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Analytical and Computational Tools for the Study of Grazing Bifurcations

of Periodic Orbits and Invariant Tori

Phanikrishna Thota

(ABSTRACT)

The objective of this dissertation is to develop theoretical and computational tools for

the study of qualitative changes in the dynamics of systems with discontinuities, also known

as nonsmooth or hybrid dynamical systems, under parameter variations. Accordingly, this

dissertation is divided into two parts.

The analytical section of this dissertation discusses mathematical tools for the analysis

of hybrid dynamical systems and their application to a series of model examples. Specifically,

qualitative changes in the system dynamics from a nonimpacting to an impacting motion,

referred to as grazing bifurcations, are studied in oscillators where the discontinuities are

caused by impacts. Here, the study emphasizes the formulation of conditions for the persis-

tence of a steady state motion in the immediate vicinity of periodic and quasiperiodic grazing

trajectories in an impacting mechanical system. A local analysis based on the discontinuity-

mapping approach is employed to derive a normal-form description of the dynamics near a

grazing trajectory. Also, the results obtained using the discontinuity-mapping approach and

direct numerical integration are found to be in good agreement. It is found that the insta-

bilities caused by the presence of the square-root singularity in the normal-form description

affect the grazing bifurcation scenario differently depending on the relative dimensionality

of the state space and the steady state motion at the grazing contact.

The computational section presents the structure and applications of a software pro-

gram, t̂c, developed to study the bifurcation analysis of hybrid dynamical systems. Here,

we present a general boundary value problem (BVP) approach to locate periodic trajectories

corresponding to a hybrid dynamical system under parameter variations. A methodology to

compute the eigenvalues of periodic trajectories when using the BVP formulation is illus-

trated using a model example. Finally, bifurcation analysis of four model hybrid dynamical



systems is performed using t̂c.
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corresponding Poincaré section with positive penetration are shown. . . . . . 55

xii



3.6 Bifurcation diagrams based on the P Poincaré section obtained under varia-
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Chapter 1

Introduction

1.1 Motivation

Our unsatiating thirst to decipher the complexity of the world in which we live and its

surroundings has resulted in the development of science. Most of the natural phenomena

such as motion of the planets, flow of fluids etc., are dynamic processes i.e., they bring a

change with time. The field of Mechanics is a result of thousands of years of insight into such

processes. However, in the past four hundred years, Mechanics has taken a very rigorous

mathematical form mostly due to the invention of calculus. This presented the world with

a powerful tool that can predict the outcome of such processes in future time with certain

accuracy. While the theory of Mechanics has been very well developed for processes with

smooth transition in time from one state to the other, it is relatively unexplored in the case

of systems that undergo a discontinuous change with time in terms of certain quantities that

define their transition. Such cases occur very frequently in man-made mechanical systems

and the emphasis of this dissertation is to study their dynamic behavior under changes in

system parameters.

Many physical phenomena involving a sequence of dramatic and sudden changes in their

1
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related quantities are typically studied using mathematical models containing some type of

discontinuity in the rules governing their motion. Such systems, called nonsmooth systems or

hybrid dynamical systems, appear very frequently in engineering applications. For example,

the behavior of diodes and transistors in electrical circuits, control mechanisms involving

switching, collisions between components in a variety of mechanical systems, friction-induced

vibrations in machine tool chattering, squealing noise of rail wheels and torsional vibrations

in oilwell drillstrings have been topics of research in the area of nonsmooth systems.

Even though some of the nonsmooth models can be approximated by smooth models and

standard numerical integration schemes can be used to study them, the procedure is not free

of disadvantages. One of the main disadvantages is that the ordinary differential equations

that govern the motion resulting from smoothening are typically stiff and computationally

very expensive to solve. This is because their numerical integration involves a mandatory

reduction in the step sizes to very small numbers. Moreover, smoothening of vector fields

in nonsmooth models eliminates the possibility of applying some of the analytical tools that

would otherwise provide conceptual insights into the behavior of these systems.

The mathematical modeling of nonsmooth dynamical systems involve ordinary differen-

tial equations with discontinuous right hand sides. Depending on the type of discontinuity,

these systems are categorized as follows [27]:

1. Systems in which the vector fields are continuous at a discontinuity boundary but their

Jacobian is discontinuous i.e., systems with continuous but nonsmooth vector fields.

Systems with purely elastic one-sided supports fall into this category.

2. Systems in which the vector fields governing the motion are discontinuous at a discon-

tinuity boundary, called Filippov systems. Systems involving dry friction and visco-

elastic supports fall into this category.

3. Systems involving jumps in state space resulting from impacts between various system

components in a mechanical system. Impact microactuators and gear rattle are a few
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examples of systems with jumps. These are also called impact oscillators.

This dissertation (Chapters 3 & 4) mainly deals with the qualitative changes in a variety

of impact oscillators under parameter variations. Therefore, the following section is exclu-

sively dedicated to the introduction and literature review on impact oscillators. However, the

software program (Chapter 5) developed as a part of this dissertation can be used to study

bifurcation analysis of general class of hybrid dynamical systems. A detailed mathematical

formulation of hybrid dynamical systems that also includes impact oscillators is presented

in the next chapter.

1.2 Impact Oscillators

Impacts in oscillating mechanical systems are generally caused either by interaction between

system components or by their collisions with rigid obstacles. Such mechanical systems occur

very frequently in engineering applications. Vibrations of helicopter rotor blades, impact

microactuators, mechanical devices with loose fitting joints, gear rattle, buildings under

earthquake excitation, tubes vibrating within a fluid, print hammers, dynamic behavior of

off-shore equipment etc. are a few examples of impact oscillators (see also [2, 3, 15, 17, 18]

for more examples).

Impacts can have detrimental effects on the desired motion of a system and contribute

significantly to its wear and tear. However, in few cases such as microactuators and Braille

printers, impacts are exploited for precise positioning and printing for blind, respectively.

Hence, this prevalent occurrence and influence of impacts in technological situations demand

a thorough investigation of dynamic behavior of impact oscillators under diverse conditions.

Fig. 1.1 shows a simple single-degree-of-freedom impact oscillator in which the motion

of the mass is confined by a rigid wall at x = d, where x and ẋ are the position and velocity

of the mass at any point in time. While the motion of the mass is considered smooth as
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long as x < d, an impact occurs when x = d and ẋ 6= 0. In most of the engineering

applications where there is an energy loss due to impacts, the rebound velocity of the mass

can be modeled using coefficient of restitution. Also, the time scale involved during impact is

orders of magnitude less than the time scale of the regular motion. This facilitates modeling

of impact as an instantaneous jump in the velocity. As most of the previous work suggests

the coefficient of restitution model serves as an accurate modeling technique in the case of

impact oscillators under the assumption that the time of impact is negligible.

x
0

x=d

Figure 1.1: Schematic of an impact oscillator.

A transition from nonimpacting to impacting motion in an impact oscillator occurs via a

zero-normal-velocity contact with a boundary, called a grazing contact, and the corresponding

changes in its behavior are called grazing bifurcations [5, 6, 7, 9, 17, 20, 27, 33, 34, 35, 40,

45, 52, 53]. Fig. 1.2 shows the state space representation of a nonimpacting and a grazing

trajectory along with a discontinuity surface. Here, a nonimpacting trajectory corresponds to

the motion of the oscillator when its steady state motion does not interact with the constraint.

Similarly, a grazing trajectory corresponds to the motion of the oscillator when its steady

state motion attains a grazing contact with the constraint. A discontinuity surface is a co-

dimension-one surface in state space representing the motion constraint, and its intersection

with a grazing trajectory is termed as a grazing point.
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Nonimpacting trajectory

Grazing trajectory

Grazing point

Figure 1.2: A schematic diagram showing nonimpacting and grazing orbits along with the

corresponding discontinuity surface.

Grazing bifurcations are typically associated with instabilities that lead to the transition

to motions with impact velocities bounded from below for values of the system parameters

arbitrarily close to those at grazing, a phenomenon that is undesirable in many engineering

systems. Moreover, the repulsion from the vicinity of the pre-grazing nonimpacting steady

state response to a different oscillatory behavior is very rapid and without any prior indication

when compared to similar bifurcations in systems without discontinuities (smooth dynamical

systems). These instabilities transform the nonimpacting motion into an impacting one

involving high-velocity impacts that may cause significant damage to the components and

eventually lead to the failure of the mechanical system. A grazing bifurcation is called

continuous if the impacting dynamics after the grazing contact remain in the vicinity of

the original steady state motion corresponding to the grazing trajectory. It is referred as

discontinuous grazing bifurcation otherwise.

Previously, numerical studies have reported a variety of bifurcations in impact oscilla-

tors that are typically not observed in smooth dynamical systems. Thompson & Ghaffari

[42] and Thompson [43] are among the earliest researchers on impact oscillators. They
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demonstrated that the dynamic behavior of impact oscillators contains an infinite sequence

of period-doubling bifurcations resulting in chaos that is in quantitative agreement with the

Feigenbaum scenario [16]. This study essentially focused on modeling mooring towers of off-

shore equipment in marine engineering. Shaw & Holmes [39] explored the impacting dynamic

behavior of a periodically forced linear oscillator with a constraint. They not only confirmed

the findings of Thompson & Ghaffari [42] but also modeled impacting dynamics using a

discontinuous map which was shown to undergo period-doubling bifurcations followed by a

complex sequence of transitions that contained long superstable periodic motions.

Foale & Bishop [19] and Foale [17] reported that the introduction of a nonlinearity

into a linear oscillator in the form of an instantaneous impact rule can result in a highly

complicated behavior. They attributed the radical changes in the dynamic behavior of

an impact oscillator to the discontinuity in the derivative of the corresponding Poincaré

map (see also Whiston [48] for detailed work on singularities in impact oscillators). Their

work also demonstrated two distinct types of grazing bifurcations that are connected via a

codimension-two grazing bifurcation. This characteristic of grazing bifurcations is explained

with more rigor and in general class of single degree-of-freedom systems in later publications

[7, 45]. In their later studies Foale & Bishop [18], using numerical techniques, suggested

that grazing bifurcations are the limiting cases of typical bifurcations that are encountered

in smooth dynamical systems as the impact is hardened.

Budd & Dux [3, 4] analyzed a single degree-of-freedom, periodically forced, impact oscil-

lator when the forcing frequency is twice its natural frequency. This facilitated asymptotic

estimates of the intermittent chaotic behavior that were later compared with numerical simu-

lations. They reported that a grazing bifurcation can lead to an intermittent chaotic behavior

with low velocity impacts that is followed by an irregular sequence of high velocity impacts.

They also analyzed a discontinuous one-dimensional map in order to explain the existence

of periodic windows in which the period of impacting solutions increases monotonically from

one window to the other. Nusse et al. [36] reported similar bifurcation phenomenon catego-

rized as border-collision bifurcations, where a fixed point of a piecewise smooth map crosses
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a codimension-one discontinuity surface in state space with a change in a system parameter.

They studied two-dimensional piecewise smooth maps corresponding to a variety of physical

models in order to demonstrate the above discussed phenomenon.

On the experimental side of the literature on impact oscillators, Shaw [40] reported

some of the earliest results on the dynamic behavior of a harmonically forced beam with

one-sided amplitude constraint. He reported experimentally found complicated behavior

such as multiple subharmonic resonances and period doubling sequence to chaos. The work

also successfully compared the experimental results with an analytical model obtained via

single mode approximation for the oscillations of the beam. Moore & Shaw [29] studied

impacting dynamics of a harmonically excited pendulum. Both normal as well as inverted

pendula with rigid barriers that limited the maximum amplitude from their equilibrium

positions were tested. They demonstrated that in the case of the inverted pendulum, for

fixed frequency and excitation amplitude, ten distinct steady-state impacting solutions exist

merely by changing the initial conditions. However, the normal pendulum behaved differently

for the same set of parameters. They reported that in the case of the normal pendulum

impacting steady state dynamics coexist with nonimpacting steady state motion predicted

from linear theory. Bishop [2] also reported qualitatively similar experimental results of an

impacting beam driven near its linear resonant frequency.

Bayly & Virgin [1] performed experiments on a periodically forced, fully nonlinear im-

pacting pendulum. In their study the amplitude of the pendulum was not constrained to

small angles unlike earlier works along the same lines (Moore & Shaw [29]). They reported

a variety of periodic as well as chaotic motions of the impacting pendulum that were in

good agreement with numerical simulations performed in the same work. Todd & Virgin

[47] studied an experimental track-cart system to demonstrate the chaotic responses between

windows of periodic behavior. They also showed that the chaotic dynamics are marked by

finger-like attractors in which the number of such fingers is governed by the periodicity of

the previous periodic window.
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The study of impact oscillators was mostly confined to numerical and experimental

investigations until Nordmark [35] introduced the concept of discontinuity mappings (cf.

[7, 46, 52, 53]) that became a powerful analytical tool to analyze these systems in the vicin-

ity of a grazing trajectory. This methodology approximates the near-grazing impacting

dynamics using a discrete dynamical system obtained solely from the conditions at the graz-

ing contact. This discrete system can easily be simulated on a computer. This approach not

only eliminates the computationally expensive task of numerically integrating the differential

equations governing the motion, but also allows one to perform a local stability analysis of

the impacting system near the grazing point. A rigorous mathematical formulation of the

discontinuity-mapping approach is presented in Chapter 2.

In the recent past, the discontinuity-mapping approach has been successfully used to

analyze the grazing bifurcations of periodic orbits and the results were found to be in ex-

cellent agreement with direct numerical simulations of the differential equations governing

the impacting system. Based on this approach, Fredriksson & Nordmark [20] formulated a

criterion to determine the persistence of near-grazing impacting motion following a grazing

contact. Later, Dankowicz & Jerrelind [8] successfully used this criterion to develop an al-

gorithm to control the types of bifurcations that occur at a grazing contact. Again, in the

implementation of the control strategy, the discontinuity-mapping approach and numerical

simulations were in good agreement.

While grazing bifurcations of periodic orbits have been documented extensively in the

literature and are relatively well understood, discontinuity-induced bifurcations of quasiperi-

odic system attractors due to grazing contact remain largely unexplored. The first discussion

of the near-grazing dynamics of a quasiperiodic attractor can be found in Nordmark [34],

which contains numerical simulations of the post-grazing impacting dynamics of an origi-

nally two-frequency quasiperiodic oscillation in a three-dimensional state space. The system

explored by Nordmark was later revisited by Dankowicz et al. [9, 10], in which a heuristic

and restrictive algorithm based on the fundamental construction underlying discontinuity

mappings was employed to predict the near-grazing bifurcation behavior. This analysis was
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put on a more solid foundation through the work of Thota & Dankowicz [44, 46], in which

the correction to the smooth flow due to near-grazing impacts was derived without any

assumptions on the post-grazing dynamics (cf. Chapters 3 and 4 of this dissertation). In

particular, it was argued that the dramatic loss of a local attractor that occurs commonly

in the case of grazing bifurcations of periodic system attractors [52, 53] would not occur in

the case of co-dimension-one quasiperiodic attractors and would be unlikely in the case of

higher co-dimension attractors.

Impacting dynamics of quasiperiodic attractors have also been studied in the non-grazing

context, for example, in the work by Xie & Ding [49], where a Hopf bifurcation of an im-

pacting periodic attractor to an impacting quasiperiodic attractor are discussed. In contrast

to the work by Xie & Ding [49], this dissertation emphasizes those bifurcations that de-

pend directly on the discontinuous nature of the vector field and would not be expected in

a smooth system. In particular, the work by Thota & Dankowicz [44, 46] constitute the

first documented analytical study of discontinuity-induced bifurcations of co-dimension-two

quasiperiodic system attractors.

The accuracy of the discontinuity-mapping approach in predicting the impacting dy-

namics in the vicinity of a grazing trajectory is strongly established in the abovementioned

work. This dissertation will use the complete form of the approach to quasiperiodic motions

and will hence extend its validity to a general class of dynamical systems.

1.3 Research Objectives

The objectives of this dissertation are to

1. Numerically and analytically investigate grazing bifurcations of co-dimension-one and

-two invariant tori. The study includes understanding the changes in the stability

characteristics of the system response due to grazing bifurcations and predicting the
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impacting dynamics based on the conditions at the grazing contact in periodic and

quasiperiodic cases.

2. Integrate the knowledge from the analytical and numerical study to develop a com-

putational toolbox that predicts and characterizes grazing bifurcations. The toolbox

developed will have the ability to perform bifurcation analysis of hybrid dynamical sys-

tems similar to the performance of auto 97 [13, 14] for smooth dynamical systems.

1.4 Synopsis

This dissertation is organized as follows.

Chapter 2 introduces the concept of hybrid dynamical systems, their mathematical for-

mulation and the dynamical systems’ concepts necessary in the analysis of bifurcations that

occur in such systems. A detailed description of quasiperiodic oscillations, co-dimension-

two bifurcations specific to impact oscillators and the calculation of Lyapunov exponents

for continuous and discrete dynamical systems is presented. The discontinuity-mapping ap-

proach, a powerful technique that can be used in the local analysis of grazing bifurcations,

is presented here along with its mathematical formulation. Conceptual insights to obtain

local approximations of the functions involved in the discontinuity-mapping approach are

provided.

Chapter 3 illustrates grazing bifurcations of co-dimension-one invariant tori. Two piece-

wise smooth example dynamical systems, a periodic orbit in a two-dimensional state space

and a two-frequency quasiperiodic orbit in a three-dimensional state space are studied using

both the discontinuity-mapping approach and direct numerical integration. The effect of the

square-root term, the lowest order term in the description of the impacting dynamics, on

the types of grazing bifurcations is studied. In the quasiperiodic case, a reduced formulation

of the impacting dynamics is employed to analyze grazing bifurcations and the results are

compared with the ones obtained using the full discontinuity mapping.
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Chapter 4 reports grazing bifurcations of co-dimension-two invariant tori. Two piecewise

smooth example dynamical systems, a periodic orbit in a three-dimensional state space and

a two-frequency quasiperiodic orbit in a four-dimensional state space are studied using both

the discontinuity-mapping approach and direct numerical integration. Here, it is noticed

that the discontinuity-mapping approach is able to characterize the post-grazing asymptotic

dynamics only in the case that the dynamics remain in the vicinity of the grazing trajectory.

When this is not the case, the discontinuity-mapping approach is nevertheless able to predict

the initial transient dynamics away from the vicinity of the grazing trajectory. Again, the

above systems are studied from the perspective of the loss of the local attractor after the

grazing contact. The reduced formulation of the impacting dynamics is also used to study

grazing bifurcations of the two-frequency quasiperiodic orbit in the four-dimensional state

space.

Chapter 5 describes the continuation toolbox t̂c. The tools required in the continuation

process such as pseudo-arclength continuation and orthogonal collocation methods using

piecewise polynomials are discussed in detail. The chapter also discusses the methodology

involved in solving a Boundary Value Problem (BVP) in differential equations using colloca-

tion methods. The capabilites, basic structure and problem types of t̂c are discussed using

illustrations. It also presents the methodology required to compute the correct eigenvalues

of periodic orbits in hybrid dynamical systems. Four piecewise-smooth dynamical systems

are studied using t̂c and diagrams indicating grazing bifurcations and their effects on the

overall dynamics are reported.

Chapter 6 concludes the dissertation with a summary of the results obtained. Also,

recommendations for future work that would enable a better understanding of grazing bi-

furcations of co-dimension-two or higher quasiperiodic system attractors are stated.



Chapter 2

Dynamical Systems - Concepts and

Theory

Notation: The notation followed in this dissertation is as follows. Normal-faced charac-

ters, such as h and t are used to denote scalar-valued quantities. Subscripts used in conjunc-

tion with normal-faced characters, such as hD are used to distinguish different scalar-valued

quantities. Bold-faced characters, such as x and f are used to denote vector-valued quan-

tities. Subscripts used in conjunction with bold-faced characters, such as x1 are used to

distinguish different vectors. Superscripts used in conjunction with normal-faced characters

whose bold-faced equivalents denote vectors, such as x1 are used to denote coordinates of

the corresponding vector-valued quantities. Calligraphic font type, as in D and P , is used

to denote hypersurfaces in state space. Finally, subscripts of scalar- or vector-valued quan-

tities preceded by a comma such as f,x are used to denote differentiation with respect to the

quantity in the subscript.

12
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2.1 Smooth Dynamical Systems

The simplest description of a continuous-in-time dynamical system relies on the introduction

of a state space X of dimension n and an associated vector-valued function f : X → X known

as the vector field, such that f is tangential to one-parameter curves in X corresponding to

the time-evolution of the state of the dynamical system. For example, given a vector field

f : Rn → Rn, this relationship to the time-evolution of the state vector x ∈ Rn is described

by the differential equation
dx

dt
= f (x) . (2.1)

A solution to the corresponding dynamical system is a curve x : R → Rn (often called a

trajectory) such that the corresponding tangent vector at x (t) (where t denotes time) is

given by f (x (t)). If x (t0) = x0 is given, x0 is referred to as an initial condition.

The existence and uniqueness of the solution to a dynamical system for a given initial

condition depends on the differentiability of the vector field f .

Theorem 2.1.1 (Existence and Uniqueness Theorem) Suppose that f : Rn → Rn is

C1 on an open neighborhood of a point x0 ∈ Rn. Then, the initial-value problem

dx

dt
= f (x) (2.2)

x (t0) = x0 (2.3)

has a unique solution on some time interval containing t0 [22, 41].

More generally, given sufficient smoothness of the vector field, there exists an equally

smooth vector-valued function Φ (x, t) called the flow function, such that

Φ (x, 0) = x (2.4)

and
∂

∂t
Φ (x, t) = f (Φ (x, t)) . (2.5)
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Here, Φ (x0, t− t0) maps an initial condition x0 at time t0 on some trajectory to the corre-

sponding point at time t. It follows that

Φ (x, t + s) = Φ (Φ (x, s) , t) . (2.6)

Typically, closed form expressions for Φ (x, t) can only be obtained for very simple

examples of f . There is rarely, therefore, a substitute for numerical simulation in investigating

the general properties of a dynamical system. In special cases, however, analysis combined

with limited computation may be able to make significant and useful predictions regarding

a subset of properties of a given dynamical system. For example, consider a trajectory

segment based at a point x0 at t = t0 for t ∈ [t0, t0 + T ]. Then, by the smoothness of the

flow function,

Φ (x0 + δx, T ) ≈ Φ (x0, T ) + Φ,x (x0, T ) · δx, (2.7)

i.e., to lowest order, the sensitivity of the final state after elapsed time T to changes in the

initial state are captured by the linear map with matrix representation Φ,x (x0, T ) known as

the Jacobian of the flow function.

Differentiating Eq. (2.5) with respect to x and interchanging the partial derivatives on

the left-hand side yields

∂

∂t
Φ,x (x, t) = f,x (Φ (x, t)) ·Φ,x (x, t) (2.8)

known as the first variational equation corresponding to the given dynamical system. More-

over, from Eq. (2.4) it follows that

Φ,x (x, 0) = Id, (2.9)

where Id denotes the n× n identity matrix.

From Eq. (2.7) it follows that, to lowest order, Φ,x (x0, T ) maps deviations in the initial

state to deviations in the final state. In particular, differentiation of Eq. (2.6) with respect

to s yields

f (Φ (x, t + s)) = Φ,x (Φ (x, s) , t) · f (Φ (x, s)) (2.10)



15

or, for s = 0,

f (Φ (x, t)) = Φ,x (x, t) · f (x) , (2.11)

i.e., the vector field is invariant under the application of Φ,x (x, t).

2.2 Hybrid Dynamical Systems

In this dissertation, a hybrid dynamical system assumes the existence of a state space X

of dimension n and an associated vector-valued function fI : X → X known as the vector

field, parameterized by an index vector I in some finite set F. To each value of the index

vector I associate a smooth event function hI : X → R and a smooth state jump func-

tion gI : X → X. Then, a solution to the corresponding dynamical system is a sequence

{xj : (tj−1, tj] → X}m
j=1 of m smooth curves and an associated sequence {Ij}m

j=1, such that

I (t) = Ij, t ∈ (tj−1, tj] (2.12)

and

1. The corresponding tangent vector at xj (t) equals fIj
(xj (t)), i.e., in the case of X = Rn

d

dt
xj (t) = fIj

(xj (t)) . (2.13)

2. The j-th segment terminates at an intersection with the event surface{
x | hIj

(x) = 0, hIj ,x (x) · fIj
(x) ≤ 0

}
, (2.14)

i.e.,

hIj
(xj (tj)) = 0. (2.15)

3. The connectivity between the j-th and j + 1-th segments is given by the function gIj
,

i.e.,

gIj
(xj (tj)) = lim

t→tj+
xj+1 (t) . (2.16)
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The sequence Σ = {Ij}m
j=1 of values of the index vector is called the solution’s signature.

Here, we allow for the possibility of infinite solution sequences and the replacement of m by

∞.

The terminal point xj (tj) on the j-th solution segment is a transversal event if

hIj ,x (xj (tj)) · fIj
(xj (tj)) < 0. (2.17)

Consider the function

F (x, t) = hIj

(
ΦIj

(x, t)
)
, (2.18)

where

F

(
lim

t→tj−1+
xj (t) , tj − tj−1

)
= hIj

(xj (tj)) = 0 (2.19)

and

F,t

(
lim

t→tj−1+
xj (t) , tj − tj−1

)
= hIj ,x (xj (tj)) · fIj

(xj (tj)) < 0. (2.20)

From the implicit function theorem it follows that there exists a unique smooth function

τIj
(x) for x ≈ limt→tj−1+ xj (t), where

τIj

(
lim

t→tj−1+
xj (t)

)
= tj − tj−1, (2.21)

and such that

hIj

(
ΦIj

(
x, τIj

(x)
))
≡ 0, (2.22)

and

τIj ,x

(
lim

t→tj−1+
xj (t)

)
= −

hIj ,x (xj (tj))

hIj ,x (xj (tj)) · fIj
(xj (tj))

·ΦIj ,x

(
lim

t→tj−1+
xj (t) , tj − tj−1

)
. (2.23)

Let

PIj
(x) = ΦIj

(
x, τIj

(x)
)

(2.24)

for x ≈ limt→tj−1+ xj (t). Then,

PIj ,x

(
lim

t→tj−1+
xj (t)

)
(2.25)

=

(
Id−

fIj
(xj (tj)) · hIj ,x (xj (tj))

hIj ,x (xj (tj)) · fIj
(xj (tj))

)
·ΦIj ,x

(
lim

t→tj−1+
xj (t) , tj − tj−1

)
. (2.26)
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Given a solution based at x1 (t0) and the corresponding signature Σ = {Ij}m
j=1, define

the hybrid flow map PΣ for x ≈ x1 (t0) by the expression

PΣ (x) = PIm ◦ gIm−1 ◦PIm−1 ◦ · · · ◦ gI1 ◦PI1 (x) . (2.27)

In particular,

PΣ,x

(
lim

t→t0+
x1 (t)

)
= PIm,x

(
lim

t→tm−1+
xm (t)

)
· gIm−1,x (xm−1 (tm−1))

·PIm−1,x

(
lim

t→tm−2+
xm−1 (t)

)
· · · · · gI1,x (x1 (t1)) ·PI1,x

(
lim

t→t0+
x1 (t)

)
(2.28)

describes the sensitivity of the terminating point on the final segment to perturbations in

the initial condition. From Eq. (2.11) it follows that

PIj ,x

(
lim

t→tj−1+
xj (t)

)
· fIj

(
lim

t→tj−1+
xj (t)

)
=

(
Id−

fIj
(xj (tj)) · hIj ,x (xj (tj))

hIj ,x (xj (tj)) · fIj
(xj (tj))

)
·ΦIj ,x

(
lim

t→tj−1+
xj (t) , tj − tj−1

)
· fIj

(
lim

t→tj−1+
xj (t)

)
=

(
Id−

fIj
(xj (tj)) · hIj ,x (xj (tj))

hIj ,x (xj (tj)) · fIj
(xj (tj))

)
· fIj

(xj (tj))

= 0, (2.29)

i.e., to lowest order, deviations in the initial condition along the initial vector field result in

no deviations in the terminating point of the final segment.

The above discussion pertains to the a posteriori characterization of a sequence of curves

and an associated signature as a solution to a hybrid dynamical system. The question of

how to generate such a solution a priori requires a definition of the forward dynamics of

a hybrid dynamical system. In particular, associate with each value of the index vector a

index jump function ιI : X → 2F, where 2F is the set of all subsets of F. Now, given an

initial state vector x0 and a set of initial index vectors {I0,i}l
i=1 ∈ 2F, apply the flows ΦI0,i

until the earliest time that the event surface corresponding to one of the event functions hI0,i

is reached. Assign the corresponding curve x (t) and the corresponding value of the index
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vector I0,i as the first elements of the solution sequence ξ and the signature Σ. Proceed to

apply the associated jump function gI0,i
to generate a new initial state vector and the index

jump function ιI0,i
to generate a new set of initial index vectors. Repeat this construction for

as many times as desired. In a practical implementation, the flows ΦI0,i
typically correspond

to the same vector field.

Degenerate situations may occur if two event functions are reached simultaneously, in

which case priority must be given on an ad hoc basis.

It is clear that there may not exist a solution with an initial condition x0 and a prescribed

signature. This, however, is of no concern to the construction of PΣ, since this presupposes

an existing trajectory with signature Σ and transversal intersections of the corresponding

event surfaces.

Example: In order to elucidate the above discussed concept of a hybrid dynamical system,

consider the microactuator previously studied by Zhao et al. [53] and Dankowicz et al. [7].

The actuator consists of a movable conducting element of mass m2 connected to a frame

of mass m1 via a linear spring and damper. The frame consists of rigidly fixed stoppers

that constrain the motion of the movable mass. Excitation of the actuator is provided by

imposing an external voltage between the movable mass and an electrode rigidly fixed to

the frame. Frictional contact between the frame and the underlying horizontal substrate is

modeled using Coulomb and Amonton’s friction laws during the slip and stick motions of the

frame, respectively. When the excitation voltage exceeds a critical value, the movable mass

collides with the stoppers resulting in an impulsive transfer of momentum and subsequent

slipping motion of the frame. This behavior can be extended to repeated impacts by applying

a periodically varying voltage across the electrodes, resulting in the desired displacement of

the actuator.

The dynamics of the oscillator may be formulated as a hybrid dynamical systems in

the following way. Denote the state vector by x, where x1 is the displacement of the frame
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relative to the substrate, x2 is the velocity of the frame relative to the substrate, x3 is the

displacement of the movable mass relative to the undeformed length of the linear spring, x4

is the velocity of the movable mass relative to the frame, and x5 is the instantaneous phase

of the excitation. Then, the dynamics of the oscillator is governed by the vector fields

fstick (x) =



0

0

x4

1
m2

(
αV 2 sin2 x5

(d−x3)2
− cx4 − kx3

)
ω


, (2.30)

fslip± (x) =



x2

1
m1

(
kx3 + cx4 −

(
αV 2 sin2 x5

(d−x3)2

)
∓ µdN

)
x4(

1
m1

+ 1
m2

) (
αV 2 sin2 x5

(d−x3)2
− cx4 − kx3

)
± µdN

m1

ω


, (2.31)

where α is related to the permittivity of free space, d is the zero-voltage gap between the

electrodes, k is the spring constant, c is the damping coefficient, V is the voltage applied

between the electrodes, µd is the coefficient of dynamic friction, N is the normal reaction

experienced by the frame from the ground and ω is the frequency of excitation; the event

functions

hfront (x) = δ − x4, (2.32)

hback (x) = δ + x4, (2.33)

hstick± (x) = ∓αV 2 sin2 x5

(d− x3)2 ± cx4 ± kx3 + µsN, (2.34)

hslip± (x) = ±x2 (2.35)
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where µs is the coefficient of static friction; and the jump functions

gimpact (x) =



x1

x2 + (1+e)
m1
m2

+1
x4

x3

−ex4

x5


(2.36)

gidentity (x) = x (2.37)

where e is the coefficient of restitution.

Now let

Zf = {stick,slip+,slip-} , (2.38)

Zh = {front,back,stick+,stick-,slip+,slip-} , (2.39)

Zg = {impact,identity} , (2.40)

and suppose that F is the subset of Zf × Zh × Zg corresponding to the connectivity graph

in Fig. 2.1 showing the relationship between a given vector field, the event functions that

are monitored during forward simulation with the corresponding vector field, and the state

jump function associated with a given event function. For example, I = (stick,front,impact)

corresponds to a trajectory segment governed by the vector field fstick, terminating on the

event surface corresponding to hfront, and connected to the next trajectory segment by the

state jump function gimpact.

As shown in Fig. 2.1 the ten possible values of the index vectors for the given dynamical
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system are

J1 = (stick,front,impact)

J2 = (stick,back,impact)

J3 = (stick,stick+,identity)

J4 = (stick,stick-,identity)

J5 = (slip+,front,impact)

J6 = (slip+,back,impact)

J7 = (slip+,slip+,identity)

J8 = (slip-,front,impact)

J9 = (slip-,back,impact)

J10 = (slip-,slip-,identity) (2.41)

As discussed earlier, the index jump function ιI (x) produces a set of index vectors re-

quired for the forward simulation after every transversal event of the trajectory. Specifically,

in the case of the microactuator described here, the index jump function operates as follows.

ιI = ιJ1 (x) = ιJ2 (x) = ιJ5 (x) = ιJ6 (x) = ιJ8 (x) = ιJ9 (x), where

ιI =



J5,J6,J7, hslip+ (gimpact (x)) > 0

J8,J9,J10, hslip+ (gimpact (x)) < 0

J1,J2,J3,J4, hslip+ (gimpact (x)) = 0 and hstick± (gimpact (x)) > 0

J5,J6,J7, hslip+ (gimpact (x)) = 0 and hstick± (gimpact (x)) ≶ 0

J8,J9,J10, hslip+ (gimpact (x)) = 0 and hslip- (gimpact (x)) < or > 0

(2.42)

ιJ3 (x) = J5,J6,J7 (2.43)

ιJ4 (x) = J8,J9,J10 (2.44)
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Figure 2.1: A schematic representation of the index vector and its associated vector fields,

event surfaces and state jump functions.

ιI (x) = ιJ7 (x) = ιJ10 (x) , where (2.45)

ιI =


J1,J2,J3,J4, hslip+ (gimpact (x)) = 0 and hstick± (gimpact (x)) > 0

J5,J6,J7, hslip+ (gimpact (x)) = 0 and hstick± (gimpact (x)) ≶ 0

J8,J9,J10, hslip+ (gimpact (x)) = 0 and hslip- (gimpact (x)) < or > 0

(2.46)

Fig. 2.2 shows a two-segment periodic trajectory of the microactuator. Here, an initial

condition on 1-st segment uses the index vectors J1,J2,J3,J4. In this case, during the

forward time evolution, the first transversal intersection occurs with the event surface define

by hfront = 0. Now, the jump function gimpact is applied to the terminal point to obtain an

initial condition for the 2-segment. Also, the index jump function ι1 is applied to produce a

new set of index vectors J5,J6,J7. Similarly, the new initial condition is used for the forward

time evolution with the newly produced index vectors. For the scenario shown in Fig. 2.2,

the 2-nd segment terminates at the event function hslip+ = 0 and after applying gidentity, the

state matches the initial condition for the 1-st segment marking the trajectory as periodic.
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Figure 2.2: The figure illustrates a two-segment periodic trajectory corresponding to the

microactuator described here. The index vectors that contain the information about the

vector field, the terminal event surface and the state jump function corresponding to the

each segment are also shown.

2.3 Periodic Trajectories

A periodic trajectory of a smooth dynamical system is a trajectory x (t), such that x (t + T ) =

x (t) for some T and all t. Similarly, suppose that there exists a trajectory

ξ = {xj : (tj−1, tj] → X}m
j=1 (2.47)

with signature Σ of a hybrid dynamical system, such that

lim
t→t0+

x1 (t) = gIm (xm (tm)) . (2.48)

Then, the periodic trajectory ξ∗ together with its signature Σ∗ is a periodic extension of ξ

and Σ. Here, ξ and Σ represent a base unit of the periodic trajectory. Indeed, given a point

x∗ (t0) on a periodic trajectory of a smooth dynamical system with vector field f , let

h (x) = f (x∗ (t0)) · (x− x∗ (t0)) . (2.49)

The trajectory ξ = {x∗ : t ∈ (t0, t0 + T ]} with I (t) = I∗ is then a periodic trajectory of the

hybrid dynamical system with vector field fI∗ = f , event function hI∗ = h, and state jump

function gI∗ equal to the identity map. The point x∗ (t0) is a fixed point of the corresponding
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hybrid flow map PΣ and

PΣ,x (x∗ (t0)) =

(
Id− f (x∗ (t0)) · hx (x∗ (t0))

hx (x∗ (t0)) · f (x∗ (t0))

)
·Φ,x (x∗ (t0) , T ) . (2.50)

In this case, the hybrid flow map is often referred to as a Poincaré map and the event surface

corresponding to h is then known as a Poincaré section. From Eq. (2.29) it further follows

that f (x∗ (t0)) is an eigenvector of the Poincaré map corresponding to the eigenvalue 0.

2.4 Quasiperiodic Trajectories

An embedded k-dimensional torus in the state space X of a n-dimensional dynamical system

is a co-dimension-(n− k) hypersurface parameterized by k angle variables. The torus is said

to be invariant if any solution based at an initial condition on the hypersurface remains on

the hypersurface for all time. As a special case, the points on a periodic trajectory constitute

a one-dimensional invariant torus of the dynamical system. A trajectory is said to densely

cover an invariant torus if any point on the torus can be approximated arbitrarily closely by

some point on the trajectory. In this case, the trajectory is said to be quasiperiodic and can

be represented by a complex Fourier series

x(t) =
∞∑

n1,n2,n3,...,nk

Cn1,n2,n3,...,nk
ei(n·Ω)t (2.51)

where

Ω =
[

ω1 ω2 ω3 · · · ωk

]T

, ωi ∈ R, (2.52)

n =
[

n1 n2 n3 · · · nk

]
, ni ∈ Z, (2.53)

and such that

n ·Ω = 0 (2.54)

only if

n1 = n2 = n3 = ... = nk = 0. (2.55)
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Consider a quasiperiodic trajectory on a k-dimensional invariant torus that intersects

the Poincaré section P transversely along a k− 1-dimensional invariant torus, such that any

point on the torus can be approximated arbitrarily closely by some point of intersection of

the trajectory with P (cf. Fig. 2.3). For every point x∗ on the intersection, the analysis

in a previous section implies the existence of a unique smooth function τ (x) defined on

a neighborhood of x∗, such that τ (x) is the time-of-flight under the flow Φ until the next

point of intersection of the quasiperiodic trajectory with P given by P (x) = Φ (x, τ (x)). By

uniqueness, the map P can be smoothly extended to a neighborhood of the entire invariant

torus. In a computational context, P (x) for some x in this neighborhood of the torus may

be approximated by

P (x∗) + P,x (x∗) · (x− x∗) (2.56)

for some nearby point x∗ of intersection of the quasiperiodic trajectory with P .

Figure 2.3: Illustration of a quasiperiodic motion. A Poincaré section is also shown where

the trajectories intersect the torus in a closed curved (shown as a dotted ellipse).

2.5 Tangential Intersections

Consider a hybrid dynamical system with a single-element index space F = {I}, such that

fI
def
= f governs the continuous-in-time (and space) evolution of the corresponding state vector

x, interrupted by discontinuous-in-space jumps governed by a smooth state jump function

gI
def
= gD triggered at discrete times by the intersection of system trajectories with the event
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surface D corresponding to the zero-level surface of the smooth event function hI
def
= hD. In

particular, assume that the continuous-in-time dynamics apply to the region hD ≥ 0, that

gD maps event-triggering states to the region hD ≥ 0, and that gD and the vector field f and

corresponding flow Φ can be smoothly extended to an open neighborhood of D.

A point x ∈ D is an event-triggering state only if

hP (x)
def
= hD,x (x) · f (x) ≤ 0, (2.57)

since, otherwise, it belongs to a trajectory segment of Φ that originates in hD < 0. In partic-

ular, transversal events correspond to those points on D for which hP < 0. By continuity, it

follows that the vector field is transversal to D on an open neighborhood of any transversal

event. By the implicit function theorem, it then follows that D is a local Poincaré section in

the vicinity of any transversal event, i.e., that for every trajectory of Φ on an open neighbor-

hood of a transversal event, there exists a unique point of intersection with D. In contrast,

grazing events are those points on D for which hP = 0. Trajectories of Φ near a grazing

event need not intersect D and may intersect in multiple points when they do. Thus, D

does not serve as a suitable local Poincaré section in the vicinity of a grazing event.

From the point of view of numerical simulation of the corresponding dynamical system,

transversal events are straightforward to detect numerically and persist even in the presence

of small integration errors. In contrast, grazing events are difficult to detect numerically and

need not persist in the presence of small integration errors. This makes simulations involving

near-grazing events error-prone and very time consuming even at reasonable accuracy.

To enable accurate detection of near-grazing events, consider the co-dimension-one sur-

face P corresponding to the zero-level surface of hP . Here, P consists of local extrema in

the value of hD along system trajectories intersecting P . Indeed, suppose that x ∈ P and

consider the function

η (t) = hD (Φ (x, t))) . (2.58)
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It follows that

η̇ (0) = hD,x (x) · f (x) = hP (x) (2.59)

and the claim follows. Indeed, since

η̈ (0) = hP,x (x) · f (x) , (2.60)

it follows that points on P for which hP,x (x)·f (x) 6= 0 correspond to local maxima (hP,x (x)·

f (x) < 0) or local minima (hP,x (x) · f (x) > 0), respectively, in the value of hD along the

corresponding system trajectories of Φ. Finally, from the transversality of the vector field

with P at such points, it follows that P is a local Poincaré section in their vicinity and that

intersections with P are again straightforward to detect numerically.

Denote byD0 the (co-dimension-two) intersection P ∩ D and suppose that a∗
def
= hP,x (x∗)·

f (x∗) > 0 for some grazing event x∗ ∈ D0. It follows that x∗ is a local simple minimum

in the value of hD along a system trajectory. Moreover, ignoring the effects of gD, nearby

trajectories achieve unique and guaranteed intersections with P in the vicinity of x∗.

For each such intersection x ∈ P , define the penetration π of the corresponding trajectory

by the formula π = −hD (x). It follows that trajectories with negative penetration pass a

neighborhood of x∗ without intersecting D, whereas trajectories with positive (zero) pene-

tration intersect D near x∗ at transversal (grazing) events. Indeed, having located points of

intersection with P for which π > 0, we may apply numerical techniques designed to locate

the corresponding transversal events.

2.5.1 Discontinuity Maps

For each trajectory of Φ on an open neighborhood of a transversal event, the continuous-

in-time evolution is thus guaranteed to be interrupted by a discontinuous-in-space jump

governed by gD. In contrast, for trajectories of Φ on an open neighborhood of a grazing

event, discontinuous-in-space jumps only occur for trajectories with nonnegative penetration,

a condition that requires detection of intersections with P . In the case of near-grazing
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trajectories, therefore, it appears desirable to locally replace the event surface D (and its

event function hD) and the state jump function gD with the event surface P (and its event

function hP) and an associated state jump function gP known as a discontinuity map.

For this purpose, as shown in Fig. 2.4, denote by incoming (outgoing) trajectory seg-

ments, those segments of trajectories of Φ on some neighborhood of x∗ that terminate on

P in forward (backward) time. Suppose that gD|D0 equals the identity and that gD maps

transversal events to points on outgoing trajectory segments. It follows that the desired event

map gP maps points of intersection of incoming trajectory segments with P to points of in-

tersection of the corresponding outgoing trajectory segments with P . Clearly, gP |P∩{hD≥0}

equals the identity, since the corresponding incoming trajectories have nonpositive penetra-

tion and thus experience no event-triggered discontinuous jump under gD. In contrast, on

the set P ∩ {hD < 0}, gP accounts for the flow with Φ backward in time to the point of

intersection with D, the application of the event map gD, and the subsequent flow with Φ

backward in time to P .

To obtain an analytical expression for gP on a neighborhood of x∗, consider the collection

of trajectory segments shown in Fig. 2.4. Here, the point x0 ∈ P is a terminal point in

forward time on an incoming trajectory segment of Φ, whereas x1 is the terminal point in

backward time on the corresponding outgoing trajectory segment of Φ, i.e., gP (x0) = x1.

Denote by xin ∈ D the point of intersection of the incoming trajectory segment with D

and let xout = gD (xin). Assuming that t is the time elapsed in the flow from x0 to xin and

since xin ∈ D we have

hD (Φ (x0, t)) = hD (x0) + thP (x0) +
t2

2
hP,x (x0) · f (x0) +O

(
t3

)
= 0. (2.61)

Since hP (x0) = 0, and hP,x (x0) · f (x0) > 0 for x0 ≈ x∗, it follows that

t ≈

√
− 2hD (x0)

hP,x (x0) · f (x0)
≈

√
2
−hD (x∗)− hD,x (x∗) · (x0 − x∗)

hP,x (x0) · f (x0)
. (2.62)
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Since hD (x∗) = 0, from the above equation it follows that the elapsed time from x0 to xin

and, consequently, the position of xin is O
(√

−hD,x (x∗) · (x0 − x∗)
)
.

To enable a smooth analysis in spite of the presence of this dependence on the square

root of the deviation from x∗, let x̃in denote a point on the incoming trajectory segment

for which hD (x̃in) − hD (x0) = y2 for some (as-of-yet) undetermined quantity y and let

x̃out = gD (x̃in). Finally, denote by x̃1 the terminal point in backward time on the outgoing

trajectory segment of Φ through x̃out. Clearly, x̃in = xin, x̃out = xout, and x̃1 = x1 provided

that y =
√
−hD (x0).

hD = 0hD = hD (x0) + y
2

hP = 0

x0
x1

xin

xout

~xin

~xout

g
D

g
D

x¤
~x1

x0
0

g
P

hP = 0

x0
x1

x¤

hP0 = 0

x
0

1

Figure 2.4: Schematic of the trajectories near the grazing point depicting the discontinuity-

mapping approach with D and P (upper panel) and P ′ and P (lower panel). Gray curves

correspond to the trajectories that are on the side of P ′ for which hP ′ > 0.
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To locate x̃in, x̃out, and x̃1 as functions of x0 and y, consider the set of vector-valued

equations

x̃in −Φ (x0,−υ1) = 0, (2.63)

x̃out − gD (x̃in) = 0, (2.64)

x̃1 −Φ (x̃out,−υ2) = 0, (2.65)

and the accompanying pair of scalar equations

υ1

√
hD (Φ (x0,−υ1))− hD (x0) + υ1hP (x0)

υ2
1

− y = 0, (2.66)

hP (x̃1) = 0, (2.67)

where υ1 and υ2 are the elapsed times from x̃in to x0 and from x̃1 to x̃out, respectively (cf.

[7, 8, 46, 52, 53]). Solving Eq. (2.63) for x̃in and substituting the result into Eq. (2.66),

using the fact that hP (x0) = 0, yields

υ1

√
hD (x̃in)− hD (x0)

υ2
1

− y = 0, (2.68)

which for υ1 > 0 is consistent with the assertion that hD (x̃in)− hD (x0) = y2.

The above set of Eqs. (2.63 – 2.67) are smooth in the unknown variables x̃in, x̃out,

x̃1, υ1, and υ2 on a neighborhood of x̃in = x̃out = x̃1 = x∗ and υ1 = υ2 = 0 as per Eq.

(2.61). Moreover, the corresponding Jacobian matrix evaluated at x̃in = x̃out = x̃1 = x∗ and

υ1 = υ2 = 0 is nonsingular and is given by

Id 0 0 f 0

−gD,x Id 0 0 0

0 −Id Id 0 f

0 0 0 α 0

0 0 hP,x 0 0


, (2.69)

where α =
√

a∗
2
, bold-faced 0’s correspond to either matrices or (row- and column-)vectors

with all zero elements. The determinant of the above matrix equals −
√

a3
∗
2
6= 0, thus
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establishing through the implicit function theorem unique smooth functions X̃in (x0, y),

X̃out (x0, y), X̃1 (x0, y), Υ1 (x0, y) and Υ2 (x0, y) on a neighborhood of x0 = x∗ and y =

0, such that the above equations are satisfied identically by x̃in = X̃in (x0, y), x̃out =

X̃out (x0, y), x̃1 = X̃1 (x0, y), υ1 = Υ1 (x0, y), and υ2 = Υ2 (x0, y). Thus, in conclusion,

for hD (x0) < 0, the discontinuity map is given by

gP (x0) = X̃1

(
x0,

√
−hD (x0)

)
. (2.70)

Suppose that P ′ is the event surface corresponding to an event function hP ′ , such that

hP ′ (x∗) = 0 (2.71)

and

hP ′,x (x∗) · f (x∗) < 0 (2.72)

and refer again to Fig. 2.4. Here, the points x′0 and x′1 are the unique intersections with

P ′ of the incoming and outgoing trajectory segments of Φ through x0 and x1, respectively.

Finally, x̃′1 is the unique intersection with P ′ of the outgoing trajectory segment of Φ through

x̃1. The associated discontinuity map gP ′ now accounts for the flow with Φ forward in time

to the point of intersection with P , the application of gP , and the subsequent flow with Φ

back to P ′. Indeed, consider the addition of the equations

x0 −Φ (x′0, σ1) = 0, (2.73)

x̃′1 −Φ (x̃1, σ2) = 0, (2.74)

hP (x0) = 0, (2.75)

hP ′ (x̃
′
1) = 0, (2.76)

to Eqs. (2.63-2.67), where now σ1 and σ2 are the elapsed times from x′0 to x0 and from x̃1

to x̃′1, respectively.

Again, the corresponding set of equations is smooth in the unknown variables x0, x̃in,

x̃out, x̃1, x̃′1, υ1, υ2, σ1, and σ2 on a neighborhood of x0 = x̃in = x̃out = x̃1 = x̃′1 = x∗ and
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υ1 = υ2 = σ1 = σ2 = 0. The Jacobian matrix of these set of equations is then given by

−Id Id 0 0 0 f 0 0 0

0 −gD,x Id 0 0 0 0 0 0

0 0 −Id Id 0 0 f 0 0

0 0 0 0 0 α 0 0 0

0 0 0 hP,x 0 0 0 0 0

Id 0 0 0 0 0 0 −f 0

0 0 0 −Id Id 0 0 0 −f

hP,x 0 0 0 0 0 0 0 0

0 0 0 0 hP ′,x 0 0 0 0



, (2.77)

and its determinant equals

− (hP ′,x (x∗) · f (x∗))

√
a5
∗
2
6= 0. (2.78)

Thus, the implicit function theorem guarantees the existence of unique smooth functions

X0 (x′0), X̃in (x′0, y), X̃out (x′0, y), X̃1 (x′0, y), X̃′
1 (x′0, y), Υ1 (x′0, y), Υ2 (x′0, y), Σ1 (x′0, y), and

Σ2 (x′0, y) on a neighborhood of x′0 = x∗ and y = 0, such that the complete set of equations is

satisfied identically by x0 = X0 (x′0) , x̃in = X̃in (x′0, y), x̃out = X̃out (x′0, y), x̃1 = X̃1 (x′0, y),

x̃′1 = X̃′
1 (x′0, y), υ1 = Υ1 (x′0, y), υ2 = Υ2 (x′0, y), σ1 = Σ1 (x′0, y), and σ2 = Σ2 (x′0, y).

Now let hD′ (x′)
def
= hD (X0 (x′)) for x′ ∈ P ′ in the vicinity of x∗. It then follows that, for

hD′ (x′0) ≥ 0, the corresponding discontinuity map equals the identity, while for hD′ (x′0) < 0,

gP ′ (x
′
0) = X̃′

1

(
x′0,

√
−hD (X0 (x′0))

)
. (2.79)

2.5.2 Global Poincaré Sections

In the case when x∗ is an isolated grazing event (with a∗ > 0) along a periodic trajectory of

the dynamical system, then the local Poincaré section P is a Poincaré section for the flow

Φ on a neighborhood of the periodic trajectory. The corresponding smooth global Poincaré
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map Psmooth : P → P (or P′
smooth : P ′ → P ′) describes the dynamics of trajectories in the

vicinity of the periodic trajectory when ignoring any transversal events near x∗ by means

of the time-history of their discrete intersections with P (or P ′). A global Poincaré map

P : P → P (or P′ : P ′ → P ′) that accurately accounts for transversal events in the vicinity

of x∗ can then be directly constructed by composing the smooth global Poincaré map and

the corresponding discontinuity maps,

P = Psmooth ◦ gP (2.80)

or

P′= P′
smooth ◦ gP ′ . (2.81)

Suppose, instead, that x∗ is an isolated grazing event (with a∗ > 0) along a quasiperiodic

trajectory of the dynamical system that lies in its entirety in hD > 0 away from x∗. Then,

although P is a local Poincaré section for trajectory segments in the vicinity of x∗, it is

certainly conceivable that it fails to be a global Poincaré section through the existence of

points of tangentiality of the vector field along the corresponding invariant torus with P .

The previous analysis still applies, however, if a separate Poincaré section P ′ can be found

that is everywhere transversal to the torus. For example, when the vector field f is periodic

in a phase variable θ ∈ S1, such that θ̇ > 0, a constant-phase section may be constructed

through x∗ that will be everywhere transversal to the corresponding flow Φ.

The derivation of the discontinuity map gP (or gP ′) only ensures its existence on some

neighborhood of the grazing event. In the case of a periodic trajectory of Φ, this poses

no difficulty to the practical simulation of the dynamical system using compositions of the

global Poincaré map and the discontinuity map since only local behavior in the vicinity of

the grazing trajectory is sought. In contrast, in the case of a quasiperiodic grazing trajectory,

it is possible to be close to the quasiperiodic trajectory after the application of Psmooth and

yet be away from x∗. In this case, an ad hoc a priori choice of neighborhood about x∗ is

introduced, such that gP is automatically assumed to be the identity for points outside of this

neighborhood. A posteriori verification is then made to ensure that recurrent trajectories
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that pass through this neighborhood do not involve events outside of this neighborhood not

already present for the grazing trajectory.

2.5.3 Local Approximations

The two sets of smooth functions X̃in (x0, y), X̃out (x0, y), X̃1 (x0, y), Υ1 (x0, y) and Υ2 (x0, y)

or X0 (x′0), X̃in (x′0, y), X̃out (x′0, y), X̃1 (x′0, y), X̃′
1 (x′0, y), Υ1 (x′0, y), Υ2 (x′0, y), Σ1 (x′0, y),

and Σ2 (x′0, y) are implicitly defined by the set of equations (2.63-2.67, 2.73-2.76). It is

possible to compute arbitrary partial derivatives of these functions with respect their argu-

ment evaluated at x0 = x′0 = x∗ and y = 0 by using implicit differentiation of the defining

equations and demanding that all partial derivatives of the corresponding left-hand sides

must vanish. Taylor’s theorem may then be employed to obtain polynomial approximations

to these functions in the deviation from x0 = x′0 = x∗ and y = 0. Using Eqs. (2.70)

and (2.79), similar (yet typically non-differentiable due to the presence of the square-root)

approximations may be obtained for gP and gP ′ in terms of the deviation from x∗.

For example, consider the function

E (x0, y) = E(1) (x0, y, Υ1 (x0, y))

= Υ1 (x0, y)

√
hD (Φ (x0,−Υ1 (x0, y)))− hD (x0) + Υ1 (x0, y) hP (x0)

Υ2
1 (x0, y)

− y (2.82)

(cf. Eq. (2.66)). Equating with 0 all the partial derivatives of E (x0, y) with respect to x0

and y evaluated at x0 = x∗ and y = 0 it follows that

Υ1,x (x∗, 0) = 0,

Υ1,y (x∗, 0) =

√
2

a∗
(2.83)

and thus

Υ1 (x0, y) =

√
2

a∗
y +O (2) , (2.84)
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where O (2) refers to terms that are at least quadratic in y and/or x0 − x∗ and similarly

below. Substitution into Eq. (2.63) yields

X̃in (x0, y) = Φ (x0,−Υ1 (x0, y))

= Φ (x∗, 0) + Φ,x (x∗, 0) · (x0 − x∗)− f (x∗) Υ1 (x0, y) +O (2)

= x∗ −
√

2

a∗
f (x∗) y + (x0 − x∗) +O (2) (2.85)

Substitution into Eq. (2.64) yields

X̃out (x0, y) = gD

(
X̃in (x0, y)

)
= gD (x∗) + gD,x (x∗) ·

(
X̃in (x0, y)− x∗

)
+O (2) (2.86)

= x∗ − gD,x (x∗) · f (x∗)

√
2

a∗
y + gD,x (x∗) · (x0 − x∗) +O (2) (2.87)

Now consider the function

E (x0, y) = E(2)
(
X̃out (x0, y) , Υ2 (x0, y)

)
= hP

(
Φ

(
X̃out (x0, y) ,−Υ2 (x0, y)

))
(2.88)

(cf. Eqs. (2.65) and (2.67)). Equating with 0 all the partial derivatives of E (x0, y) with

respect to x0 and y evaluated at x0 = x∗ and y = 0 it follows that

Υ2,x (x∗, 0) =
1

a∗
hP,x (x∗) · gD,x (x∗) , (2.89)

Υ2,y (x∗, 0) = −

√
2

a3
∗
hP,x (x∗) · gD,x (x∗) · f (x∗) (2.90)

and thus

Υ2 (x0, y) =
1

a∗
hP,x (x∗) · gD,x (x∗) · (x0 − x∗)−

√
2

a3
∗
hP,x (x∗) · gD,x (x∗) · f (x∗) y +O (2) .

(2.91)
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Substitution into Eq. (2.65) yields

X̃1 (x0, y) = Φ
(
X̃out (x0, y) ,−Υ2 (x0, y)

)
= Φ (x∗, 0) + Φ,x (x∗, 0)

(
X̃out (x0, y)− x∗

)
− f (x∗) Υ2 (x0, y) +O (2)

= x∗ +

(
Id− 1

a∗
f (x∗) · hP,x (x∗)

)  gD,x (x∗) · (x0 − x∗)

−
√

2
a∗
· gD,x (x∗) · f (x∗) y

 +O (2) .

(2.92)

By the smoothness of the global Poincaré map Psmooth polynomial approximations of

Psmooth near any arbitrary point x on its domain of definition may be obtained through

the numerical solution of the associated variational equations (to whatever order necessary)

along the trajectory through x until the subsequent intersection with P . In the case of local

analysis in the vicinity of a periodic trajectory of Φ, the natural choice of x is the unique

intersection of the trajectory with P . In contrast, in the case of a quasiperiodic trajectory of

Φ, every neighborhood of a point of intersection with P contains infinitely many additional

points of intersection and no obvious choice of x exists about which a local approximation

should be derived. Possible schemes for making such choices, such as using the nearest point

on the grazing trajectory, need to be balanced against the computational expense associated

with each scheme.

2.5.4 Hybrid Dynamical Systems

In the case of a hybrid dynamical system, suppose, for example, that the j-th segment on a

solution trajectory achieves grazing contact at a point x∗ with an event surface corresponding

to an event function hI, where I ∈ ιj−1 (xj−1 (tj−1)) and fI = fIj
. Then, under suitable

conditions, it is possible to replace the j-th segment and j-th index vector, with two segments

xj′ and xj′′ with index vectors Ij′ and Ij′′ , such that hIj′
= hI,x · fI, hIj′′

= hIj
, fIj′

=

fIj′′
= fIj

, gIj′′
= gIj

and where gIj′
is the discontinuity mapping obtained through the

above construction. A hybrid flow map PΣ may again be constructed, but due to the
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nondifferentiability of gIj′
, the derivative PΣ,x no longer exists. Nevertheless, local analysis

is possible through composition of series expansions as discussed above. An example of this

construction may be found in Zhao et al. [53].

2.6 Local Stability

The stability of a solution trajectory corresponding to a given dynamical system is charac-

terized by the behavior of its neighboring trajectories. In particular, a solution x (t) of a

continuous-in-time dynamical system is said to be stable in the Lyapunov sense on the in-

terval [t0,∞) if for every ε > 0, there exists a δ (ε) > 0, such that any other solution x̃ (t) for

which ‖x (t0)− x̃ (t0)‖ < δ (ε) satisfies ‖x (t)− x̃ (t)‖ < ε for all t ≥ t0. Similarly, a solution

xi of a discrete-in-time dynamical system is said to be stable in the Lyapunov sense on the

interval [k,∞) if for every ε > 0, there exists a δ (ε) > 0, such that any other solution x̃i for

which ‖xk − x̃k‖ < δ (ε) satisfies ‖xi − x̃i‖ < ε for all i ≥ k.

A solution that is not Lyapunov stable is said to be unstable in the Lyapunov sense. On

the other hand, if in addition to being Lyapunov stable,

lim
t→∞

‖x (t)− x̃ (t)‖ = 0 (2.93)

in the case of continuous-in-time dynamics or

lim
i→∞

‖xi − x̃i‖ = 0 (2.94)

in the case of discrete-in-time dynamics, the solution is said to be asymptotically stable in

the Lyapunov sense.

A weaker definition of stability is that of orbital stability (or stability in the Poincaré

sense). The solution x (t) of a continuous-in-time dynamical system is said to be orbitally

stable on the interval [t0,∞) if for every ε > 0, there exists a δ (ε) > 0, such that any other

solution x̃ (t) for which d (x̃ (t0) ,x ([t0,∞))) < δ (ε) satisfies d (x̃ (t) ,x ([t0,∞))) < ε for all
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t ≥ t0. Here, d (y,x ([t0,∞))) denotes the shortest distance between a point y and the

trajectory x (t). Similarly, a solution xi of a discrete-in-time dynamical system is said to be

orbitally stable on the interval [k,∞) if for every ε > 0, there exists a δ (ε) > 0, such that

any other solution x̃i for which d
(
x̃k,x[k,∞)

)
< δ (ε) satisfies d

(
x̃i,x[k,∞)

)
< ε for all i ≥ k.

A solution that is not orbitally stable is said to be orbitally unstable. On the other hand,

if in addition to being orbitally stable,

lim
t→∞

d (x̃ (t) ,x ([t0,∞))) = 0 (2.95)

in the case of continuous-in-time dynamics or

lim
i→∞

d
(
x̃i,x[k,∞)

)
= 0 (2.96)

in the case of discrete-in-time dynamics, the solution is said to be orbitally asymptotically

stable.

2.6.1 Periodic Trajectories

Consider a periodic trajectory of a smooth/hybrid dynamical system with the corresponding

hybrid flow map PΣ. Suppose that x∗ is the corresponding fixed point of PΣ, i.e., PΣ (x∗) =

x∗. Then, the periodic trajectory is orbitally stable if and only if the fixed point x∗ is

stable in the Lyapunov sense for the hybrid flow map. In particular, the fixed point x∗ is

asymptotically stable in the Lyapunov sense if all eigenvalues of PΣ,x (x∗) lie within the unit

circle in the complex plane. In this case, the corresponding periodic trajectory is orbitally

asymptotically stable and said to be a limit cycle. On the other hand, if at least one

eigenvalue of PΣ,x (x∗) lies outside the unit circle, then the fixed point is unstable in the

Lyapunov sense and the periodic trajectory is orbitally unstable.
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2.6.2 Quasiperiodic Trajectories

Consider quasiperiodic trajectory on a k-dimensional invariant torus and suppose that the

trajectory intersects a suitable defined event surface transversely along a k − 1-dimensional

invariant torus of the corresponding Poincaré map P. Then, the quasiperiodic trajectory is

orbitally stable if and only if the k− 1-dimensional invariant torus is orbitally stable for the

Poincaré map P and likewise for orbitally asymptotically stable.

2.6.3 Lyapunov Exponents

Lyapunov Exponents, also known as characteristic exponents, measure the average rate of

local expansion or contraction of the deviation between a reference trajectory and any nearby

trajectories. They are asymptotic quantities and describe the exponential rate at which a

perturbation to a given trajectory of a system grows or decays with time [32]. Lyapunov

exponents can be used to distinguish between a variety of steady state solutions such as

equilibrium points, periodic trajectories, quasiperiodic trajectories, and chaotic motions.

Table 2.1 shows Lyapunov exponents for a variety of orbitally stable steady state trajectories

when the dynamical system is n-dimensional.

Table 2.1: Lyapunov Exponents for a variety of orbitally asymptotically stable steady-state

trajectories [37].

Steady State Flow Lyapunov Exponents Fractal Dimension

Periodic circle

 λ1 = 0

0 > λ2 ≥ ... ≥ λn

 1

K-periodic K-torus

 λ1 = ...λK = 0

0 > λK+1 ≥ ... ≥ λn

 K

Chaotic cantor-like λ1 > 0;
∑

λi < 0 non-integer
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Lyapunov Exponents for Discrete-in-time Dynamical Systems

Denote by xi, i ∈ [k,∞) a reference trajectory of a discrete-in-time dynamical system with

map P, i.e., xi+1 = P (xi). Then, the j-th Lyapunov exponent of the reference trajectory

under iterates of P is defined as

µj = lim
i→∞

∣∣∣λj

((
Pi

)
,x

(xk)
)∣∣∣ 1

i
, (2.97)

where λj

(
(Pi),x (xk)

)
is the j-th eigenvalue of the Jacobian of the i-th iterate of the map

P evaluated at xk, provided the limit exists [37]. In particular, for a fixed point x∗ of P,(
Pi

)
,x

(x∗) = (P,x (x∗))
i (2.98)

and thus

λj

((
Pi

)
,x

(xk)
)

= (λj (P,x (x∗)))
i . (2.99)

It follows that

µj = |λj (P,x (x∗))| . (2.100)

Lyapunov Exponents for Continuous-in-time Dynamical Systems

Denote by x (t), t ∈ [t0,∞) a reference trajectory of a continuous-in-time dynamical system

with flow Φ, i.e., x (t) = Φ (x (t0) , t− t0). Then, the j-th Lyapunov exponent of the reference

trajectory under the flow Φ is defined as

µj = lim
t→∞

ln |λj (Φ,x (x (t0) , t− t0))|
1
t , (2.101)

where λj (Φ,x (x (t0) , t− t0)) is the j-th eigenvalue of the Jacobian of the flow evaluated at

x (t0) and time t, provided the limit exists [37]. In particular, for a periodic trajectory of

period T ,

Φ,x (x (t0) , kT ) = (Φ,x (x (t0) , T ))k (2.102)

and thus

λj (Φ,x (x (t0) , kT )) = (λj (Φ,x (x (t0) , T )))k . (2.103)
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It follows that

µj =
1

T
ln |λj (Φ,x (x (t0) , T ))| . (2.104)

Even though Eq. (2.101) defines the Lyapunov exponents for continuous-in-time dynam-

ical systems, using it to evaluate them in the case of chaotic systems becomes problematic.

In such cases at least one of the Lyapunov exponents is positive, making Φ,x (x (t0) , t− t0)

growing without bound as t → ∞. This will lead to serious numerical problems in the

integration of variational equations [37]. Hence, an alternative procedure to compute all the

Lyapunov exponents using their fundamental definition from Eq.(2.101) is discussed below .

Consider the orthogonal matrix U0 and let

Vk+1 = Φ,x (x (t0) , τ) · Uk, (2.105)

Uk+1 = GS (Vk+1) , (2.106)

where Uk+1 is obtained from Vk+1 through a column-by-column Gram-Schmidt orthogonal-

ization. Let Mk
j be the magnitude of the j-th column of Vk. Then [32],

λj = lim
K→∞

1

Kτ

K∑
k=1

ln Mk
j . (2.107)

Lyapunov Exponents for Hybrid Dynamical Systems

Denote by ξ and Σ a reference trajectory and corresponding signature of a hybrid dynamical

system. Let Σ↑i = {I1, . . . , Ii} be the subset of the first i elements of the signature. Then,

the j-th Lyapunov exponent of the reference trajectory under the hybrid flow map PΣ is

defined as

µj = lim
i→∞

∣∣λj

(
PΣ↑i,x (x1 (t0))

)∣∣ 1
i . (2.108)

An alternative definition in terms of the flows ΦI is given by Eq. (2.101), where for
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t ∈ (tj−1, tj], Φ,x (x (t0) , t− t0) is replaced with

ΦIj ,x

(
gIj−1

(xj−1 (tj−1)) , t− tj−1

)
·

 gIj−1,x (xj−1 (tj−1))

+
(fIj(gIj−1

(xj−1(tj−1)))−gIj−1,x(xj−1(tj−1))·fIj−1
(xj−1(tj−1)))·hIj−1,x(xj−1(tj−1))

hIj−1,x(xj−1(tj−1))·fIj−1
(xj−1(tj−1))


·ΦIj−1,x

(
gIj−2

(xj−2 (tj−2)) , tj−1 − tj−2

)
, (2.109)

for j ≥ 3, with

ΦI2,x (gI1 (x1 (t1)) , t− t1)

·

 gI1,x (x1 (t1))

+
(fI2(gI1

(x1(t1)))−gI1,x(x1(t1))·fI1 (x1(t1)))·hI1,x(x1(t1))

hI1,x(x1(t1))·fI1 (x1(t1))


·ΦI1,x (x1 (t0) , t1 − t0) (2.110)

for j = 2, and by ΦI1,x (x1 (t0) , t− t0) for j = 1 (cf. Müller [30]).

2.7 Bifurcations

Structurally stable features of dynamical systems are those that are expected to persist

on open sets in suitable spaces of vector fields. For example, as is well-known for smooth

systems, conditions of hyperbolicity guarantee the persistence and retained stability char-

acteristics of equilibria or periodic orbits under small variations in system parameters [22].

The loss of structural stability has implications both in terms of model uncertainty as well

as, for example, in detecting and designing against catastrophic system failure [51].

When structural stability is lost on hypersurfaces of one dimension smaller than the di-

mension of the parameter space, one speaks of co-dimension-one bifurcations, namely changes

in system features that can be observed under variations in a single system parameter.

Saddle-node, period-doubling, secondary Hopf etc. are a few examples of co-dimension-one

bifurcations.
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Similarly, co-dimension-two bifurcations are those that would generally occur only under

suitable simultaneous variations of two system parameters. As has been extensively explored

over the past decades [21, 22], the associated co-dimension-two surfaces in parameter space

serve as organizing centers for co-dimension-one bifurcations. Indeed, co-dimension-one

bifurcation surfaces are often found emanating from the co-dimension-two surfaces in ways

that are characteristic of some associated degeneracy at the corresponding point of origin in

parameter space. Degenerate saddle-node and period-doublings and bifurcations involving

cusps are example of these bifurcations.

In hybrid dynamical systems, as discussed in Chapter 1, the presence of a discontinu-

ity surface in the associated state space, e.g., corresponding to the occurrence of impact,

naturally induces a variety of co-dimension-one bifurcations. As was the case for smooth

dynamical systems, a study of co-dimension-two grazing bifurcations would thus be expected

to provide an understanding of the relationship between these different bifurcation scenarios.

It would also lead to insight into the dynamical characteristics of impact oscillators away

from the co-dimension-one grazing bifurcation surfaces.

As shown above, stability of a grazing periodic trajectory when ignoring the effects

of the state function can to lowest-order be determined by the eigenvalues of the matrix

Psmooth,x (x∗). In contrast, as shown by Fredriksson and Nordmark [20], assuming that the

grazing periodic trajectory is asymptotically stable when ignoring the state jump function,

the stability properties of the grazing periodic trajectory in the presence of the state jump

function is determined by the geometry of the sequence of vectors

vn = Pn
smooth,x (x∗) · β, (2.111)

where

β =

(
Id− 1

a∗
f (x∗) · hP,x (x∗)

)
· gD,x (x∗) · f (x∗) . (2.112)

Indeed, necessary conditions for the stability of the grazing periodic trajectory are that the

sequence ξn = hD,x (x∗) ·vn, n = 1, . . . be positive and that this remains true when replacing

Pn
smooth,x (x∗) with any nearby matrix. Here, for small deviations from x∗ in the direction of
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negative values of hD, the discontinuity mapping results in a large stretching in a direction

given by the image of the vector β under the Jacobian Psmooth,x (x∗) . The positiveness of

ξ thus implies that every trajectory that remains in the vicinity of the grazing periodic

trajectory achieves at most one intersection with D in the vicinity of x∗. Therefore, in

parameter space, ξn = 0 points correspond to co-dimension-two bifurcations that dictate the

occurrence of qualitatively different grazing bifurcations.

Along with the co-dimension-two bifurcation points discussed above, impact oscillators

also exhibit two other types of co-dimension-two bifurcations in the case of grazing periodic

orbits. Specifically, if a parameter set corresponding to a grazing contact of a periodic orbit

also happens to be a parameter set at which the same periodic orbit undergoes a saddle-

node bifurcation then that set corresponds to a grazing-fold co-dimension-two bifurcation

point. Similarly, if a parameter set corresponding to a grazing contact of a periodic orbit also

happens to be a parameter set at which the same periodic orbit undergoes a period-doubling

bifurcation then that set corresponds to a grazing-flip co-dimension-two bifurcation point.



Chapter 3

Grazing Bifurcations of

Co-dimension-one Invariant Tori

Note: Parts of this chapter are reprinted from P. Thota and H. Dankowicz, “Continuous

and discontinuous grazing bifurcations in impacting oscillators ”, Physica D 214 187–197

Copyright (2006) and P. Thota and H. Dankowicz, “Analysis of grazing bifurcations of

quasiperiodic system attractors ”, Physica D, 220(2), pp. 163 – 174 Copyright (2006), with

permission from Elsevier.

3.1 Introduction

Bifurcations in dynamical systems characterized by the disappearance of an attractor in the

vicinity of an originally attracting motion under parameter variations are quite frequent in

physical systems. Such qualitative changes are naturally of concern to engineering system

designers since they might lead to steady state solutions far away from the desired motion.

In smooth dynamical systems, examples of such bifurcations are the saddle-node or cyclic-

fold bifurcations as well as subcritical pitchfork, period-doubling, and Hopf bifurcations. In

45
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impact oscillators, such discontinuous changes in system response have been found to be

associated with transitions between nonimpacting and impacting motion via grazing bifur-

cations. While the ‘instability’ associated with such loss of a local attractor is relatively weak

in the smooth case (cf. the slow dynamics near a ghost solution in the saddle-node case or

near the unstable limit cycle following a Neimark-Hopf bifurcation), in the impacting case,

the dynamics are typically rapidly repelled from the neighborhood of the grazing motion.

The purpose of this chapter is to closely examine the conditions under which a local

attractor persists near (not necessarily periodic) grazing trajectories corresponding to co-

dimension-one invariant tori. Two example piecewise smooth dynamical systems are studied

in the vicinity of a parameter value corresponding to grazing contact, establishing the phe-

nomenology associated with grazing bifurcations in impacting systems. A local analysis

based on the discontinuity-mapping approach is employed to derive a normal-form descrip-

tion of the dynamics near the grazing trajectory.

As discussed in Chapter 1, the discontinuity-mapping approach was used by Fredriksson

& Nordmark [20] to establish conditions for the persistence or disappearance of a local

attractor in the vicinity of a grazing periodic trajectory in terms of properties of the vector

field, impact surface, and impact map in the vicinity of the point of grazing contact. However,

no such conditions have been formulated in the past in the case of grazing bifurcations of

quasiperiodic system attractors. One of the main goals of this dissertation is to lay the

foundation for the construction of such conditions in the quasiperiodic case.

Previous studies [20] of grazing periodic trajectories state that the catastrophic loss

of a local attractor and strong instability characteristic of grazing bifurcations are directly

associated with the repeated application of a square-root term that appears to lowest order

in the normal-form expansion for the discontinuity mapping. In this chapter the effect of the

square-root term is studied in a general setting of grazing bifurcations of co-dimension-one

invariant tori. Also, the results obtained from applying the discontinuity-mapping approach

to the two examples are compared with those from direct numerical simulation of the original
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dynamical system.

Note: In Chapters 3 and 4, the normal-form expansion for gP is presented to different

orders of truncation for different dynamical systems. The order to which it is truncated is

based on the analysis performed for each system.

3.2 Grazing Bifurcations of a Co-dimension-one Peri-

odic Attractor

Consider the dynamical system governed by the vector field

f (x) =

 x2

−x1 − x2
(
(x1)

2 − µ
)  , (3.1)

event function hD (x) = d− x1 and jump function

gD (x) =

 x1

−rx2

 , (3.2)

where d, r > 0 and µ are system parameters. In particular, for r = 0.8, d ≈ 2.0086 · · · ,

and µ = µ∗ = 1, numerical integration shows the existence of a point x∗ =
(

d 0
)T

corresponding to the intersection of a periodic trajectory with D0, such that a∗ = d > 0.

Fig. 3.1 shows a grazing periodic trajectory corresponding to µ = µ∗ = 1.

Applying the discontinuity-mapping methodology from the previous chapter to the dy-

namical system discussed in Eq. (3.1) and truncating the expansion at order 3
2
, we have

gP (x) = x∗ +


x− x∗ d− x1 ≥ 0 r2 (x1 − d) + r2

√
2
d
(d2 − µ∗) (2

3
+ r) (x1 − d)

3
2

0

 d− x1 < 0
(3.3)

A notable feature of gP (x) in this case is the absence of a square-root term to lowest

order. As will be seen in the later parts of this dissertation, this feature plays an important
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Figure 3.1: Grazing periodic orbit corresponding to the dynamical system given by Eq. (3.1).

Here, µ = 1 and the discontinuity surface hD (x) = 0 can also be seen as a dotted line at

x1 = d.

role in the dynamics of the impacting motion. Indeed, not only the presence of a square-root

term but also its orientation has serious implications on the stability characteristics of the

ensuing impacting motion.

It follows that, to order 3
2
, the composite Poincaré map corresponding to the Poincaré

section P =
{
x | hP (x)

def
= −x2 = 0

}
is given by

P (x) = x∗ + Psmooth,µ (x∗) (µ− µ∗)

+ Psmooth,x (x∗) ·


x− x∗ d− x1 ≥ 0 r2 (x1 − d) + r2
√

2
d
(d2 − µ∗) (x1 − d)

3
2

0

 d− x1 < 0
,

(3.4)

where

Psmooth,x (x∗) =

 ∗ ∗

0 0

 and Psmooth,µ =

 ∗

0

 (3.5)

and ∗ refers to a nonzero entry.

It follows that, to lowest order, a fixed point xfp-imp =
(
x1

fp, 0
)T

of P(x) corresponding to

an impacting periodic trajectory can be obtained as follows. Since xfp-imp is the fixed point
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of the map P, its first component x1
fp satisfies

x1
fp = x1

∗ + P1
smooth,1 (x∗)

[
r2

(
x1

fp − x1
∗
)]

+ P 1
smooth,µ (x∗) (µ− µ∗) . (3.6)

After algebraic manipulation, we have

x1
fp = d +

P 1
smooth,µ (x∗) (µ− µ∗)

1− r2P1
smooth,1 (x∗) ,

and the fixed point xfp-imp is given by

xfp-imp =

 d +
P 1

smooth,µ(x∗)(µ−µ∗)

1−r2P 1
smooth,1(x∗)

0

 (3.7)

if
P 1

smooth,µ (x∗) (µ− µ∗)

1− r2P 1
smooth,1 (x∗)

> 0. (3.8)

Similarly, a fixed point xfp-nonimp of P(x) corresponding to a nonimpacting periodic

trajectory is given by

xfp-nonimp =

 d +
P 1

smooth,µ(x∗)(µ−µ∗)

1−P 1
smooth,1(x∗)

0

 (3.9)

if
P 1

smooth,µ (x∗) (µ− µ∗)

1− P 1
smooth,1 (x∗)

≤ 0. (3.10)

Here, we see that for a particular value of µ, the expressions
(
1− r2P 1

smooth,1 (x∗)
)

and(
1− P 1

smooth,1 (x∗)
)

must have the same sign for only one of the fixed points (xfp-imp or

xfp-nonimp) to exist. Opposite signs for
(
1− r2P 1

smooth,1 (x∗)
)

and
(
1− P 1

smooth,1 (x∗)
)

indicate

co-existence of impacting and nonimpacting fixed points or absence of both fixed points

marking the grazing bifurcation discontinuous for a particular value of µ.

Hence, a discontinuous bifurcation results when(
1− r2P 1

smooth,1 (x∗)
) (

1− P 1
smooth,1 (x∗)

)
< 0 (3.11)

while (
1− r2P 1

smooth,1 (x∗)
) (

1− P 1
smooth,1 (x∗)

)
> 0 (3.12)
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guarantees a continuous grazing bifurcation. For the numerical example discussed in Section

3.2, we have (
1− r2P 1

smooth,1 (x∗)
) (

1− P 1
smooth,1 (x∗)

)
= 0.9986, (3.13)

As shown in Fig. 3.2, for µ ≈ µ∗, direct numerical integration (left panel) and application of

the composite map (right panel) show the existence of a unique locally attracting periodic

trajectory emanating from and in the immediate vicinity of the grazing periodic trajectory

with negative penetration for µ < µ∗ and positive penetration for µ > µ∗. Indeed, to lowest

order the penetration is a linear function of the deviation µ − µ∗ although a more careful

study shows that the slope is different for µ > µ∗ than for µ < µ∗. Hence, the bifurcation is

in agreement with the definition of a continuous grazing bifurcation.

0
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Figure 3.2: Bifurcation diagrams showing the penetration π (x) as a function of µ − µ∗

obtained using direct numerical simulation of the original dynamical system (left panel) and

the composite Poincaré map truncated at order 3
2

(right panel). Excellent agreement between

the two methods is evident in the figure. Also, note that the slope of the curve for µ > µ∗,

even though not obvious from the figure, is different than that for µ < µ∗.

Linear theory can be applied to study the stability of the fixed points of the impacting

motion given by Eq. (3.7). In order for the impacting motion to be stable, the eigenvalues of

the Jacobian of the composite Poincaré map evaluated at those fixed points must lie within

the unit circle in the complex plane. The Jacobian of the composite Poincaré map, including
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the variations in the parameter µ, has the form

P,x (x∗) =


λ1 ∗ ∗

0 0 0

0 0 1

 (3.14)

where λ1 = 0.000859r2
(
1 +

√
2
d
(d2 − µ∗) (1 + 3r

2
)
(
x1

fp-imp − d
) 1

2

)
is the nontrivial eigen-

value.

Fig. 3.3 shows the variation of λ1 under changes in µ obtained from the composite

Poincaré map (dotted line) and in close agreement with the results of direct numerical

integration (solid line). In particular, we observe a discrete jump in the eigenvalue at µ = µ∗

and a square-root type behavior for µ > µ∗ as follows from the presence of the order 3
2

term

in the composite Poincaré map (Eq. (3.4)).
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Figure 3.3: Nontrivial eigenvalue as a function of µ − µ∗ predicted using direct numerical

simulation of the original dynamical system (solid line) and the composite Poincaré map

truncated at order 3
2

(dotted). The agreement between the two cases is seen to deviate as

µ− µ∗ > 0 increases.

Here, due to the absence of the square-root term the dynamics are governed by a piece-

wise linear map. In such cases the persistence of a local attractor can be analyzed using the

theory of border-collision bifurcations where a fixed point of a linear map crosses a boundary

into a region where the dynamics are governed by another linear map. Hassouneh et al. [23]
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studied such bifurcations and concluded that even when both linear maps have locally as-

ymptotically stable fixed points in their respective regions of validity, the system could have

unbounded solutions at the point where the fixed point grazes the boundary. This occurs

due to the reduction of the basin of attraction corresponding to each of the fixed points to

a single point in state space at the parameter value corresponding to the grazing contact.

3.3 Grazing Bifurcations of a Co-dimension-one Torus

Attractor

As a second example, consider the dynamical system given by the vector field

f (x) =


x2

−x1 − cx2
(
(x1)

2 − 1
)

+ A cos x3

ω

 (3.15)

in terms of the state vector

x =
(

x1 x2 x3

)T

∈ R2 × S1, (3.16)

the event function hD (x) = µ− x1 (and, consequently, hP (x) = −x2), and associated jump

map

gD (x) =


x1

−rx2

x3

 , (3.17)

where c, A, ω, r > 0 and µ are system parameters. In particular, for c = 0.1, A = 0.75,

ω = 1.505, r = 0.8, and µ = µ∗ = 2.4053 · · · , numerical integration shows the existence

of a grazing event at x∗ =
(

2.4053 · · · 0 2.9235 · · ·
)T

corresponding to the tangential

intersection of a quasiperiodic trajectory with D0, such that a∗ = x1
∗ − A cos x3

∗ > 0.

To linear order and with four significant digits, the discontinuity map corresponding to

P = {x | hP (x) = 0} obtained using the methodology from the previous chapter takes the
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form

gP (x) = x∗ +



x− x∗, µ− x1 ≥ 0
−0.3600 (x1 − µ) + (x1 − x1

∗)

0

−2.1628
√

x1 − µ + (x3 − x3
∗)− 0.2689 (x1 − µ)

 , µ− x1 < 0

(3.18)

As shown in Fig. 3.4, the intersection of the quasiperiodic trajectory with P is an invariant

curve Γ given by x1 = γ (x3) for x3 ∈ S1 . For every point x ∈ P in the vicinity of this curve,

define the projection

πΓ (x) =


γ (x3)

0

x3

 . (3.19)

The smooth Poincaré map Psmooth can then be approximated on a neighborhood of Γ by the

following linear approximation

Psmooth (x) = Psmooth (πΓ (x)) + Psmooth,1 (πΓ (x))
(
x1 − γ

(
x3

))
, (3.20)

where

Psmooth,1 (πΓ (x)) =


∗

0

∗

 (3.21)

and ∗ refers to nontrivial entries. For purposes of simulation of the composite Poincaré map

γ, Psmooth (πΓ (x)), and Psmooth,1 (πΓ (x)) are approximated by evaluating these at a finite

subset of points on Γ and subsequently using interpolation to extend these results to the

entire curve Γ.

An example of the predictive power of the approximate composite Poincaré map derived

here can be seen in Figs. 3.5 and 3.6. Also, Fig. 3.7 shows the corresponding Lyapunov

exponents for the bifurcation diagrams shown in Fig. 3.6. Clearly, for larger deviations in

the value of µ away from µ∗, the approximate composite Poincaré map fails to adequately

capture the asymptotic system response, although the predicted bifurcation diagram still
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Figure 3.4: Invariant curve corresponding to the intersection of the trajectories with the

Poincaré section hP = 0 for the system given in Eq. (3.15). The discontinuity surface

hD = 0 is also shown(dotted line).

retains some features of the original system. To lowest-order in the deviation from x∗,

gP (x) − x∗ is tangential to Γ. Moreover, by the invariance of Γ, this property persists

to lowest-order under application of Psmooth. Since the lowest-order term is proportional

to the square-root in the deviation of x from x∗, it follows that the tangential dynamics

in a direction along Γ dominate those in directions away from Γ, for which the dynamics

are to lowest order linear. Under the assumption that a recurrent attractor persists in the

immediate vicinity of the grazing quasiperiodic trajectory under small variations in system

parameter values, it appears reasonable to consider a reduced composite Poincaré map to

describe the tangential dynamics alone.

To this end, consider the composition

x3 7−→ (Psmooth ◦ πΓ ◦ gP)3


γ (x3)

0

x3

 , (3.22)

where the superscript on the right-hand side refers to the third component of the vector-
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Figure 3.5: Bifurcation diagrams based on the P Poincaré section obtained under small

variations in the deviation µ∗−µ using numerical simulation of the original dynamical system

(upper-left panel), iteration of the full composite map (2.80) (upper-right panel), reduced

composite map (3.22) (lower-left panel), and reduced map with parabolic approximation

for Γ near x∗ (3.27) (lower-right panel). Here and in the following graphs, only points of

intersection with the corresponding Poincaré section with positive penetration are shown.

valued map. For x ∈ Γ near x∗, we have

γ
(
x3

)
≈ γ

(
x3
∗
)

+ γ′
(
x3
∗
) (

x3 − x3
∗
)

+
1

2
γ′′

(
x3
∗
) (

x3 − x3
∗
)2

= x1
∗ +

1

2
γ′′

(
x3
∗
) (

x3 − x3
∗
)2

, (3.23)

since γ′ (x3
∗) = 0 follows from the tangential contact of Γ with D. Under the assumption

that γ′′ (x3
∗) < 0,

hD (x) < 0

for x ∈ Γ as long as

x3
∗ −

√
2

µ∗ − µ

|γ′′ (x3
∗)|

≈ x3
min < x3 < x3

max ≈ x3
∗ +

√
2

µ∗ − µ

|γ′′ (x3
∗)|

(3.24)



56

0 0.001
2.84

2.96

¹¤¡¹

x3

0 0.001¹¤¡¹
2.84

2.96

x3

0 0.001¹¤¡¹
2.84

2.96

x3

0 0.001¹¡¹

¼(x)

2.85

2.96

¤

Figure 3.6: Bifurcation diagrams based on the P Poincaré section obtained under variations

in the deviation µ∗−µ using numerical simulation of the original dynamical system (upper-

left panel), and iteration of the full composite map (2.80) (upper-right panel), the reduced

composite map (3.22) (lower-left panel) and reduced map with parabolic approximation for

Γ near x∗ (3.27) (lower-right panel). These graphs compare the accuracy of the different

levels of approximation involved in predicting the impacting dynamics for larger values of

µ∗−µ than Fig. 3.5. It is to be noticed that in the above graphs the full composite Poincaré

map predicts impacting dynamics that match well with numerical simulation of the original

dynamical system.

and µ < µ∗. In this case, substituting Eq. (3.23) into Eq. (3.18) and considering the third

component, we have

(gP)3 (x) = x3
∗ − 2.1628

√
x1 − µ + x3 − x3

∗

= x3 − 2.1628

√
µ∗ +

1

2
γ′′ (x3

∗) (x3 − x3
∗)

2 − µ

= x3 − 2.1628
√

µ∗ − µ

√√√√1− (x3 − x3
∗)

2

2(µ∗−µ)
|γ′′(x3

∗)|

, (3.25)
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Figure 3.7: Nontrivial Lyapunov exponent corresponding to the impacting motion obtained

under variations in the deviation µ∗−µ using numerical simulation of the original dynamical

system (upper-left panel), and iteration of the full composite map (2.80) (upper-right panel),

the reduced composite map (3.22) (lower-left panel) and reduced map with parabolic ap-

proximation for Γ near x∗ (3.27) (lower-right panel). Note that for small values of µ∗−µ the

Lyapunov exponent in all the above graphs oscillates about 0 indicating existence of weakly

chaotic and periodic windows (cf. Fig. 3.6). It is also evident that as the approximation

level increases the weakly chaotic and periodic window behavior persists for larger values of

µ∗ − µ.

whereas gP is the identity for all other x ∈ Γ. Let

f
(
x3

)
= (Psmooth)

3


γ (x3)

0

x3

 . (3.26)

Then, to lowest order the reduced map (3.22) is given by

x3 7−→


f (x3) , x3 /∈ (x3

min, x
3
max)

f

(
x3 − ρ1

√
1− (x3−x3

∗)
2

ρ2
2

)
, x3 ∈ [x3

min, x
3
max]

(3.27)
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where

ρ1 = 2.1628
√

(µ∗ − µ) (3.28)

and

ρ2 =

√
2 (µ∗ − µ)

|γ′′ (x3
∗)|

. (3.29)

For numerical simulation purposes, γ′′ (x3
∗) is approximate by the curvature of a parabola

fitted to Γ in the vicinity of the grazing point x∗.

Fig. 3.8 shows a comparison between the graph of the second iterate of the reduced

composite map (3.22) for two different values of µ∗ − µ and the projection onto the third

component of the second iterate of the full composite Poincaré map (2.80) evaluated for

points on the corresponding system attractor. In both cases, the correction to the graph of

the smooth function f (f (x3)) is localized near x3
∗ and f (x3

∗).

As shown in the upper panel of Fig. 3.9, for the first iterate, the correction to the graph

of the smooth function f (x3) is localized near x3
∗ and the difference,

d
def
= f

x3 − ρ1

√
1− (x3 − x3)2

ρ2
2

− f
(
x3

)
≈ f

(
x3

)
− f ′

(
x3
∗
)
ρ1

√
1− (x3 − x3

∗)
2

ρ2
2

− f
(
x3

)
= −f ′

(
x3
∗
)
ρ1

√
1− (x3 − x3

∗)
2

ρ2
2

(3.30)

for x3 ≈ x3
∗ takes the form of a semi-ellipse with half-height f ′ (x3

∗) ρ1 and half-width ρ2 both

proportional to
√

µ∗ − µ. However, in the case of the second iterate, the correction to the

graph of the smooth function f (f (x3)) is localized near x3
∗ and f (x3

∗) and the difference
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(using Eq.(3.30) and series expansions),

d =f

f

x3 − ρ1

√
1− (x3 − x3

∗)
2

ρ2
2

− f
(
f

(
x3

))

≈ f

f
(
x3

)
− f ′

(
x3
∗
)
ρ1

√
1− (x3 − x3

∗)
2

ρ2
2

− f
(
f

(
x3

))
≈ f

(
f

(
x3

))
− f ′

(
f

(
x3
∗
))

f ′
(
x3
∗
)
ρ1

√
1− (x3 − x3

∗)
2

ρ2
2

− f
(
f

(
x3

))
= −f ′

(
f

(
x3
∗
))

f ′
(
x3
∗
)
ρ1

√
1− (x3 − x3

∗)
2

ρ2
2

(3.31)

for x3 ≈ x3
∗ takes the form of a semi-ellipse, as shown in Fig. 3.9 (right panel), with half-

height f ′ (f (x3
∗)) f ′ (x3

∗) ρ1 and half-width ρ2 both proportional to
√

µ∗ − µ. In the derivation

of the above Eq. (3.31) it is assumed that an application of f to points in the vicinity of the

grazing point results in f(x3) that are far away from grazing and no correction is needed to

apply the Poincaré map to these resulting points.

From the upper panel of Fig. 3.8, it follows that for some critical value of µ∗ − µ,

a tangential intersection occurs between the graph of the reduced composite map and the

identity line, corresponding to the birth of a pair of period-2 orbits of the reduced composite

map in a saddle-node bifurcation. Although the reduced composite map only approximately

captures the near-grazing dynamics (note, e.g., its failure to predict the extra branch of the

correction obtained for µ∗ − µ = 15 × 10−5), it is nevertheless able to provide qualitative

insight into the bifurcation behavior of the original dynamical system (see, e.g., the birth of

a period-2 orbit for µ∗ − µ ≈ 2× 10−4 in Fig. 3.6).

Finally, consider the constant-phase Poincaré section P ′ = {x | x3 = x3
∗}. Then, to linear

order and with four significant digits, the discontinuity map corresponding to P ′ obtained
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Figure 3.8: (Upper panel and blow-ups of regions (a) and (b) in bottom panels) A comparison

between the graph of the second iterate of the reduced map (3.22) (solid curve) for µ∗−µ =

5 × 10−5 and µ∗ − µ = 15 × 10−5 and the projection onto the third component of the

second iterate of the full composite Poincaré map (2.80) (circles) evaluated for points on the

corresponding system attractor.

using the methodology in Chapter 2 takes the form

gP ′ (x) = x∗ +



x− x∗, hD (X0 (x)) ≥ 0
−2.5998 (x1 − µ) −4.5089
√

x1 + 0.1593(x2)2 − µ

+1.2985 (x1 − µ) + x2


0

 , hD (X0 (x)) < 0
(3.32)

Bifurcation diagrams obtained under variations in µ∗ − µ using numerical simulation of the

original dynamical system (left panel) and the composite map (2.81) (right panel) are shown

in Fig. 3.10. This appears to indicate that better fidelity over a larger range of values of µ

is possible using the Poincaré section P ′ than with P .
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Figure 3.9: (Left panel) The difference between f (x3) and the reduced composite map (3.22)

(solid curve) on a neighborhood of x3
∗ compared with an ellipse (dotted) centered at x3

∗ with

half-height f ′ (x3
∗) ρ1 and half-width ρ2, where ρ1 and ρ2 are given by (3.28) and (3.29) as

predicted by (3.30). Similarly, in the right panel the difference between f (f (x3)) and the

second iterate of the reduced map on a neighborhood of x3
∗ is shown. Here, f ′ (x3

∗) ≈ 5.0164

and f ′ (f (x3
∗)) ≈ 0.2013.

The intersection of the grazing quasiperiodic trajectory with P ′ is a closed invari-

ant curve Γ′, shown in Fig. 3.11 (left panel), parameterized in a one-to-one fashion by(
x1 x2

)T

= γ (t) for t ∈ [−π, π). For every point x ∈ P ′ in the vicinity of this curve,

define the projection π′Γ′ (x) from x to some point on Γ′, for example the closest point in

some chosen metric. The smooth Poincaré map P′
smooth can then be approximated on a

neighborhood of Γ′ by the following linear approximation

P′
smooth (x) = P′

smooth (π′Γ′ (x)) + P′
smooth,x (π′Γ′ (x)) · (x− π′Γ′ (x)) . (3.33)

For purposes of simulation of the composite Poincaré map, γ, P′
smooth (π′Γ′ (x)), and

P′
smooth,x (π′Γ′ (x)) are approximated by evaluating these at a finite subset of points on Γ′ and

subsequently using interpolation to extend these results to the entire curve Γ′.

We may again consider the reduction to a reduced composite Poincaré map as per the
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Figure 3.10: The figure shows the bifurcation diagram based on the P ′ Poincaré section using

numerical simulation of the original dynamical system (left panel) and the full composite

map (2.81) (right panel). The map based on the P ′ Poincaré section appears to reproduce

the actual bifurcation scenario over a larger interval in µ∗ − µ than that based on P .

expression

t 7−→ γ−1 ◦P′
smooth ◦ π′Γ′ ◦ gP ′


γ1 (t)

γ2 (t)

x3
∗

 (3.34)

since, to lowest-order in the deviation from x∗, gP ′ (x)−x∗ is tangential to Γ′. In particular,

suppose that the parameterization is chosen such that γ2 (t) = t near x∗ and let

π′Γ′ (x) =


γ1 (x2)

x2

x3
∗

 (3.35)

for x ≈ x∗. Then, for t near 0, we have

γ (t) ≈

 x1
∗ + t2

2
γ̈1 (0)

t

 , (3.36)

since γ̇1 (0) = 0 follows from the tangential contact of Γ′ with D and where γ̈1 (0) < 0.

Moreover, for µ . µ∗, hD (X0 (Γ′)) ≈ µ − x1 − α
2

(x2)
2

< 0 where 0 < α < − γ̈1 (0) (cf. the

right panel of Fig. 3.11) for

−
√

2
µ∗ − µ

|γ̈1 (0) + α|
≈ tmin < t < tmax ≈

√
2

µ∗ − µ

|γ̈1 (0) + α|
. (3.37)
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Figure 3.11: The intersection of the grazing quasiperiodic system attractor with the P ′

section (left panel). Zero-level sets of hD and hD′ for µ∗ − µ ≈ 1× 10−3 (right panel).

Let

f (t) = γ−1 ◦P′
smooth


γ1 (t)

γ2 (t)

x3
∗

 . (3.38)

Then, to lowest order the reduced map is given by

t 7−→

 f (t) , t /∈ (tmin, tmax)

f
(
t− ρ1

√
1− t2

ρ2
2

)
, t ∈ (tmin, tmax)

(3.39)

where

ρ1 = 4.5089
√

(µ∗ − µ) (3.40)

and

ρ2 =

√
2 (µ∗ − µ)

|γ′′ (0) + α|
. (3.41)

Again, in the first return map the correction takes the form of an ellipse with half-height

f ′ (0) ρ1 and half-width ρ2. Indeed, the analysis in Dankowicz et al. [9, 10] arrived at precisely

these conclusions through a heuristic argument and without the a priori introduction of gP ′ .

Fig. 3.12 shows a comparison between the graph of the third iterate of the reduced

composite map (3.34) for two different values of µ and the projection onto the third com-

ponent of the third iterate of the full composite Poincaré map (2.81) evaluated for points
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on the corresponding system attractor. Similar conclusions as those discussed in the case of

the reduced composite map (3.22) can again be drawn. Indeed, as shown in the lower right

panel of Fig. 3.6, the reduced composite map appears to capture the projected dynamics

with high accuracy even though it apparently fails to predict the extra branch that appears

for µ∗ − µ = 15× 10−5 (cf. right panel of Fig. 3.12).
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Figure 3.12: A comparison between the graph of the third iterate of the reduced map (solid)

for µ∗−µ = 5 ∗ 10−5 and µ∗−µ = 15 ∗ 10−5 and the projection onto the third component of

the third iterate of the full composite Poincaré map (2.81) (circles) evaluated for points on

the corresponding system attractor using arc-length parameterization (left panel). Blow-up

(right panel) of the boxed part in the left panel.

For small values of µ∗−µ, the impacting attractor is weakly chaotic in the sense described

by Dankowicz et al. [9], i.e, the impacting motion is largely torus-covering and the largest

Lyapunov exponent is positive, but small (∼ 0.02). The analysis presented in Dankowicz et

al. [9] using a heuristic reduced composite map also predicts the presence of strong chaos

(localized attractor with largest Lyapunov exponent distinctly positive) for µ∗ − µ ≈ 0.025.

Fig. 3.13 shows the intersection of the system attractor obtained using direct numerical

simulation of the original differential equations, iteration of the full composite Poincaré map

(2.81), and iteration of the reduced composite map (3.34). It is clear that, although the

reduced map is able to capture the coarse structure of the attractor, it predicts an infinitely

thin attractor. In contrast, the full composite map is able to resolve the attractor into several

distinct branches as shown in the magnified insets.
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Figure 3.13: A comparison between the graph of the third iterate using direct numerical

simulation (upper-left panel), full composite mapping (upper-right panel) and the reduced

map (lower-left panel) for µ∗ − µ = 0.025 and evaluated for points on the corresponding

impacting chaotic system attractor. The corresponding third iterate of the full composite

map (lower-right panel) shows the intersection with the identity line (dashed).

In the case of a quasiperiodic motion on a co-dimension-one invariant torus, the stretch-

ing caused by the square-root term remains, to lowest order, tangential to the torus for all

forward iterates of the Poincaré map. Moreover, the number of iterates required to return

to a small neighborhood of the grazing point goes to infinity as the size of the neighborhood

shrinks. Thus, assuming that the invariant torus is normally attracting in the absence of

impacts, the destabilizing effects of impacts are expected to be dominated by the stabilizing

effects of the linearized dynamics in the transverse directions to the torus. This argues for

the persistence of a near-grazing attractor that limits on the grazing quasiperiodic trajectory

as the system parameters approach their values at grazing.

As will be seen in the next chapter, in the case of co-dimension-two (or higher) quasi-

periodic attractors, the square-root term is typically no longer tangential to the invariant
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torus. Even in this case, however, the stabilizing effects of the linear dynamics away from the

torus are expected to result in the persistence of a local attractor, at least for some nonzero

deviation from the grazing bifurcation point.

3.4 Summary

This chapter illustrated grazing bifurcation scenarios in the case of co-dimension-one invari-

ant tori. In particular, grazing bifurcations of a periodic trajectory in a two-dimensional

state space and a quasiperiodic trajectory in a three-dimensional state space were studied.

Moreover, the effects of the square-root term originating in the local description of the im-

pacting dynamics on such bifurcations was discussed. A rigorous application of the full

discontinuity-mapping approach to an originally quasiperiodic attractor has been achieved.

The illustrations presented in this chapter also manifest a general phenomenon in the study

of impacting dynamics of co-dimension-one invariant tori.

The local description of impacting dynamics in the case of a periodic trajectory in a two-

dimensional state space is to lowest order linear in the deviation from the grazing trajectory.

This implies that the instabilities caused by the singular nature of the square-root term

are absent possibly leading to a continuous grazing bifurcation. In the example discussed,

the approximate expressions for the fixed points corresponding to the nonimpacting and

impacting periodic trajectories form the basis for a criterion that dictates whether the graz-

ing bifurcation is continuous or discontinuous. Using the discontinuity-mapping approach,

eigenvalues corresponding to the impacting periodic trajectory are also computed that are

in good agreement with the ones obtained from the numerical simulation of the original

dynamical system. The presence of an order 3
2

term in the local description of the impacting

dynamics induces a square-root type behavior in the eigenvalues for positive deviations away

from the grazing incidence. Even though the transition from nonimpacting to impacting mo-

tion with a change of parameter is, in the sense mentioned earlier, continuous in nature, the
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eigenvalues experience a discrete jump during the transition via a grazing contact. However,

the absolute values of the eigenvalues immediately before and after the jump are bounded

above unlike more drastic cases that will be discussed in the next chapter.

The impacting dynamics of an originally co-dimension-one quasiperiodic attractor fol-

lowing a grazing incidence are more complicated than its periodic counterpart because of

the presence of a square-root term in the composite Poincaré map. However, its presence

in the dynamics only in the tangential direction to the torus facilitates an unrestricted local

bifurcation analysis of the post-grazing dynamics in the vicinity of the grazing contact. Here,

under the assumption that the grazing quasiperiodic trajectory is stable, it can be concluded

that the smooth dynamics stabilize the trajectory for sufficiently small perturbations away

from the grazing point.

Bifurcation diagrams obtained using various levels of approximations of the composite

Poincaré map suggest a continuous transition from nonimpacting to impacting motion mark-

ing the grazing bifurcation continuous for the given system parameters. Windows of weakly

chaotic and periodic motion are present for small, positive deviations from the parameter

corresponding to the grazing contact followed by periodic motion for larger deviations. This

behavior is supported with the computation of the nontrivial Lyapunov exponent for each

case. It is also shown that the correction to the return map describing the smooth dynamics,

due to the presence of discontinuities takes the form of a semi-ellipse whose semi-major and

semi-minor axes can be accurately computed from conditions at the grazing contact.



Chapter 4

Grazing Bifurcations of

Co-dimension-two Invariant Tori

Note: Parts of this chapter are reprinted from P. Thota, H. Dankowicz, “Analysis of graz-

ing bifurcations of quasiperiodic system attractors ”, Physica D, 220(2), pp. 163 – 174

Copyright (2006), with permission from Elsevier.

4.1 Introduction

The purpose of this chapter is to formulate and closely examine the conditions under which

a local attractor persists near (not necessarily periodic) grazing trajectories corresponding

to co-dimension-two invariant tori. Two example piecewise smooth dynamical systems, a

periodic trajectory in a three-dimensional state space and a two-frequency quasiperiodic

trajectory in a four-dimensional state space, are employed in an effort to formulate such

conditions. In both cases, as was done in the previous chapter, a local analysis based

on the discontinuity-mapping approach is employed to derive a normal-form description

of the dynamics near a grazing trajectory. Also, the results obtained from applying the

68
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discontinuity-mapping approach to the two examples are compared with those from direct

numerical simulation of the original dynamical system.

This chapter presents the application of the discontinuity-mapping approach to the study

of near-grazing bifurcations of originally quasiperiodic, co-dimension-two system attractors.

It also establishes an exact formulation for the discontinuity-mapping methodology under the

assumption that a Poincaré section can be found that is everywhere transversal to the grazing

attractor. Even though the implementation of the Poincaré section P ′ was an alternative

approach (at least in the example studied) in the analysis of grazing bifurcations of co-

dimension-one quasiperiodic system attractors, it becomes mandatory in certain cases of co-

dimension-two quasiperiodic attractors. Similar to the co-dimension-one quasiperiodic case,

the accuracy of the reduced maps corresponding to the application of projection methods to

the composite Poincaré map is studied.

Once again, the qualitative changes in the system dynamics that occur due to the onset

of an impacting motion from a nonimpacting one are studied from the perspective of the loss

of a local attractor. Such dramatic changes whose origin lies in the presence and orientation

of a square-root term in the normal-form for the impacting motion near a grazing contact are

emphasized in the analysis presented here. Particularly, the direction of application of such

instabilities becomes more prominent and influential in co-dimension-two or higher system

attractors. The results obtained are extrapolated to understand grazing bifurcations of a

general class of co-dimension-two system attractors.
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4.2 Grazing Bifurcations of a Co-dimension-two Peri-

odic Attractor

Consider the dynamical system governed by the vector field ([38] and [31])

f (x) =


mx1 − x2 − x1x3

mx2 + x1

−x3 + (x2)
2
+ (x1)

2
x3

 , (4.1)

event function hD (x) = x1 − µ (and, consequently, hP (x) = mx1 − x2 − x1x3) and state

jump function

gD (x) =


x1

(m− x3) x1 − r (x2 − x1 (m− x3))

x3

 , (4.2)

where m, r > 0 and µ are system parameters. In particular, for r = 0.8, m = 0.28, and

µ = µ∗ = −0.7981 · · · , numerical integration shows the existence of a point

x∗ =
(
−0.7981 · · · 0.2747 · · · 0.6242 · · ·

)T

(4.3)

corresponding to the intersection of a periodic trajectory (Refer to Fig. 4.1-left panel) with

D0, such that a∗ > 0. Similarly, for r = 0.8, m = 0.39, and µ = µ∗ = −0.8271 · · · , numerical

integration shows the existence of a point

x∗ =
(
−0.8271 · · · −0.0722 · · · 0.3026 · · ·

)T

(4.4)

corresponding to the intersection of a periodic trajectory (Refer to Fig. 4.1-right panel) with

D0.

Using the discontinuity-mapping methodology discussed in Chapter 2, to lowest order,

the discontinuity mapping takes the form

D (x) = x∗ +



x− x∗ x1 − µ ≥ 0
0

0.3961
√

µ− x1

0.4962
√

µ− x1

 x1 − µ < 0
(4.5)
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Figure 4.1: Grazing periodic orbits projected on to the x1 − x2 plane for m = 0.28 (left

panel) and m = 0.39 (right panel) corresponding to the vector field given in Eq. (4.1). In

both cases, a projection of the discontinuity surface hD = 0 is also shown in the figure

when r = 0.8 and m = 0.28 and

D (x) = x∗ +



x− x∗ x1 − µ ≥ 0
0

0.2153
√

µ− x1

0.2603
√

µ− x1

 x1 − µ < 0
(4.6)

when r = 0.8 and m = 0.39.

As shown in the left panel of Fig. 4.2, for m = 0.28 direct numerical integration

shows the existence of a unique locally attracting periodic trajectory emanating from and

in the immediate vicinity of the grazing periodic trajectory with negative penetration for

µ < µ∗. Indeed, as seen in the right panel, for small deviations this behavior is captured

by the composite Poincaré map. However, for µ > µ∗, there does not exists a periodic

trajectory emanating from and in the immediate vicinity of the grazing trajectory. Instead,

the system dynamics experience a distinct jump to an impacting periodic trajectory with

a penetration that remains distinct from zero as µ → µ∗. Indeed, the periodic impacting

trajectory that appears for µ & µ∗ also persists for µ . µ∗, such that an impacting and a

nonimpacting periodic attractor coexist for some interval prior to the initial grazing contact

of the nonimpacting trajectory. The figure also shows that the impacting periodic attractor
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Figure 4.2: Bifurcation diagrams showing the penetration π (x) as a function of µ − µ∗ for

nonimpacting and impacting motions when m = 0.28 obtained using numerical simulations

of the original dynamical system (left panel). Right panel compares the unstable impacting

orbit obtained using numerical simulation of the original dynamical system (dotted) and the

composite Poincaré map (solid). It is evident that the accuracy of the prediction obtained

using the composite Poincaré map deteriorates for as (µ−µ∗) increases from 0. Here, SN in

the left panel denotes a saddle-node bifurcation.

that exists for µ . µ∗ disappears in a saddle node bifurcation. Since, in this case, there does

not exist a one-parameter family of system attractors emanating from the grazing trajectory,

we refer to this transition from nonimpacting to impacting motions as a discontinuous grazing

bifurcation.

In contrast, a continuous grazing bifurcation occurs for m = 0.39, µ∗ = −0.8271 · · · and

r = 0.8 as shown in Figs. 4.3 and 4.4. In this case, for µ > µ∗, there exists an impacting tra-

jectory emanating from and in the immediate vicinity of the grazing trajectory making the

bifurcation continuous. Also, a reverse period-adding scenario, one of the signatures of graz-

ing bifurcations, is seen in the figures. Here, as one approaches the parameter corresponding

to the grazing contact from the impacting side, the periodicity of the impacting motion in-

creases monotonically leading to an infinite period orbit at grazing. Figs. 4.3 and 4.4 also

show bifurcation diagrams obtained for m = 0.39 using an approximation of the composite

Poincaré map that agrees both qualitatively and quantitatively with that obtained through
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Figure 4.3: Bifurcation diagrams showing the penetration π (x) as a function of µ − µ∗ for

nonimpacting and impacting motions when m = 0.39 obtained using numerical simulation

of the original dynamical system (left panel) and composite Poincaré map (right panel).

direct numerical integration.

Using definition (2.7), it is observed that ξ1 = −0.02306... < 0 for m = 0.28 resulting in a

discontinuous bifurcation. In contrast, when m = 0.39, ξn is positive for n < 100 suggesting a

continuous grazing bifurcation. These observations are confirmed by the bifurcation diagrams

shown in Figs. 4.2 and 4.3. These qualitatively different grazing bifurcations are related by

a co-dimension-two grazing bifurcation point for which ξ1 = 0. A comprehensive study of co-

dimension-two grazing bifurcation points in single-degree-of-freedom, linear and nonlinear,

impact oscillators have been documented by Thota et al. [45], and Dankowicz & Zhao [7].
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Figure 4.4: Bifurcation diagrams showing the penetration π (x) as a function of µ − µ∗ for

nonimpacting and impacting motions when m = 0.39 obtained using numerical simulation

of the original dynamical system (left panel) and composite Poincaré map (right panel) for

smaller deviations than shown in Fig. 4.3. Here, higher periodic orbits with one impact

per period are observed that are not present for larger deviations. Indeed, for much smaller

deviations than those presented in this figure, periodic orbits with periodicity > 5 can be

obtained.

4.3 Grazing Bifurcations of a Co-dimension-two Torus

Attractor

As a second example, consider the dynamical system corresponding to the vector field (a

forced version of the vector field studied in the previous section)

f (x) =


mx1 − x2 − x1x3

mx2 + x1 + A cos x4

−x3 + (x2)
2
+ (x1)

2
x3

ω

 (4.7)

in terms of the state vector

x =
(

x1 x2 x3 x4

)T

∈ R3 × S1, (4.8)
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the event function hD (x) = x1 − µ (and, consequently, hP (x) = mx1 − x2 − x1x3), and

associated event map

gD (x) =


x1

(m− x3) x1 − r (x2 − x1 (m− x3))

x3

x4

 , (4.9)

where r, m, A, ω > 0 and µ are system parameters. When ignoring the effects of the event

map gD, the asymptotic response of this dynamical system exhibits periodic, quasiperiodic,

and chaotic motions for different values of A. As an example, Fig. 4.5 (left panel) shows the

largest Lyapunov exponent of the system under variations in the value of A for r = 0.8, m =

0.28, ω = 1.9. In particular, for A ∈ (1, 1.252), the dynamical system exhibits quasiperiodic

motion with two incommensurate frequencies and for values of A greater than 1.252, the

system dynamics change to a periodic motion with period-1.
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Figure 4.5: Left panel - The largest Lyapunov exponent as a function of A. Right panel

- Projection of the invariant curve (intersection of the quasiperiodic trajectory with the

Poincaré section hP = 0) and the discontinuity surface on to a lower dimensional space.

Here, A = 1.1 and ω = 1.9.

In particular, for r = 0.8, m = 0.28, A = 1.1, ω = 1.9, and µ = µ∗ = −0.7297 · · · ,

numerical integration shows the existence of a grazing event at
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x∗ =
(
−0.7297 · · · 0.3633 · · · 0.7779 · · · 3.0088 · · ·

)T

(4.10)

corresponding to the tangential intersection of a quasiperiodic trajectory with D0, such

that a∗ > 0. To lowest order and with four significant digits, the discontinuity mapping

corresponding to P takes the form

gP (x) = x∗ +



x− x∗, x1 − µ ≥ 0
0

0.3457
√

µ− x1

0.4738
√

µ− x1

−3.8858
√

µ− x1

 , x1 − µ < 0
(4.11)

As shown in Fig. 4.5(right panel), the intersection of the quasiperiodic trajectory with P is

an invariant curve Γ given by (x1, x2, x3)
T

= γ (x4) for x4 ∈ S1 . For every point x ∈ P in

the vicinity of this curve, we again define the projection

πΓ (x) =

 γ (x4)

x4

 (4.12)

and approximate the smooth Poincaré map Psmooth on a neighborhood of Γ by the linear

approximation

Psmooth (x) = Psmooth (πΓ (x)) + Psmooth,x (πΓ (x)) (x− πΓ (x)) . (4.13)

The expressions for gP (x) and Psmooth (x) are combined to obtain a composite Poincaré

map. Again, the Poincaré map Psmooth (x) is evaluated at finite number of points on the

invariant curve Γ and then interpolated to the entire curve.

Fig. 4.6 shows the bifurcation behavior under variations in µ− µ∗ obtained using direct

numerical simulation (left panel) and iterations of the full composite map (2.80) (right panel).

It is evident that the discontinuity-mapping approach captures both the qualitative and

quantitative features of the impacting dynamics accurately even for larger deviations. Also,
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Figure 4.6: Bifurcation diagram generated using direct numerical integration of the vec-

tor field for A = 1.1 (left panel) [46] and iterations of composite map obtained using the

discontinuity-mapping approach (right panel).

Fig. 4.7 shows the nontrivial Lyapunov exponent corresponding to the bifurcation diagrams

discussed in Fig. 4.6.

Following the methodology in the previous chapter, it is again possible to derive a

reduced composite map that attempts to capture the tangential dynamics along the attractor,

provided that the attractor is closely approximated by the original invariant curve. Fig. 4.8

shows a comparison between the graph of the first return map for the impacting quasiperiodic

system using direct numerical simulation and the corresponding reduced composite map. It

is evident that the reduced map fails to predict the qualitative behavior of the impacting

system even for smaller penetrations. The reason for the failure can be explained using the

geometry of the original system attractor and the form of the discontinuity mapping gP . In

contrast to the case of the forced van-der-Pol oscillator studied in the previous chapter, the

higher co-dimension of the grazing attractor and the presence of square-root terms in gP

that is transversal to Γ implies that the tangential dynamics no longer dominate the normal

dynamics and the latter cannot be neglected.

Whereas the bifurcation behavior observed in the above case is continuous in the sense

that a local attractor persists near Γ for relatively large deviations of µ from µ∗, this is no
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Figure 4.7: Nontrivial Lyapunov exponent corresponding to the impacting motion for A =

1.1 obtained using direct numerical integration of the original dynamical system (left panel)

and composite Poincaré map (right panel). These graphs are in good agreement with the

bifurcation diagrams shown in Fig. 4.6 i.e., the nontrivial Lyapunov exponent oscillates

between positive and negative values corresponding to the periodic and chaotic windows.

Note that the positive value obtained by the nontrivial Lyapunov exponent is << 1 indicating

a weakly chaotic behavior.

longer the case for A = 1.25 and µ∗ = −0.4940 · · · , for which a grazing event occurs at

x∗ =
(
−0.4940 · · · 0.0946 · · · 0.4716 · · · 3.2188 · · ·

)T

(4.14)

corresponding to the tangential intersection of a two-frequency quasiperiodic trajectory with

D0. To lowest order and with four significant digits, the discontinuity-mapping corresponding

to P takes the form

gP (x) = x∗ +



x− x∗, x1 − µ ≥ 0
0

0.3519
√

µ− x1

0.7123
√

µ− x1

−3.8947
√

µ− x1

 , x1 − µ < 0
(4.15)

In this case a jump occurs from a local chaotic attractor to a distant periodic orbit for

µ − µ∗ ≈ 3.7 × 10−5, as shown in Fig. 4.9 (left panel) (cf. Fig. 4.10). Although the
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Figure 4.8: A comparison between the graph of the first iterate of the reduced map (solid)

for µ − µ∗ = 15 ∗ 10−5 and the projection onto the fourth component of the full composite

Poincaré map (2.80) (circles) evaluated for points on the corresponding system attractor (left

panel). Blow-up (right panel) of the boxed part in the left panel.

composite Poincaré map is able to predict this loss of a local attractor, it is unable to capture

the resultant periodic motion as this occurs far away from the grazing event. This effectively

discontinuous bifurcation scenario resembles the grazing bifurcation scenario obtained for the

periodic orbit found for A = 1.253 and possibly originates in the closeness of the quasiperiodic

attractor to this periodic orbit (the quasiperiodic attractor is born in a Hopf bifurcation near

A ≈ 1.252). Moreover, the expressions for the discontinuity mappings given by Eq. (4.15)

and Eq. (4.11) for A = 1.25 and A = 1.1 are similar to each other in terms of their numerical

and stretching characteristics eliminating the possibility of the orientation of the square-root

term as a cause for the qualitatively different impacting motion in the two cases (A = 1.1

and A = 1.25).

Fig. 4.11 shows the fractal nature of the attractor obtained using the full composite

Poincaré map for A = 1.25 and µ − µ∗ = 2 × 10−5. The correlation dimension [41] for this

chaotic attractor has also been calculated as ≈ 1.2 using 12500 points. This attractor is

weakly chaotic in the sense described by Dankowicz et al. [9] i.e, torus-covering with largest

Lyapunov exponent positive but very small (<< 1).

Now consider the case when r = 0.8, m = 0.28, A = 1.5, ω = 4, and µ = µ∗ =
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Figure 4.9: Bifurcation diagram obtained under variations in µ− µ∗ using direct numerical

simulation (left panel)for A = 1.25. The right panel shows the nontrivial Lyapunov exponent

corresponding to the bifurcation behavior in the left panel.

−0.8548 · · · , for which numerical integration shows the existence of a grazing event at

x∗ =
(
−0.8548 · · · 0.2897 · · · 0.6189 · · · 2.9317 · · ·

)T

(4.16)

corresponding to the tangential intersection of a quasiperiodic trajectory with D0. As shown

in the left panel of Fig. 4.12, the intersection of the system attractor with P is a discontin-

uous curve with terminal points corresponding to non-transversal intersections with P . In

contrast, the right panel of Fig. 4.12 shows a closed invariant curve Γ′ corresponding to the

intersection of the system attractor with P ′ = {x | x4 = x4
∗}.

To lowest order and with four significant digits, the discontinuity mapping corresponding

to P ′ takes the form

gP ′ (x) = x∗ +



x− x∗ hD (X0 (x)) ≥ 0
0

−3.7499
√

µ− x1

0

0

 hD (X0 (x)) < 0
(4.17)

Fig. 4.13 shows the bifurcation behavior under variations in µ− µ∗ obtained using direct

numerical simulation (left panel) and iterations of the composite map (2.81) (right panel).



81

0 3.75¹¡¹
¤

¼(x)

2.75

-0.25

x10-5

x10-5
0 3.75¹¡¹

¤

¼(x)

2.75

-0.25

x10-5

x10-5

Figure 4.10: Comparison of the bifurcation behavior obtained under variations in µ − µ∗

using direct numerical simulation (left panel) and iteration of the full composite map (right

panel) for A = 1.25. Note that the composite map predicts a diverging response for µ− µ∗

beyond the right edge of the diagram in qualitative agreement with the disappearance of a

local attractor shown in the left panel.

An interesting feature of the discontinuity mapping given by Eq. (4.17), corresponding to

the Poincaré section P ′, is that the stretching resulting from the square-root term is present

only along the x2 component of the state vector making the dynamics seemingly simple and

yet, retaining the complexity of the impacting motion in all its characteristics.

4.4 On Square-root Instability

The lowest nontrivial term in the expansion of gP in the deviation of x from x∗ is of the

form

β
√
−hD,x (x∗) • (x− x∗), (4.18)

where β is given by the Eq. (2.112). Since

hP,x (x∗) • f (x∗) = a∗, hD,x (x∗) • f (x∗) = 0, (4.19)

and since gD,x (x∗) maps vectors tangential to D to vectors tangential to D, it follows that

hP,x (x∗) • β = 0, (4.20)
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Figure 4.11: The intersection of the system attractor with P obtained using the full composite

Poincaré map for A = 1.25 and µ−µ∗ = 2×10−5. The fractal nature of the chaotic attractor

is evident in this figure.

and

hD,x (x∗) • β = 0, (4.21)

i.e., β is tangential to P ∩ D = D0. In particular, in a two-dimensional state space, it

follows that β = 0. Similarly, in the case of grazing contact of a co-dimension-one invariant

quasiperiodic torus with a discontinuity surface, it follows that β is tangential to the torus

at the point of grazing contact, whereas this need not be the case for co-dimension-two or

higher tori.

The presence of the square-root term results in a significant stretching P (x)−P (x∗) of

a small initial deviation x− x∗. This stretching occurs in the direction given by the image of

the vector β under the Jacobian Psmooth,x (x∗) of the smooth Poincare map. The accumulated

effect of such stretching over subsequent iterations is likely to result in the disappearance of

a local attractor in the immediate vicinity of the grazing attractor for µ > µ∗.

For a periodic grazing trajectory, such that P (x∗) = x∗, a necessary condition for a
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Figure 4.12: Intersection of the grazing quasiperiodic attractor with P (left panel) and P ′

(right panel) for A = 1.5 and ω = 4.

continuous grazing bifurcation as long as β 6= 0 have been formulated by Fredriksson &

Nordmark [20]. In particular, they argue that a family of local attractors emanating from

and in the immediate vicinity of the grazing trajectory and parameterized by µ exists if

and only if there is no upper bound on the number of iterates between impacts on any

neighborhood of the grazing trajectory as µ → µ∗ and the map P (x) is smooth about the

point x∗. In particular, for a periodic trajectory, the number of iterates between impacts

when µ = µ∗ is given by the smallest integer n for which

ξn
def
= hD,x (x∗) •Psmooth,x (x∗) • · · · •Psmooth,x (x∗)︸ ︷︷ ︸

n times

• β < 0. (4.22)

If, instead, β = 0, e.g., in the case of a grazing periodic trajectory in a two-dimensional

state space, then the lowest-order term in the expansion of P for x ≈ x∗ is linear in x− x∗.

The persistence of a local attractor can then be deduced from a study of a piecewise linear

map and the bifurcations associated with such a grazing trajectory fall into the class of

border-collision bifurcations [23, 36, 50].

For a grazing quasiperiodic orbit on a co-dimension-one invariant torus, the invariance of

the torus under Psmooth implies that all forward images of β under the Jacobian of Psmooth

will remain tangential to the torus. Thus, the stretching of trajectories that occurs due

to the square-root term will be restricted to directions parallel to the surface of the torus,
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Figure 4.13: Bifurcation diagram generated using direct numerical integration of the vector

field for A = 1.5 and ω = 4 (left panel) and iterations of full composite map obtained using

the discontinuity-mapping approach (right panel).

while the dynamics in a direction normal to the toral surface are governed by an expansion

that is linear to lowest order. In contrast, in the case of grazing contact of a co-dimension-

two-or-higher invariant torus with a discontinuity surface, significant stretching in a direction

normal to the toral surface may result from successive applications of the composite Poincaré

map.

Further related to the co-dimensionality of the quasiperiodic grazing attractor is the

possibility of deriving a reduced map. As discussed here, while the reduced formulation

appears successful in the co-dimension-one case, it typically fails for co-dimension-two or

higher cases. Again, this is a result of the existence of the square-root in the dynamics

transversal to the grazing attractor.

4.5 Summary

This chapter illustrated grazing bifurcation scenarios in the case of co-dimension-two invari-

ant tori. In particular, grazing bifurcations of a periodic trajectory in a three-dimensional

state space and a two-frequency quasiperiodic trajectory in a four-dimensional state space
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have been analyzed using numerical integration of the vector field corresponding to the dy-

namical system and the discontinuity-mapping approach. The effects of the square-root

term originating in the local description of the impacting dynamics on such bifurcations

have been studied using these two example piecewise-smooth dynamical systems. Also, a

rigorous application of the full discontinuity-mapping approach to a co-dimension-two qua-

siperiodic attractor resulted in a comprehensive understanding of the grazing bifurcations of

quasiperiodic system attractors.

Even though grazing bifurcations of co-dimension-two periodic orbits have been exten-

sively studied in the past by several researchers, this dissertation emphasizes the effects of

the presence and orientation of the square-root term on such bifurcations. In this case the

square-root term is present in the directions normal to the periodic attractor resulting in

discontinuous grazing bifurcations for certain parameter values, for example, for m = 0.28

in the example. The attracting grazing periodic orbit loses stability at the grazing contact

and the ensuing motion is an impacting orbit far away in state space from the original at-

tracting motion. However, for m = 0.39 a continuous grazing bifurcation occurs in which the

impacting orbit emanating from the grazing contact is close to the original periodic orbit.

Also, an inverse period-adding sequence, a typical characteristic of grazing bifurcations, is

seen for this case. Since the values of ξ1 evaluated in the two cases have opposite signs,

these two qualitatively different co-dimension-one grazing bifurcations are separated by a

co-dimension-two grazing bifurcation point.

In the case of a co-dimension-two periodic trajectory, typically, the square-root stretching

is also present in transversal directions. However, in those directions the smooth dynamics

that are attracting in nature are to the lowest order linear allowing the dominance of the

instability effects of stretching in the case of multiple impacts. An accumulation of the insta-

bility takes place because a finite number of iterates between two impacts cannot stabilize the

instability created by the previous impact leading to the loss of the local attractor. However,

it is possible that the trajectory might attain at most one impact and all the subsequent

iterates fall into the nonimpacting region leading to a continuous grazing bifurcation.
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In the case of co-dimension-two quasiperiodic system attractor a continuous grazing

bifurcation was observed for A = 1.1 in the example and the bifurcation diagram shows

the existence of sequence of periodic and chaotic windows. These results are also supported

by the computation of Lyapunov exponents using both numerical simulation of the original

dynamical system and the composite Poincaré map. However, for A = 1.25 a seemingly

discontinuous grazing bifurcation has been observed where the impacting motion jumps to a

period-2 periodic orbit with one impact per period for a small, but positive deviation from

grazing. Also, it is shown that, while a reduced formulation may be employed successfully in

the case of co-dimension-one attractors, it fails to capture dynamics in directions transversal

to the original quasiperiodic attractor in the co-dimension-two case. Additionally, for A = 1.5

and ω = 4, the intersection of the quasiperiodic attractor with the Poincaré section based

at P is a discontinuous curve resulting in the mandatory use of the Poincaré section based

at P ′. The good agreement between the bifurcation diagrams validates the accuracy of the

discontinuity-mapping based at P ′.

In summary, unlike co-dimension-one system attractors, co-dimension-two or higher at-

tractors can experience discontinuous grazing bifurcations owing to the orientation of the

square-root term in their transversal directions. However, in the case of co-dimension-two

or higher quasiperiodic attractors the discontinuous jump is delayed past the grazing con-

tact. Also, the failure of the reduced formulation necessitates the full machinery of the

discontinuity-mapping approach in the analysis of grazing bifurcations of co-dimension-two

or higher quasiperiodic attractors.

A note of numerical nature: In Chapters 3 and 4, the data plotted as the intersections

of system attractors with P or P ′ represents the intersections of incoming trajectories of

the smooth flow with P or P ′, accounting for possible impacts only after collecting such

points of intersection. This allows a straightforward comparison with the data predicted

with the composite Poincaré map since this method of collecting data agrees with its con-

struction. Secondly, continuation of impacting periodic orbits poses a solvable problem when
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the Poincaré section is a zero level surface of a nonlinear scalar function. In this case the

corrected initial condition obtained from the Newton-Raphson algorithm might no longer

belong to the Poincaré section resulting in delayed convergence or no convergence at all.

As a remedy to this setback, the system is integrated forward or backwards in time until

the trajectory reaches the Poincaré section and the point of intersection is then used as the

initial condition in solving the variational equations.



Chapter 5

TC-HAT (T̂C) – A Continuation

Toolbox for the Analysis of Hybrid

Dynamical Systems

The study of hybrid dynamical systems is mostly confined to numerical investigations involv-

ing direct numerical integration of the differential equations governing the dynamical system

or the maps that model them. Such numerical schemes based on the time evolution or for-

ward iterates of a system can only locate stable orbits. They fail to give any information

about unstable orbits or the bifurcations that would lead to such. Moreover, hybrid dynam-

ical systems are inherently nonlinear (even in the case of linear vector fields) and an effort to

obtain approximate solutions typically results in enormous algebraic complexity. Therefore,

there is a need for continuation methods, widely employed in the bifurcation analysis of

smooth dynamical systems, to be developed and implemented for a comprehensive study of

bifurcations in hybrid dynamical systems.

tc-hat (t̂c) is a Fortran-based software application which is able to perform partial bi-

furcation analysis of hybrid dynamical systems, e.g., vibro-impact oscillators with or without

friction. In this regard, t̂c supersedes and improves (and, in some cases, corrects) the func-

88
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tionality of the existing software application slidecont [11], developed by Yuri Kuznetsov

and Fabio Dercole for the study of hybrid dynamical systems with sliding dynamics but no

state-space jumps. t̂c functions as a driver to a modified version of auto 97, a Fortran-

based software application for the bifurcation analysis of smooth dynamical systems. In

particular, t̂c exploits auto 97’s generalized Boundary Value Problem formulation to lo-

cate and continue trajectories of hybrid dynamical systems and their associated bifurcation

points under variations in system parameters.

5.1 Mathematical Foundation

Recall the following definition of a hybrid dynamical system and associated trajectories from

Chapter 2. Specifically, a hybrid dynamical system assumes the existence of a state space

X of dimension n and an associated vector-valued function fI : X → X known as the

vector field, parameterized by an index vector I in some finite set F. To each value of the

index vector I associate a smooth event function hI : X → R and a smooth state jump

function gI : X → X. Then, a solution to the corresponding dynamical system is a sequence

{xj : (tj−1, tj] → X}m
j=1 of m smooth curves and an associated sequence {Ij}m

j=1, such that

I (t) = Ij, t ∈ (tj−1, tj] (5.1)

and

1. The corresponding tangent vector at xj (t) equals fIj
(xj (t)), i.e., in the case of X = Rn

d

dt
xj (t) = fIj

(xj (t)) . (5.2)

2. The j-th segment terminates at an intersection with the event surface{
x | hIj

(x) = 0, hIj ,x (x) · fIj
(x) ≤ 0

}
, (5.3)

i.e.,

hIj
(xj (tj)) = 0. (5.4)
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3. The connectivity between the j-th and j + 1-th segments is given by the function gIj
,

i.e.,

gIj
(xj (tj)) = lim

t→tj+
xj+1 (t) . (5.5)

The sequence Σ = {Ij}m
j=1 of values of the index vector is called the solution’s signature.

Here, we allow for the possibility of infinite solution sequences and the replacement of m by

∞.

5.1.1 Problem Formulations

The General Boundary-Value Problem

The general boundary-value problem formulation in t̂c can then be formulated as the task

of finding a trajectory of a hybrid dynamical system with a prescribed signature satisfying

the auxiliary boundary conditions

g

(
lim

t→t0+
x1 (t) ,xm (tm)

)
= 0 (5.6)

for some function g and any number of additional equations (typically generalized integral

equations) corresponding to the introduction of free system parameters.

Periodic Trajectories

Consider the task of finding a periodic trajectory of a hybrid dynamical system with a

prescribed signature with a length m base unit. Then, the auxiliary boundary condition

corresponds to the connectivity condition

lim
t→t0+

x1 (t)− gIm (xm (tm)) = 0. (5.7)
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Grazing Trajectories and Bifurcation Points

Alternatively, consider the task of finding a trajectory of a hybrid dynamical system with a

prescribed signature in the presence of a single free parameter, such that

hD (xj (tj)) = 0 (5.8)

for some j. In particular, suppose that, for some value of the free parameter, a trajectory has

been found that achieves approximate grazing contact at a point x∗ with an event surface

D corresponding to the event function hD, such that (without loss of generality)

hP,x (x∗) · fIj
(x∗) (5.9)

is distinctly negative, where

hP (x) = hD,x (x) · fIj
(x) . (5.10)

Then replace the j-th segment and j-th index vector, with two segments xj′ and xj′′ with

index vectors Ij′ and Ij′′ , such that hIj′
= hP , hIj′′

= hIj
, fIj′

= fIj′′
= fIj

, gIj′′
= gIj

and gIj′

is the identity. Then, the above problem formulation serves to locate the parameter value

and the trajectory corresponding to actual grazing contact.

Saddle-node Bifurcation Points

Alternatively, consider the task of finding a periodic trajectory of a hybrid dynamical sys-

tem with a prescribed signature with a length m base unit Σ in the presence of two free

parameters, such that

gIm,x (xm (tm)) ·PΣ,x

(
lim

t→t0+
x1 (t)

)
(5.11)

has an eigenvector corresponding to the eigenvalue 1.

For this purpose, consider the augmented hybrid dynamical system with state space

X̃ = X ×X and an associated vector field f̃I : X̃ → X̃ parameterized by the original index
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vector I, where

f̃I (x̃) =

 fI (u)

fI,x (u) · v

 , x̃ =

 u

v

 . (5.12)

Moreover, let h̃I (x̃) = hI (u) and

g̃Ij
(x̃) =

 gIj
(u)

gIj ,x (u) ·
(
Id− fIj (u)·hIj ,x(u)

hIj ,x(u)·fIj (u)

)
· v

 . (5.13)

The task of finding a periodic trajectory of the original hybrid dynamical system with the

desired property can then be formulated as the task of finding a trajectory of the augmented

hybrid dynamical system with the identical signature satisfying the auxiliary boundary con-

ditions

lim
t→t0+

u1 (t)− gIm (um (tm)) = 0, (5.14)

lim
t→t0+

v1 (t)− gIm,x (um (tm)) ·
(

Id− fIm (um (tm)) · hIm,x (um (tm))

hIm,x (um (tm)) · fIm (um (tm))

)
· vm (tm) = 0 (5.15)

and the integral condition
m∑

j=1

∫ tj

tj−1

‖vj (t)‖2 dt = 1. (5.16)

Period-doubling Bifurcation Points

Finally, consider the task of finding a periodic trajectory of a hybrid dynamical system with

a prescribed signature in the presence of two free parameters, such that

gIm,x (xm (tm)) ·PΣ,x

(
lim

t→t0+
x1 (t)

)
(5.17)

has an eigenvector corresponding to the eigenvalue −1.

For this purpose, consider the augmented hybrid dynamical system with state space

X̃ = X ×X and an associated vector field f̃I : X̃ → X̃ parameterized by the original index

vector I, where

f̃I (x̃) =

 fI (u)

fI,x (u) · v

 , x̃ =

 u

v

 . (5.18)
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Moreover, let h̃I (x̃) = hI (x) and

g̃Ij
(x̃) =

 gIj
(u)

gIj ,x (u) ·
(
Id− fIj (u)·hIj ,x(u)

hIj ,x(u)·fIj (u)

)
· v

 . (5.19)

The task of finding a periodic trajectory of the original hybrid dynamical system with the

desired property can then be formulated as the task of finding a trajectory of the augmented

hybrid dynamical system with the identical signature satisfying the auxiliary boundary con-

ditions

lim
t→t0+

u1 (t)− gIm (um (tm)) = 0, (5.20)

lim
t→t0+

v1 (t) + gIm,x (um (tm)) ·
(

Id− fIm (um (tm)) · hIm,x (um (tm))

hIm,x (um (tm)) · fIm (um (tm))

)
· vm (tm) = 0 (5.21)

and the integral condition
m∑

j=1

∫ tj

tj−1

‖vj (t)‖2 dt = 1. (5.22)

5.1.2 Solving Boundary-Value-Problems (BVP’s) using Colloca-

tion Methods

Collocation methods in general and piecewise polynomial collocation methods in particular

provide an accurate and highly adaptive procedure to compute solutions of boundary value

problems involving differential equations. In this method, approximants of the form of piece-

wise polynomials of some predetermined order are sought that satisfy the given differential

equation at a discrete set of points in the interval of definition, the collocation points. The

robustness of this method has made it an indisputable candidate in solving some of the

difficult problems in differential equations.

Specifically, consider the differential equation

dx

dt
= f (x) (5.23)
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for some vector field f and denote by x (t) a solution on the interval [0, T ] for some T >

0. In an effort to discretize the problem of determining x (t) given appropriate boundary

conditions, introduce the partition

0 = t0 < t1/m < · · · < t1 < t1+1/m < · · · < t2 < · · · < tN = T (5.24)

for some integers N and m and let

∆j = tj − tj−1 (5.25)

for j = 1, . . . , N (cf. Fig. 5.1).

0=t0 t1 t2 tN=1tjtj¡1

x(tj)

x(tj     -1)

x(t2)
x(t1)

x(t0)

x(tN)

tjtj¡1 tj¡2/3 tj¡1/3

m=3

zj,1 zj,2 zj,3
tjtj¡1

Figure 5.1: Mesh intervals corresponding to a solution trajectory. The extended mesh inter-

vals tj−2/3 and tj−1/3 and the collocation points zj,i are also shown in the figure.

On each interval [tj−1, tj], define the Lagrange polynomials

lj,i(t) =
m∏

k=0,k 6=i

t− tj−k/m

tj−i/m − tj−k/m

(5.26)

for i = 0, . . . ,m and j = 1, . . . , N (see Fig. 5.2 for the Lagrange polynomials in the case of

m = 3). In particular, lj,i
(
tj−i/m

)
= 1 and lj,i

(
tj−k/m

)
= 0 for k 6= i. Then, the piecewise
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polynomial function p (t) such that

p (t) =
m∑

i=0

lj,i(t)x
(
tj−i/m

)
(5.27)

for t ∈ [tj−1, tj], interpolates the unknown function x (t) at the points x
(
tj−i/m

)
for j =

1, . . . , N, i = 0, . . . ,m.

1

lj;0

tj
tj¡1

tj¡2/3 tj¡1/3

lj;1

1

;

tj
tj¡1

tj¡2/3

tj¡1/3

lj;2

1

tj
tj¡1

tj¡2/3

tj¡1/3

lj;3

1

tj
tj¡1

tj¡2/3

tj¡1/3

Figure 5.2: Lagrange basis polynomials corresponding to the mesh [tj−1, tj].

Now, consider the m-th order Legendre polynomial on the interval [0, 1] and denote its

roots by zi, i = 1, . . . ,m. For each interval [tj−1, tj], define zi,j as

zi,j = tj−1 + zi∆j. (5.28)

Then, an approximation to the solution to the original differential equation is obtained by

seeking the n (mN + 1) discrete values of the components of the unknown function x (t) at

tj−i/m for j = 1, . . . , N, i = 1, . . . ,m and tN so that the piecewise polynomial function p (t)

satisfies the system of nmN equations

p′ (zj,i)− f (p (zj,i)) = 0 (5.29)

for j = 1, . . . , N and i = 1, . . . ,m and the associated n boundary conditions.

Denote by x0 an initial guess for the vector consisting of the concatenation of the un-

known discretization values x
(
tj−i/m

)
. Then an improved estimate for the solution vector x
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may be obtained by the addition of a correction ∆x, where

J (x0) ·∆x = −F (x0) (5.30)

corresponding to a Newton-Raphson-based iteration. Here, F (x0) is the vector of residuals

of the set of equations and J (x0) is the Jacobian matrix of the equations with respect to x

evaluated at the point x0. The inversion of the linear equation for ∆x may be conveniently

obtained using Gauss elimination. The process is then iterated until the residual vector F

is within the required tolerance limits.

Single-segment Trajectories

Suppose, for simplicity, that n = m = N = 2. In this case,

p (t) =

 l1,0 (t)x0 + l1,1 (t)x1/2 + l1,2 (t)x1 t ∈ [t0, t1]

l2,0 (t)x1 + l2,1 (t)x3/2 + l2,2 (t)x2 t ∈ [t1, t2]
, (5.31)

where x0, x1/2, x1, x3/2, and x2 are the unknown values of the approximant at t = t0, t = t1/2,

t = t1, t = t3/2, and t = t2, respectively. Let

αj,i,k = l′j,i (tj−1 + zk∆j) (5.32)

and

βj,i,k = lj,i (tj−1 + zk∆j) (5.33)

for j = 1, 2, i = 0, 1, 2, and k = 1, 2. Then, the discretized differential equations become

α0,0,1x0 + α0,1,1x1/2 + α0,2,1x1 − f
(
β0,0,1x0 + β0,1,1x1/2 + β0,2,1x1

)
= 0, (5.34)

α0,0,2x0 + α0,1,2x1/2 + α0,2,2x1 − f
(
β0,0,2x0 + β0,1,2x1/2 + β0,2,2x1

)
= 0, (5.35)

α1,0,1x1 + α1,1,1x3/2 + α1,2,1x2 − f
(
β1,0,1x1 + β1,1,1x3/2 + β1,2,1x2

)
= 0, (5.36)

α1,0,2x1 + α1,1,2x3/2 + α1,2,2x2 − f
(
β1,0,2x1 + β1,1,2x3/2 + β1,2,2x2

)
= 0. (5.37)
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The Jacobian matrix of the above equations w.r.t. the unknowns x0, x1/2, x1, x3/2, and

x2 has the form (in the matrix below Ij,i,k = αj,i,kId)
I0,0,1 − β0,0,1f,x, I0,1,1 − β0,1,1f,x I0,2,1 − β0,2,1f,x 0 0

I0,0,2 − β0,0,2f,x I0,1,2 − β0,1,2f,x I0,2,2 − β0,2,2f,x 0 0

0 0 I1,0,1 − β1,0,1f,x I1,1,1 − β1,1,1f,x I1,2,1 − β1,2,1f,x

0 0 I1,0,2 − β1,0,2f,x I1,1,2 − β1,1,2f,x I1,2,2 − β1,2,2f,x


(5.38)

Here, f,x is a 2 x 2 matrix corresponding to the Jacobian matrix of the vector field f with

respect to its argument and 0 is 2 x 2 zero matrix. In its expanded form, the Jacobian

matrix is a 8 x 10 matrix of the form

A =



a11 a12 a13 a14 a15 a16 0 0 0 0

a21 a22 a23 a24 a25 a26 0 0 0 0

a31 a32 a33 a34 a35 a36 0 0 0 0

a41 a42 a43 a44 a45 a46 0 0 0 0

0 0 0 0 a55 a56 a57 a58 a59 a510

0 0 0 0 a65 a66 a67 a68 a69 a610

0 0 0 0 a75 a76 a77 a78 a79 a710

0 0 0 0 a85 a86 a87 a88 a89 a810



(5.39)

Here, for each non-zero block, the first two and the last two columns correspond to the mesh

points x0, x1, and x2 and the intermediate columns correspond to the points x1/2 and x3/2.

Denote by Ai the i-th row of A and consider the following sequence of parallel steps of Gauss
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elimination.

B3 = A3 + A1

(
− a24 a33 − a23a34

−a14a23 + a13a24

)
+ A2

(
−a14 a33 − a13a34

a14a23 − a13a24

)
(5.40)

B4 = A4 + A1

(
− a24 a43 − a23a44

−a14a23 + a13a24

)
+ A2

(
−a14 a43 − a13a44

a14a23 − a13a24

)
(5.41)

B2 = A2a13 + A1 (−a23) (5.42)

B7 = A7 + A5

(
− a68 a77 − a67a78

−a58a67 + a57a68

)
+ A6

(
−a58 a77 − a57a78

a58a67 − a57a68

)
(5.43)

B8 = A8 + A5

(
− a68 a87 − a67a88

−a58a67 + a57a68

)
+ A6

(
−a58 a87 − a57a88

a58a67 − a57a68

)
(5.44)

B6 = A6a57 + A1 (−a67) (5.45)

The resultant reduced matrix now takes the form

B =



b11 b12 b13 b14 b15 b16 0 0 0 0

b21 b22 0 b24 b25 b26 0 0 0 0

b31 b32 0 0 b35 b36 0 0 0 0

b41 b42 0 0 b45 b46 0 0 0 0

0 0 0 0 b55 b56 b57 b58 b59 b510

0 0 0 0 b65 b66 0 b68 b69 b610

0 0 0 0 b75 b76 0 0 b79 b710

0 0 0 0 b85 b86 0 0 b89 b810



. (5.46)

By a similar set of row-reduction operations, we arrive at a matrix of the form

C =



c11 c12 c13 c14 c15 c16 0 0 0 0

c21 c22 0 c24 c25 c26 0 0 0 0

c31 c32 0 0 c35 c36 0 0 0 0

c41 c42 0 0 0 c46 0 0 0 0

0 0 0 0 c55 c56 c57 c58 c59 c510

0 0 0 0 c65 c66 0 c68 c69 c610

c71 c72 0 0 0 0 0 0 c79 c710

c81 c82 0 0 0 0 0 0 c89 c810



(5.47)



99

The two block matrices P0 =

 c71 c72

c81 c82

 and P1 =

 c79 c710

c89 c810

 relate the variations

in the terminal point x2 to the initial point x0 of the solution trajectory. Specifically, when

evaluated on the converged solution, P0 and P1 satisfy

P0 ·∆x0 + P1 ·∆x2 = 0 (5.48)

which implies that

∆x2 = − (P1)
−1 · P0 ·∆x0 (5.49)

Hence, the matrix − (P1)
−1 ·P0 gives the lowest-order relationship between perturbations in

the initial point x0 and deviations in the corresponding terminal point x2.

Multisegment Trajectories

In the case of multisegment trajectories in hybrid dynamical systems, each segment may be

treated independently from every other segment when formulating the piecewise polynomial

approximant and the associated discretized differential equations. The connectivity between

subsequent segments enters the boundary-value problem formulation through the boundary

conditions. It follows that the sequence of Gauss elimination operations described previously

can be applied for each segment independently of each other segment. Thus the Jacobian

ΦIj ,x

(
limt→tj−1+ xj (t) , tj − tj−1

)
of the flow function that describes the sensitivity of the

terminal point xj (tj) of the j-th segment to changes in the initial point limt→tj−1+ xj (t) may

be obtained from the corresponding product − (P1)
−1 · P0.

In the t̂c implementation, the differential equations corresponding to individual seg-

ments are all combined to a single set of differential equations in an augmented solution

vector consisting of each of the solutions to the individual equations. Moreover, the time

variable is rescaled for each segment, so that the initial and terminal points correspond to

t = 0 and t = 1, respectively. Now discretization of the solution vector is achieved by a

partition of the time interval that is identical for each of the segments.



100

Consider, for example, the case of a two-segment trajectory in two dimensions and let

m = N = 2. Then, the Jacobian of the augmented boundary value problem (not including

any boundary or integral conditions) has the form shown in Fig. 5.3. Following a series of

x0
x1/2 x1

x3/2 x2

Figure 5.3: Jacobian corresponding to the linearized boundary value problem of a two-

segment hybrid dynamical system. Here, any non-zero entry is represented as a black or a

grey dot. Moreover, the black dots correspond to one segment and the grey dots corresponds

to the other.

parallel row operations, the Jacobian matrix shown in Fig. 5.3 transforms into a matrix as

shown in Fig. 5.4. The block diagonal matrices P1 and P0 again relate the variations in the

terminal point x2 to the initial point x0 of the solution trajectory independently for each

segment.

In the standard implementation of auto 97, the Lyapunov stability properties of a

periodic orbit are determined through a computation of the eigenvalues of the Jacobian

Φ,x (x0, T ), where x0 is a point on the periodic orbit and T is the period. Whereas slide-

cont ([11]) relies on a multisegment formulation similar to that described for t̂c it fails to

accurately account for the corrections to the flow Jacobian shown in Eqs. (2.109-2.110). In

contrast, t̂c ships with a modified version of auto 97 that includes these corrections and,

consequently, is able to accurately characterize the linearized stability properties of periodic

trajectories of hybrid dynamical systems.
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x0
x1/2 x1

x3/2 x2

P0 P1

Figure 5.4: The matrix obtained from the matrix in Fig. 5.3 after a set of parallel operations

corresponding to Gauss elimination.

5.1.3 Pseudo-Arclength Continuation

Given a boundary-value problem formulation, continuation methods serve to locate and

trace the solution under variations in a system parameter. A variety of continuation pro-

cedures such as sequential continuation [26], Davidenko-Newton-Raphson continuation [12],

arclength continuation etc. are available in the literature. The pseudo-arclength continu-

ation scheme, proposed by Keller [24, 25], is a widely used method in the continuation of

periodic trajectories of dynamical systems under parameter changes. (Refer [32] for detailed

explanation of the Arclength and the Pseudo-arclength continuation procedures.)

Specifically, denote by F (x, µ) = 0 a discretized version of the boundary-value problem

parametrized by a vector of system parameters µ. Suppose that a solution x∗ has been found

for some choice of values µ∗ of the vector of system parameters. Suppose, moreover that the

nullspace of the matrix (
F,x (x∗, µ∗) F,µ (x∗, µ∗)

)
(5.50)

is one-dimensional and spanned by the vector

τ =

 tx

tµ

 . (5.51)
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It follows that x = x∗, µ = µ∗, and λ = 0 is a solution to the equation

F̃ (x, µ, λ)
def
=

 F (x, µ)(
x− x∗ µ− µ∗

)
· τ − λ

 =

 0

0

 . (5.52)

and that

F̃(x,µ) (x∗, µ∗, 0) =

 F,x (x∗, µ∗) F,µ (x∗, µ∗)

tx tµ

 (5.53)

is invertible. By the implicit function theorem, it follows that for every λ ≈ 0, there exists

a unique fixed point x (λ) ≈ x (0) = x∗ corresponding to the value µ (λ) ≈ µ (0) = µ∗ of the

vector of system parameters.

During continuation, a Newton-Raphson-based iterative scheme may now be applied to

the tangent predictor

x (λ) ≈ x∗ + λtx (5.54)

µ (λ) ≈ µ∗ + λtµ (5.55)

so as to locate the actual solution along a normal direction to τ . This methodology, which

guarantees the successful continuation of solutions near singular points such as saddle-node

bifurcations, is implemented in auto 97 to continue equilibria and periodic solutions under

parameter changes.

5.2 T̂C Functions

t̂c facilitates bifurcation analysis of periodic trajectories in hybrid dynamical systems. t̂c

can perform the following specific tasks:

1. Continue a multisegment periodic trajectory of a hybrid dynamical system with a given

signature under single-parameter variations while characterizing its Lyapunov stability

and detecting saddle-node and period-doubling bifurcations as well as grazing incidence

of a trajectory segment with a given event surface.
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2. Continue multisegment periodic trajectories of a hybrid dynamical system with grazing

incidence under two-parameter variations while detecting co-dimension-two grazing

bifurcations.

3. Continue multisegment periodic trajectories of a hybrid dynamical system correspond-

ing to saddle-node or period-doubling bifurcation points under two-parameter varia-

tions.

t̂c resembles in its fundamental structure the implementation of slidecont. Of the

three main continuation tasks of t̂c outlined above, however, slidecont is only able to

partially perform task 1 and 2. In particular, slidecont is not able to handle nontrivial

state jump functions or characterize the Lyapunov stability of periodic trajectories.

5.2.1 Single-parameter Continuation

In order to perform the first task corresponding to the single-parameter continuation of a

multisegment periodic trajectory of a hybrid dynamical system, the user must supply three

text files1, gc.<name>,<name>.f, <name>.dat. Specifically, the gc.<name> file contains

a set of numerical flags and parameter values that govern the continuation process. A

description of these constants is given below.

1. GCNDIM - Dimension corresponding to each segment

2. GCIPS - t̂c problem type to be solved

3. GCIRS - Label for the starting solution

4. ILP - Flag for the detection of saddle-node bifurcations

5. GCNICP - Number of continuation parameters

1Here, <name> corresponds to the user-specified name of a file.



104

6. GCICP - Vector containing the continuation parameters

7. NTST - Number of mesh intervals for each segment

8. NCOL - Number of collocation points for each interval

9. IAD - Flag to control the mesh adaptation

10. ISP - Flag to control the detection of bifurcation points

11. ISW - Flag to control the branch switching at bifurcation points

12. IPLT - Flag to control the definition of the solution measure

13. NBC - Number of boundary conditions specified by the user

14. NINT - Number of integral conditions specified by the user

15. NMX - Maximum number of steps in the principal continuation parameter

16. RL0 - Lower bound on the principal continuation parameter

17. RL1 - Upper bound on the principal continuation parameter

18. A0 - Lower bound on the principal solution measure

19. A1 - Upper bound on the principal solution measure

20. NPR - Flag to control the printing the output to fort.8 (p.<name>) file

21. MXBF - Flag to control the maximum number of bifurcations for algebraic problems

22. IID - Flag to control the printing the output to fort.9 (p.<name>) file

23. ITMX - Maximum number of iterations allowed in the location of bifurcation points

24. ITNW - Maximum number of combined Newton-Chord iterations
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25. NWTN - Number of iterations after which the Jacobian freezes and the remaining

iterations correspond to the Chord method

26. JAC - Flag indicates whether the user supplies the derivatives or not

27. EPSL - Relative convergence criterion for parameters

28. EPSU - Relative convergence criterion for solution components

29. EPSS - Relative convergence criterion for the detection of special points

30. DS - Initial pseudo-arclength step size

31. DSMIN - Minimum allowable absolute value of the pseudo-arclength of the step size

32. DSMAX - Maximum allowable absolute value of the pseudo-arclength of the step size

33. IADS - Controls the frequency of step-size adaptation

34. NTHL - Number of continuation parameters whose influence in the calculation of the

step-size is to be modified

35. ITHL - Vector containing the parameters corresponding to NTHL

36. NTHU - Number of state variables whose influence in the calculation of the step-size

is to be modified

37. ITHL - Vector containing the states corresponding to NTHU

38. NUZR - Number of values of the principal continuation parameter at which output is

desired in the file fort.8 (q.<name>)

39. IUZR - Vector containing the parameter values corresponding to NUZR

40. GCIDIFF - Number indicating the order to which the derivatives are supplied for the

continuation process (Recommended value is 1)
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41. GCNPSI - Number of test functions to be monitored during the continuation

42. GCIPSI - Vector containing the test functions corresponding to GCNPSI

43. GCNFIXED - Dummy constant

44. GCIFIXED - Dummy constant

45. GCNOSEG - Number of segments for a given periodic trajectory of a hybrid dynamical

system

46. GCSEGTY - Signature of the periodic trajectory defined by GCNOSEG number of

segments

47. GCHNO - Vector of length GCNOSEG containing information about the number of

event functions to be monitored for each segments. For example, GCHNO(1) is the

number of event functions to be monitored for 1-st segment, GCHNO(2) is the number

of event functions to be monitored for 2-nd segment and so on.

48. GCHGRZIND - Vector of length GCHNO(1)+GCHNO(2)+· · ·+GCHNO(GCNOSEG)

that contains the index-vector information for the event functions to be monitored. The

first GCHNO(1) components of GCHGRZIND correspond to the 1-st segment, the next

GCHNO(2) components correspond to the 2-nd segment and so on.

The user-specified file <name>.f contains the vector fields fI, the event functions hI, and

the state jump functions gI and their first and second derivatives w.r.t. state variables and

parameters. In addition, user-specific test functions may be included for monitoring during

continuation, for example, event functions described in GCHGRZIND with which grazing

incidence should be detected.

The <name>.dat file contains the time evolution of the state variables for one complete

time period of the periodic trajectory. This file is used when the starting solution for the
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continuation is provided by the user. Example gc.<name>, <name>.f and <name>.dat

files are shown in the appendix.

The <fort>.7 (p.<name>) output file contains the bifurcation diagram. Its format is

the same as the output on the screen during a continuation. The <fort>.8 (q.<name>)

output file contains graphical information of the periodic orbits printed at regular intervals

that are dictated by the constant NPR. Also, data in this file is labeled so that it can be

used to restart a new continuation without specifying another <name>.dat file.

The output file <fort>.9 (d.<name>) contains the information about the convergence

and Floquet multipliers for a given continuation process. It also contains the index informa-

tion when a segment of a periodic trajectory attains a grazing contact with an event surface.

Using the constant of continuation IID, the reduced Jacobian for the boundary-value problem

can be written to the d.<name> file.

The problem type “180” is used for single-parameter continuation of periodic trajectories

of hybrid dynamical systems. The principal parameter along with the time periods (PAR(61),

PAR(62), · · · ) for each segment of the periodic trajectory are listed as the continuation

parameters in the gc.<name> file. This file also contains the signature of the periodic

trajectory. The constant ISW is set to “1”.

In certain cases of single-parameter continuation of periodic trajectories of hybrid dy-

namical systems, the information in the q.<name> file from a previous continuation cannot

be used directly as the starting solution. Specifically, if the new continuation of a periodic

trajectory consists of an extra segment than the previous continuation whose q.<name> file

is used to obtain the initial solution, then a modification is required to the labeled data.

Here, the data corresponding to the label from which the continuation is desired is extracted

manually and modified according to the signature of the periodic trajectory of the new

continuation and supplied to the program in a <name>.dat file.

During a single-parameter continuation, the periodic trajectory might undergo stabil-

ity changes due to saddle-node and period-doubling bifurcations. Stability changes in the
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trajectory can also occur due to grazing bifurcation, i.e., when one of its segments attains

a grazing contact with an event surface corresponding to the zero-level surface of an event

function. A loci of these bifurcation points can be obtained via two-parameter continuations.

5.2.2 Two-parameter Continuation

As in the case of single-parameter continuation, all the three text files (gc.<name>,<name>.f,

<name>.dat.) must also be provided in the case of two-parameter continuation (tasks 2 and

3). Here, two parameters are specified instead of one along with the time period for each

segment as the continuation parameters. The value of the constant IRS is set to the la-

bel corresponding to the saddle-node, period-doubling or (in certain special cases) grazing

bifurcation point.

Moreover, in the case of locating the loci of saddle-node and period-doubling bifurcations,

the value of the constant ISW is set to “2”. The signature is set to be same as the one used

for the corresponding single-parameter continuation from which the initial solution for the

two-parameter continuation is extracted and the same problem type “180” is used.

In the case of locating a loci of grazing bifurcations in two-parameters, the procedure

described in one of the previous sections of this chapter may need to be employed. Ac-

cordingly, the number of segments and the corresponding signature of the grazing periodic

trajectory is changed and the value of the constant ISW is set to “1”. Also, the problem type

is changed to “150”. During continuation, the test functions corresponding to this problem

type in the subroutine PVLS detect the parameter set for which ξn = 0 where n = 1, · · · , 5

and print them in the output file d.<name> as “UZ” (refer to Chapter 2 for detailed de-

scription of the ξn = 0 co-dimension-two bifurcation points). As discussed previously these

co-dimension-two bifurcation points are known to serve as organizing centers for a variety of

co-dimension-one bifurcation curves such as saddle-node and period-doubling bifurcations.
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5.3 Illustrations using T̂C

5.3.1 Linear Oscillator

To illustrate the methodology and functionality of t̂c consider the vector field

f1 (u) =


x2

αy2 − 2ζ x2 − x1

y1 + ωy2 − y1((y1)2 + (y2)2)

y2 − ωy1 − y2((y1)2 + (y2)2)

 , (5.56)

where

u =

 x

y

 ∈ R2 × R2 (5.57)

is the state vector; the event functions

h1 (u) = 1− x1, (5.58)

h2 (u) = x2; (5.59)

and the state jump functions

g1 (u) =


x1

−rx2

y1

y2

 , (5.60)

g2 (u) = u. (5.61)

Now let

Zf = {1} , (5.62)

Zh = {1, 2} , (5.63)

Zg = {1, 2} , (5.64)
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and suppose that F is the subset of Zf ×Zh×Zg corresponding to the connectivity graph in

Fig. 2.1 from which it follows that the dynamics of the hybrid system is captured by three

distinct values of the index vector, namely

J1 = (f1, h1, g1) , (5.65)

J2 = (f1, h2, g2) . (5.66)

J3 = (f1, h1, g2) . (5.67)

In particular, a trajectory for which the signature consists only of {J2,J3} is said to be

nonimpacting, while a trajectory with segments for which J1 is said to be impacting.

For each value of the index vector, the dynamics in the y component are uncoupled

from those in the x component. Indeed, the former contain a globally attractive periodic

trajectory

y =

 sin ωt

cos ωt

 . (5.68)

Thus, the dynamics in the x component correspond to the solution to the nonautonomous

vector field

f̃ (x) =

 x2

α cos ωt− 2ζ x2 − x1

 (5.69)

or, equivalently, to the periodically excited linear mass-spring-damper oscillator

q̈ + 2ζq̇ + q = α cos ωt, (5.70)

where α is the excitation amplitude and ζ is the damping coefficient (see Thota et al. [45]).

Fig. 5.5 shows a nonimpacting periodic trajectory of the hybrid dynamical system for r =

0.8, ω = 2.0, and α = 3.0 with base unit signature {J2}. Fig. 5.6(left panel) shows the results

of single-parameter continuation using this trajectory as a starting point and terminating at

a point α = 1.998 where the periodic trajectory achieves grazing incidence with the event

surface h1 = 0 at a point u =
(

1.0 0 0.6658 −0.9977
)T

. Fig. 5.6(right panel) shows

the resultant grazing curve in the (α, ω) parameter space with base unit signature {J3}.
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Figure 5.5: A nonimpacting periodic trajectory of the linear oscillator for ω = 2.0 and

α = 3.0.

Single-parameter continuation for fixed ω and varying α away from the grazing curve

requires replacing the periodic trajectory with the equivalent trajectory with base unit sig-

nature {J1}. The result of such continuation for two distinct values of ω are shown in Fig.

5.7 and Fig. 5.8. In each case, the right panel shows two selected impacting periodic trajec-

tories corresponding to the grazing and period-doubling bifurcation points and the grazing

and saddle-node bifurcation points, respectively.

Fig. 5.9 shows the results of continuation of the saddle-node and period-doubling bi-

furcation points in (α, ω) parameter space along with the grazing curve. The former curves

terminate at a point (ω = 1.9975 and α = 2.9966) of quadratic contact with the grazing

curve at a co-dimension-two grazing bifurcation point as discussed previously. Note: All

the periodic trajectories corresponding to the hybrid dynamical system discussed for this

example are one-segment trajectories.

In the case of a single-parameter continuation from a grazing periodic trajectory, the

direction of continuation (sign of DS) decides the validity of the solution trajectory obtained.

If the parameter DS is varied in a certain direction the solution converges to a periodic

trajectory similar to the one shown in Fig. 5.10 which, while a valid solution to the associated

BVP, is inconsistent with model assumptions and hence can be discarded.
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Figure 5.6: Left panel - Diagram indicating the continuation of a nonimpacting periodic

trajectory corresponding to the vector field shown in the Eq. (5.56). Here, t̂c detects the

parameter value corresponding to a grazing incidence with the event surface h1 = 0 that

can be used as a starting solution to obtain a grazing curve. Right panel - Grazing curve

in the (α - ω) space obtained using t̂c. The o’s on the grazing curve correspond to the

co-dimension-two bifurcation points ξ1 = 0.

5.3.2 A Nonlinear MEMS Oscillator

Consider the reduced formulation of the nonlinear MEMS oscillator studied in Section 2.2

obtained by restricting attention to the closed subsystem obtained by eliminating the x1

state variable and let m1 = 5, m2 = 1, k = 1, c = 0.04, d = 1, e = 0.8, µs = 0.4, µd = 0.27,

and α = 1 (see [7, 52, 54]).

Introduce the additional event function

hPoincaré (x) = x4 (5.71)

and additional value of the index vectors

J11 = (stick, Poincaré, identity)

J12 = (stick, front, identity) .
(5.72)

Then, Fig. 5.11 shows a nonimpacting periodic trajectory of the hybrid dynamical system

for r = 0.8, ω = 0.8, and V = 0.5641 with base unit signature {J11}. A single-parameter

continuation using this trajectory as a starting point terminates for V = 0.5979 where
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Figure 5.7: Left panel - Bifurcation diagram indicating the continuation of an impacting

periodic orbit as a function of α with a grazing periodic orbit as a starting solution, for

ω = 2.0072 and α = 3.0357. This impacting periodic trajectory experiences a period-

doubling bifurcation at α = 3.0364 resulting in a stable impacting trajectory. Right panel

- Impacting periodic trajectories corresponding to the grazing incidence (a) and period-

doubling bifurcation (b) points from the left panel.

the periodic trajectory achieves grazing incidence with the event surface hfront = 0 at a

point u =
(

0 0.5 0 0 1
)T

. Fig. 5.12 shows the resultant grazing curve in the (V, ω)

parameter space using the signature {J12}.

Single-parameter continuation for fixed ω = 0.8 and varying V away from the grazing

curve requires replacing the grazing periodic trajectory with a two-segment periodic trajec-

tory with base unit signature {J1,J7}. Specifically, the segment corresponding to J1 is the

original grazing curve and the segment corresponding to J7 consists of a constant trajec-

tory at the grazing point. The result of such continuation is shown in Fig. 5.13. Here,

the branch of periodic trajectories terminates for V = 0.7469 where the two-segment pe-

riodic trajectory achieves grazing incidence with the event surface hfront = 0 at a point

u =
(

0 0.5 −0.00057 −0.2535 0.9673
)T

. The right panel shows selected impacting

periodic trajectories corresponding to the period-doubling and grazing bifurcation points.

Fig. 5.14 shows the results of continuation of the saddle-node and period-doubling bifur-

cation points in (V, ω) parameter space along with the grazing curve through (0.5979, 0.8).



114

1.8 3
1

11

SN

G

®

L
2
 n

o
r
m

 -6 1

 -6

6

ab

x1

x2

Figure 5.8: Left panel - Bifurcation diagram indicating the continuation of an impacting

periodic trajectory as a function of α with a grazing periodic trajectory as a starting solution,

for ω = 1.8901 and α = 2.5797. This impacting periodic trajectory experiences a saddle-node

bifurcation at α = 1.9713 resulting in a stable impacting trajectory. Right panel - Impacting

periodic trajectories corresponding to the grazing incidence (a) and saddle-node bifurcation

points (b) from the left panel.

These curves terminate at a point of quadratic contact with the grazing curve at a co-

dimension-two grazing bifurcation point as discussed previously.

Two-parameter continuation of the grazing curve through the (0.7469, 0.8) point in pa-

rameter space requires replacing the two-segment grazing periodic trajectory with a three-

segment periodic trajectory with base unit signature {J12,J1,J7} (cf. Fig. 5.15). Specif-

ically, the concatenation of the segments corresponding to J12 and J1 is identical (except

for the reparametrization) of the J1 segment of the grazing trajectory. The result of such

continuation is shown in Fig. 5.16.
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Figure 5.9: Left panel - Diagram depicting the two parameter continuation of grazing trajec-

tories, saddle-node bifurcation points and period-doubling points correspond to impacting

periodic trajectories. As mentioned previously, the saddle-node and period-doubling curves

intersect the grazing curve tangentially at the co-dimension-two bifurcation point corre-

sponding to ξ1 = 0.

5.3.3 Periodic Orbit in a Three-dimensional State Space

Consider the dynamical system governed by the vector field ([38] and [31])

f1 (x) =


mx1 − x2 − x1x3

mx2 + x1

−x3 + (x2)
2
+ (x1)

2
x3

 , (5.73)

the event function h1 (x) = x1 − µ, and the state jump function

g1 (x) =


x1

(m− x3) x1 − r (x2 − x1 (m− x3))

x3

 , (5.74)

and restrict attention to trajectory segments with signature

J1 = (f1, h1,g1) . (5.75)

Single-parameter continuation of a single-segment periodic trajectory for m = 0.28 and

with base unit signature {J1} emanating from a grazing periodic trajectory at µ ≈ −0.7981
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Figure 5.10: Valid solution to the boundary value problem with no physical significance.
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Figure 5.11: A nonimpacting periodic trajectory of the nonlinear mems oscillator for ω = 0.8,

and V = 0.5641.

is shown in the left panel of Fig. 5.17. Similarly, single-parameter continuation of a single-

segment periodic trajectory for m = 0.39 and with base unit signature {J1} emanating from

a grazing periodic trajectory at µ ≈ −0.8271 is shown in the right panel of Fig. 5.17 (cf.

Chapter 4)
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Figure 5.12: Grazing curve in the (V - ω) space obtained using t̂c for the given nonlin-

ear MEMS oscillator. The o’s on the grazing curve correspond to the co-dimension-two

bifurcation points ξn = 0.

5.3.4 Periodic Orbit in a Four-dimensional State Space

Consider the dynamical system governed by the vector field (A forced version of the example

discussed above)

f1 (u) =



mx1 − x2 − x1x3

mx2 + x1 + Ay2

−x3 + (x2)
2
+ (x1)

2
x3

y1 + ωy2 − y1((y1)2 + (y2)2)

y2 − ωy1 − y2((y1)2 + (y2)2)


, (5.76)

where u =

 x

y

, the event function h1 (u) = x1 − µ and the state jump function

g1 (u) =



x1

(m− x3) x1 − r (x2 − x1 (m− x3))

x3

y1

y2


(5.77)
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Figure 5.13: Left panel shows the bifurcation diagram corresponding to a one parameter con-

tinuation of a two-segment periodic trajectory for ω = 0.8. The locus of saddle-node, period-

doubling and secondary grazing bifurcations is also shown in the figure. Here, segment-1 of

the two-segment periodic orbit undergoes a secondary grazing incidence with the event sur-

face hfront = 0. A few examples of the two-segment periodic trajectories are depicted in

the right panel. The dotted trajectory in the right panel indicates the periodic trajectory

undergoing a secondary grazing incidence.

and restrict attention to trajectory segments with signature

J1 = (f1, h1,g1) . (5.78)

Single-parameter continuation of a single-segment periodic trajectory for A = 1.25,

ω = 1.9, and r = 0.8 and with base unit signature {J1} emanating from a grazing periodic

trajectory at µ ≈ −0.4940 is shown in the left panel of Fig. 5.18. Here, the right panel

shows selected trajectories corresponding to particular points along the branch of periodic

trajectories.

5.4 Summary

This chapter presents the basic structure of the software program, t̂c, for use in the bifurca-

tion analysis of hybrid dynamical systems. Mathematical tools including pseudo-arclength
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Figure 5.14: This figure presents the two parameter continuation of grazing, saddle-node and

period-doubling bifurcation points corresponding to an impacting periodic trajectory. As

mentioned previously, the intersection of the grazing curve and the saddle-node and period-

doubling curves occur at co-dimension-two bifurcation points corresponding to ξ1 = 0.

continuation and orthogonal collocation methods using piecewise polynomials required in the

continuation process are discussed in detail. The chapter also formulates boundary value

problems corresponding to the construction and continuation of grazing, saddle-node, and

period-doubling bifurcations of periodic trajectories in hybrid dynamical systems. It also

presents the methodology required to compute the correct eigenvalues of periodic orbits in

hybrid dynamical systems.

The functions of t̂c and the problem types involved in its application are discussed using

four example hybrid dynamical systems in two or several dimensions. A variety of bifurcation

diagrams involving saddle-node, period-doubling, and grazing bifurcations corresponding to

these examples are reported. These examples serve to explain the resegmentation process

required to restart single- and two-parameter continuation from a grazing periodic trajectory.
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Figure 5.15: Illustration of a procedure to create a starting solution for the continuation

of a grazing trajectory of a hybrid dynamical system through (0.7469, 0.8). The trajectory

shown here is same as the dotted trajectory in Fig. 5.13.
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Figure 5.16: The grazing curve corresponding to the MEMS oscillator obtained through the

grazing point (0.7469, 0.8).
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Figure 5.17: Left panel presents the bifurcation diagram corresponding to m = 0.28 where

µ∗ ≈ −0.7981. Here, an unstable impacting orbit is born in the immediate vicinity of the

grazing periodic trajectory that undergoes a saddle-node bifurcation. On the contrary, the

right panel shows a bifurcation diagram corresponding to m = 0.39 where an unstable orbit

is born for µ greater than µ∗. This unstable orbit undergoes a period-doubling bifurcation

to give rise to a stable impacting orbit.
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Figure 5.18: Left panel shows the bifurcation diagram corresponding to A = 1.25, ω = 1.9,

and µ∗ ≈ −0.4940. Here, a stable period-2 impacting orbit with one impact per period is

continued as a function of the parameter µ along with the locus of the saddle-node bifurca-

tion. Right panel shows the impacting periodic trajectories corresponding to two points of

the bifurcation diagram on the left.



Chapter 6

Conclusions and Future

Recommendations

This dissertation has documented efforts to apply the discontinuity-mapping approach to

the bifurcation analysis of grazing quasiperiodic trajectories in hybrid dynamical systems

and the development of a computational toolbox for the bifurcation analysis of periodic

trajectories in hybrid dynamical systems. The former constitutes the first rigorous formula-

tion of the discontinuity-mapping approach in this context and extends previously obtained

heuristic results on the grazing bifurcations of invariant tori. It also establishes the essen-

tial characteristics underlying the distinction between continuous and discontinuous grazing

bifurcations of periodic and quasiperiodic trajectories in such systems with emphasis on the

dimensionality of the associated invariant tori. The computational toolbox vastly extends

the ability of existing numerical tools so as to enable comprehensive bifurcation analysis of

a broad range of hybrid dynamical systems originating in the physical, biological, and social

sciences.

In the case of the application of the discontinuity-mapping approach to grazing bifur-

cations of quasiperiodic trajectories on invariant tori, it was found that the dominant term

of the discontinuity mapping was proportional to the square root of the projection of the
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deviation from a point of grazing contact onto a normal vector perpendicular to the corre-

sponding event surface. In the case of co-dimension-one invariant tori, the application of the

smooth Poincaré map to this term results in a contribution that either vanishes entirely (as

in the case of periodic trajectories in a two-dimensional state space) or is tangential to the

grazing invariant torus. In the former case, the analysis of grazing bifurcations falls into the

category of border-collision bifurcations and is governed by the piecewise linear nature of

the composite Poincaré map. In the latter case, however, it was argued that a local attrac-

tor would persist near the original invariant torus for some finite deviation in parameters

away from the grazing bifurcation parameter values. In contrast to the periodic case, it was

suggested that the quasiperiodicity guarantees that the stabilizing behavior of the smooth

dynamics in the limit of small deviations in parameter space dominates any destabilizing

effects of the impacts contained in higher-order terms of the discontinuity mapping.

In contrast, in co-dimension-two quasiperiodic system attractors, the analysis suggests

and demonstrates numerically that discontinuous jumps may still occur for small but nonva-

nishing deviations of the system parameter away from the value corresponding to the grazing

contact. In this case, the number of iterates between passages near x∗ is bounded from above

and the bifurcation behavior is expected to more closely mimic that of a periodic trajectory.

Hence, it can be concluded that even though strictly discontinuous grazing bifurcations

are impossible in co-dimension-one quasiperiodic system attractors, seemingly discontinuous

grazing bifurcations can occur in their co-dimension-two (or higher) counterparts for small

deviations away from the parameter corresponding to grazing contact.

6.1 Future Recommendations

1. It would be interesting to seek conditions similar to the ξn < 0 criterion (in the pe-

riodic case) to determine the loss of a local attractor resulting in apparently (if not

strictly) discontinuous grazing bifurcations of co-dimension-two or higher quasiperiodic
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attractors.

2. As an alternative approach to formulate such criterion more numerical examples can

be studied using the discontinuity-mapping approach.

3. Experiments can be conducted to better understand and verify previously obtained

results in grazing bifurcations of originally quasiperiodic system attractors. Also,

meticulous experimentation can provide insights into the conditions that lead to the

disappearance of the local attractor in certain cases.

4. It would be interesting to evaluate the extent to which qualitative predictions based

on the formulation of a reduced map carry over to general systems. For example, the

typical bifurcation sequence from torus-covering chaotic, via periodic, to local chaotic

attractors.

5. The conclusion that discontinuous grazing bifurcations are strictly impossible in the

quasiperiodic case can be viewed as a basis for a control strategy to eliminate dis-

continuous grazing bifurcations in the periodic case. This would require introducing

quasiperiodic forcing into the system or forcing the system with a frequency that is

incommensurate with the existing one. This concept can be explored both numerically

and experimentally.

6. Although t̂c was developed as an add-on to a modified version of auto 97, it appears

reasonable to envision that t̂c eventually become fully integrated into auto 97. This

is particularly true given the fact that smooth dynamical systems may be formulated

as special cases of hybrid dynamical systems.

7. It would be natural to pursue further automation of the resegmentation process re-

quired when restarting t̂c from a grazing periodic trajectory.
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Appendix A

T̂C Makefile

#----------------------------------------------------------------------
#----------------------------------------------------------------------
# Makefile
#----------------------------------------------------------------------
#----------------------------------------------------------------------
#
# TC-HAT
#
# An AUTO97 driver for grazing bifurcation analysis
#
# BY Phanikrishna Thota & Harry Dankowicz
#
#
# VERSION 1.0 (last revision 12/2006)
#
#----------------------------------------------------------------------
#
# **************************************************
# * *
# * Periodically forced MEMS oscillator *
# * *
# **************************************************
#
#----------------------------------------------------------------------
#
PGM = mems
RM = rm -f
#
all: superclean run
#
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run: 1 2 3 4

#
1:
@echo "1: Grazing curve "
@cp gc.$(PGM).1 gc.$(PGM)
@cp $(PGM).f.1 $(PGM).f
@cp $(PGM).dat.1 $(PGM).dat
@"@gcdat" $(PGM)
@cp q.$(PGM) q.dat.1
@"@gc" $(PGM)
@"@sv" $(PGM).1
@rm fort.* gc.$(PGM) q.$(PGM) $(PGM).f $(PGM).dat
#
2:
@echo "2: Continuation of a hybrid two-segment periodic trajectory from grazing"
@cp gc.$(PGM).2 gc.$(PGM)
@cp $(PGM).f.2 $(PGM).f
@cp $(PGM).dat.2 $(PGM).dat
@"@gcdat" $(PGM)
@cp q.$(PGM) q.dat.2
@"@gc" $(PGM)
@"@sv" $(PGM).2
@rm fort.* gc.$(PGM) q.$(PGM) $(PGM).f $(PGM).dat
#
3:
@echo " "
@echo "3: Starting data for COD-2 contiuation of saddle-nodes of a periodic trajectory"
@cp gc.$(PGM).3 gc.$(PGM)
@cp $(PGM).f.3 $(PGM).f
@cp q.$(PGM).2 q.$(PGM)
@"@gc" $(PGM)
@"@sv" $(PGM).3
@rm fort.* gc.$(PGM) q.$(PGM) $(PGM).f
#
4:
@echo " "
@echo "4:Continuation of folds"
@cp gc.$(PGM).4 gc.$(PGM)
@cp $(PGM).f.3 $(PGM).f
@cp q.$(PGM).3 q.$(PGM)
@"@gc" $(PGM)
@"@sv" $(PGM).4
@rm fort.* gc.$(PGM) q.$(PGM) $(PGM).f
#
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clean:
@echo "Cleaning $(PGM)..."
@$(RM) gc.$(PGM) q.$(PGM) $(PGM).f fort.* *.exe *.o *~ core
@echo "Cleaning ... done"
#
superclean:
@echo "Cleaning $(PGM)..."
@$(RM) gc.$(PGM) $(PGM).f $(PGM).dat
@$(RM) r.* p.* q.* d.* fort.* *.exe *.o *~ core
@echo "Cleaning ... done"



Appendix B

T̂C Constants File gc.<name>

5 180 1 1 NDIM,IPS,IRS,ILP
3 1 61 62 NICP,(ICP(I),I=1,NICP)
50 2 3 2 1 0 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT
1000 0.0 1.0 0.0 100.0 NMX,RL0,RL1,A0,A1
1 0 2 10 8 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC
1.e-10 1.e-10 1.e-10 EPSL,EPSU,EPSS
0.0001 0.0 0.005 1 DS,DSMIN,DSMAX,IADS
2 NTHL,((ITHL(I),THL(I)),I=1,NTHL)
61 0.0
62 0.0
0 NTHU,((ITHU(I),THU(I)),I=1,NTHU)
0 NUZR,((IUZR(I),UZR(I)),I=1,NUZR)
0 1 GCISTART,GCIDIFF
3 1 2 3 GCNPSI,(GCIPSI(I),I=1,GCNPSI)
0 GCNFIXED,(GCIFIXED(I),I=1,GCNFIXED)
2 1 0 GCNOSEG,(GCSEGTY(I),I=1,GCNOSEG)
1 2 (GCFIND(I),I=1,GCNOSEG)
1 2 (GCHIND(I),I=1,GCNOSEG)
1 2 (GCGIND(I),I=1,GCNOSEG)
1 1 GCHNO(1),(GCHGRZIND(I),I=1,GCHNO(1))
2 2 1 GCHNO(2),(GCHGRZIND(I+GCHNO(1)),I=1,GCHNO(2))
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Appendix C

T̂C Functions File <name>.f

c----------------------------------------------------------------------
c----------------------------------------------------------------------
c mems.f
c----------------------------------------------------------------------
c----------------------------------------------------------------------
c
c TC-HAT
c
c An AUTO97 driver for grazing bifurcation analysis
c
c BY Phanikrishna Thota & Harry Dankowicz
c
c
c VERSION 1.0 (last revision 8/2006)
c
c----------------------------------------------------------------------
c
c **************************************************
c * *
c * Periodically forced MEMS oscillator *
c * *
c **************************************************
c
c----------------------------------------------------------------------
c
c ----------------------------------------------------

SUBROUTINE GCFUNC(GCNDIM,X,PAR,GCIDIFF,FI,
+ DFIDX,DFIDP,DFIDXDX,DFIDXDP,SEGNO)

c ----------------------------------------------------
c
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IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c

INCLUDE ’mems.h’
c

INTEGER GCNDIM,GCIDIFF,PHANI,SEGNO
c

DIMENSION X(GCNDIM),PAR(*),FI(GCNDIM)
DIMENSION DFIDX(GCNDIM,GCNDIM),DFIDP(GCNDIM,*)
DIMENSION DFIDXDX(GCNDIM,GCNDIM,GCNDIM)
DIMENSION DFIDXDP(GCNDIM,GCNDIM,*)

c
c ----------------------
c Vector field selection
c ----------------------

IF (SEGNO.EQ.1) THEN
c
c --------------
c Vector field 1
c --------------
c
c Right-hand side
c ---------------
c

FI(1)=0.0D0
FI(2)=X(3)
FI(3)=-X(2)-0.04D0*X(3)

+ +0.5D0*(1-X(5))*(PAR(1)/(1.0D0-X(2)))**2
FI(4)=X(4) + 2*PAR(2)*X(5) - X(4)*(X(4)**2+X(5)**2)
FI(5)=X(5) - 2*PAR(2)*X(4) - X(5)*(X(4)**2+X(5)**2)

c
c First derivatives
c -----------------

IF (GCIDIFF.GE.1) THEN
c
c with respect to state

DFIDX(2,3)=1.0D0
DFIDX(3,2)=-1.0D0 + (1-X(5))*(PAR(1)**2)/(1.0D0-X(2))**3
DFIDX(3,3)=-0.04D0
DFIDX(3,5)=-0.5D0*(PAR(1)**2)/(1.0D0-X(2))**2
DFIDX(4,4)=1.0D0 - 3.0D0*X(4)**2 - X(5)**2
DFIDX(4,5)=2.0D0*(PAR(2) - X(4)*X(5))
DFIDX(5,4)=-2.0D0*(PAR(2) + X(4)*X(5))
DFIDX(5,5)=1.0D0 - 3.0D0*X(5)**2 - X(4)**2

c
c with respect to parameters
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DFIDP(3,1)=PAR(1)*(1-X(5))*(1/(1.0D0-X(2)))**2
DFIDP(4,2)=2.0D0*X(5)
DFIDP(5,2)=-2.0D0*X(4)

c
END IF

c
c Second derivatives
c ------------------

IF (GCIDIFF.GE.2) THEN
c
c with respect to state twice
c

DFIDXDX(4,3,3)=3.0D0*(1-X(6))*(PAR(1)/(1.0D0-X(3))**2)**2
DFIDXDX(4,3,6)=-(PAR(1)**2)/(1.0D0-X(3))**3
DFIDXDX(4,6,3)=-(PAR(1)**2)/(1.0D0-X(3))**3
DFIDXDX(5,5,5)=-6.0D0*X(5)
DFIDXDX(5,5,6)=-2.0D0*X(6)
DFIDXDX(5,6,5)=-2.0D0*X(6)
DFIDXDX(5,6,6)=-2.0D0*X(5)
DFIDXDX(6,5,5)=-2.0D0*X(6)
DFIDXDX(6,5,6)=-2.0D0*X(5)
DFIDXDX(6,6,5)=-2.0D0*X(5)
DFIDXDX(6,6,6)=-6.0D0*X(6)

c
c with respect to state and parameters

DFIDXDP(4,3,3)=2.0D0*PAR(1)*(1-X(6))/(1.0D0-X(3))**3
DFIDXDP(4,6,3)=-PAR(1)/(1.0D0-X(3))**2
DFIDXDP(5,6,4)=2.0D0
DFIDXDP(6,5,4)=-2.0D0

c
END IF

c
ELSE IF (SEGNO.EQ.2) THEN

c
c --------------
c Vector field 2
c --------------
c
c Right-hand side
c ---------------
c

FI(1)=0.2*(X(2)+0.04D0*X(3)
+ -0.5D0*(1-X(5))*(PAR(1)/(1.0D0-X(2)))**2)-3.17844

FI(2)=X(3)
FI(3)=1.2*(-X(2)-0.04D0*X(3)
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+ +0.5D0*(1-X(5))*(PAR(1)/(1.0D0-X(2)))**2)+3.17844
FI(4)=X(4) + 2*PAR(2)*X(5) - X(4)*(X(4)**2+X(5)**2)
FI(5)=X(5) - 2*PAR(2)*X(4) - X(5)*(X(4)**2+X(5)**2)

c
c First derivatives
c -----------------

IF (GCIDIFF.GE.1) THEN
c
c with respect to state

DFIDX(1,2)=0.2*(1.0D0 - (1-X(5))*(PAR(1)**2)/(1.0D0-X(2))**3)
DFIDX(1,3)=0.2*(0.04D0)
DFIDX(1,5)=0.2*(0.5D0*(PAR(1)**2)/(1.0D0-X(2))**2)
DFIDX(2,3)=1.0D0
DFIDX(3,2)=-1.2*(1.0D0 - (1-X(5))*(PAR(1)**2)/(1.0D0-X(2))**3)
DFIDX(3,3)=-1.2*(0.04D0)
DFIDX(3,5)=-1.2*(0.5D0*(PAR(1)**2)/(1.0D0-X(2))**2)
DFIDX(4,4)=1.0D0 - 3.0D0*X(4)**2 - X(5)**2
DFIDX(4,5)=2.0D0*(PAR(2) - X(4)*X(5))
DFIDX(5,4)=-2.0D0*(PAR(2) + X(4)*X(5))
DFIDX(5,5)=1.0D0 - 3.0D0*X(5)**2 - X(4)**2

c
c with respect to parameters

DFIDP(1,1)=-0.2*PAR(1)*(1-X(5))*(1/(1.0D0-X(2)))**2
DFIDP(3,1)=1.2*PAR(1)*(1-X(5))*(1/(1.0D0-X(2)))**2
DFIDP(4,2)=2.0D0*X(5)
DFIDP(5,2)=-2.0D0*X(4)

c
END IF

c
c Second derivatives
c ------------------

IF (GCIDIFF.GE.2) THEN
c
c with respect to state twice
c

DFIDXDX(2,3,3)=0.2*3.0D0*(1-X(6))*(PAR(1)/(1.0D0-X(3))**2)**2
DFIDXDX(2,3,6)=-0.2*(PAR(1)**2)/(1.0D0-X(3))**3
DFIDXDX(2,6,3)=-0.2*(PAR(1)**2)/(1.0D0-X(3))**3
DFIDXDX(4,3,3)=1.2*3.0D0*(1-X(6))*(PAR(1)/(1.0D0-X(3))**2)**2
DFIDXDX(4,3,6)=-1.2*(PAR(1)**2)/(1.0D0-X(3))**3
DFIDXDX(4,6,3)=-1.2*(PAR(1)**2)/(1.0D0-X(3))**3
DFIDXDX(5,5,5)=-6.0D0*X(5)
DFIDXDX(5,5,6)=-2.0D0*X(6)
DFIDXDX(5,6,5)=-2.0D0*X(6)
DFIDXDX(5,6,6)=-2.0D0*X(5)
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DFIDXDX(6,5,5)=-2.0D0*X(6)
DFIDXDX(6,5,6)=-2.0D0*X(5)
DFIDXDX(6,6,5)=-2.0D0*X(5)
DFIDXDX(6,6,6)=-6.0D0*X(6)

c
c with respect to state and parameters

DFIDXDP(4,3,3)=2.0D0*PAR(1)*(1-X(6))/(1.0D0-X(3))**3
DFIDXDP(4,6,3)=-PAR(1)/(1.0D0-X(3))**2
DFIDXDP(5,6,4)=2.0D0
DFIDXDP(6,5,4)=-2.0D0

c
END IF

c
ELSE

PRINT *,’GCFUNC error: SEGNO=’,SEGNO
STOP

END IF
c

RETURN
END

c
c ----------------------------------------------

SUBROUTINE GCBOUND(GCNDIM,X,PAR,GCIDIFF,
+ H,DHDX,DHDP,DHDXDX,DHDXDP,SEGNO)

c ----------------------------------------------
c

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c

INCLUDE ’mems.h’
c

INTEGER GCNDIM,GCIDIFF,PHANI
INTEGER SEGNO

c
DIMENSION X(GCNDIM),PAR(*),DHDX(GCNDIM),DHDP(*)
DIMENSION DHDXDX(GCNDIM,GCNDIM),DHDXDP(GCNDIM,*)

c
c ----------------------
c Discontinuity boundary
c ----------------------
c

IF (SEGNO.EQ.1) THEN
c
c boundary function
c -----------------

H=0.5D0-X(2)
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c
c First derivatives
c -----------------

IF (GCIDIFF.GE.1) THEN
c
c with respect to state

DHDX(2)=-1.0D0
c
c with respect to parameters
c

END IF
c
c Second derivatives
c ------------------

IF (GCIDIFF.GE.2) THEN
c
c with respect to state twice
c
c with respect to state and parameters
c

END IF
c

ELSE IF (SEGNO.EQ.2) THEN
c
c boundary function
c -----------------

H=X(1)
c
c First derivatives
c -----------------

IF (GCIDIFF.GE.1) THEN
c
c with respect to state

DHDX(1)=1.0D0
c
c with respect to parameters
c

END IF
c
c Second derivatives
c ------------------

IF (GCIDIFF.GE.2) THEN
c
c with respect to state twice
c
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c with respect to state and parameters
c

END IF
c

END IF
c

RETURN
END

c
c ------------------------------------

SUBROUTINE GCSTPNT(GCNDIM,X,PAR,T,SEGNO)
c ------------------------------------
c

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c

INCLUDE ’mems.h’
c

INTEGER GCNDIM,SEGNO
c

DIMENSION X(GCNDIM),PAR(*)
c
c Initialize parameters
c ---------------------
c

PAR(1)=0.59798D0
PAR(2)=0.8D0
PAR(61)=3.9267D0
PAR(62)=0

c
c Initialize solution
c -------------------
c

RETURN
END

c
c
c ---------------------------------

SUBROUTINE GCPVLS(GCNDIM,X,PAR,SEGNO)
c ---------------------------------
c

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c

INCLUDE ’mems.h’
c

INTEGER GCNDIM,SEGNO
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c
DIMENSION X(GCNDIM),PAR(*)

c
c User functions
c --------------
c PAR(?)=?
c
c

RETURN
END

c
c -----------------

SUBROUTINE GCBCND
c -----------------
c
c Dummy subroutine
c

RETURN
END

c
c --------------------------------------------------

SUBROUTINE GCSOLVALHP(GCNDIM,PAR,X,HP,SEGNO)
c --------------------------------------------------
c
c Returns the value of the Poincare function Hp
c evaluated on the solution points
c

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SEGNO

c
INCLUDE ’gccont.h’

c
DIMENSION X(GCNDIM),PAR(*)

c
c Poincare section
c --------------------

DOUBLE PRECISION HP
c
c Poincare section definition
c ---------------------------

IF (SEGNO.EQ.1) THEN
c

HP=-X(3)
c

ELSE IF (SEGNO.EQ.2) THEN
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c
HP=0.2*(X(2)+0.04D0*X(3)

+ -0.5D0*(1-X(5))*(PAR(1)/(1.0D0-X(2)))**2)-3.17844
c

END IF
c

RETURN
END

c
c ----------------------------------------------

SUBROUTINE GCPOINCARE(GCNDIM,X,PAR,GCIDIFF,
+ HPI,DHPIDX,DHPIDP,DHPIDXDX,DHPIDXDP)

c ----------------------------------------------
c

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c

INCLUDE ’mems.h’
c

INTEGER GCNDIM,GCIDIFF,PHANI
c

DIMENSION X(GCNDIM),PAR(*),DHPIDX(GCNDIM),DHPIDP(*)
DIMENSION DHPIDXDX(GCNDIM,GCNDIM),DHPIDXDP(GCNDIM,*)

c
c

RETURN
END

c
c -----------------

SUBROUTINE GCICND
c -----------------
c
c Dummy subroutine
c

RETURN
END

c
c -----------------

SUBROUTINE GCFOPT
c -----------------
c
c Dummy subroutine
c

RETURN
END

c
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c ----------------------------------------------
SUBROUTINE JUMPMAP(GCNDIM,U1,PAR,UJUMP,
+ COEFFRES,UJUMPDX,UJUMPDP,SEGNO)

c ----------------------------------------------
c

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c

INCLUDE ’mems.h’
INCLUDE ’gccont.h’

c
INTEGER GCNDIM,SEGNO

c
DIMENSION U1(GCNDIM)
DIMENSION UJUMP(GCNDIM)
DIMENSION PAR(*)
DIMENSION UJUMPDX(GCNDIM,GCNDIM)
DIMENSION UJUMPDP(GCNDIMX,*)

c
DOUBLE PRECISION PHANI

c
DATA PHANI/0.0D0/

c
COEFFRES=0.80D0

c
c Debug

IF (DEBUG) THEN
IF (DBGLEV.GE.DBGL2) THEN

PRINT *,’enter in JUMPMAP’
END IF

END IF
c

IF (SEGNO.EQ.1) THEN
c

DO K=1,GCNDIM
UJUMP(K)=U1(K)

END DO
UJUMP(1)=U1(1)+(1+COEFFRES)*U1(3)/6
UJUMP(3)=-COEFFRES*U1(3)

c
c Derivatives of the jump map w.r.t the state

UJUMPDX(1,1)=1.0D0
UJUMPDX(1,3)=(1+COEFFRES)/6
UJUMPDX(2,2)=1.0D0
UJUMPDX(3,3)=-COEFFRES
UJUMPDX(4,4)=1.0D0
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UJUMPDX(5,5)=1.0D0
c

ELSE IF (SEGNO.EQ.2) THEN
c

DO K=1,GCNDIM
UJUMP(K)=U1(K)

END DO
c
c Derivatives of the jump map w.r.t the state

UJUMPDX(1,1)=1.0D0
UJUMPDX(2,2)=1.0D0
UJUMPDX(3,3)=1.0D0
UJUMPDX(4,4)=1.0D0
UJUMPDX(5,5)=1.0D0

c
END IF

c Derivatives of the jump map w.r.t the parameters
c

RETURN
END

c



Appendix D

T̂C Constants File <name> .dat

t X1 X2 X3 ...
0.0000000000000000 0.0000000000000000 0.5000000000000000 -0.0000000000000001 ...
0.0111679249845897 0.0000000000000000 0.4999688308510247 -0.0055817549964804 ...
0.0264340963409201 0.0000000000000000 0.4998254026508901 -0.0132070988582660 ...
0.0417228099319304 0.0000000000000000 0.4995651838610360 -0.0208306768444159 ...
0.0570544546593348 0.0000000000000000 0.4991873416469904 -0.0284542533340556 ...
0.0724575218955978 0.0000000000000000 0.4986902588581793 -0.0360834013476695 ...
0.0879508614380055 0.0000000000000000 0.4980720037397322 -0.0437185845208427 ...
0.1035706129400290 0.0000000000000000 0.4973293188809573 -0.0513683290744998 ...
0.1193362213237477 0.0000000000000000 0.4964589708833897 -0.0590323543110860 ...
0.1352957785187343 0.0000000000000000 0.4954553713008992 -0.0667235154828182 ...

... ... ... ... ...

... ... ... ... ...
1.0000000000000000 0.0000000000000000 0.4954553713008992 -0.0667235154828182 ...
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