Real-Time Hierarchical Scheduling of Virtualized Systems

Kevin P. Burns

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science
n
Computer Engineering

Binoy Ravindran
Cameron D. Patterson
Robert P. Broadwater

September 25, 2014
Blacksburg, Virginia

Keywords: Real-Time, Virtualization, Scheduling, Introspection, KVM, Event Trapping,
Syscall Tracing, Linux
Copyright 2014, Kevin P. Burns

Real-Time Hierarchical Scheduling of Virtualized Systems

Kevin P. Burns

(ABSTRACT)

In industry there has been a large focus on system integration and server consolidation,
even for real-time systems, leading to an interest in virtualization. However, many modern
hypervisors do not inherently support the strict timing guarantees of real-time applications.
There are several challenges that arise when trying to virtualize a real-time application.
One key challenge is to maintain the guest’s real-time guarantees. In a typical virtualized
environment there is a hierarchy of schedulers. Past solutions solve this issue by strict
resource reservation models. These reservations are pessimistic as they accommodate the
worst case execution time of each real-time task. We model real-time tasks using probabilistic
execution times instead of worst case execution times which are difficult to calculate and are
not representative of the actual execution times. In this thesis, we present a probabilistic
hierarchical framework to schedule real-time virtual machines. Our framework reduces the
number CPUs reserved for each guest by up to 45%, while only decreasing the deadline
satisfaction by 2.7%. In addition, we introduce an introspection mechanism capable of
gathering real-time characteristics from the guest systems and present them to the host
scheduler. Evaluations show that our mechanism incurs up to 21x less overhead than that
of bleeding edge introspection techniques when tracing real-time events.

Acknowledgements

I am incredibly thankful to everyone who helped me throughout this endeavor. I would like
to specifically thank the following people for their support:

Dr. Binoy Ravindran, for his tireless guidance and support and for granting me the oppor-
tunity and environment to work on my something I am passionate about.

The members of my committee, Dr. Cameron Patterson and Robert Broadwater.

The students and faculty involved in the KairosVM project, Dr. Vincent Legout, Dr. Antonio
Barbalace, and Matthew Chittum.

The members of the SSRG lab, especially Robert Lyerly, Aaron Lindsay, and Ben Shelton
for camaraderie and friendship.

I would like to recognize the open source software and all the teams involved with the tools
I used in the production of this thesis.

Finally, I would like to recognize the constant support from my family, my parents John and
Carol Burns and my siblings James and Megan Burns.

il

Contents

1 Introduction 1
1.1 Limitations of Past Work 2
1.2 Thesis Contributions L 2
1.3 Scope of Thesis 3
1.4 Thesis Outline 3

2 Related Work 5
2.1 Background 5

2.1.1 ChronOS)
21.2 KVM. .o 7
2.1.3 SCHED DEADLINE 7
2.1.4 Real-Time Group Scheduling 8
2.2 Related Work 8
2.2.1 Hierarchical Real-time Scheduling Algorithms 8
2.2.2 Real-Time Virtualization 8
2.2.3 Introspection 11

3 Models and Assumptions 13
3.1 Task Model 13
3.2 Guest Model 14
3.3 Scheduling Model 14
3.4 Hardware Model 15

v

Uniprocessor Probabilistic Hierarchical Scheduling

4.1 Task Level Scheduling
4.2 Virtual Machine Scheduling o0
4.3 Schedulability
4.4 Complexity
4.5 Experimental Evaluations 00000
4.5.1 Evaluation Environment 0000
4.5.2 Synthetic Benchmark00 000
4.5.3 Practical Scenario Evaluations

Multiprocessor Probabilistic Hierarchical Scheduling

5.1 Approach
5.2 Experimental Evaluations 0oL
5.2.1 Number of Processors
5.2.2 Synthetic Benchmark o000
5.2.3 Practical Scenario Evaluations

Real-time Introspection

6.1 Approach

6.2 Implementation

6.3 Experimental Evaluation o
6.3.1 Evaluation Environment00
6.3.2 Overhead Measurements
6.3.3 Synthetic Benchmarko

Conclusions

7.1 Contributions

Future Work

8.1 Extended Evaluations.

16
16
17
18
19
19
19
20
22

28
28
29
29
31
33

36
36
37
39
40
40
42

46
46

48

8.2 Theory Extensions

8.3 Imtrospection
8.4 Scope/Model Expansions
Bibliography

vi

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.9
5.6
5.7

6.1

Linux’s scheduling classes ordered by priority 6
Real-time scheduling classes in ChronOS Linux 6
Chronos application programming interface (without mutexes) 7
PHA for uniprocessor with expected value of 30% the WCET 21
PHA for uniprocessor with expected value of 50% the WCET 21
PHA for uniprocessor with expected value of 70% the WCET 22
MAD execution time distributions for five different songs 23
MAD distribution of song4 with execution bounds 24
MAD distribution of song4, a closer look 25
Characteristics of Wu’s Chebychev equation 25
Comparison of CSF bandwidth allocations 26
DSR using real-time Madplay for three virtual machines 27
CPU allocations of distribution with expected value of 30% WCET 30
CPU allocations of distribution with expected value of 70% WCET 31
PHA for multi-processor with expected value of 30% the WCET 32
PHA for multi-processor with expected value of 50% the WCET 32
PHA for multi-processor with expected value of 70% the WCET 33
PHA for multi-processor with practical workload for VM’s 1,2,3 34
PHA for multi-processor with practical workload for VM’s 4,56 35
Introspection implementation flow chart 38

vil

6.2
6.3
6.4
6.5

KairosVM architecture layout 0oL 39

Comparison of system call latencies 41
DSR of synthetic real-time application 43
DSR of synthetic real-time application and background application 44

viil

List of Tables

3.1 Model Notation Reference

6.1 Number of syscalls and writes according to the utilization

X

Chapter 1

Introduction

There exists a plethora of previously deployed real-time systems in the world today. Where,
real-time, refers to systems with time sensitive constraints. These constraints are defined
by several parameters assigned to each task running on the system. A task’s deadline is
used to schedule its order of execution. The deployment and/or redeployment of a real-time
system can be a tedious and demanding undertaking. Specifically, the validation and real-
time analysis stages. Another scenario is the sources of the code base could be unavailable
and therefore unmodifiable.

This results in a copious number of aging real-time software systems running on obsolete
hardware platforms. Specifically, real-time systems running on or designed for a unipro-
cessor platform. With the industry shift from uniprocessor to multiprocessor systems, also
came an additional level of software complexity. Transitioning existing code to support a
multiprocessor platform requires deep modification. For legacy real-time software systems,
this can be difficult to achieve. This has lead to the adoption of virtualization techniques
for such scenarios. Where virtualization provides a fully emulated hardware environment,
called a virtual machine, which can be tuned for each guest’s requirements. Specifically,
each legacy software system is executed on top of one virtual machine. Thus, we have many
virtual machines running on a subset of physical processors.

When introducing real-time systems into this virtualized environment, there are issues that
arise that need to be addressed. First, the guarantees (hard, soft, or best-effort) provided
by the real-time stack need be conserved. In addition, traditional real-time scheduling al-
gorithms are not meant to deal with a hierarchy of schedulers. Therefore, real-time dead-
line aware hierarchical schedulers must be developed and employed. Existing hierarchical
scheduling solutions do not focus on reducing resource allocations to allow for more virtual-
ized guests. As hard real-time systems do not allow for deadline misses, there is little room
for resource consolidation. We instead focus our research on soft real-time systems following
a stochastic model.

Kevin P. Burns Chapter 1 - Introduction 2

1.1 Limitations of Past Work

Traditionally, real-time systems have not been targets for virtualization. However, recent
trends in both commercial and academic settings have provided solutions to the problems
that arise when these systems are introduced into a virtualized environment. In the commer-
cial scene many proprietary options use hardware partitioning practices to ensure real-time
guarantees. While providing isolation and ensuring real-time guarantees, this method does
not take advantage of CPU slack time, specifically in soft real-time systems, therefore does
not support full utilization of the systems resources. When virtualized guests share system
resources (i.e., CPUs), a partitioning scheme must be devised to prevent or ease contention.
Conventionally, this problem has been solved via strict resource partitioning schedules de-
rived by using the worst case execution times of all the guest’s tasks. When scheduling soft
real-time guests it is not always necessary to maintain these strict worst case boundaries.

Conventionally, more dynamic solutions to the hierarchy of schedulers problem depend on
virtualization platforms that support communication between the hypervisor and its guests,
or paravirtualization. However, this is not congruent with supporting the virtualization of
legacy systems. As these paravirtualization techniques require modification of the guest
operating system. A current trend of research in the security domain, is the concept of in-
trospection. Introspection is the term coined for the action of extracting system information
from a guest while the guest is executing. The current direction of this research is aimed
at malware detection. The introspection engines required to detect malicious software often
exceeds the needs of real-time introspection. They also tend to accrue a significant amount
of overhead, as the malware detection is concerned in the entire domain of the system, where
we are only concerned with the real-time domain.

1.2 Thesis Contributions

This thesis focusses on improving the current state of real-time scheduling algorithms for
virtual machines. Our major contributions include:

e We created a framework for statically allocating bandwidth for virtual machines with
the purpose of reducing resource consumption. In addition, we propose the extension
to the multiprocessor domain by the use of a partitioning scheme on the hypervisor.

e We implemented an infrastructure supporting the full evaluation of our proposed sched-
ulers. We then make use of this infrastructure to offer extensive evaluations of our
proposed framework.

e We implemented a lightweight introspection engine capable of informing the host sched-
uler about real-time characteristics without degrading real-time performance.

Kevin P. Burns Chapter 1 - Introduction 3

1.3 Scope of Thesis

The main focus of this work is to provide the theory and implementation for a static proba-
bilistic hierarchical scheduling policy, extend this scheduler to the multiple processor domain,
and lastly to prove the feasibility of our introspection engine implemented in KairosVM. This
will lay the groundwork for future KairosVM implementations.

Given the depth of complexity of the field, the scope of this thesis comes with limitations.
Specifically, the concepts, experiments, and algorithms presented by this work try to be as
general and overarching as is possible. However, there are assumptions and limitations that
intentionally need to be considered to limit the scope.

The first limitation is that of our task simulations. For our real-time simulations we chose
to model CPU intensive workloads. That is, our tasks do not depend on I/O of any kind.

Second, is the overall limitations of our task model, discussed further in Chapter 3. Our
model disregards dependencies between tasks. That is, the tasks are independent and can
execute without interfering the execution times of the other tasks. We also limit the scope of
our model to exclusively periodic tasks. That is, we do not include an aperiodic or sporadic
task model in any of out designs or experiments. As this covers a very large percentage of
existing deployed real-time systems.

Third, our evaluations, following the stochastic task model, is limited to normal distributions.
This also includes the real-world distributions collected using the libMAD benchmarks, dis-
cussed further in Chapters 4 and 5. That is when modelling stochastic scenarios, we choose
to distribute the execution times normally using a ratio of the worst case execution time as
the mean and a sixth of the worst case execution time as the distributions standard deviation.

Though we believe our work can be extended to other scheduling algorithms. Thus the fourth
limitation is that our evaluations were done using the Earliest Deadline First (EDF) scheduler
on the guest system. EDF is a dynamic scheduler that can guarantee complete schedulability
of our guest task sets. This can be easily extended to static models, like Rate Monotonic
based schedulers. Our current implementation of our static stochastic based virtual machine
scheduler is based on an EDF Constant Bandwidth Server, therefore granting consistency.
The blending of different host and guest scheduling algorithm combinations is left as future
work.

As the number of combinations and permutations of parameters for experimental evaluations
of such a solution are infinite in nature, we try to identify those most significant.

1.4 Thesis Outline

The remainder of this thesis is organized in the following manner:

Kevin P. Burns Chapter 1 - Introduction 4

e Chapter 2 reviews the related work in the area of real-time virtualization along with
providing necessary background information.

e Chapter 3 discusses the real-time models and assumptions made during the develop-
ment of the theories and implementations described in this thesis.

e Chapter 4 lays out the uniprocessor static scheduling algorithm based on the stochastic
model for real-time virtual machines.

e Chapter 5 describes in detail the extension of our uniprocessor algorithm and imple-
mentation to the multiple processor domain.

e Chapter 6 describes in detail the design and implementation of our light-weight intro-
spection engine.

e Chapter 7 outlines the conclusions of this thesis.

e Chapter 8 offers future work to extend the research presented in this area.

Chapter 2

Related Work

In this chapter, we provide some background of various aspects involved in this thesis. We
then present existing solutions for hierarchical scheduling of virtual machines and virtual
machine introspection.

2.1 Background

This section provides background knowledge for various implementation aspects of our pre-
sented solutions. Starting with the operating system used on each guest virtual machine.
The other aspects are related to Linux. These are SCHED _DEADLINE, cgroups, and KVM.
KVM is Linux’s kernel virtual machine that exploits the underlying hardware’s virtualization
extensions, which we used with our hypervisor during our experiments. SCHED_DEADLINE
is a scheduling policy and a task partitioner, that we use to schedule our virtual machines
in Linux.

2.1.1 ChronOS

ChronOS Linux [1] is a scheduling framework which aims to provide a Linux kernel testbed for
real-time scheduling and resource management research on multi-core platforms. It currently
implements traditional real-time scheduling algorithms as well as best-effort policies.

ChronOS Linux was originally developed to support the real-time aperiodic task model, for
the use with best-effort scheduling policies. However, it still supports the real-time periodic
task model, which we will use for this thesis.

The scheduler in Linux is implemented as an ordered list of scheduling classes, as illustrated
in Figure 2.1. The classes represent tiers of priorities. That is, every time the scheduler makes

Kevin P. Burns Chapter 2 - Related Work 6

stop_ rt_sched. fair_ idle_

sched_ | class sched_ H sched_

class ChronOS class class
Scheduler

Figure 2.1: Linux’s scheduling classes ordered by priority

rt sched_class

E

99‘98‘97 ‘ ‘3 2‘1‘0

!

|
|
|
|
ChronOS :
|
|
T
|

- |

! I

' |

| I Sched

B

' |

I & > |

1 .
| Gritical | Hard Soft | Decreasing
| System 'Real-Time| Real-Time | Task
| Tasks | Tasks | Tasks | Priority

Figure 2.2: Real-time scheduling classes in ChronOS Linux. ChronOS’ scheduled tasks are
meant to be at SCHED_FIFQ priority n

a scheduling decision the class list is scanned. The scheduler stops at the first class that has
a task that is ready to be executed. The list is ordered by class priority where the highest
priority class is (stop_sched_class) and the lowest priority class is (idle_sched _class).
These two classes are not designed to be used from user space applications but are reserved
for kernel space threads. The other two classes are designed to schedule kernel and user space
threads. The fair sched class implements a time-sharing scheduling policy (derived from
the nice functionality in UNIX). The rt_sched_class implements the POSIX SCHED_FIFQ
and SCHED _RR, real-time scheduling policies by means of a multi-level priority queue indexed
by a bitmap. There are 100 priorities. In kernel space, 0 represents the highest real-time
priority, conversely 99 is the least. This is reversed for user space priorities. The Linux kernel
maintains a ready queue per scheduling class for each processor in support of multiprocessor
architectures.

The ChronOS scheduler does not implement an additional Linux scheduling class, like in
Calandrino et. al.’s Litmus® [2], but creates an extension to rt_sched class. A ChronOS
scheduling queue resides at a fixed priority level n in the aforementioned class extension,
see Figure 2.2. For the sake of completeness it is important to note that with this architec-
ture real-time tasks can be categorized as soft real-time, hard real-time, and system critical.
ChronOS real-time guarantees are dependent upon the real-time guarantees provided by the
parent rt_sched class and the PREEMPT_RT patches. In addition ChronOS introduces
a pluggable interface for real-time scheduling policies, which takes full advantage of Linux’s
kernel module infrastructure.

Kevin P. Burns Chapter 2 - Related Work 7

long begin_rtseg(int tid, int prio, int max_util, struct
timespec* deadline, struct timespec* period, unsigned long
exec_time);

long end_rtseg(int tid, int prio);

long add_abort_handler (int tid, int max_util, struct timespec x*
deadline, unsigned long exec_time);

long set_scheduler (int scheduler, int prio, unsigned long cpus)

I

Figure 2.3: Chronos application programming interface (without mutexes)

In ChronOS, a real-time task begins as a user-space thread scheduled at priority n within
the SCHED FIFO policy. ChronOS semantic requires to mark each job with library calls,
begin rtseg() and end rtseg(); to mark the jobs start and end respectively. The concise
application programming interface (API) without mutexes is depicted in Figure 2.3.

The function add_abort_handler () allows the user to be notified if a job exceeds its deadline
and thus requires abortion; set_scheduler() dictates ChronOS’ scheduling policy to use.
From a system software point of view all of the APIs are system calls but the first three mul-
tiplexed to the syscall number __NR_do_rt_seg while the latter extends __NR_set_scheduler.

2.1.2 KVM

The Kernel-based Virtual Machine (KVM) relies on the host OS to schedule and manage
the virtualized domains. KVM is the driver module that manages unprivileged access to
privileged virtualization features, specifically the extensions offered by the underlying pro-
cessor (Intel VT or AMD-V). For the use of hosting real-time virtual machines the target
component for optimization is the underlying host operating system. The typical approach
in literature is to use a host with real-time modifications. In essence, using an RTOS as
a hypervisor. KVM is inherently designed for full virtualization purposes and is normally
paired with QEMU for full emulation.

2.1.3 SCHED DEADLINE

A new scheduling policy was introduced in the mainline release of Linux kernel version 3.14.0.
This policy is called SCHED_DEADLINE, first introduced by Faggioli et. al. in [3]. This
new policy is an implementation of the well-known Earliest Deadline First (EDF) real-time
scheduler, with the addition of a mechanism called Constant Bandwidth Server (CBS). The
CBS feature prevents the behavior of tasks influencing the performance of other tasks, thus
guaranteeing temporal isolation.

Kevin P. Burns Chapter 2 - Related Work 8

This scheduling policy moves away from the fixed priority paradigm, currently implemented
in Linux. That is, instead of tasks being assigned static priorities, they are know assigned a
deadline, runtime, and a period. When scheduling virtual machines in this way, an explicit
runtime needs to be enforced. That is, the executing VM process needs to be throttled if it
begins exceeding it’s runtime. This is done via the CBS mechanism.

2.1.4 Real-Time Group Scheduling

An alternative to scheduling virtual machine processes with mechanisms native to the Linux
kernel, is by using cgroups. This concept was explored by Checconi et. al. in [4]. Cgroups
are process containers, used to partition groups of tasks into hierarchical groups. This paired
with Linux’s process throttling mechanism can mimic the effects of a CBS implementation.
The throttling interface presented by Linux let’s the user to assign a runtime (time before
throttling is active) and a period to a specific process group. Thus, similarly to a bandwidth
server implementation, this provides the process groups isolation and prevents interference
from other processes. That is, this implements the well-known resource reservation paradigm.
This implementation differs from the above mentioned SCHED _DEADLINE as it makes use
of SCHED_FIFO or SCHED_RR for the real-time scheduling of real-time process groups.

2.2 Related Work

2.2.1 Hierarchical Real-time Scheduling Algorithms

The scheduling of real-time virtual machines is similar to the notion of hierarchical schedul-
ing. Hierarchical scheduling was first introduced in Strosnider et. al. [5] and Deng et. al.
[6]. Traditional hierarchical scheduling refers to the scheduling of real-time applications and
not virtual machines, but the overall objective is the same. As each application has many
internal tasks to schedule and execute. Servers are typically implemented for hierarchical
scheduling, in order to schedule the applications. Hierarchical scheduling theory has been
extended and improved by Lipari et. al. in [7, 8, 9, 10].

2.2.2 Real-Time Virtualization

There are many existing virtual machine managers in use today. However, this paper is
restricted to the analysis of open source solutions such as Xen, KVM, and several micro-
kernel based designs. There are proprietary hypervisors on the market (e.g. Wind River’s
[11], NI's [12], TenAsys’s [13], RTS’s [14] real-time hypervisors). These hypervisors use strict
hardware isolation and partitioning methods. However, the research community does not
have evaluations of such systems.

Kevin P. Burns Chapter 2 - Related Work 9

Xen-based Solutions

The Xen hypervisor is a popular platform for real-time hierarchal scheduling research. This
is due to the paravirtualization support, inherent to Xen. Paravirtualization (PV) is a vir-
tualization technique that creates a communication layer integrated into the guest operating
systems, called hypercalls, which allow lightweight communication between the host and
guest. Therefore, the guest operating systems require modification. This PV technique does
not require hardware virtualization extensions and thus can run on any underlying hardware
platform.

Lee et. al. in [15] extends Xen’s default credit-based scheduler by adding the lazity real-time
parameter. Xen’s credit-based scheduler is a proportional fair share CPU scheduler. The
objective for this extension was to support soft real-time systems with 1/O dependencies.
One observation was that many soft real-time tasks do not require CPU cycles directly after
the reception of a packet. As the default credit-based scheduler automatically boosts the
priority of the VM due to I/O activity, this was wasteful. Therefore, the addition of lazity
offers the interface to relax the boost in priority due to I/O reception.

Xen was equipped with a Simple Earliest Deadline First (SEDF) scheduler by default, since
then the scheduler has been depreciated. SEDF allows the assignment of a runtime, period,
and deadline to each virtual machine, or domain. One major issue with SEDF is that it had
no method of distinguishing between real-time and none real-time VMs, or domains. This
issue was addressed by the authors in [16].

Without a paravirtualization option, the hierarchy schedulers of real-time tasks has been
addressed by the introduction of real-time servers. Servers are a thoroughly studied theoret-
ical solution for this problem. There are few well established platforms in order to compare
the various server implementations. In the above mentioned Xen-based solutions the re-
searchers simply modify existing schedulers inside of Xen, without drastically altering the
original code base. RT-Xen boasts to be the first hierarchical real-time scheduling framework
[17]. It was designed to be a testing platform for researchers to implement their theoretical
schedulers in Xen. For evaluation purposes, the authors implemented versions of Deferrable,
Periodic, Polling, and Sporadic VM servers into their prototype platform. These are not
novel approaches, the authors instead wanted to provide a comprehensive evaluation of each
scheduler on one platform. The modifications of the existing Xen platform included some xm
(Xen monitoring utility) extensions along with the scheduler implementations themselves.
Along with the code, the implementation came with assumptions. The biggest amongst
these are that each VM is assigned to a single VCPU, that is pinned to a single physical
core. The most significant of the evaluations provided was the deadline miss ratio for each
of the schedulers. This is significant as an empirical evaluation of these schedulers has never
been done before.

RT-Xen has been extended to realize compositional scheduling of virtual machines [18].
RT-Xen was modified to support compositional scheduling frameworks (CSF). On top of

Kevin P. Burns Chapter 2 - Related Work 10

the modification, two novel compositional schedulers were introduced. A method to share
components amongst schedulers and even swap schedulers online was implemented as well.
The authors are trying to mitigate, the scheduling overhead incurred and the loss of timing
guarantees incurred when a hierarchy of schedulers is introduced. The compositional peri-
odic schedulers introduced were the Purely Time-driven Periodic Server (PTPS), the Work-
conserving Periodic Server (WCPS), and lastly the Capacity Reclaiming Periodic Server
(CRPS). PTPS implements a time-driven budget replenishment technique in RT-Xen, while
WCPS is similar to PTPS it differs when dealing with idle domains. WCPS will demote do-
mains that are currently scheduled and idle. Lastly, CRPS is like WCPS except it makes the
effort of using any idle time of the currently running domain to farm out to other domains.
For the evaluations the authors focussed on the metric of response times latency and jitter,
without taking into account the effect on the task’s deadline satisfaction.

Linux/KVM-based Solutions

The use of Linux’'s KVM to schedule real-time virtualized guests have been explored by
Kiszka et. al. in [19]. This work showed that Linux has promise as a real-time hypervisor.
In that, using a real-time fixed-priority scheduling policy (SCHED_FIFO) on both the guest
and host can lead to reasonably low overhead for some use cases. However, there are still
problems to be solved, namely if there are tasks executing on the native Linux host, there
may be priority inversions.

IRMOS is a real-time operating system that targets soft real-time guarantees necessary for
many multimedia applications. The authors of [20] illustrate how the infrastructure presented
by IRMOS, with the use of KVM, can be used to schedule real-time virtual machines.
The existing reservation based scheduler the real-time OS, IRMOS, provides operates by
partitioning the real-time tasks (in this case real-time virtual machines) via Linuxs cgroups.
Cgroups reliably partitions resource access of process groups. The authors present the idea of
spare reservations, these are essentially smaller containers used for the shorter time sen- sitive
tasks, while the main containers are used amongst the computationally heavy tasks. This is
triggered by a modified network driver on the host OS. The spare reservations are in a pool
and are shared amongst the VMs. This technique vastly improves the responsiveness of the
real-time network traffic. However, the real-time performance was not evaluated extensively.
The authors showed the ping response time performance with and without the addition of
their spare reservations. This work is limited to a very specific use case, however it definitely
shows promise for existing real-time Linux variants being used as real-time hypervisors.

Other Solutions

Other hierarchical scheduling designs have been implemented in other virtualization plat-
forms. Xen and KVM are very popular virtualization solutions, however there are other

Kevin P. Burns Chapter 2 - Related Work 11

hypervisors that offer unique characteristics that Xen and KVM lack. One such solution is
the L4 /Fiasco microkernel.

Fiasco has been used as a real-time hypervisor to observe the need of a ”flattened hier-
archical scheduler” [21]. Conventionally, Fiasco supports scheduling guest VMs as black
boxes. However, the authors show that this poses a distinct problem with hard real-time
applications. The Fiasco microkernel offers an interface that allows user level schedulers to
change parameters in the kernel level scheduler policy. The authors use paravirtualization
techniques (vmecalls) to "flatten” the guest and host schedulers. One key aspect to Fiasco
is its extremely low latency Inter-Process Communication (IPC) mechanims, which their
vmcalls take full advantage of. The flattening is done by allowing the guest real-time oper-
ating system to choose the underlying priority used on the host (Fiasco) via the interface
it provides. That is, the guest has task by task control over the VCPU process’ priority.
The results of this technique indicates an overhead incurred by the vmcalls that are used to
do the priority switch. The overhead was measured for a simple benchmark accessing the
host’s TSC. They target mixed-criticality systems but they do not go into much detail on
how the tasks are scheduled on the host. Their objective however is to use the knowledge
of which task is active on guest to update guest bandwidth accordingly and increase the
overall number of deadline hits. This work is limited in that it has not been fully evaluated
for real-time guarantees.

2.2.3 Introspection

Several solutions for virtualizing real-time systems assume paravirtualization support. The
solutions presented in this thesis aim to target legacy systems without the need for any
modifications of the guest. Therefore, we cannot rely on paravirtualization techniques and
instead require to gather information about the activities on the guest by way of virtual
machine introspection, shortened to introspection.

There exists several introspection engine implementations, supporting various combinations
of operating systems and hypervisors. These existing solutions focus on security and target
the monitoring of guest’s execution patterns for malicious and suspect activities. These
solutions include Nitro [22] and others [23, 24, 25, 26].

Nitro is a virtual machine introspection framework designed to monitor system calls made
in the guests and detect malicious activities. Nitro is Intel specific and is currently limited
to only trapping system calls and no other system events. As Nitro traps all system calls
made by the guest operating system and relies on filtering techniques, it is not suitable for
real-time systems because of the latency associated with catching system call made in the
guests.

Real-time introspection solutions have been proposed by Cucinotta et al. [27, 28]. How-
ever, these solutions, like Nitro, trace every system call and thus generate large amounts of

Kevin P. Burns

overhead.

Chapter 2 - Related Work

12

Chapter 3

Models and Assumptions

3.1 Task Model

We consider the periodic task model laid out by Liu and Layland [29]. Each task 7; has a
period and deadline denoted as 7; and D; respectively. For the design and implementations
seen in this thesis, we assume the deadline of a task is equal to its period. One execution
of a task can be described as a job and will be denoted as Tij , where j is the job’s iteration
being described. We denote the set of all tasks assigned to a specific guest g;, also referred

to as a taskset, as I';. The hyperperiod of a taskset I'; is characterized by the least common
multiple (LCM) of Ti for all ; € T';.

Table 3.1: Model Notation Reference

Name H Notation

Task || 7;

Job || 7/
Taskset, Guest || I';, g;

Period || T;

Deadline | D;

Worst Case Execution Time || C;

Chebychev-based Execution Time || ¢;

Distribution of Execution Times | Y;
Variance | Var()

Expected Value || E()
Probability || p;
Task’s Utilization || U;

For the probabilistic based static scheduler, presented in detail in Chapter 4 and extended
in 5, we use the probabilistic model defined by Yuan et al. [30] and then later used by Wu et

13

Kevin P. Burns Chapter 3 - Models and Assumptions 14

al. [31][32]. This model adds two additional characteristics to each task. That is, each task
now has an expected execution time E(Y;) and the variance Var(Y;) of execution times, both
derived from a distribution of execution times, Y;. Though we do not represent synthetic
tasks strictly by their Worst Case Execution Time (WCET), C;, we do not let synthetic
tasks exceed their alloted WCET. Thus, the original calculated WCET is respected.

The utilization U; of each task is defined as % Furthermore, the overall utilization of a
guest g; is defined as the sum of all utilizations in I';. We make the assumption that each
guest’s utilization is less than one, as each guest is alloted a single core.

3.2 Guest Model

A guest g; is defined as a virtual machine running on top of a hypervisor without privileged
access to the processor. Each guest has a set of real-time tasks, that are scheduled by the
guest’s scheduler and are uninfluenced by the hypervisor’s scheduler. For the evaluations
performed as part of this thesis, the operating system running on each guest is ChronOS
Linux. The guest scheduler for our evaluations is EDF, we leave RM and other schedulers
for future work.

Our focus is to support legacy, non-paravirtualized, systems. That is each guest acts as if
it is running on bare metal. Therefore, the environment presented to each guest is fully
virtualized.

3.3 Scheduling Model

We use a hierarchical scheduling model, with one host and multiple guests. Where the host
is responsible for the scheduling of the guests and each guest is responsible for scheduling its
real-time tasks. Each guest is limited to an EDF scheduler, while the host uses a constant
bandwidth server based scheduler. As each guest is only associated with one emulated CPU,
or virtual CPU (VCPU), we treat each VCPU as a server. Similar to the approached used
by RT-Xen [17].

Each guest is allocated exactly one processor. Therefore each guest operating system only
has access to one VCPU. We use partitioned scheduling, so these VCPUs are assigned to one
physical processor and cannot migrate. Our scheduling policy does not consider overheads
incurred by preemption of the the VCPU processes. Therefore they will be incorporated
in our experimental results. When assigning a physical CPU to a virtual CPU, a best-fit
heuristic is used.

Kevin P. Burns Chapter 3 - Models and Assumptions 15

3.4 Hardware Model

We consider a homogeneous multi-core architecture for our host system, with m processor
cores. For the scope of this thesis we will refer to a processor core simply as a processor. For
the purposes of our scheduling algorithms, all cores are treated as independent but identical
entities. We do not take into consideration the effects of the cache on performance.

Chapter 4

Uniprocessor Probabilistic
Hierarchical Scheduling

In this chapter we present our solution to schedule virtual machines (VM), and in consequence
their residing real-time tasks, onto a uniprocessor. All computations for this schedule are
done offline, thus the scheduler is static.

The goal of this scheduler is to give the user the option to reduce the CPU time reserved
for each VM, without dramatically degrading real-time performance. To do this, we base
our scheduler on the Compositional Scheduling Framework (CSF), developed by Shin et.
al. [33]. CSF takes in the set of tasks for each VM and produces a bandwidth allocation.
CSF will be described in more detail in section 4.2 of this chapter. Our implementation also
derives from the algorithm proposed by Wu et. al. in [31]. Wu’s algorithm calculates a
new execution time cap for a task, using the task’s execution time distribution’s mean and
variance as inputs. This algorithm will be discussed in more detail in section 4.1. Once
CSF has calculated bandwidth allocations, we make use of a constant bandwidth server to
schedule the VMs using the Earliest Deadline First (EDF) scheduler.

4.1 Task Level Scheduling

Real-time tasks do not always terminate close to their worst case, in many cases tasks
terminate far from this bound. Due to modern processor pipelines becoming more and more
unpredictable, along with operating system jitter, Worst Case Execution Time (WCET)
calculations are a non-trivial process. Therefore, there is unutilized CPU time. In soft real-
time systems, if we have access to the characteristics of a task’s distribution of execution
times, a more reasonable C; bound can be calculated. Where C} is a portion of the previously
allocated WCET, that guarantees a deadline won’t be missed given a user defined probability.
We do this by following the work presented by Wu et. al. [31].

16

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 17

The first step of the scheduling process is to compute the alternative execution time bound.
Let C; denote this bound for task 7;, given p; denotes the probability that every job of the
task will terminate before C; is reached. C; can be calculated via the following equation,
which is based on Chebychev’s inequality[31]:

p x Var(Y;) (4.1)
1—p

Where, E(Y;) represents the expected execution time in 7;’s distribution of execution times
denoted by Y;. Let, Var(Y;) denotes the variance of ¥;. The guarantee this equation provides
is that for any job j; of task 7;, its execution will not exceed the computed C; with a
probability no less than p. As these allocations can potentially produce a C; that exceeds
7.’s WCET, we reclassify the above equation as:

C; = min <WCET, E(Y;) + M) (4.2)
—p

The scheduler that resides in the guest VM then schedules its tasks using EDF. As each guests
is allocated one virtual CPU, the utilization cap is 1.0. We consider guests with much lower
utilization caps as a guest with a global utilization becomes uninteresting. As the scheduler
could only support the one guest. We consider the guest’s total utilization produced by using
our calculated Cj’s, rather than using each task’s WCET. Therefore, the WCET can still
produce a global utilization that exceeds 1.0. When performing our evaluations we assume
that all tasks on all guests use the same value for p. This way, performance fluctuations
were easier to measure. Using unique values of p on each guest or task would be interesting
future work.

4.2 Virtual Machine Scheduling

When a hierarchy of schedulers exists, like in our case of guest and host, there are different
ways to accommodate the needs of each tier in the hierarchy. We chose to do this by
implementing each VM as a server. Each server is allocated a runtime and period by the
host scheduler. More specifically, the server is a Constant Bandwidth Server (CBS)[34][35].
CBS guarantees that the ratio of % (i.e. the bandwidth) of each server only contributes
that same ratio to the overall utilization of the system. For example, if we issue a runtime
of 3us and a period of 10us to a server then its contribution to the overall utilization cannot
be greater than 0.3. In order to schedule a given VM as a server, we first need to generate

a runtime and period that consider the needs of the tasks residing in the guest. Where, the

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 18

runtime of a server is the amount CPU time executed by the server for every server period.
We accomplish this via CSF.

Let’s denote the server’s allocated period as Il and its runtime as ©, so that on every II the
server is executed for ©. The CSF algorithm takes in the set of tasks run on the server. The
algorithm outputs the runtime, which can be used to defer the server’s bandwidth. Given a
fixed period, the calculated budget must honor the following inequalities:

Where, Hr is the hyperperiod of the guest’s taskset I'. Hp is calculated as the least common
multiple of p; for all T; € I'. The Demand Bound Function dbf is dependant on the guest’s
scheduler, in this case we use EDF and can thus by computed by:

dbfopr(T,t) = |=] x C; (4.4)

T, el’ ¢

The Supply Bound Function sbf calculates the minimum possible resource supplies during
time t and can be described by:

BE(F) — t—(k+1)(I1-0), ifte[(k+1)I-20, (k+1)II- 0]
bf () = (k—1)O, otherwise

Equation (4.3) is used to compute the runtime each server. The execution time for each
task is given by Equation (4.2), rather then using the WCET. The fixed period is chosen
arbitrarily, this is chosen based on practical characteristics of KVM and thus bounded by
implementation constraints. The host uses these calculated runtimes and periods to schedule
the VMs using Linux’s SCHED_DEADLINE.

4.3 Schedulability

The theory behind CSF guarantees all deadlines of tasks inside a VM are met. Our model
is different than a pure CSF model, as we consider probabilistic distributions of execution
times.

Due to these distributions, we must consider two cases. The first case is when a job’s
execution time is less than C;. In this case, no deadline will be missed as this is covered by
the CSF guarantee. The second case is when the execution time of a job exceeds C;. This
case can cause a deadline miss. However, our model, derived from Wu et. al. [31], gives the
probability of such an occurrence.

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 19

4.4 Complexity

Though the complexity of our approach needs to be feasible, there is no need for our solution
to be bounded. This is due to the computations being calculated offline. The complexity of
our entire solution is similar to that of CSF and Wu’s solution.

The complexity of CSF is dependant on the hyperperiod of the taskset. The complexity of
calculating the runtime for each server is as follows. Equation(4.3) is bounded by, V0 < ¢t <
Hr, and thus depends on the value of Hr. For each t, the computations require computing
the DBF and SBF. The complexity of DBF is O(n), where n is the number of tasks. The
complexity of SBF is O(1). Another level of complexity is added by the range of runtimes
given. In that, each runtime is tested until the schedulability test succeeds.

4.5 Experimental Evaluations

To evaluate our probabilistic hierarchical algorithm (PHA) static scheduler, we performed
several experiments. The first set of experiments conducted, we used a real-time synthetic
benchmark. These simulations were strictly CPU load tests, that make use of tasksets that
emulate real-world light workloads, generated based on the Baker model [36]. The details
of these experiments can be found in Section 4.5.2 of this chapter. We then furthered our
experimentation by using a real-world real-time scenario. That is, we extended the open
source MPEG Audio Decoder library, libmad, by adding real-time parameters. This allowed
us to evaluate our solution using authentically generated execution time distributions. We
used a sample of 10K execution times to derive distribution characteristics used in our PHA
calculations. We then evaluated the impact our solution had on the real-time properties of
our modified libmad implementaiton.

4.5.1 Evaluation Environment

We run the tests on an Intel Xeon E5520 processor with eight cores at 2.27GHz, and 16GB
of RAM. The host is running Ubuntu Server 10.04 with Linux kernel 3.15.0 paired with
KVM/QEMU version 0.12.3 as the hypervisor. On each guest, we used Ubuntu Server 10.04
with Linux kernel 3.0.24, patched with our ChronOS 3.0 patches.

The benchmarks and tests were run on VMs, each with a single VCPU. Each VM’s VCPU
was that is pinned to the same isolated CPU. We mad use of the isolcpus kernel command
line argument to dedicate specific cores to the KVM VCPU processes.

For our experiments, we discovered two notions of time represented in virtual machines: vir-
tual time, measured via clock_gettime (), and physical time, obtained by reading the CPU’s
Time Stamp Counter (TSC) register. We tweaked KVM’s paramters to disable dynamically

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 20

changing of the TSC OFFSET portrayed in the VCPUs, in order to maintain reliable phys-
ical time measurements. Furthermore, because the VCPU is pinned to a single CPU, we are
mitigating any possible inconsistencies due to subtracting TSC reads from different CPUs.
Compared to virtual time, the physical time has an absolute connotation, while the former
is relative, because the TSC does not pause when the virtual machine is idle. Thus we chose
to convert all the time measurements in our benchmarks to use physical time.

4.5.2 Synthetic Benchmark

For our real-time benchmark, called sched_test_app, we generated synthetic tasksets based
on the Baker model [36], but extended to fit our probabilistic model. Given this model, a
light workload is characterized by the execution time generation bounds, of 1% and 10%
of the tasks’s period. This generation is done in a random uniform manner. We chose to
use uniformly distributed work loads, as they are represent real-world conditions and grant
our sched_test_app a wide variety of input parameters. Specifically, the Baker model was
designed to stress EDF schedulers.

Therefore, we chose to evaluate the EDF scheduler provided by ChronOS. We constructed
a series of tests evaluate our PHA static scheduler. However, sched_test_app was originally
designed to consider task’s worst case execution time (WCET). That is, each synthetic job
would execute its worst case every time. Therefore, we modified sched_test_app to take in
distribution characteristics. That is, instead of each job executing one exact same amount
of time, our modifications allow the execution times to follow a normal distribution. To
construct these distributions we implement the Box-Muller technique[37], which takes in a
distributions’ expected value and variance, then outputs a point inside the desired distribu-
tion. Since we are using normal distributions, a distributions mean and expected value are
the same.

To vary these distributions we decided to generate sets of tasks that have means to a percent-
age of the specific task’s WCET. For example, if we have a task 7; with a WCET of 100us,
then we can set our distribution’s mean to be 0.30 x WCET. We chose to generate tasks
that use 30%, 50%, and 70% of their WCETs. With these three distributions, we expect
those generated with means equal to 30% of their wecet to have light CPU utilizations and
distributions with means 70% their wcet to represent higher CPU loads.

Now that we have distributions, we can generate runtime allocations for each of our VMs.
Remember, our VMs are treated as servers in our PHA scheduler, on the host. Therefore,
we need to generate a runtime and period to each VM. We do this by the Compositional
Scheduling Framework (CSF) technique [33], described in Section 4.2 of this chapter. Before
we input our tasksets into their framework, we first apply the Chebychev based equation
developed by Wu et. al. [31]. This outputs a new execution time bound, ¢;, that can be
tweaked by an input probability, p;. More details on this process can be found in section 4.1
of this chapter.

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 21

We varied p from 10% to 90% and plot this on the x-axis. For the y-axis we measure the Dead-
line Satisfaction Ratio (DSR) given by our real-time synthetic application sched_test_app.
DSR is the ratio given by {2l taSk(St)();;fiZjll{isI;es missed) These tests were run on three VMs, the
task sets were generated with a utilization cap of .3. Where a task’s utilization is described
by %, here the execution time is denoted as ¢; and the period is T;. The taskset’s utilization
is described by V7 € I'" That is, the bandwidth allocations for each VM cannot exceed the
available resources. Figure 4.1, shows the results of the evaluations performed with a mean
of 30% the WCET, for each allocation output by CSF. Likewise, Figures 4.2 and 4.3, show

the results from varying the means to 50% and 70% the task’s WCET.

1

0.995

0.99

0.985

0.98

Deadline Satisfaction Ratio (DSR)

0.975

0.97

vm-1 ——
vm-2

0.965 - vm-3 —k— |
weet) vm-1 ———

I I I I I I
10 20 30 40 50 60 70 80 920

Figure 4.1: PHA for uniprocessor with expected value of 30% the WCET

0.995

0.99

0.985

0.98

0.975

Deadline Satisfaction Ratio (DSR)

0.97

vm-1 —+—

0.965 vm-3 —¥—
weet) vm-1 ———

! !
10 20 30 40 50 60 70 80 90

Figure 4.2: PHA for uniprocessor with expected value of 50% the WCET

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 22

0.995 -

0.99

0.985 -

0.975 -

Deadline Satisfaction Ratio (DSR)

097

— -

P ;

965 _—
weet) vm-1 ———

10 20 30 40 50 60 70 80 90

Figure 4.3: PHA for uniprocessor with expected value of 70% the WCET

The three figures all share a similar trend. That is, as the probability p; increases, so does
the DSR. This outcome is due to these probabilities’ influence on the bandwidth allocation.
As p parameter we tweak to reduce the deadline satisfaction guarantee for each task, then
we expect to see this trend on a per task level. As we input the same p for each task in
the taskset, the trend of the entire taskset should mirror that of the individual task. If
we compare each figure to the other, we notice as the expected value of the distributions
increase, the overall DSR decreases. This is especially obvious when p = 90%. This is due
to the overall utilization of each task being closer to the worst case.

4.5.3 Practical Scenario Evaluations

For the full stack evaluations, we chose to implement a real-time version of the open source
MPEG Audio Decoder, or libmad. The MP3 codec lacks specific guidelines for decoding
delays, therefore many decoders lack deterministic execution times, this coupled with system
jitter and overheads, the distribution normalizes. We discovered the use of libmad in [38§]
and noticed desirable distribution trend. Our solution is amenable to any distribution of
execution times, we chose MP3 decoding times as they best demonstrate the characteristics
of our scheduler. Figure 4.4 show five distributions we generated using the libmad library.
These distributions were generated using an isolated environment. That is, we gave the
libmad processes real-time priority and affined them to a single processor.

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 23

Song 1 Distribution Song 2 Distribution
s
8 5
3 <
8
8
3
g |
8
S 4
8
3
=
g
3 z
s g | 2§+
g 8 g
i [
3
2 |
&
3
8
3
8
o J ! il o J i
T T T 1 T T T 1
50000 100000 150000 200000 50000 100000 150000 200000
Execution Time (ns) Execution Time (ns)
Song 3 Distribution Song 4 Distribution
s
g .
=
2
=
<
3
2
8
s
g |
8
3
g |
> > @
3 3
H H
§ §
3 E
z z
e g e
o 84 P
« 2
g 4
<
3
8 3
g
o i o J HM\M "
T T T 1 T T T T T T T 1
50000 100000 150000 200000 80000 100000 120000 140000 160000 180000 200000 220000
Execution Time (ns) Execution Time (ns)

Song 5 Distribution

Frequency
300 400 500
| | |

200
I

100
I

T T 1
50000 100000 150000 200000

Execution Time (ns)

Figure 4.4: MAD execution time distributions for five different songs

Now that the distributions have been generated, let’s step through the entire process of
scheduling a VM using our PHA static scheduler. Recall, the motivation for our work is
to identify and make use of the excess time between a task’s absolute worst case execution

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 24

time and our calculated ¢;. In soft real-time environments some execution times may not be
deterministic, like MP3 decoding, and can be described by a normal distribution curve. When
this is the case, the absolute worst case execution time can be way off the distribution. This
can be seen in Figure 4.5, the dashed red line shows the maximum value of the distribution
curve. As can be seen, this execution time does not characterize the standard behavior of the
curve. Therefore, overallocation is a distinct possibility. We decided to add a more practical
estimation of WCET, this is represented by the light red dashed line. Which is located on
the 99th Percentile of the distribution.

_ --- WCET (Maximum Value)
WCET (99th Percentile)

1000

Frequency
600 800
Il Il

400
|

200
|

““MM .

[T 1
100000 150000 200000
Exectution Times (ns)

RN USROG U U

1

Figure 4.5: MAD distribution of song4 with execution bounds

With this new WCET, we zoom in on Figure 4.5 and create Figure 4.6. Each green line
represents a new value of ¢; corresponding to different values of the input p between the
range of 10-100% probability of satisfaction.

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 25

WCET (99th Percentile)
Probability (0.10)
""" Probability (0.30)
Probability (0.50)

-~ Probability (0.60)
---- Probability (0.70)
--- Probability (0.80)
(0.85)

(0.90)

(0.95)

0.00020
|
|

0.00015
|

—— Probability (0.85
————— Probability (0.90
Probability (0.95

Density
0.00010
|

0.00005
|

1 ¥ -

1
100000 110000

0.00000
L

T T
70000 80000
Execution time

Figure 4.6: MAD distribution of song4, a closer look

- WCET (Maximum Value) o
WCET (99th Percentile)

Execution Times
250000 300000 350000 400000
| | |

200000
|

150000
|

100000

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.7: Characteristics of Wu’s Chebychev equation
Figure 4.8 shows a comparison of bandwidth allocations by the CSF calculator mentioned

previously. For each distribution seen in Figure 4.4, we created a task description file for.
The description file contains the parameters for Chebychev and CSF. We treated the set of

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 26

all tasks as our taskset, which acted as the input into the CSF calculator. The figure below,
Figure 4.8, shows how the various inputs for p affect the overall bandwidth allocation for
each VM and how they relate the worst case execution time(s).

0.75

Chebychev wlith 0.1 ===
Chebychev with 0.2 m===m
07 F Chebychev with 0.3 === |
Chebychev with 0.4 ===
Chebychev with 0.5 ===
0.65 Chebychev with 0.6 ===
) e i Chebychev with 0.7 === .
L2 Chebychev with 0.8 ===
D Chebychev with 0.9 m===m
3 0.6 - WCET (99th Percentile) .
E WCET (Maximum Value) =
<
@ 0.55 - .
c
0
T 05 -
o
<
£ 045 4
s
©
[
©
m 04 .
»
L
%)
© 035}]
0.3 | _
0.25 . !

-1 -0.5 0 0.5 1

Figure 4.8: Comparison of CSF bandwidth allocations

As demonstrated first in Figure 4.5, then later in Figure 4.8, the worst case allocation selected
for this example distribution is over exaggerated for soft real-time scenarios. The comparison
of allocations also illustrates how many VMs could be assigned to a single processor. That
is, imagine the case of wanting to run three VMs on a single processor. If we took the worst
case bandwidth allocation, which utilizes greater than 70% of one processor. Therefore for
the one processor case, this would not work as it requires 210% of the CPU. If we instead use
the 99th percentile of the distribution as the WCET, our distribution is about 33% of the
processor. Which would indeed fit on one CPU, but we lose our 100% guarantee offered by
the actual worst case. Therefore, our interface allows the user to select the exact probability
to fit their needs. That is, we give the user the power to vary the probability until all of
their VMs fit on one CPU, while knowing what probability of deadline satisfaction is lost.

Lastly, we implemented real-time deadline satisfaction calculations into the full stack. That
is, we measured the Deadline Satisfaction Ratio (DSR) for our libmad implementation when

Kevin P. Burns Chapter 4 - Uniprocessor Probabilistic Hierarchical Scheduling 27

decoding the same five songs on each VM simultaneously. This is very similar to our results
found in Section 4.5.2. Our libmad results can be found in Figure 4.9.

082 T T T T T T

0.815 d

0.81

0.805

0.8

Deadline Satisfaction Ratio (DSR)

0.795 songl —r—

song2
song3 —x—
song4 —&=—

song5
079 1 1 1 1 1 1 1 T

10 20 30 40 50 60 70 80
Probability

0.82 T T T T T T T 0.82

0.815 |- 9 0.815 |
0.81 -

0.805 |- /

Deadline Satisfaction Ratio (DSR)
Deadline Satisfaction Ratio (DSR)

0.795 E/

L o 7 B . | | 7
. | . 7 /
\ /
/
/ S /
/ — /
/
songT —— || 0.795 | =
song2 -
song3 —*— =
- song4 —E&—
song5 Sons
i | | ‘ I I I I I I I I

I I
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Probability Probability

Figure 4.9: DSR using real-time Madplay for three virtual machines

These results follow similar trends to the synthetic benchmarking results, in Section 4.5.2. In
that, as the probability p increases, the DSR increases. This again, is due to the relationship
of p to the bandwidth allocated to each VM. We also see that each song shares similar
deadline satisfaction ratios. This is due to nature of the MP3 decoder, although the delay
for decoding is not defined, the distribution should not vary depending on the song being
decoded.

Chapter 5

Multiprocessor Probabilistic
Hierarchical Scheduling

Chip manufacturers hit a thermal barrier when creating processors capable of higher clock
speeds, ultimately leading to an unsustainable increase energy costs. Thus, there was an
industry shift from the uniprocessor design to multi-core architectures. As multi-core archi-
tectures become more ubiquitous, we see them being used in low power industrial systems,
as well as large servers. With core counts up to 64 for one machine. With this transition,
we can modify our design to utilize multi-core architectures to support a scalable number of
virtual machines.

In Chapter 4, we introduced a uniprocessor static scheduler based on our Probabilistic Hierar-
chical Algorithm (PHA). This solution expands upon the Compositional Scheduling Frame-
work (CSF) [33] and Wu’s work in probabilistic scheduling in [31]. In this Chapter, we
extend this single-core PHA static scheduler to the scope of multiple processors. We do this
by means of partitioning method to statically distribute the VMs to each processor. That
is, we distribute the VMs using their bandwidth allocations and the best-fit bin packing
heuristic. For our solution, we assume VMs do not share memory in any way. After the
processor has been assigned a set of VMs, they are scheduled following the uniprocessor
solution depicted in Chapter 4.

5.1 Approach

One of the main goals of this thesis is to provide a method of reducing the amount of CPU
time a real-time virtual machine is allocated. That is, we would like to allow the number
of VMs to fit on the smallest amount of processors necessary. Where the necessity can be
addressed by adjusting the probability p of each task on the VM. Leaving it to the user to
determine what the level of guarantees are necessary for the system.

28

Kevin P. Burns Chapter 5 - Multiprocessor Probabilistic Hierarchical Scheduling 29

The complexity of the multiprocessor PHA scheduler is similar to the uniprocessor version.
With the additional complexity added by the partitioning stage. As we are scheduling
the VMs based on their fixed bandwidth allocations given a set of CPUs, this problem
becomes synonymous with the well-known bin packing problem. The complexity of such a
problem has been categorized as a combinatorial NP-hard problem. Due to the well known
complexity of bin packing, efficient approximations have been developed to substitute the
optimal solution. One of these heuristics is known as the best-fit decreasing strategy. We
chose the strategy for our partitioning solution. This heuristic has been proven to add no
more than % Optimal solution + 1 bins and adds O(N log N) complexity to the overall
scheduling solution. The best-fit algorithm places the puts the current VM in the on the
CPU that creates a “tight” fit. That is, the chosen CPU is one that would have the smallest
empty space left.

5.2 Experimental Evaluations

We first present results of combining our modified CSF allocation calculator with the best-fit
heuristic. We then extend the experiments performed for the uniprocessor PHA design to
the realm of multi-core. The evaluation environment is similar to the one used in Chap-
ter 4. With the addition of another processor, to evaluate our partitioning scheme. These
evaluations can be split into two categories, synthetic benchmarking and practical scenario
evaluations. The synthetic benchmarking is done by using our before mentions sched_test_app
benchmark with synthetic real-time workloads. The practical scenario evaluations make use
of a real-time audio decoder library we implemented to produce real-world distributions
on-the-fly.

5.2.1 Number of Processors

We present a static analysis of the scalability and effectiveness of our partitioning solution
in Figures 5.1 and 5.2. In these figures, we use the Baker model tasksets generated for
use with our sched_test_app. We used the light workload utilization levels, discussed in
the evaluation section of Chapter 4. We generated 100 tasksets for each step on the x-
axis. That is, each VM point added to the plot is the average of 100 iterations. We start
with one VM and perform our bandwidth allocation calculations based while varying the
probability. Each green line represents a different probability indicated in the legend. We
try to simulate different distributions when evaluating our uniprocessor PHA allocation
calculator. Our solution takes in an expected value and a variance of a distribution of
execution times, as inputs. For Figure 5.1 we used an expected value of %WCET and a
variance of (§WCET)?. The red line represents this WCET value, it should be noted that
these distribution characteristics are pessimistic representations of real-world distributions.
Specifically, the distribution characteristics used for Figure 5.2, the expected value here was

Kevin P. Burns

Chapter 5 - Multiprocessor Probabilistic Hierarchical Scheduling

30

calculated as %WCET with the same variation as the previous figure. As discussed in
Chapter 4, our solution does not allow for allocations larger than that of the worst case. We

show these calculations for to broaden the scope of evaluations.

10

WCET
Probability (0.10)
Probability (0.50)
Probability (0.70)
Probability (0.85)
Probability (0.90)
Probability (0.95)
(0.99)

- Probability (0.99

Required number of CPUs

Figure 5.1: CPU allocations of distribution with expected value of 30% WCET

Number of VMs

20

We see in Figure 5.1, that our solution takes less CPUs as number of VMs increase for
probabilities less than 0.95. Which seems to line up with the worst case allocations. It is
not unlikely for our solution to allocate more space than the worst case and here is why.
With the variation and expected value input to our solution, the output is guaranteed for
the probability p. It can only estimate the worst case, based on the variation. Thus, the
worst case here is very optimistic as the expected value is so close to it. However, we can
conclude from these plots that our solution will be able to scale as the number of virtual
machines increases.

Kevin P. Burns Chapter 5 - Multiprocessor Probabilistic Hierarchical Scheduling 31

— WCET <.
Probability (0.10;

(0.10)
Probability (0.50)
~—~ Probability (0.70)
—— Probability (0.85) .
-~~~ Probability (0.90)
Probability (0.95)
-~ Probability (0.99)

Required number of CPUs

Number of VMs

Figure 5.2: CPU allocations of distribution with expected value of 70% WCET

We show in Figure 5.2 the effects of a distribution with a higher demand. That is, the
expected value is closer to the worst case bounded by WCET. As our solution has a variance
of (WCET)?, the guarantees require more CPU time to meet deadlines.

5.2.2 Synthetic Benchmark

We altered the single-core scheduler test configurations to accommodate our multi-core sched-
uler. We generated tasksets in the same manner, except for modifying the taskset’s total
utilization cap. For this test we created six VMs and randomly generated the utilization
cap (between 0.2 and 0.3) such that the total utilization of all six VMs would be greater
than 1.0. This better illustrates our solution’s goal of fitting more VMs on a smaller set of
CPUs. As having static utilization levels would represent the same allocations for every it-
eration. This is done off-line using our partitioning scheme based on the best-fit bin packing
heuristic. The distribution characteristics for each task in the tasksets were calculated in the
same manner, that is we simulated normal distributions with expected values equal to 30%,
50%, and 70% their WCET. We ran each test for twenty iterations and plotted the average
Deadline Satisfaction Ratio (DSR) of these iterations.

Kevin P. Burns Chapter 5 - Multiprocessor Probabilistic Hierarchical Scheduling 32

0.995

&

=} 0.99

il

T

i

f=4

8

g 0.985

2

T

%]

[

£

3 0.98 |- b

i3

(=]
vm-1 —+—

0.975 - vm-2 ¥
vm-3 —*—
vm-4 —5—
vm-5
0.97 L L L L L T
30 40 50 60 70 80

Figure 5.3: PHA for multi-processor with expected value of 30% the WCET

0.995 -]

[

[79]

=)

8

T

[id

f=4

p=]

§ 0.985 - b

2

T

[%]

i

£

3 0.98 |- b

j3

[=]
vm-1 —+—

0.975 - vm-2 1
vm-3 —*—
vm-4 —5—
vm-5
0.97 L L L L L T
30 40 50 60 70 80

Figure 5.4: PHA for multi-processor with expected value of 50% the WCET

Kevin P. Burns Chapter 5 - Multiprocessor Probabilistic Hierarchical Scheduling 33

0.995 -

0.99

—
0.985

0.98

Deadline Satisfaction Ratio (DSR)

0.975

0.97

T
30 40 50 60 70 80

Figure 5.5: PHA for multi-processor with expected value of 70% the WCET

These results demonstrate trends similar to those found in Section 4.5.2 of Chapter 4. That
is as as the value of p increases, so does the overall DSR of the taskset. As well as showing
that as the demand of the distribution increases the overall DSR decreases. Thus, making
our PHA static solution scalable to multiple processors. As these distributions are synthetic
and designed to show a broad and generic scope of distribution characteristics, we take a
look at how our multi-core extension of the PHA scheduler performs with an audio decoding
application that generates a normal distributions more representative of real-world scenarios.

5.2.3 Practical Scenario Evaluations

We use five instances of the open source MPEG Audio Decoder library, libmad, to show
how our multi-core extensions to our PHA static scheduler scale to handle more practical
realistic distributions. The process of allocating a bandwidth to a VM based on the distri-
butions, laid out by the five songs used as inputs to libmad, is identical to that described in
detail in Section 4.5.3 of Chapter 4. Though, we modified the evaluation setup slightly to
accommodate our multi-core scenario.

We extended the evaluations to include six virtual machines. Each running five instances of
libmad, decoding a different song for each instance. We estimate the distribution character-
istics used for our PHA solution based on a distribution of execution times generated while
decoding 5000 frames. We modified libmad to fir our periodic model by adding a period for
each frame decoded. This allows us to create utilizations of approximately 0.30. Figures 5.6
and 5.7, show the results of these tests from the perspective of each VM. This shows that
temporal isolation is respected amongst VMs.

Kevin P. Burns Chapter 5 - Multiprocessor Probabilistic Hierarchical Scheduling — 34

0.81

0.805

Deadline Satisfaction Ratio (DSR)

0.79 |- B
0.785 | songl —+— |
song2 ——
song3 —*—
song4 —=—
song5
078 Il Il Il Il Il
10 20 30 40 50 60 70
Probability
081 081
0.805 [g 0.805 - 1

0.8

0.795

Deadline Satisfaction Ratio (DSR)
Deadline Satisfaction Ratio (DSR)

079 | q 0.79 | b

0.785 songl —— [0.785 - songl —+— [
song2 —x— song2 —x—
song3 —*— song3 —*—
song4 —&— songd —a—
song5 songs

078 Lt 0.78 Lt

10 20 30 40 50 60 70 10 20 30 40 50 60 70
Probability Probability

Figure 5.6: PHA for multi-processor with practical workload for VM’s 1,2,3

Kevin P. Burns

Deadline Satisfaction Ratio (DSR)

Chapter 5 - Multiprocessor Probabilistic Hierarchical Scheduling

0.81

0.805

0.795

0.79

0.785

0.78

songl —— |7
song2
song3 —*—
song4 —=—
song5

20

30

40
Probability

0.805

0.8

0.795

Deadline Satisfaction Ratio (DSR)

0.785

Deadline Satisfaction Ratio (DSR)

Figure 5.7: PHA for multi-processor

40
Probabilty

0.81

0.805 [

08 [

0.795

0.785

50 60 70

10 20 30 40 50
Probability

with practical workload for VM’s 4,5,6

35

Each virtual machine shows the trends produced by our synthetic benchmark. That is, as the
probability p increases, the DSR of each song also increases. We also notice that extending
our PHA solutions to the multi-core domain does not diminish the levels of deadline satis-
faction. However, notice that we had to trim the maximum value of p from 85%, like used
for the uniprocessor libmad evaluations, to 70%. This was an implementation restriction
caused by our use of Linux’s cpuset infrastructure to pin each virtual machine process to
a processor. This, in combination with SCHED_DEADLINE does not allow for utilizations

higher than 90% a given processor.

Chapter 6

Real-time Introspection

Some real-time tasks can have execution times that are not close to the allocated Worst Case
Execution Time (WCET). That is, if we take a distribution of a task’s execution times, the
variance can be much greater than zero. Therefore, a static solution can be limited, as the
output bandwidth of the scheduler will be fixed for each VM. Thus, we present a light-weight
real-time introspection engine, as part of our KairosVM project, to bridge the hierarchy of
completely none communicating schedulers. This contribution is material of a paper [39],
that has been accepted and will be presented at the VtRES 2014 workshop.

Introspection is the concept of making the hypervisor aware to what is executing on a guest
virtual machine. We choose to do this for a limited scope. The end goal of our introspection
implementation is to increase the deadline satisfaction by adding a dynamic aspect to our
solutions presented in Chapters 4 and 5. In this chapter we present an engine to make
this possible. This mechanism needs be light-weight and must not dramatically influence
the real-time guarantees on the guest. This introspection engine acts as the basis for our
proposed KairosVM hypervisor, first presented in [39].

Event trapping has been used in introspection implementations like in Nitro [40]. However,
the Nitro system traps all the system calls made on the guest. Nitro was developed for
use in security and seeks malicious patterns on each guest. Nitro’s interface provides the
functionality to perform real-time system tracing. However, due to the design of Nitro, there
is a massive amount of overhead. Thus, we introduce our KairosVM introspection engine to
reduce these overheads to more practical levels.

6.1 Approach

Our introspection engine, residing in KairosVM, is only tacking the activity of real-time tasks
running on each guest operating system. Therefore, we chose to trap real-time oriented events

36

Kevin P. Burns Chapter 6 - Real-time Introspection 37

on the guest to present them to the hypervisor’s scheduler.

6.2 Implementation

We implemented the introspection approach, described in the former section, by injecting
undefined illegal instructions, presented by x86 assembly, inside the guest binary. We im-
plement a prototype of our design in KVM version 0.12.3 running on Linux kernel version
3.4.28 and later ported to version 3.15.0-rc7.

To be able to trap events generated by guest systems, we first must perform some initial-
ization. The guest operating system must be online. Even if the scheduling interface of the
guest’s real-time operating is known, the entry point is still unknown. Various techniques
exist to find these points: symbol listing, disassembling, exploiting debug symbols can be
performed offline on the guest’s binaries. For our prototype we choose to follow the sugges-
tions by [41, 42] and make use of the Linux kernel’s System.map. The System.map contains
the symbol list of the kernel and is usually installed to the /boot/ directory in Linux and
can also be accessed via the /proc/kallsyms/ kernel interface.

For our prototype we use a Linux variant, ChronOS, as the guest operating system. There-
fore, we choose to target system calls specifically. Assuming the system call numbers are
known to us, via our pluggable interface, we can derive them using the sys_call table
symbol from System.map. The sys_call table can be accessed in various other ways, but
they are more complicated.

Once the address of the entry point is known, it is stored along with the first m bytes. The
m bytes are stored in a hashmap, for use with KVM’s emulation capabilities later. This
entry point address is used to inject the undefined instruction used in the event trapping
process.

Our event trapping mechanism injects an illegal instruction, specifically undefined instruc-
tion, ud0, at the addresses where each real-time scheduling function is located. The ud0
instruction was specifically selected, as the udl and ud2 instructions presented by x86 as-
sembly, are much more commonly used by the Linux kernel. For example, the ud2 instruction
is used by the kernel’s BUG() macro, this would therefore generate a large amount of false
positives. The undefined instructions are undocumented in Intel’s x86 specifications, how-
ever AMD’s documentation can be found here [43]. By default, Intel’s VTx virtualization
extensions trap undefined instructions via KVM, this is in order to emulate instructions
that are undefined by a guest. Our implementation makes use of this, by inserting the
ud(instruction, a real-time specific event will trigger the pre-existing traps provided by the
processor’s virtualization extensions. Thus a context switch is made into the hypervisor.

Kevin P. Burns Chapter 6 - Real-time Introspection 38

Software stack:
executes applications
v
Software Stack:
executes illegal /
| undefined instructions | Guest OS

,,,,,,,,,,,,,,,,,,,,, T cuestUs
e ~N .
RT Hyp: VTx: traps unde- Hypervisor
emulates L fined instructions |
saved instr. ¥

A

. Hyp:
RT Hyp: notifies) RT Hyp: lyp h
the R,T SCheduler 1S addr. reglst.? emulate the
istruction

A

Hyp: can the

instr. be emulated? Yes

Figure 6.1: Introspection implementation flow chart

Before the execution of the guest virtual machines, the system specific addresses are inserted
into a hashmap by the initialization phase. Our implementation references this map when
a trap is triggered, recall the host is now in kernel mode, if it detects an undefined instruc-
tion that it did not inject, the hypervisor will continue its original execution path. If the
undefined instruction was injected by our implementation, this is where we send the guest
task’s real-time parameters is passed to the host’s real-time scheduler. Once the real-time
information is passed along, we emulated the real-time system call on the guest. This is done
by use of x86_emulate_instruction(), provided by KVM. Once emulation is complete our
introspection engine returns control to the virtual machine.

Due to our introspection engine implementation using system addresses to trap events, we are
not dependant on any one real-time operating system for guests. That is, our implementation
allows us to present the user with an interface to change the real-time events trapped to
those required by their real-time guest operating system. Therefore, our only restriction

Kevin P. Burns Chapter 6 - Real-time Introspection 39

for guest operating system is they need a separate address space for kernel and user space.
More specifically, guest operating systems that implement one common address space for all
processes, like VxWorks, are not supported. For those operating systems that are supported,
we present a plugin interface, as illustrated in Figure 6.2.

S

4 ™ [' '

VM A VM B VM N

Plugin - RTOS A Plugin - RTOS B

Plugin - RTOS N

Figure 6.2: KairosVM architecture layout

6.3 Experimental Evaluation

We performed several experiments to evaluate our lightweight real-time introspection engine.
These experiments can be separated into two different categories, overhead measurements
and real-time synthetic benchmarks. The overhead measurements measure how much time it
takes to execute a real-time system call with and without our trapping mechanism enabled,
we compare these results with those generated using the Nitro system’s mechanism. We do
these evaluations in two different scenarios. First, we only run an application that makes
real-time system calls with nothing else running on the guest system. Second, we run a
none real-time system call intensive application in the background while repeating the first
scenario. The second group of evaluations are synthetic real-time application. We make use
of our sched_test_app benchmark, described in detail in Section 4.5.2 of Chapter 4. We ran
this benchmark to determine the effect of our introspection on the real-time performance.

Kevin P. Burns Chapter 6 - Real-time Introspection 40

6.3.1 Evaluation Environment

We ran the tests on an eight core Intel Xeon E5520 processor at 2.27GHz and 16GB of RAM.
The host operating system is Ubuntu Server 10.04 with Linux kernel version 3.4.82, patched
with ChronOS 3.4, and KVM/QEMU version of 0.12.3 as the hypervisor. For the guest
operating system we used Ubuntu Server with Linux kernel 3.0.24, patched with ChronOS
3.0. Our comparisons were using vanilla KVM, KVM with our introspection modifications,
and Nitro on a set of benchmarks. We backported Nitro from Linux 3.13.0-r¢8 to Linux
3.4.82 for fair comparisons.

The tests were run on a single VM with a single VCPU. This VCPU process was pinned to
a single processor. We isolated the processor using isolcpus. We also heed the advice of
Kiszka in [19] and raised the priorities of all QEMU threads.

6.3.2 Overhead Measurements

For the overhead measurements, we created a simple benchmark to calculate the latency of
each system call required for for a real-time application, running on our ChronOS patched
Linux kernel. This simple test ran for 1000 iterations, where the plotted value was the
average latency. We plot these overheads in Figure 6.3. As in our introspection engine
implementation the user has the power to select which system calls she/he wants trapped,
we select only begin_rtseg and end_rtseg (Notice, they are indicated by a * in Figure 6.3).
In the interface provided by ChronOS, these system calls contain parameters necessary for
the real-time host scheduler. Specifically, a task’s period, deadline, and execution time.
Conversely, the Nitro introspection engine instead captures all of the system calls made on
the guest operating system. It then uses filtering techniques to present the user with the
requested information.

Kevin P. Burns Chapter 6 - Real-time Introspection 41

N T T T T T T
qf?/ Not Virtualized =
Vanilla KVM =
o1 KairosVM = [+
\ .
> Nitro ==
v
v’(\ i 7
v
) 1
8V
3} or i
>
S
NI W i
N
&
v
O i
AT 4
<
v
%}
8
v 6?9 ‘ % 0@&‘ %o Sy Sy
% N (o4 4 (5% %
\/;:9 ON S e s
() 9 % @f @/(
9« 2 s, O
(3 %, /}Q
(/2 o

Figure 6.3: Comparison of system call latencies (* indicates the system call being trapped/-
traced in KairosVM/Nitro)

The Figure 6.3 shows that our KairosVM introspection engine is a large improvement over
the state-of-the-art Nitro implementation, for trapped system calls. The overhead incurred
is less than half that of Nitro when compared to the vanilla KVM latency. For the system
calls that are necessary for a real-time application, though not necessary for a real-time
host scheduler, our implementation overhead is the same as vanilla KVM. However, Nitro’s
engine has latencies that far exceed our overhead, even when our syscall trapping is engaged.
That is, the overheads of begin_rtseg and end_rtseg for our KairosVM implementation are
lower than that of Nitro for system calls that we are not interested in. It is Nitro’s filtering
techniques that add the additional overhead seen for the two rtseg system calls. For use in
real-time systems, it is also important the latencies are consistent and bounded. We show in
Figure 6.3 error bars using the standard deviation of the measurements. We see that Nitro
is thus unsuitable for real-time environments, as the variance is quite large when compared
to the other results.

Therefore, we conclude that our KairosVM introspection engine is suitable for real-time
hierarchical solutions. To further our analysis, we evaluate the effect that this latency has
on real-time performance of our synthetic real-time benchmark.

Kevin P. Burns Chapter 6 - Real-time Introspection 42

6.3.3 Synthetic Benchmark

The goal of this introspection is to provide a mechanism for use in real-time virtual machine
schedulers. Thus, we need to provide evaluations to the effect the overhead incurred has on
real-time performance of a virtualized real-time operating system. Thus, we provide a set
of tests to determine the depth of the effect each mechanism has on our synthetic real-time
benchmark, sched_test_app which is packaged with our ChronOS distribution.

Our test application takes in descriptions of tasksets based on the Baker model [36]. For
these evaluations we used a synthesized medium workload. According to the Baker model,
a medium workload is defined by the execution time generation bounds. The bounds of
generation for a medium workload are 10% and 40% the task’s given period. Thus, the
utilization per task, defined as %, is between 0.1 and 0.4. All tests compare deadline
satisfaction ratios (DSR) when running with our KairosVM engine, the Nitro introspection
engine, and with vanilla KVM as a control. These are performed for processor utilization

steps of (.25, .50, .75, and 1.0).

We used two scenarios for the tests we ran. We first ran our benchmark without any back-
ground tasks. That is, the only system calls called during the tests were by our synthetic
real-time application. Our second scenario was rerunning our tests with a system call inten-
sive application, specifically Bonnie++ [44]. Bonnie is a benchmark developed to evaluate
hard disk and file system performance. Therefore, the majority of system calls are 1/O re-
lated. Every point on the following plots are averaged out of twenty iterations. Figure 6.4
shows the results from the first scenario of tests. As total utilization increases, we expect
more deadlines to be missed. Therefore, the trend of the “No Introspection” curve is ex-
pected. This plot confirms that our introspection is not intrusive to the real-time guarantees
of our real-time application. Whereas, the number of deadlines satisfied diminishes for the
Nitro case.

Kevin P. Burns Chapter 6 - Real-time Introspection 43

Kairo’i\.{M ——
] itro .
0.95 No Introspection ---%--

O'9425 50 75 100

Utilization Level

Figure 6.4: DSR of synthetic real-time application

We then introduce the Bonnie application in the background and thus perform the second
category of tests, these results can be seen in Figure 6.5. We see similar trends in the
DSR characteristics to the first scenario. Notice, that the deadline satisfaction ratios do
not drop when the background noise is added, specifically for the Nitro case. As Nitro is
implementing using filtering, we expect background system calls to provide excess overhead
and thus effecting the overall ratio. However, the guest is a real-time system, and these
real-time system calls have priority over the Bonnie lower priority I/O system calls.

Kevin P. Burns Chapter 6 - Real-time Introspection 44

Kairo’i\.{M ——
] itro .
0.95 No Introspection ---%--

O'9425 50 75 100

Utilization Level

Figure 6.5: DSR of synthetic real-time application and background application

There are real-world scenarios that may require background system calls in a real-time
system. For example, a data logging application needs I1/O capabilities without real-time
priority. To accommodate these types of situations, we include 6.1. This table illustrates the
total number of system calls the Bonnie application was able to execute during the real-time
evaluations. These numbers were generated using Linux’s system call tracer package, strace.
We ran these evaluations for the two more heavily utilization cases. These results show that
due to the time the hypervisor scheduler needed to process the Nitro mechanism, it could
not execute the guest virtual machine. Therefore, the guest did not have enough CPU time
allocated in order to run as many system calls. The stars on the table indicate which case
had the highest number of system calls. As can be seen, our introspection implementation
is similar to the vanilla KVM control case.

Table 6.1: Number of syscalls and writes according to the utilization

Util # of Syscalls # of Writes Case

4147015 3479204 KairosVM
75 3236017 3175538 Nitro
* 4153681 % * 3481426 » No Introspection
4065685 * 3452094 » KairosVM
100 1282703 1282300 Nitro

* 4066879 * 3452492 No Introspection

Kevin P. Burns Chapter 6 - Real-time Introspection 45

In conclusion, our KairosVM introspection engine is a first step in building a full real-time
virtual machine scheduling system for the Linux/KVM virtualization platforms. We show
that our evaluation does not cause a major decrease in real-time performance, unlike the
stat-of-the-art alternative.

Chapter 7

Conclusions

Consolidation of multiple real-time systems on the same hardware platform requires real-time
aware schedulers for the hypervisor. Past work in this area concentrate on strict hardware
partitioning techniques based on worst case execution time of guest real-time tasks. These
partitions are typically overly pessimistic when scheduling virtualized soft real-time systems.
In this thesis we target the stochastic nature of execution times in soft real-time systems to
drastically reduce the amount of CPU allocated to each virtual machine. As the execution
times vary depending on the requirements of a specific soft real-time system, we present a
framework to provide a flexible solution to allow the virtual machine bandwidth allocations
to be fine-tuned for each specific use case. We developed a infrastructure in Linux, to test the
effectiveness of our solution when scheduling virtual machines. Evaluations showed that the
bandwidth allocations generated via our Probabilistic Hierarchical Algorithm (PHA) dras-
tically reduced the resource consumption for each VM without greatly diminishing deadline
satisfaction on each guest. To support the virtualization of legacy real-time systems, we
demonstrate that a lightweight introspection mechanism can be used to collect the real-
time characteristics of a guest on the fly. Results indicate the our prototype introspection
implementation is non-intrusive to the real-time performance of a virtualized guest.

7.1 Contributions

To summarize, the major contributions of this thesis are:

1. We developed a framework for the offline allocation bandwidth for virtual
machines that reduces resource consumption. Each guest’s taskset was modified
to include a new execution demand cap via the Chebychev equation, given the expected
value and variance for each task’s distribution of execution times. Once calculated,
we input these new execution time bounds to the compositional scheduling allocator,

46

Kevin P. Burns Chapter 7 - Conclusions 47

which output a bandwidth for each guest. These allocations are then presented to the
underlying host scheduler. These bandwidth allocations provide a guaranteed level of
deadline satisfaction.

2. We developed the virtualization infrastructure necessary to fully evalu-
ate and demonstrate our proposed schedulers. Making use of Linux’s new
SCHED _DEADLINE policy we were able to schedule guest virtual machines, via
Linux’s KVM and QEMU, using our bandwidth calculations. We used this infras-
tructure to perform extensive evaluations of our PHA scheduling policies. These eval-
uations included real-time synthetic benchmarks, using light uniform loads representing
a broad scope of soft real-time system characteristics. These results showed that the
guarantees provided by the Chebychev equation were met. We then constructed a soft
real-time audio decoder scenario to evaluate the real-time performance of our solutions,
when none synthetic distributions are generated on the fly. We lastly presented com-
prehensive offline analysis of the scalability of our solutions for multi-processor systems.
Leaving us with the conclusion that our solution maintains high deadline satisfaction
while requiring a small amount of CPU time. We also demonstrate the our PHA solu-
tion scales to multiple processors when adapting static partitioning techniques. As our
main motivation for this work is to reduce the hardware resource requirement for each
guest the migration from a uniprocessor to a multiprocessor platform is paramount.
Our evaluations indicate that our solution successfully reduces the number of CPUs
allocated without drastically decreasing the deadline satisfaction on each guest.

3. We developed a lightweight introspection engine for use in dynamic real-
time schedulers. To support legacy real-time systems, it must not be necessary to
modify the guest’s operating system. That is, a full virtualized environment is required.
For this reason, paravirtualized methods of dynamically scheduling virtual machines
are not useful. Our introspection engine implements a generic real-time event trapping
mechanism, which can easily be modified to support any real-time operating system
on the guest. Existing introspection implementations trap all system events on the
guest operating system. Therefore, the overhead incurred by these mechanisms can
drastically alter system performance. This is especially true when introducing real-
time applications to the guests. We show that our introspection implementation does
not cause real-time deadline satisfaction to drastically decrease.

Chapter 8

Future Work

There are many avenues to pursue to expand upon the research presented in this thesis.
In Section 1.3 of Chapter 1 we outline the restrictions in our scope in order to limit the
variability and to identify specific characteristics of our proposed solutions. Due to the
magnitude of variation one could perform on the scope of this thesis, this creates extensive
opportunities for future research contributions.

8.1 Extended Evaluations

Due to the complex nature of our scope presented in this thesis, there are many tunable pa-
rameters for evaluation. Following the stochastic model, we generated synthetic distributions
for our real-time simulations, as our target distribution generated by our soft real-time audio
decoder scenario followed a normal distribution. We chose to evaluate a normal distribution
of execution times. We then varied the expected value of the distribution from 30% to 70%
the worst case execution time bound. However, the standard deviation for our evaluations
was fixed to W%ET. Therefore, for future work we propose evaluating our solutions using
distributions generated with varying standard deviations, and in turn variations. We predict
that this variation would provide a much wider range of ¢;’s generated by the Chebychev
equation. To expand this concept, the evaluations could also be extended to support other

types of distributions.

Specifically, extending the evaluations to support a continuous uniform distribution. This
would represent a stochastic system where the execution time of a task is completely inde-
terministic. As the Chebychev equation only requires a distribution’s expected value and
variance, this would demonstrate that traditional worst case bounding techniques would not
accommodate this kind of distribution.

It would also be beneficial to perform full evaluations while randomizing the real-time param-

48

Kevin P. Burns Chapter 8 - Future Work 49

eters of the tasks for each guest. Specifically, as the periods of each task. For our evaluations
we manipulated the periods of each task in order to provide a fixed utilization level for each
guest’s taskset. As the utilization levels of real-time systems may not be known beforehand,
this would simulate such types of environments. Our solution does not depend on certain
utilization levels of tasks and these tests would demonstrate the scalability of our solution.

8.2 Theory Extensions

As demonstrated in Section 5.2 of Chapter 5, our current derivation of Chebychev’s inequality
is restricted to a minimum ¢; output equal to the distribution’s expected value. That is, we
would like to expand the range of allocations by using a formula without this limitation.
An attractive quality of Chebychev’s equation is that it only takes in two characteristics
of the distribution, the expected value and the variance. Therefore, it does not require a
certain type of distribution in order to calculate a solution. Using an equation that considers
specific distribution types could be an interesting avenue and could possible produce tighter
allocations.

Legacy systems can have the dependency of multiple CPUs. That is, once virtualized a
guest should not be limited to a uniprocessor. We propose extending our model to support
multiple virtual processors for each real-time guest. One proposition would be to support
strict partitioned scheduling on each guest and later, to include global real-time schedulers.
This would be more representative of real-world systems, as well it would introduce an
appealing research scenario for a hierarchy of multiprocessor schedulers.

8.3 Introspection

As our introspection engine enables a host scheduler to be informed about the real-time
characteristics of tasks running on virtualized guests, we encourage its use with hierarchical
scheduling research and development. As we present a pluggable interface design with our
introspection engine, we would like to see plugins for various other guest real-time operating
systems developed and integrated. Using ChronOS as the only guest during evaluations
limit the scope in several ways. One such way is that ChronOS relies on two system calls
per real-time job. As we witness overheads associated with system call trapping, introducing
real-time interfaces with a smaller number of system calls required is an interesting prospect.
Granted, this is highly dependent on the needs of the scheduler implemented on the host.

As our PHA solutions are calculated and partitioned offline, they inherently cannot handle
unpredicted events like early and late real-time task terminations. Therefore, we propose
the integration of our introspection mechanism to create a dynamic solution for these events
as future work. More specifically, we would like to see the support of online adjustments

Kevin P. Burns Chapter 8 - Future Work 50

of bandwidth allocations, based on the on-the-fly real-time characteristics gathered by our
introspection mechanism.

8.4 Scope/Model Expansions

As described in Chapters 1 and 3 the scope of this these was limited by several assumptions.
One of these assumptions was using solely CPU intensive real-time tasks. That is, we assume
there are not task interdependencies and no I/O operations residing inside the guest’s real-
time tasks. To make our work more generic and universally applicable, we propose the
accommodation of such dependencies as future work. Our scope was also limited by our
use of the periodic model, real-time tasksets that follow the sporadic and aperiodic models
would still witness smaller resource reservations from our partitioning solution. Therefore,
we propose the extension of our work to fit these models as future work.

Bibliography

1]

M. Dellinger, P. Garyali, and B. Ravindran. Chronos linux: A best-effort real-time
multiprocessor linux kernel. In Proceedings of the 48th Design Automation Conference,
DAC ’11, pages 474-479, New York, NY, USA, 2011. ACM.

J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson. Litmus rt: A
testbed for empirically comparing real-time multiprocessor schedulers. In Proceedings of
the 27th IEEE International Real-Time Systems Symposium, RTSS "06, pages 111-126,
Washington, DC, USA, 2006. IEEE Computer Society.

D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino. An edf scheduling class for
the linux kernel. In Proceedings of the Real-Time Linux Workshop, 2009.

F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari. Hierarchical multiprocessor
cpu reservations for the linux kernel. In Proceedings of the 5th International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications, OSPERT 09,
pages 9-17, june 2009.

J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algorithm for en-
hanced aperiodic responsiveness in hard real-time environments. IEEFE Trans. Comput.,
44(1):73-91, January 1995.

Z. Deng and J. W S Liu. Scheduling real-time applications in an open environment. In
Proceedings of The 18th IEEE Real-Time Systems Symposium, RTSS ’97, pages 308—
319, Dec 1997.

G. Lipari and S. Baruah. A hierarchical extension to the constant bandwidth server
framework. In Proceedings of the Seventh Real-Time Technology and Applications Sym-
posium, RTAS 01, pages 26—, Washington, DC, USA, 2001. IEEE Computer Society.

G. Lipari and E. Bini. Resource partitioning among real-time applications. In Pro-
ceedings of the 15th Euromicro Conference on Real-Time Systems, ECRTS 03, pages
151158, July 2003.

G. Lipari and E. Bini. A methodology for designing hierarchical scheduling systems. J.
Embedded Comput., 1(2):257-269, April 2005.

o1

Kevin P. Burns Chapter 8 - Future Work 52

[10]

[17]

[18]

[19]
[20]

[21]

[22]

G. Lipari and E. Bini. A framework for hierarchical scheduling on multiprocessors: From
application requirements to run-time allocation. In Proceedings of the 2010 31st IEFEE
Real-Time Systems Symposium, RTSS ’10, pages 249-258, Washington, DC, USA, 2010.
IEEE Computer Society.

Wind River. Wind River Hypervisor. http://www.windriver.com/.

National Instruments. National instruments Real-time Hypervisor.
http://www.ni.com/.

TenAsys. TenAsys Real-time Hypervisor. http://www.tenasys.com/.

Real Time Systems GmbH. RTS Real-time Embedded Hypervisor. http://www.real-
time-systems.com /real-time_hypervisor/index.php.

M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik. Supporting soft
real-time tasks in the xen hypervisor. In ACM Sigplan Notices, volume 45, pages 97-108.
ACM, 2010.

A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty. VM-based real-time services
for automotive control applications. In Proceedings of the 16th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)
(Short Paper), Macau SAR, P.R.China, 2010.

S. Xi, J. Wilson, C. Lu, and C. Gill. Rt-xen: towards real-time hypervisor schedul-
ing in xen. In Embedded Software (EMSOFT), 2011 Proceedings of the International
Conference on, pages 39-48. IEEE, 2011.

J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky. Re-
alizing compositional scheduling through virtualization. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2012 IEEE 18th, pages 13-22. IEEE,
2012.

J. Kiszka. Towards linux as a real-time hypervisor. RTLWS11, 2009.

T. Cucinotta, F. Checconi, and D. Giani. Improving responsiveness for virtualized
networking under intensive computing workloads. In Proceedings of the 13th Real-Time
Linux Workshop, 2011.

A. Lackorzynski, A. Warg, M. Volp, and H. Hartig. Flattening hierarchical scheduling.
In Proceedings of the tenth ACM international conference on Embedded software, pages
93-102. ACM, 2012.

J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based system call tracing for
virtual machines. In Proceedings of the 6th International Conference on Advances in
Information and Computer Security, IWSEC’11, pages 96-112, Berlin, Heidelberg, 2011.
Springer-Verlag.

http://www.windriver.com/products/hypervisor
http://www.ni.com/white-paper/9629/en/
http://www.tenasys.com/index.php/tenasys-information/technology-initiatives/real-time-hypervisor

Kevin P. Burns Chapter 8 - Future Work 53

[23]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

F. Azmandian, M. Moffie, M. Alshawabkeh, J. Dy, J. Aslam, and D. Kaeli. Vir-
tual machine monitor-based lightweight intrusion detection. SIGOPS Oper. Syst. Rev.,
45(2):38-53, July 2011.

T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture
for intrusion detection. In Proceedings of the Network and Distributed Systems Security
Symposium, pages 191-206, 2003.

J. Hizver and T. Chiueh. Real-time deep virtual machine introspection and its appli-
cations. In Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’14, pages 3-14, New York, NY, USA, 2014.
ACM.

S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger: Monitoring
the buffer cache in a virtual machine environment. In Proceedings of the 12th Interna-

tional Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XII, pages 14-24, New York, NY, USA, 2006. ACM.

T. Cucinotta, G. Anastasi, and L. Abeni. Respecting temporal constraints in virtualised
services. In Proceedings of the 2009 33rd Annual IEEE International Computer Software
and Applications Conference - Volume 02, COMPSAC ’09, pages 73-78, Washington,
DC, USA, 2009. IEEE Computer Society.

T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli. Adaptive real-time scheduling for
legacy multimedia applications. ACM Trans. Embed. Comput. Syst., 11(4):86:1-86:23,
January 2013.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 1973.

W. Yuan and K. Nahrstedt. Energy-efficient soft real-time cpu scheduling for mobile
multimedia systems. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, pages 149-163, 2003.

H. Wu, B. Ravindran, E.D. Jensen, and P. Li. Cpu scheduling for statistically-assured
real-time performance and improved energy efficiency. In Proceedings of the Interna-
tional Conference on Hardware/Software Codesign and System Synthesis, pages 110—
115, 2004.

H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Energy-efficient, utility accrual scheduling
under resource constraints for mobile embedded systems. In Proceedings of the 4jth ACM
International Conference on Embedded Software, pages 64—73, 2004.

Insik Shin and I Lee. Compositional real-time scheduling framework with period model.
ACM Trans. Embed. Comput. Syst., 2008.

Kevin P. Burns Chapter 8 - Future Work 54

[34]

[43]

[44]

L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time sys-
tems. In Proceedings of the IEEE Real-Time Systems Symposium, RTSS '98, pages 4—,
Washington, DC, USA, 1998. IEEE Computer Society.

L. Abeni. Server mechanisms for multimedia applications. Technical report, 1998.

T. P. Baker. Comparison of empirical success rates of global vs. partitioned fixed-priority
and EDF scheduling for hard real time. Technical report, 2005.

G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates.
The Annals of Mathematical Statistics, 1958.

C. Xian, Y. Lu, and Z. Li. Energy-aware scheduling for real-time multiprocessor sustems
with uncertain task exection time. In Proceedings of the 44th Annual Design and Au-
tomation Conference, pages 664-669, 2007.

K. Burns, A. Barbalace, V. Legout, and B. Ravindran. KairosVM: Deterministic intro-
spection for real-time virtual machine hierarchical scheduling. VtRES, 2014.

J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based system call tracing for
virtual machines. In Proceedings of the 6th International conference on Advances in
Information and Computer Security, pages 96-112, 2011.

B. D. Payne, M. D. P. De Carbone, and W. Lee. Secure and flexible monitoring of
virtual machines. In Proceedings of the 23rd Annual Computer Security Applications
Conf. (ACSAC), pages 385-397, 2007.

Y. Fu and Z. Lin. Space traveling across vim: Automatically bridging the semantic gap
in virtual machine introspection via online kernel data redirection. In Proceedings of
the IEEE Symposium on Security and Privacy (SP), pages 586-600, 2012.

The netwide assembler: Nasm. https://courses.engr.illinois.edu/.

Russell Coker. Bonnie++ benchmark suite. http://www.coker.com.au/bonnie++/.

https://courses.engr.illinois.edu/ece390/books/nasm/html/nasmdoc2.html
http://www.coker.com.au/bonnie++/

	Introduction
	Limitations of Past Work
	Thesis Contributions
	Scope of Thesis
	Thesis Outline

	Related Work
	Background
	ChronOS
	KVM
	SCHED_DEADLINE
	Real-Time Group Scheduling

	Related Work
	Hierarchical Real-time Scheduling Algorithms
	Real-Time Virtualization
	Introspection

	Models and Assumptions
	Task Model
	Guest Model
	Scheduling Model
	Hardware Model

	Uniprocessor Probabilistic Hierarchical Scheduling
	Task Level Scheduling
	Virtual Machine Scheduling
	Schedulability
	Complexity
	Experimental Evaluations
	Evaluation Environment
	Synthetic Benchmark
	Practical Scenario Evaluations

	Multiprocessor Probabilistic Hierarchical Scheduling
	Approach
	Experimental Evaluations
	Number of Processors
	Synthetic Benchmark
	Practical Scenario Evaluations

	Real-time Introspection
	Approach
	Implementation
	Experimental Evaluation
	Evaluation Environment
	Overhead Measurements
	Synthetic Benchmark

	Conclusions
	Contributions

	Future Work
	Extended Evaluations
	Theory Extensions
	Introspection
	Scope/Model Expansions

	Bibliography

