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I. INTRODUCTION 

The Nonlinear programming problem [NLP] can be stated as follows: 

Let f;(X) = fi (Xl' X2, ... , Xn) be a continuous real valued function 

of n variables for each i = 0, 1, ... , m. The problem is to find, 

within a reasonable approximation a value of M defined by: 

M = lnf {f(X) : XES}, 

where set S is the constraint set 

S = {X : h. (X) < 0, i > O} . 
1 -

Most of the work done in the area of NLP has been restricted to 

determining the necessary and sufficient conditions for optimality 

under various assumptions about the functions hi' i = 0, 1, ... , m. 

The practical importance of the problem has led to the development of 

numerous algorithms for solving some subset of the problem stated 

above. However, relatively little work has been done in lithe study of 

the process of solution, that is, of the nature and rate of convergence 

of a particular procedure for solution applied to a particular type 

of prob 1em!!. [17] 

Two questions regarding convergence may be asked of each algorithm, 

name ly, 

a) Does the algorithm converge to the optimal? 

b) How fast does it converge? 
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Most designers of algorithms provide a proof for its convergence. 

Some merely state that no proof is available, however, they claim that 

in all practical applications it is found to converge [7]. Zangwil1 

[18] has recently presented a comprehensive theory of convergence. 

Within the framework of this theory the proofs of convergence have been 

great ly simp 1 i fi ed. However, even Zangw'ill, in referri ng to the rate 

of convergence, merely says that one procedure is 'better ' than the 

other. There are but a few algorithms for which the task of determin­

ing the rate of convergence has been accomplished. It is this specific 

question on the rate of convergence that this research will address 

itself to. 

1. Importance of Study 

Numerous algorithms have been designed for the solution of 

specific nonlinear programming problems. Computer routines are avail­

able for many of these algorithms. In deciding which algorithm to use 

for a given set of problems, consideration must be given to the 

following aspects: 

a) Availability of packaged program 

b) Familarity with algorithm 

c) Amount of computation per iteration 

d) Convergence of algorithm 

e) Rate of convergence of algorithm 

f) Accuracy of the computation. 

If it is required to solve only a very few problems, then the 

choice invariably ;s to select the algorithm for which a packaged 
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program is available. If several packaged programs are available~ 

then the most familiar or convenient to use algorithm is selected. 

However, if an algorithm has to be used repeatedly! as in a production 

control type situation, then importance is given to the convergence 

and computational aspects of the algorithm. Even here! there may be 

situations where the accuracy of the result is very important. In such 

cases the user may be willing to preserve accuracy at the cost of 

increased computations or slow convergence. Again, there are algorithms 

which achieve a better rate of convergence as a result of increased 

computations per iteration. The Newton-Raphson procedure, for example, 

has a poorer convergence rate than the related higher order procedure 

(both discussed in Chapter III), but the latter requires more computa­

tion. If, for the specific problems, it is found that the rate of 

convergence is not appreciably better for the higher order procedure, 

then its additional computational effort may not be justified. Barring 

these exceptions, an algorithm with a better rate of convergence is 

always preferred. 

Thus, the rate of convergence of an algorithm is an important and 

useful measure of its performance. Prior knowledge of the rate of 

convergence of the algorithms permits a comparison of their performance. 

It is clear that in order to make a comparison amongst algorithms, the 

rates of convergence for all of them must be made available. This 

research is an effort towards that end. 
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2. Specific Objectives of the Research 

The NLP has the following three principal solution procedures: 

a) Solution procedures that reduce the constrained problem to an 

equivalent problem without constraints. The methods of Lagrange, 

Fiacco and McCormick, and Hildreth serve as examples. 

b) Methods that have the solution point moving from one vertex 

to another along an edge of the constraint set. These may result from 

approximating the nonlinear problem by a sequence of linear problems. 

The algorithms by Wolfe, and Beale fall into this category. 

c) Methods where the move is in the interior of the feasible 

region, i.e., the solution procedure does not necessarily move along 

the edge. Examples of this type are algorithms by Zoutendijk, Rosen 

and Greenstadt. 

It is proposed to study the rate of convergence of some of the 

algorithms in this classification by types. The objective is to obtain 

expressions from which the rate of convergence for the algorithm may 

be computed. In choosing the algorithm for study, effort was made to 

ensure that at least one algorithm came from each classification above. 

The specific algorithms studied are listed below with a brief explana­

tion for its choice. 

1) Newton-Raphson method: A NLP problem can readily be reduced 

to a system of nonlinear equations by the method of Lagrange or by some 

penalty function type method. The Newton Raphson procedure provides 

an iterative scheme for solving the system of nonlinear equations. It 

is proposed to study the rate of convergence of the Newton-Raphson 
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procedure for both scalar and multivariate functions. A higher order 

procedure which is a natural consequence of the Taylor series expansion 

is also studied. This study is presented in Chapter III. 

2) Simplex Method: Even though the simplex method is used only 

for linear problems, its study is included since it forms the root 

of many nonlinear algorithms. This is a type (b) algorithm, and its 

rate of convergence is presented in Chapter IV. [The original objec-

tive was to find an explicit expression for the rate of convergence. 

Failing to find satisfactory results, the objective was reduced to 

finding an expression for the improvement in the objective function 

in terms of the or; gi na 1 problem, rathe r than i ntermedi ate computa­

tions.] 

3) Gradient Method: Since gradient techniques are so basic in 

. nonlinear programming and form the basis for many directional proce­

dures, its study as a type (c) algorithm was considered desirable. 

Chapter V deals with the performance of the optimal gradient method 

for quadratic programming problems and the results for the optimal 

gradient method are generalized for any directional method. 

4) 
~ 

Rosen's Method: This is a type (c) algorithm depending on 

the gradient method. The rate of convergence for Rosen's algorithm, 

under very strict assumptions about the computational procedure, are 

available in the literature [15]. In this study an effort was made to 

find better estimates of the rate of convergence under less stringent 

assumptions. The result of the study is presented in Chapte~ VI. 
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3. Approach 

There is no unified or single approach in determining the rate of 

convergence and thus each algorithm must be treated on its own merits. 

The idea is to try and find the lower and upper bounds for the ratio 

of f(Xk+l ) to f{X k) in terms of the iteration number k or the data 

available at the first iteration (f(Xk) is the value of the objective 

functi on at the k th i terati on). In vi ew of th is, a common start; ng 

poi nt- ; s to express f(X k+ 1) in terms of f( Xk). Beyond thi s, there 

is no similarity between procedures and each algorithm has to be 

treated according to its computational features. 

4. Summary of Prev; ous t~ork 

In the area of rate of convergence of NLP algorithms Kantorovich 

[9J first established that the gradient method converged at the rate 

of a geometric progression for quadratic functions. Akaike [1] showed 

that the best convergence for the gradient method for quadratic func-

ti ons was of the same form as gi ven by Kantorovi ch for the vlors t 

convergence. Cannon and Cullum [3J showed that the slowest and the 

fastest convergence for the Frank-Wolfe algorithm had the same form. 

Similar results are presented by t~olfe [17] for Kelly's cutting plane 

algorithm and for the decomposition algorithm. Rosen [15J, under very 

strict assumptions of the computational procedure, presented a lower 

bound on the rate of convergence of his method. These are the only 

algorithms for which the task has been accomplished [17]. 



II. SOME BASIC CONCEPTS IN CONVERGENCE 

This chapter is devoted to def"ining certain tenns and theorems 

which will be found useful in subsequent chapters. The material of 

this chapter is particularly useful for the developments presented in 

Chapter III. References [2J, [5J, [6J, [9], [13J and [17J were used 

in compiling the information presented herein. 

Convergence theorems must deal with the following two questions 

regarding convergence: 

;) Does a procedure converge? If so, under what conditions? 

ii) Does it converge to the correct solution? 

Theorem 2. 1 on page 8 dea ls wi th the second questi on regard; ng con­

vergence. This theorem defines a condition which assures that an 

iterative procedure, if convergent, will converge to the correct solu­

tion. The iterative procedures in Chapter III meet the requirements 

of th; s theorem. 

Theorem 2.2 on page 9 addresses i tse 1 f to the second ques ti on. 

It presents a set of sufficient conditions for the convergence of an 

iterative procedure. The discussion following the theorem demonstrates 

a simple test to establish convergence. In essence, in order to estab­

lish convergence t one need only show that the derivative of an equiva­

lent form is less than unity in the neighborhood of the solution and 

that the starting point lies in this neighborhood. This particular 

result is used in Chapter III to establish the convergence for scalar 

functions. Theorem 2.3 on page 12 is a multivariate generalization of 

7 
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Theorem 2.2 and is used for the multivariate cases in Chapter III. 

The following terms need to be defined before the statement of these 

theorems: 

Definition 2. 1 -- Convergent Sequence: A sequence is said to 

be convergent if it has a limitt otherwise it is divergent. 

Definition 2.2 -- Rate of Convergence: The rate of convergence 

is some quantity that permits one to predict t given the worst situa­

tions t how hard it will be to solve a problem. It is therefore a 

quantity that provides a bound for the slowest convergence. 

Definition 2.3 -- Order of Convergence: If a sequence produced 

by an algorithm asymtot;cal1y satisfies a relation of the fonn 

where C and M are constants, then p is called the order of convergence. 

Definition 2.4 -- Equivalent Forms: Two equations are said to be 

equivalent if they have the same roots. If f(x) = 0 and x = g(x) are 

equivalent forms, then the second relation suggests an iterative 

procedure 

Theorem 2. 1 

1 f f(x) = 0 

and x = g(x) 

( 2. 1 ) 

(2.2) 

(2.3) 
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are equivalent forms~ and if the sequence represented by (2.1) con­

verges to a limit L, then x = L is a solution to (2.2). 

Proof: Taking the limit of (2.1) as i 4 00 gives L = g(X)~ which is 

a solution to (2.3) and, by definition, each solution to (2.3) is also 

a solution to (2.2). 

Definition 2.5 -- E-neighborhood: The II E- ne ighborhood" of L, 

denoted by N(L,E), where E > 0, is defined by 

N(L,E) = {x : lX - LI < £} • 

Theorem 2.2 

If f(x) = a and x = g(x) are equivalent forms and g(x) is 

analytic at x = L, where L is the solution to these 

equations, 

and if there exist two positive numbers and K such that K < 1 

for whi ch 

Ig(x) - g(L) I < Klx - L[ for all xt:N(L,E), (2.4) 

and if Xo is a point in N(L,E), 

then the sequence xo' xl' x2' ... , which is defined by 

x;+l = g(x;), will converge to L. 

The proof of this theorem is presented by Macon [13J. A more 

important consequence, which is used;n Chapter III, is now illustrated. 

Consider a sequence xo' Xl' x2' 

notation: 

Then, in terms of the previous 
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L ~ xi +l = g(L} - g(x;) . 

It is known from the mean value theorem that there exists a value 

ei lying between xi and L, such that 

I 
L - xi +l = (L - xi)g(e;) . 

But as i + 00, then xi + L and hence, ei + L. Thus as ~ 00, then 

We note that if gl(L) < 1, then the condition (2.4) of theorem 2.2 

is satisfied for any K in the range gl (L) ~ K < 1. Thus, in order to 

establish convergence, one need only show that gl(L) < 1, and that 

the starting point is in the required neighborhood. 

The definition of order of convergence given earlier is difficult 

to use. A more convenient definition may now be obtained by a Taylor 

series expansion of g(x) as follows: 

or, 
I (x - L)n-l n-'(L) 

g(x) - g(L) = (x - L)g (L) + ... + {n _ lJ! . 

If we now consider only the first non-zero term on the right hand 

side, then definition 2.3 is satisfied. Hence the order of convergence 

may be redefined as 
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If g'(L) = g2(L) = ... = g(p-1)(L) = 0 and 

gP(L) 1 0, then the convergence is said to be of order p. 

Theorem 2.2 and its subsequent discussion deals only with a single 

variable case. The entire discussion can be extended to include the 

n-variable case. 

Define F(X) = a to be the system of nonlinear equations to which 

a solution is desired and ~(X) to be the matrix of first partials of 

F(X). Also, define X = G(X) to be an equivalent form of F(X) = O. 

That is, 

F( X) = ¢ (X) = 

G (X) = and e(X) = 

\/f,(X) 

vf
2

(X) 

';/9, (X) 

"792(X) 

79 (X) n 

Define N(X) as the vector nann of X and N(A) the corresponding matrix 

norm. Then vole may state the following theorem: 
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Theorem 2.3 

If F(X) = 0 and X = G(X} are equivalent forms, and if, 

1) G(X) is defined and has continuous first derivatives for X 

in a convex domain R, 

2) N(e(X») ~ K < 1, for all X~R, 

then the iterative process defined by X = G(X) converges to the solu­

tion of F(X) = O. 

Proof: The proof may be found in John [9]. 



III. NEWTON-RAPHSON PROCEDURE 

The Newton-Raphson method is useful in solving a system of non­

linear equations. In NLP systems of nonlinear equations may arise in 

the optimization of unconstrained problems. An example is the euclidean 

facility location problem for single or multiple facilities. Also, 

the Lagrange method for constrained optimization, reduces the con­

strained problem to an equivalent problem without constraints. Then, 

taking the partial derivatives of the equivalent problem with respect 

to all the variables and setting them equal to zero again results in 

a system of nonlinear equations. There are thus a wide variety of 

problems that lend themselves to solution by the Newton-Raphson proce­

dure. 

The Newton-Raphson method has convergence of order two. However, 

for a single variable problem this procedure is applicable only to 

functions which have a non-zero first derivative arbitrarily close to 

the solution. [In a n-variable problem, the Jacobian determinant of 

the function should be non-zero.] In order to use the Newton-Raphson 

procedure, only the first partial derivatives of the nonlinear system 

of equations need to be computed. The rate of convergence may be 

improved by calculating higher order derivatives. However, increased 

rate of convergence comes at the cost of extra computations per itera­

tion. A higher order method which ;s closely related to the Newton­

Raphson method is suggested ;n section 2. The rate of convergence of 

both the Newton-Raphson procedure and a related higher order procedure 

13 
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are studied in this dissertation and no attempt is made to determine 

if the increased rate of convergence of the higher order procedure in 

fact justifies the increased computations. 

The convergence of both procedures is established from the results 

of theorems 2.2 and 2.3. Thus, it is necessary for both procedures 

that the starting point lie within the circle in which the function 

defining the iterative procedure satisfies the conditions of the above 

theorems. 

1. Newton-Raphson Method for Scalar Functions 

The contents of this section follow the presentation in Macon [13]. 

* The Newton-Raphson method is used to find the solution x , to f(x) = o. 
The procedure defines an equivalent form as 

g(x) = x - ~}(~)' if f' (x) 'I 0 . 

Differentiating (3.1) gives 

Since 

then 

g • (x) = 1 _ f :J~} + f (x ) f II ( x) = 
f'TxT [ft (x)]2 

* f(x ) = 0 , 

* 9 I (x ) = 0 . 

f(x)fll(x) 
[f' (x)]2 

(3.1) 

(3.2) 

(3.3) 

Referring to theorem 2.2 and the contents of Chapter II, equation 

(3.3) estab"lishes the convergence and indicates that the orocedure is 

at least of order two. 
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Taking the second derivative results in 

= f ( x ) [ f I (x)] 2 f3 (x) + [f I (x) J 3 fll (x) - 2 f ( x ) f I (x) [ f II (x) ] 2 

[f' (x)]4 

* * We note that at x = x , f(x ) = 0 . 

* Hence, gil (x *) = f" (4- . 
f' (x ) 

(3.4) 

Equation (3.4) indicates that the procedure is of order two and that 

the error may be approximated by 

* 2 * * (x. - x ) fll (x) 1 * 2 * 
(xi +1 - x ) = 1 * = "2 (Xi - x ) g"(X ) . (3.5) 

2f I (x ) 

Thus the rate of convergence may be measured by 
* ~l I 2! I and we 

observe that the smaller this value, the faster the convergence. 

2. Higher Order Method for Scalar Functions 

A higher order method, closely related to Newton-Raphson method 

is derived from the Taylor series expansion for a function. The Taylor 

series expansion for f(x i + h) is 

2 
f (x. + h) = f ( x .) + h f t (x .) + L2 f" (x,,) + ... 

1 1 , 

At the solution point, f(x i + h) = O~ which yields 
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(3.6) 

Equation (3.6) suggests the iterative procedure shown in equation 

(3.7). Tak"ing the positive sign, the function g(x) may be defined as: 

g(x) = x + {- f' (x) + j [f' (x}]2 - 2f(x)f"{x)} 
f" (x) . (3.7) 

Clearly the procedure requires the computation of second-order deriva­

tives to define the new point. Now, letting R equal the quantity 

under the radical and proceeding as in section 1, gives 

or 

g I (x) = 1 + - f'L~ 1 2f' (X)fll(X) - 2fll(x)fll(x) 
-fTITXY + "2 . /R" fll (x) 

9 t (x) 

1 - 2f(x)f3(x) 
+ 2"' IR f" (x) 

f(x)f3 (x) 

Iff fll(X) 

(- f t (x) + /R) . f3 ( x ) ) 
[fll(X)]2 

(- f I (x) + /R) f3 Cd. 
[fll(x)]2 

(3.8) 
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* Since f(x ) = 0, then 

* gl(X ) = - (- f' (x) + f ' (x)f3(x) = 0 . 
[fll(X)]2 

Aga"in, by theorem 2.2 we conclude that the higher order procedure 

converges and that the order of convergence is at least two. To obtain 

the exact order, the next higher derivative needs to be calculated. 

Thus, 

f ' (x)f3{x) + f(X)f4(x) 
/R fll(X) IR fll(X) 

f ( x ) [ f3 ( x ) ] 2 

/R [fll (x)]2 

2 '"I 2 
+ [f(x)] [f~(x)] + (IR _ f'(X) 

f"(X)R3/ 2 

_ 2[f3hli 
[fll(X)]3 

* * Again, at x = x , and f(x ) = 0 

* gives g"(X) 0. 

_ fll{X) + f(x)f
3
(x) 

/R" 

Hence, the convergence is at least of order 3, and the next higher 

derivative needs to be calculated. 
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* d Noting that f(x ) = 0 and dx [ ~] * x=x 

and that, IR * * = fl(x ), it can be shown that 
x=x 

* when fl(x ) r 0 . 

= 0 

(3.9) 

Equation 3.9 indicates that convergence ;s of order 3 and the rate 

of convergence may be measured by or 
3 * 

I f (~ ) i 
f' (x )3! 

the 

smaller the value, the faster the convergence. 

The higher order procedure discussed here results as a natural 

consequence of Taylor series expansion. There are several higher order 

procedures cited in literature. As far back as 1838 Chebyshev (0. 142 in 

[2J) proposed a method based on a representation of the inverse func­

tion of f(x). A method for obtaining higher order iterations from one 

or two iterations of the same order was proposed by Aitken (p. 148 in 

[2]). Thus, if x = ~l(x) and x = ¢2(x) are two iterative schemes 

of the same order, a higher order procedure ¢(x) is given by 

,p (x) 
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3. Newton-Raphson Method for Multivariate Functions 

The general multivariate case for Newton-Raphson method is rarely 

treated in literature and, to the best of the author1s knowledge, this 

particular simplified approach has not been used. The computational 

detai 1 s of the procedure may be found i n \~i 1 de and Bei ghtl er [16]. 

The development of the rate of convergence follows. Let F(X) = 0 

* be a system of nonlinear equations to which a solution X is desired. 

Define F(X), G(X), ¢(X), and o(X) as in Chapter II. Then, the itera-

tive formula may be defined as 

G(X) = X + o(X) , 

where 

o(X) is a solution to 

F(X) + ~(X)o(X) = 0 and I (X) I 1- 0 . 

Differentiating 3.10 results in 

ax. 
1 

[X] + c5(X) ax. 
1 

for i = 1, 2, ... ~ n 

In view of theorem 2.3, in order to prove convergence, it is 

sufficient to show that 

Norm [e(X)] < 1 , 

which is accomplished below. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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d In order to establish (3.13) the value of ~ 6(X) must be ox. 
1 

calculated for use in equation (3.12). The value of d~' 6(X) may be 
1 

obtained by differentiating (3.11). 

Thus, 

a~. F(X) + ¢(X) d~' 8(X) + ax. ¢(X)6(X) = 0 
1 1 1 

for i = 1, 2, ... , n . 

* * Noting that at X = X , 8(X) = 0 , 

gives 

a * *" * ax. F(X ) + ¢(X ) u~. 6(X ) = 0 fo r i = 1, 2, ... ~ n 
1 1 

Equation (3.15) represents a system of n2 equations which may be 

rewritten as: 

or, 

n 

fk(X) + _.3_ f (X)~· o.(X) + '\ ax. dX. k ax. 1 L 
1 "I 1 

* Vi, Vk at X = X . 

j=l 
jtl 

* ~i, ¥k at X = X 

(3.14) 

(3.15) 
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This last equation may conveniently be represented in matrix form as 

~(X) 

[1 + 

Since ~(X) by assumption is non-zeros it implies that, 

"\ 0J'(X) = 0 ox. 
1 

V. 
1 

V., ¥,.4' • 
1 J rl 

Substitution of equation (3.16) in (3.12) establishes that 

* ax. G(X ) = 0 Vi • 
1 

== [OJ 

(3.16) 

Hence, Norm [e(X)J < 1 and the procedure converges with an order of 

at least two. To establish the exact order, the higher order partial 

derivative is computed next. Differentiating equation (3.14), and 

* noting that o(X) = 0, we obtain 
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(3.17) 

Also equation (3.12) indicates that 

a a a a 
x. ax. G(x) ::: ;)X. aX. o(X) • 

1 J 1 J 
(3.18) 

From equation (3.17) and (3.18) we can conclude that -" - _ .. '- G(X) is 
dX. X. 

1 J 

other than zero and hence the procedure is in fact of order two. 

Again, the error may be approximated by a Taylor series expansion which 

yi e 1 ds : 

where D is an operator defined as 

n 

D::: I 
i=1 

E,'(Xk) d ax. 
1 

and Ei(Xk) is the ;th component of the error vector at the kth itera­

tion. This last equation gives an estimate for the rate of convergence 

of the procedure. 
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4. Higher Order Procedure for Multivariate Functions 

The higher order procedure defined for scalar functions in section 

2 may be generalized for multivariate functions. The iterative process 

for an n-vector X is given by 

G(X) = X + o(X) , 

where o(X) is the solution 

The 

2 

F(X) + I -+ OiF(X) 
1 • 

i =1 

operator D is 

n 

o = I 
j=l 

(X) )x. 
J 

to 

= a . 

and 8i (X) is the ;th component of o(X) . 

(3.19) 

(3.20) 

Whereas for scalar functions a higher order procedure may be 

found useful, in the case of multivariate functions it can be a form-

idable task to get a solution to (3.20), thereby reducing its 

usefulness. It is obvious that the computations required to solve 

equation (3.20) will be significantly greater than that required to 

solve equation (3.11) for the Newton Raphson procedure. The solution 

of equation (3.11) in itself is no easy task. It requires the compu­

tation of the inverse of the matrix (X), a task that increases rapidly 

in magnitude with the size of the matrix. The computations of the 
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inverse also propogate round off errors thereby preventing the solu­

tion to be reached with a desired degree of accuracy [2]. Since the 

simpler equation (3.11) presents such undesirable traits for large 

size problems, it would indeed be unwise to even attempt to solve 

equation (3.20). In view of this) it was decided not to pursue the 

rate of convergence for this method. For,multivariate functions the 

gradient method offers a useful procedure for the solution of a system 

of equations, and gives the required solution with a desired degree 

of accuracy. Its rate of convergence for solution to linear systems 

is discussed in Chapter IV. 



IV. THE SIMPLEX ALGORITHM 

The simplex algorithm has been used extensively for the solution 

of linear problems with linear constraints. Further, there are solu­

tion procedures for the nonlinear problem, like those by Beale, Barkin 

and Dorfman, Frank and Wolfe, which depend heavily on the simplex 

algorithm. It has been established that the simplex method converges 

in a finite number of steps, but it is more difficult to establish a 

rate of convergence for this algorithm. Klee [llJ has obtained esti­

mates for the maximum number of iterations for problems of a given 

size. He found that the rule which, at each step, maximizes the 

gradient in the space of non-basic variables requires, for an n 

variable m equality constraint problem, as many as m{n - m - 1) + 1 

iterations. By contrast, a second rule which, at each step, tries 

to maximize the improvement in the objective function requires at most 

m iterations if m : n - 2, at most [3m/2J if m = n - 3, and 2m -

if m n - 4. However, these estimates have not been definitely 

established as the maximum in question. 

The rate of convergence of the simplex algorithm may also be 

estimated by the improvement in the objective function between succes­

sive iterations. The aim of the development in this chapter is to 

find an expression for the improvement in the objective function. The 

usefulness of the expression is increased if it is in terms of the 

original problem rather than intermediate computations. The final 

expression obtained in equation (4.14) is in terms of the ori ina! 

25 
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problem. In the paragraphs to follow, the linear programming problem 

is stated, a set of notations is defined, and in terms of these nota-

tions the development necessary to arrive at equation (4.14) is 

presented. 

The linear programming problem may be stated as: 

Minimize 

subject to 

f(X) = (C,X) 

AX = b . (4.1) 

The computations of the simplex algorithm are first expressed in 

terms of the product form of inverse. The following notation is used: 

B - the present basis 

N - the columns of A not included in B 

E, N - corresponding matrices for the new basis. 

A, X and C can be expressed in terms of the basis as 

A = (BIN) = (BIN) 

X = (XB!XN), where XB are the variables associated with the 

basis B 

C = (CBleN), where CB are the cost-coefficients associated 

with the basis Band CN the cost-coefficients not associ­

ated with the basis B 

C = the cost-coefficient associated with column 5 s 

Also define 
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r = the index of the departing variable 

s = the index of the entering variable 

P. = the column of A associated with variable j 
J 

s· 1 
= the row of B- 1 associated with variable i 

a .• = the elements of A during intermediate computations) and 

= (4.2) 

-ams 

K. 
1 

= - ais(ars i =1 r (4.3) 

Kr = liars 

K, 

K2 

K = (4.4) 

(K. 
1 

- 1) 

and f(XB) = the value of the objective function when B is the basis. 

In the deve10pment that follows the objective is to find an expression 

for the improvement in the objective function between successive 

iterations, i.e., an expression for f(X B) - f(XS)' 
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Also, 

and 

KS r is an mxm square matrix. 

a 
a 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

It is possible to express the new inverse in the terms of the old 

inverse as follows: 

B -1 = [B- 1 + Ks ] 
r (4.9) 

a 1 so, 

and 

( ) ( ) T - -1 
f Xg C13 , XYr :::: CIf B b. 
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Then, 

Using (4.8) and (4.9) gives 

Now, using (4.2), (4.3) and (4.4) gives 

and 

e eT
B 

(KSr)b == ____ + _r_ Q b 
- t-'r ' -ars ars 

CTT (B- 1 + KB )b = (C - c ) s b + (C - c ) r s r r s r 

= --_-- Srb . 
ars 

)b 

Combining equations (4.10), (4.11) and (4.12) results in 

[C~ B-1 
JSrb 

f(X B) - f(XS) ::; --------
ars 

Let Vs be the value at which the variable s enters the solution, 

then 

(4.10) 

(4.11) 

(4.12) 
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Hence, 

(4.13) 

Equation (4.13) describes the improvement in the objective func-

tion between successive iterations of the simplex procedure. This 

improvement is in terms B- 1, the inverse of the basis matrix. The 

usefulness of (4.13) increases if it can be expressed in terms of the 

basis B. The matrix B in general is neither symmetric nor positive 

definite. Since eigenvalues of symmetric positive definite matrices 

are most convenient to work with, an effort is now made to find a 

symmetric positive definite matrix that may be substituted instead 

of B. However, the following lemma's first need to be established. 

LEMMA 3.1 The eigenvalues of a positive definite symmetric matrix 

are real and positive. 

Proof: The proof may be found in Hadley [8J. 

LEMMA 3.2 The eigenvalues of B- 1 are the reciorocals of the eigen-

values of B. 

Proof: Let B be a square matrix with its characteristic equation given 

by f(A) = O. 

Now, 
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If F(A) = 0 is the characteristic equation of B- 1 

then F(),) = 0 implies that f(f) = 0 . 

This shows that the eigenvalues of B- 1 are the reciprocals of the 

eigenvalues of B. 

LEMMA 3.3 

Define the norm of a vector X and a matrix A as follows: 

Ixl = (X, X)1/2 

I IAI I = ~ 

* * where An is the largest eigenvalue of A A and A is the complex con-

jugate of A. 

Then, 

I AX I _ I I A I I . I X I = ~ I X I 

Proof: The proof may be found in Fadeev and Fadeeva [5J. 

* T Note that for any matrix A, if all aij are real, then A = A. Lemma 
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3.3 will be used in the subsequence development to get the estimate for 

the improvement in the objective function. Lemmas 3.1 and 3.2 are 

used to establish the following lemma. 

LEMMA 3.4 

The inverse of the arithmetically smallest eigenvalue of BBT is 

equal to the largest eigenvalue of (8-')T(8- l ). 

Proof: Let A = SBT, then A is symmetric and A- 1 = (B-')T(B- l ). To 

show that A is positive definite, observe that 

Since A is symmetric and positive definite, the lemma follows directly 

by applying lemmas 3.1 and 3.2. 

Having established these lemmas, we now return to the task of 

finding an estimate for f(X B) - f(Xs)' Going back to equation (4.13), 
-1 the term eBB Ps may now be estimated as follows: 

where ~ ;s the largest eigenvalue of (B- 1)T(B-'). 

But by lemma 3.5 ~ = , 
n~ 

o 

where ~O is the smallest eigenvalue of BBT. Hence, 



i 
-1 I IPs I B P <--

S - r.::­
vAO 

whi ch g1 ves ... 
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Equation (4.13) now reduces to 

(4.14) 

Equation (4.14) gives an estimate of the improvement in the objective 

function between successive iterations in terms of the basis B. A 

maximal estimate of the right hand side may be obtained by substituting 

maximum value for ICB' and a minimum value for AO' for all possible 

bases B. The expression in (4.14) has direct application in linear 

programming problems that have bounded variables t where a maximal 

estimate of Vs is readily available. It is also useful in real world 

situations where a system is presently operating at optimal levels but 

the cost co-efficients are liable to change. Thus~ in a case where 

some component of CB increases, or the value Cs forsome variable which 

is not in solution goes down~ equation (4.14) may be used directly 

without solving the entire linear programming problem to determine if 

the improvement warrants a change in the operating system. 



v. UNCONSTRAINED OPTIMIZATION BY GRADIENT METHODS 

Thi s chapter wi 11 be devoted to the study of the rate of conver­

gence of the gradient method and the general directional method when 

applied to the quadratic programming problem defined in equation (5.1). 

The unconstrained quadratic programming problem may be defined as 

Min f(X) = (C, X) + -} (AX, X) , (5. 1 ) 

where C is an n dimensional vector 

and A is a symmetric nxn positive definite matrix. 

The gradient method provides an iterative procedure to determine 

* the optimal vector X which minimizes equation (5.1). Given a point 

Xk' the gradient method defines the next point Xk+l as 

(5.2) 

where v is a direction vector and t is a scalar. 

In the gradient method, the direction v is given by the gradient 

vector Vf(Xk) and the scalar t is taken so as to minimize f(X k+l ) 

in the direction v. In literature this method is generally called 

the "optimal gradient method ll
• There are search techniques that proceed 

in a direction v which is other than the gradient direction. The 

scalar t for these techniques is again taken so as to minimize f(X k+1) 

in the direction v. Any algorithm meeting these two conditions will 

be referred to as the "genera 1 di recti ana 1 method". The rate of 

34 
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convergence for the gradient method was first obtained by Kantorovich 

[10] and is described by Fadeev and Fadeeva [5J. Kantorovich, in 

trying to find a solution to a linear system 

BX = F t (5.3) 

where B is a (nxn) positive definite matrix and F is an-vector, 

showed that the problem is related to finding a minimum for a function 

g(X) = (BX t X) - 2(F t X) . (5.4) 

Equation (5.4) is a quadratic programming problem. The vector X * 

which minimizes g(X) is also a solution to equation (5.3). The rates 

of convergence obtained by the author for the general equation (5.1) 

are identical to those of Kantorovich and the development differs only 

slightly from that of Kantorovich. The development presented in this 

chapter carries an additional term t the net result of which is that 

equation 5.12 is an inequality for this case, whereas it was an equal-

ity for Kantorovich. The expression for the rate of convergence 

obtained for the gradient method is further generalized for the general 

directional method. 

In the development that follows it is assumed, without loss of 

* generality, that f(X ) = 0 for equation (5.1). The inequality in 

Lemma 5.1 is due to Kantorovich and will be used to arrive at the 

expression for the rate of convergence. The proof of the lemma is 

presented in Fadeev and Fadeeva [5]. 
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LEMMA 5.1 The inequality 

n 

( I 2 a. ) 
1 

= 4 
> 

[ft + ftJ 2 n n -

( I y.a.)( I a. ) 
1 1 y. 1 

;=1 . 1 1 1= 

holds for a. > a , ¥. 
1 1 

and o < m < y. < M t V. 
- 1 - , 

1. Gradient Method 

The gradient method for equation (5.1) is given by the following 

equations: 

H(Xk) = A for all k 

where t is a scalar defined to minimize f(Xk+,) in the direction 

v = \7f(X k). 

(5.5) 
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f(X k+1) 
The objective is to find an upper limit for the ratio f(X) . The 

k 

value of f(X k+1) may be estimated by the Taylor series expansion as 

fo 11 ows : 

1 2 = f(X k) + (Vf(X k), v) + 2 t (H(Xk)v, v) 

= f(X k) + t(v, v) + ~ t 2 (Av, v) . (5.6) 

The last equation is obtained by using the relations in equation 5.5. 

The value of t is chosen to minimize f(X
k
+,). 

Hence 
af(Xk+1) 

a = at = (v, v) + t(Av, v) 

giving 

t = - ~(~ -uw:-vr . 

This value of t gives the minimum value of f(X k+1) as 

The desired ratio may now be written as 

(5.7) 
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= 1 1 (v, V)2 
- 2 (Av, v)[(C, Xk) + t (AX k, Xk)] . 

(5.8) 

Now, 

Substituting the above equality in equation (5.8) gives 

(5.9) 

To get a numerical estimate of the ratio in the left hand side 

of equation (5.9), the right hand side will be expressed in terms of 

the eigenvalues and eigenvectors of the matrix A. 

Let Al ~ A2 ~ •.• ~ An be the eigenvalues of the matrix A. Since 

A is symmetric, the eigenvalues are real and since A is positive defi-

nite the eigenvalues are positive, thus 

Ai > 0 and real for all i. 
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Define Ul , U2 ... Un be the normalized eigenvectors associated 

with these eigenvalues. These vectors are mutually orthogonal and 

span the space. Because they are normalized, 

(U., U.) = 1 for ; = 1 ~ 2, ... , n. 
1 ,1 

Since the eigenvectors span the space~ the vectors v, Xk and C may be 

expressed as linear combinations of the eigenvectors. Thus define 

and 

n 

v = \' a.U. 
L 1 1 

i=l 

n 

Xk = I 
i = 1 

n 

C = I 
;=1 

b.U. 
1 1 

c. u .. 
1 1 

Using the above relations we may rewrite the terms in the right hand 

side of equation (5.9) as follows: 



n 
Av = L 

i =1 

n 
(v, v) = L 

;=1 

n 
(Av, v) = L 

;=1 

n 

(C, Xk) = L 
i =1 

n 

(Xk , v) = L 
;=1 

a.A.U. , , , 

a. 
1 

2 

2 
~,.a . 

1 1 

b.c. , , 

a. b. . 
1 1 
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Substituting the values above ;n equation (5.9) results in 

n 

( L a. )2 
f(X k+1) 1 

= 1 -f(X k) n n n 
2 ( L A.a. )( 2 b,c. + I a.b.) , 1 1 1 1 1 

;=1 i=1 i =1 

S'ince v = C + AX k, it implies that ai = ci + ).'ibi or that 

b. = (a. - c.)/A .. 
1 1 1 1 

(5.10) 
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substituting the above in equation (5.10) gives 

n 

( L a. 2)2 
f(X k+1) 

1 

= 1 -f(X k) n n (a. n (a. - c.) 2 ( I Aiai )( I 
, 

+ L a. 1 1 ) 
1 A. • 

i =1 i =1 i = 1 1 

n 

( I a. 2)2 
1 

= 1 - ;=1 
n n a. 2 n 2 

2 c2 ( I A.a. )( I 1 L -) (5.11) 
1 1 A. A. 

i = 1 i=l 1 i =1 1 

n 

( I a. 2)2 
1 

1 i = 1 (5.12) < -
a. 2 .. - n n 

2 ( L A.a. )( L -'-) 
1 1 A. 

i=l ;=1 1 

The inequality in (5.12) is obtained by dropping the last term 

in the denominator of (5.11). Kantorovich t in his development had an 

equality for (5.12). This is the only significant difference between 

the two developments. 

In (5.12) the ratio of f(Xk+,) to f(X k) is in a form which permits 

the direct application of lemma 5.1. Using lemma 5.1 with m = A, 

and M = An gives 
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f(X k+1) 
1 - 4 

f(X k) < -

~+fi,] 

= 1 - 4 
A A 

[_1 + -.!l + 2J 
An A1 

= 

Thus t 

Or' 

(5.13) 

Inequality (5.13) gives the rate of convergence. for the gradient 

method. The expression in (5.13) obtained for equation (5.1) is 

identical to that obtained by Kantorovich for equations (5.3) and (5.4). 

The rate of convergence obtained above may be expressed in the follow-

ing theorem: 
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Theorem 5.1 The gradient method converges to the optimal of the 

unconstrained quadratic programming problem min f(X) = 

(C, X) + } (AX, X) with a rate of geometric progression. The rate of 

A - A 
convergence is measured by [An + A'J2 , where Al and An are the 

n , 

minimum and maximum eigenvalues of the matrix A. 

,A similar development may now be used for the general directional 

method. 

2. General Directional Method 

The general directional method differs from the gradient method 

in that the direction vector v need not necessarily be the gradient 

direction. Equation (5.5) holds for this method except that in general 

v f Vf(Xk). The development in this section is very similar to the 

development in the last section. The procedure once again is to t 

the Taylor series expansion for f(X k+,) and use this to find an upper 

bound for the ratio of f(X k+,) to f(X k). The Taylor series expansion 

for f(X k+1) is given by 

f(X k+,) = f(X k + tv) 

= f(X k) + t(Vf(Xk), v) + i t 2(H(X k)V, v) 

1 2 = f(X k) + t[(C + AX k), vJ + ~ t (Av, v) . 
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As in the previous section, the value of t is determined so as 

to minimize f(X k+,). 

Thus 

or 
[(C + AX k), vJ 

t = - (Av~ v) 

For the above value of t, the value of f(X k+,) is given by 

or 

[(C + AX k), v]2 

= 1 - 2(Av, V)f(X k) 

[('Vf(X
k
), v)]2 

= - '( A v, v) [ ( C, X k l-+'--r-( v~f ~( X--'
k 

}...-, ~x"""'k ) ......... ] 

(5.14) 

(5.15) 

In order to express (5.15) in the form of equation (5.9) in the 

previous section, we represent the directional vector v as 

where Gk is the angle between the direction v and the gradient at Xk. 

Equation (5.15) may now be rewritten as: 
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(Vf(X k), Vf(X k)2 COS 20k 
= 1 - (Av, v)[(C, Xk) + (vf(X k), Xk)] (5.16) 

Equations (5.9) and (5.16) differ only by the COS 20k term in the 

numerator of (5 .. 16). In view of this, the development of the previous 

section may be used to obtain the rate of convergence for this method. 

Accordingly, define Q as the last term in equation (5.9), then (5.16) 

may be rewritten as 

(5.17) 

We now need an estimate of (1 - Q COS
2

Dk). This estimate may be 

obtained from equations (5.9) and (5.13) of the previous section. We 

have 

or 

(5.18) 

For notational convenience define 

and 
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Then using equations (5.17), (5.18) and the above definitions gives 

or 

(5.19) 

Equation (5.19) indicates that the process will converge at the rate of 

-geometric progression as long as r < 1. These results are surnnarized 

in the following theorem. 

Theorem 5.2 

A directional procedure moving in the direction converges to the 

optimal of the quadratic function defined by (5.1) at the rate of 

geometric progression. The rate of convergence may be measured by 

1 _ Cos 2 An - Al 2 2 G + [~~J COS 0 
n 1 

where e is the maximum of the angles Gk between the gradient and the 

direction v and, Al and An are the minimum and maximum eigenvalues of 

the matrix A. 



VI. ROSEN'S METHOD 

The rate of convergence of the gradient method used for the solu­

tion of the unconstrained quadratic programming problem was discussed 

in Chapter V. A procedure very close to the gradient method will now 

be discussed for the solution of quadratic programming problem with 

constraints. Rosen1s gradient projection method [15J, [12J, consists 

of projecting the gradient onto the boundary of the feasible domain 

and then proceeding along the projection. If the gradient lies within 

the feasible domain, then no projection is necessary. Hence in the 

interior of the feasible domain, Rosen's method coincides with the 

gradient method. 

More specificallYt if Xk be the solution vector after the kth 

iteration, then Rosen's method consists of the following steps: 

1. Calculate the gradient vector and check for optimality. If 

the solution is optimal, stop. If not, proceed to step 2. 

2. If the gradient vector points inside the feasible domain, 

proceed to step 3. Otherwise, project the gradient on a manifold of 

least dimension containing Xk. 

3. Proceed along the direction obtained in step 2 so as to 

decrease the objective function (if this is not possible for the pro­

jected gradient, appropriately increase the dimension of the manifold 

containing Xk by 1 and return to step 2) until a minimum along the 

direction is reached or a constraint boundary is encountered. Call 

this point Xk+l and return to step 1. 

47 
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For the purposes of this development, a verbal description of 

Rosen's method is sufficient; a detailed algebraic description may be 

found in Rosen's original article [15J. Rosen showed in his paper 

that under the following assumptions: 

a) the starting point is in the interior of the feasible region; 

b) the iterative procedure never requires projection; 

c) the objective function is quadratic; 

d) optimal gradient step is taken between iterations; 

e) the optimal value of the objective function is zero. 

The rate of convergence is estimated by: 

(6.1) 

where Al and Xn are the minimum and maximum eigenvalues of the symme­

tric positive definite matrix A defined in equation (5.1). 

It is clear that under the above assumptions the procedure reduces 

to the optimal gradient method described in Chapter V. Hence theorem 

5.1 may be directly applied to obtain the rate of convergence under 

the assumptions given above. 

Since 

1 -

2 
1 

> (6.2) 
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Theorem 5.1 gives a tighter bound on the rate of convergence as fal­

lows: 

< (6.3) 

However, both (6.1) and (6.3) are limited to the case where no 

projections are permitted. In order to generalize the above equations 

we need to establish the following theorems. 

Theorem 6.1 If Al and An are the minimum and maximum eigenvalues of 

operator A, then 

Al = min ~ Xt-O 
X, X 

An = max -w.-, X) 
XfO X, Xl 

Proof: Follows from theorems 11.6 and 11.7 in Fadeev and Fadeeva [5J. 

TheQ!em~ Given a (nxn) symmetric positive definite matrix A of 

full rank and a linear transformation ctJ(X) from En to Em of rank 

m < n, then ~(X) = 0 defines a manifold Q in which the following 

i nequ ali ty ho 1 ds 

C - c1 2 
( n ) 
c + c n 1 

(6.4) 

where, 



50 

b, = min ~ Xl XeEn 
X;O x, Xl ' 

bn = max ~ XeEn 
X, X ' X;O 

c, = min ~ XeQ 
X;O X, X ' 

cn = max ~ XeQ X, X ' X10 

Proof: By definition, b1 2 bn and c, 2 en" Since Q is a proper subset 

of En it follows that 

min ~ XeEn 
< min ~ XeQ 

XrO X, X ' - X,D X, X ' 

and max ~ XeE n 
> max (AX, X) XEQ 

X,.O X, X ' - X;lO (X, X) 

hence, 

b, < c, < C < b - n - n (6.5) 

,Since A ;s positive definite b" c1' bn, cn are all positive, 

so that the squares in the inequality 6.4 may be dropped. It is now 

only necessary to show that 

(6.6) 

(6.7) 
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Inequality (6.7) follows directly from (6.5), thereby establishing the 

theorem. 

In view of the fact that the projected gradient is the direction 

of steepest descent within the manifold into which the projection 

occurs, applying theorem 5.1 gives 

f(Xk+1) 
0:5.. f(X ) 

k 
< 

Also by theorem 6.2 we have 

c - c, 2 
(c

n 
+ c) <: 

n 1 

It follows from equations (6.8) and (6.9) that 

< ( 
An - A-l) 2 
A + A-n 1 

(6.8) 

(6.9) 

(6.10) 

Equation 6.10 shows that both in the case of unprojected gradient 

search and for the projected gradient search within a given manifold, 

the rate of convergence defined by (6.3) is applicable. Thus (6.3) 

gives the rate of convergence for all iterations of Rosen's method 

except those that call for a change in manifold on which the projection 

occurs. More generally, the upper and lower bounds for convergence 

of the unconstrained directional search are applicable to all procedures 

that restrict the search to 
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a) Direction~l search within the feasible region never encounter­

ing the constraint boundary except possibly at the optimal 

b) Directional search t<Jithin any single constraint boundary_ 



VII. CONCLUSION 

1. Summary 

The rate of convergence is a useful measure of the performance 

of an algorithm. Knowledge of the rate can help determine which 

algorithm is best suited for a given problem. This research is a 

study of the. rate of convergence of a few algorithms used for nonlinear 

programming problems. The Newton-Raphson procedure and a higher order 

procedure used for the solution of nonlinear equations is studied. 

Both the convergence and the rate of convergence for the multivariate 

Newton-Raphson procedure is presented in the simple format of the 

Newton-Raphson procedure for scalar functions. A higher order proce­

dure, which results directly from Taylor series expansion ;s presented. 

Its convergence is established and a measure for the rate of conver­

gence is obtained. A multivariate generalization of this higher order 

procedure is seen to have little practical value. 

In analyzing the simplex algorithm, it was not possible to obtain 

an expression for its rate of convergence, however t an expression for 

the improvement in the objective function between successive iterations 

is obtained. This expression is entirely in terms of the original 

problem rather than intermediate computations. 

The bound, due to Kantorovich, for the rate of convergence of 

the optimal gradient method used in solution for a system of linear 

equations '1s shown to hold for the general unconstrained quadratic 
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programming problem. The result is then extended for the general 

directional procedure. 

Rosen presented a bound for the rate of convergence of his 

algorithm. The bound was obtained under very strict assumptions of 

the computational procedure. It is seen that under the same assump­

tions, tighter bounds are available for Rosen's method and that these 

bounds are also applicable under less stringent assumptions about the 

computational procedure. 

2. Suggestions for Further Study 

There are numerous algorithms in nonlinear programming for which 

the rate of convergence has not been established. Algorithms by 

Beale, Barkin and Dorfman, Frisch and by Zoutendijk serve as examples. 

A study of the rate of convergence of these algor; thrns wi 11 be extreme ly 

helpful to users in choosing an algorithm for their specific problems. 

Along the lines of this research, a promising area for further 

study may be defined in terms of the following new conceots. 

Assuming a constrained optimization problem where the uncon-

* strained optimal X lies outside the convex feasible region S, then a 

point V of the feasible region \AJill be called IIvisible ll if the line 

* joining X to V lies entirely outside S. 

Thus the point V£S is visible if the intersection of the set S 

and the set L is a null set, where 

L{X!X * * = X + t(V - X ), 0 ~ t < l} . 
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Let Q be a set of all visible points in S. Let H : ex = a be a 

supporting hyperplane to the set Q such that the half space 

* Hl : ex ~ 0 containing Q also contains X , then the intersection 

HlnS will be called the visible region. 

With the above definitions possibly one can establish the follow­

ing propositions for Rosen's method applied to quadratic programming 

problem. 

1. Proposition 1: There exists an index k such that for all 

i > k, Xi lies on the boundary of S. 

2. Propositi~n 2: The index k is the smallest for which Xi 

is included in the visible region. 

If Proposition 2 can be shown to be true, then proposition 3 

may be stated as follows. 

3. Proposition 3: There exists a 1-1 mapping bebyeen the set Q 

and the supporting hyperplane H contained in the visible region. 

Proposition 1 is trivially true for the boundary containing the 

constrained optimal. If propositions 2 and 3 can be established, then 

it may be possible to restrict the search of Rosen's method to the 

supporting hyperplane. If this can be done, it will permit a conven­

ient analysis for the rate of convergence of Rosen's algorithm. 
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RATE OF CONVERGENCE IN NONLINEAR PROGRAMMING 

by 

Vinod Chachra 

(ABSTRACT) 

The rate of convergence is a useful measure of the performance 

of an algorithm. Knowledge of the rate can help determine which 

algorithm is best suited for a given problem. This research is a 

study of the rate of convergence of a few algorithms used for nonlinear 

programming problems. The Newton-Raphson procedure and a higher order 

procedure used for the solution of nonlinear equations is studied. 

Both the convergence and the rate of convergence for the multivariate 

Newton-Raphson procedure is presented in the simple format of the 

Newton-Raphson procedure for scalar functions. A higher order proce­

dure, which results directly from Taylor series expansion is presented. 

Its convergence is established and a measure for the rate of conver­

gence is obtained. A multivariate generalization of this higher order 

procedure is seen to have little practical value. 

In analyzing the simplex algorithm, it was not possible to obtain 

an express i on for its rate of conve rgence, hO\tJever~, an express i on for 

the improvement in the objective function between successive iterations 

is obtained. This expression is entirely in ten11S of the of'lginal 

problem rather than intermediate computations. 

The bound, due to Kantorovich~ for the rate of convergence of 

the optimal gradient method used in solu-t'ion for a systell1 of linear 



equations is shown to hold for the general unconstrained quadratic 

programming problem. The result ;s then extended for the general 

directional procedure. 

Rosen presented a bound for the rate of convergence of his 

algorithm. The bound was obtained under very strict assumptions of 

the computational procedure. It is seen that under the same assump­

tions, tighter bounds are available for Rosen's method and that these 

bounds are also applicable under less stringent assumptions about the 

computational procE~dure. 




