
Making Diffusion Work for You: Finding Culprits, Filling Missing
Values, and Classification Sans Text

Shashidhar Sundareisan

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

B. Aditya Prakash, Chair
Naren Ramakrishnan

Dhruv Batra

June 17, 2014
Blacksburg, Virginia

Keywords: Data Mining, Social Networks, Epidemiology, Culprits, Missing nodes,
Diffusion, Protests, Classification

Copyright 2014, Shashidhar Sundareisan

Making Diffusion Work for You: Finding Culprits, Filling Missing Values,
and Classification Sans Text

Shashidhar Sundareisan

(ABSTRACT)

Can we find people infected with the flu virus even though they did not visit a doctor? Can
the temporal features of a trending hashtag or a keyword indicate which topic it belongs to
without any textual information? Given a history of interactions between blogs and news
websites, can we predict blogs posts/news websites that are not in the sample but talk
about the “the state of the economy” in 2008? These questions have two things in common:
a network (social networks or human contact networks) and a virus (meme, keyword or
the flu virus) diffusing over the network. We can think of interactions like memes, hashtags,
influenza infections, computer viruses etc., as viruses spreading in a network. This treatment
allows for the usage of epidemiologically inspired models to study or model these interactions.
Understanding the complex propagation dynamics involved in information diffusion with the
help of these models uncovers various non-trivial and interesting results.

In this thesis we propose (a) A fast and efficient algorithm NetFill, which can be used
to find quantitatively and qualitatively correct infected nodes, not in the sample and find-
ing the culprits and (b) A method, SansText that can be used to find out which topic a
keyword/hashtag belongs to just by looking at the popularity graph of the keyword without
textual analysis. The results derived in this thesis can be used in various areas like epidemi-
ology, news and protest detection, viral marketing and it can also be used to reduce sampling
errors in graphs.

Acknowledgements

First of all I would like to thank Aditya Prakash, for being a great advisor and a mentor.
I have learnt a great deal under his guidance and am thankful for providing me with the
right direction in my research. I would also like to thank my committee members Dr. Naren
Ramakrishnan and Dr. Dhruv Batra for their valuable inputs in my thesis.

The work presented in Chapter 2 was conducted in collaboration with Dr. Jilles Vreeken,
Max-Planck institute and my adviser Dr. B. Aditya Prakash. While the work presented
in Chapter 3 was in collaboration with Abhay Rao, Mohammad Akmal Saquib Khan, Dr.
Naren Ramakrishnan and Dr. B. Aditya Prakash. I would like to thank all my collaborators
for their contributions and also for the permission to include the work in my thesis. I would
also like to thank Ting Hua for discussions about the keywords in the protest dataset.

Finally I would like to thank my parents for their blessings and support, without which my
journey through life would have been difficult.

Funding and Disclaimer: This work was partially supported by the NSF via grant IIS-
1353346, by the NSA (under a Science of Security lablet), by the VT College of Engineering
and the Intelligence Advanced Research Projects Activity (IARPA) via Department of Inte-
rior National Business Center (DoI/NBC) contract number D12PC000337.
The views and conclusions contained herein are those of the author and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed or
implied, of NSF, IARPA, NSA, DoI/NBC, or the US Government.

iii

Attributions

For Chapter 2:
Dr. Jilles Vreeken, Independent Research Group Leader, Saarland University, Max-Planck
Institute of Informatics, contributed towards the MDL score we describe in 2. Dr. B. Aditya
Prakash, my adviser was key to help me construct the approach and algorithm to solve the
problem.

For Chapter 3:
Abhay Rao (MS, Department of Computer Engineering) and Mohammad Saquib Akmal
Khan (MS, Department of Computer Science) worked with me on a group project for CS6604:
Data Mining in Large Networks and Time Series in Fall 2013, taught by Dr. B. Aditya
Prakash. The work culminated to a conference paper which is to appear in ASONAM-
2014 [Sundareisan et al., 2014]. Abhay’s main contributions include help in collecting the
dataset and discussions. Saquib was involved in the discussions and curve fitting. We had
access to the Twitter dataset from South America with the help of Dr. Naren Ramakrishnan
(Department of Computer Science). He also contributed towards the collection of the protest
dataset with his knowledge of the EMBERS project and problem formulation. Dr. B. Aditya
Prakash, was my adviser and was instrumental in giving the right direction and discussing
ideas about our approach.

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Thesis Statement . 3

1.2 Overview . 3

1.2.1 Finding Missing Nodes with the Help of Culprits 4

1.2.2 Topic Classification using Temporal Features 5

1.3 Contributions . 6

2 Finding Missing Nodes with the Help of Culprits 8

2.1 Introduction . 8

2.2 Related Works . 10

2.3 Preliminaries . 12

2.3.1 The Susceptible-Infected Model . 12

2.3.2 Minimum Description Length Principle 12

2.4 Problem Formulation . 13

2.4.1 The Problem: General Terms . 13

2.4.2 Our MDL Model Class . 14

2.4.3 The Cost of the Data . 14

2.4.4 The Cost of a Model . 15

2.4.5 The Problem: Formally . 16

2.5 Solution and Algorithms . 17

v

2.5.1 Overall Strategy . 17

2.5.2 NetFill—Main Idea . 18

2.5.3 NetFill—Details . 18

2.5.3.1 Task (a): Finding Seeds given Missing Nodes 19

2.5.3.2 Task (b): Finding Missing Nodes given Seeds 19

2.5.3.3 The Complete Algorithm 24

2.6 Experiments . 25

2.6.1 Experimental Setup . 25

2.6.1.1 Data . 25

2.6.1.2 Baselines . 26

2.6.1.3 Evaluation—Subtle Issues 26

2.6.2 Performance on Synthetic Data . 27

2.6.3 Performance on Real Graph and Simulated Cascades 28

2.6.4 Performance on Real Graph and Real Cascades 29

2.6.5 What if the Number of Missing Nodes are Known? 32

2.6.6 Scalability and Robustness . 34

2.7 Discussion . 34

2.8 Conclusions . 35

3 Topic Classification using Temporal Features 36

3.1 Introduction . 36

3.2 Related Works . 37

3.3 Background . 39

3.4 Methodology . 39

3.4.1 Problem Formulation . 39

3.4.2 Proposed Approach . 40

3.5 Experimental Setup . 41

3.5.1 Overview . 41

3.5.2 Baselines . 42

vi

3.5.3 Classifiers . 43

3.6 Experiments on Popular Dataset . 44

3.6.1 Data Collection . 44

3.6.2 Results . 44

3.6.2.1 Does the Choice of the Time Interval of the Aggregation
Change our Results? . 44

3.6.2.2 Are SansText Parameters a Good Feature Set for Domain-
wise Classification ? . 46

3.6.2.3 Which SansText Parameters are Important to the Classi-
fication Problem ? . 48

3.6.2.4 How Much Data do We Need to Learn SansText Parame-
ters ? . 48

3.7 Experiments on Protest Data . 49

3.7.1 Data Collection . 49

3.7.1.1 Task 1: Keyword to Event Type Mapping 50

3.7.1.2 Task 2: Event to Event Type Mapping 50

3.7.2 Results . 50

3.7.2.1 Can we Use SansText When the Keywords are Spread
Across Multiple Topics? . 50

3.7.2.2 Which SansText Parameters are Important to the Classi-
fication Problem? . 52

3.7.2.3 How Much Data do we Need to Learn SansText Parameters? 52

3.8 Conclusion . 53

4 Conclusions 54

Bibliography 56

Appendix 62

vii

List of Figures

1.1 Various examples of contagions in networks/graphs. 2

1.2 Finding culprits with missing infections. 4

1.3 Modeling using SansText . 5

2.1 The need for a new approach, NetFill . 9

2.2 Performance on Simulated Data . 28

2.3 Using MDL for finding number of missing nodes. 29

2.4 Sample runs on synthetic graphs . 30

2.5 Performance of Methods on Real Data . 31

2.6 Scalability and Robustness of NetFill . 32

2.7 Performance (MCC) of methods across infected degrees dni
. 33

3.1 Modeling Popular dataset using SansText 45

3.2 Correlation of parameters in Popular Dataset 47

3.3 Performance on datasets . 47

3.4 Ablation tests . 49

3.5 Correlation between parameters of SansText in Protest Dataset 49

3.6 Modeling Protest dataset using SansText 51

3.7 Robustness in SansText for data . 52

Note: All figures and or images in this thesis were created by the author unless or otherwise
specified.

viii

List of Tables

2.1 Terms and symbols . 12

2.2 Graph Statistics . 25

3.1 List of parameters used in the SpikeM model 41

3.2 Description of classes in Popular dataset . 46

3.3 Class description for protest data . 46

A1 Hashtags for Popular Dataset . 62

A2 Keywords for Protest Task 1 . 63

ix

Chapter 1

Introduction

This thesis describes how we can take advantage of propagation dynamics in the form of
information diffusion in different fields like epidemiology and social media. By using models
inspired by epidemiology to model the behavior of a contagion spreading in a network we try
to reverse engineer the infection spread in the network. This reverse engineering is done with
the help of only historical data and a snapshot of the infected nodes in the graph. Another
application that results from such modeling is that we can infer the topic of a keyword just
by using temporal features extracted from its popularity time series. In short we try to
answer questions like (a) Can the topology of the underlying network help us find people
who help spread a rumor even though we do not have evidence that they spread the rumor?
(b) Do keywords belonging to politics or Flu have a different and distinguishing patterns in
the popularity time series that helps us to infer the topic?

So why are these questions important? With the growth of the internet, social media plat-
forms like Twitter, Facebook, Google Plus etc have made a way into our daily lives. The
communication over social media is competing with traditional communication methods.
There are 255 million active users on Twitter, Facebook has over a Billion user accounts
while Google+ has over 350 Million users1. Unlike traditional communication media, social
media platforms collect an enormous collection of data and meta-data which can be used to
understand how humans communicate and behave.

In this chapter, we describe the motivations of the thesis in Section 1.1, followed by a brief
overview of the thesis in Section 1.2 and finally in Section 1.3, we discuss the contributions
and applications of the work.

1

Shashidhar Sundareisan Chapter 1. Introduction 2

(a) Flu in human network

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

����
����������������

������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

����
�����������������

�������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

����
�����������������

�������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

�����
������������������

�������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

�����
������������������

�������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

����
�����������������

�������������

.trojan

.trojan

.trojan

(b) Trojan in computer network (c) Hashtag in Twitter

Figure 1.1: Various examples2 of contagions in networks/graphs.

1.1 Motivation

As illustrated in Figure 1.1, diffusion in a network is a very versatile concept which can
be applied to various fields like network security, epidemiology, Biology, and social media
analytics. In epidemiology, a virus like influenza spreading in a human contact network
can be thought of diffusion. In computer networks, propagation of a computer virus can
be thought of diffusion. While in biology, the information could be the increase of the
concentrations of the proteins in the gene-regulatory network. Diffusion can also occur in
social media platforms 2 in the form of information diffusion.

Propagation of a contagion can be carried out in various ways in social media. A meme is a
phrase, a group of words or any element of culture that is used in disseminating information
from person to person. A hashtag is a ‘#’ symbol followed by a word or a group of words
without a space used mainly to highlight a special meaning. A retweet or a share means
that a person is reposting someone else’s content. In all these cases information is said to
have diffused through a network.

With the data obtained from social networks we can construct various graphs or networks
for different data mining purposes. For example, from the twitter datasets we can find the
who follows whom network in which there is a directed edge from the follower to the followee.
We could also have the retweet graph which is a weighted and directed graph, where the
weights denote the probability that a person will retweet the parent’s tweet. In Facebook
we have a network of friends, where an edge exists between two user accounts if they are
friends. Other than these popular datasets we can also have various networks constructed
from Memetracker, Flixster, Google Plus, Yahoo meme!, and a host of other data sources.

So what information can be extracted if we know how the contagion spreads or propagates?
There are various problems that come up when we study propagation dynamics in graphs.
A few interesting problems are (a) Who started the spread of the flu virus? (b) Who are the
most influential people in the graph? (c) Which nodes in the graph are easily susceptible

1http://www.statisticbrain.com/
2Hashtag in Twitter: Image obtained from www.touchgraph.com used under fair use, 2014

Shashidhar Sundareisan Chapter 1. Introduction 3

to infection? (d) Can we infer the structure of the graph just by knowing when nodes get
the information? (e) Who are the best set of people I should advertise my product? In this
thesis we explore only a small subset of these questions.

1.1.1 Thesis Statement

Leveraging the dynamics of propagation on networks helps in designing faster
and better algorithms for locating patient zeros, finding missing-data, and
domain classification in applications like social media and epidemiology.

To elaborate, dynamics of propagation is the way in which a contagion diffuses or propagates
in a network. In the first part of the thesis we are interested in using this dynamics in a
network by applying models inspired by epidemiology to find patient zeros and missing data
in epidemiology and social media by reconstructing the spread of the contagion. Patient
zeros in epidemiology are the nodes from which the virus initially started propagating (For
example whoever started the H1N1 influenza epidemic). This would be analogous to the
epicenter of an earthquake; the place where the event started propagating. Missing nodes is
a set of nodes that were infected, but were not detected as being infected in the sampling
process. Twitter user accounts that actually talk about a hashtag, but do not show up in a
database of user tweets are an instance of ‘missing nodes’. Finding such accounts would be
very beneficial, as we get access to only a small percentage (≤ 10%) of the actual tweets even
when we purchase a firehose of Twitter data from companies like DataSift. In the second
part of the thesis we are interested in domain classification with the help of dynamics of
contagion propagation in a network. By understanding this dynamics, we can extract some
temporal features from the time series that describes the number of infected people and the
popularity of the keyword. Using these features we can classify keywords into topics without
the help of the text (For example does a given hashtag belongs to politics or technology).

1.2 Overview

The thesis is structured as follows: First we discuss the problem of finding missing nodes and
the culprits in Chapter 2. In Chapter 3, we discuss how to use the temporal features that we
extract from the time series that describes the popularity of the hashtag for classification into
various topics. We provide a brief overview of these two chapters in the following sections.

Shashidhar Sundareisan Chapter 1. Introduction 4

1.2.1 Finding Missing Nodes with the Help of Culprits

In this chapter we find the source of the epidemic in the graph and reconstruct the trail of
the epidemic just by using the graph topology and the set of infected nodes. Doing so we
can also uncover nodes in the graph that were not reported as infected. As mentioned in
Section 1.1, the analogy of an epidemic can be extended to various types of information that
can be diffused in the network. In such cases the notion of infected means that the node is
aware of the information. So just by having the topology of who cites whom in the world of
blogs and news websites and a sample of all the blogs that talk about a meme like “the state
of the economy”, our goal is to find the probable set of websites that started this epidemic
(meme) and also the set of blog and web sites that were missed in the sampling process by
reverse engineering the flow of information in the network.

Our proposed approach involves the use of the Minimum Description Length Principle which
involves encoding the model and the data in bits. The MDL principle is similar to Occam’s
razor in the sense that we choose a model that is the simplest explanation of the events that
happened, which in turn would have the smallest number of bits in its representation. We
discuss the details of the MDL principle and the encoding that we use in Section 2.3.

(a) NetSleuth (b) NetFill

Figure 1.2: Finding culprits with missing infections: (a) the state of the art, NetSleuth, finds 8
sources (red diamonds). (b) Our method, NetFill, finds both the right number of sources (one)
and recovers the missing nodes with high precision (green).

In this chapter, we propose NetFill, a near linear, fast, and efficient algorithm that not only
finds the culprits of the epidemic but it also finds the missing nodes. NetFill automatically
finds the number of missing nodes to be found. We discuss the extensive set of experiments
that we performed in various synthetic as well as real graphs in Section 2.6. We tested
NetFill with various baselines on real as well as synthetic cascades in various real as well
as synthetic graphs and found that NetFill does the best job in finding the correct missing
nodes quantitatively as well as qualitatively, and it also finds a good set of patient-zeros. For
the MemeTracker [Leskovec et al., 2009] dataset (a dataset of blog posts and news articles
which tracks memes) in a case study we found websites like “www.chicagotribune.com”
as well as “www.nbcbayarea.com” and some blog posts that talk about “the state of the
economy”, but these articles were absent in the MemeTracker dataset. With respect to

Shashidhar Sundareisan Chapter 1. Introduction 5

precision we perform between 1.5x to 7x better as compared to the baselines in all of the
datasets(We perform better in real graphs). We show the performance of NetFill along
with that of the state of the art in Figure 1.2.

1.2.2 Topic Classification using Temporal Features

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

Days

F
re

qu
en

cy

#saude

(a) Flu

0 50 100 150 200 250 300 350 400
0

500

1000

1500

Days
F

re
qu

en
cy

data
Fit

#blackberry

(b) Technology

Figure 1.3: Modeling using SansText: We can see that SansText is a good model for temporal
spikes and can capture the differences between the two topics.

The goal in this chapter is to prove that keywords can be mapped to different topics without
the help of textual analysis. Keywords in general can belong to different topics. A good
amount of work has been done in order to infer the topic from textual analysis. When a
keyword is becomes popular in a social network over a small period of time the keyword
is said to be trending. We can visualize how this trending pattern occurs by looking at
the its popularity time series. The popularity time series is the number of mentions of the
keyword over a time period. These plots are similar to the ones shown on Google trends (see
http://www.google.com/trends/). The question that we are trying to answer is by extracting
various temporal features from this graph can we find out what the topic is?

News websites and News channels have started to look for alternate sources to gather in-
formation about events. Twitter and other social media outlets are becoming a rich source
which informs them about various events happening across the world in real time. Social
media is also being used to increase awareness about various social issues and to gather
masses for protests. It has also becoming a platform for citizens to voice their concerns and
dissatisfaction as we saw in Arab Spring revolution in 2012, protests in Venezuela in the year
2012/2013 and civil activism in India also in 2012. Thus knowing which topic a trending
keyword belongs to or to understand if a protest becomes violent or not, is really important.

The main problem with the textual analysis approach is that we will not be able to classify
new keywords easily. Another issue is that we need to save the whole vocabulary for different
languages in order for them to work. In contrast the approach described in this chapter,
SansText, can be used on new keywords and it needs very little space. As we can see

Shashidhar Sundareisan Chapter 1. Introduction 6

from Figure 1.3, that SansText is a good model for contagions and that we can use it
to differentiate between topics (Technology and Flu in this case). From the experiments
in Section 3.6, we observe that SansText performs better than all the baselines, some of
which are not trivial. On average SansText performed way more than twice as better than
a naive predictor in all classification problems.

The work in this chapter is to appear in the Proceedings of IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining - ASONAM-2014
[Sundareisan et al., 2014].

1.3 Contributions

The contributions in the thesis can be summarized as follows:

1. In Chapter 2, Finding Missing Nodes with the Help of Culprits, the main contributions
are

(a) We are the first to formulate the problem of finding missing infected nodes and
concealed culprits in terms of the Minimum Description Length principle (See
Section 2.4.5).

(b) We present a fast and effective near-linear time algorithm NetFill, based on
a novel alternating minimization approach to automatically recover both: high
quality missing nodes and the correct number and identity of the seeds. We give
solutions for both cases where we do, and where we do not know the sampling rate
and we perform extensive experiments using both simulated and real cascades on
both synthetic and real networks (See Sections 2.6.2, 2.6.3 and 2.6.4).

2. In Chapter 3, Topic Classification using Temporal Features, the main contributions
include

(a) We formulate the domain classification problem using activity profiles, and pro-
pose a simple yet powerful and efficient low-cost approach based on learning an
aggregate information diffusion model (see Section 3.4).

(b) We demonstrate the effectiveness of our approach, SansText via first classifying
simple popular keywords to domains and then with protest event data from South
America. We compare against several baselines, explore the robustness of our
approach to different parameter sets of our model and to limited data (see Section
3.5).

Applications: The missing nodes problem has applications in viral marketing, sampling
in networks, epidemiology, and research on social networks. In social networks it is difficult

Shashidhar Sundareisan Chapter 1. Introduction 7

to collect complete data because of size limitations as well as limitations imposed by social
media platforms. For example twitter API provides only a sample of all results. With
methods discussed in Chapter 2, the dataset can be expanded and hence there would be
more accurate data to perform experiments with. For epidemiology, not all patients report
to the doctor when they are ill. In such cases we can use NetFill, to infer the number of
infected patients more accurately.

The classification problem discussed in Section 3.4 has many consequences for the news
reporters. Since there is active participation in the dissipation of news on social media, we
can use these methods to find out which topic the trending trending keywords belongs to.
Such tools would also help the government plan for different types of protests and events
happening in the country.

Chapter 2

Finding Missing Nodes with the Help
of Culprits

In this chapter, we use propagation dynamics to find missing nodes and culprits in uncertain
graphs. That is we try to reverse engineer the spread of the virus in the network just by
observing who got infected in the graph. As discussed in the Chapter 1, the diffusion could
be caused by the propagation of a virus, computer virus, information, contagion etc. In this
chapter we use the word virus to mean any contagion propagating in the network. We also
use the words graph and network interchangeably.

The chapter is structured as follows: First we introduce the problem in Section 2.1, then
we discuss the work surrounding the problem by a literature survey in Section 2.2. After
which we discuss the preliminaries for the problem in Section 2.3, followed by a discussion
on our problem formulation in Section 2.4 and then proposed approach and algorithms in
Section 2.5. Finally we end with extensive experiments in Section 2.6 with discussions and
conclusions in Section 2.7 and 2.8.

2.1 Introduction

Epidemics are commonplace in graphs. That is, many graph databases store, in one way
or another, how information propagates in viral fashion through a graph. Real-world vi-
ral infections, such as the flu, are perhaps the most natural example. In these cases real
viruses infect people, whom in turn infect other people. The graph in this case is a real
social network, of whom interacted with whom. In the situation of an epidemic, institutions
such as the Center for Disease Control (CDC) try to map these networks and aim to find
out who is infected, in part to discover the sources of the epidemic (the so-called ‘patient-
zeros’). This is useful in understanding ‘what-might-have-happened’ (like helping identify
critical environmental factors) and taking corrective measures (like sanitation) to prevent

8

Shashidhar Sundareisan Chapter 2. 9

re-occurrence.

Consider also memes in social media; popular phrases or links that are, e.g., picked up and
posted on Facebook, or re-tweeted on Twitter, so ‘infecting’ followers to do the same. From
both social science, as well as from advertising points of view it is interesting to see how such
an epidemic behaved, which were the starting points, and whom helped spread the epidemic
despite not being recorded as such, etc.

However, in reality, neither snapshots nor graphs are noise free; and ‘recovering’ missing
data is an important problem in its own right. There are a number of reasons why we may
have missing data in such epidemics/cascades. For example, in epidemiology, surveillance
data on who is infected is limited and noisy [Salathé et al., 2012] (as demonstrated by the
well-known ‘surveillance-pyramid’ [Nishiura et al., 2011] where the total detected infections
at the top of the pyramid is a fraction of the actual infections at the bottom). In Facebook,
most users keep their activity and profiles private. In Twitter, typically only a percentage
sample of Tweets can be achieved by the public API. In particular as externals, we seldom
have access to the complete cascade, and moreover, if only because of the extreme velocity
of social media data, one typically has to resort to analyzing only a sample of the data. Both
aspects imply we will have to make do with an incomplete snapshot.

(a) NetSleuth (b) NetFill

Figure 2.1: The need for a new approach, NetFill: (a) the state of the art, NetSleuth, finds 8
sources (red diamonds). (b) Our method, NetFill, finds both the right number of sources (one)
and recovers the missing nodes with high precision (green).

In this thesis, we study the problems of finding both the source nodes of an epidemic
in a graph given noisy data, and recovering the missing infections. Computationally,
finding culprits in even a noise-free snapshot of a noise-free graph is a complex prob-
lem [Prakash et al., 2012, Shah and Zaman, 2011]. At the same time, in spite of its im-
portance, missing data in context of cascades has not received much attention (see Sec. 2.2
for a discussion of related work). In this thesis we show that both these problems can indeed
efficiently be solved simultaneously. Figure 2.1 demonstrates how our method, NetFill,
recovers missing data, as well as identifies culprits with high precision.

More in particular, we consider finding culprits under the Susceptible-Infected (SI) model,
and we allow the given snapshot to include false positives and false negatives; nodes erro-

Shashidhar Sundareisan Chapter 2. 10

neously reported as resp. infected and healthy. Our goal is to efficiently and reliably find
both the starting points of the epidemic, as well as identifying these input errors; in par-
ticular, figuring out who was truly infected by the virus, but not reported as such in the
snapshot.

Our contributions include:

(a) Problem Formulation: We formulate the problem of finding missing infected nodes and
concealed culprits in terms of the Minimum Description Length principle.

(b) Fast Algorithms: We present fast and effective near-linear time algorithms based on a
novel alternating minimization approach to automatically recover both missing nodes
and seeds. We give solutions for both cases where we do, and where we do not know
the sampling rate.

(c) Extensive Experiments: We perform extensive experiments using both simulated and
real cascades on both simulated and real networks. The results show that our algo-
rithms obtain high quality results, outperform the baselines, and consistently recover
true missing nodes.

2.2 Related Works

Although diffusion processes have been widely studied, the problem of ‘reverse en-
gineering’ an epidemic has received much less attention. [Shah and Zaman, 2010,
Shah and Zaman, 2011] formalized the notion of rumor-centrality for identifying the sin-
gle source node of an epidemic under the SI model, and showed an optimal algorithm for
d-regular trees. [Lappas et al., 2010] study the problem of identifying k seed nodes, or ef-
fectors of a partially activated network, which is assumed to be in steady-state under the
IC (Independent-Cascade) model. [Prakash et al., 2012] studied recovering multiple seed
nodes under the SI model given a snapshot taken any time during the infection. Here we
study the more complex problem of simultaneously recovering concealed culprits and missing
nodes from a noisy and/or sampled snapshots.

Missing data in networks is an important yet relatively poorly understood problem. A re-
lated line of work studies the effect of sampling on measured structural properties
[Costenbader and Valente, 2003, Kossinets, 2006, Borgatti et al., 2006] or network construc-
tion [Lakhina et al., 2003, Maiya and Berger-Wolf, 2011]. Correcting for the effects of miss-
ing data in cascades in general has not seen much attention—the exception is
[Sadikov et al., 2011], whom tried to correct for the sampling, yet only in broad statistical
terms (like recovering the average size and depth of cascades) assuming a modified new
cascade model (k-trees). In contrast, we address the much more general problem of auto-
matically directly correcting at a per-node level, under a fundamental epidemic model (the
SI model).

Shashidhar Sundareisan Chapter 2. 11

Another related line of work is learning graphs from sets of observed cas-
cades [G-Rodriguez et al., 2010, Gomez-Rodriguez et al., 2011], though they assume that
no nodes are missing nodes in a cascade.

We categorize the rest of the related work mainly into areas dealing with epidemic/cascade-
style processes and problems related to them like epidemic thresholds, immuniza-
tion, and influence maximization. There is a lot of research interest in studying
different types of information dissemination processes on large graphs in general, in-
cluding (a) information cascades [Bikhchandani et al., 1992, Goldenberg et al., 2001],
(b) blog propagation [Leskovec et al., 2007b, Gruhl et al., 2004, Kumar et al., 2003]
and [Richardson and Domingos, 2002], and (c) viral marketing and product penetra-
tion [Leskovec et al., 2006].

Epidemic Thresholds The canonical text-book for epidemiological models like SI is
[Anderson and May, 1991]. Much research in virus propagation studied the so-called
epidemic threshold, that is, to determine the condition under which an epidemic will
not break out [Kephart and White, 1993, Pastor-Santorras and Vespignani, 2001] and
[Chakrabarti et al., 2008, Ganesh et al., 2005, Prakash et al., 2011].

Influence Maximization An important problem under the viral marketing setting is
the influence maximization problem [Richardson and Domingos, 2002, Kempe et al., 2003,
Goyal et al., 2011, Chen et al., 2010, Habiba and Berger-Wolf, 2011]. Another remotely
related work is outbreak detection [Leskovec et al., 2007a] in the sense that we aim to select
a subset of ‘important’ nodes on graphs.

Immunization Another remotely related problem for such propagation processes
is immunization - the problem of finding the best nodes for removal to stop an
epidemic, with effective immunization strategies for static and dynamic graphs
[Hayashi et al., 2003, Tong et al., 2010, Briesemeister et al., 2003, Prakash et al., 2010].

MDL We are not the first to use the Minimum Description Length princi-
ple [Grünwald, 2007] for a data mining purpose. [Faloutsos and Megalooikonomou, 2007]
argue many data mining problems are related to Kolmogorov Complexity, which
means they can be practically solved through compression—examples include cluster-
ing [Cilibrasi and Vitányi, 2005], pattern mining [Vreeken et al., 2011], and community de-
tection [Chakrabarti et al., 2004].

In short, to the best of our knowledge, this thesis is the first to deal with finding both missing
nodes and concealed culprits in sampled epidemics, in an automatic manner.

Shashidhar Sundareisan Chapter 2. 12

Table 2.1: Terms and symbols

G(V,E) complete graph from historical data
β, p virus infection probability, sampling rate
dni

number of infected neighbors of node n
D set of nodes observed as infected
I set of nodes our model identifies as infected
C−, C+ nodes in I but not in D, and vice-versa, i.e.,

D = (I \ C−) ∪ C+

S set of seed nodes
R infection ripple from S to I
F i

d frontier set of iteration i of the ripple, the
uninfected nodes under attack by d neighbors

L(.) length in bits

2.3 Preliminaries

In this section we give brief introductions to both the SI process and the MDL principle. We
list the most important notations used throughout the chapter in Table 2.1.

2.3.1 The Susceptible-Infected Model

The most basic epidemic model is the so-called ‘Susceptible-Infected’ (SI) model
[Anderson and May, 1991]. Each object/node in the underlying graph is in one of two states:
Susceptible (S), or Infected (I). Once infected, a node stays infected forever. At every
discrete time-step, each infected node attempts to infect each of its uninfected neighbors
independently with probability β, which reflects the strength of the virus.

Note that 1/β hence defines a natural time-scale; intuitively it is the expected number of
time-steps for a successful attack over an edge. As an example, if we assume that the
underlying network is a clique of N nodes, under continuous time, the model can be written
as: dI(t)

dt
= β(N−I(t))I(t), where I(t) is the number of infected nodes at time t—the solution

is the logistic function and it is invariant to β × t.

2.3.2 Minimum Description Length Principle

The Minimum Description Length principle (MDL) [Grünwald, 2007], is a practical version
of Kolmogorov Complexity. Both embrace the slogan Induction by Compression. For MDL,
this can be roughly described as follows.

Given a set of modelsM, the best modelM ∈ M is the one that minimizes L(M)+L(D | M),

Shashidhar Sundareisan Chapter 2. 13

in which L(M) is the length in bits of the description of M , and L(D | M) is the length of
the data encoded with M .

To use MDL, we have to define our model class M, how a M ∈ M describes the data, and
how to encode both model and data in bits. To allow for fair comparison between different
M ∈ M, MDL requires the encoding to be lossless. Importantly, in order to identify the
best model we are only concerned with ideal code lengths, not actual code words.

2.4 Problem Formulation

In this section we discuss the problem setting, and then formalize our objective in terms of
the MDL principle.

2.4.1 The Problem: General Terms

We consider an undirected graph G(V,E), with V the set of nodes, and E the set of edges
between nodes. In addition we are given a snapshot D ⊂ V of nodes known to be infected at
time t. We allow the snapshot to be incomplete with regard to the true set of infected nodes
I∗—that is, there may exist nodes that are infected at time t but which are not in D (e.g.,
due to false negative tests, sampling errors, etc)—and in addition, we allow D to include
nodes infected by an external process, i.e., nodes were infected independent of the graph
structure. We assume that the contagion spread according to the SI model with parameter
β. Informally, our goal is to correct the infected snapshot, and find the starting-points of
the epidemic.

Our overall approach is to use MDL to find the most succinct description of D—of ‘what
happened’. Loosely speaking, we aim to find the shortest description of D in terms of a set
of infection starting points and subsequent infection cascade (still assuming the SI model).
The key idea is that describing D will be easier when we ‘allow’ the cascade to infect true
missing nodes and identify these later, than when we force it to not infect these nodes and
‘go around’ this part of the graph.

To use MDL, we have to define a model class M, how a M ∈ M describes the data, as
well as how to encode both model and data in bits. Prakash et al. [Prakash et al., 2012]
recently showed we can use MDL to identify infection sources given a noise-free snapshot.
By this (strong) assumption they essentially did not have to consider the complexity of the
data under the model: any valid model described the snapshot exactly. In our setting, we
do allow noise, and as MDL requires lossless descriptions, we have to carefully formalize an
encoding that besides the cost of the model, L(M), also incorporates the cost of the data
given a model, L(D | M).

Shashidhar Sundareisan Chapter 2. 14

2.4.2 Our MDL Model Class

We refer to the starting points of an infection as its seed nodes. In the SI model, nodes
neighboring an infected node are under constant attack. That is, per iteration each infected
node has a probability β to successfully attack an uninfected neighbor. We refer to the set
of nodes under attack at iteration i as the frontier set F i. We write F i

d for the subset of
F i of nodes under attack by d infected neighbors. Note that all nodes in F i

d have the same
probability of getting infected. That is, the probability of a node n getting infected depends
only on β and dni

, the number of infected neighbors in iteration i.

We refer to a cascade of node infections as an infection ripple. Basically, a ripple R is a
list that, starting from the seed nodes S, per iteration identifies the sets of nodes that were
successfully attacked. We do not put any restrictions on the nodes that R may or needs to
infect. That is, R may infect any node in V , also those missing from D, and R does not
have to infect all of D, allowing for externally infected nodes.

Combined, a tuple (S,R) is a model M ∈ M for a given graph G and snapshot D. Together,
they identify I ⊂ V as the infected footprint, the set of nodes infected after having run the
ripple from the seed nodes. In the ideal case, I will be equal to the true set of SI infected
nodes I∗.

2.4.3 The Cost of the Data

Given a tuple (S,R), describing the data means reconstructing D from I. This means
correcting I wrt. D, identifying the nodes in I that are not in D, and vice-versa. For the
nodes missing from D we write C− = I \ D, for those identified as externally infected we
have C+ = D \ I. It is easy to see that (I \ C−) ∪ C+ = D describes D without loss.

In terms of MDL we have L(D | S,R) = L(C−) + L(C+). Intuitively, nodes observed as
infected but which prove hard (impossible) to reach from the seeds are likely candidates for
C+, whereas those nodes not observed as infected but which strongly simplify reaching the
infected footprint are likely candidates for C−. We will use this intuition in our algorithm.

In practice, there exist cases where we have an expectation on the number of missing nodes,
e.g., when sampling D ourselves, as well as cases where such expectation is difficult or
impossible to formalize. We consider both settings.

For when we do not have a clear expectation, we do not set any restriction but rather use
the intuition that the larger C− resp. C+ is, the more this costs. Formally, we have

L(C−) = LN(|C−|+ 1) + log

(|I|
|C−|

)

,

L(C+) = LN(|C+|+ 1) + log

(|V \ I|
|C+|

)

Shashidhar Sundareisan Chapter 2. 15

for identifying C− and C+ respectively, where we first transmit the number of nodes, then
their ids. For the former we use the MDL optimal code for integers ≥ 1, LN(z) = log∗(z) +
log c0, where log∗(z) = log z + log log z + ... including only the positive terms and set c0 =
2.8654 to make sure all probabilities sum to 1 [Rissanen, 1983]. We transmit the node ids
using a data-to-model code, assuming a canonical order over all ways to select m nodes out
of n, encoding all ids together by an index over this order.

Alternatively, and more commonly, we will be provided a sampling rate probability p, which
denotes the probability of keeping an infected node—in other words, we expect p% of the
truly infected nodes I∗ to be in D. In this paper we assume a uniform sampling rate—a
common strategy, e.g., used in the Twitter API. We can also interpret this as a probability
γ = (1−p) on each node in I∗ to not be in D, i.e., to be truly missing. In practice, we do not
have access to I∗, yet if we assume I is a good approximation we can use γ as a probability
on I to be in C−. We then have

L(C− | γ) = − log Pr(|C−| | γ) + log

(|I|
|C−|

)

with, Pr(|C−| | γ) =

(|I|
|C−|

)

γ|C−|(1− γ)|I|−|C−| ,

where we encode the size of C− using an optimal prefix code, and then identify the node ids
analogue to above.

2.4.4 The Cost of a Model

Next, we discuss how to encode (S,R). For this, we re-use the encoding for noise-free
snapshots [Prakash et al., 2012]. For seeds, we have

L(S) = LN(|S|+ 1) + log

(|V |
|S|

)

,

where we simply encode the number of seeds using LN and identify their ids as above.

Encoding the infection ripple is less straightforward.1 For the encoded length of an SI-model
infection ripple R starting from seed nodes S we have

L(R | S) = LN(T) +
T
∑

i

L(F i) ,

1Alternative to encoding by a single ripple, in theory one can consider the negative log-likelihood of
reaching I from S. This can be approximated by MCMC sampling, but is prohibitively expensive in practice.
Computing a good ripple, however, is both cheap and gives good results [Prakash et al., 2012].

Shashidhar Sundareisan Chapter 2. 16

where T is the length of the ripple in number of iterations. Per iteration we require L(F i)
bits to identify the nodes in F i that are successfully attacked. Formally,

L(F i) = −
∑

Fd
i ∈F

i

(

log Pr(md | fd, d) +md log
md

fd

+ (fd −md) log 1−
md

fd

)

where fd = |F i
d|, and md is the number of nodes of attack degree d that get infected. As the

SI model considers every attack an independent event with probability of success β, we can
calculate the probability of seeing md nodes out of fd infected by a Binomial with parameter
pd, with

Pr(md | fd, d) =
(

fd
k

)

pmd

d (1− pd)
fd−md .

where pd expresses the independent probability of a node in Fd being infected, pd = 1− (1−
β)d.

That is, the value for β determines pd. Knowing pd we can encode md using an optimal prefix
code, the length of which can be calculated by Shannon entropy [Cover and Thomas, 2006].
Then, knowing md, we use optimal prefix codes to encode whether each node in Fd was
successfully infected or not.

2.4.5 The Problem: Formally

With the above, we can now formally state the problem.

Minimal Noisy Infection Snapshot Problem Given a graph G(V,E), the SI model
with infection parameter β, a subset of nodes D ⊆ V observed as infected, and optionally
a sampling probability p, find the set of missing nodes C− ⊆ V \D, and set of observation
errors C+ ⊆ D, a set of seed nodes S ⊆ V , and a propagation ripple R that starting from S
infects all of I = (D ∪ C−) \ C+, such that

L(D,S,R) = L(S) + L(R | S) + L(D | S,R)

is minimal.

This problem setting explicitly identifies the noise in D. That is, the set of nodes C− = I \D
are the false negatives of D, the nodes that according to the model have been falsely observed
as uninfected. The set of nodes C+ = D \ I are the false positives of D, the nodes falsely
reported—according to the model—as infected through the observed network.

To find the optimal solution we have to consider an immense search space: any node in V
not in D may be a missing infection, and similarly any node in D may be an erroneous

Shashidhar Sundareisan Chapter 2. 17

observation. To find the optimum, we would hence have to consider all ripples R for all
subsets I of V , starting from any S, in turn all subsets of I. However, there is no trivial
structure (e.g., monotonicity) that we can exploit for fast search. In fact, finding only a
single MLE seed node in a general graph, without missing nodes or false-positives errors, is
#P-Complete [Shah and Zaman, 2011] (equivalent to enumerating all the linear extensions
of a poset). We hence resort to heuristics.

2.5 Solution and Algorithms

We now describe our proposed approach. Suppose an oracle gives us the true seeds from
which the infection started. Loosely speaking, our goal then is to find a footprint I, from
which it is easy to reconstruct the observed snapshot D. To make reaching I simpler, we
can ‘flip’ nodes observed uninfected and consider them infected—and vice versa. For C−,
these should be nodes that make reaching I simpler; nodes for which the optimal ripple
would otherwise time-and-again spend bits on unsuccessful attacks, as well as nodes that
make it easier to reach D. In contrast, C+ should consist of nodes observed as infected but
which are extremely costly to reach from the observed infections (e.g., far-apart disconnected
components, that we could only reach by adding many nodes to C−), or nodes that have
so many uninfected neighbors that it is expensive to encode all the unsuccessful infection
attempts during the ripple.

2.5.1 Overall Strategy

The above observation suggests a simple strategy: keep track of how many bits the ripple
needs to encode the final state of each node, and flip the nodes with the highest cost. That
is, keep track of both the total cost to keep it uninfected and the effort to reach the node.

Intuitively, the first part seems to be aggregated local costs: nodes for which this is high are
likely good candidates for C−. Indeed, our algorithm quickly identifies all such candidates
without having to calculate these individual costs.

Minimizing the second part of the cost requires calculating the MLE path to every node in
D, which is infeasible for large graphs. Instead, we note that in most applications, including
epidemiology and social media, the false positive rate is very low (i.e., the probability that
an observed ‘infection’ is wrong). This allows the leap of faith that all connected components
in D of at least 2 nodes are not purely due to chance. That is, they either should have their
own seed node, or, be connected to another component with a seed node—e.g. by nodes in
C−. Under the same assumption, we axiomatically identify C+ as the (rare) disconnected
singleton nodes of D ∪ C−.

To summarize, with C+ defined as above, our task is to find a set of missing nodes C−, a

Shashidhar Sundareisan Chapter 2. 18

seed set S and a ripple R such that under the SI model if we start from the seed set S the
infection ripple R spreads to all nodes in D and C−, and it is the cheapest setting according
to our MDL score.

2.5.2 NetFill—Main Idea

Assume we are given a budget of at maximum k missing nodes |C−| ≤ k: how can we
find the best nodes? Following from the discussion above, good candidates would be nodes
which have a high cost of attempted infections. Intuitively, the larger the number of infected
neighbors—i.e., the infected degree dni

—of a healthy node n, the larger the number of
infection attempts, and hence the higher the cost we will have to pay to keep the node un-
infected. Hence it seems sensible to choose the k nodes with highest dni

from the set V \D.
There are, however, two clear disadvantages to this approach: (a) we do not know k, and (b)
we ignore both the seeds and the ripple of the infection. For example, consider the following:

SA B

Here if node S was the seed then intuitively node A should have been infected, whereas by
using infected degrees, we will get B as the top-most candidate. Preliminary experiments
showed that in practice this strategy indeed consistently outputs the wrong number and
identity of seeds—even when given the true k as input.

To solve these issues, we follow a different approach. It is easy to see that the choice of
C− will affect the identity of the seed set S. Additionally, the above example demonstrates
that the choice of S also affects the choice of the missing node set—this is because the seeds
determine what is the best possible ripple. Consequently, cheaper ripples will require fewer
missing nodes to be ‘filled-in’. Following this observation, we take an EM-style alternating-
minimization approach:

(a) find the best seeds for a given set of missing nodes,

(b) find the missing nodes, given a set of seed nodes.

Given an initialization, we alternate these steps until convergence. Task (a) is similar to
finding seeds under perfect data.contrast, Task (b) requires us to efficiently find missing
node sets given seeds.

2.5.3 NetFill—Details

We shall next discuss how we solve each of the two tasks above, and then how to combine
them as NetFill.

Shashidhar Sundareisan Chapter 2. 19

2.5.3.1 Task (a): Finding Seeds given Missing Nodes

In this task, we are given a set of missing nodes, and need to find the best seeds under
this perfect, noise-free, information. In principle we can use any seed-finding algorithm
for this task. Under perfect information, however, our MDL score reduces to that of Net-
Sleuth [Prakash et al., 2012], which is a solution towards finding a good set of seed nodes S
given an accurate D: exactly Task (a)’s assumption. Hence, we instantiate
findSeeds(D,G(V,E), C−) using NetSleuth(G,D∪C−). Note that the seeds might them-
selves be ‘concealed’ w.r.t. D, as they may be selected from the nodes in C−.

2.5.3.2 Task (b): Finding Missing Nodes given Seeds

In this step, we assume that the seed set S along with the missing nodes from the previous
iteration, C−

prev, are given, and our task is to find the best set of missing nodes C−. With S
given and assumed accurate, the naive approach is to list all possible C− and let MDL decide
which is the best solution—sadly, this approach is computationally infeasible. Instead we
propose to find C− incrementally and greedily; at every step we find the next best node n∗

to add to C−.

How should we select this ‘next best node’ n? From our MDL score we know that adding
a node will change both the cost of the missing nodes, L(C−), as well as the cost L(R) of
the ripple from S for reaching the infected set. By the connection between encodings and
distributions [Grünwald, 2007], we can interpret L(R) as the negative log-likelihood of the
ripple. Our strategy is hence to choose that node n which maximally increases the likelihood
L(·) that S is indeed the seed set for the resulting infections (D ∪ n). While Top-k-DNI

only takes the cost dni
of not infecting a node into account, here the likelihood measures

the total effect of flipping a node; that is, we implicitly consider the cost of infecting n, its
neighbors, neighbors-of-neighbors and so on till we reach D. However, computing the exact
total likelihood is computationally very expensive, and hence we use the total expected error
R instead, i.e., the empirical risk between the actual state and expected state of the snapshot
if the seed set was S. Formally,

R(D | S) =
∑

i∈V

(1i∈D − E[state of i|S]) , (2.1)

where 1i∈D = 1 if i ∈ D (0 otherwise). We can then use the MDL score of L(C−) +L(R) to
see if adding n reduced the total bits (as S is constant in this Task, so is L(S)).

Single seed: Assume for now we have one seed S = {s}; later we discuss how to extend
this to multiple seeds. Start with C− = ∅. From above, the best single node to add to C−

minimizes total expected error R(D ∪ n | s). Equivalently,
n∗ = argmax

n
[R(D | s)−R(D ∪ n | s)] . (2.2)

Shashidhar Sundareisan Chapter 2. 20

As s was computed in Task (a) via NetSleuth, we use Lemma 3 from [Prakash et al., 2012]
for E[·] into Equation 2.1 and obtain

R(D | s) ≈
∑

i∈D

(1− u1(i)u1(s)) ,

where u1 is the smallest eigenvector of LD∪C−

prev
—the submatrix of the graph laplacian L =

Deg − G corresponding to the ‘infected set’ on which s was computed, i.e. D ∪ C−
prev. In

other words, we take the subset of rows and columns from L corresponding to the nodes
in D ∪ C−

prev. Note that the sum is only over the observed infections D while the expected
states are calculated using u1(·) based on s (which was based on C−

prev). So the best single
node to add to C− can be written as:

n∗ = argmax
n

[

∑

i∈D∪n

ũ1(i)ũ1(s)−
∑

i∈D

u1(i)u1(s)

]

(2.3)

where ũ1 is the smallest eigenvector of the new laplacian submatrix we obtain after adding
the node n. Thus we need to compute the change of the smallest eigenvector from u1 to ũ1

when the laplacian submatrix L(·) changes after a node n is added to the infected set. Again,
directly computing this change for each node is expensive as this involves O(N) eigenvalue
computations.

How to do this faster? We propose to use matrix perturbation theory to compute this change
approximately. Lemma 1 together with the fact that many real graphs have large eigen-gap
gives us a way of quickly approximating and finding the node n∗. We use the following
recent result (Theorem 1 in Wu et al [Wu et al., 2011]) for proving the lemma. Let A be a
n× n matrix, and we apply a symmetric ‘perturbation’ E (a symmetric matrix) to it to get
Ã = A + E. Let λi and xi be the i-th largest eigenvalue and eigenvector of A. Similarly,
let λ̃i and x̃i denote the eigenvalue and eigenvector for Ã. Let U = (x1, x2, . . . , xn) and
θij = xT

i Exj . Then:

Theorem 1 (Spectral Perturbation [Wu et al., 2011]) Assume the following condi-
tions hold: 1) δ = |λi − λi+2| − ||xT

i Exi||2 − ||UTEU ||2 > 0; 2) γ = ||UTEU ||2 ≤ δ/2;
and 3) |λi| ≫ |λj| for any i = 1 . . . k and j = k + 1, . . . , n. Then,

x̃i ≈ xi +
k

∑

j=1,j 6=i

θji
λi − λj

xj +
1

λi

Exi (2.4)

Theorem 1 is an extension to the classical result by Stewart and Sun [Stewart and Sun, 1990]
to when the first k eigenvalues are significantly greater than the rest—as is typical in real
graphs.

Lemma 1 Given a seed node s, and λ1 − λ2 > 3 for LD∪C−

prev
, with nb(n) the neighbors of

a node n, under spectral perturbation we have n∗ ≈ argmax
n

∑

i∈nb(n) u1(i).

Shashidhar Sundareisan Chapter 2. 21

Proof Let Y = D ∪ C−
prev. It was proved in [Prakash et al., 2012] (Lemma 2) that the

eigenvector corresponding to the largest eigenvalue of I− 1
σ
LY is also the smallest eigenvector

u1 of LY . Here, σ = dmax + 1 and dmax is the maximum degree in the graph. Consider the
matrix LX = I − 1

σ
LY (we augment it with a zero column and zero row—note that this will

not change any of the eigenvectors and eigenvalues). Now we want to see how its eigenvectors
change when we add a node n to it. WLOG, here adding a node n to the infected set results
in a single row and column change to the last row and column in matrix LX (this column/row
was originally all zero). Let the new matrix be L̃X . Hence L̃X = LX + E, where E can be

written as:
(~(0n−1,n−1) z/σ

zT /σ dn/σ

)

where z is a vector for node n’s connectivity (if n is connected

to i, then z(i) = 1, else z(i) = 0; so that |z| = dni
, the infected degree of node n). dn

denotes the total degree of node n in the underlying network. Let us write the eigenvectors
xi of LX as

(

vi
0

)

since LX is augmented with a zero row and zero column. As LX and E are
symmetric, |E| < 1 and δ > 3 ∗ |E| [Wu et al., 2011], we can apply Theorem 1.

For our problem the second term in the Equation 2.4 is:

k
∑

j=2

θj1
λ1 − λj

xj =

k
∑

j=2

xT
j Ex1

λ1 − λj
xj

=

k
∑

j=2

[vTj 0]E
(

v1
0

)(vj
0

)

λ1 − λj

=

k
∑

j=2

[vTj 0][~01,n−1z
Tv1]

(vj
0

)

λ1 − λj
xj

=

k
∑

j=2

[vTj 0] ~0n,1

λ1 − λj
xj = 0

The third part of Equation 2.4 for our problem becomes:

1

λ1
Ex1 =

1

λ1

(~0n−1,n−1 z/σ

zT /σ dn/σ

)(

v1
0

)

=
1

λ1

(~0n−1,1

zT /σv1

)

Thus

x̃1 − x1 =
1

λi

(~0n−1,1

zT /σv1

)

For our problem we have x1 =
(

v1
0

)

, u1 = v1 and x̃1 = ũ1. So the above equation transforms
to

ũ1 −
(

u1

0

)

=
1

λi

(~0n−1,1

zT /σu1

)

(2.5)

Shashidhar Sundareisan Chapter 2. 22

Note that the change in the eigenvector is only to the last component. The node n∗ that
minimizes the risk(as defined in section 5.4.2) can also be written as

n∗ = argmax
n

[R(D | s)−R(D ∪ n | s)]

= argmax
n

[

∑

i∈D∪n

ũ1(i)ũ1(s)−
∑

i∈D

u1(i)u1(s)

]

= argmax
n

∑

i∈D∪n

(

ũ1(s)(ũ1(i)− u1(i))

− u1(i)(u1(s)− ũ1(s))

)

(2.6)

Using the result obtained from Equation 2 we have

n∗ ≈ argmax
n

ũ1(s)z
Tu1

= argmax
n

zTu1

= argmax
n

∑

i∈nb(n)

u1(i) . �

Loosely speaking, u1 measures the closeness of nodes in the infected graph to seed s. In
particular, s has the largest value of u1(·) and hence minimizes R(·). Intuitively, from
Lemma 1, Zn =

∑

i∈nb(n) u1(i) hence measures how connected a node n is to centrally located
infected nodes w.r.t. s in D. This is desirable, as it immediately captures our intuition that
the missing nodes should depend on the seed as well as the structure. It is important to
note that while choosing the new C− we have to ignore the effect of the old C−

prev; we need to
find nodes C− based directly on the seed s; not the missing-node set based on which s was
itself computed. So before computing Zn, we set ∀ i ∈ C−

prev u1(i) = 0, which ensures that
z-scores are computed based only on the observed infected set and seed s. Though, nodes in
C−

prev can re-appear in C− as they can still have non-zero Zs.

Multiple seeds: The extension of the above to multiple seeds is not straightforward.
Consider the case in which we have two seeds s1 and s2. Naively applied, our Z-score will
choose only those nodes that are ‘close’ to seed s1—e.g., in the grid network of Fig. 2.4(e) we
would choose only nodes close to the seed in the left-blob. How to instead choose nodes that
are close to either left and right blobs? To boost diversity, we adopt ‘exoneration’: we set
the first seed s1 as un-infected (and hence ‘exonerate’ the nodes close to it) and recompute
the smallest eigenvector of the laplacian submatrix defined by D∪C−

prev \ s1 (call this vector

Shashidhar Sundareisan Chapter 2. 23

u2). Then the Z based on u2 will measure the appropriateness of adding a node based on
its centrality w.r.t. to seed s2. In general, for a l seed problem we will have u1, u2,...ul. For
these l eigenvectors we will have l Zn’s for every node in V \D. For node n, we define the
consolidated ZS

n = max{Z1
n,Z2

n, ...Z l
n} (as before, we also set ∀ i ∈ C−

prev, ∀ l ul(i) = 0).
Thus the best node to be added in the case of multiple seeds is a node which is very central
and close to at least one of the seeds i.e. which has the maximum value of ZS

n .

How many nodes to add? Finally, we just add the top scoring nodes according to the ZS
n

scores to C− until MDL tells us to stop. Note that we don’t need to re-compute ZS
n after

every addition, as S is assumed correct in this Task. We give the pseudocode as Algorithm 1.

Algorithm 1 findMissing: Finds the set of missing nodes given a set of seed nodes

Input: Data D, graph G(V,E), seed set S and the old missing set C−
prev

Output: Missing nodes C−

1: Let S = {∅, s1, s2...sl−1}
2: ZS

n = findNodeScores(G, D, C−
prev, S)

3: C− = ∅ and i = 0
4: while L(S,D,R, C−) decreases do
5: C− = C− ∪ argmax

n∈V \D∪C−

ZS
n

6: i = i+ 1
7: end while
8: return C−

Algorithm 2 Function findNodeScores (G,D,C−
prev, S)

1: for i = 1 to l do
2: Gi = D ∪ C−

prev \ ∪i−1
j=0{sj} = the infected subgraph

3: ui = smallest eigenvector of Gi

4: ui(l) = 0 ∀ l ∈ C−
prev

5: for n ∈ V \D do
6: Z i

n = zTui

7: end for
8: end for
9: for node n ∈ V \D do
10: ZS

n = maxZ1
n,Z2

n, ...Zk
n

11: end for
12: return ZS

n

Shashidhar Sundareisan Chapter 2. 24

Algorithm 3 NetFill

Input: Data D, graph G, and infectivity β
Output: Missing nodes C−, ripple R and seed set S
1: C− = frontier-set of D in G
2: {S,R} = findSeeds(D,C−, G)
3: while L(S,D,R, C−) decreases do
4: {S,R} = findSeeds(D,C−, G)
5: C−

prev = C−

6: C− = findMissing(G, S,D,C−
prev)

7: end while
8: return S,R, C−

2.5.3.3 The Complete Algorithm

Given the two procedures above for Task (a) and Task (b), we can now combine them into the
NetFill algorithm. We give the pseudo-code as Algorithm 3. First we need to initialize C−

for the procedure. In principle any heuristic can be used, here we choose to use the frontier-
set; we set the initial C− as the set of all those uninfected nodes which are connected to
at least one infected node (the frontier set). After initialization, we calculate the seeds S
for this C− and D. We then use the alternating approach by iteratively optimizing C− and
S, until the stopping condition. As discussed at the start of this section, C+ is defined
as the disconnected singleton nodes in D ∪ C−. We stop when the MDL cost ceases to
decrease. One detail is that we need to calculate the ripple R when calculating the MDL
score. Following [Prakash et al., 2012], we greedily maximize the likelihood of the ripple by
iteratively infecting the most likely number of nodes, which is easily computed based on the
mode of Bernoulli trials.

Due to its complex nature, L(S,D,R, C−) is not a pure convex function—however, in practice
it does show a convex like structure. So if we would add one node at a time in Algorithm 1
we might get stuck at a local minima. To be more robust, we do a batched-addition instead
of just one node. Experiments show a value of ∼10 works well.

Complexity: In Algorithm 3, as NetSleuth is linear, lines 2 and 4 each take O(l× (D+E))
time, while it takes O(D + E) time to compute the L(·) (line 3), where l is the number of
seeds. Using the O(E) Lanczos method for eigenvalue computations on sparse graphs and
using max-heap, line 6 takes O(l×(E+V −D)+k×log (V −D)), where k is the no. of missing
nodes. Combined, the complexity of NetFill is hence O(j×(l×(E+V)+k×log (V −D))),
where j is the number of iterations the NetFill takes to converge. In our experiments we
found j ≈ 3, while l and k are ≪ D. So, in practice, NetFill is sub-quadratic (and
near-linear in many cases), which makes it suitable for large graphs.

Shashidhar Sundareisan Chapter 2. 25

Table 2.2: General statistics of the graphs

Dataset |V | |E| avg(degree)
Grid 3600 7065 3.93
AS-Oregon 10670 22002 4.12
MemeTracker (HL) 851 4781 11.23
Flixster 67478 427744 12.6780

2.6 Experiments

In this section we empirically evaluate our methods. We make our code available for research
purposes.2

2.6.1 Experimental Setup

We give more details of our experimental setup and some additional results here. As men-
tioned before, we implemented our algorithm in Matlab and ran our experiments on a 4
Xeon E7-4850 CPU with 512GB memory.

2.6.1.1 Data

Grid : First off, we use a synthetic graph because this allows for evaluation in a controlled
environment, as well easy visualization. To this end we construct a synthetic 2-dimension
60x60 grid network, in which all interior nodes have degree 4.

AS-Oregon: The Oregon AS router graph represents the internet connections of routers
in the University of Oregon network, and is divided into sub-graphs called Autonomous
Systems (AS). We use the AS Oregon 1 graph, which consists of traffic data in that AS
from March 31 2001 till May 26 2001. AS-Oregon has been shown to have a power-law
distribution for the degree of the nodes [Faloutsos et al., 1999], which makes it a natural
exemplar for many real world applications, such as biological as well as social networks.3

MemeTracker : The MemeTracker dataset is not a graph itself, but contains mentions of
over 200 million popular phrases, memes, in 96 million blog-posts and news media articles
from August 2008 to April 2009. It has been used in various information propagation
studies [Leskovec et al., 2009, G-Rodriguez et al., 2010]. There are different ways of learning
the historical graph from this data and unlike for Grid and AS-Oregon, for this graph we

2http://people.cs.vt.edu/shashi/hidden-hazards/
3http://topology.eecs.umich.edu/data.html.

Shashidhar Sundareisan Chapter 2. 26

do not simulate the SI model: the data itself provides information on the ‘viral’ spread.4

Flixster :5 The Flixster dataset contains a graph of user id’s connected using the friend-
ship relationship. The graph is undirected and unweighted. The dataset also contains the
information of the movies that a user has reviewed on the social media platform. With this
information we can construct the data D, where a user id is infected if he reviews a movie.

2.6.1.2 Baselines

Although we are not aware of a direct competitor method, we compared NetFill against
some intuitive baselines: Frontier, Simulation.

Frontier: Given an infected set D and the graph G(V,E), the Frontier Set is defined as the
set of nodes that have at least 1 infected neighbor. The Frontier baseline just returns the
Frontier Set of the given infected graph. This would be a good candidate for a baseline as
these nodes are connected to infected nodes and are next in line to be infected if we had let
the SI process to continue.

Simulation (θ, Seeds): Another intuitive heuristic is to just simulate the SI process till
we infect the observed snapshot, and consider the extra infected nodes as C−. It takes two
parameters Seeds the seeds from which the simulation should begin and θ the threshold
of nodes the Simulation baseline should infect. As the real seeds are not given to us for
simulation, we need to estimate them. A natural choice is to estimate seeds from the given
snapshot—but note that (a) the actual seeds may have been sampled off and (b) as the
observed infections may contain disconnected components, this can result in a large number
of unnecessary nodes during the simulation. To avoid these scenarios we used the Seeds we
got from NetSleuth on the infected subgraph and the frontier set. Secondly, we simulated
the SI model from these seeds till we infect θ = 95% of the nodes in the infected set D. As
the process is stochastic, we chose 95% and not 100% (so that the baseline does not keep
waiting to infect one unlucky node in D).

2.6.1.3 Evaluation—Subtle Issues

For Missing Nodes C−: Evaluating the quality recovered missing nodes is more subtle
than it seems at first glance. Recall—how many true missing nodes are recovered—for
instance, does not suffice as it prefers large result sets. Often, the opposite is favorable as
we do not want nodes frivolously reported as missing: the true negative rate is important.
We hence use two metrics: (a) precision, how many recovered nodes are truly missing, and
(b) the Matthews Correlation Coefficient (MCC) [Matthews, 1975] which unlike traditional

4http://snap.stanford.edu/netinf/
5http://www.cs.sfu.ca/~sja25/personal/datasets/

Shashidhar Sundareisan Chapter 2. 27

measures like precision, recall, or Jaccard considers the number of true positives (tp), true
negatives (tn), as well as the false positives (fp) and false negatives (fn). A coefficient of +1
represents a perfect prediction, 0 no better than random and −1 indicates total disagreement
between prediction and observation. Formally MCC = tp×tn−fp×fn√

(tp+fp)(tp+fn)(tn+fp)(tn+fn)
, with a

score defined as 0 if any term in the denominator is 0.

For Seed Nodes S: Evaluating the quality of a set of seed nodes S and a ripple R
is also more involved than seems at first glance. Just as in the case of noise-free snap-
shots [Prakash et al., 2012], the subtle issue is that the SI process is stochastic, and hence
the recovered seeds may have a better score than the actual ones, for the same reason that
the sample mean of a Gaussian minimizes least square error, while the theoretical mean does
not. Additionally it is intractable to compute the exact likelihood of a snapshot for any
non-trivial experiment. Hence, we measure the quality of the recovered seeds and ripple in
terms of MDL; following [Prakash et al., 2012] we compare the total encoded length of the

discovered solution to the ground truth, Q =
Lalg(·)

LTRUE(·)
. The closer to 1, the better.

2.6.2 Performance on Synthetic Data

As it allows straightforward visualization, we first consider multiple scenarios using the
synthetic Grid data.

Grid-Con and Grid-Disc: We simulate two scenarios on Grid using the SI process,
β = 0.1: (a) n seeds to produce n distinct yet connected blobs (Grid-Con); and (b) n seeds
to produce n disconnected blobs (Grid-Disc). After running the process to infect a total of
in between 450 and 650 nodes, we sample to get the input using p = 0.9. We here report
results for n = 2, noting these are representative for larger seed sets.

With regards to C−, Figure 2.4 shows that all methods show good performance in returning
true missing nodes (green). Whereas NetFill matches human intuition, Frontier and
Simulation, however, return overly many false positives (cyan). We plot the precision
and MCC in Figure 2.2 (left). This figure shows that NetFill performs best for recovering
missing nodes. The baselines Simulation and Frontier choose overly many nodes. Hence,
their predictions are no better than random, and we see MCC scores closer to zero.

Next, we investigate the near-convexity of L, which decides how many missing nodes Net-

Fill chooses. Fig. 2.3 shows that in practice the score is close to convex for k, with minima
close to the ground truth at resp. k = 90 for Grid-Con and k = 20 for each of the components
of Grid-Disc.

With regards to seed nodes, in Figure 2.4 we see that both NetFill and Frontier discover
good candidates (black)—note that Simulation requires the true seed set as input param-
eter. To evaluate the quality of the ripple R and the seed set S, we consider the Q scores
in Fig. 2.2. NetFill closely approximates the ideal—its solution requires as few bits as are

Shashidhar Sundareisan Chapter 2. 28

0

0.2

0.4

0.6

0.8

1

Precision MCC

P
re

ci
si

on
/M

C
C

 S
co

re

Simulation
Frontier
NetFill

0

0.5

1

1.5

2

2.5

3

Simulation Frontier NetFill

Q
 S

co
re

Ideal
↓

Simulation
Frontier
NetFill

0

0.2

0.4

0.6

0.8

1

Precision MCC

P
re

ci
si

on
/M

C
C

 S
co

re

Simulation
Frontier
NetFill

0

0.5

1

1.5

2

2.5

Simulation Frontier NetFill
Q

 S
co

re

Ideal

Simulation
Frontier
NetFill

Figure 2.2: Performance on Simulated Data: NetFill performs well. Precision and MCC
(left, higher is better), and Q (right, 1 is ideal) for Grid-Con (top) and Grid-Disc (bottom)

needed for the ground truth—while many more bits are needed to describe the solutions of
Simulation and Frontier. For Grid-Disc NetFill even finds a solution that is more
simple to describe (has higher likelihood) than the ground truth.

2.6.3 Performance on Real Graph and Simulated Cascades

Next, we evaluate performance of NetFill on a graph with power-law degree distribution,
but keep control over the infection model. More in particular, we run SI multiple times on
the AS-Oregon graph using a single random seed of medium to high degree. We vary the
number of infected nodes from 700–1500, choose β = 0.1 and sampling using p = 0.9.

For the missing nodes, looking at the results in Fig. 2.5 (a) we see that NetFill performs
well in terms of both precision and MCC scores, while the baselines return so many false
positives that their precision and MCC scores are low.

For the culprits, Figure 2.5 (b) shows that NetFill scores well too. In fact, averaged over
all simulations NetFill has a Q of 1.03—close to the ideal, implying that its seed sets S
and ripple R are of high quality. Simulation and Frontier perform rather poorly with
average Q scores of 7.45 and 4.57.

Shashidhar Sundareisan Chapter 2. 29

70 80 90 100 110 120
2000

2500

3000

3500

4000

Number of nodes added (k)

M
D

L
S

C
O

R
E

NetFill Minimum
at k = 90

(a)

0 10 20 30
820

840

860

880

900

Number of nodes added (k)

M
D

L
S

C
O

R
E

NetFill Minimum
 at k = 20

(b)

0 10 20 30
820

840

860

880

900

920

Number of nodes added (k)

M
D

L
S

C
O

R
E

NetFill minimum at k = 20

(c)

Figure 2.3: Using MDL for finding number of missing nodes: Our score is near-convex,
and identifies the correct size of |C−|: MDL scores for Grid-Con (a) and the left (b) and right (c)
component of Grid-Disc.

2.6.4 Performance on Real Graph and Real Cascades

Finally, we evaluate NetFill on real graphs and real cascades. We consider the Meme-
Tracker and Flixster datasets.

MemeTracker : Here the data (or cascades) defines the infected set D for us, that is
we do not simulate the SI model to construct D. There exist multiple ways to extract
the cascades as well as learning the graph. We consider two sets of cascades, the Meme-
tracker (MT) methodology of phrase matching, and cascades based on explicit hyperlinks
(HL) [Leskovec et al., 2009]. For the graph, we consider both the HL and MT networks
as learnt by NetInf [G-Rodriguez et al., 2010]. We hence consider four scenarios: HL-HL,
HL-MT , MT -HL and MT -HL, resp. denoting the network and infected set.

We select missing nodes using a sampling rate of p = 0.7, and choose β = 0.1—notably find-
ing similar results for different values. We use two high-volume memes that were popular
in 2008: “Lipstick on a pig” and “The state of the economy”. It is important to emphasize
here that SI is an abstraction; although the network here was learnt using a SI-inspired
model [G-Rodriguez et al., 2010], the actual spread of information in the data may not pre-
cisely match our assumptions. Moreover the network extracted here using machine-learning
algorithms is itself noisy. In spite of all this, NetFill discover interesting results.

For conciseness we only report results for HL-MT , noting these are representative for the
other combinations. With respect to missing nodes, NetFill outperforms the baselines
as seen in Fig. 2.5 (c). Just as for AS-Oregon, the precision and MCC are very low for
Frontier and Simulation as they select almost the entire graph as C−. NetFill’s
precision is more than 5× better than the baselines. Further with regards to the culprits,
Fig. 2.5 (d) shows the solution discovered by NetFill has a Q score only a fraction higher
than the ground truth.

Truly Missing Nodes: With the rationale that the MemeTracker dataset is itself a sample

Shashidhar Sundareisan Chapter 2. 30

(a) NetSleuth (b) NetSleuth

(c) Simulation (d) Simulation

(e) Frontier (f) Frontier

(g) NetFill (h) NetFill

Figure 2.4: How well do we perform on Grid? Performance of various methods on Grid-Con (left)
and Grid-Disc (right). NetFill performs best in identifying the missing nodes (green) and finding
the seeds (black). Grey nodes are infected, false positives are yellow, and false negatives are cyan.
Best viewed in color.

Shashidhar Sundareisan Chapter 2. 31

0

0.1

0.2

0.3

0.4

Precision MCC

P
re

ci
si

on
/M

C
C

 S
co

re

Simulation
Frontier
NetFill

(a)

0

2

4

6

8

Simulation Frontier NetFill

Q
 S

co
re

Ideal

Simulation
Frontier
NetFill

(b)

0

0.1

0.2

0.3

0.4

Precision MCC

P
re

ci
si

on
/M

C
C

 S
co

re

Simulation
Frontier
NetFill

(c)

0

0.5

1

1.5

2

2.5

3

Simulation Frontier NetFill

Q
 S

co
re

Ideal

Simulation
Frontier
NetFill

(d)

0

0.1

0.2

0.3

0.4

Precision MCC

P
re

ci
si

on
/M

C
C

 S
co

re

Simulation
Frontier
NetFill

(e)

0

5

10

15

20

Simulation Frontier NetFill

Q
 S

co
re

Ideal

Simulation
Frontier
NetFill

(f)

Figure 2.5: Performance of Methods on Real Data: NetFill performs well on real data.
Performance on AS-Oregon (top) and MemeTracker HL-MT (middle) and Flixster (bottom). Net-

Fill has best precision, MCC (left, higher is better), and Q scores (right, 1 is ideal).

of the true cascades in the web, we apply NetFill on the complete infected set to discover
nodes that were missed when collecting the data. We used HL-MT using an expected
sampling rate of p = 0.9.

At this sampling rate NetFill identifies 22 nodes (websites) as missing, including ‘nbcba-
yarea.com’ and ‘chicagotribune.com’. By checking their archives we could verify that 6 sites
indeed contain the meme “The state of the economy”, whereas 2 others discuss politics and
economic situation in USA in general. For the remaining websites, it was not possible to
verify with certainty if they used the meme or not—some do not offer searchable archives,
others are simply not online anymore. This both shows that our method works in practice,
as well as that it can be used to improve the quality of cascade datasets, even under our
basic assumptions.

Shashidhar Sundareisan Chapter 2. 32

Flixster : Last, we consider the Flixster dataset by which we evaluate how well NetFill

does when the data does not follow our assumptions. That is, unlike for MemeTracker ,
for Flixster is unclear whether SI is a meaningful model—it is interesting to see whether
NetFill still outperforms the baselines. In Flixster , the infected set D is a group of people
who rated a certain movie, the undirected graph constructed from the friend relationship.
We consider movies of medium volume infection, |D| ≈ 3000. We used a sampling rate of
p = 0.9. The edge weights were computed using the methodology of [Goyal et al., 2010], and
we set the infection probability β as the mean edge weight.

We show the results for a single movie in Figure 2.5 (e) — the results were similar for all
applicable movies. As above, NetFill outperforms the baselines in precision, MCC , as well
as Q-score with a wide margin—the difference being dramatic for the latter. These scores
also show that NetFill is conservative when the data does not follow the model, which
prevents overfitting and allowing it to find relatively simple descriptions of what happened.

Figure 2.6: Scalability and Robustness of NetFill:Scalability (left) and Precision (right).
NetFill is near-linear: Run times for infected footprints in AS-Oregon. NetFill is robust:
Precision decays gradually with sampling rate on Grid.

2.6.5 What if the Number of Missing Nodes are Known?

Usually it is difficult to predict the number of missing nodes accurately without the help of a
domain expert. Hence we need methods that can automatically find the number of missing
nodes as well as their identity. In the case we are given the number of missing nodes k, we
can use a heuristic Top-k-DNI to find the identity of the missing nodes.

We hinted in Section 2.5 that we could select nodes with high infected neighbors as our
missing nodes C−. The infected degree (dni

) of an uninfected node is defined as the number
of infected neighbors. The idea behind the approach Top-k-DNI is that nodes with a high
infected degree have had more chances to be infected by their infected neighbors. In other
words the probability that they will be infected in the very next time step is very high. If
we are given C− = k, that is the number of missing nodes, we can simply select the top k
nodes with the highest infected degree. Although this method seems to perform well insofar
as finding the missing nodes is concerned it suffers from the following drawbacks

Shashidhar Sundareisan Chapter 2. 33

1:2 3 4

−0.2

0

0.2

0.4

0.6

0.8

Infected Degree

M
C
C

Simulation

Frontier

Top-k-dni

NetFill

Grid-Con

(a) Grid-Con

1:2 3 4

−0.2

0

0.2

0.4

0.6

0.8

Infected Degree

M
C
C

Grid-Disc

(b) Grid-Disc

1:4 5:13 >13

−0.2

0

0.2

0.4

0.6

0.8

Infected Degree

M
C
C

Simulation

Frontier

Top-k-dni

NetFill

AS−OREGON

(c) AS-Oregon

1:5 6:21 >21

−0.2

0

0.2

0.4

0.6

0.8

Infected Degree

M
C
C

HL−MT

(d) HL MT

Figure 2.7: Performance (MCC) of methods across infected degrees dni
: NetFill performs

better than baseline as well as Top-k-DNI in the lower buckets.

1. Incorrect number of seeds: The number of seeds found by Top-k-DNI were very
large in the case of Grid-Con, Grid-Disc and AS-Oregon. In these datasets we had
simulated the SI process from a fixed set of seeds S and hence we expect the same
number of seeds to be recovered.

2. The missing nodes do not depend on the seeds: As noted in Section 2.5, the
missing nodes returned by the Top-k-DNI algorithm does not consider the seed set
while choosing the missing nodes. Knowledge of the identity of the seeds can help us
finding better missing nodes.

3. Poor performance in lower infected degree buckets: If we divide the MCC
across different infected degree buckets (dni

) as in Figure 2.7, we see that Top-k-DNI

performs very poorly in predicting nodes of lower infected degree. A zero or a negative
value ofMCC means thatTop-k-DNI does no better than random chance. The reason
the MCC scores are low is because Top-k-DNI predicts every node with a high dni

to be infected.

Shashidhar Sundareisan Chapter 2. 34

2.6.6 Scalability and Robustness

As mentioned before, Top-k-DNI is linear in the size of the graph in running time. We
expect NetFill to be sub-quadratic in practice: Figure 2.6-left shows the wall-clock running
time on increasing sizes of the infected subgraphs on the AS-Oregon network—it clearly
shows that NetFill is near-linear, demonstrating its scalability.

We also varied the sampling rate to check robustness: Figure 2.6 right shows the change
in precision for NetFill as p changes on the Grid network. Although the performance
degrades with lower p as expected (more nodes are missing), the decay is smooth over a wide
range of values.

2.7 Discussion

The experiments demonstrate that NetFill performs very well—it obtains high precision
and MCC scores on both synthetic and real data, as well as for both simulated and real-
world cascades—outperforming the baselines by a clear margin. Moreover, the close-to-ideal
Q scores show that both the seed sets and sets of missing nodes discovered by NetFill are of
very high quality: the total description length of the discovered solutions closely approximate
the ground truth.

Interestingly, NetFill works well even for the MemeTracker and Flixster datasets, where
virtually none of our assumptions are upheld—for instance, their cascades do not necessarily
follow the (idealized) SI model, and the sample rates are unknown, which showcases the
power of our method and formulation. Moreover, we simplified these graphs by treating
them as undirected and unweighted; incorporating edge directions will likely improve quality,
as certain nodes in networks like MemeTracker are known to disseminate information (e.g.,
www.cdc.gov) rather than be subject to infection. Though beyond the scope of this work,
our MDL score can fairly straightforwardly be extended to weighted and directed graphs.
How edge directions affect Equation 2.1 and our algorithms is an interesting open question.

The small-scale case study for MemeTracker also shows that our overall approach works in
practice: NetFill recovered 8 truly missing infections from a real dataset. It is valid to
argue that the SI model is somewhat simplistic for the type of information diffusion in this
data. Investigating how NetFill can be extended towards the richer infection models like
SIR and SEIR, as well as how to incorporate infection timestamps will make for engaging
future research.

Shashidhar Sundareisan Chapter 2. 35

2.8 Conclusions

In summary, we studied the problem of finding missing nodes and concealed culprits in noisy
infected graphs. We approach the problem using compression, and gave an efficient method,
NetFill that approximates the ideal. NetFill automatically recovers both number and
identities of missing nodes and seed nodes effectively. Our main contributions include:

(a) Problem Formulation: We defined the missing nodes and seeds problem in terms of
MDL: the best sets of missing nodes and culprits describes the data most succinctly.

(b) Fast Algorithm: We provide a conceptually simple and fast algorithm, NetFill, which
principally optimizes our score with an EM-like approach.

(c) Extensive Experiments: We showed NetFill outperforms baselines on both synthetic
and real datasets and gives meaningful results even when our assumptions may not
hold.

Chapter 3

Topic Classification using Temporal
Features

In this chapter we utilize the way a contagion spreads in a network to infer the type of
the contagion. In particular, we are interested in finding the topic of a keyword without
analyzing its textual content. We do so by extracting temporal features from the popularity
time series of the keyword. We apply SansText on both keywords and hashtags. This
work was accepted in ASONAM 2014 [Sundareisan et al., 2014].

This chapter is structured as follows: First we introduce the problem in Section 3.1 and
then we present a brief literature survey in Section 3.2. Next we look at the methodology
we propose in Section 3.4. Finally we discuss the experimental setup and the different tasks
that we want to solve in Sections 3.5, 3.6 and 3.7.

3.1 Introduction

Twitter and similar forms of social media have are now accepted as surrogate data sources
that can provide insight into real-world events, e.g., box office sales, influenza outbreaks,
and even the movement of earthquakes [Sakaki et al., 2010]. Rather than being passive
indicators of such events, the effect of influence cascades on Twitter (e.g., propagation of
real information or misinformation such as rumors) have shown that social media is very
much an active participant in the progression of such events.

Our goal is to identify signals in Twitter that can serve as precursors to population-level
events such as flu outbreaks, civil unrest, and elections. Traditional approaches to character-
izing and forecasting such events rely on a fixed vocabulary of keywords or hashtags that are
tracked through cascades and which are then input to machine learning models for classifi-
cation. In practice, however, new hashtags emerge as required for a situation, new keywords

36

Shashidhar Sundareisan Chapter 3. 37

underscore emergent phenomena, and thus purely text-based approaches are inadequate for
dealing with the multitude of possible events that could arise.

We demonstrate the use of phenomenological models to capture the dynamics of information
propagation, in particular the use of SpikeM [Matsubara et al., 2012]model that leverages
statistics about a partially revealed cascade to determine the class of events that the cascade
is likely to signify, e.g., a political event versus a sports event. Modeling the rise and fall
patterns quantitatively provides a text-free approach to detect and classify emerging events,
hence our system’s name SansText, which we believe to be of interest more generally.

We demonstrate the utility of this approach on a dataset of more than 2 million tweets
gathered from the Latin American countries of Argentina, Brazil, Chile, Colombia, Ecuador,
El Salvador, Mexico, Paraguay, Uruguay, and Venezuela, over the past two years. Latin
America is a rich testbed for our project because of the diversity of events that happen
due to empowered citizenry and rapid permeation of digital media. In addition to using
data on specialized protest events in Latin America, we demonstrate the applicability of our
approach more generally on popular high-volume topics on Twitter.

Our contributions can be summarized as:

1. Problem Formulation and Approach: We formulate the domain classification problem
using activity profiles, and propose a simple yet powerful and efficient low-cost approach
based on learning an aggregate information diffusion model (see Section 3.4).

2. General Topics : We demonstrate the effectiveness of our approach via first classifying
simple popular keywords to domains. We compare against several baselines, and also
explore the robustness of our approach to different parameter sets of our model (see
Section 3.6).

3. Protest Data: We demonstrate the effectiveness of SansText on multiple tasks of
different granularity, using protest event data from South America. We also show that
SansText can outperform the baselines and is robust to limited data (see Section
3.7).

3.2 Related Works

Although much work has been done on finding topics from tweet text (c.f.
[Hong and Davison, 2010]), we briefly review closely related work in the context of the dy-
namics of information diffusion and other more general time-series methods, as the focus of
our thesis is on activity profiles.

Information Diffusion: [Centola, 2010, Gruhl et al., 2004] study the structural properties
in the spread of information in networks, including the blogspace. In [Jin et al., 2013a],

Shashidhar Sundareisan Chapter 3. 38

the authors model the spread of news, information and rumors in the twitter network.
[Romero et al., 2011] observed that hashtags diffuse as a complex contagion, and the nature
of information diffusion differs with the topics. They did a study on hash-tags in twitter
and found that there is a significant variation in the ways that widely-used hash-tags on
different topics spread. The differences in their study manifested mostly in the particular
probabilities of infection (the so-called ‘P-K’ curve) based on the number of friends infected.
While their study does provide some insight into the diffusion process, it is not predictive,
and it is not built for forecasting of events. In [Bogdanov et al., 2013], the authors study
how information propagation is effected by user interests in the twitter network. While
in [Rattanaritnont et al., 2012], the authors used the cascade ratio and the tweet ratio to
understand how cascades of various topics diffuse in Twitter.

The preceding work looks more at the structural aspects of propagation. In contrast there is
also work on studying just the temporal aspects of information propagation. Crane and Sor-
nette [Crane and Sornette, 2008] studied the rise-and-fall patterns of Youtube video views
in a population and found that there were 4 classes, based on a self-excited Hawkes pro-
cess [Hawkes and Oakes, 1974]. Similarly, Yang et al. [Yang and Leskovec, 2011] explores
the temporal patterns associated with online content and found there were 6 classes (as-
sociated with different sources). Matsubara et al. [Matsubara et al., 2012] showed that all
these patterns can be generated from a single unified model SpikeM, which is succinct
and yet powerful. SpikeM has been used before to model some malware propagations as
well [Papalexakis et al., 2013]. In [Shen et al., 2014], the authors propose a probabilistic
framework to model and predict the popularity dynamics of individual items within a com-
plex evolving system. However, these works do not focus on domain/topic classification
problems. In this thesis we show how to use such models for challenging domain classifica-
tions without using semantics of the tweet text itself.

To summarize, none of the above works deal with topic classification of online cascades using
just activity profiles of keywords, based on an information diffusion model.

Time-series Analysis: This is an old topic with many textbook ap-
proaches [Box and Jenkins, 1990]. Most methods like AR, ARIMA etc. are linear
methods (and we describe some of them as baselines later). Non-linear methods tend to
be hard to interpret (for example it is hard to relate them to actual physical models) and
include [Chakrabarti and Faloutsos, 2002] where the authors propose a fast and completely
automated non-linear forecasting system which can provide estimation of vital forecasting
parameters. Forex-foreteller (FF) [Jin et al., 2013b] uses a linear regression model to make
currency forecasts with high recall over precision. It explores correlative links between
news and financial market fluctuations. It uses a language model to classify incoming news
articles to build the forecasting model.

Shashidhar Sundareisan Chapter 3. 39

3.3 Background

Here we briefly describe the recently proposed SpikeM model [Matsubara et al., 2012] for
modeling the popularity of a hashtag cascade. Although it was proposed only for hashtags,
as we will show later, we re-purpose it for more general keywords.

We are interested in the macroscopic properties of hashtag cascades in the network. The
model assumes that if a user has used the hashtag in his tweet, that user has been infected.
Once infected the user always stays in the infected state (as he or she already knows about
the hashtag).

The model assumes a total number of N un-informed population (‘bloggers’) that can be
informed (‘infected’) by the hashtag. Let U(n) be the number of such bloggers that are not
infected at time n; I(n) be the count of bloggers that got infected up to time n − 1; and
∆I(n) be count of bloggers infected exactly at time n. Then U(n + 1) = U(n)−∆I(n+ 1)
with initial conditions ∆I(0) = 0 and U(0) = N .

Additionally, we let β as the ‘infectivity’ (essentially popularity) of a particular hashtag. We
assume that the popularity of a hashtag at any particular person drops as a specific power-law
based on the elapsed time since the hashtag infected that person (say τ) i.e. f(τ) = βτ−1.5.
Finally, we also have to consider one more parameter for the model: the ”external shock”,
or in other words, the first appearance of a hashtag: let nb the time that this initial burst
appeared, and let S(nb) be the size of the shock (count of infected bloggers).

Finally, to account for periodicity, we define a periodic function p(n) with three parameters:
Pa, as the strength of the periodicity, Pp as the period and Ps as the phase shift.

Putting it all together, the SpikeM model is

∆I(n + 1) = p(n+ 1)
(

U(n)
∑n

t=nb
(∆I(t) + S(t)) f(n+ 1− t) + ǫ

)

where p(n) = 1− 1
2
Pa

(

sin
(

2π
Pp

(n+ Ps)
))

, and ǫ models noise.

3.4 Methodology

3.4.1 Problem Formulation

Informally, the general problem we aim to solve is to classify a keyword into the correct do-
main, depending only on the temporal characteristics of the activity profile of that keyword.
Note that there can be more sophisticated methods which can be employed for this purpose
which leverage the actual tweet text as well. Nevertheless we believe our framework gives
a different low-cost approach, which is surprisingly powerful and gives robust results and
hence is interesting in its own right. More formally our problem stated as:

Shashidhar Sundareisan Chapter 3. 40

given: The temporal activity profile for a keyword on Twitter

find: The correct domain class label for the keyword.

In this thesis, the particular ‘domains’ and ‘keywords’ are motivated by two real-world
examples: popular high-volume topics like politics, sports etc., and more specialized ‘protest-
types’ which categorize real-world protest events in Latin America. We will describe these
in more detail later in Sections 3.6.1 and 3.7.1.

3.4.2 Proposed Approach

Romero et al [Romero et al., 2011] discuss the differences in the mechanics of information dif-
fusion, particularly in the so-called ‘probability of infection’ curve, across different domains.
With this in mind, we posit that even the temporal propagation signature of hashtags from
different domains are likely to be different, and these differences affect the popularity time
series for each hashtag. Further, model parameters obtained for the popularity time series for
hashtags from the same domain exhibit similarities, which can be learnt by using appropriate
algorithms.

The SpikeM [Matsubara et al., 2012] Model provides an analytical tool for modeling pop-
ularity time series. It fits an exponential rise and a power law fall to data, and takes into
account the periodicity of the activities too, as described in Section 3.3. It is able to model
real Twitter data well, where data shows exponential rises and power law falls, along with
periodic trends with peaks during weekends. This model has the added advantage that model
parameters consider orthogonal aspects of the spread of the infection. Hence we propose to

The SpikeM model has seven parameters. A list of the parameters with a brief explanation
is given in Table 3.1. If X(n), n = 1 · · ·T is the sequence of count of keyword occurrences
we want to model, we minimize the following:

min
θ

T
∑

n=1

(X(n)−∆I(n))2

where θ =
[

N β Sb Pa Ps Pp

]T
is the vector of model parameters. We use Levenberg-

Marquardt [Levenberg, 1944] to learn the parameters.

Using the SpikeM parameters learnt from keyword activity profiles as features and training
data, our framework SansText learns a classifier that can classify keywords to domains.
Classification accuracy is used as a metric to judge the ability of a classifier to classify
hashtags to domains.

We find that, though SpikeM parameters can be used successfully to predict the topic of a
keyword, only a sub-set of them are relevant to the classification problem. Thus, we further
analyze the importance of each SpikeM parameter to domain-wise classification. Some

Shashidhar Sundareisan Chapter 3. 41

Sb The value of the external shock applied
β The infectivity parameter of the virus
nb The time at which the external shock Sb was applied
Pa The amplitude of the periodic part of the time series
Ps The phase shift of the periodic part of the time series
Pp The periodicity of the time series
ǫ The error term

Table 3.1: List of parameters used in the SpikeM model

parameters like nb, which determines the day the news broke out in the social network, may
not be a good predictor for all topics. On the other hand, the value of N , which is the
number of people interested in the topic (the inherent ‘audience’), turned out to be useful.

We next describe our extensive set-up for SansText in more detail.

3.5 Experimental Setup

3.5.1 Overview

The motivation for our SansText approach is to classify entire tweets based on a small
number of keywords. The most commonly used keywords are ‘hash-tags’, which generally
denote particular contexts, and have been extensively used in Twitter studies before. For
example, tweets that have the hash-tag “#manchesterutd” would talk about the soccer club
Manchester United and hence the tweet can be classified as belonging to the topic sports.
Another way to find such keywords is to use the help of domain experts to find out which
keywords are popular in a particular topic (especially in context of protests datasets).

We use both these methods while collecting the data for our experiments. Once these
keywords are collected the next step is to collect tweets that have this keyword. We use
a large sample of all South American tweets for this purpose. Geographic targeting was
done through both geo-tagging and a user referencing their own location in the tweet text
or their profile. We use these collected tweets and aggregate them to count the number of
occurrences of a keyword in a time period. Thus we obtain a volume time series for each
keyword which we can fit with the SpikeM model and collect the parameters of the model.
The next step is to use these parameters as features for the classification problem of finding
which topic the keyword/hash-tag belongs to. We use different methodologies for getting
the ground-truth labels for keywords for each of the experiments, which we will describe
later. A subtle point is that we do not use parameter nb from set of parameters in Table 3.1
for classification, as it represents the day the initial spike was observed and hence is not an
inherent property of the spreading cascade. It is easy to see that this makes some of our

Shashidhar Sundareisan Chapter 3. 42

predictions harder, as there are some topics occur only in certain times of the year e.g. flu
occurs mainly in March-Sept (in S. America), and hence just by looking at the timestamps
we can guess if the topic of a keyword is flu (although this approach may not work for more
perennial). Moreover, as our focus in this thesis is on actual dynamics, we do not use this
feature.

After learning the parameters we test SansText against multiple intuitive and non-trivial
baselines listed in 3.5.2 using classifiers described in 3.5.3. We describe this process in more
detail for each of our experiments later in Sections 3.6.1 and 3.7.1.

To throughly evaluate our approach, in our experiments we pose the following research
questions:

1. Does the choice of the time interval of the aggregation change our results?

2. Are SansText parameters a good feature set for domain-wise classifications?

3. Which SansText parameters are important to the classification problem for?

4. Can we use SansText when the keywords are spread across multiple topics?

5. How much data do we need to make a successful classification?

3.5.2 Baselines

We compared SansText to a trivial baseline (Majority) and three non-trivial baselines
each of which essentially give us features for each time-series. We give these baselines the
same data that SansText gets i.e. a set of time series. We describe each of them briefly:

Majority: The Majority baseline always gives the output of the class with maximum
frequency no matter what the input is. Hence, we are not performing any ‘learning’ in this
method. We use this baseline to indicate which of the methods actually learn useful patterns
in the dataset.

Euclidean: The Euclidean distance is the simplest distance between two series x and y of

length n and is defined as

√

n
∑

i=0

(yi − xi)2. A distance of zero implies that the two series are

exactly the same. The attributes chosen for classification were the distances to every other
keyword. The intuition for this baseline stems from the idea that all keywords from the same
topic would have small distances. We would like to point out that such a method has also
been used frequently [Keogh and Kasetty, 2002]. Apart from the natural problems of the
euclidean distance (as it is too ‘rigid’), the other disadvantages of this baseline are that for
every new keyword we need to calculate the distances to all other keywords in the dataset
and that we need to save all

(

n
2

)

distances for classification.

Shashidhar Sundareisan Chapter 3. 43

DTW: Dynamic Time Warping (DTW) is also a popular robust distance metric between two
time series. It is extensively used in areas like speech processing [Rabiner and Juang, 1993].
The main difference between DTW and Euclidean is that DTW calculates the distance
by taking into account that the two series can have peaks at different times. In other words
DTW can insert or delete some elements in the series so as to minimize the distance between
them. Just like Euclidean, we use the distances from each of the keywords as parameters
for the classification problem. We used the recent fast implementation by Rakthanmanon
et. al. [Rakthanmanon et al., 2013] for finding out these distances1. Just like Euclidean

the major disadvantages of this baseline are that for every new keyword we need to calculate
the distances to all other keywords in the dataset and that we need to save all

(

n
2

)

distances
for classification.

Fourier: The Fourier Transform decomposes a given function into a sum of periodic func-
tions of the form eiπn [Briggs and Emden, 1995]. The Discrete Fourier Transform (DFT)

uses functions of the form e
i∗2πk

N ; k ∈ I; 0 ≤ k ≤ N [Briggs and Emden, 1995]. Thus, the
DFT gives a finite set of coefficients for a discrete time series.

For discrete time series of equal lengths, the same functions are used as the basis when
computing the DFT. Each coefficient generated in the DFT can be treated as a feature of
the given time series. Intuitively, the DFT allows us to identify the significant periodicities
in a time series, thus allowing learning and classification based on similarities in the periodic
nature of time series. The disadvantage of this baseline is that we have to save coefficients
atleast half the size of the time series. To compute the DFT, we use the Cooley-Tukey
FFT algorithm [Cooley and Tukey, 1965], as implemented in the NumPy numerical analysis
package for Python.

3.5.3 Classifiers

We use the following popular classifying methods for our experiments:

1. Multilayer Perceptron: In this method, the weights between 3 layers of a neural network
are learnt using back propagation.

2. C4.5 : This is a classic tree based method which uses Information gain as the criteria
to split the attributes.

3. Random Forests : A set of different classification trees are constructed using different
subsets of parameters to learn the model.

4. Bagging : It is a method that is used to reduce the variance in the model that we learn
by using the same algorithm on different training sets generated by random sampling.
We use as the base classifier as REPTree.

1Code can be found here: http://www.cs.ucr.edu/~eamonn/UCRsuite.html

Shashidhar Sundareisan Chapter 3. 44

5. Logistic Regression: Uses the logistic function in order to find a boundary between
various classes.

A more detailed description and comparisons between these supervised learning methods
is in [Caruana and Niculescu-Mizil, 2006]. In all our tests we use Weka’s [Hall et al., 2009]
implementations of these algorithms with the default parameters to the algorithms, unless
stated otherwise. Additionally, in all our experiments we use 10-fold cross validation to
report the classification accuracy.

3.6 Experiments on Popular Dataset

3.6.1 Data Collection

In this study, we are interested in tweets from these popular domains: Political, Flu, Sports,
Technology and Idioms (these domains have also been used before in prior studies). We
define these domains and give examples in Table 3.2. Using Datasift’s collection service2, we
collected a list of top 300 hash-tags (by volume) from June 2012 to May 2013 and divided
it into these domains. The division was carried out by using majority vote among three of
the authors (similar to methodology used in [Romero et al., 2011]). We show the division of
the hash-tags in the Appendix. The domains Flu, Idioms, Technology, Sports and Political
had 11, 10, 11, 12 and 14 hash-tags respectively. After collecting these hash-tags we extract
the timestamps of each of occurrence of the hash-tag in a tweet (again from June 2012-May
2013). We then aggregate these occurrence numbers by day and by week to generate a time
series of the mentions of the hashtag. Note that every hash-tag would have its own time-
series. We then used our model to find the set of parameters that fit the time series. We
show one of these plots for three different domains for both the weekly and the daily settings
in Figure 3.1.

3.6.2 Results

3.6.2.1 Does the Choice of the Time Interval of the Aggregation Change our
Results?

SansText exploits the particular rise-fall nature of the time-series for fitting the model.
Hence it is possible that too high/low a granularity will bury/wash out the patterns. We
performed all the experiments in this section with both the daily setting as well as the weekly
setting—both of these settings show similar results. Part of the reason is that SansText has

2www.datasift.com

Shashidhar Sundareisan Chapter 3. 45

0 50 100 150 200 250 300 350 400
0

500

1000

1500

Days

F
re

qu
en

cy

data
Fit

#blackberry

(a) Technology

0 10 20 30 40 50
0

500

1000

1500

2000

Weeks

F
re

qu
en

cy

#blackberry

(b) Technology

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

Days

F
re

qu
en

cy

#saude

(c) Flu

0 10 20 30 40 50
0

50

100

150

200

Weeks

F
re

qu
en

cy

#saude

(d) Flu

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5x 10
4

Days

F
re

qu
en

ce

#ff

(e) Idiom

0 10 20 30 40 50
0

1

2

3

4

5x 10
4

Weeks

F
re

qu
en

cy

#ff

(f) Idiom

Figure 3.1: How well does SansText model the data? We compare the learnt model with the data
for Daily (top row) and weekly (bottom row) granularity for different domains, and plot volume per
unit time against time. We observe that SansText (blue) does a good job for fitting the exponential
rise and power-law fall of the real data (red).

Shashidhar Sundareisan Chapter 3. 46

Topic Description
Idioms Hash tags that are a group of words or their abbreviations connected

together. These hash tags have a conversational meaning like #ff stands
for ”Follow Friday” a trend which recommends whom to follow this
Friday on Twitter.

Flu Hash tags that related to being hit by Flu like symptoms of flu.
Example #fiebre which means Fever.

Technology Hash tags which relate to Technology like #apple (the company).
Sports Hash tags which relate to sports like #londres2012, the Olympics in 2012.
Politics Hash tags which talk about politics like #caprilespresidente which talks

about Henrique Capriles Radonski for the next president of Venezuela.

Table 3.2: Description of topics used in Popular Dataset.

Class Description
Non Violent Government Policies Policies by the government that resulted

in non-violent protests.
Non Violent Energy and Resources Protests over energy or resources that were

non-violent eg: Hike in gas prices.
Violent Energy and Resources Protests over energy or resources that were violent.
Non Violent Other Non-violent protests that have reasons other than

energy, resources, govt. policy, housing
and employment

Violent Other Violent protests that have reasons other than energy,
resources, govt. policy, housing and employment

Table 3.3: Class definition for 5 event type classification problem in Protest Dataset

an explicit periodicity parameters, so it is tolerant to an extent to such natural aggregation
levels. Hence due to lack of space, we describe the results of just the daily setting.

3.6.2.2 Are SansText Parameters a Good Feature Set for Domain-wise Classi-
fication ?

In short from Figure 3.3(a), SansText outperforms all the baselines. Hence the parameters
that we use are a good set of features for classification in the Popular Dataset.

We used the parameters that we get from the model fittings as attributes and used classifiers
listed in section 3.5.3. Since we use 5 different classification algorithms for each method we
only report the values for the best performing one (it could be different for different methods).
We show the % improvement of the methods over the weakest method in Figure 3.3(a).
So SansText performed 173% better than Majority insofar as classification accuracy

Shashidhar Sundareisan Chapter 3. 47

N β Sb ǫ Pa Ps Pp

N 1.00 ∅ ∅ 0.86 ∅ ∅ ∅
β ∅ 1.00 ∅ ∅ ∅ ∅ ∅
Sb ∅ ∅ 1.00 ∅ ∅ ∅ ∅
ǫ 0.86 ∅ ∅ 1.00 ∅ ∅ ∅
Pa ∅ ∅ ∅ ∅ 1.00 0.36 ∅
Ps ∅ ∅ ∅ ∅ 0.36 1.00 ∅
Pp ∅ ∅ ∅ ∅ ∅ ∅ 1.00

Figure 3.2: Correlation of parameters in Popular Dataset: Are the seven parameters corre-
lated in the Popular Dataset ? As we can see there is little correlation between the parameters. All
values in the range (-0.3, 0.3) are shown as ∅. Please see section 3.6.2.3 for explanation on why N

and ǫ have a high correlation.

Method % improvement
Majority 0
Fourier 103

Euclidean 155
DTW 134

SansText 173

(a) Popular Dataset

% improvement
SansText 165
Fourier 27
DTW 0

Euclidean 54
Majority 33

(b) Protest Task 1

% improvement
SansText 40
Fourier 0
DTW 20

Euclidean 11
Majority 5

(c) Protest Task 2

Figure 3.3: Performance on datasets: How well do we perform compared to the baselines? As
we can see we are performing way better than any other baseline in all the three cases

is concerned. Since Political was the class with the highest frequency of hashtags, the
Majority will always predict every hashtag to be Political.

As expected Fourier does not perform well, as while DFT does well with periodicities, it
does not do well with spikes (as we need co-efficients from across the frequency spectrum
because of a spike in the time-domain). A bit surprising result was the Euclidean fared
better than DTW in the daily setting while not in weekly setting. This is because in the
daily setting the time-series have multiple local peaks (due to similar periodicities) which
align across the time-series (while the major rise-fall peak itself may not align). Euclidean
will get a better distance, whereas DTW tries to align the main peak and makes mistakes
in the local ones. On the other hand, in the weekly setting, there are fewer periodicities,
and hence aligning the main peak is more important, which DTW does it successfully. This
also shows that for any method to be successful we should treat the periodic nature of the
time series different from the actual rise and fall for the method to be robust across different
settings—which is exactly achieved by SansText.

Shashidhar Sundareisan Chapter 3. 48

3.6.2.3 Which SansText Parameters are Important to the Classification Prob-
lem ?

In short, from the correlation matrices in Figure 3.2 and the % improvement when we remove
parameters in Figure 3.4(a), we can infer that all the parameters are useful for classification.

To answer this question we investigated two things: (a) we removed each parameter one by
one and found out its effect on the classification accuracy; and (b) we measured the cor-
relation coefficient of each of the features. We show the results of this experiment for the
algorithm that produced the best results in the previous section in Figure 3.4(a). We com-
pare this result with the correlation coefficient between our parameters. We are interested
in finding out if there exists redundancy in the set of attributes that we use for classifica-
tion. If any two of the attributes are highly correlated then we can reduce the feature set.
We computed the Pearson’s correlation coefficient between all the 7 attributes we used for
classification. The correlation matrix is presented in Figure 3.2.

We observe from Figure 3.4(a) that only removing β increases the classification accuracy
(albeit very slightly). But we observe that β is not correlated with any other parameter
as shown in the Figure 3.2. We also observe that only two parameters have a high value
of correlation(> 0.5). These parameters are N and ǫ. We argue that by removing either
one of these would affect the classification accuracy as shown in Figure 3.4(a). The reason
that the Pearson’s coefficient is large between them is because when there are a lot of people
talking about a topic(N) there is a lot of noise(ǫ) in the dataset. From the C4.5 tree we
learn for this dataset, we infer that Sports hashtags generally have a high noise (ǫ > 250).
Also Technology hashtags have a large shock (Sb > 14000) or have a lot of fan following
(ǫ > 100).

3.6.2.4 How Much Data do We Need to Learn SansText Parameters ?

In this section we will try to find out how much of the time series data is needed to learn
SansText parameters for the Popular Dataset.

We took the hash-tag #saude from the topic Flu for this part of the experiment. We tried
learning the parameters for SansText for data till nb, data till nb-3 and data till nb+3 and
plotted the resulting fits in Figure 3.7(left). We observe that all the plots look similar till
nb+3. This suggests that we learn parameters in SansText in a robust way. With more
data the Root Mean Square Error (RMSE) decreases as follows: 22.14(green), 19.25(blue)
and 16.91 (red curve). This also implies that we do not need data till the peak in order to
learn the parameters.

Shashidhar Sundareisan Chapter 3. 49

Parameters Used % improvement
Θ \ Pa -5.2
Θ \ Ps -2.6
Θ \ Pp -23.1
Θ \ N -7.7
Θ \ β 5.1
Θ \ ǫ -20.6
Θ \ Sb -20.6

(a) Popular Dataset

Parameters Used % improvement
Θ \ Pa -45.5
Θ \ Ps -4.6
Θ \ Pp -27.2
Θ \ N -18.2
Θ \ β 9
Θ \ ǫ 0
Θ \ Sb -18.2

(b) Protest Task 1

Parameters Used % improvement
Θ \ Pa -9
Θ \ Ps -11.5
Θ \ Pp -6.6
Θ \ N -16.9
Θ \ β 3
Θ \ ǫ -8.9
Θ \ Sb -13.9

(c) Protest Task 2

Figure 3.4: Ablation Test: As we can see by removing the parameters one by one, we reduce the
classification accuracy in most cases for the 3 datasets. Here Θ = {N , β, ǫ, Pa, Ps, Pp, Sb}, the
list of parameters used in SansText.

N Sb ǫ Pa Ps Pp β
N 1 ∅ 0.40 ∅ ∅ ∅ -0.30
Sb ∅ 1 ∅ ∅ ∅ ∅ ∅
ǫ 0.40 ∅ 1 ∅ ∅ ∅ ∅
Pa ∅ ∅ ∅ 1 -0.39 0.38 ∅
Ps ∅ ∅ ∅ -0.39 1 ∅ ∅
Pp ∅ ∅ ∅ 0.38 ∅ 1 ∅
β -0.30 ∅ ∅ ∅ ∅ ∅ 1

(a) Protest Task 1

N Sb ǫ Pa Ps Pp β
N 1 0.32 ∅ 0.45 ∅ ∅ ∅
Sb 0.32 1 ∅ ∅ 0.32 ∅ -0.33
ǫ ∅ ∅ 1 0.48 ∅ ∅ ∅
Pa 0.45 ∅ 0.48 1 -0.36 ∅ ∅
Ps ∅ 0.32 ∅ -0.36 1 ∅ -0.27
Pp ∅ ∅ ∅ ∅ ∅ 1 ∅
β ∅ -0.33 ∅ ∅ -0.27 ∅ 1

(b) Protest Task 2

Figure 3.5: Correlation between parameters of SansText in Protest Dataset: As we can
see from the correlation matrix for Task 1 and Task 2 that there is no correlation between the
parameters which means that we can’t remove any one of them. All values in the range (-0.3, 0.3)
are shown as ∅.

3.7 Experiments on Protest Data

3.7.1 Data Collection

For the second dataset, we have access to a Gold Standard Report (GSR) of protests orga-
nized by an independent third party (MITRE). The GSR is a database generated by human
analysts who scour newspapers in Latin America for reported happenings of civil unrest.
This report has a list of all protests along with other metadata like where the protest oc-
curred, the type of the event, the type of population involved, the date of the event, and the
date of reporting. We used the keywords collected for these events by [Hua et al., 2013]. The
authors in [Hua et al., 2013] used location based collection of tweets surrounding the event
with a date range of ±10 days and used TF-IDF to find the important keywords. Hence
these keywords are important around the time and the location of the event. A subtle point
is that each event could have multiple keywords associated with it. With these sources for
our data we try to solve two tasks

Shashidhar Sundareisan Chapter 3. 50

3.7.1.1 Task 1: Keyword to Event Type Mapping

We have a set of keywords that are known to be related to protests. We can monitor each
one of them and find out if they are gaining popularity or not. If a protest related keyword is
known to show popularity over a period of time we want to find out if the temporal pattern
it displays can help us predict which event type the developing protest belongs to. Since
every keyword can belong to multiple event types, we try to find out if SansText can be
used to predict the event type in such a scenario.

3.7.1.2 Task 2: Event to Event Type Mapping

We find that many events have more than one keyword associated with them. Just as done
in task one, we monitor the popularity of various keywords which are known be related
to protests. When we observe a set of keywords trending from one geographic location at
around the same time, we will collect all their mentions and treat them as an event. In this
task, we try to predict what event type an event belongs to. We consider every event as the
aggregation of all the keywords associated with it. Thus for our classification problem each
event is just a time series.

We describe some of the event types that are possible in Table 3.3. We used the event types
as the topics for the classification problem. Note that every keyword can belong multiple
event types. We collect all the tweets that use these keywords in the ±10 days of the event.
We then fit our model on this time series and find all the parameters. We then use these
parameters as features to predict the event type using the classifiers described in section
3.5.3.

As the results we obtain in both tasks were similar we will describe the results of both the
tasks together. We show the keywords and their classes in the Appendix.

3.7.2 Results

3.7.2.1 Can we Use SansText When the Keywords are Spread Across Multiple
Topics?

In short from the % improvement Figure 3.3(b), we can infer that SansText works even
when the keywords are spread unto different topics. We perform better than all other
baselines.

Till now we used keywords that belong to a single class. There are instances in which a
keyword can belong to different classes. Since SansText does not look at the context with
which the keyword was used, every keyword-event type instance is a new data point in out
setting. We propose to find the event type by looking at how the behavior changes when

Shashidhar Sundareisan Chapter 3. 51

a keyword is used for different event types. Note that this sort of classification would be a
hard task if we were to use traditional methods like NLP since we would have to use the
context around the keyword in the tweet text. We can see in Figure 3.6(top row) that even
though the keyword ‘cantar’ belongs to various event types the pattern observed in each one
of them is different. We try to use these differences in classifying the keyword ’cantar’.

0 5 10 15 20
0

500

1000

1500

2000

Days

F
re

qu
en

cy

Non−Violent Energy and Resources

0 5 10 15 20
0

0.5

1

1.5

2x 10
4

Days

F
re

qu
en

cy

Brazil, 6th Feb 2013,
Non−Violent Other
government Policies

0 5 10 15 20
0

500

1000

1500

2000

Days

F
re

qu
en

cy

data
Fit

Violent Energy and Resources

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

Days

F
re

qu
en

cy

Brazil, 16th June 2013,
Violent Other

0 5 10 15 20
0

500

1000

1500

2000

2500

Days

F
re

qu
en

cy

Non−Violent Government Policies

0 5 10 15 20 25
0

100

200

300

400

500

Days

F
re

qu
en

cy

Licanio de Almeida, Brazil − 17th Jan
2013, Non−Violent Energy and Resources

Figure 3.6: How well does SansText model the data in Protest Task 1 (left) and Protest Task
2 (right)? We plotted the volume per unit time for the same keyword for different event types. As
we can see for Task 1 the patterns are not similar. We use this dissimilarity in Task 1 to classify
the keyword ‘cantar’ to an event type. While for Task 2, we show 3 events. We mention the type
of protest with a text in the the figure.

Since we use 5 different classification algorithms for each method we only report the values
for the best performing one (it could be different for different methods). For Task 1, Figure
3.3(b) shows that SansText gives an improvement of 165% over the weakest baseline i.e.
DTW. SansText performs atleast twice as better than most of the baselines while we
perform 72% better than the next best baseline i.e. Euclidean. While for Task 2, Figure
3.3(b) shows that SansText performs better than all the baselines.

Shashidhar Sundareisan Chapter 3. 52

3.7.2.2 Which SansText Parameters are Important to the Classification Prob-
lem?

As we can see from the correlation matrices in Figure 3.5 and the % improvement while
removing parameters one by one in Figure 3.4(right), we can infer that all the parameters
used are important. Hence we can’t remove even one of them from SansText.

To answer this question we removed each parameter one by one and found out its effect on
the classification accuracy (i.e. an ablation test). We show the results of this experiment for
the algorithm that produced the best results in the section above i.e. Multilayer Perceptron
in Figure 3.4(right) for both Task 1 as well as Task 2. We compare this result with
the correlation coefficient between our parameters. Again, if any two of the attributes are
highly correlated then we can reduce the feature set. We found the Pearson’s correlation
coefficient between all the 7 attributes we used for classification (see Figure 3.5). We observe
from Figure 3.4(right) that like in the Popular Dataset only removing β increases the
classification accuracy. But we observe that β is not correlated with any other parameter
as shown in the Figure 3.5. We observe from Figure 3.5 that there is no correlation between
any of the parameters and hence we can not remove any of the parameters from SansText.

From the C4.5 classification tree we can infer that Non-Violent protests of type ‘Energy and
resources’ have low fluctuations in temporal data if the spike is ignored(Pa < 0.4). While
keywords belonging to Non-Violent Other category had less than 29000 tweets in this dataset.

3.7.2.3 How Much Data do we Need to Learn SansText Parameters?

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

Weeks

F
re

qu
en

cy

data
Before Peak
Till peak
After Peak

(a) Popular Dataset

0 5 10 15 20
0

0.5

1

1.5

2x 10
4

Days

F
re

qu
en

cy

data

Before Peak

Till Peak

After Peak

(b) Protest Dataset

Figure 3.7: Robustness in SansText for data: How much data do we need to fit the SansText

parameters? As we can see all the three plots are similar. This implies that we are robust in
determining the SansText parameters accurately.

In this section we will try to find out how much of the time series data is needed to learn
SansText parameters for the Protest Dataset.

We took the keywords for the event that corresponded to the Non-Violent Government

Shashidhar Sundareisan Chapter 3. 53

Policies on 6th Feb 2013 in Brazil. We tried learning the parameters for SansText for data
till nb, data till nb-3 and data till nb+3 and plotted the resulting fits in Figure 3.7(right).
Clearly, we will learn better given more data, but we find that SansText’s performance is
robust and does not degrade much. With more data the Root Mean Square Error(RMSE)
decreases as follows: 2130.2(green), 1997.83(blue) and 1771.38(red curve) . This also implies
that we do not need data till the peak in order to learn the parameters.

3.8 Conclusion

We have demonstrated that activity profiles for hashtags from different domains are mod-
eled well under our framework SansText, and showcased its utility for domain classification
without requiring any textual analysis. We have demonstrated its effectiveness and superi-
ority over baseline methods in both a general topical domain and in a specialized domain,
viz. protest modeling. Inference of the parameters enables the forecasting of keyword and
event popularity and classification into different granularities, as evidenced by our results
over Latin American tweets.

Chapter 4

Conclusions

In conclusion, this thesis attempts to use propagation dynamics with epidemiologically in-
spired models in order to solve data mining tasks like finding missing data, finding patient
zeros and topic classification sans text.

In Chapter 2, we studied the problem of finding missing nodes and concealed culprits in
noisy graphs. We approach the problem using compression, and gave an efficient method
NetFill, to approximate the ideal. NetFill can automatically, and with high precision
and MCC , recover both number and identities of missing nodes—as well as the number and
identities of the seed nodes.

In Chapter 3, we demonstrated that activity profiles for hashtags from different domains
are modeled well under our framework SansText, and showcased its utility for domain
classification without requiring any textual analysis. We have demonstrated its effectiveness
and superiority over baseline methods in both a general topical domain and in a specialized
domain, viz. protest modeling. Inference of the parameters enables the forecasting of key-
word and event popularity and classification into different granularities, as evidenced by our
results over Latin American tweets.

Future Work: There exist many avenues for future work. Prime examples include con-
sidering richer infection models, such as SIR, considering multiple snapshots instead of just
one, and in particular to explore efficient methods for holistically optimizing the MDL score
with regard to both C− and C+.

Even by treating the MemeTracker and Flixster datasets as undirected and unweighted
NetFill provides good results as seen in Section 2.6. Incorporating weights would mean
that every edge has a different probability of infection β for the SI process.

Directed edges can be easily incorporated in calculating the MDL. However we do need
to analyze how adding direction to the edges would change Equation 2.1. We feel that

54

Shashidhar Sundareisan Chapter 4. 55

considering directed edges would improve the quality of the nodes we find as some nodes
in networks like MemeTracker are known to disseminate information (www.cdc.gov) rather
than get infected from other nodes.

Also we need to consider the time at which nodes are infected. This information would help
us to construct more accurate ripples in datasets where time of the infection is also reported
(like MemeTracker).

Finally the SI model may be a bit too simplistic to model information diffusion in some
datasets. Extension of the method to accommodate SIR, SEIR etc would be interesting and
useful.

For the second problem we studied in Chapter 3, future works may look into learning even the
exponent parameter (currently 1.5) in our framework and using it for classification. Other
unanswered questions include (a) Can we use the parameters used in SansText to predict
the popularity of the protest even before it occurs ? (b) Can we predict if a keyword belongs
to a protest type or not? (c) Can we find a set of parameters from the popularity graphs
that can be optimally used in SansText to make a better prediction?

Bibliography

[Anderson and May, 1991] Anderson, R. M. and May, R. M. (1991). Infectious Diseases of
Humans. Oxford University Press.

[Bikhchandani et al., 1992] Bikhchandani, S., Hirshleifer, D., and Welch, I. (1992). A theory
of fads, fashion, custom, and cultural change in informational cascades. J. Polit.Econ.,
100(5):992–1026.

[Bogdanov et al., 2013] Bogdanov, P., Busch, M., Moehlis, J., Singh, A. K., and Szymanski,
B. K. (2013). The social media genome: Modeling individual topic-specific behavior
in social media. In Proceedings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, ASONAM ’13, pages 236–242, New
York, NY, USA. ACM.

[Borgatti et al., 2006] Borgatti, S. P., Carley, K. M., and Krackhardt, D. (2006). On the
robustness of centrality measures under conditions of imperfect data. Soc. Netw., 28(2):124
– 136.

[Box and Jenkins, 1990] Box, G. E. P. and Jenkins, G. (1990). Time Series Analysis, Fore-
casting and Control. Holden-Day, Incorporated.

[Briesemeister et al., 2003] Briesemeister, L., Lincoln, P., and Porras, P. (2003). Epidemic
profiles and defense of scale-free networks. WORM.

[Briggs and Emden, 1995] Briggs, W. L. and Emden, H. V. (1995). The DFT - an owner’s
manual for the discrete Fourier transform. SIAM.

[Caruana and Niculescu-Mizil, 2006] Caruana, R. and Niculescu-Mizil, A. (2006). An empir-
ical comparison of supervised learning algorithms. In Proceedings of the 23rd international
conference on Machine learning, pages 161–168. ACM.

[Centola, 2010] Centola, D. (2010). The Spread of Behavior in an Online Social Network
Experiment. science, 329(5996):1194.

[Chakrabarti and Faloutsos, 2002] Chakrabarti, D. and Faloutsos, C. (2002). F4: Large-
scale Automated Forecasting Using Fractals. In Proceedings of the Eleventh International

56

Shashidhar Sundareisan Bibliography 57

Conference on Information and Knowledge Management, CIKM ’02, pages 2–9, New York,
NY, USA. ACM.

[Chakrabarti et al., 2004] Chakrabarti, D., Papadimitriou, S., Modha, D. S., and Faloutsos,
C. (2004). Fully automatic cross-associations. In KDD, pages 79–88.

[Chakrabarti et al., 2008] Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., and Faloutsos,
C. (2008). Epidemic thresholds in real networks. ACM TISSEC, 10(4).

[Chen et al., 2010] Chen, W., Wang, C., and Wang, Y. (2010). Scalable influence maximiza-
tion for prevalent viral marketing in large-scale social networks. KDD.

[Cilibrasi and Vitányi, 2005] Cilibrasi, R. and Vitányi, P. (2005). Clustering by compression.
IEEE TIT, 51(4):1523–1545.

[Cooley and Tukey, 1965] Cooley, J. W. and Tukey, J. W. (1965). An Algorithm for the
Machine Calculation of Complex Fourier Series. Mathematics of Computation, 19(90):297–
301.

[Costenbader and Valente, 2003] Costenbader, E. and Valente, T. W. (2003). The stability
of centrality measures when networks are sampled. Soc. Netw., 25(4):283–307.

[Cover and Thomas, 2006] Cover, T. M. and Thomas, J. A. (2006). Elements of Information
Theory. Wiley-Interscience.

[Crane and Sornette, 2008] Crane, R. and Sornette, D. (2008). Robust dynamic classes
revealed by measuring the response function of a social system.

[Faloutsos and Megalooikonomou, 2007] Faloutsos, C. and Megalooikonomou, V. (2007). On
data mining, compression and Kolmogorov complexity. In Data Min. Knowl. Disc., vol-
ume 15, pages 3–20. Springer-Verlag.

[Faloutsos et al., 1999] Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999). On power-law
relationships of the internet topology. In SIGCOMM.

[G-Rodriguez et al., 2010] G-Rodriguez, M., Leskovec, J., and Krause, A. (2010). Inferring
networks of diffusion and influence. In KDD.

[Ganesh et al., 2005] Ganesh, A., Massoulié, L., and Towsley, D. (2005). The effect of net-
work topology on the spread of epidemics. In IEEE INFOCOM.

[Goldenberg et al., 2001] Goldenberg, J., Libai, B., and Muller, E. (2001). Talk of the net-
work: A complex systems look at the underlying process of word-of-mouth. Marketing
Letters.

[Gomez-Rodriguez et al., 2011] Gomez-Rodriguez, M., Balduzzi, D., and Schölkopf, B.
(2011). Uncovering the temporal dynamics of diffusion networks. In ICML.

Shashidhar Sundareisan Bibliography 58

[Goyal et al., 2010] Goyal, A., Bonchi, F., and Lakshmanan, L. V. (2010). Learning influence
probabilities in social networks. WSDM ’10.

[Goyal et al., 2011] Goyal, A., Lu, W., and Lakshmanan, L. V. S. (2011). Simpath: An
efficient algorithm for influence maximization under the linear threshold model. ICDM.

[Gruhl et al., 2004] Gruhl, D., Guha, R., Liben-Nowell, D., and Tomkins, A. (2004). Infor-
mation diffusion through blogspace. In WWW.

[Grünwald, 2007] Grünwald, P. (2007). The Minimum Description Length Principle. MIT
Press.

[Habiba and Berger-Wolf, 2011] Habiba and Berger-Wolf, T. (2011). Working for influence:
effect of network density and modularity on diffussion in networks. ICDM DaMNet.

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Wit-
ten, I. H. (2009). The WEKA Data Mining Software: An Update. SIGKDD Explorations,
11(1).

[Hawkes and Oakes, 1974] Hawkes, A. G. and Oakes, D. (1974). A Cluster Process Repre-
sentation of a Self-Exciting Process. Journal of Applied Probability, 11(3):493–503.

[Hayashi et al., 2003] Hayashi, Y., Minoura, M., and Matsukubo, J. (2003). Recoverable
prevalence in growing scale-free networks and the effective immunization. arXiv:cond-
mat/0305549 v2.

[Hong and Davison, 2010] Hong, L. and Davison, B. D. (2010). Empirical Study of Topic
Modeling in Twitter. In Proceedings of the First Workshop on Social Media Analytics,
SOMA ’10, pages 80–88, New York, NY, USA. ACM.

[Hua et al., 2013] Hua, T., Lu, C.-T., Ramakrishnan, N., Chen, F., Arredondo, J., Mares,
D., and Summers, K. (2013). Analyzing Civil Unrest through Social Media. Computer,
46(12):80–84.

[Jin et al., 2013a] Jin, F., Dougherty, E., Saraf, P., Cao, Y., and Ramakrishnan, N. (2013a).
Epidemiological Modeling of News and Rumors on Twitter. In Proceedings of the 7th
Workshop on Social Network Mining and Analysis, SNAKDD ’13, pages 8:1–8:9, New
York, NY, USA. ACM.

[Jin et al., 2013b] Jin, F., Self, N., Saraf, P., Butler, P., Wang, W., and Ramakrishnan, N.
(2013b). Forex-foreteller: Currency Trend Modeling Using News Articles. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’13, pages 1470–1473, New York, NY, USA. ACM.

[Kempe et al., 2003] Kempe, D., Kleinberg, J., and Tardos, E. (2003). Maximizing the
spread of influence through a social network. In KDD ’03.

Shashidhar Sundareisan Bibliography 59

[Keogh and Kasetty, 2002] Keogh, E. and Kasetty, S. (2002). On the Need for Time Series
Data Mining Benchmarks: A Survey and Empirical Demonstration. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’02, pages 102–111, New York, NY, USA. ACM.

[Kephart and White, 1993] Kephart, J. O. and White, S. R. (1993). Measuring and modeling
computer virus prevalence. IEEE SP.

[Kossinets, 2006] Kossinets, G. (2006). Effects of missing data in social networks. Soc. Netw.,
28(3):247–268.

[Kumar et al., 2003] Kumar, R., Novak, J., Raghavan, P., and Tomkins, A. (2003). On the
bursty evolution of blogspace. In WWW, pages 568–576. ACM Press.

[Lakhina et al., 2003] Lakhina, A., Byers, J. W., Crovella, M., and Xie, P. (2003). Sampling
biases in ip topology measurements. In In IEEE INFOCOM, pages 332–341.

[Lappas et al., 2010] Lappas, T., Terzi, E., Gunopulos, D., and Mannila, H. (2010). Finding
effectors in social networks. In KDD.

[Leskovec et al., 2006] Leskovec, J., Adamic, L. A., and Huberman, B. A. (2006). The
dynamics of viral marketing. In EC, pages 228–237.

[Leskovec et al., 2009] Leskovec, J., Backstrom, L., and Kleinberg, J. (2009). Meme tracking
and the dynamics of news cycle. In KDD.

[Leskovec et al., 2007a] Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen,
J., and Glance, N. S. (2007a). Cost-effective outbreak detection in networks. In KDD,
pages 420–429.

[Leskovec et al., 2007b] Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., and Hurst,
M. (2007b). Cascading behavior in large blog graphs: Patterns and a model. In SDM.

[Levenberg, 1944] Levenberg, K. (1944). A method for the solution of certain non-linear
problems in least squares. Quarterly Journal of Applied Mathmatics, II(2):164–168.

[Maiya and Berger-Wolf, 2011] Maiya, A. and Berger-Wolf, T. (2011). Benefits of bias: To-
wards better characterization of network sampling. In KDD.

[Matsubara et al., 2012] Matsubara, Y., Sakurai, Y., Prakash, B. A., Li, L., and Faloutsos,
C. (2012). Rise and fall patterns of information diffusion: model and implications. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’12, pages 6–14, New York, NY, USA. ACM.

[Matthews, 1975] Matthews, B. (1975). Comparison of the predicted and observed secondary
structure of {T4} phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struc-
ture, 405(2):442 – 451.

Shashidhar Sundareisan Bibliography 60

[Nishiura et al., 2011] Nishiura, H., Chowell, G., and Castillo-Chavez, C. (2011). Did mod-
eling overestimate the transmission potential of pandemic (h1n1-2009)? sample size esti-
mation for post-epidemic seroepidemiological studies. PLoS ONE, 6(3):e17908.

[Papalexakis et al., 2013] Papalexakis, E. E., Dumitras, T., Chau, D. H. P., Prakash, B. A.,
and Faloutsos, C. (2013). Spatio-temporal mining of software adoption & penetration. In
ASONAM, pages 878–885.

[Pastor-Santorras and Vespignani, 2001] Pastor-Santorras, R. and Vespignani, A. (2001).
Epidemic spreading in scale-free networks. Phys. Rev. Let. 86, 14.

[Prakash et al., 2011] Prakash, B. A., Chakrabarti, D., Faloutsos, M., Valler, N., and Falout-
sos, C. (2011). Threshold conditions for arbitrary cascade models on arbitrary networks.
In ICDM.

[Prakash et al., 2010] Prakash, B. A., Tong, H., Valler, N., Faloutsos, M., and Faloutsos,
C. (2010). Virus propagation on time-varying networks: Theory and immunization algo-
rithms. ECMLPKDD.

[Prakash et al., 2012] Prakash, B. A., Vreeken, J., and Faloutsos, C. (2012). Spotting cul-
prits in epidemics: How many and which ones? In ICDM. IEEE.

[Rabiner and Juang, 1993] Rabiner, L. R. and Juang, B.-H. (1993). Fundamentals of speech
recognition. Prentice Hall signal processing series. Prentice Hall.

[Rakthanmanon et al., 2013] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G.,
Westover, B., Zhu, Q., Zakaria, J., and Keogh, E. (2013). Data Mining a Trillion Time Se-
ries Subsequences Under Dynamic Time Warping. In Proceedings of the Twenty-Third In-
ternational Joint Conference on Artificial Intelligence, IJCAI’13, pages 3047–3051. AAAI
Press.

[Rattanaritnont et al., 2012] Rattanaritnont, G., Toyoda, M., and Kitsuregawa, M. (2012).
Characterizing topic-specific hashtag cascade in twitter based on distributions of user
influence. In Proceedings of the 14th Asia-Pacific International Conference on Web Tech-
nologies and Applications, APWeb’12, pages 735–742, Berlin, Heidelberg. Springer-Verlag.

[Richardson and Domingos, 2002] Richardson, M. and Domingos, P. (2002). Mining
knowledge-sharing sites for viral marketing.

[Rissanen, 1983] Rissanen, J. (1983). Modeling by shortest data description. Annals Stat.,
11(2):416–431.

[Romero et al., 2011] Romero, D. M., Meeder, B., and Kleinberg, J. (2011). Differences
in the mechanics of information diffusion across topics: idioms, political hashtags, and
complex contagion on twitter. In Proceedings of the 20th international conference on
World wide web, WWW ’11, pages 695–704, New York, NY, USA. ACM.

Shashidhar Sundareisan Bibliography 61

[Sadikov et al., 2011] Sadikov, E., Medina, M., Leskovec, J., and Garcia-Molina, H. (2011).
Correcting for missing data in information cascades. In WSDM. ACM.

[Sakaki et al., 2010] Sakaki, T., Okazaki, M., and Matsuo, Y. (2010). Earthquake shakes
Twitter users: real-time event detection by social sensors. In Proceedings of the 19th
international conference on World wide web, pages 851–860. ACM.

[Salathé et al., 2012] Salathé, M., Bengtsson, L., Bodnar, T. J., Brewer, D. D., Brownstein,
J. S., Buckee, C., Campbell, E. M., Cattuto, C., Khandelwal, S., Mabry, P. L., and
Vespignani, A. (2012). Digital epidemiology. PLoS Comput Biol, 8(7):e1002616.

[Shah and Zaman, 2010] Shah, D. and Zaman, T. (2010). Detecting sources of computer
viruses in networks: theory and experiment. In SIGMETRICS, pages 203–214.

[Shah and Zaman, 2011] Shah, D. and Zaman, T. (2011). Rumors in a network: Who’s the
culprit? IEEE TIT, 57(8):5163–5181.

[Shen et al., 2014] Shen, H.-W., Wang, D., Chaoming, S., and Barabsi, A.-L. (2014). Mod-
eling and predicting popularity dynamics via reinforced poisson processes. In The Twenty-
Eighth AAAI Conference on Artificial Intelligence. AAAI.

[Stewart and Sun, 1990] Stewart, G. W. and Sun, J.-G. (1990). Matrix Perturbation Theory.
Academic Press.

[Sundareisan et al., 2014] Sundareisan, S., Rao, A., Khan, M. A. S., Ramakrishnan, N., and
Prakash, B. A. (2014). Sanstext: Classifying temporal topic dynamics of twitter cascades
without tweet text. In Proceedings of IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining - 2014 (to appear). ACM.

[Tong et al., 2010] Tong, H., Prakash, B. A., Tsourakakis, C. E., Eliassi-Rad, T., Faloutsos,
C., and Chau, D. H. (2010). On the vulnerability of large graphs. In ICDM.

[Vreeken et al., 2011] Vreeken, J., van Leeuwen, M., and Siebes, A. (2011). Krimp: Mining
itemsets that compress. Data Min. Knowl. Disc., 23(1):169–214.

[Wu et al., 2011] Wu, L., Ying, X., Wu, X., and Zhou, Z.-H. (2011). Line orthogonality in
adjacency eigenspace with application to community partition. In IJCAI.

[Yang and Leskovec, 2011] Yang, J. and Leskovec, J. (2011). Patterns of temporal variation
in online media. In Proceedings of the fourth ACM international conference on Web search
and data mining, pages 177–186. ACM.

Appendix - Division of Hashtags

Division of Hashtags/Keywords among topics

In Section 3.6.1, we used hashtags for different topics for the Popular dataset. We list the
topics-wise division of hashtags below in Table A1.

Sports Tech Idiom Flu Political
#barcelona #apple #3palabrasdolorosas #saude #caprilespresidente
#deportes #blackberry #dudasquenomedejandormir #salud #caprilesvenezuelayelmundoestacontigo
#emelec #fb #ff #paciente #chavez
#f1 #google #hedicho #medicina #copalibertadores
#futbol #instagram #mafaldaqoutes #hospital #educacionliberadora
#halamadrid #iphone #matirasmasudas #gripe #elecciones2012
#libertadores #soundcloud #siguemeytesigo #flu #fraudeenvenezuela
#londres2012 #technologia #sumapuntos #fiebre #guatemala
#millos #tuitutil #sumapuntosque #enfermedad #hayuncamino
#olimpia #twitter #sumapuntossi #dolores #news
#realmadrid #virtualmall #estres #noticias

#youtube #seguidores
#tropa
#veracruz
#vota

Table A1: Hashtags for Popular Dataset

62

Shashidhar Sundareisan Appendix 63

In Section 3.7.1, we used keywords that belong to different protest types in Task 1. We
show the division of the keywords below in Table A2.

Non-Violent Other Non-Violent Energy Violent Energy Non-Violent Violent Other
Government Policies and Resources and Resources Other
aeroporto cantar cantar aeroporto aeroporto
cantor Carlo Dutra Dutra Carlo
carlo Dutra estimativo exibir cobrador
existir existir existir marcado Dutra
friograndedesul marcha guarda marcha estimativo
guarda minuto marcado matar exibir
marcha Rio Grande do Sul marcha Rio Grande do Sul guarda
matar sociedade pedra Sorocaba marcado
minuto Sorocaba torcedor matar

torcedor pedra

Table A2: Keywords for Protest Task 1

