
Assessing Coastal Plain Wetland Composition using Advanced 

Spaceborne Thermal Emission and Reflection Radiometer Imagery  
 

 

Eva Pantaleoni 

 

 

Dissertation submitted to the faculty of Virginia Polytechnic Institute and State 

University in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

In 

Crop and Soil Environmental Science 

 

 

John M. Galbraith, Co-chair 

Randolph H. Wynne, Co-chair 

James B. Campbell 

Laurence W. Carstensen 

W. Lee Daniels 

 

May 3, 2007 

Blacksburg, Virginia 

 

 

Keywords: ASTER, wetlands, multi-temporal analysis, logit model, CART,   

Sub-pixel analysis 

 

 

Copyright 2007, Eva Pantaleoni 



Assessing Coastal Plain Wetland Composition using Advanced 

Spaceborne Thermal Emission and Reflection Radiometer Imagery  
 

Eva Pantaleoni 

ABSTRACT 
 

Establishing wetland gains and losses, delineating wetland boundaries, and determining their vegetative 

composition are major challenges that can be improved through remote sensing studies. We used the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to separate wetlands 

from uplands in a study of 870 locations on the Virginia Coastal Plain. We used the first five bands from 

each of two ASTER scenes (6 March 2005 and 16 October 2005), covering the visible to the short-wave 

infrared region (0.52-2.185µm).  We included GIS data layers for soil survey, topography, and presence 

or absence of water in a logistic regression model that predicted the location of over 78% of the 

wetlands. While this was slightly less accurate (78% vs. 86%) than current National Wetland Inventory 

(NWI) aerial photo interpretation procedures of locating wetlands, satellite imagery analysis holds great 

promise for speeding wetland mapping, lowering costs, and improving update frequency. To estimate 

wetland vegetation composition classs, we generated a classification and regression tree (CART) model 

and a multinomial logistic regression (logit) model, and compared their accuracy in separating woody 

wetlands, emergent wetlands and open water. The overall accuracy of the CART model was 73.3%, 

while for the logit model was 76.7%. The CART producer’s accuracy of the emergent wetlands was 

higher than the accuracy from the multinomial logit (57.1% vs. 40.7%).  However, we obtained the 

opposite result for the woody wetland category (68.7% vs. 52.6%).  A McNemar test between the two 

models and NWI maps showed that their accuracies were not statistically different. We conducted a sub-

pixel analysis of the ASTER images to estimate canopy cover of forested wetlands. We used top-of-

atmosphere reflectance from the visble and near infrared bands, Delta Normalized Difference 

Vegetation Index, and a tasseled cap brightness, greenness, and wetness in linear regression model with 

canopy cover as the dependent variable. The model achieved an adjusted-R2 of 0.69 (RMSE = 2.7%) for 

canopy cover less than 16%, and an adjusted-R2 of 0.04 (RMSE = 19.8%) for higher canopy cover 

values. Taken together, these findings suggest that satellite remote sensing, in concert with other spatial 

data, has strong potential for mapping both wetland presence and type. 
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1  INTRODUCTION 

1.1  BACKGROUND 
 

Section 404 of the Federal Water Pollution Control Act (Public Law 92-500, 33 U.S.C. 

1251) of 1972 brought about a change in the way wetlands were regarded. Public Law 

92-500 legislation is also referred to as the U.S. Clean Water Act (CWA).  The CWA 

established that no discharge of dredged or fill material can be permitted if a practical 

alternative exists that is less damaging to the aquatic environment or if the Nation's 

waters would be significantly degraded. This legislation moved federal agencies to focus 

their attention on identify always more accurately the location of aquatic habitats (e.g. 

wetlands), in order to produce appropriate policy and guidance (Environmental 

Laboratory, 1987), and in order to develop and interpret environmental criteria utilizable 

in evaluating permit applications. When a practical alternative to discharging and filling 

is impossible, the government requires the construction of new wetlands as needed to 

mitigate for wetland losses. Wetland mitigation has become the leading tool for 

combating wetland loss in the U.S. (Mitsch and Gosselink, 1993; Cole and Shafer, 2002).  

In 1986, the Emergency Wetland Resource Act directed the National Wetlands 

Inventory (NWI), part of the U.S. Fish and Wildlife Service (FWS), to map and produce 

digital wetland databases for the USA, including information on the characteristics, 

extent, and status of the Nation’s wetlands and deepwater habitats. Currently, NWI 

utilizes 1:40,000 aerial photography for performing stereoscopic photo-interpretation of 

areas and delineation of wetland boundaries. The specific and unique features that a 

wetland must have to be jurisdictional and protected make the job of identifying wetlands 

especially difficult. In addition to the hydrophytic vegetation component, a wetland is 

characterized by a wetness regime whose hydroperiod insures the dominant growth and 

reproduction of hydrophytes, which is also one of the factors for the development of 

hydric soils. The NWI procedure for detecting and mapping wetlands generally meets 

prescribed standards (Wilen et al., 2002), and it is widely accepted. However, this 

procedure has some weaknesses such as high costs due to the panel of people required 

both for digitizing the aerial photographs and field validating the wetlands; and delay in 

estimating gains and losses of wetlands due to the large time required to update maps. 
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NWI maps do not show all wetlands since the maps are derived from aerial photo-

interpretation with varying limitations due to scale, photo quality, inventory techniques, 

and other factors. Consequently, the maps tend to show wetlands that are easily identified 

from aerial photos, soil maps, and topographic maps. In general, the older NWI maps 

prepared from 1970s-era black and white photography (1:80,000 scale) tend to be very 

conservative, with many forested and drier-end emergent wetlands not mapped. Maps 

derived from color infrared photography (less than 5% of the nation) tend to yield more 

accurate results except when this photography was captured during a dry year, making 

wetland identification difficult (Tiner, 1999). 

Even though NWI maps are widely used as reference data for scientists, little 

research has been reported that quantifies how many wetlands are actually not on NWI 

maps. Swartwout et al. (1981) reported 15% omission error in wetland vegetation 

classification in Massachusetts. In Nevada, Werner (2005) found that 42% of surveyed 

palustrine wetlands were not found on the NWI maps. More than half of these were 

meadows (55%), while the rest were primarily scrub-shrub wetland (21%) or forested 

(20%) wetlands. Stolt and Baker (1995) reported that NWI did not adequately inventory 

wetlands in the Blue Ridge physiographic region of central Virginia. About 109 hectares 

of jurisdictional wetlands were located by field mapping in the same study areas where 

NWI had indicated only 17 hectares of wetland occurrence. Most of the published 

research supports the accuracy of the NWI maps, assessing that over 90% of the times 

that NWI identifies as wetland, it is in fact a wetland (Kuzilla et al., 1991; Stolt and 

Baker, 1995; Kudray and Gale, 2000). Unfortunately, there is no information verifying 

the overall national effectiveness of NWI maps to estimate the number and area of 

wetlands (Stolt and Baker, 1995; Galbraith et al., 2003). 

Satellite imagery offers an alternative approach to use of aerial photography for 

wetland detection. Observation from space satellites offers a unique opportunity to 

acquire information at broad scale and to parameterize environmental models (Foody and 

Curran, 1994; Yamagata, 1999).  The value in remote sensing for the study of the Earth 

lies in the representation of details not visible to humans by other means. One major 

advantage of remotely sensed data over both analog and digital aerial photography and 

field collection is the ability to investigate various types of environmental changes in an 
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easy, fast and cost effective way. Satellite remote sensing can identify the wetland 

resource as to type, characterize the general wetland land cover type, identify sub-

emergent and emergent wetlands, and supply details about wetlands over large or 

inaccesible areas (Lyon and McCarthy, 1995). Although wetlands are among the most 

productive and important ecosystems of the world, few studies using remote sensing data 

have been conducted to monitor changes or functionality in inland freshwater wetlands 

(Carter et al., 1979; Wickware and Howarth, 1981).  

Although single images have been used to discriminate broad bottomland forest 

types by focusing upon static classification schemes of community composition (Jensen 

et al., 1987, Hodgson et al., 1988), multi-temporal satellite imagery has been preferred 

(Bolstad and Lillesand, 1992; Wolter et al. 1995; Townsend and Walsh, 2001).  Forested 

wetland mapping using only multispectral-based remote sensing techniques has proven to 

be problematic due to the moderate pixel resolution, such as the 30x30 m pixel resolution 

of Landsat (Jacobson et al., 1987; Federal Geographic Data Committee, 1992; Tiner, 

1999). An improvement in discriminating different wetland vegetation types has come 

with the application of hyperspectral data and radar (Bajjouk et al., 1998; Silvestri et al., 

2002).  

Geographic Information Systems (GIS) can be used to combine digital 

information about soils, hydrography, vegetation, and topography with remote sensing 

for improving the determination and identification of wetlands. NWI, digital color 

infrared orthophotography, digital topographic maps, Soil Survey Geographic Data Base 

(SSURGO) survey maps, and Digital Elevation Models (DEMs) have been extensively 

used for wetland mapping and assessment of wetland functions (O’Hara, 2001; 

Sugumaran et al., 2004; Dosskey et al., 2005; McCauley and Jenkins, 2005).  However, 

existing public domain digital data sets have limitations for finding small wetlands and 

wetlands covered by dense tree canopies. A combination of remote sensing and GIS data 

analysis to locate and delineate wetlands seems advantageous given the complexity of 

wetlands and the necessity of combining environmental aspects, such as type of soil and 

vegetation cover; that the two tools would not be able to identify when considered alone.  
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1.2  OBJECTIVES 
 

In the United States, the main source of information on wetlands is the NWI, which 

derived from either manual or partially automated digitizing of aerial photographs. This 

study proposed an alternative methodology for mapping and recognizing wetland types 

and characteristics, using an experimental satellite sensor, ASTER. 

The first experiment evaluated the ability of ASTER and GIS data layers to 

separate wetlands from uplands in the Coastal Plain of Virginia. A second study focused 

more closely at determining wetland type. The third study was conducted by zooming 

into pixels, to determine the amount of wetland canopy cover contained in each pixel. In 

specific, this study presents three objectives: 

 1) to explore the ability of raw ASTER bands and GIS data layers to map the 

presence and absence of wetlands using a logistic regression model; 

 2) to compare the ability of a parametric (classification and regression tree) and 

non-parametric (multiple logistic regression) models in differentiating among woody 

wetlands, emergent wetlands, open water habitat, and uplands; and 

3) to quantify the amount of canopy cover in wetlands at the sub-pixel level using 

ASTER and remote sensing indices through a regression analysis. 

 

1.3  DISSERTATION ORGANIZATION 
 

This dissertation is organized in six chapters. The first chapter includes the background of 

the research, and the objectives of three studies. The second chapter is an independent 

literature review of concepts related to the whole study. The third, fourth, and fifth 

chapters provide an independent abstract, introduction, materials and methods, result and 

conclusion section for each of the three internal studies. The last chapter consists of a 

general summary, conclusion, and reccomendation for future research on the application 

of ASTER to wetlands. 
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2  LITERATURE REVIEW 

2.1  HISTORY OF WETLAND LOSSES AND PROTECTION 
 

Many of the Earth’s wetlands are located within the permafrost areas in the northern 

hemisphere. Russia, Canada and the United States (mainly in Alaska) have the largest 

area of wetlands (Brady and Weil, 1999).  The exact amount of wetlands in humid 

climates and tropical zones is not known, nor is the wetland area within arid regions 

(Yamagata and Sugita, 1999).   

At the time of European settlement, wetlands may have occupied a third of the 

land surface within the southern part of the United States (Dahl 1990).  Nearly half of 

Louisiana and Florida may have been wetlands. The landscape in these regions, as in 

most of the eastern United States, has been altered dramatically over the past 200 years. 

Wetlands have been associated with mosquitos and the diseases they carry (malaria, 

yellow fever), have been reported as a hazard to transportation, and as a refuge for hostile 

humans and animals. Hence, wetland drainage has been justified to solve these hazards 

and to develop terrains more suitable as agriculture and forestry resources, and have been 

filled or otherwise altered to construct commercial and urban developments, 

transportation networks, and navigational facilities (Tiner 1996).  

In 1754, South Carolina authorized the drainage of Cacaw Swamp for agricultural 

use (Beauchamp, 1987).  Areas of the Great Dismal Swamp in Virginia and North 

Carolina were surveyed in 1763 so that canals could be constructed for water 

transportation routes and logging activities. In the early 1900s, the Florida Legislature 

passed the Swamp and Overflowed Lands Grant Act; drainage districts were formed and 

by the late 1920s most of the wetlands in South Florida were drained by canals designed 

to reclaim land. Hewes and Frandson (1952) described the prairie pothole region 

landscape as follows: “low knolls are separated by saucer-like depressions, in which 

empounded water often stands the year around ... in the main rainwater which falls upon 

the uplands has to escape by seepage or evaporation. Little ponds and marshes are found 

in almost innumerable places scattered all over the county.” In the same period, the 

slogan "every acre to its best use" was a common justification for draining wetlands 
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(Staunton, 1950).  In the early 1600s, the area that was to become the conterminous 

United States contained approximately 90 million hectares of wetlands. About 42 million 

hectares remained as of the mid-1980s (Dahl and Johnson, 1991). 

Only in recent years have steps been taken to restore and protect wetlands. 

Beginning in 1972, with passage of the Federal Water Pollution Control Act, Congress 

responded to judicial action and public pressures to protect the nation’s waters, 

interpreted to include any waters that may affect interstate commerce, and recently 

reinterpreted to include waters connected to navigable waters (Downing et al., 2003).  

The objective of the Act was to restore and maintain the chemical, physical, and 

biological integrity of the navigable or permanent water. At that time, the law had not 

directly addressed wetlands. With the Federal Water Pollution Control Act was amended 

in 1977, and is now commonly known as the Clean Water Act (CWA). Wetlands were 

legally included in the definition of navigable water (U.S.E.P.A., 2002).  

Section 404 of the CWA is the only legislation that directly links the CWA to 

wetlands; it authorizes the U.S. Army Corps of Engineers (COE) to issue or deny permits 

that deposit dredge or fill material in the nation’s waters; mandates the COE to develop 

regulations and jurisdiction in wetlands; and authorizes the U.S. Environmental 

Protection Agency (EPA) to participate in development of regulations and to review or 

deny COE permits. In 1986, the Emergency Wetland Resource Act directed the U.S. Fish 

and Wildlife Service (FWS) to map and produce a digital wetlands database for the 

United States. Currently the National Wetlands Inventory (NWI), as part of the FWS, 

produces information on the characteristics, extent, and status of the nation’s wetlands 

and deepwater habitats. This information is available to federal, state, and local agencies, 

as well as academic institutions and the public. 

2.2  WETLANDS 
 

There is no a single definition of wetland used by all agencies, scientists, policymakers, 

or landowners for all purposes (Heimlich et al., 1998).  There is often disagreement or 

misunderstanding about what the term “wetland” means, which can create confusion in 

discussing the state of wetland resources and changes in wetland policy (Smith, 1997).  

"Wetlands" is a general term used to describe areas which are neither entirely terrestrial 
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nor totally aquatic. These areas vary from the majestic cypress swamps of the southern 

United States to shallow, unimpressive depressions which hold water for only a few 

weeks out of the year. Wetlands have unique hydrologic characteristics that result in soils 

and plant and animal communities that have special adaptations to live in or use the 

wetland environment (Messina and Conner, 2000).  Among the most widely used 

definitions of wetlands are the CWA definition and the Cowardin Definition.  

2.3  CLEAN WATER ACT WETLAND DEFINITION 
 

Wetlands identified for regulation by the Clean Water Act are often referred to as 

“jurisdictional wetlands” (Messina and Conner, 2000).  In section 40 CFR 230.41 of the 

CWA, it states that “Wetlands consist of areas that are inundated or saturated by surface 

or ground water at a frequency and duration sufficient to support, and that under normal 

circumstances do support, a prevalence of vegetation typically adapted for life in 

saturated soil conditions” (U.S.E.P.A., 1977). This definition is not complete enough to 

use as a field identification guide, so the COE and other federal agencies produced the 

1987 Corps of Engineers Wetland Delineation Manual (Environmental Laboratory, 1987) 

to describe in detail the identification and delineation of jurisdictional wetlands. The ‘87 

Manual requires that at least one positive wetland indicator be present for each of the 

following criteria: hydric soils, hydrophytic vegetation, and wetland hydrology, as 

described below. Supplementary guidance has been issued and the ‘87 Manual has been 

updated several times. There is no any wetland inventory associated with the Clean Water 

Act; on the contrary, wetlands are delineated on a site-specific basis (Messina and 

Conner, 2000). 

2.4  HYDRIC SOILS 
 

A hydric soil is defined by the National Technical Committee for Hydric Soils as a soil 

that formed under conditions of saturation, flooding, or ponding long enough during the 

growing season to develop anaerobic conditions in the upper part (59 Fed. Reg. 35680, 

1994).  The Natural Resources Conservation Service (NRCS) was responsible for 

maintaining a list of soil survey map units that contain hydric soils in the United States 
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(Messina and Conner, 2000).  The lists of hydric soils were created by using criteria 

based on selected soil properties documented in Soil Taxonomy and the Soil Survey 

Manual (Soil Survey Staff, 1999).  The list of hydric soils contains any soil whose range 

of properties includes any of the hydric soil criteria. The list and the criteria are being 

phased out of use by both NRCS and COE, and are being replaced by field indicators and 

a technical standard. The field indicators are morphological properties known to be 

associated with soils that meet the definition of a hydric soil; they are essential for hydric 

soil identification because once formed, they persist in the soil during both wet and dry 

seasonal conditions. 

2.5  HYDROPHYTIC VEGETATION 
 

Hydrophytes are plants growing in water or on a substrate that is at least periodically 

deficient in oxygen due to saturation and microbial reduction. Hydrophytes have 

morphological, physiological and reproductive adaptations that allow them to thrive in 

inundated or saturated soils where non-hydrophytes (upland plants) cannot (Eggers et al., 

1997).  It is essential to have knowledge of plant species when delineating wetlands 

(Mitsch and Gosselink, 1993).  The vegetation criterion in jurisdictional wetland 

definition requires an area to have over 50 percent of its dominant species classified as 

wetland adapted plants. The presence of a particular plant does not indicate wetland 

conditions unless the vegetation dominance, hydrology, and soil criteria are met. 

The FWS developed a national list of plant species that may occur in wetlands. 

The plants have been separated into five categories based on their likely occurrence in 

wetlands (Reed, 1988):  

i. Obligate wetland (OBL) plants occur almost always under natural conditions in 

wetlands (> 99% of the time). 

ii. Facultative wetland (FACW) plants usually occur in wetlands (67-99% of the 

time) but are occasionally found in uplands. 

iii. Facultative (FAC) plants are equally likely to occur in wetlands or uplands (34-

66% of the time). 
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iv. Facultative Upland (FACU) plants usually occur in uplands, but are occasionally 

found in wetlands (1-33% of the time). 

v. Obligate Upland (UPL) plants almost always occur (> 99% of the time) in 

uplands. 

2.6  HYDROLOGY 
 

Wetland hydrology refers to the inflow and outflow of water through a wetland and its 

interaction with other site factors. Wetland hydrology occurs in areas where the soil is 

saturated or inundated with ground or surface water within 30 cm of the surface for long 

enough during the growing season to create anaerobic conditions and to exclude the 

growth of plants which are not adapted for life in saturated soils. Inundation or saturation 

in the root zone must be long enough to create hydric soils and promote the growth and 

reproduction of hydrophytic vegetation (Messina and Conner, 2000).  

The Wetland Delineation Manual provides a list of indicators for identifying 

wetland hydrology. Field indicators are evidence of present or past hydrologic events 

(Environmental Laboratory, 1987). Indicators are divided in primary and secondary 

indicators. Any of these primary indicators are considered evidence of wetland 

hydrologic characteristics, while secondary indicators are supplemental to support 

evidence of wetland hydrology. Soil saturation is generally observed with field survey. 

Primary indicators for recorded data and field observations include:  

1. Visual observation of inundation (surface flooding), or  

2. Visual observation of saturation (evidence of periodic saturation within 12" of the 

surface), or  

3. Watermarks or staining on bark of woody vegetation, or  

4. Drift lines, "high tide" lines of debris left by previous high water events, or  

5. Sediment deposits, including deposits of algae, or  

6. Drainage patterns within wetlands, or  

7. Oxidized root channels in the soil (orange-reddish "halos" surrounding the 

channels of live roots).  
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Secondary indicators include: 

1. Water stained leaves, or 

2. Local soil survey hydrology data for identified soils, or 

3. Fact neutral test, or 

4. Bare soil areas. 

2.7  COWARDIN SYSTEM OF WETLAND DEFINITION 
 

According to Cowardin et al. (1979) wetlands are lands transitional between terrestrial 

and aquatic systems where the water table is usually at or near the surface or the land is 

covered by shallow water. For purposes of this classification, wetlands must have one or 

more of the following three attributes: (1) at least periodically, the land supports 

hydrophytes, (2) the substrate is predominantly undrained hydric soil, and (3) the 

substrate is non-soil and is saturated with water or covered by shallow water at some time 

during the growing season of each year. 

The Cowardin classification system is based on a hierarchical structure that 

groups wetlands according to ecologically similar characteristics. The Cowardin system 

was developed to be applicable both to ground based information and remote sensing 

methods. The Cowardin system excludes uplands, but it includes both aquatic and 

terrestrial habitats. It is considered to be the easiest of the existing national wetland 

classification systems to use for wetland map preparation, and it is the national standard 

system for wetland classification (Mader, 1991). The FWS and NWI use the Cowardin 

wetland types, which include: swamps, freshwater, brackish water, and saltwater 

marshes, bogs; vernal pools, periodically inundated salt flats; intertidal mudflats, wet 

meadows, wet pastures, springs and seeps, portions of lakes, ponds, rivers and streams, 

and all other areas which are periodically or permanently covered by shallow water, or 

dominated by hydrophytic vegetation, or in which the soils are predominantly hydric in 

nature (Cowardin et al., 1979). On the other hand, the COE 87 manual uses the CWA 

definition, which includes “swamps, marshes, bogs, and similar areas” (Environmental 

Laboratory, 1987). 
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2.8  THE NATIONAL WETLAND INVENTORY 
 

Survey methods and wetland definitions have varied over the years, making an estimate 

of wetland trends nearly impossible. The most recent nationwide estimate is from the 

National Wetlands Inventory (NWI), the fourth major inventory of the nation’s wetlands 

(Messina and Conner, 2000).  

The operational phase of the NWI involves wetland mapping, status and trend 

analysis. The main product of the NWI is large scale (1: 24,000) maps that show the 

location, shape, and characteristics of wetlands and deepwater habitats on U.S. 

Geological Survey base topographic maps (NWI, 1995).  For some regions of Alaska and 

desert regions in the West, smaller scale maps are produced (Tiner, 1996).  Priorities for 

mapping have been based on the needs of the FWS, and other federal and state agencies, 

dependent on the availability of funds and quality aerial photography (Wilen and Pywell, 

1992).  National estimates of wetland status and trends are made at 10 year intervals, 

depending on funding. The estimates are used to evaluate the effectiveness of federal 

programs and policies, identify national and regional problems, and increase public 

awareness (NWI, 1995).  

NWI utilizes conventional photo-interpretation techniques, using aerial 

photographs at scales from 1:40,000 to 1:80,000, and for the earliest maps at 1:133,000. 

Color-infrared photography (scale 1:58,000 and 1:40,000) is considered the best tool for 

mapping wetlands, especially if the photographs are taken during the late winter.   

At the beginning of its operation, NWI utilized the National High Altitude 

Photography (NHAP) program, which was in effect from 1978 to 1988. NHAP 

photographs were taken simultaneously with two cameras, one containing black-and-

white film, the other color infrared. An NHAP black-and-white photograph covered 

about 334 km2, and because of the longer focal length in the second camera, an NHAP 

color-infrared photograph covered about 176 km2.  

The National Aerial Photography Program (NAPP) was established in 1987 to 

coordinate aerial photography for the United States among Federal and State agencies. 

Taken from aircraft flying nominally at about 6100 m above the terrain, each NAPP 

photograph covers about 83 km2. The change from the smaller 1:58,000 to the larger 
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1:40,000 scale increased the cost of mapping but also improved map accuracy and detail 

(Messina and Conner, 2000).  

In conducting the inventory and preparing maps, the NWI undertakes seven major 

steps (Tiner, 1996), and requires team work:  

1) review aerial photographs to identify evident wetlands, typical wetlands, and 

problematic areas,  

2) select and visit sites for field checking in the above areas,  

3) review field trip results by stereoscopically viewing inspected sites on aerial 

photographs,  

4) make stereoscopic photo-interpretation of study area, delineate wetland 

boundaries, and classify each wetland according to the Cowardin 

classification system,  

5) perform quality control at regional and national level,  

6) prepare draft 1:24,000 scale wetland maps, and 

7) coordinate interagency (federal and state) review of draft maps and conduct 

field checking and produce final NWI maps. 

2.9  AERIAL PHOTOGRAPHS AND SATELLITE IMAGERY 
 

Although aerial photography is commonly used in wetland mapping, photo-interpretation 

is not a simple task (Tiner, 1996).  Wetlands are not always permanently flooded or 

saturated, and the degree of wetness of the soil complicates the interpretation of the 

landscape. NWI currently uses stereoscopic photographs in order to detect depressional 

wetlands and facilitate identification of certain sloping wetlands. Unfortunately, wetlands 

do not form only in depressions: they can be found on broad flats and gently sloping 

areas (Tiner, 1996).  

Other photo-interpretation problems occur when the vegetation of drier wetlands 

is not dramatically different from that of adjacent upland areas, and ecotone zones are 

difficult to establish. Further, small changes in elevation may cause large variations in the 

hydrologic characteristics of wetlands (Warthon et al., 1982; White et al., 1983; Hupp, 

1986).  
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More then half of the wetlands in the United States are forested (Frayer et al, 

1983).  They are ecologically valuable since they moderate downstream flooding, 

maintain water quality, control pollution, and provide habitats for wildlife (Warthon et al, 

1982); hence it is critical to identify them. Mapping forested wetlands is especially 

difficult because of the presence of broad ecotones, areas of transition in which 

communities grade into another across complex geomorphic, edaphic, and hydrologic 

gradients (Warthon et al. 1982; Sharitz and Mitsch 1993; Rice and Peet 1997; Townsend 

and Walsh 2001). Using traditional aerial photography for delineating forested wetlands 

can be extremely challenging. The spectral characteristics of a forest wetland canopy are 

not sharply different from upland forest canopies. Also, the canopy hides the hydrological 

characteristic of the soil below, in addition to understory vegetation and topographic 

features of the ground, all which are key parameters for determining a wetland. To 

facilitate the recognition of deciduous forested wetland, leaf-off photographs are 

generally used, even though the interpreter has to consider precipitation condition or 

period of drought prior the photographic overflights. However, wetlands may be 

characterized by the presence of evergreen species, such as Pond pine (Pinus serotina), 

Loblolly Bay (Gordonia lasianthus), and Sweetbay magnolia (Magnolia Virginiana). In 

this case, the recognition of wetlands relies on differences in spectral signatures between 

upland and wetland evergreen vegetation, and on the availability of elevation data. 

Aerial photography is not always practical for collecting regional information or 

information requiring continual validation, because of the cost and logistical difficulties 

associated with capturing the data (Jensen et al., 1987; Johnston and Barson, 1993; 

Harvey and Hill, 2001).  An alternative way of detecting wetlands is implementing the 

use of remote sensing from satellite imagery.  

With the availability of moderate resolution Landsat Thematic Mapper (TM) data 

in 1982, interest has been drawn to its use in wetland vegetation mapping by means of a 

computer-assisted approach (Dottavio and Dottavio, 1984; Jensen et al., 1987).  Different 

approaches and different sensors have been applied. Ackleson and Klemas (1987) 

obtained Landsat TM and Landsat Multispectral Scanner (MSS) imagery for the Guinea 

Marsh located in lower Chesapeake Bay to compare the ability between the platforms to 

detect two species of submergent aquatic vegetation. They found no substantial 
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differences between the TM and MSS imagery for discriminating among vegetation 

classes, but substantial improvements in classification accuracy were achieved for the 

Landsat TM data set when water depth measurements were included in the analysis 

(Ackelson and Klemas, 1987).  Jacobson et al. (1987) used Landsat TM data to achieve 

greater than 90% accuracy for lacustrine systems when compared to NWI maps. 

However, only 25% accuracy was obtained for seasonally and temporally flooded 

emergent wetlands, and no more than 25% of the wetlands under 0.8 ha in size were 

identified. The use of single images has been implemented for discriminating broad 

bottomland forest types focusing upon static classification schemes of community 

composition. Jensen et al. (1987) used a ‘cluster busting’ technique that allowed 

important wetland vegetation to be identified. However, there is evidence in the literature 

that intra-annual satellite imagery provides significant improvements in the detail and 

accuracy of wetland classification, by capturing the phenological changes throughout the 

growing season. Satellite images, collected during different season of the same year, 

enhance the ability to discriminate between wetland vegetation types (Mackey, 1990), 

and multi-temporal data can help evaluate hydrological, phenological and compositional 

changes across seasons and between years. Hodgson et al. (1988) used inter-annual 

change detection for the Savannah River Site in South Carolina for distinguishing 

between cypress-tupelo (Taxodium-Nyssa) forests and other bottomland hardwood 

forests. Mackey (1990) used eleven dates of SPOT data along with near-concurrent 

vertical aerial photographic and phenological data for 1987-1989 to determine seasonal 

and annual changes in a 400 ha southeastern freshwater marsh. He reported that early 

April through mid-May was the best time to discriminate among bald cypress/water 

tupelo (Taxodium distichum L.Rich./Nyssa acquatica L.) swamp forest and the non-

persistent water primrose (Ludwigia spp.) and persistent cattail (Typha spp.) stands in this 

wetland.  

The possibility of discriminating among vegetation composition allows 

hierarchical classification of the vegetation, matching the logical structure of most plot-

based floristic classification systems (Townsend and Walsh, 2001).  It is advantageous to 

combine the information derived from satellite sensors with existing GIS data sets that 

already identify soil features characteristic of wetlands. Several authors have reported 
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improved land-cover classification accuracy by integrating spatial environmental data 

with satellite imagery (Civco, 1989; Welch et al., 1992).  Bolstad and Lillesand (1992) 

incorporated spatial data into a rule-based model for land-cover classification of Landsat-

TM imagery, and increased land-cover classifcation accuracies by 12% over 

classification of TM data alone. 

Several models have been developed in order to improve the suitability of 

multispectral imagery for detecting wetlands.. An example is the Soil-Vegetation-Water 

index developed by Yamagata and Sugita (1999) for monitoring land cover change in the 

Kushiro wetland, in Japan, using Landsat TM images. Researchers have also successfully 

used the tasseled cap transformation as another method for discriminating soil moisture 

content. The tasseled cap transformation has been developed for Landsat, IKONOS, and 

recently for ASTER (Wang and Sun, 2005). Nevertheless, mapping different kind of 

vegetation using multispectral images remains difficult. Optical sensors have been used 

to map wetland vegetation in the Amazon (Mertes et al., 1996; Novo and Shimabukuro, 

1997).  Thick vegetation covering underlying waters and clouds or smoke frequently 

obscured the ground, limiting the quality of maps of the study area. In addition, the 

moderate resolution of Landsat (30x30 m) emphasizes detection of non-wetland cover, 

omitting wetlands as a class or significantly underestimating wetland area (Hansen et al., 

2000; Loveland et al., 2000; Hess et al., 2003).  

Among the large number of satellite sensors launched by the National 

Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) 

in the last decade, the most commonly used method for detecting wetlands are the radar 

systems. Radar systems are both passive and active microwave sensors, and one of their 

biggest advantages is that they are little influenced by clouds and smoke (Travaglia and 

Macintosh, 1997).  On the contrary, they can penetrate the vegetation canopy, and they 

have been proven to be useful for wetlands mapping (Melack and Hess, 1998).  

Bourgeau-Chavez et al. (2002) demonstrated that multi-band synthetic aperture radar 

(SAR) data can be used to map wetlands with an accuracy of about 74%.  

Improvements in detecting wetlands and discriminating among different 

vegetation and soils have been shown by the recent application of classification 

techniques to airborne hyperspectral data (Bajjouk et al., 1998; Silvestri et al., 2002).  At 
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the end of a study in the Orbetello Lagoon, in Italy, Alberotanza et al. (1999) affirmed 

that airborne imaging spectrometers are presently capable of returning clearly distinct 

spectral signatures, directly comparable with field spectral measurements. Hirano et al. 

(2003) found hyperspectral analysis suitable for discriminating forest and herbaceous 

communities, with accuracies ranging from 74% to 95% in discriminating tree species in 

red, black and white mangrove communities.  

The use of hyperspectral and radar images for wetland mapping is not free from 

difficulties and limitations from a practical standpoint (Hirano et al., 2003).  One 

difficulty is the complexity of image-processing procedures that are required before the 

image data can be effectively used for automated classification of wetland vegetation. A 

second equally important difficulty is the high cost of the data.  

The cost to undertake a survey varies greatly depending on the size of the area to 

be flown, the pixel resolution chosen, and the number of spectral bands that are to be 

collected. An average project is charged for the time committed to the project, the time 

required to preprocess the data collected, and for incurred expenses such as airfare, 

hotels, shipping, etc.  In addition, surveys that are scheduled can be canceled because of 

weather conditions, and the deadline of a project can shift considerably (Hyperspectral 

Data International, 2004), delaying project and increasing overall costs.  

Airborne methods can provide more detailed information about habitat mapping, 

and the choice of commissioning either digital or photographic sensors depends on the 

staff cost and the urgency of data acquisition. Color aerial photography is cheaper than 

digital airborne scanner data if the staff costs are considerably less than $150 per day 

(Mumby et al., 1999). 

In this research, the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) sensor was used as the source of remote sensing data. ASTER was 

launched on the Terra Platform as part of NASA's Earth Observing System in December 

1999. It has the potential to overcome the limitations in wetland mapping due to its fine 

resolution of 15x15 m in the visible and near infrared spectral range, and a total of 14 

bands. ASTER is an on-demand sensor, and scenes may be available monthly. The cost 

of ASTER scenes is relatively low compared to other satellite imagery. ASTER data have 

successfully been used for monitoring volcanic activities, climatic changes, urban 
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environmental problems, glaciers and fire monitoring (Stefanov et al., 2001; Ford et al., 

2003), but little research on wetland applications has been reported (Kato et al., 2001). 

In conclusion, even though aerial photography has been a favored tool for 

operational wetland mapping, satellite remote sensing techniques have the potential for 

matching the results obtained using aerial photography, with the advantage of improving 

timeliness and cost. 
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3  A LOGIT MODEL FOR PREDICTING WETLAND  
LOCATION USING ASTER AND GIS 

3.1  ABSTRACT 
 

Data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) were used to develop a logistic regression model to predict the location of 

wetlands in the Coastal Plain of Virginia. We used the first five bands from two ASTER 

scenes (spanning 0.52-2.18 µm) covering the same area, acquired 6 March 2005 and 16 

October 2005. To improve the accuracy of the model, we included GIS data layers 

representing hydric soils and water. The resulting model predicted the location of over 

78% of total wetlands, highlighting the potential of models incorporating ASTER data for 

speeding the wetland mapping process, lowering costs of map production, and improving 

wetland mapping accuracy.  

3.2  INTRODUCTION  
 

According to the state summary from the National Water Summary on Wetland 

Resources, Virginia has about 1 million acres of wetlands, and about three-quarters are 

non-tidal wetlands (Dahl and Allord, 1997). In recent years, function and value of 

wetlands have shifted from being purely economical to being more environmentally 

oriented. Several studies highlight the importance of wetlands regarding water quality 

and water holding capacity (Bruland and Richardson, 2004), as well as sediment retention 

(Llewellyn et al., 1995). In addition, wetlands are important feeding, breeding, and 

drinking areas for wildlife, and provide a stopping place refuge for waterfowl (Burdick et 

al., 1989; Lillesand and Kiefer, 2004). 

In 1977, the U.S. Clean Water Act (CWA) established that no discharge of 

dredged or fill material into waters of the United States can be permitted if a practical 

alternative exists that is less damaging to the aquatic environment or if the Nation's 

waters would be significantly degraded (U.S. Army Corps of Engineers, 1995). This 

legislation required federal agencies to focus their interest into more accurate 

identification of location of aquatic habitats (e.g. wetlands) in order to produce 
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appropriate policy and guidance (Environmental Laboratory, 1987), and in order to 

develop and interpret environmental criteria utilizable in evaluating permit applications. 

In 1986, the Emergency Wetland Resource Act directed the National Wetlands Inventory 

(NWI), part of the U.S. Fish and Wildlife Service, to map and produce digital wetland 

databases for the USA, including information on the characteristics, extent, and status of 

the Nation’s wetlands and deepwater habitats. NWI uses 1:40,000 aerial photography for 

performing a stereoscopic photo-interpretation of an area, and delineating wetland 

boundaries. There are several problems with the current process, including: high costs 

due to the personnel needed both for digitizing the aerial photographs and for field 

validation of the wetlands; delays in estimating gains and losses of wetlands due to the 

extensive time required to update maps (about ten years), and omission error estimated to 

vary from 35% (Werner, 2005) to 85% (Stolt and Baker, 1995).  

An alternative method of detecting wetlands is through the use of satellite 

imagery. Single images have been used for discriminating broad bottomland forest types, 

focusing upon static classification schemes of community composition (Jensen et al., 

1987; Hodgson et al. 1988), but multi-temporal satellite imagery has been generally 

preferred (Bolstad and Lillesand, 1992; Wolter et al. 1995; Townsend and Walsh, 2001). 

However, forest wetland mapping using only multispectral-based remote sensing 

techniques has proven to be problematic (Jacobson et al., 1987; Tiner, 1990; Federal 

Geographic Data Committee [FGDC], 1992). Optical sensors have been used to map 

wetland vegetation in the Amazon (Novo and Shimabukuro, 1997), but vegetation 

covering underlying waters, and cloud, haze or smoke frequently obscuring the ground 

were limitations. In addition, the relatively moderate resolution of some sensors, such as 

Landsat, emphasizes non-wetland cover, omitting wetlands as a class or significantly 

underestimating wetland area (Defries et al., 2000; Loveland et al., 2000; Hess et al., 

2003).  

The Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) offers the potential to reduce issues associated with spatial resolution. 

Moreover, it may lower costs and time for updating maps. ASTER is an on-demand 

sensor that has been successfully implemented in monitoring volcanic activities, climatic 

changes, urban environmental problems, glacier retreat and fire monitoring (Stefanov et 
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al., 2001; Ford et al., 2003), but little research on wetlands has been reported (Kato et al., 

2001).  

Details of the sensor are provided in table 3.1. The sensor consists of three 

subsystems: visible and near-infrared (VNIR), short wave infrared (SWIR), and thermal 

infrared (TIR) subsystems. 

 

Table 3.1. Characteristics of the ASTER instrument. 
Characteristic VNIR1 SWIR2 TIR3 

 Band 1: 0.520 - 0.600 µm Band 4: 1.600 - 1.700 µm Band 10: 8.125 - 8.475 µm 
 Band 2: 0.630 - 0.690 µm Band 5: 2.145 - 2.185 µm Band 11: 8.475 - 8.825 µm 

Spectral Range Band 3: 0.760 - 0.860 µm Band 6: 2.185 - 2.225 µm Band 12: 8.925 - 9.275 µm 

 Band 3: 0.760 - 0.860 µm Band 7: 2.235 - 2.285 µm Band 13: 10.250 - 10.950 µm 

  Band 8: 2.295 - 2.365 µm Band 14: 10.950 - 11.650 µm 

  Band 9: 2.360 - 2.430 µm  

Ground Resolution 15 m 30 m 90 m 

Data Rate (Mb/sec) 62 23 4.2 

Cross-track Pointing (°) ±24 ±8.55 ±8.55 

Swath Width (km) 60 60 60 
 

§1 Visible and near infrared 
2 Short wave infrared 
3 Thermal infrared 

 

In this study we used the VNIR and the SWIR subsystems. VNIR operates in 

three spectral bands at visible and near-IR wavelengths, with a resolution of 15 m. The 

SWIR subsystem operates in six spectral bands in the near-infrared region through a 

single, nadir-pointing telescope that provides 30-m resolution. One of the disadvantages 

of ASTER is that the sensor does not observe the spectral range between 0.450 and 0.520 

micrometers. This range, commonly known as the blue band (or Band 1 in Landsat TM) 

provides increased penetration of water bodies and it is also capable of differentiating soil 

and rock surfaces from vegetation (Quinn, 2001). Moisture greatly influences the 

reflection of shortwave radiation from soil surfaces in the SWIR (1.100–2.500 µm) region 

of the spectrum (Bowers and Hanks, 1965; Skidmore et al., 1975). Lobell and Asner 

(2002) described a relatively robust relationship between degree of saturation and SWIR 
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reflectance, estimating that soil moisture based on a general model of SWIR reflectance 

contained only half the uncertainty of estimates based in the VNIR. 

 The first objective of this study was to explore the ability of raw ASTER bands in 

predicting wetland location using a logistic regression model (logit). Our second 

objective was to quantify the improvement of the model when additional variables were 

introduced. We initially selected five GIS variables: digital soil data obtained from the 

Soil Survey Geographic Database (SSURGO), hydrographic data obtained from the U.S. 

National Hydrography Dataset (NHD), a 10 m digital elevation model, the slope of the 

terrain, and a wetness index map computed by dividing the tangent of the slope of the 

terrain over the catchment area (Gessler et al., 1995). Our third objective was to compare 

our results with NWI data. 

3.3  DATA AND METHODS 

3.3.1  STUDY AREA 
 

Our area of interest was located on the Coastal Plain of Virginia (figure 3.1).  The Coastal 

Plain consists of fluvial and marine deposits, primarily non-lithified. The oldest 

sediments were deposited during the Cretaceous, much younger deposits are found near 

the coastline (5,000-25,000 years ago) (Eick, 2006). Most of the terrain is nearly level 

with slow run off. The elevation has a median of 33 m above the mean sea level, with a 

maximum elevation of 105 m. Numerous rivers and streams cross the Coastal Plain. 

Their sinuous patterns create environments favorable for wetlands of varied natures: 

emergent, scrub and shrub, and forested wetlands. The Coastal Plain is characterized also 

by mineral flat wetlands, whose locations are independent from the vicinity to streams. 

Even though urbanization and agriculture have greatly reduced these wetlands, the 

Coastal Plain is the region that contains more than 70% of all the wetlands in Virginia 

(Tiner and Finn, 1986). 
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Figure 3.1. Map of the study area as obtained from the 16 October 2005 ASTER image, and its location within Virginia (in green).  
Layer 4 = 1.600 - 1.700 µm 7, Layer 3 = 0.760-0.860 µm, Layer 2 = 0.630-0.690 µm. 
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3.3.2  ASTER 

 

We based this study on the analysis of two ASTER images. One image was collected on 

6 March 2005, the second image on 16 October 2005 (respectively AST_L1B.3: 

2028411439, and AST_L1B.3:2028019676). We chose these two scenes for the 

following reasons. The first week of March is important in the hydrologic cycle of 

wetlands since the water table has risen to the surface, increasing the moisture content of 

the soil. The height of the water table is critical for wetland survivals and detection. The 

water table has to reach surface to provide the necessary habitat for the growth and 

reproduction of hydrophytic vegetation. In March, leaves have not yet appeared on trees, 

allowing a spectral analysis of the soil moisture. The October date was chosen because 

the vegetation has started putting on its autumn colours, favouring discrimination 

between wetland and upland vegetation, and vegetation within wetlands. 

Even though the multispectral range of ASTER bands covers values between 

0.520 µm and 2.430 µm, in this study we used only the bands covering the spectrum from 

the visible to shortwave infrared range (0.520-2.185µm, Band 1 to Band 5). The choice 

of this range was dictated by the fact that higher value bands are affected by spectral 

crosstalk phenomena (Iwasaki and Tonooka, 2005), and we were advised to use ASTER 

images produced in the last five years (K. Thome, personal communication, June 2005).  

At the pre-processing stage, we georeferenced the images to the Universal 

Transverse Mercator 1983 North American Datum (UTM NAD 83) using a first order 

polynomial transformation. We selected twenty ground control points (RMSE = 0.80 m) 

and twenty check points (RMSE = 0.85 m).  We converted each ASTER band to top-of-

atmosphere reflectance using solar irradiance values provided by the ASTER science 

team (K. Thome, personal communication, June 2005).  Table 3.2 shows the solar 

irradiance value for the ASTER bands. We masked out clouds and their shadows via 

digitizing using ERDAS Imagine® 9.0 (Leica Geosystems LLC, Norcross, GA, USA). 

We resampled the bands to 15 m to match the pixel resolution of the first three ASTER 

bands. 
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Table 3.2. Solar irradiance values for ASTER. 
 

Band Solar Irradiance 

(W/m2 micrometer) 

1 1846.9 

2 1546.0 

3 1117.6 

4 232.5 

5 80.32 

6 74.92 

7 69.20 

8 59.82 

9 57.32 

 

3.3.3  GIS DATA LAYERS 
 

The Soil Survey Geographic Database (SSURGO) provided the most detailed level of 

soil information. SSURGO was designed primarily for farm and ranch, landowner/user, 

township, county, and parish natural resource planning and management. We reclassified 

the SSURGO soil data in order to obtain a binary set of hydric vs. non-hydric soils. The 

distinction was based on the percentage of hydric composition established by NRCS 

within each map unit. Soils having a hydric composition greater than 85% were classified 

as ‘hydric’; soils that had a composition lower than 55% were classified as ‘non-hydric’. 

We checked the location of the soils with a hydric composition between 55% and 85% 

using topographic maps and fine resolution digital orthophotos (scale 1:1,200 and 

1:2,400).  Soils with this range of hydric composition were typically found either in urban 

areas (hence, ‘non-hydric’) or on river-beds (hence, ‘hydric’).  

The hydrographical data were collected from the NHD, a comprehensive set of 

digital spatial data. It contains information about surface water features such as lakes, 

ponds, streams, rivers, springs and wells. The NHD is based upon the content of USGS 

Digital Line Graph (DLG) hydrography data integrated with reach-related information 
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from the Environmental Protection Agency Reach File Version 3 (USGS, 2005).  As 

continuous GIS data layers, we used a 10 m digital elevation model (DEM) developed 

from the Virginia Base Mapping Program (VBMP).  The VBMP DEMs provide the 

highest resolution terrain model currently available in the Commonwealth of Virginia 

(Futrell and Sforza, 2004).  The data came as three-dimensional elevation mass points 

spaced across the surface on a regular grid or at random intervals as necessary for 

properly modeling the earth surface (VBMP, 2003), and were grouped in tiles. About 900 

tiles covered our study area, for a total of 90,000 points. A comprehensive TIN was 

created using the 3-D Analyst Extension™ in ArcMap 9.1® (Environmental Systems 

Research Institute, Inc., Redlands, CA, USA), and subsequently converted to a grid file to 

obtain a DEM with a 10 m horizontal resolution. We tested the vertical accuracy of the 

DEM using the geodetic control network provided by the U.S. National Geodetic Survey 

(table 3.3), as suggested by Maune et al. (2001).   

 

Table 3.3. Vertical accuracy of the DEM generated from the VBMP dataset compared to 

the geodetic control network points.  

 
RMSE (m) Mean (m) Median (m) Skew Std. Dev. # of Points 

1.96 0.43 0.20 1.87 1.92 773 
 

 

We calculated the slope of the terrain from the DEM using the Spatial Analysis 

tool in ArcMap 9.1® (Environmental Systems Research Institute, Inc., Redlands, CA, 

USA), and the wetness index as the ratio between the tangent of the slope of the terrain 

and the catchment area (Gessler et al., 1995). The calculations for the catchment area and 

the slope were performed using ArcView 3.2® (Environmental Systems Research 

Institute, Inc., Redlands, CA, USA). The catchment area is commonly computed on grids 

using flow direction algorithms that treat the flow as coming from point source at the 

pixel center (Chirico et al., 2005). 
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3.3.4  EXPERIMENTAL DESIGN AND FIELD VALIDATION 
 

We randomly sampled 870 points over the study area. Appendix A shows the coordinates 

of the points. We labelled the points either as wetland or upland1 using topographic maps 

and high resolution digital orthophotographs obtained from the VBMP. The digital 

orthophotographs were based on true color, leaf-off photography acquired in 2002 at one 

of three scales: 1:4,800 in rural areas, 1:2,400 in urban and suburban areas, and 1:1,200 in 

areas where localities chose the option to purchase the higher accuracy product (VBMP, 

2003).  Figure 3.2 shows the orthotile grid for the study area.  

 
Figure 3.2. Virginia Base Mapping Program orthotile grid. The gray tiles have a scale of 

1:2,400; the white tiles have a 1:4,800 scale. The black frame indicates the location of the 

study area. 

 

                                                 
 
1 In this study, we refer to upland as any land that is not a wetland.   

Richmond
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We identified uncertain points with the help of a panel of GIS and wetland 

experts. We randomly subdivided the points into two groups. The first group, containing 

211 upland points and 263 wetland points, was used for developing the logit model. The 

second group, containing 164 upland points and 228 wetland points, was utilized for 

testing the model.  

We performed a field survey on 15% of the total points. 95% of the sites were 

correctly identified. We tested for possible spatial autocorrelation using the Moran’s I 

index (Moran, 1950), because parametric models rely on the assumption of independence 

of errors. Moran's I is a weighted product-moment correlation coefficient, where the 

weights reflect geographic proximity. The Moran’s I index varies between -1 and +1. 

Values of I larger than 0 indicate positive spatial autocorrelation; values smaller than 0 

indicate negative spatial autocorrelation. In order to determine whether a deviation of I 

from its expectation is statistically significant, one relies on the asymptotic distribution of 

I, which is Gaussian with mean -1/(n-1) and variance σΙ
2 (Schabenberger and Pierce, 

2001). To reject the null hypothesis of no spatial autocorrelation, the observed z-score 

must be higher than the zα/2 cutoff of a standard Gaussian distribution. GEODA® 

software (University of Illinois, Urbana-Champaign, IL, USA) was used for calculating 

Moran’s I and to compute the variance σΙ
2 in a randomized approach, where the Z(si) are 

considered fixed and are randomly permuted. The results from this test are shown in table 

3.4. The values of I are very close to zero. However, comparing the empirical distribution 

to the theoretical distribution, the p-values show a statistically significant positive 

correlation for most of the variables when water is included in the model, and for most of 

the October bands when water is excluded from the model. We decided to proceed with 

the analysis, recognizing that our results may be slightly influenced by autocorrelation. 
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Table 3.4. Moran’s I values, expected I, standard deviation, Z-score, and p-value for each 

variable for the original set of data (a), and a set of data that does not contain the water 

category (b). 
 

a) 
Variable Moran's I E(I) Sd Z-score P-value 
Wetness Index 0.016 -0.002 0.0225 0.827 0.092 
March Band 3 0.019 -0.002 0.0231 0.926 0.199 
October Band 5 0.024 -0.002 0.0235 1.145 0.147 
October Band 2 0.032 -0.002 0.0233 1.502 0.077 
October Band 1 0.032 -0.002 0.0216 1.583 0.066 
March Band 4 0.034 -0.002 0.0232 1.586 0.067 
October Band 4 0.038 -0.002 0.0231 1.749 0.054 
March Band 5 0.042 -0.002 0.0233 1.893 0.040 
DEM 0.063 -0.002 0.0233 2.820 0.010 
March Band 1  0.064 -0.002 0.0231 2.903 0.010 
March Band 2 0.064 -0.002 0.0228 2.904 0.009 
NHD 0.066 -0.002 0.0232 2.966 0.002 
October Band 3 0.082 -0.002 0.0236 3.593 0.002 
SSURGO 0.088 -0.002 0.0237 3.819 0.001 
Slope 0.166 -0.002 0.0245 6.886 0.001  

b) 
Variable Moran's I E(I) Sd Z-score P-value 
October Band 2 0.032 -0.003 0.0266 1.305 0.101 
October Band 5 0.031 -0.003 0.0243 1.412 0.091 
October Band 1 0.033 -0.003 0.0240 1.488 0.091 
March Band 3 0.040 -0.003 0.0245 1.735 0.027 
October Band 4 0.049 -0.003 0.0252 2.071 0.038 
March Band 4 0.054 -0.003 0.0251 2.259 0.015 
Wetness Index 0.051 -0.003 0.0218 2.477 0.015 
March Band 5 0.066 -0.003 0.0257 2.681 0.007 
March Band 1 0.069 -0.003 0.0249 2.904 0.012 
March Band 2 0.072 -0.003 0.0248 3.024 0.007 
DEM 0.076 -0.003 0.0253 3.123 0.005 
October Band 3 0.085 -0.003 0.0261 3.372 0.006 
NHD 0.085 -0.003 0.0248 3.560 0.001 
SSURGO 0.103 -0.003 0.0259 4.089 0.001 
Slope 0.205 -0.003 0.0254 8.181 0.001  
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3.3.5  THE LOGIT MODEL 
 

The discrete choice model, developed by McFadden (1974), is often referred as the 

multinomial logistic regression model or logit model. The assumption behind logistic 

regression is that the probability of a dependent variable taking the value of 1 follows a 

logistic curve (Wrigley, 1985).  We chose a binomial logit model because only two 

outcomes were possible: wetland vs. not wetland. The binomial logit model is expressed 

as follows: 
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where d is the dependent variable, x is the set of independent variables, and β represents 

the coefficients derived from the logit model. In this study, the categorical binomial 

dependent variable takes the value of 1 when it is wetland, and zero when it is upland. 

The logit model was developed in SAS® 9.1.3 (Statistical Analysis System 

Institute Inc., Cary, NC, USA) using the PROC LOGISTIC procedure.  

3.4  RESULTS 
 

We initially developed a logistic regression model for every ASTER band separately in 

order to observe the relationship between each band and the presence of wetlands. Table 

3.5 show the overall accuracy obtained using each single band, and the producer’s (P) 

and user’s accuracy (U) (Lillesand and Kiefer, 2004) when water is included in the 

model. The producer’s accuracy indicates how well pixels of the given cover type are 

classified. The user’s accuracy indicates the probability that a pixel classified in a given 

class actually represents that class on the ground (Lillesand and Kiefer, 2004). The 

overall trend, which varied quite a bit among bands and dates, revealed little commission 

error for wetlands, but many were missed. At a probability level of 90%, the March scene 

had some influence in detecting wetlands. March Band 3 had the highest accuracies, 

followed by Band 4 and 5.  
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Table 3.5. Estimate values and accuracy rate for each individual March ASTER band (a) 

and October band (b) from an in-sample analysis when water is included in the model.  

P = producer’s accuracy; U = user’s accuracy. 

 
a) 
Variable Band 1 Band 2 Band 3 Band 4 Band 5 

Estimate value 
-14.29 
(p < 0.0001) 

-19.97 
(p < 0.0001) 

-38.43 
(p < 0.0001) 

-23.57 
(p < 0.0001) 

-36.10 
(p < 0.0001) 

 
Accuracy rate at 90% probability level 
Overall accuracy 47.2 44.7 74.6 63.9 60.2 
      

 P U P U P U P U P U 
Wetland accuracy 7.0 100 7.0 94.4 59.3 96.9 39.7 97.7 33.9 97.4 
Upland accuracy 100.0 44.7 99.6 44.6 96.8 63.2 99.3 55.0 98.6 52.7 
 
Accuracy rate at 95% probability level 
Overall accuracy 40.7 40.9 68.8 59.2 55.5 
      
 P U P U P U P U P U 
Wetland accuracy 0.0 100 0.5 100 48.9 94.5 31.5 97.2 24.9 100 
Upland accuracy 100 42.6 100 42.5 97.9 58.6 99.6 51.6 100 49.5  

 
b) 
Variable Band 1 Band 2 Band 3 Band 4 Band 5 

Estimate value 

-1.725 
(p < 

0.0001) 

-3.293 
(p < 

0.0001) 
-3.556 

(p < 0.0001) 
-5.720 

(p < 0.0001) 
-8.794 

(p < 0.0001) 
 
Accuracy rate at 90% probability level 
Overall accuracy 40.7 40.7 40.7 36.1 40.7 
      
 P U P U P U P U P U 
Wetland accuracy 0.0 - 0.0 - 20.2 95.7 13.0 100 7.0 100
Upland accuracy 100 42.5 100 42.5 97.2 43.5 100 45.9 100 44.3
 
Accuracy rate at 95% probability level 
Overall accuracy 40.7 40.7 40.7 40.7 40.7 
  
 P U P U P U P U P U 

Wetland accuracy 0.0 100 0.5 100 15.9 96.5 7.0 98.2 7.0 100 
Upland accuracy 100 42.6 100 42.5 97.9 58.6 99.6 51.6 100 49.5 
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As expected, the accuracy increased once all bands were used in the model (table 

3.6, part a).  At a 90% probability level, the producer’s accuracy is 60.6%. The 

producer’s accuracy decreased to 50% at a 95% probability level. Table 3.6 (part b) 

shows results obtained once the water category is excluded. This comparison was 

necessary because open water fell into the wetland category using this classification 

scheme, but is easily identified using multispectral data that includes the reflective 

infrared. The overall accuracy decreased by about 4% at both confidence levels. The 

wetland producer’s accuracy was about 12% lower, confirming our suspicion that 

inclusion of open water in the wetlands category inflated the accuracy. The inversely 

related user’s accuracies for wetlands (high) and uplands (low) confirms the general trend 

toward overclassifying uplands. 

 

Table 3.6. Accuracy rates obtained using all the 10 ASTER bands in the logit model 

when the original set of data (a) is considered, and (b) when water is excluded from the 

model. P = producer’s accuracy; U = user’s accuracy.  

 
a) 

Probability level 90% 95% 
Overall Accuracy 74.5 69.0 

 P U P U 
Wetland Accuracy 60.6 96.4 50.6 97.3 
Upland Accuracy 96.0 51.5 97.6 48.3 

 
b) 

Probability level 90% 95% 
Overall Accuracy 70.4 64.0 

 P U P U 
Wetland Accuracy 48.2 97.4 34.8 99.3 
Upland Accuracy 96.0 49.8 97.6 49.5 

 

In order to identify which band contributes most to the model, we computed the 

marginal effect (table 3.7).  The marginal effect is the change in probability of detecting a 

wetland for a one standard deviation change in each respective independent variable from 

its median value. Band 3 had the highest marginal effect (7.277). The other bands had a 

much lower value. Band 1 was also negative, meaning an inverse correlation with the 

predicted probability; however it was the second highest marginal value (-2.466).  
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Considering the October scene, the marginal effect of all the bands was low with respect 

to the March scene. This result is in agreement with the fact that each individual October 

band does not have any power in identifying wetlands. The high marginal effect of March 

Band 3 may be influenced by the statistically significant spatial autocorrelation found in 

presence of water. However, the spatial autocorrelation should positively influence also 

the October bands, but we observe that the marginal effect of the October scene is close 

to none.  

 
Table 3.7. Marginal effect of the ASTER bands. 

 
Band # 1 2 3 4 5 
March      

Standard Deviation 0.077 0.085 0.087 0.091 0.050 
Marginal Effect -2.466 1.337 7.277 0.394 -0.056 

October      
Standard Deviation 0.081 0.090 0.125 0.124 0.075 

Marginal Effect 0.297 0.272 0.240 0.501 -1.102 
 

Before introducing all the GIS data in the logistic regression model, we performed 

a canonical discriminant analysis to test the significance of each variable in separating 

wetlands from uplands. The canonical discriminant analysis finds linear combinations of 

the quantitative variables that provide maximal separation between the classes. The 

canonical discriminant analysis was performed in SAS, using PROC CANDISC. The 

CANDISC procedure computes squared Mahalanobis distances between class means, and 

performs both univariate and multivariate one-way analyses of variance. Appendix B 

provides the SAS code used for the canonical discriminant analysis and the %PLOT 

macro to plot pairs of canonical variables to aid visual interpretation of group differences 

(figure 3.3 and 3.4).  

We computed the canonical analysis twice. The first time, we considered all the 

training points, including the water category. The second time, we computed the analysis 

excluding the water category, so that the direct effect of water on the correlation was 

observed. The results were not significantly different.  
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Figure 3.3. Plot of the canonical variables from the original dataset. Canonical variable 1 

(Can 1) vs. canonical variable 2 (Can 2)(a);  canonical variable 1 (Can 1) vs. canonical 

variable 3 (Can 3) (b);  canonical variable 3 (Can 3) vs. canonical variable 2 (Can 2)(c).  

The cross symbol represents upland, and the diamond symbol represents wetland. 
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Figure 3.4. Plot of the canonical variables from the dataset when the water is not 

included. Canonical variable 1 (Can 1) vs. canonical variable 2 (Can 2) (a); canonical 

variable 1 (Can 1) vs. canonical variable 3 (Can 3) (b); canonical variable 3 (Can 3) vs. 

canonical variable 2 (Can 2) (c). The cross symbol represents upland, and the diamond 

symbol represents wetland.
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Table 3.8 shows the canonical variate correlation between the first canonical 

variate (Can1) and the independent variables in case of presence (a) and absence of water 

(b). We considered the first canonical variable only because it was able to separate 

uplands from wetlands, whether the water category was included or not.  

Higher values in table 3.8 signify higher correlations. SSURGO soil data had the 

highest correlation with Can1 (0.876), followed by Band 3 from the March scene, which 

had a negative correlation (-0.803), and the NHD water data had a positive value (0.725). 

The other variables had lower correlation values, meaning that they did not have the same 

power in separating wetlands from uplands. When water was excluded from the analysis, 

the results did not change. SSURGO soil data remained the variable with the highest 

correlation value (0.897), followed by March Band 3, and NHD water data.  

 

Table 3.8. Canonical variate correlation of Can1 with the 15 variables used in the logit 

model. Water category is included (a);  water category is excluded (b).  

 
a)   b)  

March   March  

Band 1      -0.520  Band 1     -0.539 
Band 2 -0.592  Band 2 -0.566 
Band 3 -0.803  Band 3 -0.776 
Band 4 -0.684  Band 4 -0.626 
Band 5 -0.620  Band 5 -0.550 

October   October  

Band 1       -0.359  Band 1    -0.401 
Band 2 -0.355  Band 2 -0.394 
Band 3 -0.421  Band 3 -0.264 
Band 4 -0.594  Band 4 -0.527 
Band 5 -0.550  Band 5 -0.487 
    
SURGO 0.876  SURGO 0.897 
NHD 0.725  NHD 0.694 
DEM -0.583  -DEM 0.528 
Slope -0.153  -Slope 0.156 
WI 0.315  WI 0.263 
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Because of the proven significant contribution of March Band 3 over the other 

ASTER bands, we selected only Band 3 to be combined with the SSURGO soil data and 

the NHD water data in two other logit models.The first included the water category; the 

second excluded the water category. Each time, the model was tested on an out-of-sample 

dataset (table 3.9). The out-of-sample results are slightly different than the in-sample 

results using only March Band 3. However, when water is excluded from the model, the 

out-of-sample results are higher at both 90% and 95% probability level than the results 

obtained joining all the ASTER bands into the model. Since March Band 3 was not 

affected by spatial autocorrelation in absence of the water category (p = 0.027), we can 

affirm that spatial autocorrelation does not inflate the power of March Band 3. Also, even 

though March Band 3 easily measure the water category, it is also able to detect over 

56% of wetlands that are not open water.  

Adding the GIS data layers one by one to the model having originally only March 

Band 3, we observed that the producer’s accuracy rate for wetland prediction increased 

significantly when NHD water data was added into the model. At a 90% CI, NHD water 

data raised the accuracy rate 17% with the water category, and 15% without. On the other 

hand, SSURGO soil data did not have the same influence. With water, it increased the 

producer’s accuracy rate 8%, without water 2%. The commission error for uplands varies 

between 30% and 40% when the GIS data layers are added to the model. The addition of 

the binary variables together did not increase the accuracy rate more than what NHD 

water was able to do by itself. When water was included in the analysis, the model had 

the highest producer’s accuracy rate both at CI equal to 90% and 95%. When water was 

excluded, the model did not show any significant difference from the model that included 

only the NHD and March Band 3. Figure 3.5 shows a map of the classification obtained 

from the model when SSURGO soil and NHD water data are included. The map can be 

compared to the March Band 3 image (figure 3.6). The James River is completely 

identified, and so are the swamps associated with its sinuous path. In the center of the 

figure is Turkey Island, an area characterized by palustrine wetlands. The area has a 

greater than 90% probability of being wetland. The accuracy becomes lower at the stream 

level. The model does not appear to misclassify agricultural or urban areas as wetlands. 
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Table 3.9. Accuracy rates derived from an out-of-sample test. The values show the increase of accuracy once SSURGO soil and NHD 

water are added to the model containing only March Band 3. The results are shown in presence (a) and absence (b) of the water. P = 

producer’s accuracy; U = user’s. accuracy.  

 
a) With water 
 
 Band 3 SSURGO NHD SSURGO + NHD 
Probability 

Level 90% 95% 90% 95% 90% 95% 90% 95% 

Overall 
Accuracy 76.9 71.2 80.6 70.2 86.0 83.4 86.5 83.4 

 P U P U P U P U P U P U P U P U 
Wetland 

Accuracy 
60.2 93.8 48.8 89.5 68.3 99.2 60.0 94.8 77.5 99.4 72.5 99.2 78.8 98.5 73.0 100 

Upland 
Accuracy 

94.4 63.8 91.1 56.2 95.5 66.1 98.2 52.3 97.6 76.1 98.2 68.6 97.0 76.6 97.6 76.1 

         
b) Without water 
 
 Band 3 SSURGO NHD SSURGO + NHD 
Probability 

Level 90% 95% 90% 95% 90% 95% 90% 95% 

Overall 
Accuracy 70.2 73.6 76.2 68.1 84.6 81.7 84.3 81.7 

 P U P U P U P U P U P U P U P U 
Wetland 

Accuracy 
56.5 93.3 42.9 96.2 58.6 99.0 40.9 98.2 72.9 95.5 66.9 99.1 72.9 99.1 67.4 98.1 

Upland 
Accuracy 

94.3 51.4 98.0 48.6 95.7 63.1 98.2 60.1 97.6 76.4 98.2 65.3 97.0 66.4 97.6 70.6 
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Figure 3.5. Wetland classification as resulted from inputing SSURGO soil, NHD water, 

and March Band 3 into the binary logit model. The legend shows the probability of 

accurately mapping wetlands for a subset of the study area. 
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Figure 3.6. ASTER scene of a subset of the study area taken on 6 March 2005. 
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3.4.1  ANALYSIS OF MISCLASSIFIED WETLANDS 
 

In order to identify the reasons for misclassification, we extracted the incorrectly 

classified points and examined each point using digital orthophotos. Table 3.10 shows the 

causes of misclassification both for wetlands and uplands. Woody wetlands had the 

highest misclassification. Even though the image was acquired during a leaf-off month, 

several wetlands present evergreen forest cover that may obfuscate the standing water 

and soil beneath the canopy. 

A second reason for misclassification was related to georectification. The random 

points were classified as belonging either to uplands or wetlands by looking at their 

position on aerial photographs. Because of the large study area (60 x 60 km), it was not 

possible to mosaic all the orthophotos and georeferenced them to the ASTER image. As 

such, we anticipate that positional error was a factor leading to decreased accuracies, 

though we are uncertain of its importance. 

 

Table 3.10. Cause of misclassification and percentage of misclassified wetlands based on 

location and type of wetland. 

  
Location/  
Wetland Category 

Cause of 
Misclassification 

  
Woody Wetlands Tree canopy cover (94%); 

Georectification (6%) 
 

Emergent Wetlands Dry soil; Georectification 
 

Ponds/Streams Georectification, sediments 
in settling ponds, size 
 

Uplands Ponding of agricultural 
fields, parking lots; 
Georectification 
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3.4.2  NWI ACCURACY 
 

We used the same set of point data for testing the accuracy of NWI in classifying 

wetlands. The overall accuracy (table 3.11) of NWI is higher than the one reached by our 

final model, which included March Band 3, SSURGO and NHD data. In addition, the 

producer’s and user’s accuracy values were high. The McNemar test (McNemar, 1947) in 

table 3.12 also showed that the NWI classification is more accurate than our final model 

(χ2 = 21.35, p-value < 0.0001).  

 
Table 3.11. Error matrix obtained using data from NWI. 

Category Wetland Upland

 
Row 
Total

 
Producer's 
accuracy

User's 
accuracy 

Wetland 204 21 225 86.6 98.5 
Upland 3 164 167 98.8 88.6 
Column Total 207 185 392     
Overall accuracy 92.8     

 
 
 
Table 3.12. McNemar test between the NWI data and the results from the logit model 

obtained from the use of ASTER March Band 3, NHD, and SSURGO data at 90% 

probability level. 

 
McNemar’s Test  

χ2 21.35 

p-value < 0.0001 

Kappa 0.73 
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3.5  DISCUSSION AND CONCLUSIONS 
 

The first objective of this study was to test the ability of the ASTER sensor in detecting 

the location of wetlands. The sensor was able to capture 60.6% of the total wetlands with 

a probability level of 90%. March Band 3 (NIR) proved to be the most useful. The utility 

of March Band 3 was inversely correlated with the presence of wetland, i.e. the higher the 

NIR signal, less likely a pixel would be labeled “wetland”. This result may seem 

surprising, but it is in accord with the work of Slaughter et al. (2001) and Hunt and Rock 

(1989), who showed the NIR band to be capable of detecting soil and plant moisture 

content, and with the work of Tan et al. (2003), that found the near infrared band to be 

the most indicative sign of vegetation leaf health status. The negative correlation of 

wetland vegetation and the NIR band was due to the absence of vegetation on wetlands at 

the time when the March scene was taken. The NIR band signaled the wet ground 

beneath the canopy that was not formed yet.  

This study does not agree with Mackey (1990) who reported that an inter-season 

analysis is necessary for properly detecting wetlands. Even though a multi-temporal 

analysis of the data should in theory help identify the hydrological, phonological and 

compositional changes that are typical of wetland areas, results from this study prove that 

the March scene was the only one required. 

NHD water is the GIS variable that contributed the most to the wetland 

identification accuracy. NHD water is a publicaly available dataset that we strongly 

suggest for use in wetland studies. SSURGO data were initially thought to be the most 

useful data because of a key property that they track: the individual hydric soils. 

However, SSURGO was proven to be less valuable than NHD water. The SSURGO data 

show limitations that can be connected to the age of the data, and to the unkown location 

of the hydric soils within each soil map unit. SSURGO data were surveyed and produced 

in the late 1980s. Since then, the land has been subject to many changes that cannot be 

revealed by SSURGO. For example, the low contribution to the model is probably caused 

by the presence of agricultural lands where SSURGO indicated hydric soil. In addition, 

as noted above, the hydric composition identified by the SSURGO dataset does not 

specify the spatial location of the composition within the soil map unit area. The hidric 
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composition may be concentrated within a depressional area or randomly spread 

throughout the unit area. The only way to assess it would be a field survey, which is not 

feasable over our study area due to its large extent.  

From canonical discriminant analysis, it appears that elevation is a marginal factor 

in determining wetlands. An elevation model that is more accurate than the one provided 

in this study might be of further help in predicting location of wetlands. The wetness 

index was not helpful either. A wetness index generated from a finer grid size (2 and 4 m 

grid cell) is not very different from one generated from a 10 m DEM (Zhang and 

Montgomery, 1994), but it is significantly different from one generated from a 30 m 

DEM. Thus, it may be worthwhile to use a higher resolution DEM to indicate elevation 

patterns, but not to use it for generating a more accurate wetness index.  

Our conclusions are that ASTER has the potential to be successfully used to 

identify wetlands in the Coastal Plain of Virginia, as it has a spatial and spectral 

resolution that allows discrimination between uplands and wetlands. The Coastal Plain 

region in nearby states is similar in its characteristics, thus, we do not see any reason why 

our model could not be applied in states other than Virginia. Lands that are 

topographically different from the Coastal Plain may be subject to different results. We 

speculate that a more undulating topography would increase the probability of locating 

wetlands, and the DEM and wetness index would be more efficient than in the Coastal 

Plain.  

With our model, we predict up to 78% of all the wetlands when the p-value is set 

to 0.1. This study proves that the results are statistically different from the results 

achieved by NWI on the same study area. NWI presents an omission error of 14% on 

wetlands, whereas our model omits about 27% of the wetlands. Even though the 

difference is significant, the accuracy of our model is balanced by factors such as time 

and costs. The traditional way of manually digitizing wetland maps implies high 

production costs due to the team of scientists that have to be employed. The use of 

ASTER images requires only one workstation and one analyst. The maps produced as a 

result of this research are not suitable for land management decisions at the parcel level. 

However, the wetlands identified with our model are almost always wetlands when field-
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verified. As such, costs could be reduced by using a two-stage process (e.g., ASTER then 

high-resolution orthoimagery). 

In addition, ASTER may speed the map updating process from ten years to one. 

That is, maps may be produced every time a March image is available for the location of 

interest. However, the on-demand and still experimental nature of ASTER may limit the 

availability of scenes over time and space, and the availability of imagery with similar (or 

better) spatial resolution appears to be beneficial.  
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4  A COMPARISON OF CART AND LOGISTIC REGRESSION  
FOR MAPPING WETLAND TYPES IN THE COASTAL PLAIN  

OF VIRGINIA USING THE ASTER SENSOR 

4.1  ABSTRACT 
 

Frequent mapping of wetlands is extremely important for monitoring gains and losses in 

these valuable ecosystems. This study compared a non-parametric and a parametric 

model for discriminating among uplands (non-wetlands) and three types of wetlands: 

woody wetlands, emergent wetlands, and open water. Spring (6 March 2005) and fall (16 

October 2005) satellite images obtained from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) and GIS data layers formed input for a 

classification and regression tree (CART) and a multinomial logistic regression (logit) 

analysis. The overall accuracy of the CART model was 73.3%. The overall accuracy of 

the logit model was 76.7%. The accuracies were not statistically different from each other 

(McNemar χ2 = 0.89, p = 0.34). The CART producer’s accuracy of the emergent 

wetlands was higher than the accuracy from the multinomial logit (57.1% vs. 40.7%), 

whereas woody wetlands identified by the multinomial logit model presented a 

producer’s accuracy higher than the one from the CART model (68.7% vs. 52.6%). The 

producer’s accuracy indicates how well pixels of the given cover type are classified.  A 

McNemar test between the two models and NWI maps showed that their accuracies are 

not statistically different. Overall, these two models provided promising results, even 

though they are not sufficiently accurate to replace completely current methods of 

wetland mapping based on feature extraction on high-resolution orthoimagery. 

4.2  INTRODUCTION 
 

Like any other natural environment, wetlands are subject to changes over time due to 

natural events such as floods and hurricanes that modify their shape and size, and by 

human activities that have replaced wetlands with agricultural and urban land. Accurate 

and up-to-date wetland maps are important for evaluating gains and losses of these 

valuable ecosystems and for enabling governmental agencies to produce suitable policy 
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and release appropriate permits to the public. The accuracy of a map depends on the 

protocols that have been used to produce it, including the source data. Currently the 

National Wetland Inventory (NWI) provides the highest detail wetland maps available to 

the public. The main product of the NWI is large scale (1:24,000) maps that show the 

location, shape, and characteristics of wetlands and deepwater habitats. NWI utilizes 

conventional photo-interpretation techniques, using aerial photographs at scales from 

1:40,000 to 1:80,000, and, for the earliest maps, at 1:133,000 to locate and map wetlands 

in the United States.  

In this study, we use data from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer. ASTER is an imaging instrument flying on Terra, a satellite 

launched in December 1999 as part of NASA's Earth Observing System. ASTER consists 

of three separate instrument subsystems (table 4.1): the visible and near infrared (VNIR), 

the shortwave infrared (SWIR), and the thermal infrared (TIR). The VNIR subsystem 

operates in three spectral bands at visible and near-infrared wavelengths, with a 

resolution of 15 m. It consists of two telescopes: one nadir-looking with a three-spectral-

band detector, and the other backward-looking with a single-band detector. The 

backward-looking telescope provides a second view of the target area in Band 3 (0.76-

0.86 µm) for stereo observations. The SWIR subsystem operates in six spectral bands in 

the near-IR region through a single, nadir-pointing telescope that provides 30 m 

resolution. The TIR subsystem operates in five bands in the thermal infrared region using 

a single, fixed-position, nadir-looking telescope with a resolution of 90 m. The ASTER 

instrument is still being corrected and improved. Dr. Thome of the Remote Sensing 

Group, University of Arizona, recommended using ASTER images produced in the last 

three years (K. Thome, personal communication, June 2005).  ASTER is an on-demand 

instrument, which means that data are only acquired over a location if a request has been 

submitted to observe that area. However, many ASTER images are freely available on 

line through the Land Processes Distributed Active Archive Center (LPDAAC) Data 

Pool.   

This study has four major objectives: 1) development of parametric and non-

parametric model able to discriminate among wetland vegetation types using remote 

sensing data from the ASTER sensor and GIS data layers; 2) determination of which of 
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the two models is more accurate for mapping wetland presence and type; 3) 

establishment of which multitemporal remotely sensed data are required for 

discriminating among wetland vegetation types; and 4) comparison of the results of our 

models with NWI maps. 

 

Table 4.1. Characteristics of the ASTER sensor.   

 Spectral Range (µm) 

VNIR1 
(15 m) 

Band 1 
0.52 - 0.60 

Band 2 
0.63 - 0.69

Band 3 
0.76 - 0.86 

Band 3 
0.76 - 0.86   

SWIR2 
(30 m) 

Band 4 
1.60 - 1.70 

Band 5 
2.14 - 2.18

Band 6 
2.18- 2.22 

Band 7 
2.23 - 2.28 

Band 8 
2.29 - 2.36 

Band 9 
2.36 - 2.43

TIR3 
(90 m) 

Band 10 
8.12 - 8.47 

Band 11 
8.47 - 8.82

Band 12 
8.92 - 9.27 

Band 13 
10.20 - 10.90

Band 14 
10.90 –11.65  

1 Visible and near infrared 
2 Short wave infrared 
3 Thermal infrared 

4.2.1  CART 
 

CART® (classification and regression trees) is a recently developed non-parametric 

model that is becoming more and more popular along different disciplines, ranging from 

medical to ecological applications (De’Ath and Fabricius, 2000; Lewis, 2000; Yohannes 

and Hoddinott, 2006). CART® provides an accurate and efficient methodology for land 

cover classification, both at regional and global scales (Friedl and Brodley, 1999; Hansen 

et al., 2000; Homer et al., 2002).  In addition, some studies have shown that CART® can 

be more accurate than traditional parametric classifiers (Friedl and Brodley, 1999; Pal 

and Mather, 2003).  CART® involves the identification and construction of a binary 

decision tree using training data samples for which the correct classification is known 

(Bittencourt and Clarke, 2003).  The samples are then used in the production of rule sets, 

based on the relationship modelled, essentially enabling the software to build a 

“knowledge base” with little interaction or input from the user (Herold et al., 2003). 

CART® makes accurate generalizations concerning the relationship of the independent 

variables and the value of the dependent variable. Since CART® is based on non-
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parametric statistics, it does not assume a normal distribution in the available dataset. 

One of the best known and most used rules for binary recursive partitioning is the Gini 

splitting rule (Salford System, 2002).  Gini’s rule looks for the largest class in a database 

and strives to isolate it from all other classes, tending to create end-cut splits (small nodes 

with only one target class prevailing) on multilevel targets. Costs are incorporated by 

adjusting prior probabilities. This method was considered the preferred in this study 

because net cuts were desired between categories, and no prior and subjective costs were 

to be attributed to any class.  

We utilized the CART 5.0® software (Salford Systems, San Diego, California) to 

generate the CART model. CART 5.0® is user friendly, and its results are easily 

interpretable. Nevertheless, CART 5.0® has some limitations. The initial splits largely 

determine the effectiveness of the tree, since they reduce the greatest variability 

(Venables and Ripley, 1997; Lawrence et al., 2004).  CART® does not allow the user to 

have full control of the process, limiting possibility for changes. The generated output is 

standard; it cannot be modified more than growing or pruning the tree. 

4.2.2  MULTINOMIAL LOGISTIC REGRESSION 
 

An alternative to CART® is a generalized logit model, in which k+1 possible responses 

are nominal. This model was introduced by McFadden (1974) as the discrete choice 

model, and it is also known as multinomial model. The model has the form as shown in 

equation 4.1: 
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where the α1, …. αk, are k intercept parameters, and the β1, …. βk, are k vectors of 

parameters. 

A response variable with k categories generates k-1 equations. Each equation is a 

binary logistic regression comparing a category with the reference category. The 
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probability for each category is obtained as in the following equations (Menard, 2002) , 

where one of the coefficients is set to zero in order to solve the following equations: 
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Logit models give rise to linear log-odds ratios, which facilitate interpretation of 

the parameters. They have been successfully applied in many fields such as urban land 

use planning, wildlife habitat modeling, and agricultural land use changes pattern and 

changes, but little has been published regarding their application to wetlands modeling 

(Bian and West, 1997; Narumalani et al., 1997; Nelson and Geoghegan, 2002). 

4.3  DATA AND METHODS 

4.3.1  STUDY AREA 
 

The ASTER scenes cover a 60 x 60 km area in the Coastal Plain of Virginia (figure 4.1) 

Even though urbanization and agriculture have greatly reduced the number of wetlands, 

the Coastal Plain contains more than 70% of all the wetlands in Virginia (Tiner and Finn, 

1986). The Coastal Plain consists of fluvial and marine deposits, primarily non-lithified. 

The oldest sediments were deposited during the Cretaceous, but  surface deposits near the 

coast are much younger (5,000-25,000 years B.C.); (Eick, 2006). In the study area, the 

elevation has a mean of 33 m above the mean sea level, with a maximum elevation of 105 

m. The Coastal Plain is crossed by numerous rivers and streams that have a high degree 

of sinuosity as they cross the middle and lower Coastal Plain. The sinuosity of the stream 

favours the formation of wetlands of variable nature: emergent, scrub and shrub, and 

forested wetlands. The topography of the area also allows the formation of mineral flat 

wetlands, which may be located far from water bodies.   
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Figure 4.1. Location of the study area. Map of the United States, with Virginia highlighted in bold (a); Map of Virginia. The black 

square identifies the location of the study area (b); Study area, equivalent to one ASTER scene (c).  The image corresponds to Band 2 

(0.63-0.69 µm) from the March scene. 

(a) 
(c)

(b) 
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4.3.2  DATA 
 

We used CART® and generalized logit models to discriminate among uplands1 and three 

types of wetlands: woody wetlands, emergent wetlands, and open water. Woody wetland 

included all Palustrine Forested Wetlands plus the Scrub and Shrub Wetlands, as defined 

by the Cowardin Classification system (1979). The water class encompassed rivers and 

streams not covered by vegetation; this category corresponds to the Lacustrine and 

Riverine Wetlands in the Cowardin System. Emergent Wetlands belong to the Palustrine 

Emergent Cowardin category. 

Among the remotely sensed data, we selected two ASTER scenes. The first scene 

was acquired on 6 March 2005, and the second one on 16 October 2005 (respectively 

AST_L1B.3: 2028411439, and AST_L1B.3:2028019676).  The multispectral range of 

ASTER bands covers values between 0.52 µm and 2.43 µm; however we used only the 

first five bands that cover the spectrum from the visible to shortwave infrared range 

(0.52-2.185 µm).  We chose this range because longer wavelength bands may be affected 

by spectral crosstalk phenomena (Iwasaki and Tonooka, 2005).  We georeferenced the 

images to the Universal Transverse Mercator 1983 North American Datum (UTM NAD 

83) projection using a first order polynomial transformation. Twenty ground control 

points (RMSE = 0.80 m) and twenty check points (RMSE = 0.85 m) were selected. The 

ASTER science team provided us with solar irradiance values that we used to convert the 

ASTER bands to top-of-atmosphere reflectance. Solar irradiance values are provided in 

table 4.2. We resampled all the bands to 15 m to match the pixel resolution of the first 

three ASTER bands. 

In the models, we used digital soil data obtained from the Soil Survey Geographic 

Database (SSURGO), hydrographical data from the National Hydrography Database 

(NHD), a 10 m DEM developed from Virginia Base Mapping Program (VBMP) DTMs, 

the slope of the terrain calculated from the 10 m DEM, and a wetness index, computed 

according to Gessler et al. (1995). 

                                                 
 
1 In this study, we refer to upland as any land that is not a wetland. 



 

 52

Table 4.2. Solar irradiance values for ASTER. 
 

Band Solar Irradiance 

(W/m2 micrometer) 

1 1846.9 

2 1546.0 

3 1117.6 

4 232.5 

5 80.32 

6 74.92 

7 69.20 

8 59.82 

9 57.32 

 

The Soil Survey Geographic Database (SSURGO) was designed by the Natural 

Resources Conservation Service primarily for farm and ranch, landowner/user, township, 

county, and parish natural resource planning and management. We used SSURGO data to 

obtain information about the hydric properties of the soils in our study area. Wetlands 

soils are characterized by the presence of hydric soils. We based the distinction of hydric 

and non-hydric soil on the percentage of hydric composition that NRCS established for 

each map unit using aerial photographs and field survey. SSURGO refers to soils with a 

hydric composition greater than 85% as ‘hydric’; whereas soils with a composition lower 

than 55% are ‘non-hydric’. We checked the location of the soils with a hydric 

composition between 55% and 85% using topographic maps and fine resolution digital 

orthophotos (scale 1:1,200 and 1:2,400).  We found these soils either on urban areas or on 

river-beds. We assigned those on urban areas to the non-hydric group, and the ones on 

river-beds to the hydric group. 

We collected hydrographical data from the NHD. The NHD contains information 

about surface water features such as lakes, ponds, streams, rivers, springs and wells. We 

used a 10-m DEM developed from the Virginia Base Mapping Program. The VBMP 

DEMs provide the highest resolution terrain model currently available statewide (Futrell 

and Sforza, 2004).  The data came as mass points and break lines. Mass points are three-
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dimensional elevation points spaced across the surface on a regular grid or at random 

intervals as necessary for properly modeling the earth surface (VBMP, 2003).   

VBMP points and lines were grouped in tiles. About 900 tiles covered the study 

area, but more tiles were collected around the edges of the study area to avoid an “edge-

effect” problem (Butler et a., 1998). Each tile has about 100 elevation points, thus the 

study area had a total of 90,000 points. Even though the number of total points was high, 

elevation points were not available for the entire study area. Data for Chesterfield County 

were not available, and in the other counties some tiles were missing. A comprehensive 

TIN was created using the 3-D Analyst Extension™ in ArcMap 9.1® (Environmental 

Systems Research Institute, Inc., Redlands, CA, USA), and subsequently converted to a 

grid file for obtaining a DEM with a 10-m horizontal resolution. A comprehensive TIN 

was created using the 3-D Analyst Extension™ in ArcMap 9.1® (Environmental Systems 

Research Institute, Inc., Redlands, CA, USA), and subsequently converted to a DEM with 

a 10 m horizontal resolution using the Spatial Analyst Extension™ in ArcMap 9.1® 

(Environmental Systems Research Institute, Inc., Redlands, CA, USA). We tested the 

vertical resolution of our DEM against the geodetic control network provided by the 

National Geodetic Survey, as suggested by Maune et al. (2001).  We collected 773 points, 

resulting in an RMSE of 1.96 m (table 4.3).  

 

Table 4.3. Vertical accuracy of the DEM generated from the VBMP dataset compared to 

the geodetic control network points. 

 
RMSE (m) Mean (m) Median (m) Skew Std. Dev. # of Points 
1.96 0.43 0.20 1.87 1.92 773 

 
 

We used the DEM to calculate the slope of the terrain, and the wetness index 

(WI).  The wetness index is a function of the upstream contributing area and the slope of 

the landscape. Moore et al. (1993) used the compound topographic index to describe the 

effects of topography on location and size of saturated areas. It is a refinement of upslope 

catchment area that better characterizes the spatial variability of soil properties due to 
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surface hydrology (Moore et al. 1993).  The WI is calculated using the catchment area 

along with the slope as show in equation 4.5:  

  

WI = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
βtan

ln A  [Equation 4.5]

 

where β = slope, and A = catchment area. 

 We obtained NWI data from the U.S. Fish and Wildlife Service Wetlands 

Geodatabase. The data came in shape file format, carrying information on the location 

and the vegetation composition of the wetland according to the Cowardin classification 

system (Cowardin et al., 1979). Even though NWI provides data at the subclass level of 

the Cowardin classification system, we reclassified the data to obtain four categories that 

could be used for comparison purposes with the maps obtained by CART and logit 

model. All areas belonging to the Palustrine Forested wetland class were grouped into 

woody wetlands, and all the Palustrine Emergent wetlands into emergent wetlands; all the 

areas belonging to the Riverine and Lacustrine system were grouped into open water 

category; the non-wetland areas were grouped into the upland category.  

4.3.3  EXPERIMENTAL DESIGN 
 

We randomly sampled 870 points without replacement which were labeled as uplands 

(374), emergent wetlands (127), woody wetlands (280), and open water (89) using 

topographic maps and digital orthophotographs obtained from the VBMP. The VBMP 

digital orthophotos were developed using true color, leaf-off, vertical photography 

acquired in 2002. The source photography was acquired at three scales: 1:4,800 in rural 

areas, 1:2,400 in urban and suburban areas, and 1:1,200 in areas where localities choose 

the option to purchase a higher accuracy product (VBMP, 2003).  We performed a field 

survey to validate 15% of the photo-interpreted points. We randomly selected 35 sites 

from each category and navigated to them in the field using GPS. Uplands, forested 

wetlands, and water were correctly identified with 100% accuracy; emergent wetlands 

were identified correctly with 94% accuracy. We proceeded with the construction of the 
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CART® and multinomial regression model, using a random subset consisting of three 

quarters of the points to generate the models, and the remaining points to test them. 

Appendix A shows the coordinates of the points.  

4.4  RESULTS 

4.4.1  CART 
 

CART® produces a predictor ranking (variable importance) based on the contribution 

predictors make to the construction of the tree. Variable importance, for a particular 

predictor, is the sum of the improvement scores that the predictor has when it acts as a 

primary or surrogate (but not competitor) splitter across all nodes in the tree (Yohannes 

and Hoddinott, 2006).  The list in table 4.5 considers all the variables that are used for 

producing the probability map. March Bands 3 and NHD contributed the most, followed 

by March Band 4 and October Band 3. The high position of the ASTER images 

demonstrates the importance of both satellite imagery and multi-temporal analysis, in 

which differences over seasons can facilitate the recognition of wetland types due to 

changes in vegetation and soil moisture content.  

To determine the accuracy of the classification, we compiled an error matrix, and 

determined overall accuracy, K̂ , producer’s and user’s accuracy according to Congalton 

and Green (1999). The producer’s accuracy is related to the omission error (producer’s 

accuracy = 1 - omission error).  The user’s accuracy is related to the commission error 

(user’s accuracy = 1 - commission error). K̂  indicates the extent to which the percentage 

correct values of an error matrix are due to “true” agreement versus “chance” agreement 

(Lillesand and Kiefer, 2004).  
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Table 4.4. List of variable selected by the CART® model (a) and by the stepwise 

regression model (b).  In (a) the variables are sorted by the score factor. 

(a)   (b)   

Variable Score  Variable  χ-square p-value

March Band 3 100.00  NHD 35.0. < 0.0001

NHD 78.3  SSURGO 25.6 < 0.0001

March Band 4 56.6  March Band 1 17.85 0.0005

October Band 3 40.5  October Band 2 15.84 0.0012

  March Band 4 13.58 0.0035

  DEM 13.44 0.0038

  March Band 3 11.52 0.0092

  March Band 2 10.37 0.0157

  Slope 9.54 0.0228
 

The overall accuracy of the CART® model = 73.3%, and the K̂  = 0.59, indicating 

a moderate agreement (Congalton and Green, 1999) between the classification and the 

reference data (table 4.5).  User’s and producer’s accuracy are low both for the emergent 

and the woody category. The producer’s accuracy of the emergent wetland class is 

57.1%, and the user’s accuracy is lower (51.6%), indicating both a large omission and a 

large commission error. Many of the emergent wetlands were wrongly assigned to the 

woody wetland class. The producer’s accuracy of the woody category is 52.6% and the 

user’s accuracy is 69.7%. For this class, CART® omits more wetlands that in the 

emergent wetland category. The woody category is mostly misclassified with upland. The 

water class is confused with woody wetland vegetation, but most of the water sites are 

correctly recognized (producer’s accuracy = 85%).  The upland category shows the best 

results, and when all wetland categories are combined the overall accuracy of the 

classification rises to 83.5%.  
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Table 4.5. Accuracy results for CART® obtained using ten nodes in the tree. 

 

 Map Category    
Reference 
Category Emergent Woody Water Upland 

Row 
Total 

Producer's 
Accuracy 

User's 
Accuracy 

Emergent 16 3 5 4 28 57.1 51.6 

Woody 13 60 8 33 114 52.6 69.7 

Water 1 5 34 0 40 85.0 72.3 

Upland 1 18 0 139 158 88.0 79.0 

Column Total 31 86 47 176 340    

Overall Accuracy 73.3             

  0.59             
 

The tree selected for producing a map had a relative cost of 0.465 and ten nodes. 

Figure 4.2 shows the CART® tree that we used to produce a map through the Knowledge 

Engineer Classifier in ERDAS Imagine® 9.0 (Leica Geosystems LLC, Norcross, GA, 

USA).  The total probability of each terminal node is cumulative; i.e., it is equal to the 

sum of probability of each single category. Thus, it may be that a low class probability is 

still high relative to the other classes. Examining the legend of figure 4.3, the concept is 

clearer. The light blue area is most probably an emergent wetland, even though P = 0.63. 

This is because the probability of being woody is much lower (P = 0.26), and the 

probability of being either water or upland is null. Considering the yellow areas in figure 

4.3 there is more doubt. It may be either upland (P = 0.40) or woody (P = 0.35), or 

emergent (P = 0.25).  

K̂
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Figure 4.2. CART® tree with ten nodes. MB3 = March Band 3, MB4 = March Band4, October Band 3, NHD = National Hydrography 
Data. This tree was used for the classification.
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Figure 4.3. Map of the study area centered on the James River obtained by applying the 

CART® tree with ten nodes. 

 

4.4.2  MULTINOMIAL LOGISTIC REGRESSION 
 

We used SAS 9.1.3 ® (Statistical Analysis System Institute, Inc., Cary, NC, USA) to 

generate the multinomial logistic regression model. We used the SAS code in Appendix 

C. Through a stepwise regression, we identified the set of variables that contributed most 

to the logistic model. The stepwise regression started with fifteen variables: the first five 
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bands from the ASTER March scene, the first five bands of the ASTER October scene, 

SSURGO data, NHD data, and elevation data from the DEM, slope data, and data from 

the wetness index. Among the fifteen variables, the stepwise regression selected only 

nine (table 4.4).  Most of the March image bands were utilized, but only Band 2 from 

October was selected. Among the GIS data layers, SSURGO soil and NHD water had the 

highest χ-square statistic, while the lowest χ-square belonged to the Slope variable. Three 

parameter estimates were assigned to each of these variables. Each estimate corresponded 

to one category. No parameter estimates were assigned for Woody (Menard, 2001) 

because it was the reference category. Appendix D shows the parameter estimates for the 

water, emergent and upland category. Each point within the out of sample dataset had one 

of four probabilities: one for being upland, one for being emergent, one for being water, 

and one of being woody wetland. The point was classified according to the highest of the 

four probabilities. We used the Model Maker tool in ERDAS Imagine® 9.0 (Leica 

Geosystems LLC, Norcross, GA, USA) to produce the map from the logit model. We 

defined a class as belonging to a specific category when its probability was 60%, i.e. 

higher than the sum of the probability of the other three classes when these last ones have 

each P < 15% (figure 4.4).  Only in one case did a class not reach the 60% probability 

threshold, with 50% probability of being emergent and 50% probability of being upland. 

To determine the accuracy of the classification, we compiled a second error 

matrix (Congalton and Green, 1999).  Overall accuracy, user’s and producer’s accuracy, 

and K̂  are shown in table 4.6. The overall accuracy is 76.7%, with a K̂ of 0.64, indicating 

moderate agreement between the reference data and the classification. The emergent 

wetland producer’s accuracy is very low (40.7%) indicating that most of the emergent 

wetlands were not identified. On the other hand, the producer’s accuracy of the woody 

wetland is 68.7% and the user’s accuracy is 70.5%. Most of the woody wetlands that 

were wrongly classified were assigned to the upland class. The same is observable in the 

upland category, in which most of the misclassified sites were assigned to the woody 

wetland category.   

We tested for differences in significance of the two models using McNemar’s test 

(McNemar, 1947). The McNemar χ2 was 0.89 (p-value = 0.34), indicating that the 

accuracy of maps produced using the two models are not statistically different. 
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Table 4.6. Error matrix from the multinomial logit.  

 Map Category    
Reference 
Category Emergent Woody Water Upland

Row 
Total 

Producer's 
Accuracy 

User's 
Accuracy 

Emergent 11 9 3 4 27 40.7 57.9 

Woody 6 79 5 25 115 68.7 70.5 

Water 2 4 33 1 40 82.5 80.5 

Upland 0 20 0 138 158 87.3 82.1 

Column Total 19 112 41 168 340   

Overall Accuracy 76.7       

  0.64       
 

4.4.3  VISUAL COMPARISON OF MAPS 
 
Figure 4.5 shows two subset locations within the study area. The first location (figure 

4.5a, c, and e) was centered on Turkey Island, an area characterized by palustrine 

wetlands formed within the bends of the James River. The second location was centered 

on Charles City (figure 4.5b, d, and f).  Turkey Island was positively recognized as 

woody wetland by the logit model. In contrast, CART® did not provide a definitive result. 

The area might be either upland, or woody or emergent wetland. The map of Charles City 

shows a large misclassification error in the logit model. Most of the area was classified as 

emergent wetland, when it was clearly an urban area. Here, the CART® model is more 

accurate. It classifies most of the area as upland, and only the core of Charles City has an 

uncertain outcome, with some probability of being either upland, or woody or emergent 

wetland. 

K̂
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Figure 4.4. Map of the study area centered on the James River obtained by applying the 

multinomial logistic model. 
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Figure 4.5. Turkey Island classified by CART® (a) and logit (e);  Hopewell City classified by CART® (b) and logit(f).  ASTER view 

of Turkey Island and Hopewell City (Bands 3, 2, 1 in R, G, B) (c and d). 
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Figure 4.6. Turkey Island classified by CART® (a) and logit (e); Hopewell City classified by CART® (b) and logit(f). ASTER view of 

Turkey Island and Hopewell City (Bands 3, 2, 1 in R, G, B)(c and d). The maps are based on hard classes whose accuracy was 

assessed. 
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4.4.4  NWI 
 

We also used our validation data to assess the accuracy of wetland maps produced by 

NWI. Table 4.7 shows the resulting error matrix. The overall accuracy is 80.5%, with a 

moderate agreement between observed and actual data ( K̂  = 0.69).  The producer’s 

accuracy for emergent wetland is low (51.8%), and so is the user’s accuracy (63.6%). The 

woody wetland category is better mapped than the emergent wetland, even if it still 

suffers from a high omission error (more than 30%).  Water and upland are very well 

recognized by NWI, with producer’s accuracies higher than 90%.  

We performed a McNemar test between the NWI results and the logistic 

regression results, as well as between NWI and the CART® results. Table 4.8 shows that 

the models and the NWI maps are not statistically different. Specifically, NWI and 

CART® have a χ2 = 2.03 (p-value = 0.15) that makes them slightly more similar than 

NWI with the logistic regression (χ2 = 2.70, p-value = 0.12). 

 

Table 4.7.  Error matrix obtained with NWI data.  
 

 Map Category    
Reference 
Category Emergent Woody Water Upland 

Row 
Total 

Producer's 
Accuracy 

User's 
Accuracy 

Emergent 14 10 1 2 27 51.8 63.6 
Woody 4 78 6 27 115 67.8 78.8 
Water 0 2 38 0 40 95.0 82.6 
Upland 4 9 1 144 158 91.1 83.2 
Column Total 22 99 46 173 340     
Overall Accuracy 80.5             
  0.69             

 
 
 
 
 
 
 
 

K̂
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Table 4.8. McNemar test resulted between NWI and the two model’s accuracy. 
 

McNemar’s Test  

NWI–Logistic Regression

 

χ2 2.70 

p-value 0.12 

Kappa 0.50 

NWI-CART  

χ2 2.03 

p-value 0.15 

Kappa 0.54 

 

4.5  DISCUSSION AND CONCLUSIONS 
 

As shown by McNemar’s test, the two models lead to maps that are not significantly 

different. Considering emergent wetlands, CART® did a better job than the logit model 

(17% higher). However, in CART® the emergent class suffered the largest commission 

error. The logit model identified the woody wetland category over 16% better than 

CART®. The user’s accuracy is very close for both models. The logit model tended to 

overestimate the amount of emergent wetlands, and CART® underestimated the amount of 

woody wetlands. CART® did surprisingly well in classifying emergent wetlands compared 

to NWI, even though NWI had a higher user’s accuracy. The regression model obtained the 

same producer’s accuracy for the woody category as NWI, but a lower user’s accuracy.  

There were several factors affecting the classifications, including the topography of 

the area. For the logit model, the most pronounced misclassifications were between 

agricultural fields, parking lots and emergent wetlands. The topography of these sites is 

extremely similar in the Coastal Plain. They are located on extremely flat areas, where water 

accumulates easily. It is difficult to discriminate between a crop that has been recently 

watered, has accumulated water from a recent precipitation, and an emergent wetland where 

water is present because of the characteristics of a wetland. Some of the agricultural fields in 

the Coastal Plain of Virginia were originally wetlands converted to agricultural fields. When 
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soil is plowed when it is easily compacted, develops low infiltration, and becomes 

susceptible to surface saturation after rainstorms. 

The flat topography impedes the 10-m DEM, the slope of the terrain and the wetness 

index from providing a significant contribution to both statistical models. The wetness index 

combines local upslope contributing area and slope. When the relief is low, the flow direction 

cannot be properly determined, thus, the catchment area is imprecise or undefined. The level 

topography not only negatively affects the logit model for the classification of emergent 

wetlands, but it also contributes to confusion between upland and wetland forests in the 

CART® model. In fact, there is little to no difference between the spectral signature of canopy 

cover in a forested wetland and the one in an upland forest. Help in making this distinction 

should have come from the information provided by slope, elevation, and wetness index, which 

provided a minimal contribution in the flat terrain of our study area. A finer digital elevation 

model may improve the discrimination between upland and wetland forests; however, Zhang 

and Montgomery (1994) demonstrated that a wetness index generated from a finest grid size (2 

m and 4 m grid cell) is not very different from one generated from a 10 m DEM. 

Further issues can be reduced by the use of inter-annual images. Already the strong 

contribution of the two ASTER images demonstrates the importance of a multi-temporal 

analysis, in which differences over seasons can favor the recognition of types of wetlands due 

to changes in vegetation and soil moisture content reflectance. In an inter-annual analysis, 

emergent wetlands show the same vegetation and same reflectance (if not disturbed) when the 

image is taken over the same month. Agricultural fields, in contrast, will have more 

phenological differences. The constant inter-annual value of emergent wetlands could then be 

identified. 

Regarding the choice of one statistical model over the other, this would depend on the 

type of wetlands that the user is primary interested in correctly identifying. If emergent 

wetlands are more important, CART® performed better. If woody wetlands are more 

important, the logit model was the better choice. These methods provide promising results 

when the overall accuracy of the map was considered, because there is sufficient indication 

of where different types of wetland are located. In addition, they achieved very close results 

to NWI maps, making them a promising tool for mapping wetland vegetation types over 

large areas. 
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5  SUB-PIXEL ANALYSIS OF TREE COVER USING  
CONTINUOUS FIELD APPROACH AND ASTER DATA 

5.1  ABSTRACT 
 

This study presents a model for estimating the density of canopy cover in forested 

wetlands using data from the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER). Two coincident ASTER scenes were used, acquired in the spring 

(6 March) and fall (16 October) of 2005 over the Coastal Plain of Virginia, USA. The 

analysis used the visible and near infrared bands, as well as tasseled cap brightness, 

greenness, and wetness for each date. In addition, the change in NDVI (∆NDVI) between 

the spring and fall scenes was included as an independent variable. Canopy cover was 

assessed via head-up digitizing on 1:4,000 scale (or better) digital orthophotographs for 

each of 300 ASTER pixels randomly selected within the bounds of the ASTER scenes. 

The canopy cover varied as a continuous field between 0% and 100%. All variables, with 

the exception of band 1 (0.52-0.60 µm) from the March scene, the tasseled cap wetness 

from both scenes, and ∆NDVI, were inversely related to canopy cover. The final model 

had an adjusted-R2 of 0.69 and an RMSE of 2.7% when the canopy cover was less than 

or equal to 15%, and an adjusted-R2 of 0.03 and an RMSE of 19.8% when the canopy 

cover was greater than 15%. While this is a promising result, further research on the 

impact of water at or above the soil surface and the observed saturation effect is 

particularly warranted. 

5.2  INTRODUCTION 
 

Wetlands are important and complex ecosystems that provide a wide range of services 

vital to the environment. Wetlands control water storage and indirectly runoff (EPA, 

2006), slowing the velocity of water flow and trapping sediments and nutrients, 

preserving the quality of the water (Mitsch and Gosselink, 1993). Cooper et al. (1987) 

demonstrated that 85% to 90% of the sediment transported by runoff events is trapped in 

wooded areas and never reaches major streams. Even though there is still a debate 

concerning relative effectiveness of grass and forested wetlands, it is evident that forested 
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wetlands do provide resistance to sediment transport (U.S. E.P.A., 1993). Consequently, 

it is important to determine the density of trees within forested wetlands.  

Most land use and vegetation cover maps are generated using satellite sensors 

having a coarse resolution that makes it difficult to observe local details (Papadakis et al., 

1993; Goodrich et al., 1994; Foody et al., 1996). In addition, some studies indicate a 

general tendency to underestimate forest cover (Skole and Tucker, 1993), but the contrary 

has been shown by others (Foody and Cox, 1994).  

One method to assess forest density is to look inside each pixel, and determine 

how much of its reflectance is a consequence of canopy cover and how much is a 

consequence of other materials. Several techniques have been developed for unmixing a 

pixel: Foody and Cox (1994) used fuzzy sets to estimate forest cover; Zhu et al. (2001) 

used isolines in scatter plots of red/infrared space to map vegetation density; Settle and 

Drake (1993) used linear mixing to determine ground cover proportions; Carpenter et al. 

(1999) employed neural networks to estimate the mixture of vegetation types within 

forest stands.  

DeFries et al. (2000) generated the first global continuous field product for tree 

cover, fitting a linear mixture model to a classification output. A continuous field 

represents the proportion of vegetation cover per pixel, and it is an improvement over 

discrete land-cover classifications for some applications (Hansen and DeFries, 2004).  

DeFries et al. (1995, 1997, and 2000) and Hansen et al. (2000, 2002) developed the 

continuous field approach using coarse resolution data such as the Advanced Very High 

Resolution Radiometer (AVHRR) and the Moderate-resolution Imaging 

Spectroradiometer (MODIS). These data are extremely useful for global analysis and 

regional studies (Boyd et al., 1996; Franklin et al. 2000, 2002), they lose power at scale at 

which most land management occurs.  

We added a double challenge in this study. First, we used the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor that has much 

finer resolution than AVHRR and MODIS instruments (10 m pixels versus 1 km and 250 

m pixels respectively). Data from ASTER were used for determining the correlation 

between pixel values and the proportion of tree cover in wetlands, keeping in mind that 

the finer resolution helps in identifying land characteristics, but it also adds noise due to 
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the greater spectral variability among pixels. ASTER has been widely utilized for 

geological studies, but little research has been done over wetlands (Kato et al, 2001; 

Stefanov et al. 2001; Ford et al., 2003). 

The second challenge was determining canopy cover over extremely small plots 

located in the Coastal Plain of Virginia. The size of the plot allows detecting areas within 

the forest where there are no trees. Coarser resolution satellites would seldom recognize 

these areas, because the total reflectance of a pixel results from a combination of the 

reflectance of each element within the pixel itself (Adams et al., 1986), and the 

reflectance of small patches of open areas would be overridden by the reflectance of 

surrounding vegetation. Treeless areas are equally important to recognize as areas where 

forest is present. As vegetation patches serve as surface obstruction during rainstorm 

events and sediment transportation, open areas among the patches have just the opposite 

effect (Ludwig et al., 2004). 

5.3  DATA AND METHODS 

5.3.1  STUDY AREA 
 

The study area granules cover a portion of the Coastal Plain of Virginia (figure 5.1).  The 

Coastal Plain has a topography that consists of predominantly flat areas with deeply 

incised estuaries and streams, characterized by the presence of numerous forested 

wetlands. Forested wetlands are characterized by woody vegetation that is 1.8 m tall or 

taller (Cowardin et al., 1979).  Representative species are Bald Cypress (Taxodium 

distichum), Swamp Tupelo (Nyssa sylvatica var. biflora), Yellow Poplar (Liriodendrom 

tupilifera), Water Oak (Quercus nigra), and Sweet Gum (Liquidamber styraciflua) 

(Ware, 1970; Russ and Frederick, 1990). Scrub-shrub wetlands are characterized by 

woody vegetation that is less than 1.8 m tall, including saplings and trees that are small or 

stunted because of environmental conditions (Cowardin et al., 1979). In this study, we 

combined both categories when we selected the canopy cover within each plot.  
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Figure 5.1. A comparison of maps of the study area: (a) map of the east coast of the 

U.S.A. with Virginia highlighted in bold; (b) county map of the state of Virginia with 

boundaries of ASTER scene; (c) ASTER granule covering a 60 x 60-km area; (d) 

example of digital orthophotos from VBMP; (e) example of aerial photos from National 

Agriculture Imagery Program. 

 

5.3.2  ASTER DATA AND REMOTE SENSING INDICES 
 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 

cooperative effort between NASA, Japan's Ministry of Economy, Trade and Industry and 

Japan's Earth Remote Sensing Data Analysis Center. ASTER consists of three separate 

instrument subsystems (table 5.1): the visible and near infrared (VNIR), the shortwave 

infrared (SWIR), and the thermal infrared (TIR). The VNIR subsystem operates in three 
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spectral bands at visible and near-IR wavelengths, with a resolution of 15 m. It consists 

of two telescopes: one nadir-looking with a three-spectral-band detector, and the other 

backward-looking that provides a second view of the target area for stereo observations. 

The SWIR subsystem operates in six spectral bands in the near-IR region through a 

single, nadir-pointing telescope that provides 30m resolution. The TIR subsystem 

operates in five bands in the thermal infrared region using a single, fixed-position, nadir-

looking telescope with a resolution of 90 m.  

The ASTER instrument is still being corrected and improved. For this study, it 

was suggested that we use images collected after 2003 (K.Thome, personal 

communication, June 2005). In addition, Iwasaki and Tonooka (2005) found that the 

ASTER SWIR bands are affected by crosstalk phenomena. Thus, we limited our analysis 

to the first three ASTER bands (range: 0.52-0.86 µm), and we used two scenes collected 

in 2005. However, we resampled all the ASTER bands to 15 m, to coincide with the 

bands that have the smallest resolution. Resampling was necessary for NDVI and tasseled 

cap calculations. 

The first scene from 6 March 2005 (AST_L1B.3:2028411439) was 

radiometrically- and geometrically-corrected, and projected in UTM zone 18 with the 

North American 1983 Datum using a first order polynomial transformation. The second 

scene from 16 October 2005 (AST_L1B.3:2028019676) was registered to the March 

scene. We selected twenty ground control points (RMSE = 0.80 m) and twenty check 

points (RMSE = 0.85 m). To reduce the error generated by image registration, 

registration of multiple data sources should be conducted to achieve sub-pixel accuracy 

(Dai and Khorram, 1998; Pohl and Van Genderen, 1998). In this study, image registration 

was particularly important because of the sub-pixel analysis performed. Even though our 

RMSE error was far from the suggested value of 0.2 (Dai and Khorram, 1998), we did 

not achieve a finer registration, and a negative impact on the analysis was assumed. We 

converted the ASTER bands to top of atmosphere reflectance using the solar irradiance 

values shown in table 5.1.  
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Table 5.1. Characteristics of the ASTER instrument and solar irradiance values. 
 

 VNIR1 

(µm) 

Solar 
irradiance 

(W/m2-µm) 

SWIR2 

(µm) 

Solar 
irradiance 

(W/m2-µm) 

TIR3 

(µm) 

  
Band 1 

0.52 - 0.60  1846.9 
Band 4 

1.60 - 1.70  232.5 
Band 10 

8.12 - 8.47  

  

 
Band 2 

0.63 - 0.69  1546.0 
Band 5 

2.14 - 2.18 80.32 
Band 11 

8.47 - 8.82  

Spectral 
Range 

 
Band 3 

0.76 - 0.86  1117.6 
Band 6 

2.18 - 2.22  74.92 
Band 12 

8.92 - 9.27  

  
 
  

 
Band 7 

2.23 - 2.28  69.20 
Band 13 

10.25 - 10.95 

    

 
Band 8 

2.29 - 2.36  59.82 
Band 14 

10.95 - 11.65 

    

 
Band 9 

2.36 - 2.43  57.32  
Ground 
Resolution 15 m 

 
30 m 

 
90 m 

1 Visible and near infrared 
2 Visible and near infrared 
3 Thermal infrared 

 

In addition to the first three bands of the two ASTER images, we computed the 

delta normalized difference vegetation index (∆NDVI) by subtracting the NDVI of the 

March scene from the NDVI of the October scene. ∆NDVI is commonly used for 

studying vegetation changes over time (Volcani et al., 2005), the effect of flooding over 

forests and agricultural lands (Michener and Houhoulis, 1997; Pantaleoni et al. 2007), 

and monitoring regeneration of vegetation (Svoray et al., 2003).  We generated a tasseled 

cap transformation using coefficients developed by Yarbrough et al. (2005).  Table 5.2 

shows the list of the independent variables. 
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Table 5.2. List of independent variables used as input in the ordinary least square 

regression model and their description. 
 

Abbreviation Description 
March scene  
MB1 March band 1 
MB2 March band 2 
MB3 March band 3 
October scene  
OB1 October band 1 
OB2 October band 2 
OB3 October band 3 
∆NDVI (October NDVI)-(March NDVI) 
Tasseled cap 
transformation  
MBRIGHT March brightness 
MGREEN March greenness 
MWET March wetness 
OBRIGHT October brightness 
OGREEN October greenness 
OWET October wetness 

 

5.3.3  EXPERIMENTAL DESIGN 
 

We randomly selected 300 plots over the study area. The coordinates of the plots are 

provided in Appendix E. Each plot had the area equal to one ASTER pixel in the visible 

and near infrared range of the spectrum (225m2).  We used a forested wetland mask to 

separate forested wetlands from the rest of the landscape. We obtained the mask from 

National Wetland Inventory (NWI) digital maps (U.S. Fish and Wildlife Service, 2007). 

We determined the continuous canopy cover field by manually digitizing the contour of 

forested wetland canopy cover on digital orthophotographs obtained from the Virginia 

Base Mapping program (VBMP), as shown in figure 5.3. These orthophotos were 

developed using true color, leaf-off, vertical photography acquired in 2002. The digital 

orthophotos have a scale varying from 1:4,800 to 1:1,200 depending on the location 

(VBMP, 2003). However, only orthophotos at scale 1:4,800 and 1:2,400 were available 

for our study area. Figure 5.2 shows the index grid for the digital orthophotos used for 

identifying the points. The largest tiles correspond to orthophotographs at a 1:4,800 scale; 
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the smallest tiles correspond to orthophotographs at a 1:2,400 scale. We used aerial 

photographs from the National Agriculture Imagery Program (NAIP) as additional 

reference. NAIP acquires imagery during the agricultural growing seasons. We used 

NAIP imagery from 2005 that have a 1-m ground sample distance with a horizontal 

accuracy that matches to a reference orthoimage within 5 m (U.S.D.A., 2007). 

 We calculated the canopy cover area using ArcMap 9.1® (Environmental Systems 

Research Institute, Inc., Redlands, CA, USA). In order to ensure that a pixel interpreted 

as part of the sample was representative of the surrounding area, we visually verified the 

position of each sampled pixel on each ASTER scene with respect to the digital 

orthophotographs. We then generated a point feature for each pixel and assigned the 

canopy cover value to it. 

 

 
 

Figure 5.2. 2002 Virginia Base Mapping Program orthotile grid. The dark gray tiles have 

a 1:2,400 scale, the light gray tiles a 1:4,800 scale. The black frame is the study area. 

Richmond
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(a) 

(b) 
 

Figure 5.3. Example of digitization of two plots. The red line delineates the boundaries 

of the plot, and the yellow line the boundaries of the canopy cover. In (a) the canopy 

cover is 14.8%, and in (b) the canopy cover is 85.5%. 
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5.3.4  MODEL DEVELOPMENT 
 

We used the sample points to extract the values of the independent variables using 

Arc Toolbox® (Environmental Systems Research Institute, Inc., Redlands, CA, USA). 

SAS 9.1.3 ® (Statistical Analysis System Institute, Inc., Cary, NC, USA) was used for the 

analysis and model development. We calculated a correlation matrix to determine which 

variables were significantly correlated with canopy cover. Table 5.3 shows that 9 out of 

the 15 variables were statistically correlated with the canopy cover (p-value < 0.05).  We 

plot the percent canopy cover and October Band 2 (figure 5.4) and the percent of canopy 

cover and the ∆NDVI (figure 5.5).  

 

Table 5.3. Correlation matrix between the area of canopy cover and the independent 

variables for the entire dataset. 

 
Dependent 
Variable 

Independent 
Variables 

Correlation p-Value 

AREA OB1 -0.036 0.533 
AREA OB2 -0.360 < .0001 
AREA OB3 -0.153 0.007 
AREA MB1 0.193 < .0001 
AREA MB2 0.001 0.983 
AREA MB3 -0.109 0.052 
AREA ∆NDVI 0.371 < .0001 
AREA MBRIGHT -0.211 < .0001 
AREA MGREEN -0.235 < .0001 
AREA MWET 0.254 < .0001 
AREA OBRIGHT -0.263 < .0001 
AREA OGREEN -0.020 0.730 
AREA OWET 0.092 0.109 
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Figure 5.4. Plot of the October Band 2 values over percent of canopy cover. 
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Figure 5.5. Plot of the Delta NDVI values over percent of canopy cover. 
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We examined the variable inflation factor (VIF) for the nine variables highly 

correlated with area in order to determine if the model was affected by multicollinearity. 

A VIF higher than 10 is considered evidence of multicollinearity (Belsley, Kuh, & 

Welsch, 1980). Table 5.4 shows that half of variables had a VIF much greater than 10. 

We removed these variables from the model, and we performed a best subset regression 

using exclusively October band 2, October band 3, March band 3, Delta NDVI, and 

October tasseled cap brightness. We used the Mallows Cp criterion (Mallows, 1966). The 

Cp statistic is defined as shown in equation 5.1:  

 

 np
RSS

C p
p −+= 22σ

 [Equation 5.1] 

 

where n = the number of observations, p = the number of variables in the regression, 

RSSp = the residual sum of squares using p variables, and σ2 = an independent estimate 

of the error. If the model is satisfactory, Cp will be approximately equal to p.  

 

Table 5.4. Variable inflation values (VIF) and parameter estimates for the nine variables 

selected by the correlation matrix. 

 

Variable Parameter 
estimate 

VIF 

Intercept -79.492 0 
OB2 -166.404 2.794 
OB3 41.699 8.540 
MB1 -3654.976 137.300 
MB3 -250.161 15.913 
∆NDVI 4.791 1.953 
MTAS1 -49857 5322.495 
MTAS2 -44373 2269.007 
MTAS3 -56606 8886.998 
OTAS1 -318.66 7.462 
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5.4  RESULTS 
 

Our results show that our model requires only three variables: Delta NDVI, October band 

2, and March band 3. The Mallows Cp value of 4.32 is close to p, and the adjusted-R2 of 

23.0% and an R2 of 24.0% (table 5.5). The VIF is lower than 10 for all the variables, and 

the RMSE value is 22.3%. PExamining the predicted values of canopy cover against the 

observed values of canopy cover (figure 5.6) in addition to the ∆NDVI vs. canopy cover 

(figure 5.5), we found that the model appeared to be affected by a saturation effect. In 

order to address this effect, we separated the group of points into two parts, and we ran 

two separate models using the same variables selected by the best subset regression: 

October band 2, October band 3, March band 3, Delta NDVI, and October tasseled cap 

brightness. The first group had canopy cover between zero and 15%, and the second 

group had a canopy cover between 16% and 100%. Table 5.6 shows that the first group 

has an adjusted-R2 of 69.0% and an R2 of 72.0%, with RMSE = 2.7% and VIF values 

lower than 10. The VIF values are lower than 10 also for the second group, but the 

RMSE value is higher (13.7%), and the adjusted-R2 and R2 are extremely low 

(respectively 3.0% and 4.0%), with RMSE = 19.8%. Figure 5.7 shows the plot of the 

predicted values canopy cover and the observed values for the two groups.  

 
Table 5.5. Results from the best subset regression analysis for model using all points. For 
each number of variables only the model resulting in the lowest Mallow Cp is shown. 
 

# of 
variables 

R2 Adjusted-
R2 

Mallows 
Cp 

RMSE Variables in model 

1 0.13 0.13 37.89 23.60 ∆NDVI 
2 0.23 0.22 6.84 22.33 ∆NDVI OTAS1 
3 0.23 0.22 4.32 22.31 ∆NDVI MB3 OB2 
4 0.24 0.23 4.34 22.27 ∆NDVI MB3 OB2 OTAS1 
5 0.24 0.22 6.00 22.29 ∆NDVI MB3 OB2 OB3 OTAS1  
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Table 5.6. Results from the OLS model when only October band 2, March band 3, and 

Delta NDVI are used for a group of plots that have a canopy cover ≤ 15%. 

 

Variables Parameter 
estimate 

VIF 

Intercept 81.71 0 
OB2 -91.39 1.57 
MB3 51.04 1.31 

∆NDVI 2.21 1.37 
R2 0.72  

Adjusted- R2 0.69  
RMSE 2.73  

 

 

Table 5.7. Results from the OLS model when only October band 2, March band 3, and 
Delta NDVI are used for a group of plots that have a canopy cover > 15%. 
 

Variables Parameter 
estimate 

VIF 

Intercept 151.75 0 
OB2 -119.07 1.23 
MB3 -141.26 1.19 

∆NDVI 1.64 1.09 
R2 0.04  

Adjusted- R2 0.03  
RMSE 19.79  
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Figure 5.6. Plot of the predicted values of canopy cover versus the observed values of 

canopy cover. 
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Figure 5.7. Plot of the predicted values of canopy cover versus the observed values of 

canopy cover for two groups of plots. The diamond symbol corresponds to plots with canopy 

cover area ≤ 15%, the square symbol corresponds to plots with canopy cover area > 15%. 
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5.5  DISCUSSION AND CONCLUSIONS 
 

In this study, we found a relationship between canopy cover and the spectral 

characteristics of the VNIR ASTER bands and derived indices. The literature had already 

highlighted ∆NDVI as a strong indicator of vegetation characteristics. In our study, this 

measure was selected as one of the important variables by the model selection criteria, 

and it also had the highest correlation with canopy cover.  

Band 2 from the October scene was negatively correlated with canopy cover. 

Band 2 corresponds to the red range of the spectrum. Chlorophyll increases red 

absorption; bare soil increases red reflectance. Thus, the greater the canopy cover, the 

lower the value of Band 2.  

Crist and Cicone (1984) and Crist et al. (1986) reported that the wetness 

component of the tasseled cap transformation determines the amount of moisture held by 

soil and vegetation, whereas the greenness component is a measure of the presence and 

density of green vegetation. Hansen et al. (2000) established that the wetness component 

was highly correlated with stand age and structural complexity of forest stands. The 

tasseled cap bands had statistically significant correlations with forested wetland canopy 

cover; however, the sign of the correlations was not what we expected. The brightness 

and the greenness components from the March scene had a negative correlation with the 

canopy cover, whereas the wetness component had a positive correlation. Also, the 

brightness component from the October scene had a negative correlation.  

While we are not completely certain of the causes of the reversed signs of these 

correlations, it is likely due to the presence of water at or above the soil surface. Water is 

a strong absorber even in the visible portion of the spectrum, and is almost completely 

unreflective at the near-IR wavelengths and beyond (Lillesand and Kiefer, 2004). 

According to Beget and Di Bella (2007), infrared band reflectance and vegetation indices 

decrease when flooding level increases. As such, the higher the moisture content of the 

soil, the lower the greenness and brightness components, and the higher the wetness 

component.  

After we addressed the multicollinearity problem, and we reduced the model to its 

simplest form, we found that ∆NDVI, the red band from October and the NIR band from 
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the March scene were the most important variables. The combination of these three 

variables produces good results in plots that have a canopy cover lower than 16%. When 

canopy cover is higher than 15%, there appears to be no relationship between the 

ASTER-derived variables and canopy cover. This result is similar, albeit at a lower 

threshold, to the off-observed saturation effect between vegetation indices such as NDVI 

and leaf area index (Birky, 2001; Anderson et al., 2004; Wang et al., 2005).  

Our conclusion is that ASTER imagery has potential for use in estimating canopy 

cover within forested and scrub-shrub wetlands, even though further research will be 

required to address the water absorption and saturation effect problems.  
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6  SUMMARY AND CONCLUSIONS 
 

In the U.S., determination of wetland location and quantification of wetland gains and 

losses has become one of the most important goals for federal and state agencies, as well 

as for private citizens that look to receive permits for transforming the landscape. Most of 

the agencies rely on NWI maps or local surveys for determining the extent, boundary and 

vegetation composition of wetlands. For large areas, this process may be expensive, time 

consuming, and not completely accurate. Remote sensing has potential to overcome most 

of these issues.  

The focus of this research was to investigate the value of the ASTER sensor per 

se and in combination with GIS data layers for determining wetland location and 

vegetation. The results indicated that ASTER data can be used to estimate boundaries 

between uplands and wetlands, and to determine vegetation characteristics of wetlands. 

Even though other satellite sensor may achieve higher accuracies, ASTER balances its 

mapping ability with overall coverage and costs.  

The main objective of this research was to develop robust analysis techniques to 

facilitate the use of satellite data for predicting wetland extent and composition by 

focusing on the unique characteristics that frame a wetland. The availability of multi-

temporal data was indispensable for determining seasonal characteristics of wetlands, 

including the changes in soil moisture content and differences in reflectance of 

vegetation.  

Among the input variables, the near-infrared bands were the most useful. The 

near-infrared band from the spring scene was especially valuable for detecting aquatic 

habitats. The importance of the near-infrared bands was maintained when the goal of the 

project narrowed to determine wetland types, but most of the other bands from the March 

scene were required. The GIS data layers provided results that were somewhat expected. 

The NHD water and SSURGO soil data were very important for discriminating between 

upland and wetlands. Nevertheless, their importance was substantially lower once the 

target was to discriminate among types of wetlands. The DEM, slope and wetness index 

did not significantly contribute to any of the models generated for this study.  
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Estimation of canopy cover within pixels has profound implications for watershed 

management and runoff risk assessment, since forests have a direct effect on sediment 

movement and precipitation interception (Ewel and Smith, 1992; Mitsch and Gosselink, 

1993). Continuous canopy cover was estimated with moderate accuracy using VNIR top-

of-atmosphere reflectances and vegetation indices from ASTER as independent variables. 

When the canopy covered more less than 16% of the plot, the model achived good 

results. For larger canopy cover, water absorption and a saturation factor likely 

contributed to lowering the accuracy of the model. 

Future investigation should consider the following points: 1) introduce inter-

annual satellite data; 2) repeat the CART and logit model models using a high resolution 

DEM; 3) test the models on areas with topography different from the Coastal Plain. 
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APPENDIX A -- COORDINATES OF THE 870 POINTS RANDOMLY 
SELECTED AND USED IN THE LOGIT MODEL, AND IN THE 

CART AND LOGIT MODELS. BINARY CLASSIFICATION:  
1 = WETLAND, 2 = UPLAND. 

 
ID X-coord Y-coord Binary Classification Wetland type 
1 294972.568 4140230.363 1 Emergent 
2 313535.544 4127288.531 1 Emergent 
3 307552.211 4136026.792 1 Emergent 
4 307695.123 4133988.191 1 Emergent 
5 314942.351 4149857.591 1 Emergent 
6 305793.200 4152848.182 1 Emergent 
7 309870.426 4126595.626 1 Emergent 
8 316924.145 4124549.649 1 Emergent 
9 266774.218 4115209.150 1 Emergent 
10 317100.092 4129751.318 1 Emergent 
11 307096.610 4135428.975 1 Emergent 
12 296535.695 4132573.534 1 Emergent 
13 262587.753 4118767.903 1 Emergent 
14 308268.932 4133458.610 1 Emergent 
15 315957.863 4115310.637 1 Emergent 
16 305582.810 4154843.520 1 Emergent 
17 309976.120 4151575.180 1 Emergent 
18 310030.360 4154154.380 1 Emergent 
19 310420.260 4152057.160 1 Emergent 
20 315589.750 4160460.240 1 Emergent 
21 319089.130 4144746.230 1 Emergent 
22 319460.060 4144479.600 1 Emergent 
23 320621.260 4157196.710 1 Emergent 
24 322969.840 4158229.020 1 Emergent 
25 324911.390 4151376.940 1 Emergent 
26 301010.383 4109928.653 1 Emergent 
27 306113.727 4124750.917 1 Emergent 
28 308529.499 4123771.171 1 Emergent 
29 304357.068 4119540.568 1 Emergent 
30 304343.131 4119542.224 1 Emergent 
31 307908.706 4114752.379 1 Emergent 
32 307927.306 4114744.572 1 Emergent 
33 301616.900 4114165.721 1 Emergent 
34 310306.118 4113797.474 1 Emergent 
35 316680.579 4133927.835 1 Emergent 
36 316889.740 4133808.266 1 Emergent 
37 319424.916 4130834.518 1 Emergent 
38 314163.718 4127378.124 1 Emergent 
39 312839.970 4111773.129 1 Emergent 
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ID X-coord Y-coord Binary Classification Wetland type 
40 301010.383 4109928.653 1 Emergent 
41 306113.727 4124750.917 1 Emergent 
42 308529.499 4123771.171 1 Emergent 
43 304357.068 4119540.568 1 Emergent 
44 304343.131 4119542.224 1 Emergent 
45 307908.706 4114752.379 1 Emergent 
46 307927.306 4114744.572 1 Emergent 
47 301616.900 4114165.721 1 Emergent 
48 310306.118 4113797.474 1 Emergent 
49 316680.579 4133927.835 1 Emergent 
50 316889.740 4133808.266 1 Emergent 
51 319424.916 4130834.518 1 Emergent 
52 314163.718 4127378.124 1 Emergent 
53 309419.705 4126407.561 1 Emergent 
54 318595.765 4161482.474 1 Emergent 
55 319366.626 4161271.446 1 Emergent 
56 323359.818 4159539.180 1 Emergent 
57 323379.108 4159605.375 1 Emergent 
58 320996.036 4159067.889 1 Emergent 
59 320964.876 4159052.210 1 Emergent 
60 300075.010 4108199.965 1 Emergent 
61 300064.674 4108137.683 1 Emergent 
62 300317.305 4155430.848 1 Emergent 
63 299563.196 4155406.942 1 Emergent 
64 315636.963 4123535.004 1 Emergent 
65 303021.817 4157147.976 1 Emergent 
66 303039.268 4157130.244 1 Emergent 
67 318595.765 4161482.474 1 Emergent 
68 319366.626 4161271.446 1 Emergent 
69 323359.818 4159539.180 1 Emergent 
70 323379.108 4159605.375 1 Emergent 
71 320996.036 4159067.889 1 Emergent 
72 320964.876 4159052.210 1 Emergent 
73 300075.010 4108199.965 1 Emergent 
74 300064.674 4108137.683 1 Emergent 
75 300317.305 4155430.848 1 Emergent 
76 299563.196 4155406.942 1 Emergent 
77 315636.963 4123535.004 1 Emergent 
78 303021.817 4157147.976 1 Emergent 
79 303039.268 4157130.244 1 Emergent 
80 306128.014 4115023.269 1 Emergent 
81 309419.705 4126407.561 1 Emergent 
82 286100.001 4148554.833 1 Emergent 
83 318595.765 4161482.474 1 Emergent 
84 319366.626 4161271.446 1 Emergent 
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ID X-coord Y-coord Binary Classification Wetland type 
85 323359.818 4159539.180 1 Emergent 
86 323379.108 4159605.375 1 Emergent 
87 320996.036 4159067.889 1 Emergent 
88 320964.876 4159052.210 1 Emergent 
89 290477.265 4109562.175 1 Emergent 
90 300075.010 4108199.965 1 Emergent 
91 300064.674 4108137.683 1 Emergent 
92 289602.484 4105752.835 1 Emergent 
93 290795.522 4105007.443 1 Emergent 
94 291933.321 4104477.900 1 Emergent 
95 292658.429 4104125.954 1 Emergent 
96 298174.365 4103666.311 1 Emergent 
97 267340.844 4122977.985 1 Emergent 
98 270228.933 4117608.433 1 Emergent 
99 270215.294 4117614.862 1 Emergent 
100 300317.305 4155430.848 1 Emergent 
101 299563.196 4155406.942 1 Emergent 
102 315636.963 4123535.004 1 Emergent 
103 303021.817 4157147.976 1 Emergent 
104 303039.268 4157130.244 1 Emergent 
105 296054.307 4124715.132 1 Emergent 
106 294366.123 4121702.950 1 Emergent 
107 298924.221 4116495.220 1 Emergent 
108 289029.441 4113166.169 1 Emergent 
109 296140.993 4132116.863 1 Emergent 
110 298690.985 4139466.195 1 Emergent 
111 298688.470 4139467.309 1 Emergent 
112 285497.137 4150819.643 1 Emergent 
113 285477.436 4150881.359 1 Emergent 
114 301010.383 4109928.653 1 Emergent 
115 306113.727 4124750.917 1 Emergent 
116 308529.499 4123771.171 1 Emergent 
117 304357.068 4119540.568 1 Emergent 
118 304343.131 4119542.224 1 Emergent 
119 307908.706 4114752.379 1 Emergent 
120 307927.306 4114744.572 1 Emergent 
121 301616.900 4114165.721 1 Emergent 
122 310306.118 4113797.474 1 Emergent 
123 316680.579 4133927.835 1 Emergent 
124 316889.740 4133808.266 1 Emergent 
125 319424.916 4130834.518 1 Emergent 
126 314163.718 4127378.124 1 Emergent 
127 312839.970 4111773.129 1 Emergent 
128 298425.125 4129960.168 0 Upland 

     



 

 111

ID X-coord Y-coord Binary Classification Wetland type 
129 320389.350 4144413.453 0 Upland 
130 311417.998 4137992.358 0 Upland 
131 300924.912 4149983.488 0 Upland 
132 318378.590 4146439.175 0 Upland 
133 303909.564 4138869.081 0 Upland 
134 305769.466 4139607.825 0 Upland 
135 294432.659 4150446.583 0 Upland 
136 308575.788 4151880.590 0 Upland 
137 303723.781 4155042.244 0 Upland 
138 307207.281 4140667.693 0 Upland 
139 291920.443 4147179.800 0 Upland 
140 308713.137 4136798.221 0 Upland 
141 284023.540 4110206.085 0 Upland 
142 301532.430 4153838.990 0 Upland 
143 307773.132 4139207.114 0 Upland 
144 324978.587 4156181.822 0 Upland 
145 305450.314 4115286.107 0 Upland 
146 293135.455 4120385.735 0 Upland 
147 279247.770 4114776.264 0 Upland 
148 296854.783 4139761.387 0 Upland 
149 313115.898 4156028.691 0 Upland 
150 305186.157 4145982.615 0 Upland 
151 282379.389 4151076.365 0 Upland 
152 322071.131 4145744.923 0 Upland 
153 298685.690 4116298.807 0 Upland 
154 290409.227 4105848.335 0 Upland 
155 297027.181 4154578.227 0 Upland 
156 260625.676 4116712.456 0 Upland 
157 318238.855 4147144.550 0 Upland 
158 311318.341 4140448.235 0 Upland 
159 312014.102 4119144.647 0 Upland 
160 266897.672 4112978.541 0 Upland 
161 290978.269 4148030.545 0 Upland 
162 311746.102 4137568.276 0 Upland 
163 294395.141 4123914.246 0 Upland 
164 317219.998 4151437.130 0 Upland 
165 297777.937 4115730.722 0 Upland 
166 311875.464 4138694.902 0 Upland 
167 304083.664 4150802.126 0 Upland 
168 299281.876 4136674.520 0 Upland 
169 309577.072 4109442.279 0 Upland 
170 319455.384 4156215.150 0 Upland 
171 317916.922 4152963.669 0 Upland 
172 267035.743 4114420.131 0 Upland 
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ID X-coord Y-coord Binary Classification Wetland type 
173 292066.814 4144778.263 0 Upland 
174 296741.194 4124111.734 0 Upland 
175 312544.231 4115527.282 0 Upland 
176 287020.531 4151699.977 0 Upland 
177 282234.163 4110014.805 0 Upland 
178 265208.037 4113730.657 0 Upland 
179 263083.672 4117406.644 0 Upland 
180 297411.078 4131171.281 0 Upland 
181 267680.874 4109338.532 0 Upland 
182 296441.519 4123041.088 0 Upland 
183 302119.208 4146351.255 0 Upland 
184 302945.122 4138928.697 0 Upland 
185 290877.633 4150606.232 0 Upland 
186 261529.931 4119521.609 0 Upland 
187 313232.920 4110541.092 0 Upland 
188 313591.293 4128531.820 0 Upland 
189 300755.508 4128407.195 0 Upland 
190 301037.615 4152518.442 0 Upland 
191 317806.041 4122318.543 0 Upland 
192 297196.769 4131411.986 0 Upland 
193 314384.871 4137400.912 0 Upland 
194 295801.329 4104329.507 0 Upland 
195 260533.341 4115445.016 0 Upland 
196 289406.914 4111331.109 0 Upland 
197 307677.465 4113551.398 0 Upland 
198 303750.574 4129878.331 0 Upland 
199 308636.583 4119528.345 0 Upland 
200 294178.050 4150985.687 0 Upland 
201 309616.498 4143126.456 0 Upland 
202 308652.699 4119519.264 0 Upland 
203 296934.241 4110968.223 0 Upland 
204 301711.863 4158256.063 0 Upland 
205 315874.424 4160192.074 0 Upland 
206 317993.755 4125851.305 0 Upland 
207 296472.897 4120624.377 0 Upland 
208 280678.412 4154673.727 0 Upland 
209 278715.901 4118034.754 0 Upland 
210 290605.241 4105537.970 0 Upland 
211 314338.782 4124192.225 0 Upland 
212 296895.708 4143017.004 0 Upland 
213 312094.016 4156364.574 0 Upland 
214 322004.403 4159017.178 0 Upland 
215 319964.147 4155968.468 0 Upland 
216 295502.659 4151238.924 0 Upland 

     



 

 113

ID X-coord Y-coord Binary Classification Wetland type 
217 297451.481 4148021.703 0 Upland 
218 291455.414 4119413.140 0 Upland 
219 303229.071 4147125.331 0 Upland 
220 291509.431 4118702.978 0 Upland 
221 276145.127 4111486.502 0 Upland 
222 279969.735 4151834.343 0 Upland 
223 314365.190 4150006.917 0 Upland 
224 304501.171 4116180.762 0 Upland 
225 294130.984 4154610.754 0 Upland 
226 321747.430 4155643.391 0 Upland 
227 316306.512 4161907.820 0 Upland 
228 263713.543 4114732.675 0 Upland 
229 305434.867 4147281.896 0 Upland 
230 294296.822 4104377.554 0 Upland 
231 262254.306 4119673.229 0 Upland 
232 295133.697 4154765.478 0 Upland 
233 304241.443 4135199.488 0 Upland 
234 316746.966 4149424.583 0 Upland 
235 317223.180 4130243.893 0 Upland 
236 277024.527 4118427.996 0 Upland 
237 295056.854 4114105.209 0 Upland 
238 302575.258 4147453.742 0 Upland 
239 321679.985 4144325.978 0 Upland 
240 290785.111 4109674.910 0 Upland 
241 297122.876 4106543.678 0 Upland 
242 289481.402 4110769.348 0 Upland 
243 302967.417 4126121.301 0 Upland 
244 317554.474 4159685.261 0 Upland 
245 313113.283 4156230.084 0 Upland 
246 282549.070 4113116.045 0 Upland 
247 299280.741 4109406.169 0 Upland 
248 290761.392 4141075.603 0 Upland 
249 295171.644 4146667.358 0 Upland 
250 292877.607 4117572.216 0 Upland 
251 283364.916 4113615.964 0 Upland 
252 302161.957 4136651.075 0 Upland 
253 312868.955 4150650.060 0 Upland 
254 282933.302 4105702.452 0 Upland 
255 261060.389 4116747.402 0 Upland 
256 292908.174 4105359.916 0 Upland 
257 309200.703 4113292.877 0 Upland 
258 297128.990 4104101.218 0 Upland 
259 313954.997 4129846.275 0 Upland 
260 268337.275 4113246.952 0 Upland 
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ID X-coord Y-coord Binary Classification Wetland type 
261 268584.254 4112707.951 0 Upland 
262 315684.337 4118396.097 0 Upland 
263 266247.748 4118182.792 0 Upland 
264 264041.059 4121545.309 0 Upland 
265 319009.496 4132396.106 0 Upland 
266 305479.290 4148296.446 0 Upland 
267 283169.087 4153590.211 0 Upland 
268 278418.860 4113803.900 0 Upland 
269 310792.158 4140064.991 0 Upland 
270 317757.561 4143057.497 0 Upland 
271 279224.693 4113349.848 0 Upland 
272 295226.061 4151594.694 0 Upland 
273 298578.568 4111241.232 0 Upland 
274 298224.765 4128633.643 0 Upland 
275 314180.602 4134157.365 0 Upland 
276 322313.700 4153924.888 0 Upland 
277 301719.158 4106432.873 0 Upland 
278 311386.427 4118938.540 0 Upland 
279 312447.233 4162922.824 0 Upland 
280 295845.287 4110062.414 0 Upland 
281 270899.842 4108844.251 0 Upland 
282 306017.719 4140835.954 0 Upland 
283 301963.225 4136792.842 0 Upland 
284 306090.153 4132574.603 0 Upland 
285 260745.450 4118084.390 0 Upland 
286 265845.290 4115170.870 0 Upland 
287 266060.870 4120007.390 0 Upland 
288 266737.360 4115467.900 0 Upland 
289 267136.750 4121920.170 0 Upland 
290 267690.440 4112052.040 0 Upland 
291 268469.170 4127486.860 0 Upland 
292 268470.050 4125447.180 0 Upland 
293 268624.680 4126599.560 0 Upland 
294 269328.640 4117726.330 0 Upland 
295 270755.170 4117522.290 0 Upland 
296 274699.350 4122537.000 0 Upland 
297 277062.050 4107651.190 0 Upland 
298 277104.670 4118662.720 0 Upland 
299 277714.100 4111402.130 0 Upland 
300 280302.360 4108224.450 0 Upland 
301 282539.020 4118079.710 0 Upland 
302 282589.170 4109534.890 0 Upland 
303 282635.930 4153250.880 0 Upland 
304 283230.080 4151356.730 0 Upland 
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ID X-coord Y-coord Binary Classification Wetland type 
305 284011.950 4151515.940 0 Upland 
306 284451.460 4151428.230 0 Upland 
307 284804.490 4118322.600 0 Upland 
308 287157.770 4146304.790 0 Upland 
309 287823.760 4113457.350 0 Upland 
310 288849.840 4105687.400 0 Upland 
311 289695.380 4144204.270 0 Upland 
312 290085.540 4112787.990 0 Upland 
313 290663.770 4149087.400 0 Upland 
314 291013.990 4147250.720 0 Upland 
315 291218.070 4110830.390 0 Upland 
316 291874.430 4122135.850 0 Upland 
317 291934.420 4141174.350 0 Upland 
318 292178.090 4113288.250 0 Upland 
319 293868.120 4118173.640 0 Upland 
320 294213.060 4125616.200 0 Upland 
321 294381.500 4150394.060 0 Upland 
322 295516.370 4117404.850 0 Upland 
323 295559.500 4116300.990 0 Upland 
324 295882.310 4109921.600 0 Upland 
325 296008.190 4110330.480 0 Upland 
326 296270.390 4114780.890 0 Upland 
327 296950.360 4110959.140 0 Upland 
328 297058.310 4138027.040 0 Upland 
329 297233.920 4112038.870 0 Upland 
330 297416.830 4117173.690 0 Upland 
331 297449.110 4109758.490 0 Upland 
332 297984.150 4156038.210 0 Upland 
333 298293.210 4118679.080 0 Upland 
334 298359.790 4145893.150 0 Upland 
335 298587.830 4143031.390 0 Upland 
336 298640.180 4149870.910 0 Upland 
337 298670.760 4142127.930 0 Upland 
338 299026.080 4154651.450 0 Upland 
339 299120.890 4108656.580 0 Upland 
340 301020.230 4145970.880 0 Upland 
341 301671.560 4125132.150 0 Upland 
342 301942.860 4135535.020 0 Upland 
343 302472.960 4156567.790 0 Upland 
344 302599.790 4125848.640 0 Upland 
345 303173.300 4150435.430 0 Upland 
346 303323.300 4125081.120 0 Upland 
347 304615.590 4153720.460 0 Upland 
348 305167.390 4152110.720 0 Upland 
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ID X-coord Y-coord Binary Classification Wetland type 
349 305248.590 4123676.430 0 Upland 
350 305262.290 4134716.490 0 Upland 
351 305339.520 4140578.350 0 Upland 
352 305399.540 4153699.220 0 Upland 
353 305448.540 4120844.860 0 Upland 
354 305538.580 4139786.460 0 Upland 
355 305561.730 4139888.850 0 Upland 
356 305832.530 4151895.880 0 Upland 
357 306657.090 4151231.350 0 Upland 
358 306779.570 4139087.220 0 Upland 
359 307405.180 4121461.690 0 Upland 
360 308378.290 4118474.370 0 Upland 
361 308746.310 4125863.940 0 Upland 
362 309007.930 4152785.600 0 Upland 
363 309291.670 4124277.170 0 Upland 
364 309335.690 4119654.220 0 Upland 
365 309347.890 4119207.520 0 Upland 
366 309480.590 4144722.420 0 Upland 
367 309845.740 4123005.360 0 Upland 
368 310062.460 4155110.240 0 Upland 
369 310843.140 4136877.540 0 Upland 
370 311113.570 4147840.680 0 Upland 
371 311298.430 4120787.400 0 Upland 
372 311852.520 4116556.770 0 Upland 
373 311984.690 4155666.480 0 Upland 
374 312073.940 4163333.080 0 Upland 
375 312198.270 4132315.520 0 Upland 
376 312358.610 4162294.130 0 Upland 
377 312469.280 4120807.400 0 Upland 
378 312740.570 4132689.680 0 Upland 
379 312997.330 4148433.100 0 Upland 
380 313877.040 4128210.880 0 Upland 
381 313922.340 4128665.160 0 Upland 
382 314413.260 4125109.870 0 Upland 
383 314677.780 4140220.310 0 Upland 
384 314694.250 4118993.950 0 Upland 
385 314817.810 4142994.620 0 Upland 
386 314985.070 4143420.160 0 Upland 
387 315369.620 4154958.740 0 Upland 
388 315383.550 4154870.920 0 Upland 
389 315506.630 4117296.710 0 Upland 
390 315895.010 4142587.580 0 Upland 
391 315957.770 4136274.750 0 Upland 
392 316273.690 4116624.600 0 Upland 
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393 316323.620 4142106.170 0 Upland 
394 316536.210 4138547.770 0 Upland 
395 316550.140 4139939.360 0 Upland 
396 316659.590 4121405.150 0 Upland 
397 317471.290 4158452.650 0 Upland 
398 319843.490 4156636.210 0 Upland 
399 320560.060 4149994.970 0 Upland 
400 320602.400 4136136.700 0 Upland 
401 322093.710 4157807.330 0 Upland 
402 322651.300 4149856.230 0 Upland 
403 322682.620 4156315.970 0 Upland 
404 323847.390 4154340.210 0 Upland 
405 324077.830 4151131.600 0 Upland 
406 325452.500 4156154.690 0 Upland 
407 326066.240 4156448.620 0 Upland 
408 326368.540 4155838.470 0 Upland 
409 316297.196 4119110.139 0 Upland 
410 305672.443 4143475.753 0 Upland 
411 299777.079 4124046.018 0 Upland 
412 306082.604 4117156.667 0 Upland 
413 282488.960 4113309.850 0 Upland 
414 289757.060 4121329.700 0 Upland 
415 297004.120 4150193.000 0 Upland 
416 299128.920 4147716.280 0 Upland 
417 305167.390 4152110.720 0 Upland 
418 305262.290 4134716.490 0 Upland 
419 312358.610 4162294.130 0 Upland 
420 315369.620 4154958.740 0 Upland 
421 315895.010 4142587.580 0 Upland 
422 318132.192 4128833.142 0 Upland 
423 276568.718 4118950.871 0 Upland 
424 276045.914 4113533.529 0 Upland 
425 298636.975 4154291.353 0 Upland 
426 298666.884 4154314.439 0 Upland 
427 316297.196 4119110.139 0 Upland 
428 305672.443 4143475.753 0 Upland 
429 299777.079 4124046.018 0 Upland 
430 293796.279 4117730.448 0 Upland 
431 296364.796 4114393.314 0 Upland 
432 289074.967 4113165.193 0 Upland 
433 292926.340 4146857.460 0 Upland 
434 306082.604 4117156.667 0 Upland 
435 283731.509 4107958.933 0 Upland 
436 294433.158 4108185.551 0 Upland 
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437 295105.556 4152179.660 0 Upland 
438 303674.440 4117850.960 0 Upland 
439 310323.210 4149128.576 0 Upland 
440 303496.659 4133611.676 0 Upland 
441 305029.492 4137268.900 0 Upland 
442 281262.493 4150991.166 0 Upland 
443 304217.045 4138426.579 0 Upland 
444 267483.510 4110648.128 0 Upland 
445 306043.727 4136271.332 0 Upland 
446 305819.548 4137045.755 0 Upland 
447 301765.738 4136767.930 0 Upland 
448 297499.379 4109229.770 0 Upland 
449 308800.108 4125012.575 0 Upland 
450 306071.716 4134734.405 0 Upland 
451 311011.740 4116335.305 0 Upland 
452 304555.336 4136924.494 0 Upland 
453 285539.246 4148661.716 0 Upland 
454 293777.005 4110644.514 0 Upland 
455 280746.352 4152952.150 0 Upland 
456 304197.159 4135651.629 0 Upland 
457 305651.648 4137417.092 0 Upland 
458 311188.036 4115797.896 0 Upland 
459 282743.424 4149666.157 0 Upland 
460 312149.864 4152873.477 0 Upland 
461 308668.553 4132531.138 0 Upland 
462 305701.085 4137258.586 0 Upland 
463 316310.706 4136722.116 0 Upland 
464 279607.458 4149423.405 0 Upland 
465 302989.226 4135127.284 0 Upland 
466 308689.383 4132993.133 0 Upland 
467 304449.009 4135094.623 0 Upland 
468 285775.241 4147598.933 0 Upland 
469 316045.492 4136013.937 0 Upland 
470 282614.706 4148770.819 0 Upland 
471 302458.167 4135744.575 0 Upland 
472 316438.188 4135784.603 0 Upland 
473 303224.278 4136377.455 0 Upland 
474 280445.702 4150158.977 0 Upland 
475 307555.112 4138550.136 0 Upland 
476 311817.797 4153214.558 0 Upland 
477 284218.125 4150977.189 0 Upland 
478 315844.016 4135574.520 0 Upland 
479 293197.134 4110861.700 0 Upland 
480 302261.666 4135261.376 0 Upland 

     



 

 119

ID X-coord Y-coord Binary Classification Wetland type 
481 282043.529 4151492.703 0 Upland 
482 280830.927 4152207.870 0 Upland 
483 279116.199 4149690.447 0 Upland 
484 304917.246 4137795.764 0 Upland 
485 311332.137 4152879.206 0 Upland 
486 284093.757 4150596.682 0 Upland 
487 304883.352 4138739.352 0 Upland 
488 316746.622 4136020.242 0 Upland 
489 283947.013 4148200.635 0 Upland 
490 280739.823 4152917.423 0 Upland 
491 306736.455 4137918.745 0 Upland 
492 280719.000 4150980.391 0 Upland 
493 297019.624 4109487.757 0 Upland 
494 279614.286 4152128.901 0 Upland 
495 305811.145 4138686.862 0 Upland 
496 281278.660 4151217.636 0 Upland 
497 316353.295 4138283.226 0 Upland 
498 295565.747 4110113.757 0 Upland 
499 280919.539 4152257.726 0 Upland 
500 308816.779 4151231.102 0 Upland 
501 311099.430 4114273.003 0 Upland 
502 281751.886 4150924.922 0 Upland 
503 292385.388 4119009.092 1 Water 
504 304009.833 4114751.376 1 Water 
505 309680.780 4125724.519 1 Water 
506 298641.228 4138637.521 1 Water 
507 293691.761 4140060.126 1 Water 
508 298129.209 4132362.384 1 Water 
509 325064.380 4159364.748 1 Water 
510 304611.371 4123381.784 1 Water 
511 309382.885 4155622.951 1 Water 
512 298230.618 4137565.578 1 Water 
513 305262.751 4131412.970 1 Water 
514 319307.005 4145545.207 1 Water 
515 310158.409 4130143.248 1 Water 
516 296372.912 4138416.047 1 Water 
517 281705.958 4114278.858 1 Water 
518 307080.772 4129116.908 1 Water 
519 302993.549 4131762.933 1 Water 
520 306618.095 4131581.683 1 Water 
521 270699.939 4125092.996 1 Water 
522 287635.916 4106916.664 1 Water 
523 302751.403 4133205.360 1 Water 
524 296456.259 4140244.669 1 Water 
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525 305997.111 4129487.273 1 Water 
526 295926.545 4142380.463 1 Water 
527 315038.079 4146703.902 1 Water 
528 298196.218 4137218.073 1 Water 
529 303138.506 4155455.989 1 Water 
530 301666.064 4133194.185 1 Water 
531 303674.735 4140112.454 1 Water 
532 303503.304 4139717.989 1 Water 
533 308955.010 4160060.721 1 Water 
534 325882.085 4157412.280 1 Water 
535 300334.452 4138576.812 1 Water 
536 296446.049 4140628.216 1 Water 
537 295246.354 4139829.686 1 Water 
538 299875.707 4139550.505 1 Water 
539 265162.640 4112045.730 1 Water 
540 288499.270 4141987.690 1 Water 
541 290913.810 4104974.670 1 Water 
542 291024.480 4142006.930 1 Water 
543 295580.780 4140048.290 1 Water 
544 295752.340 4140562.630 1 Water 
545 297490.090 4138964.620 1 Water 
546 298973.550 4126412.460 1 Water 
547 299141.820 4138761.210 1 Water 
548 299218.570 4137331.100 1 Water 
549 300988.500 4137509.190 1 Water 
550 304702.610 4132138.700 1 Water 
551 306646.320 4131402.540 1 Water 
552 317018.530 4125270.920 1 Water 
553 324833.710 4159414.110 1 Water 
554 324847.380 4159610.250 1 Water 
555 325510.740 4156909.240 1 Water 
556 301146.759 4109298.942 1 Water 
557 314850.658 4133170.937 1 Water 
558 317279.448 4129878.011 1 Water 
559 319530.430 4128691.492 1 Water 
560 316145.125 4126698.319 1 Water 
561 317445.074 4125902.473 1 Water 
562 299430.096 4134460.129 1 Water 
563 294660.200 4140511.590 1 Water 
564 301666.064 4133194.185 1 Water 
565 303674.735 4140112.454 1 Water 
566 303503.304 4139717.989 1 Water 
567 308955.010 4160060.721 1 Water 
568 325882.085 4157412.280 1 Water 
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569 300334.452 4138576.812 1 Water 
570 296446.049 4140628.216 1 Water 
571 295246.354 4139829.686 1 Water 
572 299875.707 4139550.505 1 Water 
573 281272.249 4148804.356 1 Water 
574 286143.838 4147714.915 1 Water 
575 285169.878 4145903.161 1 Water 
576 287275.828 4143385.863 1 Water 
577 287934.439 4143268.721 1 Water 
578 289110.660 4141696.610 1 Water 
579 288805.009 4141734.879 1 Water 
580 289392.736 4141257.136 1 Water 
581 301146.759 4109298.942 1 Water 
582 314850.658 4133170.937 1 Water 
583 317279.448 4129878.011 1 Water 
584 319530.430 4128691.492 1 Water 
585 316145.125 4126698.319 1 Water 
586 317445.074 4125902.473 1 Water 
587 287740.205 4106698.924 1 Water 
588 269292.740 4126125.837 1 Water 
589 289577.239 4105761.058 1 Water 
590 294660.200 4140511.590 1 Water 
591 299430.096 4134460.129 1 Water 
592 279779.433 4117452.123 1 Woody 
593 318683.929 4125263.654 1 Woody 
594 313798.964 4109113.815 1 Woody 
595 317008.745 4137592.337 1 Woody 
596 309634.989 4113189.957 1 Woody 
597 317853.377 4145042.686 1 Woody 
598 312129.552 4115920.871 1 Woody 
599 312988.032 4154433.186 1 Woody 
600 317776.129 4144415.814 1 Woody 
601 287369.509 4108984.576 1 Woody 
602 303495.355 4149136.302 1 Woody 
603 318825.758 4155483.447 1 Woody 
604 298759.437 4137510.123 1 Woody 
605 310800.019 4148986.946 1 Woody 
606 298992.329 4134523.270 1 Woody 
607 310796.429 4158817.207 1 Woody 
608 298371.401 4123375.444 1 Woody 
609 302144.900 4142806.881 1 Woody 
610 324465.933 4150243.213 1 Woody 
611 269542.711 4111313.324 1 Woody 
612 286410.651 4111486.281 1 Woody 
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ID X-coord Y-coord Binary Classification Wetland type 
613 300852.372 4112628.473 1 Woody 
614 304398.142 4155760.585 1 Woody 
615 301107.708 4117703.521 1 Woody 
616 320307.310 4144855.123 1 Woody 
617 290582.296 4150552.095 1 Woody 
618 309406.845 4132649.643 1 Woody 
619 301246.636 4118236.386 1 Woody 
620 313270.909 4128213.569 1 Woody 
621 293867.462 4113860.557 1 Woody 
622 299292.269 4130356.495 1 Woody 
623 288551.978 4106478.298 1 Woody 
624 309274.127 4126607.818 1 Woody 
625 307366.503 4140128.733 1 Woody 
626 309500.735 4141201.147 1 Woody 
627 271303.775 4118714.688 1 Woody 
628 311276.499 4125593.679 1 Woody 
629 307679.163 4147291.859 1 Woody 
630 301198.565 4117692.735 1 Woody 
631 302847.234 4113453.741 1 Woody 
632 303352.508 4140612.584 1 Woody 
633 290315.003 4153191.444 1 Woody 
634 308880.118 4150892.241 1 Woody 
635 300887.055 4138341.605 1 Woody 
636 306378.739 4110185.160 1 Woody 
637 314495.250 4130250.999 1 Woody 
638 308425.969 4129821.533 1 Woody 
639 298012.291 4138668.237 1 Woody 
640 275617.682 4118590.770 1 Woody 
641 300767.556 4134290.547 1 Woody 
642 280369.561 4116913.280 1 Woody 
643 297901.150 4138241.945 1 Woody 
644 302205.342 4139877.124 1 Woody 
645 303495.750 4156395.097 1 Woody 
646 305597.364 4154468.230 1 Woody 
647 303178.681 4149071.349 1 Woody 
648 291427.119 4116428.267 1 Woody 
649 299630.066 4137831.601 1 Woody 
650 322034.804 4160390.962 1 Woody 
651 314292.752 4139174.629 1 Woody 
652 308619.638 4122085.564 1 Woody 
653 300470.800 4122877.169 1 Woody 
654 309962.234 4115451.084 1 Woody 
655 319376.238 4147463.401 1 Woody 
656 303663.179 4112990.637 1 Woody 
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ID X-coord Y-coord Binary Classification Wetland type 
657 300497.794 4108466.151 1 Woody 
658 263580.991 4119631.508 1 Woody 
659 308405.250 4128161.271 1 Woody 
660 320759.330 4153774.298 1 Woody 
661 300886.640 4134100.616 1 Woody 
662 306471.093 4152789.680 1 Woody 
663 303621.053 4149187.302 1 Woody 
664 277501.431 4114463.038 1 Woody 
665 302630.717 4107377.916 1 Woody 
666 317251.381 4128319.678 1 Woody 
667 286771.420 4113157.447 1 Woody 
668 280846.342 4115867.835 1 Woody 
669 297972.078 4151088.488 1 Woody 
670 305916.270 4150086.785 1 Woody 
671 314447.744 4109805.895 1 Woody 
672 296550.375 4112582.507 1 Woody 
673 281761.538 4112983.101 1 Woody 
674 312620.753 4135923.158 1 Woody 
675 262033.843 4110966.863 1 Woody 
676 301155.779 4118247.172 1 Woody 
677 301208.769 4108103.406 1 Woody 
678 307178.723 4123025.724 1 Woody 
679 306315.225 4110588.238 1 Woody 
680 262026.786 4111011.650 1 Woody 
681 295902.349 4132443.629 1 Woody 
682 299639.799 4133054.699 1 Woody 
683 310857.126 4115147.077 1 Woody 
684 296898.565 4150922.941 1 Woody 
685 285573.507 4116610.452 1 Woody 
686 302979.727 4155709.231 1 Woody 
687 304510.396 4139187.057 1 Woody 
688 304484.811 4139132.530 1 Woody 
689 303422.638 4158612.913 1 Woody 
690 312221.519 4157539.845 1 Woody 
691 312248.668 4157533.039 1 Woody 
692 307666.728 4154805.518 1 Woody 
693 307663.931 4154807.446 1 Woody 
694 300743.068 4149947.617 1 Woody 
695 300459.098 4141471.022 1 Woody 
696 300378.069 4141658.477 1 Woody 
697 308343.059 4121730.156 1 Woody 
698 308341.700 4121707.849 1 Woody 
699 301313.723 4121479.064 1 Woody 
700 307965.332 4118869.144 1 Woody 
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ID X-coord Y-coord Binary Classification Wetland type 
701 307974.726 4118846.648 1 Woody 
702 306884.586 4115077.207 1 Woody 
703 307081.114 4114806.364 1 Woody 
704 301098.332 4111867.066 1 Woody 
705 301348.180 4134266.097 1 Woody 
706 307608.614 4133285.617 1 Woody 
707 302762.377 4107439.679 1 Woody 
708 291424.990 4104276.730 1 Woody 
709 301591.540 4118122.190 1 Woody 
710 307328.290 4115192.440 1 Woody 
711 286654.980 4113141.970 1 Woody 
712 287680.020 4107013.970 1 Woody 
713 289479.050 4109459.290 1 Woody 
714 291552.380 4115256.080 1 Woody 
715 292170.770 4110011.390 1 Woody 
716 294039.460 4115598.080 1 Woody 
717 294836.050 4106581.950 1 Woody 
718 296278.060 4142507.200 1 Woody 
719 296629.670 4127544.910 1 Woody 
720 296892.370 4153414.100 1 Woody 
721 297077.820 4120928.720 1 Woody 
722 297239.290 4112925.560 1 Woody 
723 297648.430 4137488.200 1 Woody 
724 297788.890 4105476.950 1 Woody 
725 298487.770 4133953.240 1 Woody 
726 299154.090 4151885.730 1 Woody 
727 299781.960 4110462.900 1 Woody 
728 299801.380 4108453.610 1 Woody 
729 300285.020 4139050.330 1 Woody 
730 300317.710 4129978.390 1 Woody 
731 300725.290 4122488.040 1 Woody 
732 300872.610 4120610.060 1 Woody 
733 300911.430 4119609.290 1 Woody 
734 301013.560 4149892.390 1 Woody 
735 301478.630 4117329.870 1 Woody 
736 302501.460 4112630.470 1 Woody 
737 302922.380 4156638.960 1 Woody 
738 303269.800 4106811.290 1 Woody 
739 303417.320 4143879.060 1 Woody 
740 304271.570 4154772.120 1 Woody 
741 304981.250 4149230.920 1 Woody 
742 306093.360 4113976.640 1 Woody 
743 306151.790 4149912.330 1 Woody 
744 306345.500 4155385.650 1 Woody 
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ID X-coord Y-coord Binary Classification Wetland type 
745 306458.130 4110058.540 1 Woody 
746 306537.080 4110217.640 1 Woody 
747 306548.330 4143529.330 1 Woody 
748 307143.080 4109955.250 1 Woody 
749 307157.370 4151829.240 1 Woody 
750 308440.620 4114357.210 1 Woody 
751 308513.870 4109177.240 1 Woody 
752 308782.270 4140385.490 1 Woody 
753 308949.060 4128953.710 1 Woody 
754 309188.360 4159403.650 1 Woody 
755 311149.580 4108293.000 1 Woody 
756 311492.530 4139499.740 1 Woody 
757 312282.830 4148063.790 1 Woody 
758 313152.290 4125099.980 1 Woody 
759 313364.730 4147327.390 1 Woody 
760 315244.940 4145485.410 1 Woody 
761 315522.290 4155890.270 1 Woody 
762 316301.610 4159526.060 1 Woody 
763 317756.280 4145201.920 1 Woody 
764 318483.570 4144829.910 1 Woody 
765 318519.390 4129231.240 1 Woody 
766 319533.090 4128542.520 1 Woody 
767 320044.490 4137092.770 1 Woody 
768 320705.580 4144873.770 1 Woody 
769 321181.920 4144114.040 1 Woody 
770 322131.060 4143371.430 1 Woody 
771 323160.810 4159751.880 1 Woody 
772 323382.670 4147005.120 1 Woody 
773 323425.880 4160050.020 1 Woody 
774 319298.639 4145167.209 1 Woody 
775 300685.899 4134268.281 1 Woody 
776 303851.880 4112066.471 1 Woody 
777 308929.661 4121866.882 1 Woody 
778 305704.823 4115707.777 1 Woody 
779 310489.020 4113936.303 1 Woody 
780 310185.570 4113770.245 1 Woody 
781 301112.141 4137297.027 1 Woody 
782 323189.521 4145763.467 1 Woody 
783 320202.849 4160909.510 1 Woody 
784 317451.157 4159157.283 1 Woody 
785 300854.830 4153956.118 1 Woody 
786 300841.555 4153967.592 1 Woody 
787 311990.357 4123320.907 1 Woody 
788 312008.816 4123326.011 1 Woody 
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ID X-coord Y-coord Binary Classification Wetland type 
789 302281.469 4146514.804 1 Woody 
790 308929.661 4121866.882 1 Woody 
791 305704.823 4115707.777 1 Woody 
792 310489.020 4113936.303 1 Woody 
793 310185.570 4113770.245 1 Woody 
794 296058.990 4121547.760 1 Woody 
795 298644.060 4108254.060 1 Woody 
796 300317.710 4129978.390 1 Woody 
797 302501.460 4112630.470 1 Woody 
798 306151.790 4149912.330 1 Woody 
799 308949.060 4128953.710 1 Woody 
800 315244.940 4145485.410 1 Woody 
801 321181.920 4144114.040 1 Woody 
802 319298.639 4145167.209 1 Woody 
803 300685.899 4134268.281 1 Woody 
804 295237.514 4141804.517 1 Woody 
805 295003.516 4141705.681 1 Woody 
806 295268.093 4141471.040 1 Woody 
807 285335.933 4145508.337 1 Woody 
808 303851.880 4112066.471 1 Woody 
809 276318.469 4107895.730 1 Woody 
810 281180.993 4110365.898 1 Woody 
811 285579.775 4116566.054 1 Woody 
812 296273.625 4143894.114 1 Woody 
813 308929.661 4121866.882 1 Woody 
814 305704.823 4115707.777 1 Woody 
815 310489.020 4113936.303 1 Woody 
816 310185.570 4113770.245 1 Woody 
817 301112.141 4137297.027 1 Woody 
818 309401.228 4128746.590 1 Woody 
819 323189.521 4145763.467 1 Woody 
820 320202.849 4160909.510 1 Woody 
821 317451.157 4159157.283 1 Woody 
822 292414.277 4111284.599 1 Woody 
823 291162.371 4108774.773 1 Woody 
824 291111.044 4107086.176 1 Woody 
825 294051.290 4106555.753 1 Woody 
826 298554.250 4103979.115 1 Woody 
827 298488.323 4103869.714 1 Woody 
828 300854.830 4153956.118 1 Woody 
829 300841.555 4153967.592 1 Woody 
830 311990.357 4123320.907 1 Woody 
831 312008.816 4123326.011 1 Woody 
832 302281.469 4146514.804 1 Woody 
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ID X-coord Y-coord Binary Classification Wetland type 
833 304510.396 4139187.057 1 Woody 
834 304484.811 4139132.530 1 Woody 
835 303422.638 4158612.913 1 Woody 
836 312221.519 4157539.845 1 Woody 
837 312248.668 4157533.039 1 Woody 
838 307666.728 4154805.518 1 Woody 
839 307663.931 4154807.446 1 Woody 
840 299286.474 4116731.103 1 Woody 
841 299174.702 4116731.333 1 Woody 
842 298830.787 4115335.182 1 Woody 
843 288909.921 4116540.850 1 Woody 
844 297976.928 4151117.820 1 Woody 
845 297939.023 4151244.365 1 Woody 
846 300743.068 4149947.617 1 Woody 
847 290375.905 4147554.684 1 Woody 
848 290377.206 4147561.137 1 Woody 
849 299621.566 4146768.554 1 Woody 
850 300459.098 4141471.022 1 Woody 
851 300378.069 4141658.477 1 Woody 
852 295071.965 4140811.204 1 Woody 
853 309541.209 4109892.680 1 Woody 
854 308343.059 4121730.156 1 Woody 
855 308341.700 4121707.849 1 Woody 
856 301313.723 4121479.064 1 Woody 
857 307965.332 4118869.144 1 Woody 
858 307974.726 4118846.648 1 Woody 
859 306884.586 4115077.207 1 Woody 
860 307081.114 4114806.364 1 Woody 
861 301098.332 4111867.066 1 Woody 
862 277245.390 4111187.187 1 Woody 
863 288283.847 4108643.010 1 Woody 
864 284110.828 4106251.073 1 Woody 
865 284115.331 4106287.797 1 Woody 
866 307608.614 4133285.617 1 Woody 
867 303051.722 4135038.231 1 Woody 
868 302762.377 4107439.679 1 Woody 
869 297812.861 4109245.031 1 Woody 
870 276282.571 4112164.423 1 Woody 
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APPENDIX B -- SAS CODE FOR COMPUTING THE CANONICAL 
DISCRIMINANT ANALYSIS AND MACRO FOR PLOTTING THE 

CANONICAL VARIABLES. 
 

/*CANONICAL DISCRIMINANT ANALYSIS*/ 
 
proc candisc data=sample ncan=3 out=outcan; 
var March_b1 March_b2 March_b3 March_b4 March_b5  
Oct_b1 Oct_b2 Oct_b3 Oct_b4 Oct_b5 ssurgo nhd dem slope wi; 
class BinClass; 
run; 
 
/* For plotting the results of the Canonical Discriminant 
Analysis*/ 
 
 
%plotit(data=outcan,plotvars=Can3 Can1 , labelvar=blank, 
symvar=binclass, typevar=binclass, 
symsize=1, symlen=4, tsize=1.5, exttypes=binclass, ls=100,  
           plotopts=vaxis=-3 to 10 by 3, vtoh=, 
extend=close); 
 
%plotit(data=outcan,plotvars=Can2 Can1 , labelvar=blank, 
symvar=binclass, typevar=binclass, 
symsize=1, symlen=4, tsize=1.5, exttypes=binclass, ls=100,  
           plotopts=vaxis=-3 to 10 by 3, vtoh=, 
extend=close); 
 
%plotit(data=outcan,plotvars=Can2 Can3 , labelvar=blank, 
symvar=binclass, typevar=binclass, 
symsize=1, symlen=4, tsize=1.5, exttypes=binclass, ls=100,  
           plotopts=vaxis=-3 to 10 by 3, vtoh=, 
extend=close); 
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APPENDIX C -- SAS CODE USED TO DEVELOP THE 
MULTINOMIAL LOGISTIC REGRESSION MODEL.  

 

/*Multinomial logistic regression*/ 
 
proc logistic data=temp order=internal; 
model class=mb1 mb2 mb3 mb4 mb5 oct1 oct2 oct3 oct4 oct5 
dem slope wi nhd ssurgo/  selection=stepwise link=glogit; 
ods output parameterestimates=odds; 
run; 
 
data odds1;set odds; 
odds=exp(estimate); 
run; 
 
proc print data=odds1; 
  var response estimate odds;  
run; 
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APPENDIX D -- PARAMETER ESTIMATES OF THE VARIABLES 
SELECTED BY THE STEPWISE REGRESSION USED IN THE 

MULTINOMIAL LOGISTIC REGRESSION. 
 

Variable Response Estimate Wald χ-
Square 

p-
value 

Intercept Emergent 5.496 2.119 0.146
Intercept Upland -17.811 11.719 0.001
Intercept Water -28.891 0.016 0.901
March_1 Emergent -51.131 6.656 0.010
March_1 Upland 36.455 2.402 0.121
March_1 Water 54.643 5.115 0.024
March_2 Emergent 62.256 8.238 0.004
March_2 Upland 3.196 0.022 0.881
March_2 Water -27.071 0.938 0.333
March_3 Emergent 1.848 0.081 0.776
March_3 Upland 18.047 9.074 0.003
March_3 Water -12.463 2.110 0.146
March_4 Emergent -17.745 7.831 0.005
March_4 Upland -1.522 0.052 0.820
March_4 Water -28.079 9.283 0.002
Oct_2 Emergent 15.786 12.427 0.000
Oct_2 Upland 1.767 0.132 0.716
Oct_2 Water -4.994 0.322 0.570
DEM Emergent -0.017 8.191 0.004
DEM Upland -0.003 0.460 0.498
DEM Water 0.015 3.563 0.059
Slope Emergent -0.094 3.776 0.052
Slope Upland -0.072 4.675 0.031
Slope Water -0.057 1.936 0.164
NHD Emergent 1.064 2.097 0.148
NHD Upland -3.882 29.523 < .0001
NHD Water 10.063 0.004 0.950
SSURGO Emergent -2.253 9.027 0.003
SSURGO Upland -2.540 21.345 < .0001
SSURGO Water 10.896 0.004 0.948
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APPENDIX E -- COORDINATES OF THE 300 PLOTS RANDOMLY 
SELECTED TO DETERMINE PERCENT OF CANOPY COVER IN 

FORESTED WETLANDS. 
 

ID AREA (m2) AREA (%) X-Coord Y-Coord 
1 88.50 39.33 307156.22 4151841.91
2 105.60 46.93 307816.60 4151242.56
3 107.90 47.96 307200.94 4151918.43
4 151.50 67.33 305687.57 4152849.13
5 117.50 52.22 307171.71 4151109.93
6 188.50 83.78 305761.12 4152893.36
7 154.50 68.67 307981.71 4150913.16
8 110.50 49.11 307232.04 4151094.51
9 142.50 63.33 307125.17 4151107.90

10 111.50 49.56 307216.94 4151169.78
11 179.80 79.91 306013.72 4152789.19
12 90.10 40.04 305970.32 4152713.98
13 93.50 41.56 306001.14 4152263.77
14 137.50 61.11 306991.63 4151364.59
15 90.50 40.22 307847.04 4151274.20
16 121.50 54.00 307108.84 4151124.51
17 120.50 53.56 307112.42 4151469.23
18 174.50 77.56 307953.33 4150898.55
19 100.50 44.67 305657.19 4152908.38
20 112.50 50.00 307098.22 4151109.21
21 147.50 65.56 305835.54 4152711.19
22 121.50 54.00 307020.07 4151348.81
23 169.50 75.33 305896.00 4152292.94
24 172.50 76.67 305836.48 4152878.55
25 80.50 35.78 307499.46 4151782.42
26 77.50 34.44 307832.53 4151274.27
27 100.50 44.67 307201.36 4151844.21
28 183.50 81.56 305925.32 4152309.37
29 173.50 77.11 305746.89 4152909.30
30 142.50 63.33 305612.53 4152729.50
31 121.50 54.00 307212.45 4151108.11
32 140.00 62.22 305701.64 4152817.21
33 92.50 41.11 307079.85 4151155.41
34 174.20 77.42 305745.34 4152847.87
35 106.60 47.38 307185.78 4151845.85
36 162.70 72.31 305743.69 4152771.81
37 145.90 64.84 308025.63 4150854.11
38 160.50 71.33 307770.76 4151318.93
39 91.00 40.44 307036.77 4151212.58
40 125.50 55.78 307143.13 4151092.79
41 148.50 66.00 308087.73 4150824.25
42 141.50 62.89 307125.40 4151904.01
43 74.50 33.11 307426.10 4151828.83
44 134.50 59.78 306016.42 4152250.00
45 169.50 75.33 307529.33 4151828.49



 

 132

ID AREA (m2) AREA (%) X-Coord Y-Coord 
46 108.50 48.22 307109.25 4151110.37
47 169.50 75.33 307771.92 4151362.65
48 155.00 68.89 305822.44 4152772.82
49 165.50 73.56 307784.83 4151288.21
50 89.50 39.78 308022.85 4150826.37
51 161.50 71.78 307966.87 4150794.81
52 171.50 76.22 307996.87 4150821.54
53 162.70 72.31 306016.69 4152218.69
54 142.50 63.33 307019.86 4151365.17
55 160.50 71.33 305582.15 4152745.13
56 119.50 53.11 307068.07 4151511.97
57 114.50 50.89 307098.36 4151121.45
58 136.50 60.67 308039.20 4150883.76
59 86.50 38.44 305790.90 4152832.71
60 119.50 53.11 307128.80 4151120.95
61 152.50 67.78 307981.63 4150778.32
62 117.50 52.22 307109.23 4151092.79
63 149.50 66.44 305684.30 4152908.03
64 171.50 76.22 305628.33 4152712.36
65 142.70 63.42 307082.85 4151377.55
66 126.50 56.22 307530.16 4151708.03
67 100.80 44.80 305760.86 4152757.75
68 71.50 31.78 305850.28 4152352.92
69 147.50 65.56 307215.40 4151136.88
70 136.50 60.67 307155.01 4151167.38
71 210.00 93.33 307755.02 4151349.00
72 210.50 93.56 307934.80 4150899.24
73 204.50 90.89 305714.69 4152895.67
74 63.50 28.22 305892.87 4152697.74
75 93.50 41.56 307141.87 4151919.30
76 62.50 27.78 307112.25 4151409.56
77 97.50 43.33 307756.43 4151273.59
78 58.50 26.00 307200.66 4151213.08
79 59.50 26.44 307156.50 4151379.06
80 57.10 25.38 307201.61 4151303.56
81 62.50 27.78 307128.59 4151409.36
82 60.50 26.89 307154.90 4151363.37
83 1.50 0.67 308296.61 4150779.40
84 1.50 0.67 308281.17 4150734.06
85 35.50 15.78 307440.82 4151723.25
86 1.50 0.67 305850.80 4152997.22
87 46.50 20.67 307126.17 4151498.15
88 36.50 16.22 307037.32 4151092.33
89 1.50 0.67 305850.30 4152983.85
90 2.50 1.11 305566.25 4152849.08
91 57.10 25.38 305583.20 4152923.37
92 37.50 16.67 305985.70 4152773.54
93 38.50 17.11 305700.64 4152923.20
94 52.10 23.16 305822.47 4152849.04
95 40.00 17.78 305924.78 4152699.63
96 52.30 23.24 306092.43 4152893.73
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ID AREA (m2) AREA (%) X-Coord Y-Coord 
97 58.50 26.00 307139.84 4151198.39
98 50.50 22.44 305567.11 4152878.02
99 62.50 27.78 305655.82 4152863.52

100 53.50 23.78 305700.50 4152908.82
101 46.50 20.67 305595.38 4152757.55
102 58.50 26.00 305669.56 4152759.19
103 55.50 24.67 307051.05 4151199.81
104 2.50 1.11 308281.51 4150748.38
105 59.50 26.44 305612.78 4152905.98
106 58.50 26.00 305625.72 4152879.08
107 46.50 20.67 305746.26 4152789.31
108 47.50 21.11 305670.58 4152877.65
109 49.60 22.04 305655.33 4152775.95
110 40.50 18.00 307471.54 4151827.83
111 50.50 22.44 307095.33 4151183.41
112 2.50 1.11 305882.97 4153057.85
113 3.50 1.56 308371.70 4150748.47
114 3.50 1.56 308312.87 4150778.80
115 3.50 1.56 308298.40 4150749.30
116 3.50 1.56 308299.18 4150718.08
117 3.50 1.56 306016.02 4152308.87
118 3.50 1.56 305879.96 4152263.11
119 3.50 1.56 305867.93 4153013.68
120 3.50 1.56 308356.93 4150749.84
121 5.50 2.44 305610.66 4152834.47
122 5.50 2.44 308252.46 4150764.38
123 6.40 2.84 308355.86 4150778.36
124 6.40 2.84 308282.03 4150762.51
125 6.50 2.89 305582.58 4152849.52
126 6.50 2.89 305880.45 4153028.60
127 7.90 3.51 308295.54 4150734.88
128 7.90 3.51 307156.38 4151348.58
129 8.50 3.78 308356.07 4150763.05
130 13.50 6.00 308340.82 4150764.58
131 15.50 6.89 307184.48 4151439.54
132 16.50 7.33 307155.90 4151440.27
133 17.50 7.78 307170.18 4151318.78
134 19.50 8.67 305625.71 4152772.32
135 20.50 9.11 307185.99 4151393.65
136 23.50 10.44 307199.52 4151288.40
137 24.50 10.89 308265.58 4150794.12
138 24.50 10.89 305549.38 4152819.04
139 33.50 14.89 307126.53 4151530.02
140 33.50 14.89 307170.51 4151305.05
141 34.50 15.33 307126.25 4151467.49
142 34.60 15.38 307155.33 4151393.27
143 71.50 31.78 307155.47 4151857.31
144 79.50 35.33 307156.58 4151830.24
145 95.50 42.44 307486.46 4151813.94
146 99.50 44.22 306976.72 4151348.38
147 100.62 44.72 307096.85 4151512.32
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ID AREA (m2) AREA (%) X-Coord Y-Coord 
148 74.50 33.11 307081.04 4151515.77
149 72.20 32.09 307185.25 4151831.55
150 96.60 42.93 307170.05 4151392.89
151 68.00 30.22 307168.06 4151918.06
152 76.20 33.87 307502.64 4151709.42
153 83.60 37.16 307412.09 4151782.79
154 70.50 31.33 305610.66 4152876.56
155 98.50 43.78 307095.79 4151136.61
156 70.50 31.33 305656.51 4152894.02
157 95.70 42.53 307412.16 4151797.06
158 86.50 38.44 307097.70 4151347.97
159 99.50 44.22 307082.34 4151121.10
160 88.50 39.33 305865.86 4152308.42
161 65.40 29.07 305655.69 4152729.18
162 100.00 44.44 305639.88 4152924.20
163 92.70 41.20 307154.35 4151303.11
164 85.50 38.00 305970.68 4152309.40
165 85.60 38.04 307142.30 4151859.39
166 73.50 32.67 307126.89 4151213.31
167 78.50 34.89 307081.62 4151531.28
168 69.50 30.89 307471.49 4151814.03
169 88.50 39.33 307397.12 4151782.65
170 69.80 31.02 307173.20 4151209.08
171 86.50 38.44 307035.69 4151871.83
172 77.50 34.44 307245.57 4151137.64
173 88.50 39.33 305971.42 4152743.78
174 102.50 45.56 307183.48 4151122.68
175 89.50 39.78 308058.46 4150840.42
176 89.50 39.78 307170.56 4151121.28
177 85.00 37.78 305567.58 4152894.01
178 100.50 44.67 307516.96 4151722.32
179 80.50 35.78 307156.97 4151423.63
180 81.50 36.22 307172.44 4151288.56
181 102.50 45.56 305820.25 4152862.72
182 66.00 29.33 305669.90 4152695.40
183 82.50 36.67 305566.58 4152803.88
184 77.50 34.44 305579.05 4152772.37
185 97.50 43.33 307845.60 4151241.95
186 111.60 49.60 307219.93 4151182.54
187 106.60 47.38 307799.71 4151348.51
188 102.50 45.56 305580.69 4152697.99
189 137.50 61.11 307229.68 4151107.15
190 131.50 58.44 307185.82 4151379.83
191 137.50 61.11 305866.10 4152910.36
192 127.50 56.67 305656.54 4152849.22
193 104.50 46.44 305642.46 4152895.04
194 132.50 58.89 307245.65 4151122.88
195 108.50 48.22 307097.09 4151213.79
196 132.50 58.89 307168.24 4151168.77
197 116.50 51.78 305657.60 4152923.33
198 136.50 60.67 307020.11 4151844.85
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ID AREA (m2) AREA (%) X-Coord Y-Coord 
199 127.50 56.67 307183.92 4151109.17
200 103.90 46.18 305955.34 4152789.38
201 128.50 57.11 307034.68 4151122.56
202 122.50 54.44 307083.21 4151365.27
203 121.50 54.00 308027.57 4150898.69
204 135.50 60.22 307228.26 4151170.30
205 133.50 59.33 307229.78 4151211.06
206 121.50 54.00 305943.35 4152307.83
207 116.50 51.78 307006.84 4151333.77
208 129.50 57.56 305641.41 4152727.82
209 126.50 56.22 307995.94 4150898.13
210 120.30 53.47 307172.00 4151335.93
211 104.50 46.44 306976.98 4151377.39
212 112.50 50.00 305582.10 4152893.91
213 123.50 54.89 305956.00 4152308.23
214 120.50 53.56 307066.07 4151332.80
215 113.50 50.44 307081.21 4151919.96
216 130.50 58.00 307230.58 4151122.81
217 134.50 59.78 307243.84 4151107.88
218 135.50 60.22 307140.65 4151169.48
219 125.50 55.78 306991.08 4151393.63
220 116.50 51.78 307126.07 4151333.19
221 112.50 50.00 305941.33 4152323.12
222 130.50 58.00 307020.40 4151379.87
223 105.60 46.93 307020.84 4151857.28
224 153.50 68.22 308086.78 4150853.28
225 165.50 73.56 307982.25 4150763.79
226 172.50 76.67 307200.88 4151902.53
227 174.50 77.56 305896.63 4152279.14
228 156.40 69.51 305909.67 4152351.86
229 161.50 71.78 307874.75 4151245.32
230 165.50 73.56 307366.58 4151722.27
231 163.50 72.67 307201.89 4151170.34
232 140.20 62.31 307755.32 4151363.27
233 170.50 75.78 305775.89 4152877.15
234 167.30 74.36 307994.10 4150809.46
235 162.10 72.04 305729.74 4152743.89
236 149.50 66.44 307935.69 4150853.10
237 168.50 74.89 307982.99 4150838.29
238 176.50 78.44 307966.10 4150883.29
239 142.50 63.33 305729.53 4152817.34
240 174.50 77.56 307126.56 4151828.17
241 165.50 73.56 307053.87 4151861.88
242 143.50 63.78 307081.94 4151407.83
243 162.50 72.22 308055.60 4150763.39
244 144.50 64.22 307081.29 4151438.45
245 149.50 66.44 307200.92 4151889.54
246 144.50 64.22 307020.31 4151166.73
247 165.50 73.56 305852.56 4152862.92
248 172.50 76.67 307184.50 4151889.62
249 142.60 63.38 305567.02 4152756.55
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ID AREA (m2) AREA (%) X-Coord Y-Coord 
250 169.50 75.33 305941.39 4152293.84
251 172.50 76.67 305925.02 4152293.59
252 171.50 76.22 305746.30 4152743.42
253 174.50 77.56 305715.50 4152787.34
254 171.50 76.22 305760.73 4152906.58
255 145.50 64.67 308069.48 4150793.61
256 151.50 67.33 305971.56 4152294.44
257 140.50 62.44 307184.84 4151906.04
258 169.50 75.33 305834.33 4152864.41
259 157.50 70.00 307247.44 4151213.23
260 142.50 63.33 305776.13 4152758.82
261 139.50 62.00 307051.18 4151874.97
262 158.20 70.31 307200.42 4151876.04
263 155.30 69.02 305849.83 4152713.10
264 151.50 67.33 307168.40 4151198.27
265 173.50 77.11 307831.43 4151332.82
266 183.50 81.56 307108.59 4151333.26
267 183.50 81.56 307114.74 4151873.93
268 184.50 82.00 305866.91 4152833.54
269 185.40 82.40 305911.77 4152323.36
270 173.50 77.11 305599.27 4152728.09
271 194.20 86.31 306015.74 4152772.43
272 173.50 77.11 307803.65 4151227.83
273 198.50 88.22 305897.63 4152352.31
274 178.50 79.33 307064.34 4151844.00
275 211.83 94.15 305716.19 4152865.09
276 175.36 77.94 305728.16 4152863.48
277 212.32 94.37 305595.38 4152714.03
278 200.50 89.11 307997.75 4150837.45
279 182.60 81.16 305717.68 4152818.37
280 180.50 80.22 305762.14 4152834.04
281 183.50 81.56 305716.32 4152805.51
282 199.50 88.67 305835.72 4152816.86
283 216.90 96.40 307007.31 4151529.94
284 201.50 89.56 306016.50 4152745.62
285 186.50 82.89 305762.00 4152743.27
286 180.50 80.22 305867.24 4152353.44
287 189.50 84.22 307755.55 4151319.03
288 175.50 78.00 308024.86 4150763.37
289 199.56 88.69 307965.85 4150837.48
290 176.60 78.49 308010.44 4150898.17
291 225.00 100.00 305910.89 4152774.79
292 192.50 85.56 307818.65 4151228.44
293 187.50 83.33 305762.04 4152878.51
294 204.50 90.89 307950.51 4150869.37
295 189.50 84.22 305777.64 4152924.21
296 140.50 62.44 307036.75 4151921.61
297 139.50 62.00 308041.41 4150763.91
298 203.31 90.36 305700.15 4152788.79
299 200.50 89.11 307833.16 4151228.37
300 189.50 84.22 305745.70 4152699.63
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