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ABSTRACT

This dissertation focuses on three research projects: 1) construction of simultaneous

prediction intervals/bounds for at least k out of m (k 6 m) future observations; 2) semi-

parametric degradation model for accelerated destructive degradation test (ADDT) data;

and 3) spatial variable selection and application to Lyme disease data in Virginia. Followed

by the general introduction in Chapter 1, the rest of the dissertation consists of three main

chapters.

Chapter 2 presents the construction of two-sided simultaneous prediction intervals (SPIs)

or one-sided simultaneous prediction bounds (SPBs) to contain at least k out of m (k 6 m)

future observations, based on complete or right censored data from (log)-location-scale family

of distributions. SPI/SPB calculated by the proposed procedure has exact coverage proba-

bility for complete and Type II censored data. In Type I censoring case, it has asymptotically

correct coverage probability and reasonably good results for small samples. The proposed

procedures can be extended to multiply-censored data or randomly censored data.

Chapter 3 focuses on the analysis of ADDT data. We use a general degradation path

model with correlated covariance structure to describe ADDT data. Monotone B-splines are

used to modeling the underlying degradation process. A likelihood based iterative procedure

for parameter estimation is developed. The confidence intervals of parameters are calculated

using the nonparametric bootstrap procedure. Both simulated data and real datasets are

used to compare the semi-parametric model with the existing parametric models.

Chapter 4 studies the Lyme disease emergence in Virginia. The objective is to find im-

portant environmental and demographical covariates that are associated with Lyme disease

emergence. To address the high-dimentional integral problem in the loglikelihood function,

we consider the penalized quasi loglikelihood and the approximated loglikelihood based on

Laplace approximation. We impose the adaptive elastic net penalty to obtain sparse es-

timation of parameters and thus to achieve variable selection of important variables. The

proposed methods are investigated in simulation studies. We also apply the proposed meth-

ods to Lyme disease data in Virginia.

Finally, Chapter 5 contains general conclusions and discussions for future work.
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GENERAL AUDIENCE ABSTRACT

This dissertation focuses on simultaneous prediction intervals/bounds, accelerated destruc-

tive degradation test (ADDT) data analysis, spatial variable selection and an applica-

tion to Virginia Lyme disease emergence. Our simultaneous prediction intervals/bounds

(SPIs/SPBs) are designed to qualify the uncertainties of at least k out of m (k ≤ m) future

observations. We propose a simulation-based approach to compute SPIs/SPBs based on

completely observed or censored data (the event time is not observed) from (log)-location-

scale family of distributions. The coverage probabilities of SPIs/SPBs are studied. The

second topic is related with ADDT data. ADDT is useful for evaluating the product’s long-

term properties. It is important for companies to ensure that the reliability requirements of

products are met. In Chapter 3, we propose a general and flexible semi-parametric model

for ADDT data. Compared to existing parametric models for ADDT in literature, our semi-

parametric model requires less assumptions and can be applied to different kinds of products.

The third project studies the Lyme disease emergence in Virginia. We observed that the

number of reported Lyme disease cases increased in recent years. Therefore, it is meaningful

and helpful to find factors that are related with Lyme disease incidence. In Chapter 4, we

develop variable selection procedures for spatial correlated data and apply the techniques to

Lyme disease data to find important factors. Our findings as well as the results from past

studies are compared and discussed.
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Chapter 1 General Introduction

1.1 Background

1.1.1 Reliability Analysis

In today’s expanding and highly competitive market, there is a growing need for new genera-

tions of high-technology products. Only by ensuring high quality and reliability of products

can make the company competitive and attractive in the market. For companies to build

their reputation, the reliability of products plays a significant role. A reliable product may

not remarkably improve customer satisfaction, while an unreliable product will most cer-

tainly lead to dissatisfactions. Therefore, high reliability is an obligatory prerequisite to

acquire customer satisfaction. Additionally, unreliable products may also negatively affect

profits because of the replacement, repair and maintenance costs.

Reliability is a characteristic that reflects the ability of a product to carry out its intended

function for a specified time interval under declared conditions. There are two main types

of reliability data: laboratory test data and field data. Before a company releases a new

product, laboratory tests are usually performed to obtain the time to failure information of

the product based on well-designed experiments. For traditional time to failure data, log-

location-scale family of distributions (e.g., the Weibull and lognormal distributions) are often

used to describe their distributions. Likelihood approaches are usually used for estimation.

Predictions of reliability of products are usually needed. The predictions can help to evaluate

the reliability of product and improve the product design.

1.1.1.1 Censoring

Censored data are common in reliability analysis. For highly reliable products, it may be

hard to obtain failures for all tested units in a limited time period even under adverse

1
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working conditions. Censoring schemes include right censoring, left censoring, and interval

censoring. Right censoring happens when the test unit still works at the stopping time of

the experiment. In this case, we only know the service life of the unit is longer than the

experiment time, but the exact time of failure is unknown. Much research has been done on

censored data, one may refer to Escobar and Meeker (1998), and Lawless (2003) for a class

of statistical methods for censored data.

1.1.1.2 Accelerated Testing

For products designed to have high reliability, it is often unpractical to observe failures

of products under normal operating conditions during the laboratory test period, which

makes the statistical analysis challenging. In order to observe failures in a relatively short

time period, laboratory tests are usually conducted in accelerated test conditions. That is,

the reliability information is obtained by testing units under high levels of stress variables.

The stress variables usually include temperature, humidity, usage frequency, work load, etc.

Extrapolation is often used to acquire reliability information under normal use conditions.

One may refer to Escobar and Meeker (2006) for a review of accelerated testing models.

1.1.1.3 Degradation Data

Degradation data offer an important resource for assessing reliability. For a wide variety of

products, the failure mechanisms are related with certain underlying degradation processes.

An example is that the tensile strength of fibre composite degrades over time in a normal

use environment, and a failure can be considered to occur if the tensile strength reaches a

threshold value. Compared to the traditional time to failure data, degradation data contain

a sequence of measurements of some characteristic of product that is directly related to the

failure of the product. We can not only obtain the failure information, but also obtain a

sense of how the performance of the product degrades over time. General degradation path

models and stochastic models are two different approaches for degradation data. For work
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related to general degradation path models, one may see Lu and Meeker (1993), Wang and

Coit (2007) and Hong et al. (2015) for reference. For using stochastic processes to analyze

degradation data, one may refer to Padgett and Tomlinson (2004), and Park and Padgett

(2006).

If the products haven’t reached the threshold value at the end of the experiment, extrap-

olation can be used to estimate the failure time based on the estimated degradation path.

Therefore, degradation analysis can be used for prediction of the lifetime of highly reliable

products, with a few number of observed failures or even no failures.

1.1.1.4 Accelerated Destructive Degradation Test

Degradation data can be obtained under accelerated conditions. For example, we can expose

fibre composite under a high temperature to expedite the degradation process. There are

situations where the test unit will be destroyed during the measurement process, in other

words, the measurement is destructive. In that case, we can only obtain one measurement

per test unit. This type of test refers to as accelerated destructive degradation test (ADDT).

1.1.2 Spatial Epidemiology

Spatial epidemiology focuses on the description and examination of disease risk or incidence

and its geographic variations. From a public health perspective, detecting disease patterns,

discovering crucial factors associated with disease transmission, and making predictions of

disease incidence rates are important for better understanding of the diseases, enforcing

decisions that contribute to prevention, and inhibiting the spread of disease. It is appealing

to use statistical methods for epidemiological research (Lawson, 2013). It is important to

note that the incidences of disease at proximal locations have positive or negative correlation.

Accounting for spatial dependency in analysis is important but also challenging.
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1.1.2.1 Generalized Linear Mixed Models

The complexity of spatial epidemiology data requires models which can describe discrete

outcomes (e.g., case counts of disease) and capture correlations among observations due

to different spatial locations. Generalized linear mixed models (GLMMs) are an extension

of linear mixed models and generalized linear models. GLMMs have wide applications in

the cases where responses have different distributions other than normal distributions (e.g.,

Poisson and logistic distributions) and data are correlated rather than independent.

Denote yi as the vector of responses for cluster i, i = 1, · · · , n, where n is number of

clusters. And bi is a vector of random effects with multivariate distribution N(0,D). D is

the variance-covariance matrix. Conditional on bi, the yi’s are independent. We assume the

conditional mean and variance of yi have the following forms:

E(yi|bi) = µbi ,

Var(yi|bi) = φaiv(µbi),

where φ is a scale parameter, ai is a known constant, and v(·) is a function of conditional

mean µbi . The conditional mean is linked with the linear predictor x′iβ + z′ibi by a known

function η(·). That is , η(µbi) = x′iβ + z′ibi. Here xi and zi are covariates associated with

fixed effects β and random effects bi, respectively.

The likelihood function can be expressed as

L(β, φ,D|y1, · · · ,yn) =
n∏
i=1

∫
f(yi|β, φ, bi)f(bi|D) dbi,

where f(yi|β, φ, bi) is the distribution of yi conditional on bi, and f(bi|D) is the distribution

of bi.

The likelihood approach for estimating unknown parameters in GLMMs involves integrals

over random effects bi. There is no general analytic expressions for solutions and numerical
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approximations are needed. Details regarding estimation and inference of GLMMs can be

found in Molenberghs and Verbeke (2005, Chapter 14) and Stroup (2012).

Bayesian methodology for estimation and inference is also popular because of the hi-

erarchical model formulation of GLMM. By assuming a prior distribution f(β, φ,D), the

posterior distribution of (β, φ,D)′ is

f(β, φ,D|y1, · · · ,yn) ∝ L(β, φ,D|y1, · · · ,yn)f(β, φ,D).

For methods of sampling from the posterior distribution, one may refer to Ripley (2009),

Zeger and Karim (1991), and Gamerman (1997).

1.1.2.2 Variable Selection Methods

In practice, many explanatory variables may be collected and included in the model. How-

ever, it is often the case that only a subset of predictors contribute to the outcome of interest.

By identifying the important variables, we can obtain a good model fit, improve the predic-

tion performance, and enhance the model interpretation. Thus, variable selection is often

necessary and critical. In spatial epidemiology, discovering important factors associated with

disease incidence can inform decision-making on disease control and prevention.

There is a considerable amount of research on variable selection methods in regression

models. Classical variable selection methods include backward, forward, stepwise, and all

subset selection. Despite of the fact that these subset selection methods are widely accepted

and extensively used, they still have many drawbacks. Backward, forward, stepwise pro-

cedures may not select the same model (i.e., these procedures are only sub-optimal). All

subset selection procedure is time-consuming if there is a large number of covariates. See

Ratner (2010) for more details.

Alternative methods for variable selection are based on likelihood with penalty functions.

Examples include the ridge penalty (Hoerl and Kennard, 1970), the least absolute selection
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and shrinkage operator (LASSO) (Tibshirani, 1996), the elastic net (Zou and Hastie, 2005),

the adaptive LASSO (Zou, 2006), the adaptive elastic net (Zou and Zhang, 2009), and the

smoothly clipped absolute deviation penalty (SCAD) (Fan and Li, 2001). Information the-

oretic criteria such as Akaike’s information criterion (AIC), Schwarz’s Bayesian information

criterion (BIC) and deviance information criterion (DIC) are available for model compar-

isons. Predictive measures may also be used to select the best model.

Bayesian variable selection methods are also popular. Posterior model probabilities are

comparable and have straightforward and meaningful interpretations. Therefore, it’s natural

and reasonable to select the model with the highest posterior model probability.

Regarding the use of penalty functions to perform variable selection in GLMM, one may

refer to Schelldorfer, Meier, and Bühlmann (2014), Groll and Tutz (2014), Yang (2007)

and Cui (2011). Besides, Cai and Dunson (2008) described the Bayesian variable selection

methods in GLMM.

1.2 Motivation

This section describes the motivations for the three projects in the dissertation.

1.2.1 Simultaneous Prediction Interval

In many applications, we are more interested in the prediction intervals which account for the

uncertainty instead of point predictions. There also arises a situation when a company pro-

duces a batch of bulbs, the question of interest may not be the prediction interval of the mean

lifetime of the batch of bulbs, but rather the simultaneous prediction interval/bound that

contains the lifetime of at least 95% of bulbs in the batch with a specified confidence level.

We present a statistical procedure for computing simultaneous prediction intervals/bounds

for at least k out of m (k 6 m) future observations in Chapter 2.
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1.2.2 Semi-parametric Model for ADDT Data

Current research regrading ADDT data usually assumes parametric models for degradation

path, while in general, the parametric models may not be suitable for a wide class of products.

However, due to the flexibility of splines, semi-parametric models based on splines can be

applied to different kinds of products. We propose a semi-parametric model for ADDT data

and describe the estimation and inference procedures in Chapter 3.

1.2.3 Spatial Variable Selection

This project is motivated by the Lyme disease data in Virginia from 2006 to 2011. Lyme

disease emergence has attracted considerable attention recently. There is a increasing trend

in number of Lyme disease cases in Virginia after 2006. Jackson, Hilborn, and Thomas

(2006), Allan, Keesing, and Ostfeld (2003) and Yahner (1992) showed that Lyme disease is

associated with percentage of forest, number of small forested fragments, etc. Seukep et al.

(2015) considered a spatial Poisson regression model to examine the relationship between

forest fragmentation, land cover types, land cover change, demographic information and

the incidence of Lyme disease in Virginia. Conditional autoregressive model (CAR) was

used to describe the spatially correlated random effects in their study. Seukep et al. (2015)

applied the principal components analysis to attain important components and overcomed

the multicollinearity problem in the original set of predictors. Their approach did not involve

selection of covariates. In Chapter 4, we present variable selection procedures in GLMM while

taking spatial correlation and multicollinearity problem into account. Our approaches are

applied to the Lyme disease data to discover the crucial factors.

1.3 Outline of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we develop a procedure to

construct simultaneous prediction intervals/bounds for at least k out of m (k 6 m) future
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observations. The procedure can be applied to (log)-location-scale family of distributions

with complete or censored data. Chapter 2 is based on Xie et al. (2015a). Chapter 3 proposes

a semi-parametric degradation model to analyze the ADDT data. Monotone B-splines are

used to model the degradation path. Chapter 3 is mainly based on Xie, King, and Hong

(2015b). Chapter 4 introduces the Lyme disease emergence in Virginia and describes variable

selection methods for GLMM while accounting for spatial correlations. Chapter 4 is based

on Xie et al. (2016). Finally, Chapter 5 contains general conclusions and areas for future

work.
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Chapter 2 Simultaneous Prediction Intervals for the (Log)-Location-

Scale Family of Distributions

Abstract

Making predictions of future realized values of random variables based on currently available

data is a frequent task in statistical applications. In some applications, the interest is to

obtain a two-sided simultaneous prediction interval (SPI) to contain at least k out of m

future observations with a certain confidence level based on n previous observations from

the same distribution. A closely related problem is to obtain a one-sided upper (or lower)

simultaneous prediction bound (SPB) to exceed (or be exceeded) by at least k out of m

future observations. In this chapter, we provide a general approach for constructing SPIs

and SPBs based on data from a member of the (log)-location-scale family of distributions

with complete or right censored data. The proposed simulation-based procedure can provide

exact coverage probability for complete and Type II censored data. For Type I censored data,

the simulation results show that our procedure provides satisfactory results in small samples.

We use three applications to illustrate the proposed simultaneous prediction intervals and

bounds.

Key Words: Censored Data; Coverage Probability; k out of m, Lognormal; Simulation;

Weibull.
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2.1 Introduction

2.1.1 Motivation

Prediction intervals are used to quantify the uncertainty associated with future realized

values of random variables. In predicting future outcomes, one might be interested in point

predictions. Often, however, the focus is on whether the future observations will fall within

a prediction interval (PI) or conforming to a one-sided prediction bound (PB) obtained from

the available data and a pre-specified confidence level.

In some applications, it is desirable to obtain a two-sided simultaneous prediction interval

(SPI) or a one-sided simultaneous prediction bound (SPB) for at least k out of m future

observations, where 1 6 k 6 m. For example, Fertig and Mann (1977) consider time to

failure of turbine nozzles subject to a certain load. The company had manufactured 50

nozzles. Based on the failure times in a life test of 10 of those nozzles, they obtained a 95%

lower prediction bound to be exceeded by at least 90% of the remaining 40 nozzles (i.e., 36

out of 40). In another study, Fertig and Mann (1977) use failure times (in hours) based on a

life test of aircraft components to obtain an SPI to contain the failure times of all 10 future

components.

Much research has been done for statistical prediction for a single future observation.

Details and additional references can be found in Mee and Kushary (1994) and Escobar and

Meeker (1999). There has been some work for the SPIs/SPBs for at least k out of m future

observations. Those procedures, however, have been developed only for specific distributions

(e.g., normal and Weibull distributions). Hence, it is desirable to have a general approach to

generate SPIs/SPBs for a general class of distributions. In this chapter, we develop a general

procedure to obtain SPIs and SPBs for the location-scale family and the log-location-scale

family of distributions. The proposed procedures can be used with complete or censored

data and can be extended, in an approximate manner, to other distributions.
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2.1.2 Literature Review and Contributions of This Work

There is some previous work on the construction of SPIs/SPBs to contain/bound at least

k out of m future observations. Danziger and Davis (1964) described and provided tables

of coverage probabilities for non-parametric SPIs to contain k out of m future observations

(which they refer to as tolerance intervals) and corresponding one-sided SPBs. Hahn (1969)

considered the special case of k = m based on observations from a normal distribution. Hahn

(1969) gave the factors to calculate two-sided SPIs. One-sided SPBs were considered in Hahn

(1970). Fertig and Mann (1977) presented factors for constructing one-sided SPBs to contain

at least k out of m future observations for a normal distribution. Odeh (1990) provided a

method for generating k out of m two-sided SPIs for a normal distribution. Due to compu-

tational limitations, these papers only provided factors for a limited number of combinations

of n, k,m and for some specified confidence levels. In the area of environmental monitoring,

some articles considered the use of SPIs/SPBs for at least k out of m future observations

at p locations. Davis and McNichols (1987) studied this type of problem for one-sided pre-

diction bounds and for observations from a normal distribution. Krishnamoorthy, Lin, and

Xia (2009) constructed one-sided upper prediction bounds for the Weibull distribution based

on generalized pivotal quantities. Bhaumik and Gibbons (2006) developed an approximate

upper SPB for samples from a gamma distribution. Bhaumik (2008) constructed a one-sided

SPB for left-censored normal random variables. Beran (1990) gives theoretical results on the

coverage properties of the prediction regions based on simulation. There are no methods in

the literature for two-sided SPIs for the Weibull distribution.

None of existing literature proposes a general procedure for the location-scale (e.g., the

smallest extreme value, normal, and largest extreme value distributions) or the related log-

location-scale family of distributions (e.g., the Weibull, lognormal, and Fréchet distributions).

In this chapter, we develop methods for constructing such intervals/bounds based on a

general procedure. The methods are exact (except for Monte Carlo error) for complete and

Type II censored data. Type I censoring is commonly in life tests. We use simulation to
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study the coverage properties for the approximate intervals/bounds under Type I censoring.

2.1.3 Overview

The rest of this chapter is organized as follows. Section 2.2 introduces the data and model

setting for the problem. Section 2.3 gives the formal definition of the proposed SPI proce-

dure. Section 2.4 proposes a general procedure to obtain an SPI, followed by illustrative

examples. Section 2.5 describes simulation studies on the performance of the proposed pro-

cedure for Type I censored data. Section 2.6 illustrates the use of the proposed method with

applications. Section 2.7 contains concluding remarks and some discussion about related

extensions and applications of the methods.

2.2 Data, Model, and Maximum Likelihood Estimation

2.2.1 Data

We consider situations in which n independent experimental units are under study. At the

moment of doing the analysis, the data consist of: (a) r exact observations and (b) a set of

(n− r) right-censored observations at xc, where xc is larger or equal to the maximum of the

exact observations. Three important special cases of these data structure are: (a) complete

data, when r = n; (b) Type II censored data, when r (2 6 r 6 n) is pre-specified and xc

is equal to the maximum of the exact observations. Note that in this case xc is random;

(c) Type I censored data, when xc is pre-specified and xc exceeds the maximum of the exact

observations. Note that in the case of Type I censoring, r (1 6 r 6 n) is random (if r = 0

the maximum likelihood (ML) estimate does not exist).

To be precise, let X = (X1, . . . , Xn) denote the random variables for the observations
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from the n units, where −∞ < Xi <∞, i = 1, . . . , n. Define

δi =


1, if Xi is an exact observation

0, if Xi is a right-censored observation.

For Type I and Type II censoring, we observe xi = min(Xi, xc) and δi, i = 1, . . . , n. The

observed values are denoted by x = (x1, . . . , xn). This data structure is general and includes

data from reliability and lifetime studies with right-censored data from a positive response.

In this case all the components of X take positive values.

2.2.2 Model

To construct an SPI for a set of future observations, we use a statistical model to describe

the population of interest. In this chapter, we assume the observations have a distribution in

the family of the location-scale or log-location-scale family of distributions. A location-scale

distribution has a location parameter µ and a scale parameter σ. The parameters µ and σ

are typically unknown and need to be estimated. The probability density function (pdf) and

the cumulative distribution function (cdf) of a location-scale distribution are

f(x) =
1

σ
φ

(
x− µ
σ

)
and F (x) = Φ

(
x− µ
σ

)
,

respectively. The definitions of the standard pdf φ(·) and cdf Φ(·) functions for the different

members of this family are given in Table 2.1.

The pdf and cdf of the log-location-scale family are

f(t) =
1

σt
φ

[
log(t)− µ

σ

]
and F (t) = Φ

[
log(t)− µ

σ

]
,

respectively. The Weibull, lognormal, Fréchet, and log-logistic distributions are members of

the log-location-scale family. For these distributions, σ is a shape parameter and exp(µ) is
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Table 2.1: The pdfs and cdfs of different commonly-used members of the standard location-
scale and log-location-scale distributions.

Location-Scale Log-Location-Scale pdf φ(x) cdf Φ(x)

Normal Lognormal
exp(−x2/2)√

2π

∫ x
−∞ φ(w) dw

Logistic Loglogistic
exp(x)

[1 + exp(x)]2
exp(x)

1 + exp(x)

Largest extreme value Fréchet exp[−x− exp(−x)] exp[− exp(−x)]

Smallest extreme value Weibull exp[x− exp(x)] 1− exp[− exp(x)]

a scale parameter. In the reminder of this chapter, however, we will refer to µ and σ as

location and scale parameters, respectively.

This chapter focuses on the construction of SPIs and SPBs containing at least k of m

future observations Y = (Y1, . . . , Ym) from a previously sampled population. The sample

data are denoted by X and the assumptions are that Y and X are independent and random

samples from the same distribution.

2.2.3 Maximum Likelihood Estimation

We use maximum likelihood (ML) to estimate the unknown parameters (µ, σ). Under the

independent and identically distributed (i.i.d.) assumptions in Section 2.2, the likelihood of

the right censored data has the form

L(µ, σ) = C
n∏
i=1

[f(xi;µ, σ)]δi [1− F (xi;µ, σ)]1−δi ,

where C is a constant that does not depend on µ or σ, f(xi;µ, σ) is the assumed pdf, and

F (xi;µ, σ) is the corresponding cdf. The ML estimates can be obtained by finding the

values of µ and σ that maximize the likelihood function. In general, there is no closed-

form expression for the ML estimates, which are denoted by (µ̂, σ̂). Consequently, numerical

methods are used to find the ML estimates.
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2.3 Simultaneous Prediction Intervals and Bounds

2.3.1 Two-sided Simultaneous Prediction Intervals

This section shows how to construct an SPI [L(x, 1− α), U(x, 1− α)] that will contain

at least k out of m independent future observations from the sampled distribution, with a

specified confidence level 1− α. Conditioning on the observed data X = x, the conditional

coverage probability (CP) of the interval [L(x, 1− α), U(x, 1− α)] with nominal confidence

level 1− α is

CP(θ|X = x) = Pr{at least k of m values lie in [L(x, 1− α), U(x, 1− α)] |X = x}

=
m∑
j=k

(
m

j

)
pj(1− p)m−j, (2.1)

where θ = (µ, σ) is the vector of unknown parameters and

p = Pr{a future observation is in [L(x, 1− α), U(x, 1− α)] |X = x}.

The conditional CP is unobservable because it depends on the unknown parameters and

varies from sample to sample because it depends on the data. Following standard procedure,

to evaluate the prediction interval procedure, we use the unconditional CP

CP(θ) = EX

[
m∑
j=k

(
m

j

)
pj(1− p)m−j

]
,

where expectation is taken with respect to the joint distribution of the data X.

Because (Yi − µ̂)/σ̂, i = 1, . . . ,m are pivotal quantities, one can construct a two-sided

100(1− α)% SPI to contain at least k out of m future observations with the following form

[ µ̂+ uL(k,m;α)σ̂, µ̂+ uU(k,m;α)σ̂ ] ,
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for the location-scale family of distributions. Here uL(k,m;α) and uU(k,m;α) are factors

to be chosen so that the SPI will have CP equal to 1 − α. For notational simplicity, we

let uL = uL(k,m;α) and uU = uU(k,m;α). In particular, the factors (uL, uU) satisfy the

equation

1− α =

∫ ∞
0

∫ ∞
−∞

m∑
j=k

(
m

j

)
[Φ(a)− Φ(b)]j [1− Φ(a) + Φ(b)]m−j fZ(z1, z2) dz1dz2, (2.2)

where a = z1+uUz2, b = z1+uLz2, Z = (Z1, Z2), fZ(z1, z2) is the joint pdf of Z1 = (µ̂−µ)/σ

and Z2 = σ̂/σ, and Φ(·) is the standard cdf of X.

The proof of (2.2) is given in Appendix 2.A. Note that (2.2) can be written as

1− α = EZ

[
m∑
j=k

(
m

j

)
[Φ(A)− Φ(B)]j [1− Φ(A) + Φ(B)]m−j

]
, (2.3)

where A = Z1 + uUZ2, B = Z1 + uLZ2, and EZ(·) is the expectation with respect to the

joint distribution of Z.

For distributions in the log-location-scale family, the corresponding two-sided 100(1 −

α)% SPI to contain at least k out of m future observations has the form [exp(µ̂ + uLσ̂),

exp(µ̂+uU σ̂)]. Thus, (2.2) is still used to obtain a prediction interval for distributions in the

log-location-scale family.

For Type II censored data or complete data from the location-scale/log-location-scale

family of distributions, Lawless (2003, pages 217 and 262) describes the pivotal property

of Z. That is, the distribution of Z does not depend on unknown parameters. For Type

I censoring, the pivotal property of Z no longer holds. The quantity Z, however, can be

treated as being approximately pivotal. Thus we can still use (2.2) to get the approximate

asymptotically correct SPIs under Type I censoring, and other types of non-informative

censoring.
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2.3.2 One-sided Simultaneous Prediction Bounds

There are similar CP statements for one-sided simultaneous prediction bounds. In particular,

for a one-sided lower simultaneous prediction bound, the conditional CP is

CPL(θ|X = x) = Pr [at least k of m values are larger than L(x, 1− α)|X = x]

=
m∑
j=k

(
m

j

)
pj(1− p)m−j, (2.4)

where p = Pr [a single future observation is larger than L(x, 1− α)|X = x].

The unconditional CP is

CPL(θ) = EX

[
m∑
j=k

(
m

j

)
pj(1− p)m−j

]
.

For the location-scale family of distributions, a one-sided lower simultaneous prediction

bound to be exceeded by at least k out of m future observations can be expressed as

L(x, 1 − α) = µ̂ + u′L(k,m;α)σ̂, where u′L(k,m;α) is a factor to be chosen so that the

interval will give a CP of 1−α. Let u′L = u′L(k,m;α) and note that u′L satisfies the equation

1− α =

∫ ∞
0

∫ ∞
−∞

m∑
j=k

(
m

j

)
[1− Φ(b)]j [Φ(b)]m−j fZ(z1, z2) dz1dz2

= EZ

[
m∑
j=k

(
m

j

)
[1− Φ(B)]j [Φ(B)]m−j

]
, (2.5)

where b = z1 + u′Lz2 and B = Z1 + u′LZ2. When k = m, one obtains the lower prediction

bound to contain all m new additional observations.
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Similarly, for a one-sided upper simultaneous prediction bound, the conditional CP is

CPU(θ|X = x) = Pr [at least k of m values are less than L(x, 1− α)|X = x]

=
m∑
j=k

(
m

j

)
pj(1− p)m−j, (2.6)

where

p = Pr [a single future observation is less than L(x, 1− α)|X = x] .

The unconditional CP is

CPU(θ) = EX

[
m∑
j=k

(
m

j

)
pj(1− p)m−j

]
.

A one-sided upper simultaneous prediction bound to exceed at least k out of m future

observations for the location-scale family of distributions is U(x, 1− α) = µ̂+ u′U(k,m;α)σ̂,

where u′U(k,m;α) is a factor to be chosen so that the interval will give a CP equal to 1−α.

Let u′U = u′U(k,m;α) and note that u′U satisfies the equation

1− α =

∫ ∞
0

∫ ∞
−∞

m∑
j=k

(
m

j

)
[Φ(a)]j [1− Φ(a)]m−j fZ(z1, z2) dz1dz2

= EZ

[
m∑
j=k

(
m

j

)
[Φ(A)]j [1− Φ(A)]m−j

]
, (2.7)

where a = z1 + u′Uz2 and A = Z1 + u′UZ2.

For the log-location-scale family of distributions, the lower and upper SPBs have the

form L(x, 1−α) = exp(µ̂+ u′Lσ̂) and U(x, 1−α) = exp(µ̂+ u′U σ̂), respectively. The factors

u′L and u′U are obtained as solutions of (2.5) and (2.7), respectively.
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2.4 Computations of the Simultaneous Prediction Intervals/Bounds

In this section, we introduce a general procedure for finding the factors so that the two-

sided SPIs and one-sided SPBs will have the correct CP. The computing procedure requires

solving equations (2.3), (2.5), and (2.7). In general, there is no closed-form expression for

the solution of these equations. The exact distribution of Z can be complicated, especially

with censored data. Therefore, we use Monte Carlo simulation to obtain the distribution of

Z and evaluate the expectation based on the simulated samples.

2.4.1 Complete and Type II Censored Data

The two-sided SPI for complete or Type II censored data can be obtained from the follow-

ing algorithm.

Algorithm 1:

1. Draw a complete or Type II censored sample of size n from a (log)-location-scale

family of distributions with (µ, σ) = (0, 1). Detailed discussion on efficient simulation

of censored samples can be found in Meeker and Escobar (1998, Section 4.13).

2. Repeat step 1 B1 times and compute ML estimates (µ̂∗l , σ̂
∗
l ) for each simulated sample,

l = 1, . . . , B1.

To save computing time, these (µ̂∗l , σ̂
∗
l ) values are stored and used to compute all the

SPIs and SPBs for the particular censoring specification (n, r) as shown below.

3. For every (uL, uU), in a collection of chosen values, compute

CP∗(uL, uU) =
1

B1

B1∑
l=1

{
m∑
j=k

(
m

j

)
pl(uL, uU)j[1− pl(uL, uU)]m−j

}
, (2.8)

where pl(uL, uU) = Φ(µ̂∗l + uU σ̂
∗
l )− Φ(µ̂∗l + uLσ̂

∗
l ) and uL < uU .
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4. Find (uL, uU) such that CP∗(uL, uU) = 1− α.

Note that the choice of (µ, σ) = (0, 1) in Step 1 above is justified because for the Type II

censored and complete data case, the Algorithm 1 procedure does not depend on unknown

parameters due to the pivotal property of Z.

Finding (uL, uU) such that CP∗(uL, uU) = 1−α is a two-dimensional root-finding problem

and there are multiple solutions. An additional constraint on uL and uU is needed for a

unique solution. For symmetric distributions, uL = −uU is an appropriate constraint and

leads to two-sided SPIs with equal tail probabilities. For non-symmetric distributions, the

two-sided SPI with equal tail probabilities is appealing from a practical point of view. The

computation, however, is more complicated. Detailed discussion of the computation is given

in Section 2.4.2.

For one-sided SPBs, modifications to the algorithm are needed. Specifically, for the lower

SPB, replace (2.8) by

CP∗L(u′L) =
1

B1

B1∑
l=1

{
m∑
j=k

(
m

j

)
pl(u

′
L)j[1− pl(u′L)]m−j

}
,

where pl(u
′
L) = 1−Φ(µ̂∗l +u

′
Lσ̂
∗
l ). Then find the unique value of u′L such that CP∗L(u′L) = 1−α.

For the upper SPB, we need to replace (2.8) by

CP∗U(u′U) =
1

B1

B1∑
l=1

{
m∑
j=k

(
m

j

)
pl(u

′
U)j[1− pl(u′U)]m−j

}
,

where pl(u
′
U) = Φ(µ̂∗l +u′U σ̂

∗
l ). Then find the unique value of u′U such that CP∗U(u′U) = 1−α.

For one-sided prediction bounds, we use linear interpolation to obtain lower or upper limits

based on the CP curve (1− α versus u′L or u′U , respectively) for desired confidence levels.
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2.4.2 Two-sided SPI with Equal Tail Probability

In applications, even involving a non-symmetric distribution, it is preferable to have a two-

sided prediction interval with equal tail probabilities. For this purpose, we define the tail

probability as the tail probability of the one-sided bound. Therefore, the equal tail probabil-

ity implies that CPL(uL) = CPU(uU). Except for the special case of k = 1 (i.e., a prediction

interval for exactly one new observation), combining a one-sided lower 100(1 − α1)% pre-

diction bound and a one-sided upper 100(1 − α2)% prediction bound will not provide a

two-sided 100(1− α1 − α2)% SPI. Thus, a special procedure for a two-sided SPI with equal

tail probabilities is needed. For a given confidence level 1− α, we can obtain uL and uU by

solving numerically the equations

CP(uL, uU) = 1− α and CPL(uL)− CPU(uU) = 0. (2.9)

To find the solutions to (2.9), one finds numerically the contour lines of CP(uL, uU) and

CPL(uL)−CPU(uU). Then use interpolation to locate the intersecting point of the contours.

It is also possible to re-express the two-sided CP as a function of the one-sided tail probability

to reduce the dimension of root-finding, and then find the common tail probability that gives

the desired two-sided CP. Illustration of this method is given in Section 2.4.4.

2.4.3 Type I Censored Data

For Type I censored data, the statistics Z1 and Z2 are only approximately pivotal. The

simulation procedure will depend on the censoring time (or more precisely, the estimated

expected fraction failing). The expected fraction failing pf is defined as Φ[(xc − µ)/σ]. For

Type I censoring, we use the following algorithm.

Algorithm 2:

1. For the observed Type I data, calculate the ML estimates (µ̂, σ̂) and then compute
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estimated expected fraction failing p̂f = Φ[(xc − µ̂)/σ̂].

2. Draw a censored sample of size n from the (log)-location-scale family of distributions

with (µ, σ) = (0, 1) and censoring time is xc = Φ−1p̂f .

3. Follow steps 2 to 4 in Algorithm 1.

As the sample size increases, the CP of the SPIs/SPBs for Type I censoring data computed

by Algorithm 2 will approach the nominal confidence level (see proof in Appendix 2.B).

In Section 2.5, we study finite sample CPs for SPIs and SPBs obtained using Algorithm 2.

Appendix 2.C shows that the variance of estimated coverage probability CP∗(uL, uU)

(2.8) is a function of (uL, uU , k,m, n, r/xc,Φ(·), B1). Hence, for given distribution and values

of (uL, uU , k,m, n, r/xc), we can compute B1 that provides desired precision.

2.4.4 Illustrative Examples

2.4.4.1 Illustration A: Upper SPB for Type II Censoring and Complete Data

For purpose of illustration, we generate the CP curve for a one-sided upper SPB for at least

4 out of 5 future observations from a previous sampled Weibull distribution. The sample size

is n = 20 and we consider the Type II censored configurations corresponding to r = 5, 10, 15,

and 20 (complete data case). The number of simulations B1 is set to be 100,000 so that the

results are stable (i.e., negligible Monte Carlo error). Figure 2.1 shows the CP as a function

of u′U and r. For a desired coverage level, say 1 − α = 0.95 and a specific value of r, the

value of u′U is determined from the CP curve corresponding to the specified r value.

2.4.4.2 Illustration B: Two-sided SPI with Equal Tail Probability

Here the objective is to construct a two-sided SPI with equal tail probabilities from a previ-

ously sampled Weibull distribution. Again, B1 is chosen to be 100,000. The contour plot of

the CP as a function of uL and uU is shown in Figure 2.2(a). To obtain the prediction interval

with equal probability in each tail, we solve the equations in (2.9). Figure 2.2(b) shows the
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Figure 2.1: CP curves of one-sided upper SPBs for n = 20, r = 5, 10, 15 and 20, k =
4, and m = 5 based on Algorithm 1.

contour lines of the two equations. The upper and lower limits uU and uL of the 95% SPI

with equal tail probabilities are the coordinates of the intersection point of the two non-linear

curves in Figure 2.2(b). In Figure 2.2(b), the coordinates (uL, uU) = (−6.46, 3.82) produce

both the 0.95 overall coverage probability and the equal tail probabilities.

2.5 Simulation Study for Type I censoring

This section studies the CP properties of the simulation-based procedure proposed in Sec-

tion 2.4.3. For the Type I censored data case, the procedure properties will depend on

unknown parameters through the censoring time (or, more generally, the expected fraction

failing). The CP of the SPIs/SPBs, however, will converge to the nominal confidence level

as the expected number failing increases to infinity. Here we study the effect of the expected

number of failures rf (= n × pf ) on the CP of the SPIs/SPBs in small samples. Similar

simulation designs can be found in Vander Weil and Meeker (1990) and Jeng and Meeker
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Figure 2.2: (a) Contour plot of the CP as a function of uL and uU for n = 20, r = 8, k =
m = 3, based on 100,000 simulations. (b)The contour lines of equation (2.9).

(2001). In Algorithm 2, we calculated the SPIs/SPBs based on the ML estimates (µ̂, σ̂),

which are determined from the observed data. To evaluate the performance of Algorithm

2, we simulate the data many times and average over the results. The detailed simulation

plan is as follows.

1. Simulate X = (X1, X2, . . . , Xn) with the pre-determined censoring time. Without

loss of generality, we simulate samples from the Weibull distribution with parameters

(µ, σ) = (0, 1). Then, calculate the ML estimates of (µ, σ) for each simulated sample.

2. Use Algorithm 2 to obtain the SPIs/SPBs. For example, we can obtain the one-sided

upper SPB by computing u′U .

3. Use (2.1), (2.4), and (2.6) to compute the conditional CP for the SPI, the lower SPB,

and the upper SPB, respectively.

4. Repeat the steps 1− 3 B2 times and obtain the estimates of the unconditional CP for
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the SPIs/SPBs by averaging over the conditional CPs.

Because the focus is on the CP for small sample sizes, we simulate datasets with the expected

number of failures equal to rf = 5, 7, 10, 25 and the expected fraction failing equal to pf =

0.25. Here we chose B2 = 500 for the purpose of controlling the computational cost while

maintaining a reasonably small Monte Carlo error.

Figure 2.3 displays the estimated actual CP versus the nominal confidence level for the

one-sided lower and upper SPBs, and the two-sided SPI. Figure 2.3 shows that there are

some deviations from the nominal CP when the expected number of failures rf is small

(around 10). The estimated actual CP is close to the nominal confidence level when rf is

large enough (e.g., around 25). In the case of rf = 25, the corresponding line is nearly

the same as the identity line. When rf is large, the observed data tends to have more

failures, thus the estimates are more accurate and the SPIs/SPBs have better CP. We also

note that the two-sided SPI tends to perform better than one-sided SPBs when rf is small.

As indicated earlier, we used (µ, σ) = (0, 1) in the simulation. For other values of (µ, σ),

the simulation results are similar because they depend on the expected number of failures.

Overall, Algorithm 2 provides satisfactory results for Type I censoring in finite samples

when the expected number of failures is at least 5.

2.6 Applications

In this section, we use three examples to illustrate the applicability of the proposed procedure.

2.6.1 Nozzle Failure Time Data

This example is adopted from the application described in Fertig and Mann (1977). They

wanted to compute a 95% lower prediction bound (they called a “warranty period”) of the

failure times of at least 36 or 40 out of 40 nozzles. They provided the sample mean and

sample standard derivation of the logarithm of failure times (which they assumed to have
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Figure 2.3: Estimated actual CP versus nominal confidence level for fixed pf = 0.25, when
k = 4 and m = 5. (a) Lower SPB. (b) Upper SPB. (c) Two-sided SPI.
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normal distribution) of 10 nozzles, which are µ̂ = 3.850 and σ̂ = 0.034, respectively. Applying

Algorithm 1, we found that the lower SPBs for at least 36 and at least 40 out of 40 nozzles

to be 43.35 and 40.96 hours (based on 100,000 Monte Carlo trials), respectively.

2.6.2 Aircraft Component Failure Time Data

Mann and Fertig (1973) describes a study yielding ten failure times out of 13 aircraft com-

ponents that were tested. The failure times were 0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 1.54, 1.76,

2.50, and 3.00 hours. The three right censored observations occurred at 3.00 hours. Both

Mann and Fertig (1973) and Hsieh (1996) state that it is reasonable to assume a Weibull

model for the data. The Weibull probability plot in Figure 2.4(a) corroborates the ade-

quacy of the Weibull model. Based on Figure 2.4(b), the lognormal distribution, however,

is also suitable to describe the failure-time distribution of the aircraft component. Using

Algorithm 1 one obtains 95% lower SPBs of the failure times of all 10 future aircraft com-

ponents, which are 0.003 hours and 0.04 hours for the Weibull and lognormal distributions,

respectively. Also we found that the 95% upper SPBs are 39.789 hours and 107.465 hours

for the Weibull and lognormal distributions, respectively. The large difference is due to the

implied extrapolation, especially into the upper tail of the failure-time distribution.

2.6.3 Vinyl Chloride Data

This application uses data consisting of vinyl chloride concentrations (in µg/L) from clean

upgradient ground-water monitoring wells. The data were given in Bhaumik and Gibbons

(2006). The probability plot in Bhaumik and Gibbons (2006) indicates that the gamma dis-

tribution fits the data well. Figures 2.5(a) and 2.5(b) indicate that the Weibull and lognormal

distributions also provide good fit to the vinyl chloride data. Bhaumik and Gibbons (2006)

wanted to obtain a 95% upper SPB to exceed at least k = 1 out of m = 2 future observations.

For the gamma distribution, the 95% upper SPB is 2.931 µg/L. Using Algorithm 1, for the

Weibull distribution, the 95% upper SPB is exp(0.635 + 0.464× 0.99) = 2.989 µg/L; for the
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Figure 2.4: Probability plots for the aircraft data. (a) Weibull fit. (b) Lognormal fit.

lognormal distribution, the 95% upper SPB is exp(0.092 + 0.829× 1.120) = 2.773 µg/L. For

this application, the 95% upper SPBs for the gamma, Weibull, and lognormal distributions

are closed to each other. This is because extrapolation is not required to construct this

interval.

2.7 Concluding Remarks and Areas for Future Research

In this chapter, we propose a general method for constructing simultaneous two-sided pre-

diction intervals for at least k out of m future observations as well as the corresponding

one-sided bounds for the (log)-location-scale family of distributions. For the Type II cen-

sored or complete data cases, the method provides a procedure with CP equal to the nominal

confidence level (ignoring Monte Carlo error that can be made arbitrarily small). For Type

I censored data, the approximate procedure provides coverage probabilities that are close to

the nominal confidence level if the expected number of failures is not too small.

The procedures in this chapter can also be extended to data involving multiple censor-
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Figure 2.5: Probability plots for the vinyl chloride data. (a) Weibull fit. (b) Lognormal fit.

ing or random censoring. With complete data, the extension of the proposed methods to

regression case is straightforward because the pivotal properties still hold (Lawless, 2003,

Appendix E4). As long as the pivotal property holds, the proposed procedure can be easily

extended to give exact prediction intervals. When the pivotal property no longer holds (e.g.,

with regression and censoring), the approximate pivotal approach can be applied.

Appendix

2.A Proof of Equation (2.2)

Let Aj be the event that exactly j of the future observations Y lie in the prediction inter-

val [µ̂ + uLσ̂, µ̂ + uU σ̂]. To compute Pr (Aj) , first we compute the conditional probability

Pr (Aj|µ̂, σ̂) and then average this conditional probability over the sampling distribution of

the ML estimates (µ̂, σ̂).
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Now we proceed to compute Pr (Aj|µ̂, σ̂) . Define the indicator variables

Ij =


1 if Yj ∈ [µ̂+ uLσ̂, µ̂+ uU σ̂]

0 otherwise,

where j = 1, . . . ,m.

The Ij variables are i.i.d. because the Yj are i.i.d.. The Ij are Bernoulli(p) distributed

where the p parameter is given in (2.10). Consequently, the number of future observations,

say S =
∑m

j=1 Ij, contained by the conditional prediction interval [µ̂ + uLσ̂, µ̂ + uU σ̂] is

Binomial(m, p) distributed.

The parameter p is

p = P (Ij = 1|µ̂, σ̂) = Pr (µ̂+ uLσ̂ ≤ Yj ≤ µ̂+ uU σ̂)

= Pr (Yj ≤ µ̂+ uU σ̂)− Pr (Yj ≤ µ̂+ uLσ̂)

= Φ

(
µ̂− µ+ uU σ̂

σ

)
− Φ

(
µ̂− µ+ uLσ̂

σ

)
= Φ

(
µ̂− µ
σ

+ uU
σ̂

σ

)
− Φ

(
µ̂− µ
σ

+ uL
σ̂

σ

)
= Φ(a)− Φ(b) (2.10)

where a = z1 + uUz2, b = z1 + uLz2, with z1 and z2 being realizations of the pivotals Z1 =

(µ̂−µ)/σ and Z2 = σ̂/σ, respectively. The value of p is the same for all the variables Ij, j =

1, . . . ,m, because its value does not depend on the variable Yj chosen for the probability

computation in (2.10).

Thus

Pr(Aj | µ̂, σ̂) = Pr(S = j) =

(
m

j

)
pj(1− p)m−j
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and the unconditional probability for Aj is

Pr(Aj) =

∫ ∞
0

∫ ∞
−∞

(
m

j

)
pj(1− p)m−jf(L,S)(µ̂, σ̂) dµ̂dσ̂

where f(L,S)(µ̂, σ̂) is the sampling distribution of (µ̂, σ̂).

Define M to be the number of future observations contained by the prediction interval

[µ̂+uLσ̂, µ̂+uU σ̂]. Then the probability that the prediction interval contains at least k out

of m future observations is

Pr(M ≥ k) =
m∑
j=k

Pr(Aj)

=

∫ ∞
0

∫ ∞
−∞

m∑
j=k

(
m

j

)
[Φ (a)− Φ (b)]j [1− Φ (a) + Φ (b)]m−j f(L,S)(µ̂, σ̂) dµ̂dσ̂

= E

[
m∑
j=k

(
m

j

)
[Φ(A)− Φ(B)]j [1− Φ(A) + Φ(B)]m−j

]
.

Using (2.2), (uL, uU) can be chosen (selected/computed) to ensure that CP is equal to (1−α).

2.B Approximate Pivotal Property for Type I Censored Data

The loglikelihood of the right censored data has the following form,

l(µ, σ) =
n∑
i=1

{δi log f(xi;µ, σ) + (1− δi) log[1− F (xi;µ, σ)]} ,

up to a constant.

Based on the loglikelihood function, the ML estimators (µ̂, σ̂) satisfies the following score
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equations:

n∑
i=1

−δiφ
′
(
xi−µ̂
σ̂

)
φ
(
xi−µ̂
σ̂

) + (1− δi)
φ
(
xi−µ̂
σ̂

)
[
1− Φ

(
xi−µ̂
σ̂

)]
 = 0, (2.11)

n∑
i=1

−δi
1 +

φ′
(
xi−µ̂
σ̂

)(
xi−µ̂
σ̂

)
φ
(
xi−µ̂
σ̂

)
+ (1− δi)

φ
(
xi−µ̂
σ̂

)(
xi−µ̂
σ̂

)
1− Φ

(
xi−µ̂
σ̂

)
 = 0. (2.12)

For Type I censored data, xc is fixed. Hence, δi = I(xi ≤ xc) = I[(xi−µ)/σ ≤ (xc−µ)/σ],

where I(·) is an indicator function.

Notice that

xi − µ̂
σ̂

=
xi − µ
σ

(
σ̂

σ

)−1
− µ̂− µ

σ

(
σ̂

σ

)−1
,

xc − µ
σ

= Φ−1(pf ).

Because the distribution of (xi − µ)/σ is not related with (µ, σ), therefore the left side of

score equations are only the function of Z1 = (µ̂− µ)/σ , Z2 = σ̂/σ and pf . In Algorithm

2, we use p̂f to approximate pf .

If we fix the censoring time xc and let sample size n increases to infinity, p̂f will converge

to pf , Z1 and Z2 are asymptotic pivotal statistics, thus the CP of SPIs/SPBs computed by

Algorithm 2 will approach the nominal confidence level.

2.C Variance of Estimated Coverage Probability

In this section, we want to calculate the variance of bootstrap estimated coverage probability

CP∗(uL, uU) (i.e., equation (2.8)). For each simulated sample l = 1, . . . , B1, ML estimates

θ̂
∗

= (µ̂∗l , σ̂
∗
l ) are independent. Moreover,

θ̂
∗
∼̇N

[
θ, I−1(θ)

]
,
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where I(θ) is the Fisher information matrix. In the simulation, we take θ = (0, 1)′. Denote

the corresponding Fisher information matrix as Io. A discussion on the calculation of Fisher

information matrix with censored data can be found in Escobar and Meeker (1998). They

showed that Io is only the function of n, xc, and Φ(·) for type I censored data; Io is the

function of n, r, and Φ(·) for type II censored data.

Denote g(uL, uU) =
∑m

j=k

(
m
j

)
pl(uL, uU)j[1− pl(uL, uU)]m−j, therefore we have

Var[CP∗(uL, uU)] =
1

B1

Var[g(uL, uU)].

The first derivatives of g(uL, uU) with respect to (µ̂∗l , σ̂
∗
l ) are

∂g

∂µ̂∗l
= m

(
m− 1

k − 1

)
pk−1l (1− pl)m−k

∂pl(uL, uU)

∂µ̂∗l
,

∂g

∂σ̂∗l
= m

(
m− 1

k − 1

)
pk−1l (1− pl)m−k

∂pl(uL, uU)

∂σ̂∗l
,

where

∂pl(uL, uU)

∂µ̂∗l
= φ(µ̂∗l + uU σ̂

∗
l )− φ(µ̂∗l + uLσ̂

∗
l ),

∂pl(uL, uU)

∂σ̂∗l
= φ(µ̂∗l + uU σ̂

∗
l )uU − φ(µ̂∗l + uLσ̂

∗
l )uL.

According to Delta method, we have

Var[g(uL, uU)] =

 ∂g
∂µ̂∗l

∂g
∂σ̂∗l


T

(µ̂∗l ,σ̂
∗
l )=(0,1)

I−1o

 ∂g
∂µ̂∗l

∂g
∂σ̂∗l


(µ̂∗l ,σ̂

∗
l )=(0,1)

.

Therefore the variance of estimated coverage probability CP∗(uL, uU) is a function of (uL, uU ,

k,m, n, xc,Φ(·), B1) for type I censored data, and a function of (uL, uU , k,m, n, r, Φ(·), B1)

for type II censored data.
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Chapter 3 A Semi-parametric Model for Accelerated Destructive

Degradation Test Data Analysis

Abstract

Accelerated destructive degradation tests (ADDT) are widely used in industry to evaluate

materials’ long term properties. Even though there has been tremendous statistical research

in nonparametric methods, the current industrial practice is still to use application-specific

parametric models to describe ADDT data. The challenge of using a nonparametric approach

comes from the need to retain the physical meaning of degradation mechanisms and also

perform extrapolation for predictions at the use condition. Motivated by this challenge, we

propose a semi-parametric model to describe ADDT data. We use monotonic B-splines to

model the degradation path, which not only provides flexible models with few assumptions,

but also retains the physical meaning of degradation mechanisms (e.g., the degradation path

is monotonically decreasing). Parametric models, such as the Arrhenius model, are used for

modeling the relationship between the degradation and accelerating variable, allowing for

extrapolation to the use conditions. We develop an efficient procedure to estimate model

parameters. We also use simulation to validate the developed procedures and demonstrate

the robustness of the semi-parametric model under model misspecification. Finally, the

proposed method is illustrated by multiple industrial applications.

Key Words: Acceleration model; ADDT; Arrhenius model; Degradation model; Long-

term property evaluation; Polymeric materials.
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3.1 Introduction

3.1.1 Motivation

It is important for manufacturers to understand the lifetime of their products in order to

ensure accurate marketing and determine areas for improvement. While lifetime testing

is the most common approach, for many materials it is more informative to observe the

degradation of some performance characteristic, such as the tensile strength of an adhesive

bond, over time. The lifetime is determined by a “soft failure” when the characteristic drops

below a predetermined level. This form of testing is known as degradation testing.

Several varieties of degradation testing have been developed to accommodate unique cir-

cumstances. Due to the long service life of many new materials, degradation testing under

normal use conditions is often not feasible. By exposing the material to a more harsh envi-

ronment, such as higher levels of temperature or humidity compared to the use conditions,

degradation data can be collected more efficiently. Thus, an accelerating variable is often

used in degradation tests. In some applications, measurements of the degradation level are

destructive. That is, the units being tested are destroyed or the physical characteristics

changed in a significant manner. An example could be determining the strength of a ma-

terial by measuring the force needed to break it. This form of testing, combined with an

accelerating variable, is referred to as accelerated destructive degradation testing (ADDT).

Because of the nature of the testing, ADDT must be analyzed differently from other com-

mon forms of degradation testing, such as repeated-measures degradation testing (RMDT),

in which multiple measurements can be taken from the same unit.

Current procedures for analyzing ADDT data involve an assumed parametric model for

the degradation path over time and a parametric form for the accelerating-variable effect.

The predominance of parametric models is mainly due to the need for extrapolation in two

aspects; extrapolation in time and extrapolation to the use conditions. For example, an

ADDT may cover only 100-70% of the original material’s strength and be performed at an
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elevated temperature range (60−80◦C), but interest lies at strengths 50-70% of the original at

a temperature of 30◦C. These parametric models tend to be material-specific and at present

there seems to be no general model that can be applied to a wide variety of materials.

Even though there has been tremendous statistical research in nonparametric methods,

the current industrial practice is still to use application-specific parametric models to describe

ADDT data. Motivated by multiple industrial applications, we aim to bridge this gap

between the statistical research and current industrial practice. Instead of a case-by-case

parametric modeling approach, we propose a general and flexible semi-parametric model to

describe ADDT data. The challenge of using a nonparametric approach comes from the need

to retain the physical meaning of degradation mechanisms and performing extrapolations for

predictions at the use condition. To overcome those challenges, the semi-parametric model

consists of a nonparametric model for the degradation path and a parametric form for the

accelerating-variable effect. In order to preserve the monotonic nature of many degradation

paths, the nonparametric model portion will be constructed based on monotonic spline

methods. For the parametric model portion, commonly used models, such as the Arrhenius

relationship for temperature, will be used for extrapolation. Parameter estimation and

inference procedures will also be developed.

3.1.2 Related Literature

The literature on accelerated degradation data modeling and analysis can be divided into

two areas: RMDT and ADDT. In the pioneering work, Lu and Meeker (1993) used RMDT

data to estimate failure-time distribution via the framework on mixed-effects models. Meeker

et al. (1998) introduced nonlinear mixed-effects models for RMDT data, which were derived

from physical-failure mechanisms. Introductory level description of degradation models can

be found in Gorjian et al. (2010), and Meeker et al. (2011). Ye and Xie (2015) provided a

comprehensive review of the state-of-art methods in modeling RMDT data.

In the area of ADDT data modeling and analysis, Nelson (1990, Chapter 11) used ADDT
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data from an insulation to estimate performance degradation. Escobar et al. (2003) provided

a parametric model and method to analyze the ADDT data collected from an adhesive bond.

Tsai et al. (2013) considered the problem of designing an ADDT with a nonlinear model

motivated by a polymer dataset. Li and Doganaksoy (2014) used a parametric model to

model ADDT data collected from a temperature accelerated test to study the degradation

of seal strength. In all existing methods for analyzing ADDT data, the parametric method

is the most popular.

Compared to parametric models of degradation data, spline functions tend to be more

flexible and require less assumptions regrading the model formulation. Because the degra-

dation path is often monotonic in nature, monotone splines are suitable for modeling degra-

dation paths. Ramsay (1988) suggested using a basis of I-splines (integrated splines) for

semi-parametric modeling. He and Shi (1998) considered the use of B-splines with L1 opti-

mization. Meyer (2008) extended the work in Ramsay (1988) by proposing cubic monotone

splines. Leitenstorfer and Tutz (2007) considered the use of monotone B-splines in general-

ized additive models. For other applications of monotone B-splines, one can refer to Kanungo

et al. (1995) and Fengler and Hin (2015). In addition, Eilers and Marx (1996) proposed a

flexible class of P-splines. Bollaerts et al. (2006), Hofner et al. (2011), and Hofner et al.

(2016) considered the estimation of monotonic effects with P-splines.

Related to RMDT models, Ye et al. (2014) considered semi-parametric estimation of

Gamma processes. Hong et al. (2015), and Xu et al. (2015) used shape-restricted splines

to model the effects of time-varying covariates on the degradation process. There is little

literature, however, on the use of semi-parametric models in ADDT data modeling and

analysis.

3.1.3 Overview

The rest of this chapter is organized as follows. Section 3.2 introduces some general notation

for ADDT data. It also presents in detail the construction of the semi-parametric model using
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monotonic B-splines. In Section 3.3, we present a procedure for estimating the unknown

parameters as well as procedures for conducting inference on ADDT data based on this

model. We conduct simulation studies in Section 3.4 to investigate the performance of the

semi-parametric method with special consideration of model misspecification. In Section 3.5,

we apply the model to data from several published datasets and provide comparisons with

other well-known parametric models. Finally, Section 3.6 contains conclusions and areas for

future research.

3.2 The Semi-parametric Model

3.2.1 General Setting

Let yijk be the degradation measurement for the kth sample at level i of the accelerating

variable AF i and the jth observation time point tij, i = 1, . . . , I, j = 1, . . . , Ji, and k =

1, . . . , nij, where nij denotes the sample size at tij. Let n =
∑I

i=1

∑Ji
j=1 nij be the total

number of observations. A general form of the degradation model is

yijk = D(tij, xi;θ) + εijk, (3.1)

where xi = h(AF i) is a function of the accelerating variable, θ is a vector of unknown

parameters in the degradation path, and εijk is an error term that describes unit-to-unit

variability. For the purposes of illustration, we will assume that the degradation path is

monotone decreasing with time. The model can easily be generalized to paths that are

increasing with time. We will also be considering temperature as the accelerating factor as

it is the most common form of acceleration encountered in ADDT. However, the model can

easily incorporate other types of acceleration, such as voltage.

For temperature-accelerated processes, the Arrhenius model is often used to describe

the relationship between degradation and temperature. This model uses a transformed
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temperature level given as

xi =
−11605

Tempi + 273.16
. (3.2)

Here, Tempi is in degrees Celsius, and 11605 is the reciprocal of the Boltzmann’s constant

(in units of eV). The value 273.16 in the denominator is used to convert to the Kelvin

temperature scale.

3.2.2 The Scale Acceleration Model

We propose the following semi-parametric functional forms for the degradation model in

(3.1).

D(tij, xi;θ) = g [ηi(tij; β);γ] , (3.3)

ηi(t; β) =
t

exp (βsi)
, si = xmax − xi, (3.4)

εijk ∼ N(0, σ2), and Corr(εijk, εijk′) = ρ, k 6= k′. (3.5)

Here, g(·) is a monotone decreasing function with unknown parameter vector γ, β is an un-

known parameter associated with the accelerating variable, and θ = (γ ′, β, σ, ρ)′ is the vector

containing all of the unknown parameters. The quantity xmax = −11605/[maxi (Tempi) +

273.16] is defined to be the transformed value of the highest level of the accelerating variable.

The model in (3.3) falls within the class of scale acceleration models. When the acceler-

ation level is at its highest, smax = xmax − xmax = 0. In this case, ηi(t; β) = t implies that

the degradation path no longer relies on β, and

D(t, xmax;θ) = g(t;γ).

Thus, the function g(·) can be interpreted as the baseline degradation path for the scale

acceleration model in (3.3). For other specific stress level i, D(t, xi;θ) is a decreasing function
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of time t, in which β controls the degradation rate through time-scale factor exp (βsi) in (3.4).

A small time-scale factor corresponds to a rapid decrease in degradation. By assuming the

function form of ηi(t; β) in (3.4), we assume that the time to reach certain degradation level

at stress level xi is the time needed for the baseline degradation path multiply by the factor

exp (βsi). The distribution of error terms εijk is specified in (3.5) with parameters σ and

ρ. In particular, we consider a compound symmetric correlation structure for measurements

taken on the same temperature and time point. Measurements at different temperatures

and times are assumed to be independent. There exists situation where the samples that

are tested on the same temperature and time point are from the same batch. There may

exists large with-in-batch correlation, which is modeled by ρ. If there is no with-in-batch

correlation, then the covariance structure can be simplified. Hence, the correlation specified

in (3.5) is a more general case.

Let yM be the lowest degradation level present in the observed data. Then the scale-

acceleration model and the monotonicity of g(·) will allow one to extrapolate the degradation

level to yM for any given acceleration level. Let Df be the failure threshold. Then, if yM <

Df , one can use the semi-parametric model to obtain failure information at the use conditions

through this extrapolation. This is particularly useful since, in general, measurements may

be available below Df for only some of the highest levels of the accelerating variable. In fact,

some industrial standards require that tests be run until the degradation level drops below

Df for several acceleration levels. However, extrapolation beyond yM is not possible due

to the nonparametric construction of the g(·), which is the tradeoff for this kind of model

flexibility.

3.2.3 Nonparametric Form for Baseline Degradation Path

We use nonparametric methods to estimate the baseline degradation path g(·). Specifically,

we use monotonic B-splines to model the baseline degradation path. This not only provides

flexible models, but also retains the physical meaning of degradation mechanisms (e.g., the
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degradation path is monotonically decreasing).

Consider a set of interior knots d1 ≤ · · · ≤ dN , and two boundary points d0 and dN+1.

The entire set of ordered knots are

d−q = · · · = d0 ≤ d1 ≤ · · · ≤ dN ≤ dN+1 = · · · = dN+q+1,

where the lower and upper boundary points are appended q times and q is the polynomial

degree. For notational simplicity, we rewrite the subscripts in the ordered knot sequences as

d1, · · · , dN+2q+2. The total number of basis functions is p = N+q+1. The lth B-spline basis

function of degree q evaluated at z can be recursively obtained in the following formulas:

B0,l(z) = 1(dl ≤ z < dl+1),

Bq,l(z) =
z − dl
dl+q − dl

Bq−1,l(z) +
dl+q+1 − z
dl+q+1 − dl+1

Bq−1,l+1(z),

where l = 1, · · · , p, and 1(·) is an indicator function. The degradation model can then be

expressed as

yijk =

p∑
l=1

γlBq,l[ηi(tij; β)] + εijk, (3.6)

where γl’s are the coefficients.

To ensure the degradation path is monotone decreasing, we require the first derivative

of D(τij, xi;θ) be negative. For B-spline basis functions, De Boor (2001) proved that the

derivative of D(t, xi;θ) with respect to ηi(t; β) is

dD(t, xi;θ)

dηi(t; β)
=

p∑
l=2

(q − 1)
(γl − γl−1)
dl+q+1 − dl

Bq−1,l[ηi(t; β)].

As B-spline basis functions are nonnegative, it follows that γl 6 γl−1 for all 2 ≤ l ≤ p gives a

sufficient condition for a monotone decreasing degradation path. However, except for basis
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functions with degree q = 1, 2, it is not a necessary condition. Fritsch and Carlson (1980)

derived the necessary conditions for cubic splines (q = 3), though for higher order splines

necessary conditions are as yet unclear.

3.3 Estimation and Inference

3.3.1 Parameter Estimation

Let yij = (yij1, . . . , yijnij
)′, εij = (εij1, . . . , εijnij

)′, y = (y′11, . . . , y
′
1J1
, . . . , y′I1, . . . , y

′
IJI

)′, ε =

(ε′11, . . . , ε
′
1J1
, . . . , ε′I1, . . . , ε

′
IJI

)′ and γ = (γ1, . . . , γp)
′. The degradation model in (3.6) can

be written as

y = Xβγ + ε, (3.7)

where

Xβ =



Bq,1[η1(t11; β)] · · · Bq,p[η1(t11; β)]

Bq,1[η1(t12; β)] · · · Bq,p[η1(t12; β)]

...
. . .

...

Bq,1[ηI(tIJI ; β)] · · · Bq,p[ηI(tIJI ; β)]


,

and ε ∼ N (0,Σ). Here, Σ = Diag (Σ11, . . . ,Σ1J1 , . . . ,ΣI1, . . . ,ΣIJI ) and Σij = σ2[(1 −

ρ)Inij
+ρPnij

], where Inij
is an nij × nij identity matrix and Pnij

is an nij × nij matrix of

1’s. We can also rewrite Σ = σ2R, where R = Diag (R11, . . . ,R1J1 , . . . ,RI1, . . . ,RIJI ) and

Rij = (1− ρ)Inij
+ρPnij

.

We use likelihood-based methods to estimate the unknown parameters θ = (γ ′, β, σ, ρ)′.

For now, we consider estimation of θ with a given number of knots and knot locations.

We will give a discussion on knot selection in Section 3.3.3. A particular challenge to the

estimation comes from the constraints on γ, namely that γl ≤ γl−1, 2 ≤ l ≤ p. We also

note that, for a given β, Xβ is known, in which case (3.7) becomes a linear model with a

correlated covariance structure. Thus, we proceed by first deriving estimates of (γ ′, σ, ρ)′

given β and then use a profile likelihood approach to estimate β.
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The estimates of γ and (σ, ρ)′ are obtained using an iterative procedure. In particular,

at the mth iteration, given estimates (σ̂(m−1), ρ̂(m−1))′, the value of γ̂(m) is obtained by

minimizing

Q(γ) = (y −Xβγ)′
(
Σ̂

(m−1))−1
(y −Xβγ)

subject to γl 6 γl−1, 2 ≤ l ≤ p. (3.8)

Equation (3.8) is a quadratic object function with linear constraints and so can be solved

with quadratic programming techniques. Given γ̂(m), one can then obtain (σ̂(m), ρ̂(m))′ using

restricted maximum likelihood (REML) so long as γ̂(m) does not take values on the boundary

of the linear constraints. If the solution of equation (3.8) does take values on the boundary

of the linear constraints, we can still consider approximate REML to obtain these estimates.

Let γ̂(m)
u represent all of the unique values in γ̂(m) and pu be the length of γ̂(m)

u . For each

unique value γ̂
(m)
i,u , let xi,βu be the sum of the corresponding columns in Xβ. Then we have

Xβγ̂
(m) = Xβuγ̂

(m)
u , where Xβu = (x1,βu, · · · ,xpu,βu). The approximate REML log-likelihood

is then

LREML(σ, ρ|γ̂(m)) = −1

2

{
log |Σ|+ log |X′βuΣ−1Xβu|+ (y −Xβγ̂

(m))′Σ−1(y −Xβγ̂
(m))

}
.

(3.9)

The covariance parameter estimates (σ̂(m), ρ̂(m))′ are those values that maximize equation

(3.9). In particular, after some calculation it can be shown that σ̂
(m)

has the following

closed-form expression

σ̂
(m)

=

[
(y −Xβγ̂

(m))′(R̂
(m−1)

)−1(y −Xβγ̂
(m))

n− pu

] 1
2

.
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Thus, ρ̂(m) can be obtained from a one dimensional optimization problem. That is,

ρ̂(m) = argmax
ρ

{
− log |(σ̂(m)

)2R| − log |(σ̂(m)

)−2X′βuR
−1Xβu|

−(σ̂
(m)

)−2(y −Xβγ̂
(m))′R−1(y −Xβγ̂

(m))
}
.

Upon convergence, the estimates of (γ̂ ′, σ̂, ρ̂)′ are obtained for a given β, denoted by (γ̂ ′β, σ̂β, ρ̂β)′.

The initial values (σ̂(0), ρ̂(0))′ can be easily obtained by fitting a non-constrained model.

The profile log-likelihood for β is given as

L(β, γ̂β, σ̂β, ρ̂β) = log

{
1

√
2π|Σ̂β|1/2

exp

[
−

(y −Xβγ̂β)Σ̂
−1
β (y −Xβγ̂β)

2

]}
.

In practice, one can first estimate (γ ′, σ, ρ)′ for a specified range of values of β, then compute

L(β, γ̂β, σ̂β, ρ̂β) as a function of β. The estimate β̂ is the value that maximizes this function.

The final estimates are denoted by θ̂ = (γ̂ ′, β̂, σ̂, ρ̂)′. To specify the initial range of β, we

first fit a polynomial line for each temperature level. By comparing the time reaches to

certain degradation level (for example, failure threshold) at different temperature levels, we

can get several estimates of β. The range of the estimates (β̂
(0)
min, β̂

(0)
max) might be expected to

contain β. Sometimes, multiplying a factor φ (φ = 1, 2, 3, ...), that is considering the interval

(φ−1β̂
(0)
min , φβ̂

(0)
max) is necessary to find the estimation of β.

3.3.2 Reliability Measures

Once the model parameters have been estimated, other parameters related to reliability can

then be estimated. For example, the mean time to failure (MTTF), denoted by mf , is one of

many ways to evaluate the reliability of a product/material. Based on the semi-parametric

model, we can derive an estimate m̂f at a use condition xf and failure threshold Df by
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solving

p∑
l=1

γ̂lBq,l

(
m̂f

exp[β̂(xmax − xf )]

)
= Df .

We can also derive the failure time distribution from the semi-parametric model. The

event of failure time T is less than t is equivalent to having the degradation measurement at

time t is less than the failure threshold Df , that is the cumulative distribution function of

failure time can be calculated as

FT (t) = P (T < t) = P (yt < Df ) = Φ

Df − g
[

t
exp (βs)

;γ
]

σ

 , t > 0.

Hence, the quantile function can also be calculated. The α quantile is tα = F−1T (α). In the

case of no available closed-form expression, numerical result is searched.

3.3.3 Spline Knots Selection

The number of knots and knot locations are a key component to using B-splines to model

the degradation path. In addition, it is also necessary to determine the maximum degree of

the B-splines. For knot selection, we first fix the degree of the B-splines and then find the

optimum knot locations. Optimality is determined by a variation of the Akaike information

criterion:

AIC = −2 log

 1
√

2π|Σ̂|1/2
exp

−(y −Xβ̂γ̂)Σ̂
−1

(y −Xβ̂γ̂)

2

+ 2× edf, (3.10)

where edf is the effective degrees of freedom in γ plus three for the parameters (β, σ, ρ)′.

Wang et al. (2013) and Meyer (2012) discussed constrained spline regression for both inde-

pendent and correlated error cases. In particular, they showed how to calculate the effective

degrees of freedom for a constrained fit through the use of a cone projection, which is the

trace of the projection matrix. Because we have p−1 linear constraints, the effective degrees
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of freedom in γ has a value from 1 to p, where p corresponds to a unconstrained fit. Letting

q denote the degree of the B-spline functions, the procedure for knot selection is as follows:

1. Determine the number of interior knots Nopt,q which minimizes the AIC. The default

knot locations are equally-spaced sample quantiles. That is, if number of interior knots

is N , the default knot locations are b/N, b = 1, · · · , N − 1.

2. Delete each of the internal knots in sequence. The knot whose deletion leads to the

greatest reduction in AIC is removed. Repeat until no more existing knots can be

removed.

The whole procedure is to be repeated for different B-spline degrees to determine the knot

sequence. This knot selection procedure is similar to the procedure in He and Shi (1998).

The sample size for an ADDT is typically small and so a low degree of spline (q 6 4) and

a small number of interior knots (1 6 N 6 5) are usually sufficient to provide a good fit to

the data.

3.3.4 Statistical Inference

Inference based on the semi-parametric model in (3.7) can rely on either asymptotic theory

or a bootstrap procedure. Because the bootstrap method is straightforward and easy to

implement, we use a nonparametric bootstrap to calculate confidence intervals (CI) for the

parameters and pointwise CI for the degradation path. The error term in model (3.7) can

be written as

εijk = uij + eijk,

where uij ∼ N(0, σ2
u), eijk ∼ N(0, σ2

e), Corr(uij, eijk) = 0, σ2
u = ρσ2, and σ2

e = (1−ρ)σ2. That

is, the error term in model (3.7) can be written as the sum of a random effect term uij and

an independent error term eijk. To obtain the CI, one could resample from the estimated

random effect term ûij and the estimated independent error term êijk separately. However,
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Carpenter et al. (2003) showed that directly resampling from ûij and êijk will cause bias.

Therefore, we adjust ûij and êijk prior to bootstrapping. That is,

ûcij =

[∑
ij

û2ij/(nJn)

]−1/2
σ̂uûij, and êcijk =

[∑
k

ê2ijk/(nij)

]−1/2
σ̂eêijk.

The specific steps of nonparametric bootstrap are described as follows:

For m = 1, ..., B,

1. Sample u
(m)c
ij with replacement from ûcij and sample e

(m)c
ijk with replacement from êcijk.

2. Compute y
(m)
ijk = x′ijγ̂ + u

(m)c
ij + e

(m)c
ijk .

3. Fit the semi-parametric model to the bootstrapped sample y
(m)
ijk .

The CI with confidence level 1 − α for a parameter of interest, θ, is calculated by taking

the lower and upper α/2 quantiles of the bootstrap estimates. If the bootstrap sampling

distribution is not symmetric, we can use the bias-corrected CI. For a sequence of bootstrap

estimates θ̂(1), . . . , θ̂(B), a bias-corrected CI, proposed by Efron and Tibshirani (1994), can

be computed by taking the BΦ(2zq + zα/2) and BΦ(2zq + z1−α/2) ordered values, where q

denotes the proportion of bootstrap values less than θ̂, Φ(·) is the cumulative distribution

function and z(·) is the quantile function of the standard normal distribution.

3.4 Simulation Study

The objective of the simulation study is to investigate the performance of the proposed pa-

rameter estimation and inference procedures. We will examine the bias, standard derivation

(SD), and mean square error (MSE) of the parameter estimators and the estimated baseline

degradation function. We also will investigate the coverage probability (CP) of the bootstrap-

based CI procedure in Section 3.3.4. An additional simulation study will be conducted to

investigate the performance of our semi-parametric model under model misspecification.
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Table 3.1: Selected temperature levels and time points for the simulation studies.

Settings Number of Temp. Levels (n) Temperature Levels (◦C)
Temperature setting 1 3 50, 65, 80
Temperature setting 2 6 30, 40, 50, 60, 70, 80

Number of Time Points (Jn) Measuring Times (Hours)
Time point setting 1 5 8, 25, 75, 130, 170

Time point setting 2 10
5, 10, 30, 50, 70, 90, 110,
130, 150, 170

Time point setting 3 15
10, 30, 40, 50, 60, 70, 80,
90, 100, 110, 120, 130,
140, 150, 170

3.4.1 Performance of Parameter Estimators

3.4.1.1 Simulation Settings

We consider two different sets of n = {3, 6} temperature levels and three different sets of

Jn = {5, 10, 15} measuring times. The specific settings are summarized in Table 3.1. Ten

samples are tested at each combination of temperature level and measuring times. The data

are simulated from the following model:

yijk =

p∑
l=1

rlBq,l[ηi(tij; β)] + εijk, (3.11)

where the degree of the B-splines is q = 2, and number of interior knots is N = 3. The

knot locations are the sample quantiles. Figure 3.1 gives the spline basis functions and the

baseline degradation function for scenario n = 3, Jn = 5. The true parameters in the model

are β = 0.83,γ = (1, 0.9, 0.8, 0.7, 0.6, 0.6)′, and (σ, ρ)′ = (0.019, 0.2)′.

For each scenario, 500 datasets are generated and the bias, SD, and MSE of the parameter

estimators and baseline degradation curves are calculated. The quantile and bias-corrected

CI are computed based on B = 1, 000 bootstrap samples and the CP is also computed.
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3.4.1.2 Simulation Results

Figure 3.2 shows the bias and MSE of parameter estimators. Figure 3.3 shows the pointwise

MSE curves of baseline degradation curves. We found out that MSE of point estimators

and baseline degradation curves decrease as either number of temperature levels or time

points increases. Even when the number of temperature levels and time points are both

small, biases of β and σ are small, while bias of ρ is large. However, when either number

of temperature levels or time points is large, the estimates of β, σ and ρ are all close to the

true values.

Figures 3.4 and 3.5 present the CP for quantile-based CI and bias-corrected CI of the

parameter estimators and baseline degradation curves. The performance of bias-corrected

CI seems to be similar for β, and better for σ, ρ and baseline degradation curve compared

to quantile-based CI. For the parameter estimators, the CP of bias-corrected CI of β is good

when n or Jn is small. However, the CP of bias-corrected CI of (σ, ρ)′ are overall slightly less

than the desired confidence level. For the baseline degradation function, the CP of pointwise

bias-corrected CI are poor when n = 3 and Jn = 5. The performance of pointwise bias-

corrected CI improve as n and Jn increases. Overall, the results show that the performance

of the estimation and inference procedures are good.

3.4.2 Performance under Model Misspecification

3.4.2.1 Simulation Settings

In this simulation study, the data are simulated according to a parametric model, but the

semi-parametric model is fit to the data. The temperature levels are set at 50◦C, 65◦C,

80◦C and the measuring times are set at 192, 600, 1800, 3120, and 4320 hours. There are 10

measurements at time 0 and 5 measurements at all other measuring times. The data are
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Figure 3.1: Spline bases and baseline degradation path used in simulation study.

simulated from the model

yijk = β0 + β1 exp(β2xi)tj + εijk, (3.12)

where tj = Hourj, xi = −11605/(Tempi+273.15). The true parameters are β = (β0, β1, β2)
′ =

(1,−3.5, 0.3)′, and (σ, ρ)′ = (0.02, 0)′. It is rare for the true model to be known exactly, so

we also consider the case when a different parametric model from the true one is fit to the

data. The incorrect parametric model, adapted from Vaca-Trigo and Meeker (2009), is given

by

yijk =
α

1 +
[

tij
exp(β0+β1xi)

]γ + εijk, (3.13)

with parameters (α, β0, β1, γ)′ in the mean structure. We fit the true model (3.12), the

incorrect parametric model (3.13), and our semi-parametric model (3.3) to the simulated

data. Figure 3.6 shows one case of the simulated data and the fitted degradation paths.
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Figure 3.2: Empirical bias and MSE of parameter estimators for (β, σ, ρ)′.
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Figure 3.3: Empirical pointwise MSE for the estimator of the baseline degradation path.

3.4.2.2 Simulation Results

To assess the fit of our semi-parametric model, we compare the fitted degradation path to

the true degradation path using the integrated mean square error (IMSE) of the baseline

degradation function, which is defined as

IMSE =

∫ tm

0

E
{

[ĝ(t;γ)− g(t;γ)]2
}
dt

=

∫ tm

0

{E [ĝ(t;γ)]− g(t;γ)}2 dt+

∫ tm

0

Var [ĝ(t;γ)] dt = IBias2 + IVar,

where tm is the maximum time under the maximum level of the accelerating variable. As

there is no closed-form expressions for IMSE, IBias and IVar, we report the empirical results.

Table 3.2 presents these results, which indicate that the performance of our semi-parametric

model is good. The largest contribution to the root IMSE comes from the variance com-

ponent. Thus, it is not surprising that the incorrect parametric model (3.13) performs the



58

●

●
●

0.
85

0.
90

0.
95

1.
00

Number of Time Points

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

5 10 15

● n=3
n=6

(a) β, Quantile-based CI

●
●

●

0.
85

0.
90

0.
95

1.
00

Number of Time Points

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

5 10 15

● n=3
n=6

(b) σ, Quantile-based CI
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Figure 3.4: CP of the CI procedures for parameters (β, σ, ρ)′, using quantile-based and
bias-corrected methods, respectively.
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Figure 3.5: Pointwise CP of the CI procedure for baseline degradation path, using quantile-
based and bias-corrected methods, respectively.

Table 3.2: Empirical IBias, root IVar (RIVar), and root IMSE (RIMSE) for the true model
(3.12), incorrect model (3.13), and the semi-parametric model.

Models IBias RIVar RIMSE
True Model 0.0003 0.0043 0.0043

Incorrect Model 0.0267 0.0060 0.0274
Semi-parametric Model 0.0003 0.0091 0.0091

worst in capturing the true degradation path.

For each simulated dataset, the MTTF (here failure is defined as the measurement drops

below 0.5) at 30◦C is calculated based on the true parametric model (3.12), incorrect para-

metric model (3.13) and the semi-parametric model. The mean, bias, standard derivation

and root MSE of the MTTF for each of the different models based on 600 datasets are

summarized in Table 3.3. The results indicate that the estimate of MTTF from our semi-

parametric model is close to the true values, but with larger variance. The estimated MTTF

from the incorrect parametric model (3.13) has the largest bias. The results indicate our

semi-parametric model performs quite well.
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Figure 3.6: Plot of simulated data and fitted degradation paths based on the true and
incorrect parametric models, and semi-parametric model.

Table 3.3: Empirical mean, bias, SD, and root MSE (RMSE) of the MTTF estimators based
on the true model (3.12), incorrect model (3.13), and the semi-parametric model.

Models Mean Bias SD RMSE
True Model 82.60 0.01 2.99 2.99

Incorrect Model 85.82 3.20 3.75 4.93
Semi-parametric Model 82.77 0.16 4.22 4.22
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3.5 Applications

To help motivate the use of our semi-parametric model, we selected three published datasets

from well-known examples of ADDT. The data for each example are summarized below.

3.5.1 ADDT Datasets and Parametric Models

3.5.1.1 Adhesive Bond B Data

Escobar et al. (2003) discussed an experiment that measured the strength of an adhesive bond

(Adhesive Bond B) over time. Eight units were measured at the beginning of the experiment

under normal temperature to serve as the baseline strength. The remaining measurements

were taken at selected weeks (2, 4, 6, 12, and 16) for three accelerated temperature lev-

els (50◦C, 60◦C, and 70◦C). A scatter plot of Adhesive Bond B dataset is presented in

Figure 3.7(a). The degradation model used by Escobar et al. (2003) is

yijk = β0 + β1 exp(β2xi)
√

Weekj + εijk, (3.14)

where yijk is the strength of Adhesive Bond B in log Newtons, xi = −11605/ (Tempi+273.15)

is the Arrhenius-transformed temperature, and εijk ∼ N(0, σ2). The estimates are β̂0 =

4.4713, β̂1 = −8.6384× 108, β̂2 = 0.6364 and σ̂ = 0.1609.

3.5.1.2 Seal Strength Data

Seal strength data were considered by Li and Doganaksoy (2014). At the start of the exper-

iment, a batch of 10 seals were measured at the use temperature level of 100◦C. A batch

of 10 seal samples were then tested at selected weeks (5, 10, 15, 20, and 25) for four tem-

perature levels (200◦C, 250◦C, 300◦C, and 350◦C). A scatter plot of seal strength data is

shown in Figure 3.9(a). Though one would expect the seal strength to decrease under higher

temperature, some batches of seal samples yielded higher strengths in later weeks compared
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(b) Semi-parametric model

Figure 3.7: Fitted degradation paths of the Adhesive Bond B data.
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Figure 3.8: Residual analysis for the Adhesive Bond B data.
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Figure 3.9: Fitted degradation paths of the Seal Strength data.

with the initial measurements. This suggests a large batch-to-batch variability which must

be incorporated into the model. Thus, Li and Doganaksoy (2014) considered the following

nonlinear mixed model:

yijk = β0 − β1 exp(β2xi)Weekj + δij + εijk, (3.15)

where yijk is the log10 strength of seal sample, and xi = −11605/(Tempi + 273.15). The

random variable δij ∼ N(0, σ2
δ ) represents batch variability, εijk ∼ N(0, σ2), and δij and εijk

are independent. The estimates are β̂0 = 1.4856, β̂1 = 47.2166, β̂2 = 0.3420, σ̂ = 0.1603,

and σ̂δ = 0.0793.

3.5.1.3 Adhesive Formulation K Data

A new adhesive (Formulation K) was developed and tested at 40◦C, 50◦C, and 60◦C. The

strength of 10 units were measured at the beginning of the experiment and a specified number

of samples were tested at 3, 6, 12, 18, and 24 weeks. Figure 3.11(a) is a scatter plot of the
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(b) Standardized residuals versus the fitted values

Figure 3.10: Residual analysis for the Seal Strength data.

data. The nonlinear degradation model is

yijk = log(90) + β0(1− exp
{
−β1 exp [β2(xi − x2)]

√
Weekj

}
) + εijk, (3.16)

where yijk is the strength of Adhesive Formulation K in log Newtons, xi = −11605/(Tempi+

273.15), x2 = −11605/(50 + 273.15), and εijk ∼ N(0, σ2). The estimates are β̂0 = −0.9978,

β̂1 = 0.4091, β̂2 = 0.8371, and σ̂ = 0.0501.

3.5.2 Comparisons of Parametric and Semi-parametric Models

In order to assess the fit of the semi-parametric model, we applied it to each of the datasets

and compared it with the corresponding parametric model chosen by the respective applica-

tions. We applied the knot selection technique in Section 3.3.3 for each application. We also

checked whether ρ = 0 which informs the selection of appropriate covariance structure. The

parameter estimates and CI, as well as the MTTF at the normal use condition are presented

in Tables 3.4 and 3.5. The AIC defined in Section 3.3.3 can also be used to compare the
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(a) Parametric model
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(b) Semi-parametric model

Figure 3.11: Fitted degradation paths of the Adhesive Formulation K data.
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(b) Standardized residuals versus the fitted values

Figure 3.12: Residual analysis for the Adhesive Formulation K data.
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Table 3.4: Parameter estimates and corresponding CI for the semi-parametric models for
the three applications.

Applications Parameter Estimate
Quantile-based CI

95% lower 95% upper

Adhesive Bond B
β 1.3422 1.1071 1.6165
σ 0.1537 0.1265 0.1787

Seal Strength
β 0.3235 0.2451 0.5194
σ 0.1610 0.1192 0.1904
ρ 0.7573 0.5465 0.8307

Adhesive Formulation K
β 1.8221 1.6575 2.3658
σ 0.0484 0.0419 0.0544

Table 3.5: Estimated MTTF and CI at normal use condition based on parametric and semi-
parametric models for the three applications (time in weeks).

Applications
Failure Normal Use Parametric Semi-parametric

Threshold Conditions Models Models
Adhesive Bond B 70% 30◦C 270 306

Seal Strength 70% 100◦C 222 127
Adhesive Formulation K 70% 30◦C 68 86

parametric and semi-parametric models. In the calculation of AIC, the log-likelihood is the

marginal log-likelihood for the parametric models.

Table 3.6 contains the log-likelihood values, edf, and AIC for each model and dataset.

For all three datasets, the semi-parametric models possessed a lower AIC as compared to the

parametric models. The fitted degradation paths for the parametric and semi-parametric

models are presented in Figures 3.7, 3.9, and 3.11. All three figures show that the semi-

parametric models provide a good fit to the data. We can see that the proposed model is

flexible in fitting ADDT data from different applications.

Table 3.6: Log likelihood and AIC values of parametric and semi-parametric models for the
ADDT data from the three applications.

Applications
Parametric Models Semi-parametric Models

Loglik df AIC Loglik edf AIC
Adhesive Bond B 34.9665 4 -61.9330 38.7264 5 -67.4418

Seal Strength 194.9907 5 -379.9814 199.7454 6 -387.4909
Adhesive Formulation K 158.9508 4 -309.9016 163.9898 8 -311.9797
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Checking the semi-parametric model assumptions is very important. We did some graph-

ical checks based on the standardized residuals. Take the adhesive bond B as an example,

Figure 3.8(a) is a normal probability plot for the standardized residuals and indicates that

the normal assumption is appropriate; Figure 3.8(b) is a scatter plot of standardized residuals

versus the fitted values. No unusual pattern is exhibited in Figure 3.8(b). Residual analysis

of the seal strength data and adhesive formulation K data are summarized in Figures 3.10

and 3.12. Both figures show that the model assumptions are satisfied.

3.5.3 Illustration of failure time distribution

For each application, the quantile functions and corresponding confidence intervals can be

calculated. We use the adhesive bond B data as an example. Figure 3.13 shows the quantiles

and 95% pointwise bootstrap CIs for four temperature levels. The dotted lines are the

pointwise confidence intervals. From the model specification, the α quantile at level xi is the

α quantile at baseline degradation level times the factor exp(βxi), therefore the quantiles in

Figure 3.13 are parallel.

3.6 Conclusions and Areas for Future Work

In this chapter, we propose a new semi-parametric degradation model for ADDT data based

on monotone B-splines. We develop estimation and inference procedures for the proposed

model as well as methods for selecting knot locations for the B-splines. Our simulation results

indicate that the proposed estimation procedures for our semi-parametric model perform

well. Compared to parametric models, our semi-parametric approach is more flexible and

can be applied to a wide range of applications and may be best suited as a generic method

for ADDT data analysis for industrial standards. In addition, the semi-parametric model is

more robust to model misspecification than a parametric model approach.

One key application of our semi-parametric model could be for test planning. A test

plan based on this model would be general enough for application to a variety of materials
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Figure 3.13: Estimates and CIs of quantile functions at different temperature levels for
Adhesive Bond B data.
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and also allow for testing of different models. Our model can be served as a starting ground

from which to test models against the data gathered rather than having to assume a given

model prior to data collection. This would certainly serve as an interesting topic for future

research.

The models considered here were solely scale-acceleration models. However, for certain

types of products, a model with both scale and shape acceleration may describe the degra-

dation path more appropriately. For example, Tsai et al. (2013) considered a parametric

model with both scale and the shape acceleration in test planning. Estimation and infer-

ence procedures for the semi-parametric model would certainly be more complex with the

introduction of a shape acceleration parameter. It would be of great interest to pursue this

in future research.
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Chapter 4 Spatial Variable Selection via Elastic Net and an Ap-

plication to Virginia Lyme Disease Emergence

Abstract

Lyme disease is an infectious disease that is caused by a bacteria called Borrelia burgdor-

feri. In US, the major endemic areas are New England, Mid-Atlantic, East-North Central,

South Atlantic, and West North-Central. Virginia is on the front-line of spreading of the

disease from north east to south. One of the research goal is to identify if there are any en-

vironmental and economical variables that are associated with the emergency of the disease.

In this chapter, we develop spatial variable selection procedures to address this problem. A

general linear mixed model (GLMM) is used to describe the spatial data. We impose the

adaptive elastic net penalty to select important covariates. The performance of the proposed

procedures is evaluated via simulation study. Then we apply the variable selection methods

to the Virginia Lyme disease data and compare our findings with literature.

Key Words: GLMM; Laplace Approximation; Multicollinearity; Poisson Regression;

PQL; Spatial Count Data.
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4.1 Introduction

4.1.1 Background

Spatial data modeling attracts great attention in recent years. It has applications in ecology,

epidemiology, agriculture, sociology and so on. For spatial data, the correlation induced

by distances among locations is typically unnegligible and a proper way to corporate such

correlation into the model is needed. One way to model the spatial correlations among

locations is through random effects. Moreover, in many cases, the interested measurement

is non-Gaussian, for instance, the incidence rates, number of counts, and binary indicators

of having heart diseases.

In application, it is possible that there are many variables available for modeling. It is

often reasonable to assume only a subset of predictors is actually related to the outcome

of interest. Having many irrelavent and/or redundent variables in the model can cause

unstable estimation procedure, waste of computational time, difficulty of interpretation,

unsatisfactory prediction performance, etc. Thus, it is important to do a variable selection.

4.1.2 Lyme Disease Emergence

An motivating example of this chapter is the Lyme disease data in Virginia from 2006 to

2011. This dataset is also introduced in Seukep et al. (2015), Duan (2014) and Li et al.

(2014). Lyme disease is an infectious disease and transmitted via a bite of tick. Tick is

a vector of many diseases, including Lyme disease, babesiosis, among others. Duan (2014)

found that the Lyme disease spread from the northern part of Virginia to the southwestern

part over the past decade, along with increasing number of cases. Furthermore, the number

of Lyme disease cases has a increase after 2006. This motivates us to study the mechanism

behind the disease, and discover crucial factors associated with emergence of Lyme disease.

The Lyme disease dataset for this chapter contains case data, demographic data and land

cover data in Virginia. Lyme disease case data were collected by Virginia Department of
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Health. The demographic data (e.g., population density, median income, average age) were

from 2010 census. The land cover data were obtained from the Multi-Resolution Land Cover

Consortium for 2006.

Our goal is to develop a method that can identify a subset of the explanatory variables

that are important for the case counts of Lyme disease. As we can see from Lyme disease data

(see Section 4.5 for more details), there exists spatial correlation and strong multicollinearity

among explanatory variables. Variable selection while account for spatial dependence and

multicollinearity are the challenging aspects.

4.1.3 Related Literature

Diggle et al. (1998) and Zhang (2002) employed generalized linear mixed model (GLMM) for

spatial data with non-Guassian outcomes. The GLMM is an extension of generalized linear

model (GLM), with extra flexibility to capture the subject dis-similarities and correlations

among observations by adding a random effect term to the linear perdictor. It is a useful

and popular tool for correlated observations. In this chapter, we model the spatial count

data using GLMM. Various approaches to estimate the parameters in GLMM have been

developed. An overview on current methods can be found in McCulloch et al. (2008).

A wide class of variable selection approaches have been developed. Classical approaches

include backward, forward, stepwise, and all subsets selection procedures. A modern way

to do variable selection is shrinkage methods. That is, we add a penalty term Pλ(β) to the

residuals sum of squares or loglikelihood, where Pλ(β) is a function of β (vector of regression

parameters) with regularization parameter vector λ. The family of Lq penalties (q > 0, Frank

and Friedman, 1993) are commonly used penalties. The least absolute shrinkage and selection

operator (LASSO) penalty (q = 1, Pλ(β) = λ
∑

i |βi|) is studied in Tibshirani (1996) to solve

the regression type problem. It is shown that LASSO does parameter estimation and variable

selection simultaneously due to the shrinkage property of L1 penalty. The ridge penalty

(q = 2, Pλ(β) = λ
∑

i β
2
i ) introduced in Hoerl and Kennard (1970) always includes all the
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covariates. If there are a group of highly correlated covariates, the ridge penalty shrinks

cofficients to each other but not zero. Conversely, LASSO picks one covariate and assigns

all weights to this covariate. In other words, ridge penalty tends to select the entire group,

while LASSO tends to randomly pick only one covariate (Tibshirani, 1996). Zou and Hastie

(2005) proposed the elastic net penalty, which is a linear combination of the LASSO penalty

and the ridge penalty. For a group of highly correlated covariates, the combination of ridge

and LASSO results in the trend of in and out together. Thus, the elastic net penalty has the

property of automatic variable selection and continuous shrinkage. However, LASSO doesn’t

have the oracle property and can be inconsistent unless certain conditions are satisfied. In

light of the drawbacks, the adaptive LASSO (Zou, 2006) and adaptive elastic net (Zou and

Zhang, 2009) were developed. Beside the above work, Fan and Li (2001) developed the

smoothly clipped absolute deviation (SCAD) penalty. The SCAD penalty has the properties

of unbiasedness, sparsity and continuity. It can be used for the variable selection in linear

models, and as an extension, in GLMs and GLMMs. One may refer to Fan and Lv (2010)

for a comprehensive review of variable selection methods.

In addition to the above work, Bayesian methods are also popular for variable selection.

Bayesian variable selection methods assign posterior probability to each model and auto-

matically pick the one with the largest posterior probability. A review and comparison of

Bayesian variable selection methods is available in O’Hara and Sillanpää (2009).

In terms of implementation, Efron et al. (2004) proposed the least-angle regression

(LARS) method to efficiently calculate the solution path of LASSO penalty in linear models.

Park and Hastie (2007) extended the concept of LARS algorithm to GLM. Their approach

is also efficient and flexible. An algorithm named elastic net penalized least squares (LARS-

EN) in Zou and Hastie (2005) is proposed for linear models with elastic net penalty. The

LARS-EN algorithm works by transforming the elastic net penalty into a LASSO penalty,

which can be solved by LARS.

Variable selection in GLMM, especially for large n (number of observations) or large p
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(number of predictors) case, however, is still of difficulty and there is only a limit number

of research on this. Schelldorfer et al. (2014) presented a GLMMLasso for high-dimensional

GLMM with LASSO penalty. Their approach addressed the problem when number of ob-

servations is less than number of covariates, (i.e., n � p). The corresponding R package

“glmmixedlasso” (Schelldorfer et al., 2012) is available online. Groll and Tutz (2014) also

considered this type of problem and a gradient descent algorithm is proposed to maximize

the penalized loglikelihood function. A associated R package “glmmLasso” (Groll, 2014)

can be downloaded from website. A number of variable selection procedures for GLMMs

with longitudinal data settings are studied in Yang (2007) and Cui (2011). Besides, Cai and

Dunson (2006) proposed a fully Bayesian method to selection fixed and random effects in

GLMM.

4.1.4 Overview

The rest of this chapter is organized as follows. In Section 4.2, we introduce the data,

model, likelihood and penalty functions. In Section 4.3, we present two approximations to

the penalized loglikelihood function, and explain the estimation procedures in detail. In

Sections 4.4 and 4.5, we illustrate the methods with simulated data and Lyme disease data.

Section 6 contains discussions and areas for future work.

4.2 Data, Model, Likelihood and Penalty Function

4.2.1 Data and Model

Consider a situation where we have observations at n spatial locations indexed by i =

1, · · · , n. Let yi be the count of cases at location i, which takes values in {0, 1, 2, · · · }. The

explanatory variables are denoted by xi = (xi1, · · · , xij, · · · , xip), where p is the number

of explanatory variables and xij is the value of the jth covariate at location i. Denote

y = (y1, y2, · · · , yn)′ as the vector of observations and X is the matrix with xi as its ith row.
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Let mi be the population of location i.

We use a spatial Poisson regression model with random effect to describe the spatial

count data. That is,

yi|bi ∼ Poisson(µi), and

ηi = log(µi) = β0 + xi1β1 + · · ·+ xipβp + bi + log(mi). (4.1)

In model (4.1), the responses yi’s conditional on random effects bi are independent for i =

1, · · · , n. µi’s are the conditional means. mi’s are the offset term.

Let µ = (µ1, · · · , µn)′,β = (β0, β1, · · · , βp)′, and b = (b1, b2, · · · , bn)′. The spatial corre-

lations among locations are captured through random effects b. We use multivariate normal

distribution to model the random effect b. That is, b ∼ N(0,Σθ). The variance-covariance

matrix of b is Σθ = σ2Ω, and the ijth element of the Ω is ρ(dij;θ). Here ρ(·) is a spatial

correlation function and θ are parameters in Σθ. Note that dij is the distance between two

locations i and j.

4.2.2 Likelihood Function and Penalty

Let f(y|β, b) be the distribution of y given b, and f(b|θ) be the distribution of random

effects b. The likelihood function of (β,θ) is

L(β,θ) =

∫
Rn

f(y|β, b)f(b|θ) db

=

∫
Rn

[
n∏
i=1

exp (−µi)
µyii
yi!

][
(2π)−

n
2 |Σθ|−

1
2 exp

(
−1

2
b′Σ−1θ b

)]
db

= (2π)−
n
2 |Σθ|−

1
2

∫
Rn

exp

{
n∑
i=1

[−µi + yi log(µi)− log(yi!)]−
1

2
b′Σ−1θ b

}
db. (4.2)

Hence the loglikelihood is l(β,θ) = log[L(β,θ)].

To perform variable selection, we add adaptive elastic net penalty term for fixed effects
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β to the loglikelihood function. That is, we consider the following penalized loglikelihood

function

L(β,θ) = −l(β,θ) + Pλ(β), (4.3)

where Pλ(β) = λ1

[
λ2
∑p

j=1 ŵj|βj|+ (1− λ2)
∑p

j=1 β
2
j

]
is the adaptive elastic net penalty.

Here λ1, λ2 are regularization parameters. Note that 0 6 λ2 6 1, λ2 = 1 is the case of LASSO

penalty and λ2 = 0 is the case of ridge penalty. ŵj = |β̂cnst|−r is the adaptive weight, r > 0

and β̂cnst is a consistent estimate of β. The unpenalized estimate of β is a good choice of

β̂cnst. Note that we don’t impose penalty on β0, that is the intercept term is always included

in the model.

4.3 Estimation Procedures

4.3.1 The Estimation Problem

Our objective is to obtain the parameter estimation via optimizing the penalized loglikelihod

in (4.3). That is

(β̂, θ̂) := argminβ,θL(β,θ).

The joint likelihood function (4.2) contains intraceable integrals over distribution of random

effects. If the random effects are of low dimension, we may use Gaussian quadrature to

do numerical integral. However, in spatial Possion regression model with random effect, the

dimension of random effects is the same as the number of observations. That is, the dimension

of integrals is typically so large that the Gaussian quadrature or other low-dimensional

methods may not work.
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4.3.2 Penalized Quasi-likelihood

Because the full likelihood approach is infeasible, if not impossible, approximated likelihood is

considered. Several approaches have been established to approximate the likelihood function.

One popular method named penalized quasi-likelihood (PQL) is introduced in Breslow and

Clayton (1993). The approximation of likelihood function can be derived by employing the

result of Laplace approximation. In general, the Laplace approximation (Laplace, 1986) of

multi-dimensional integrals of the form

∫
Rn

exp[h(b)] db ≈ (2π)
n
2

∣∣− h′′(b̃)∣∣− 1
2 exp[h(b̃)],

where b̃ is the maximizer of function h(b).

In our case, h(b) =
∑n

i=1 [−µi + yi log(µi)− log(yi!)]−b′Σ−1b/2. b̃ can be calculated via

iteratively weighted least square (IWLS) algorithm (see Bates, 2008 for details). Applying

the Laplace approximation to likelihood function (4.2), we obtain

L(β,θ) ≈
∣∣∣∣ΣθW + In

∣∣∣∣− 1
2

exp

{
n∑
i=1

[−µi + yi log(µi)− log(yi!)]−
1

2
b̃
′
Σ−1θ b̃

}
, (4.4)

where W = Diag{µ} and In is n× n diagonal matrix. Notice that b̃ depends on parameters

(β,θ). The PQL proposed in Breslow and Clayton (1993) ignores the dependency of the first

term in (4.4) on β (i.e., treat W is not related with β), and yields the following approximated

loglikelihood:

lPQL(β, b|θ) =
n∑
i=1

[−µi + yi log(µi)− log(yi!)]−
1

2
b′Σ−1θ b. (4.5)

Breslow and Clayton (1993) described an Fisher scoring algorithm to obtain estimates of

(β, b) from (4.5) simultaneously. They showed that it is equivalently to fit a normal linear
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mixed model (LMM):

y∗ = Xβ + b+ ε, with b ∼ N(0,Σθ), and ε ∼ N(0,W−1). (4.6)

Here y∗ = (y∗1, · · · , y∗n) is the working response vector with y∗i = x′iβ + bi + (yi − µi)/µi.

Based on the model formulation, we have Var(y∗) = V = W−1 + Σθ. We update β̃ and b̃ in

the following formulas iteratively until converge.

β̃ =
(
X ′V −1X

)−1
X ′V −1y∗,

b̃ = ΣθV
−1
(
y∗ −Xβ̃

)
.

Based on current estimates (β̃, b̃), linear mixed model theory can also be used to estimate

covariance parameters θ. Breslow and Clayton (1993) suggested the following restricted

maximum likelihood (REML) version of loglikelihood for estimation of θ:

lR(θ|β̃, b̃) = −1

2
log |V | − 1

2
log |X ′V −1X| − 1

2

(
y∗ −Xβ̃

)′
V −1

(
y∗ −Xβ̃

)
. (4.7)

The first derivative of lR(θ|β̃, b̃) is

l′R(θ|β̃, b̃) =
1

2
tr

(
P
∂V

∂θj

)
− 1

2

(
y∗ −Xβ̃

)′
V −1

∂V

∂θj
V −1

(
y∗ −Xβ̃

)
, (4.8)

and the (j, k)th component of Fisher Information matrix has the form

−1

2

(
P
∂V

∂θj
P
∂V

∂θk

)
.

Here P = V −1−V −1X(XTV −1X)−1XTV −1. Therefore, we can use Fisher scoring algorithm

to solve θ. We emphasize that the dependency of W on θ is ignored in ∂V/∂θj.
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4.3.3 PQL with Adaptive Elastic Net Penalty

4.3.3.1 Estimation of β

To estimate β with adaptive elastic net penalty, we expand lPQL(β|b̃, θ̃) in a way similar

to Friedman et al. (2010). Notice that lPQL(β|b̃, θ̃) is a concave function of β given θ̃ and

b̃. Given β̃ that maximizes lPQL(β|b̃, θ̃), we form a quadratic approximation to lPQL(β|b̃, θ̃)

around β̃, then we have

lQPQL(β|θ̃, b̃) ≈ −1

2

n∑
i=1

µi(zi − x′iβ)2,

where zi = x′iβ̃ − 1 + yi/µi (details regrading to the calculation are in Appendix 4.A).

Incorporating the penalty function, we have

LQPQL(β|θ̃, b̃) =
1

2

n∑
i=1

µi(zi − x′iβ)2 + Pλ(β). (4.9)

The minimizer β̃Q of (4.9) can be achieved as a penalized weighted least squares problem

by “glmnet” package in R.

In fact, estimating β via quadratic approximated PQL (4.9) is equivalent to consider the

penalized loglikelihood (PL) of the linear mixed model (4.6) in Section 4.3.2:

lLMM.PL(β, b|θ) = −1

2
(y∗ −Xβ − b)′W (y∗ −Xβ − b)− 1

2
b′Σ−1θ b− Pλ(β). (4.10)

To see the connection between (4.9) and (4.10), we estimate b̃ first and let y∗∗ = y∗− b̃.

Then again we have a weighted linear regression with elastic net penalty problem. That is,

we want to minimize

1

2

n∑
i=1

µi(y
∗∗
i − x′iβ)2 + Pλ(β),

which is equivalent to minimizing (4.9). That is, we can transform the GLMM with penalty
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problem into a LMM with penalty problem.

4.3.3.2 Estimation of θ

The adaptive elastic net penalty function Pλ(β) has the singularity at the origin, therefore

we consider an approximation of it. Based on the work of Fan and Li (2001), the penalty

function Pλ(β) can be approximated by

Pλ(β) ≈ 1

2
β̃
T

λΣλ(β̃)βλ,

where

• β̃λ only contains nonzero elements β̃1, · · · , β̃m of β̃.

• Σλ(β̃) = Diag{P ′λ(|β̃1|)/|β̃1|), ..., P
′

λ(|β̃m|)/|β̃m|)}.

Also, define XL be the matrix corresponding to the nonzero β̃’s.

Cui (2011) showed that the approximate REML estimator for θ can be calculated by

maximizing

lR,P(θ|β̃, b̃) = −1

2
log |V | − 1

2
log |X ′LV −1XL + Σλ(β̃)| − 1

2

(
y∗ −XLβ̃

)′
V −1

(
y∗ −XLβ̃

)
.

(4.11)

Compared to (4.7), we have an extra term Σλ(β̃) in the logarithm of determinant that is

adjusted for the penalty function of β. An algorithm of the estimation procedure is presented

in Appendix 4.B.
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4.3.4 Laplace Approximated Loglikelihood with Elastic Net Penalty

In Section 4.3.2, we apply the Laplace approximation to the integrals in the likelihood

function of GLMM and obtain the following approximated penalized function (APL)

LAPL(β,θ|b̃) =
1

2
log |ΣθW + In| −

n∑
i=1

(−µi + yiηi) +
1

2
b̃
′
Σ−1θ b̃+ Pλ(β). (4.12)

Breslow and Clayton (1993) ignored the first term in (4.12) and yielded the PQL. If we

consider the dependency of W on β and θ, we can apply the block coordinate gradient

descent (BCGD) method proposed in Tseng and Yun (2009).

The solution of an adaptive elastic net penalty problem can be solved by transforming

into a LASSO type of problem. Specifically, minimizing equation (4.12) with respect to β is

equivalent to minimizing

f(β|b,θ) + λ1λ2
∑
j

ŵj|βj|,

where

f(β|b,θ) =
1

2
log |ΣθW + In| −

n∑
i=1

[−µi + yiηi] +
1

2
b′Σ−1θ b+ λ1(1− λ2)

∑
j

β2
j . (4.13)

It is important to note that f(β|b,θ) is a non-convex but differentiable function, and∑
j ŵj|βj| is a convex but non-differentiable function. To apply the BCGD algorithm, we

update only one component of β at one time. For sth component of β (denoted as βs), we

first obtain b̃ based on current estimates β̃ and θ̃, then we update the sth component by

β̃s + ds. Here

ds = median

{
ŵsλ1λ2 − f ′s(β|b̃, θ̃)

hs,s
,−β̃s,

−ŵsλ1λ2 − f ′s(β|b̃, θ̃)

hs,s

}
,

where f ′s(β|b̃, θ̃) is the sth component of the first derivative of f(β|b̃, θ̃) and hs,s is the
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sth diagonal element of H. Moreover,

f ′(β|b̃, θ̃) = XT (µ− y) + 2λ1(1− λ2)β +
1

2
tr

{
(ΣθW + In)−1Σθ

∂W

∂β

}
,

H = XTWX + 2λ1(1− λ2)Ip.

The estimate of θ is updated by minimizing equation (4.12) with current estimates of β̃

and θ̃. A description of an algorithm for the estimation procedure is in Appendix 4.C.

4.3.5 Tuning Parameter Selection

Popular methods to choose the tuning parameters (λ1, λ2) include cross-validation and

criterion-based approaches. In our study, we use the Bayesian Information Criterion (BIC)

to select the tuning parameter. The calculation of exact loglikelihood for GLMM is com-

plicated, thus the approximated loglikelihood based on Laplace method is used instead.

For notation simplicity, we also use β̂, b̂, θ̂ to represent estimates obtained from penalized

approximated likelihood. BIC is defined by

−2

{
−1

2
log |ΣθW + In|+

n∑
i=1

[−µ̂i + yiη̂i − log(yi!)]−
1

2
b̂
′
Σ−1θ b̂

}
+ log(n)df,

where df is the number of nonzero parameters in β̂ plus the number of parameters in θ̂.

4.4 Simulation Study

In this section, we study the performance of methods proposed in Sections 4.3.3 and 4.3.4

through simulations. PQL and Laplace approximation of the integrals are both commonly

used in the framework of GLMM.
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4.4.1 Setting

In our simulation study, we consider the following model:

yi|bi ∼ Poisson
[
exp(xTi β + bi)

]
,

b ∼ N(0,Σθ).

We choose the covariance matrix that has the form (Σθ)ij = σ2edij/d (d > 0). That is,

we consider an exponential correlation function. Each dataset consists of n = 225 equal

spaced data points that are simulated on a [1, 10] × [1, 10] regular grid. The distance dij

between data point i and j is the great circle distance. The xi’s are randomly simulated

from multivariate normal distribution with mean 0 and variance 0.5.

We consider three setting of β and θ:

(i) β = (−0.5, 0.75, 1,−0.75,−1,010)
′

(ii) β = (0.2, 0.3, 0.4, 0.5, 0.7, 0.8,−0.1,−0.6,−0.9,−1,010)
′

(iii) β = (−0.5, 0.75, 1,−0.75,−1,020)
′.

Here 0N is a vector of zeros with length N . Let ν represents the length of β. And θ =

(σ2, d)′ = (0.1, 5)′, (0.5, 5)′ or (0.1, 10)′.

For the model matrix, we consider the following five cases.

1. all covariates are independent.

2. Corr(Xk, Xl) = ω|k−l|, k = 1, . . . , 5, l = 1, . . . , 5 with ω = 0.8; the other covariates are

independent.

3. Corr(Xk, Xl) = ω|k−l|, k = 1, 2, 3, l = 1, 2, 3 with ω = 0.8 and Corr(X4, X5) = 0.8; the

other covariates are independent.
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4. Corr(Xk, Xl) = ω|k−l|, k = 1, 2, 3, l = 1, 2, 3 with ω = 0.8 and Corr(X4, X5) = 0.5; the

other covariates are independent.

5. Corr(Xk, Xl) = ω|k−l|, k = 1, . . . , 5, l = 1, . . . , 5 with ω = 0.8; Corr(Xk, Xl) = ω|k−l|, k =

ν − 4, . . . , ν, l = ν − 4, . . . , ν with ω = 0.8; the other covariates are independent.

We consider the following criterions for variable selection perfomance: (a) aver.size:

average model size; (b) corr.coef : average number of coefficients set to 0 correctly; (c)

mis.coef : average number of coefficients set to 0 mistakenly.

4.4.2 Results and Discussions

For each case, we simulate 300 datasets and the covariate matrices are all centered and

standardized. For simplicity, we assume there is no intercept term in the model. For each

simulated dataset, we apply the methods described in Sections 4.3.3 (PQL.elatnet) and 4.3.4

(LP.elatnet) to obtain estimates of parameters and variable selection. We also consider the

case of (Σθ)ij = σ2, that is the spatial correlation induced by the distance was ignored. BIC

is used to select the appropriate tuning parameters. For the weight factor in the adaptive

elastic net penalty, we choose β̂cnst to be the maximum likelihood estimate without any

penalty on β. And for both methods, we use r = 1.

Table 4.1 reports the aver.size, corr.coef and mis.coef for the setting of β = (−0.5, 0.75, 1,

− 0.75,−1,010)
′, θ = (0.1, 5)′. There is no big difference among five cases of model matrix,

which suggests that the adaptive elastic net penalty performs well for correlated covariates.

Based on the same table, using PQL or Laplace approximated loglikelihood yields similar

results. Moreover, considering spatial correlation or ignoring spatial correlation also yields

similar results.

Table 4.2 summarizes the results of considering β = (−0.5, 0.75, 1,−0.75,−1,010)
′, θ =

(0.5, 5)′. In comparing Table 4.1 and Table 4.2, using Laplace approximated logliklihood

provides reasonably good results, while using PQL gives slightly worse results. For the use

of PQL, average number of coefficients set to 0 correctly is lower and average model size
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Table 4.1: Model selection results based on simulated samples. The parameters are β =
(−0.5, 0.75, 1,−0.75,−1,010)

′, θ = (0.1, 5)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 5 10 0 5 10 0

PQL.elatnet

Case 1 5.24 9.76 0.00 5.46 9.54 0.00
Case 2 5.25 9.71 0.04 5.53 9.43 0.04
Case 3 5.39 9.60 0.00 5.50 9.50 0.00
Case 4 5.37 9.63 0.00 5.52 9.48 0.00
Case 5 5.35 9.62 0.03 5.68 9.31 0.01

LP.elatnet

Case 1 5.04 9.96 0.00 5.18 9.82 0.00
Case 2 5.01 9.88 0.12 5.25 9.72 0.03
Case 3 5.08 9.92 0.01 5.23 9.76 0.00
Case 4 5.06 9.94 0.00 5.27 9.73 0.00
Case 5 5.10 9.81 0.09 5.40 9.58 0.01

is larger as compared to Table 4.2. That is to say, using PQL has larger active set. If σ2

increases, which means the random effects account for greater proportion of variation in

the dependent variable, using PQL tends to include more irrelevant covariates, while the

performance of using Laplace approximated loglikelihood is less affected.

Table 4.3 shows the results of increasing d (the spatial correlation is stronger). The

performance of adopting PQL or Laplace approximated loglikelihood are both good.

Tables 4.4 and 4.5 show the results of varying number of coefficients. The mis.coef in

Table 4.4 is larger compared to Table 4.1. In Table 4.4, the value of fixed-effect parameters is

changed. Some of the values are quite small (for example, -0.1), and increases the difficulty

of picking the correct model. The weak signals are sometimes failed to capture by the

algorithms. By looking at Table 4.5, we notice that the variable selection performance is not

affected if number of noise variables is increased.

In general, the variable selection methods described in Sections 4.3.3 and 4.3.4 have

reasonably good performance for independent or correlated covariates, different settings of

fixed-effect and random effect parameters. However, using PQL has less computing time

compared to the use of Laplace approximated loglikelihood.
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Table 4.2: Model selection results based on simulated samples. The parameters are β =
(−0.5, 0.75, 1,−0.75,−1,010)

′, θ = (0.5, 5)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 5 10 0 5 10 0

PQL.elatnet

Case 1 5.84 9.16 0.00 5.89 9.11 0.00
Case 2 5.59 9.39 0.02 6.06 8.89 0.05
Case 3 6.27 8.73 0.00 5.86 9.09 0.05
Case 4 6.12 8.88 0.00 6.08 8.88 0.03
Case 5 5.52 9.45 0.03 5.82 9.10 0.08

LP.elatnet

Case 1 5.05 9.95 0.00 5.35 9.65 0.00
Case 2 4.92 9.90 0.18 5.46 9.44 0.10
Case 3 5.05 9.94 0.02 5.29 9.65 0.06
Case 4 4.99 9.95 0.05 5.35 9.61 0.04
Case 5 5.02 9.82 0.16 5.55 9.35 0.10

Table 4.3: Model selection results based on simulated samples. The parameters are β =
(−0.5, 0.75, 1,−0.75,−1,010)

′, θ = (0.1, 10)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 5 10 0 5 10 0

PQL.elatnet

Case 1 5.19 9.81 0.00 5.42 9.58 0.00
Case 2 5.23 9.73 0.04 5.70 9.28 0.02
Case 3 5.40 9.60 0.00 5.54 9.46 0.00
Case 4 5.24 9.76 0.00 5.60 9.40 0.00
Case 5 5.35 9.61 0.04 5.71 9.28 0.01

LP.elatnet

Case 1 5.07 9.93 0.00 5.16 9.84 0.00
Case 2 5.11 9.83 0.07 5.33 9.65 0.02
Case 3 5.11 9.89 0.00 5.26 9.74 0.00
Case 4 5.05 9.95 0.00 5.23 9.77 0.00
Case 5 5.16 9.73 0.10 5.41 9.58 0.01
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Table 4.4: Model selection results based on simulated samples. The parameters are β =
(0.2, 0.3, 0.4, 0.5, 0.7, 0.8,−0.1,−0.6,−0.9,−1,010)

′, θ = (0.1, 5)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 10 10 0 10 10 0

PQL.elatnet

Case 1 9.99 9.54 0.47 10.11 9.34 0.55
Case 2 9.86 9.58 0.56 9.76 9.45 0.79
Case 3 9.62 9.63 0.75 9.65 9.49 0.86
Case 4 9.72 9.58 0.70 9.71 9.51 0.78
Case 5 9.95 9.49 0.56 9.78 9.43 0.78

LP.elatnet

Case 1 9.40 9.86 0.74 9.85 9.58 0.57
Case 2 9.31 9.88 0.82 9.63 9.62 0.75
Case 3 9.07 9.89 1.04 9.48 9.63 0.89
Case 4 9.19 9.84 0.97 9.68 9.59 0.73
Case 5 9.33 9.81 0.86 9.64 9.60 0.76

Table 4.5: Model selection results based on simulated samples. The parameters are β =
(−0.5, 0.75, 1,−0.75,−1,020)

′, θ = (0.1, 5)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 5 20 0 5 20 0

PQL.elatnet

Case 1 5.44 19.56 0.00 6.03 18.97 0.00
Case 2 5.69 19.27 0.04 6.62 18.35 0.03
Case 3 5.79 19.21 0.00 6.09 18.91 0.00
Case 4 5.64 19.36 0.00 6.28 18.72 0.00
Case 5 5.76 19.20 0.03 6.52 18.46 0.02

LP.elatnet

Case 1 5.12 19.88 0.00 5.31 19.69 0.00
Case 2 5.16 19.74 0.10 5.48 19.48 0.03
Case 3 5.11 19.88 0.00 5.37 19.63 0.00
Case 4 5.11 19.88 0.01 5.42 19.58 0.00
Case 5 5.14 19.70 0.16 5.59 19.39 0.02
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4.5 Application to Lyme Disease Data

4.5.1 Data Description

The Lyme disease cases were aggregated into census tracts for a couple of reasons: 1) the

demographic information and land cover data are available for each census tract; 2) the tract

borders are based on certain features (e.g., rivers, roads) that are potential barriers to the

movement of tick or Lyme disease reservoirs (e.g., white-footed mice or deer). The response

of interest is the summarization of case counts from 2006 and 2011 in each census tract. The

total population counts in each census tract are included into the model as an offset term.

Figure 4.1 shows the number of Lyme disease cases and incidence rates (number of cases

divided by the size of the population) for each census tract.

The dissimiarities in economic and demographic characteristics may affect the incidence

of Lyme disease. Based on that, we select a list of covariates that may contribute to the

case counts of Lyme disease. To understand the transmission of Lyme disease, it is impor-

tant to study the living environment of tick and Lyme disease reservoirs. In past studies,

white-footed mice or deer are shown to be very important hosts of ticks. Forested and herba-

ceous/scrub areas are ideal habitats for white-footed mice or deer. Jackson et al. (2006) and

Allan et al. (2003) studied the effect of forest fragmentation on Lyme disease and showed

that the percent of forested areas and number of small forest fragments (<2 ha) within

each polygon are associated with incidence rate of Lyme disease. In our study, we consider

two types of forest fragmentation variables: percent of small forest fragments (<2 ha) and

precent of perimeters of the small forest fragments (<2 ha) within each census tract. The

percentages of four land cover types (developed land, forest, scrub and water) within each

tract are also considered.

The mixture of land cover types might also be important factors. For example, the

boundary between forest and residential areas raises the risk for the interaction between tick

or disease reservoirs and human, which may lead to an increase in the incidence rate. We
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Table 4.6: Description of covariates in Lyme disease data.

Variable Description
Dvlpd NLCD06 Percentage of developed land in each census tract
Forest NLCD06 Percentage of forest in each census tract
Scrub NLCD06 Percentage of scrub in each census tract
Tract Frag06 Sum of area of forested fragments in each census tract

divided by the total area
FragPerim06 Sum of forest fragment perimeters in each census tract

divided by the total area
CWED DF06 CWED of developed-forest edge
TECI DF06 TECI of developed-forest edge
CWED FS06 CWED of forest-scrub edge
TECI FS06 TECI of forest-scrub edge
CWED SD06 CWED of scrub-developed edge
TECI SD06 TECI of scrub-developed edge
Pop den Tract population density in 2010
Median age Median age at each census tract in 2010
Mean income Mean income (inflation adjusted) at each census tract

in 2010
Eco id Eco id = 1 represents the Piedmont, Middle Atlantic

Coastal Plain, and Southeastern Plains areas; Eco id =
0 represents the Northern Piedmont, Blue Ridge, Ridge
and Valley and Central Appalachian areas

consider two indexes that characterize the mixture of land cover types: Contrast Weighted

Edge Density (CWED) and Total Edge Contrast Index (TECI).

Based on the level III ecoregion map of Virginia (https://www.hort.purdue.edu/newcrop/

cropmap/virginia/maps/VAeco3.html), Virginia can be divided into two subregions. One

subregion consists of Piedmont, Middle Atlantic Coastal Plain, and Southeastern Plains ar-

eas, while the other subregion includes the Northern Piedmont, Blue Ridge, Ridge and Valley

and Central Appalachian areas. The population density, median age, and mean income in

2010 are also considered as potential factors and included in the study. Summary of selected

covariates is in Table 4.6.
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Figure 4.1: Number of cases and incidence rates of each census tract in Virginia (2006-2011).
(a) Case counts. (b) Incidence rates.
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4.5.2 Estimation and Findings

To fit the GLMM to the Lyme disease data, we consider an exponential correlation func-

tion. The Northern Piedmont, Blue Ridge, Ridge and Valley and Central Appalachian areas

(Eco id=0) reported larger number of Lyme disease cases than the remaining part. It also

appears that the two subregions have different demographic characteristics. Therefore, sep-

arate models are fitted for the two subregions. We apply the algorithm described in Section

4.3.3 to the Lyme disease data. Unpenalized estimate is taken to be the weight factor and

r is set to be 1. We use BIC as the criterion to select the tuning parameters.

Table 4.7 documents the estimates of the selected covariates as well as the estimates of the

covariance parameters. The results show that the factors that affect the Lyme disease case

counts are different for two subregions. For the Piedmont, Middle Atlantic Coastal Plain,

Southeastern Plains areas, only the percentage of developed land (Dvlpd NLCD06), and

mean income (Mean income) are selected. Particularly, percent developed has a negative

correlation with the number of Lyme disease cases. This is expected as previous studies

showed that areas of developed (for example, cities) had a lower risks of having Lyme disease.

The mean income was also found out to be a significant variable.

For areas of Northern Piedmont, Blue Ridge, Ridge and Valley and Central Appalachian,

the selected variables are percentage of forest (Forest NLCD06), percentage of scrub

(Scrub NLCD06), forest-scrub edge (CWED FS06), scrub-developed edge (CWED SD06)

and mean income (Mean income). Percentage of forest cover and percentage of scrub cover

have a positive relationships with Lyme disease case counts, which is in consistent with

the findings in Jackson et al. (2006). Forested or scrub areas could provide good living

environment for deer and mice. The interaction of human with the hosts leads to a greater

risk of having Lyme disease. It is not surprising to find out the forest-scrub edge is important.

The mixture of forest and scrub areas is appealing for some host animals. Therefore, the

interspersion of forest and scrub land has a positive relationship with Lyme disease incidence.

However, the interspersion of scrub and developed areas has a negative correlation with Lyme
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disease incidence and the reason behind is not clear.

Our findings are slightly different from the results in Jackson et al. (2006) and Li et al.

(2014). Jackson et al. (2006) suggested that forest fragmentation variables are important for

Lyme disease incidence. However, in our study, Tract Frag06 (percent of forested fragments)

and FragPerim06 (percent of forest fragment perimeters) are not included in the final models

for either ecoregions. Li et al. (2014) fitted a spatial model using Lyme disease data without

considering the ecoregion variable. We show that two eco-regions have different patterns. In

addition, the estimates of covariance parameters are different in two ecoregions. d̂ is quite

small in the subregion of Eco id=1, which implies that the spatial correlation is weak in

that subregion. As for the other subregion (Eco id=0), the estimated d is 33.62. If the

distance between two census tracts is 33.62 Kilometre (KM), then the correlation is 0.37.

Unlike d̂, the estimated σ̂2 in two subregions are close. In Li et al. (2014), population density

and median age were significant variables, while population density and median age are not

selected in either ecoregions. Moveover, Li et al. (2014) found that percent forest was not

significant, while our findings support the results in Jackson et al. (2006) and suggest that

percent forest is an important variable.

4.6 Concluding Remarks

In this chapter, we consider the problem of variable selection in GLMM with spatial corre-

lated data. By introducing the adaptive elastic net penalty, we perform variable selection

and parameter estimation simultaneously. We consider PQL with penalty (Section 4.3.3)

and Laplace approximated loglikehood with penalty (Section 4.3.4). Simulation study in

Section 4.4 shows that both methods perform reasonably good and quite similar. We then

apply our method to select important variables associated with the Lyme disease emergence

in Virginia.

In this chapter, we use Laplace approximation to the integrals in likelihood functions.

Alternatively, Bayesian methods can also be used to approximate integrals. We may use
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Table 4.7: Table of coefficients (separate models for two subregions).

Covariate (Eco id=0) (n = 583) Coef. Covariate (Eco id=1) (n = 1275) Coef.
Intercept 0.15 Intercept -0.39

Dvlpd NLCD06 0 Dvlpd NLCD06 -0.34
Forest NLCD06 0.16 Forest NLCD06 0
Scrub NLCD06 0.14 Scrub NLCD06 0
Tract Frag06 0 Tract Frag06 0
FragPerim06 0 FragPerim06 0
CWED DF06 0 CWED DF06 0
TECI DF06 0 TECI DF06 0
CWED FS06 0.08 CWED FS06 0
TECI FS06 0 TECI FS06 0

CWED SD06 -0.01 CWED SD06 0
TECI SD06 0 TECI SD06 0

Pop den 0 Pop den 0
Median age 0 Median age 0

Mean income 0.22 Mean income 0.42
σ̂2 0.53 σ̂2 0.45

d̂ (in KM) 33.62 d̂ (in KM) 1.40

Gibbs sampler, Metropolis-Hastings algorithm, MCMC, importance sampling, to name a

few. However, this is usually time-consuming.

In this chapter, we consider Poisson regression model with random effect and dispersion

parameter φ equals to one. If over-dispersion appears in the data, we can add the dispersion

parameter into model formulation and obtain estimates of (β,θ, φ) simultaneously.

In some cases, we may encounter a dataset with large n. Kaufman et al. (2008) developed

the covariance tapering method for large irregularly spaced data or missing data on lattice.

By taking the inner product of a covariance matrix with a positive definite and compactly

supported correlation matrix, one can obtain the “tapered” covariance matrix with sparsity.

Future research can be incorporating the covariance tapering method for large n case to

achieve computational efficiency.
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Appendix

4.A Quadratic Approximation to PQL

Given current estimates of θ and b, which are denoted by θ̃ and b̃, respectively, (4.5) reduces

to

lPQL(β|θ̃, b̃) =
n∑
i=1

(−µi + yix
′
iβ) , (4.14)

up to a constant that is independent of β.

Next form a quadratic approximation to lPQL(β|θ̃, b̃) around current estimate β̃, that is

lPQL(β|θ̃, b̃) ≈ lPQL(β̃|θ̃, b̃) +
∂lPQL(β|θ̃, b̃)

∂β
(β − β̃) +

1

2
(β − β̃)′

∂2lPQL(β|θ̃, b̃)
∂β∂β′

(β − β̃),

where

∂lPQL(β|θ̃, b̃)
∂β

=
n∑
i=1

(−µix′i + yix
′
i) ,

∂2lPQL(β|θ̃, b̃)
∂β∂β′

=
n∑
i=1

(−µixix′i)

are the first and second derivatives for lPQL(β|θ̃, b̃) with respect to β, respectively.
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Therefore,

lPQL(β|θ̃, b̃) ≈ ∂lPQL(β|θ̃, b̃)
∂β

β +
1

2
(β − β̃)′

∂2lPQL(β|θ̃, b̃)
∂β∂β′

(β − β̃) + c

=
n∑
i=1

(yi − µi)x′iβ +
1

2
(β − β̃)′

[
n∑
i=1

(−µixix′i)

]
(β − β̃) + c

= −1

2

n∑
i=1

µi

[
2

(
1− yi

µi

)
x′iβ + (β − β̃)′xix

′
i(β − β̃)

]
+ c

= −1

2

n∑
i=1

µi

(
x′iβ̃ − 1 +

yi
µi
− x′iβ

)2

+ c

= −1

2

n∑
i=1

µi(zi − x′iβ)2 + c,

where zi = x′iβ̃ − 1 + yi/µi (working response), c is some constant unrelated to β.

4.B A Description of the Variable Selection Procedure using PQL

In the following, we present an algorithm for the method proposed in Section 4.3.3.

Algorithm 1:

For a collection of values of (λ1, λ2):

1. Initialize β(0), b(0),θ(0).

2. For kth iteration:

(i) Find β, b that maximize (4.5). Define the working response y∗(k) = x′iβ̃
(k−1)

+

b̃
(k−1)

+ (y − µ̃(k−1))/µ̃(k−1), and update β̃ and b̃ iteratively until convergence.

The estimates obtained are denoted as β̃
(k)
, b̃

(k)
.

(ii) Given the current estimates β̃
(k)
, b̃

(k)
, and θ̃

(k−1)
, we perform a quadratic approx-
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imation to the PQL and solve

LQPQL(β|θ̃
(k−1)

, b̃
(k)

) =
1

2

n∑
i=1

µi(zi − x′iβ)2 + Pλ(β), (4.15)

where zi, µi are evaluated at β̃
(k)
, b̃

(k)
, and θ̃

(k−1)
. The estimate obtained is

denoted by β̃
(k)

Q .

(iii) Obtain the estimates of covariance parameters θ̃
(k)

by maximizing (4.11) with

β̃
(k)

Q and b̃
(k)

.

3. Repeat step 2 until convergence. The estimates obtained are denoted by β̂, b̂, θ̂.

4.C A Description of the Variable Selection Procedure using Laplace

Approximated Loglikelihood

In this section, we present the block coordinate gradient descent algorithm for estimation of

β and θ in (4.12).

Algorithm 2:

For a collection of values (λ1, λ2):

1. Initialize β(0), b(0),θ(0).

2. For kth iteration:

(i) Repeat for s = 1, · · · , p:

For sth component of β, find b̃
(k,s)

that maximizes h(β) with given β̃
(k,s)

=

(β̃
(k)

1 , · · · , β̃
(k−1)
s , · · · , β̃

(k−1)
p ) and θ̃

(k−1)
, then we obtain the Laplace approxi-

mated loglikelihood (4.12). Let β̃
(k)

s = β̃
(k−1)
s + ds, where ds is defined in Section

4.3.4.

(ii) θ̃
(k)

is obtained by minimizing equation (4.12) with β̃
(k)

.
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3. Repeat step 2 until convergence. The estimates obtained are denoted by β̂, b̂, θ̂.
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Chapter 5 General Conclusions and Areas for Future Work

In Chapter 2, we propose a general method for constructing two-sided simultaneous predic-

tion intervals (SPIs) as well as the corresponding one-sided prediction bounds (SPBs) for at

least k out of m (k 6 m) future observations. Our study focuses on the (log) location-scale

family of distributions. SPI/SPB computed by the proposed method provides exact coverage

probability for the case of complete or type II censored data. However, for type I censored

data, the coverage probability of the proposed SPI/SPB approaches to the nominal confi-

dence level asymptotically. The method of constructing simultaneous two-sided prediction

intervals or one-sided bounds in Chapter 2 can be extended to other censoring schemes.

In Chapter 3, we propose a semi-parametric degradation model to analyze ADDT data.

Our degradation path is constructed using monotonic B-splines. Estimation procedure and

inference procedure are also developed in this chapter. In the simulation study, we examine

the bootstrap confidence interval procedure. We also compare our model to the paramet-

ric models. Our simulation results show that the semi-parametric model performs well in

the aspects of both fitting and reliability measures. The applications to published ADDT

datasets show that the proposed semi-parametric degradation model is flexible and provides

good fit. Chapter 3 only considers the scale-accelerated degradation model, which works

well in applications. However, the shape acceleration may be appropriate and need to be in-

cluded in some situations. It would be interesting to consider a shape-scale-accelerated semi-

parametric degradation model, and develop estimation and inference procedures. Though

challenging, it would also be interesting to develop a formal statistical test that helps to

choose the suitable model.

In Chapter 4, we study the variable selection problem in the context of GLMM with

spatial count data. For estimation of parameters, we apply the Laplace approximation

of integrals and obtain approximated loglikelihood. We also consider PQL, which further
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approximates the loglikelihood function by ignoring the dependence of W on parameters.

We adopt the adaptive elastic net penalty function for selecting the fixed effects. We then

perform a comprehensive simulation study to examine the performance of using Laplace

approximated loglikelihood and PQL. Results of the simulation study demonstrate that

both methods work well. Last, we apply variable selection techniques to the Lyme disease

data and discover factors that affect the Lyme disease case counts. It would be interesting

and useful to extend our method for the large sample case.


