ' ' 6 ‘
m; - , (/— ——¢) + @(1+ äle) (6.56b)I 46} #6} *

and
6,/.Y;}

6 -——-—— - (6.560)
cosThe

natural frequencies are given by
Z. I-

,1,% , (6.57)
2 6 fo

where 6(; and Ä; are related by

1 g · I

dg} —F;} : (6.58)

and satisfy

o - (6.59)

For the present boundary conditions [ij reduces to
6
Y . . .MM'] + [ MM‘j /</;»

z
and after substitution of (6.56a) and inte ation ieldser Y

-
_t.""° . Ezé

L L (
MJ 2 MH). {i=43„·Z·~·)

0 ,,3 mg 4.;
’

##,6
(6.60)
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Next substitution in (6.49) and then in (6.50) gives
.. Trr · .¤„A iv · A' .5 ;(

f, J mg} 4:} T pr} wi (
0 (6.61)

where, for convenience, all initial conditions are assumed to be zero. When substituted in

the inversion series, this result gives the final solution

V(X,},i*) = tß av
/6 L/Z)? _ je: . ws/ir N(T)4Äi. Uqff-tldt,

z wi- 5 I 1 a./£,°· . ._ 1* ~ 0 (6.62)u.=/, 3, [-LZ
h . J; ‘

· z 'w ere5

='·
· (6.63)I I, ‘ ,_. . ._

/ ++*72.

Determination of Mode Shapes and Frequencies for Combinations of Simple
and Clamped Supports

Closed form solutions for frequencies and mode shapes of rectangular plates are

tractable for the Levy type of supports. For combinations of boundary conditions other

than with two opposite edges simply supported, closed form solutions are not yet known.

A variety of approximate methods have been used to treat these problems. For plates

with clamped and simply supported edges the frequencies and mode shapes may be found

[57] by applying harmonically varying edge moments of unknown magnitude to simply

supported edges and then adjusting these moments to satisfy the required clamped

boundary conditions. The frequency equations which result are infinite series but can be

solved with a computer.

Equation (6.55) can be used to solve problems of this type. Consider the rectangular

plate of Figure 30 which is simply supported on all edges. The plate is subjected to time-

dependent edge moments of unknown frequency P . These have the form
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My (x,o)

x= ¤
x

Mx (¤,v)
'V‘¤(¤„v)

v= b

My (x,b)

Y

Figure 30 — Simply Supported Plate with Edge Moments
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Mx (0, y, t) = /"l,6(o,?) hr?
/'1X(a,y, 1*) = /"7x(¢)}7 4*%-Pt

ulnpt

M’(¤,b,f/ = M„(x,6) hrt
so that (6.55) reduces to

° 6
Ä- (t)=»4Ön,ft (x,y}Äté¢l/ldx + Ältibft

/*Mx(X;y}@£/¢‘t

· (664)7 ( ,6 „ „ ,, Y ·
0 0

For the simply supported plate the normalized mode shapes are

N , l. · E · VF 6.6Ä), vl;. M °_ h- JIT? < 5)

and the natural frequencies are

0)..,
;,—”'(¢‘1 i‘ D (666)‘/ Z} *( 6} ·

‘

If equation (6.65) is substituted in (6.64) then
Q,

1
lr

. '
. °.. , ... 1. 6 _ 6 _

/ fl'!E/if) Q.
A

hr Ä/( 1)
/‘7}(X,6/

Myfm) h Q, dx

. 6 L . ·
.6
Ü

fährt /"Ix(¤„y/·~/‘1,,(o,y)]»“M 7}Ü—J}·

The unknown edge moments are now expanded into series of the form (667)

M}(x,6) = ;_

A6-l"I,(a.,y)= Z6,3

Mx (°)}) = D;

•Ifthese expansions are substituted into (6.67) and use is made of the orthogonality

conditions then

(6.69)
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The final solution for the steady-state plate response is found from (6.49), (6.50) and

(6.52) to be
”/(xßfat)

= Ai + ß;] +
L. E-[(4)

Cl"ir.Z .._..—........._. .z

Alinft • (679)

This last equation may be used to obtain the frequencies and mode shapes for a

plate with one edge clamped, or two or more adjacent edges clamped, The latter cases

are, of course, not included in the Levy solution. The equation is derived in Nowacki’s

book [57] using the finite sine transform which is, of course, a special case of the present

method.

For the case of one edge clamped, a particularly simple solution is obtained. Let

the edge X = O be required to have the clamped boundary condition; then A; =

B; = C} = O , and (6.70) reduces to

°· . . U; ' ·Ä ;,1 I /°

Imposing the boundary condition that

BW (ol

yagivesthe frequency equation
. 2.

1. .
L-- :0, :1,2,... (6,72)Z 11 wg} ‘ P 1

This equation was solved on the IBM 1130 computer for the roots shown in Table VII,

where 3,
D/’

· = Ä · L — - 6.73
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TABLE VII

Eigenvalues for Plate with One Edge Clamped

Plate Eigenvalues
Dimensions

a

T xu in im in
0.5 1.762 2.402 5.299 5.963

1 2.402 5.241 5.963 8.748

2 5.241 17.124 8.748 20.459
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With the plate frequencies known, the corresponding mode shapes can be calculated

from (6.71). Corresponding to„

D
„

' K
- ·§_:

E (6.74)
'7 . wi -)>„ - °' 6

* 7 I
so that the mode shapes have the form

. =DX-<x)·«%¤„¢lÄ 6.75fk? (X1?) j xj A ( )

where I ahL a.XK} (x) ät? . (6.76)
L U6}"As

the second application, consider the rectangular plate with two adjacent edges

clamped, say the edges X‘= O and gt = O . In this case A; = CJ; = 0 and (6.70)

reduces to

44); (6.77)
ß 6 . . 6..1;.

-,¤‘
*-1} I

Imposing the boundary conditions

ii(°17·16)=O ¥’—<x.¤,f)=obx 3Z'
gives the following two equations

5. ,_ O j. 1,2.,... (@78)
16 **6,6 —/• °' ,; **6} rf 6

.= . .

2 + Ü;-.-.:0, 6.‘=l,2,••- (6.79)
l w' K -

. , 4-1 ‘¢ ’°
1 ‘*
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Let _
1

L-. : ._1;L _P g
1

‘*

and F L 1.
= _ 1.

i ··j
/’

then by eliminating 5,; a single set of simultaneous equations is obtained for Dj .

These are

D. - 6.,) DK:0 ag:/,2,--~ (6.80)
Ü 1< }

where
L

2Ga = +2 -+——+——— - 882
•

1 1

T

LEquation(6.80) is an infinite set of homogeneous simultaneous equations. For a non-

trivial solution the determinant of the coefficients must vanish. The fundamental fre-

quency of a rectangular plate was obtained from (6.80) for two plate geometries. A

3 X 3 determinant was used together with 100 terms in each of the series. These results

are given in Table VIII

where
1

7f 0
ßl ;- Ä}; —— · (6.82)V ß

It should be noted that even with a computer this computation was laborious. Since

equation (6.81) represents a series for which each term is also a series, the results of

Table VIII involved calculating 10,000 terms for each assumed value of the desired root P .

The infinite series expansion for each mode are found in a manner similar to that of the

previous problem.

These examples conclude the treatment of rectangular plates with time-dependent

boundary conditions. In the next section applications will be made to circular plates.
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TABLE VHI

Eigenvalues for Plate with

Two Adjaccnt Edges Clamped

Plate

Dimensions Eigenvalues

L'.
b Ä11

1 2.74-

2 7.23
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Applications to Circular Plates

The application of (6.46) to circular plates is particularly simple, since there are no

corners and the last two terms vanish. Thus

A--¢ = lf v·"- .. "
*¢=‘ am E 6.83JJ) 0 (W .} 3

For generality this last result will be evaluated for an annular plate. Consider the plate of

Figure 31. The line integral can be evaluated by the sum

1* = ( * / * ( */
DA AB 5; 6D

but, since the integrand of (6.83) is continuous within the plate, the line integrals along AB

and 60 cancel. Then
z1r r r ¢.. *-1i JG

° uf
)¢1 '°

" 5 ‘
1- 3u/ '° .—— M.- .. -..4 -— -. ÖJ6.D! (W

7
¢‘,1V

ar M ar M‘}i-:5
0

If the Kirchhoff shear is now given a consistent definition throughout the plate, i.e.,

l 1

" 3 Jiv 13w 1 3v (1-vw) MJ 1 3wV: D3r(ar'·+>‘ 3* +1**36*) )·* a6(v·3a r 36) (6*84)

then the last equation can be written as

_Z]]° V'-•0.«·‘ »· a¢ · - »· aw *1¢°··(t)=.L r wV--- ..v Ja
7 D ( 7 ar *1)

¤ r=$ (6.85)

Equation (6.85) can be used to solve a variety of circular plate problems with time-

dependent boundary conditions. These include determining plate response due to known

input motions and finding frequencies and mode shapes for other plate boundary

conditions.
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hgA

Figure 31 - Path of Integration for Circular Plate
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As an example the determination of the response of a clamped circular plate with a

time-dependent edge displacement is considered. For simplicity a uniform edge displace-

ment is prescribed. The plate under consideration is the same as shown in Figure 12.

For the given boundary conditions the normalized eigenfunctions are

J (Ä; Y} I (Ä ·r)
@(1): J..[.L.._ - ;.i...] (6.86)

Vw 6 I.Un¤) 1.,u;a.)

where J', is the Bessel function of order zero and I, is a modified Bessel function of

order zero. The eigenvalues Ä; are the roots of

Lflzv-)I,(Az¤-) + Ibiza) I.(Az¢)=o, (6-87)

and the natural frequencies in this case are given by,
1

wi = A; 2 , (6.88)
fa

where by the assumption of the uniform boundary motion only symmetric modes are

produced. This is indicated by the mode shape‘s independence of 6 .

For a solid circular plate (6.85) reduces to

17T
"

1* . r,_ J6. 6,89(C4,}
0/

( ff ar arll0

For the clamped plate with a uniform edge displacement this reduces further to simply
17T

a. T ZUG, T
/-1;(t)= W(¢1·,f‘)lf(a.]J6 : TW(ß,f)% (°·) .

0

Substituting for the Kirchhoff shear using (6.84) and (6.86) gives

J

gg) = w(¤.,i·), (6.90)
-7. (A za-)
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Next substituting in (6.49) and (6.50) the transformed displacements is given by
i'

Ä /WM-,¥)ä~w;(t-e)dz (6_91)
J-, ( zlid.) Ä; 0

where all initial conditions are taken as zero. The plate response is then obtained from

the inversion series as

w< mt}ä«

L
AL Lflcü.) ·7ÄÜé“·) I„(Ä£¤-)

0
Equation (6.85) can also be used to determine natural frequencies and mode shapes

for annular plates with various edge conditions. The procedure is similar to the one

followed in the previous section for rectangular plates. It will not be pursued further

here since for circular plates the eigenvalue problem can be solved in closed form for

all combinations of edge conditions.

This section concludes the development and applications which will be given for

isotropic plates. The next section of this chapter will be devoted to orthotropic plates.

Rectangular Orthotropic Plates with Time-Dependent Boundary Conditions

General Development

A rectangular orthotropic plate of uniform thickness having a mass per-unit—area fo

will be considered. The plate is subjected to time·dependent boundary conditions and is

loaded by a transverse load per-unit-area 3,0, }, '¢) . The governing equation on the

transverse deflection W [56] is

84w fw aß fw7-,3-;-Zy + DW; +ß F1. = }(x.y,£) (6.93)



105

and the stress resultants are related to the deflection w by

_ ab abMX'°(DX=

_ fw fw"*
‘ D1 55+ ”· w>

M M WX = · = 2D ——} fx X} bxbD¢

3 3
Q = - D Ji + Hbx’

bxJD;'— )

bzw b"wO = -— ( D — H ——7 7 6;* + bD;b «= (

Q aM D fw ai.): - X
- -

.— _.

47
bzw

fi.!V = Jßjpr . - —- 0 + 4- i 6. 41 °1+ , [01 aß *" °'1’.>D„=l
‘ °’

where H = ßD+ ¢ Dx}, . The stress resultants are shown acting in their positive directions

on an element in Figure 32. The plate considered is shown in Figure 33.

The eigenvalue problem associated with (6.93) consists of solving

4 4-b ¢ b ¢ 3*66 +D -— + ZH —-— D .. ,_7 DX4 axaaf
"” } D}., Ä ¢ (6-95)

subject to homogeneous boundary conditions. This problem leads to a set of eigenvalues

Ä;} and eigenfunctions ¢; . The eigenfunctions QSL are orthogonal (see

[56]) and they can be normalized so that
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Figure 32 - Stress Resultants for Orthotropic Plate
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¤« L

· - = · - . 6.96
9 0

The transform of the governing equation is accomplished by multiplying (6.93) by

the eigenfunction ¢,; and integrating over the plate area. This gives

n. 6

fw
14)./ 1+w YW 95 J J

·!z•V" ”
(t) (6 97)__

Z „ „_ ,,.; · ~
‘

T; Ä · .70
0

where the definition of the transform has been used for the last two terms. In this case

the transform of the differential operator in the space variables is accomplished by inte-

gration by parts. After the initial integrations are performed the term is given by

° * + 4 40 A1 M. 0 g .. J =6X*0
0 #

“* ‘
4 4 4

0 zu ...;*‘6·°° 0 wu//(xa auf 6*6;*) }
6 6

L J 66 ab fgiaw)y’
776x*+ ),y* ax )X° 6

0

gp fw a¢· ab ° J+ Li )}l
°

}

a. J L 1 , L‘“,
6 6* 6 6* 6* 6* ¤

1. 3

6*
‘

° (6.98)
This result can be considerably simplified by using (6.95) and introducing the moment
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and shear stress resultants. After these substitutions, there results

"’ ‘
4 4 1 1-ÖV AV )“’

.. - . ·—·._

° a¢ V 1 y
541- ._ y. Mw- 1*//"1:;* "·17 * *1 #*1.,

0

.4- iz- w—w -11 --/4

6 1 1 ¤·
1 0 ¢-Ji +(0.-10 )¤-1M;-40+10 }&

’¢‘·"
0 W 4

J
I

**617* I X} 1117* I X} 3}*- 37*- I );‘ ä

W
1’¢ Jlv a fg; lg} 174 6

- V- 0 0 ...___ 0 4ß l V*” 1* *1%, „· *‘”«
,7 .4,

(6.99)
If the last two integrals on the right-hand side are integrated by parts several cancellations

occur and equation (6.99) simplifies considerably. The final result can then be written as

(Ü; 2// 3;-;;;: 1

0;whereQ,
1/4 /4

1/(6.101)
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and the corner reactions R have been introduced as

azw
ß = . (6.102)

(lx);

Using the result given in (6.100) the transform of the governing equation becomes

from (6.97),

Ai “ F (1 ·="*’“° °. . .
+

. . L
=

" _ _(t
L7 LJ L} } + jl-] )

Ol'

Jzäu ' ’. —
.,. = /V;]-(1) (6.103)

where

J?.
aldi- : (6.104)

and

NLJ = . (6.105)

Then the solution for the transformed variable can be written as

_ ·t
L·2:i(f)= MJU) <v~¢¢·J,}Z° + A£•1w;;;·t + NL} (z}4„;„ «1;f({-z}„;z

6 7 ° (6.106)
where a_

b

17;]; (6) (6-107)
0 0

¤- A
and 'Ü. .. Ä! x ..( J Jm}(¤) - u(,},¤) #7 6}) x J;.

O 0
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The final solution for the plate response may be found by substituting into the inversion
series

(6-108)‘
J

Applications

As a special case of the orthotropic plate with time-dependent boundary conditions,
the problem of a simply supported plate with the edge displacements specified as a func-
tion of time and position is considered. The simple supports are assumed for simplicity
in this example; actually, any combination of supports may be used provided the

corresponding eigenvalue problem can be solved.

For simple support conditions the normalized eigenfunctions are found to be

2 · ürx · 'zr..(X }: -— »¢m—_4m, -f—#
(6.109)¢‘7 /7

\/a. 6 °‘ 6
and the natural frequencies are

_4 _2._ 1 _4- L

1- Dx + iq ‘+ 'éi 2-
,4%.: Tf i......_ . (6.110)’

r0

Using (6.109) the function 11}]* ( f) can be evaluated. This involves evaluating the
Kirchhoff shears on each edge and the corner reactions. On the edges of the plate, the
displacements are specified as

w(a,y,£·) = Wdyzf]

M/(OJ?}-f}: %(?J{)_
(6.111)
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At the corners, the plate displacements must be continuous and are given by

Mw, fl = ßéfafl = {If)
M (0., £) = W; (0,f) = LH)

M/;(b,f) = l^éC==„*) = {dt)
%(o,£) = W+(b,f) = /;(%)_ (6.112)

Using (6.109), (6.111), and (6.112), equation (6.101) reduces to

Ä;} (U =
3 0.

ä
—£—[D}(«§—) + (Q+4Üx;}(ä-}j/[(··/)h*§(X,*/—M(L£{]4m ige;

3 · · 1 ' 2.
6

0

o

(f) (6.113)
0 0. _

When the edge displacements are uniform, say
[IH')

, the last equation takes an

especially simple form. In that case,

Ti/§·(=‘}
= — Ä- egäé {ff) 4}-/,3.5,—·—

- (6.114)J 7Tzß 4}

If there is no transverse load, then from (6.105)

8.. 4 — 1.
"’ ¢ HJ.NL? (rf} 7/..1. JT (6.115)



113

For the case where the plate starts from rest, the time function is given by

t

Lf Q

and the final solution, from the inversion series (6.108) is

aa aa t

w(x)y’·g): 4161. f(C'}4¢¥n.¢«J,;7·('l·Z‘}JZ',
7/' _ , 4; 5

¢.=63 }’Ö3
°

The problem considered above used simple boundary conditions and thus yielded a

simple result. The general solution is not, however·, restricted to any particular combina-

tion of boundary conditions such as the Levy conditions. In numerous cases the Levy

conditions may be conveniently used in practical applications. Since the mode shapes and

frequency equations for the Levy supports have been tabulated, then for these problems

it is particularly convenient to treat time-dependent boundary conditions by substituting

into the equations derived above.



VII. DISCUSSION

In this dissertation a finite generalized integral transform has been applied to three
general classes of problems in the vibrations of continuous media. The integral transform
uses as its kernel the eigenfunction of an associated eigenvalue problem, and it is denoted
as the eigentransform. The eigentransform was applied first to the vibrations of continu-
ous media with both non-uniform stiffness and non-uniform mass distributions. Then it
was applied to continuous media with a uniform stiffness but a non-uniform mass distri-
bution. Finally, the eigentransform was used to treat problems with time—dependent

boundary conditions.

In Chapter IV a general method was presented for treating vibrations of continuous
media with non-uniform stiffness and mass distributions. The eigenvalue problem con-
sidered was assumed to be self-adjoint. The eigentransform was applied to the governing
partial differential equation and subsequently, the transformed displacement was found to
satisfy an infinite set of coupled ordinary differential equations similar to those encoun-
tered in the vibrations of discrete masses. For free vibrations this set of equations led to
a matrix eigenvalue problem from which approximate eigenvalues and eigenvectors were

obtained. For forced vibrations, the differential equations were uncoupled with a trans-

formation matrix of the eigenvectors and solved for the generalized time function. The

inversion series for the transform was then used to obtain the solution for the dynamic
response.

The frequencies and mode shapes for the longitudinal vibrations of a tapered rod
were determined as an example. Using successively larger matrices the frequencies and
mode shapes were determined and compared to the known exact solution. These results
demonstrated that convergence to the exact frequencies was monotonic from above.

l 14
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Agreement with the exact solution was obtained without difficulty.

The reduction of the eigenvalue problem for non-uniform continuous media to that

of a matrix eigenvalue problem has been accomplished previously by other methods.

These have included the Rayleigh—Ritz and the Galerkin methods. An application of the

eigentransform arrives at the same result from a different approach.

In Chapter IV the eigentransform was used to develop a general procedure for treat-

ing continuous media with a non-uniform mass distribution. These results, similar to

those of Chapter IV, reduced the non-uniform mass distribution problem to a matrix

eigenvalue problem for determination of the eigenvalues. The mode shapes were deter-

mined by summation using the eigenvectors and mode shapes for the uniform continuous

media.

A variety of problems for beams and plates with concentrated masses was solved as

examples. A secondary result of these examples was the derivation of approximate

formulas for the fundamental frequencies of beams and plates with concentrated masses.

Comparison with known exact solutions showed that the formula derived for a beam

estimated the frequency with an error usually less than 1 percent. The formula for

plates was less accurate; it gave results with an error of about 3 percent.

The general matrix eigenvalue problem was solved for the first four modes for a

number of beam and plate problems with a single central point mass. Convergence was

reasonably rapid for both beams and plate, although the convergence was usually more

rapid for beams. However, for both beams and plates as a rough rule a ( Z n x Zn )

matrix eigenvalue problem gave rt frequencies and TL mode shapes with acceptable

engineering accuracy. A value of 71 =- 8 was used for the beam problems and H = 9

for the plate problems to find four modes.

In the past treatments of plates with attached masses, the frequency equations were

determined as infinite series. The present method using the matrix eigenvalue problem
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approach has definite computational advantages.

Vibrations of continuous media with time-dependent boundary conditions were

treated in Chapter VI. One dimensional media were considered first and then isotropic

and orthotropic plates.

One dimensional continuous media with time-dependent boundary conditions were

treated in a general way by specifying a differential operator of even order in the spatial

derivatives. Examples of applications to rods and beams were presented.

The vibration of isotropic plates with time-dependent boundary conditions was

treated in a general way using normal and tangential coordinates. The eigentransform of

the goveming equation was performed using an identity and theorem of vector analysis.

The time-dependent boundary conditions were aHowed to have an arbitrary variation

along the boundary. Detailed applications were then made to rectangular and circular

plates.

For the rectangular plate an example of determining the response history was given,

and the determination of frequencies and mode shapes for combinations of simply

supported and clamped edges were considered. The frequency equations for these

problems involved infinite series and infinite determinants which were found to be

laborious to solve for more than one clamped edge.

The general equation for treating annular circular plates with time-dependent condi-

tions was derived. This result was applied to the determination of the symmetric response

of a clamped plate with a uniform time-dependent edge displacement.

Orthotropic rectangular plates with time-dependent boundary conditions were also

considered in Chapter VI. The eigentransform of the orthotropic plate equation was per-

formed by integration by parts. Again the boundary conditions were permitted to vary
arbitrarily around the boundary. The response of a simply supported plate with an arbi-

trary edge displacement was determined as an illustration.



VIII. CONCLUSIONS

The present investigation of applications of a generalized finite integral transform,

the eigentransform, led to the following conclusions.

1. The eigentransform when applied to the governing partial differential equation

for non-uniform continuous media leads to a matrix eigenvalue problem of a

form which had previously been derived by minimization methods, such as

Rayleigh-Ritz. For the example considered, the convergence to the eigenvalues

and mode shapes was rapid and was conveniently accomplished with a digital

computer.

2. The eigentransform when applied to problems with non-uniform mass distribu-

tion leads also to a matrix eigenvalue problem. For plates with masses this

represents an improvement over previous methods of calculating frequencies

and mode shapes. With a digital computer the eigenvalues and mode shapes for

plates with masses and Levy type boundary conditions can be obtained in a

straightforward manner.

3. Vibration problems with time—dependent boundary conditions may be solved in

a direct way using the eigentransform. In previous treatments of Vibrations of

plates with time-dependent boundary conditions it has been necessary to perform

part of the analysis by trial and error. In addition these analyses have been

restricted to uniform edge motions. The eigentransform solves the problem in a

direct manner and removes the restriction of uniform edge motions. Non-

uniform edge motions may be considered for both isotropic and orthotropic

plates.

4. The eigentransform is a logical generalization of other finite integral transforms,

such as the finite sine or cosine transform. In the past the advantageous use of

117
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these transforms was restricted to only certain simple boundary conditions.

The concept of a generalized finite integral transform extends the advantages

of integral transforms to a much broader class of boundary value problems.
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APPENDIX A

General Formulation of the Eigenvalue Problem in Vibration of Continuous Media

The eigenvalue problems encountered in the vibration of structural elements such as

rods, beams, and plates have been formulated in a general way by a number of writers.

Discussions of the general problem appear in the books by Courant and Hilbert [55],

CrandaH [58] , and Meirovitch [52]. An important feature of these discussions is that

criteria are established for the existence and uniqueness of the eigenvalues and the ortho-

gonality of the eigenfunctions. For convenience, some of these results will be summarized

in this appendix. The presentation follows that of Meirovitch.

A large class of eigenvalue problems (see Table IX) are governed by a partial

differential equation of the type

L[¢«¤.yV - A-z£¢<¤»yü <A1>
where Ä is a parameter and L and M are linear, homogeneous differential operators of

orders lf and ZZ. , respectively. For example, _ L has the form

L = A,(X,1)+ Ä;('€•})%— 4- Ä_;(l»})# + Ä4(&1)ä -1-. .. I (A2)

where the coefficients A, , A1, , · · · are known functions of the spatial variables x

and 1- . The operator M has a form similar to L and is of order ZZ, such that

p> i, . Equation (A1) must be satisfied at every point within a one or two dimensional

region R . Associated with the partial differential equation there are P boundary condi-

tions that WUL1) must satisfy at every point on the boundary 5 of the region R .

The boundary conditions may be written in the general form

QM = mw] <A3>
where 5; and C; are linear differential operators of order Zf- / involving

derivatives normal to the boundary and along the boundary. Equation (A3) gives a total of
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TABLE IX

Typical Operators for Eigenvalue Problems

Continuous System Spatial Operator Mass Distribution Region

L M_ 8 ( 8 )String ax Tax p(x) 0<x<£

8 8
R<>d gg (EA gg) pA(x) 0<x<£

6 2 62
Beam (EI pA(x) O<x<l

Membrane T V2 p Arbitrary
Plane

Uniform Plate D V4 p Arbitrary
Plane
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(P
boundary conditions that must be satisfied at every point on the boundary.

The eigenvalueproblem consists of seeking the values of the parameter for which

there exist non-trivial solutions satisfying the partial differential equation (A1) and

boundary conditions (A3). Such parameters Ä are called eigenvalues and the corre-

sponding functions of Qflx, }) are called eigenfunctions.

The problem as posed above is called a general eigenvalue problem. For the case

when M is not a differential operator and is only a function of the spatial variables,

i.e., M = MU!) }) , the problem is called a special eigenvalue problem.

The remainder of the discussion will be restricted to the class of problems involving

homogeneous boundary conditions so that at every point on S the boundary conditions

take the form
Br N'] = o. (A4)

The eigenvalue problem posed by (Al) and (A4) is defined to be self-adjoint if, for

any two function IL and lr satisfying the boundary conditions (A4), the following

conditions are met:

utfvldc = [ vL£¤-J JK (A5)
K K

(A6)
[ R

The conditions (A5) and (A6) can be verified for a one dimensional region by integration

by parts and for a two dimensional region either by integration by parts or by the integral

theorems of vector analysis.

If for any function u. ,

fu! fu] JK 2 0 (A7)

the operator L is said to be positive. The operator L is said to be positive-definitc
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if the integral is zero only when V- is identically zero. Similar statements hold for the /*7

operator. If both L and M are positive definite the eigenvalue problem is said to be posi-

tive definite. When L is only positive and M is positive definite the problem is semi-

definite. In many cases the operator M = M(X,7·} can be recognized as the distributed

mass. In these cases it is obvious that M is positive definite.

The solution of the eigenvalue problem, (A1) and (A4), consists of an infinite set of

eigenvalues ( M, Ä:} . .. ) and a corresponding sequence of eigenfunctions (Ö,} Ö,] . . , ).

Since the problem is homogeneous the amplitudes of the eigenfunctions Ö, ( "= L Z, · · · )

are arbitrary, and only the shapes can be determined uniquely. If the system is positive

definite all eigenvalues xl'- are positive. In the case of a semi-definite system in which L

is only positive, Ar = 0 is also an eigenvalue. —

Let Ar and As be two distinct eigenvalues and ¢,» and ¢, be the

corresponding eigenfunctions of a self-adjoint eigenvalue problem. Using (A1) gives

L[¢»·] = ,\,- M[¢»~] (A8)
and

i{4>, 3 = A,M{¢-1 <A9>

Multiplying (A8) by ¢; and (A9) by ¢,„ , subtracting, and integrating over the

region R gives

f(¢,i[¢,} - ¢, iz¢.1)4¤ = fm. 49, MM} <Aw>
R R

Now since ¢,· and ¢_; are solutions of a self-adjoint eigenvalue problem, they satisfy

(A5) and (A6). Thus,

/¢,LL'¢-14/@ =

jl
Ö,. l.[¢,-1 JE} (A11)

g E
and

f
4*, M{¢„1·/R = f

¢,M[¢,]·!k <A12>
R R
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which may be substituted in (A10) to give

(11;-1,)/ ¢r”'[¢=J·#<=<>-
R

Then since A, =\: Ä;

(A13)

R

Equation (A13) is known as the generalized orthogonality condition. From (A9) it follows

that
Ä; +1:. (A14)

R
The eigenfunction ¢,. are said to be normalized with respect to M if the integral

is defined as

f¢;·/°l {¢»1#/Z = ( (A15)
R

which determines the otherwise arbitrary amplitudes of the eigenfunction ¢;- . Then (A13)

and (A15) may bc written by the single equation

}'M[¢,.]¢, gg „ 5;-, (A16)
R

where Sr: is the Kronecker delta.

In the special cases (shown for example in Table IX) where M is not a differential

operator, the orthogonality condition reduces to

‘/M (br Ö: JR = 5;-;, (A17)
R

The family of eigenfunctions satisfying (A16) has been shown by Courant and

Hilbert [55] to constitute a complete set. This means that any function 1C satisfying the

homogeneous boundary conditions and for which LC';] is continuous may be represented

by an absolutely and uniformly convergent series in the eigenfunctions in the form
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{ = Z Cr 09,- (A18)
I'

where the coefficients Cr are given by

r:R

This representation is known as the expansion theorem.





APPLICATIONS OF A GENERALIZED INTEGRAL TRANSFORM

TO VIBRATIONS OF CONTINUOUS MEDIA

by
Earl Arthur Thornton

ABSTRACT

A finite generalized integral transform was applied to three general classes of problems

in the vibrations of continuous media. For its kernel the eigenfunction of an associated

eigenvalue problem was used and the result was denoted the eigentransform. The eigen-

transform was applied to (1) continuous media with both non-uniform stiffness and mass

distributions; (2) continuous media with uniform stiffness but non-uniform mass distribu-

tion; and (3) to problems with time-dependent boundary conditions.

A general method was presented for treating vibrations of continuous media with

non-uniform stiffness and mass distributions. The eigentransform was applied to the

governing partial differential equation and subsequently the transformed displacement was

found to satisfy an infinite set of coupled ordinary differential equations similar to those

encountered in the vibrations of discrete masses. These equations led to a matrix eigen-

value problem from which approximate eigenvalues and eigenvectors were obtained. The

differential equations were uncoupled using a transformation matrix of the eigenvectors

and then were solved for the generalized time function. Finally, the inversion series for

the transform was used to obtain the solution for the dynamic response. To illustrate the

method, the first four frequencies and mode shapes were determined for the longitudinal

vibration of a tapered rod.

The eigentransform was used to develop a general procedure for treating continuous

media with uniform stiffness but non-uniform mass distribution. These results, similar to



those for the general non-uniform problem, reduced this problem to a matrix eigenvalue

problem. The mode shapes were determined by summation using the eigenvectors and

mode shapes for the uniform continuous media. Several problems for beams and plates

with concentrated masses were solved as examples. This approach demonstrated definite

computational advantages for plates over past treatments where frequency equations were

determined as infinite series.

Vibrations of continuous media with time-dependent boundary conditions were then

treated using the eigentransform. One dimensional media were considered first and next

isotropic and orthotropic plates. One-dimensional continuous media were treated in a

general way by specifying a differential operator of even order in the spatial derivatives.

Applications to rods and beams were presented. The vibration of isotropic plates for an

arbitrary shape was treated by expressing the equations in normal and tangential coordi-

nates. The eigentransform of the governing equation was performed using an identity

and theorem of vector analysis. The time-dependent boundary conditions were allowed

to have an arbitrary variation along the boundary. Detailed applications were then made

to rectangular and circular isotropic plates. The eigentransform of the orthotropic plate

equation was performed by integration by parts. Again the boundary conditions were

permitted to vary arbitrarily around the boundary. The response of a simply supported

plate with an arbitrary edge displacement was determined as an illustration.

This investigation demonstrated that the eigentransform is a logical generalization of

other finite integral transforms. The concept of a generalized finite integral transform

extends the advantages of integral transforms to a much broader class of boundary value

problems.


