The Conical Methodology: A Framework for
Simulation Model Development

Richard E. Nance

TR 87-8

Technical Report SRC-87-002#

THE CONICAL METHODOLOGY:
A FRAMEWORK FOR SIMULATION
MODEL DEVELOPMENT?

Ttichard E. Nance

Systems Research Center and
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

December 1986

+ Cross-referenced as Technical Report TR-87-8, Department of Computer Science, Virginia Teck, Blacksburg.

1 To appear in the Proceedings of the Conference on Simulation Methodology and Validation to be held as part
of the 1987 Eastern Simulation Conference (Orlando, FL, 6-9 April). The Society for Computer Simulation,
San Diego, Calif.

Technical Report TR-87-8*

THE CONICAL METHODOLOGY:
A FRAMEWORK FOR SIMULATION
MODEL DEVELOPMENT+*

Richard E. Nance

Department of Computer Science
and Systems Research Center
Virginia Tech
Blacksburg, VA 24061

December 1986

* Cross-referenced as Technical Report SRC-87-002, Systerns Research Center, Virginia Tech, Blacksburg.

t To appear in the Proceedings of the Conference on Simulation Methodology and Validation to be held as part
of the 1987 Fuaslern Simulation Conference (Crlando, FL, 6-9 April). The Society for Computer Simula_tion,
San Diego, Calif.

ABSTRACT

The Conical Methodology, intended for large discrete event simulation modeling, is reviewed
from two perspectives. The designer perspective begins with the question: What is a methodology?
From an answer to that question is framed an inquiry based on an objectives/principles/attributes
linkage that has proved useful in evaluating software development methodologies. The user perspec-
tive addresses the role of a2 methodology vis a vis the software utilities (the tools) that comprise the
environment. Principles of a methodology form the needs analysis by which the requirements for
tool design can be derived. A comparison with software development methodologies and some appli-
cations of the Conical Methodology comprise the concluding summary.

CR Categories and Subject Descriptors: 1.6.1 [Simulation and Modeling]: Simulation
Theory; I.6.m [Simulation and Modeling|: Miscellaneous

Additional Key Words and Phrases: Conical methodology, model development, model specifica-
tion

i

1. INTRODUCTION

The need for an orderly, disciplined process for simulation analysis is well accepted. The means
for introducing and imposing structure, the degree of formality, and the necessity for rigorous adher-
ence to process guidelines are issues that remain unresolved. The Conical Methodology [Nance 1981]
represents one approach to model development, intended from its inception to be utilized in large

simulation modeling and experimentation.

1.1 Chi‘onology of the Conical Methodology

The roots of the Conical Methodology (CM) are found in an effort to assess the feasibility of
developing standards for simulation model documentation [Nance 1977]. A complementary project
investigated standards for model documentation in general |Gass 1979]. The rationale for the CM is

expressed in a set of hypotheses, which in abbreviated form stipulate that:

(1) model specification and model documentation should be accomplished within the same
activity (inseparable),

(2) a hierarchical structure for model development is advantageous, and
(3) the clarification of nomenclature is a necessary precursor to documentation standards.
The hierarchical nature of the “simulation model specification/documentation structure” is illus-

trated [Nance 1977, p.16], and from it is derived the description “conical.”

The characteristics of a Simulation Model Specification and Documentation Language (SMSDL)
are described in the 1977 report. Three aspects of the modeling task supported by a SMSDL are

apparent in this early description:

(1) a clear separation between model specification (development) and model implementation
(execution), '

(2) the characterization of model components as objects, and

(3) the description of objects and the relationships among objects in terms of attributes.

The structure and conceptual basis of the CM emerge during the doctoral research of Over-
street, and without a doubt he has contributed significantly to the current form through several

ideas described in his dissertation {Overstreet 1982]. Views of the evolving methodology are provided

in [Nance 1979; Nance 1981aj, and the explication, with definitions, principles, and justification, is
given in [Nance 1981b].

Since 1983 the definition of a Model Development Environment (MDE) based on the CM has
involved Osman Balci in a pivotal role. Suggested extensions, qlarifications, and refinements, that
survive the intellectual hammering of Balci, Overstreet, and others, OW Progress to empirical
evaluation in a prototype suite of software tools [Moose 1983; H-ansen 1984; Nance et al. 1984]. At

this juncture a status review with critical commentary seems especially appropriate.

1.2. Organization

The treatment to follow is narrowly focused on the Conical Methodology. The earlier report
iNance 1981] refers to several approaches to simulation model development, comparing the alterna~
tives in terms of the phases of the model life cycle addressed by each. Among the more recent papers
are several treating simulation analysis from a methodological perspective, comparing modeling
approaches in general, or noting software development implications [Barger and Nance 1986; Hooper
1986; Geoffrion 1986]. Hopefully, the decision to draw a rather narrow bead in this work, to con-
form with both space and subject constraints, is understood and accepted.

Section 2 provides a review of the CM, primarily from the perspective of the designer, and con-
centrates on the raison d’efre of a methodology (any methodology). The user view is taken in Sec-
tion 3, which explores the dual contribution of principles and their foundational role in a simulation
support environment. The final section takes a commentary form, responding to the questions a-Lbout

the differences between mode! and software development and citing cases where the CM has been

applied.
2. METHODOLOGY REVIEW: THE DESIGNER PERSPECTIVE

The terms “method,” “approach,” “technique,” and “methodology” are frequently used in what
appears to be an indiscriminate or interchangeable fashion. This is unfortunate, for although related,

the terms do connote differences in meaning.

()

2.1. What Is a Methodology?

We consider “methodology” to be the most inclusive of the above terms; that is, a methodology
[Arthur et al. 1986, p. 4]:

(1} organizes and structures the tasks comprising the effort to achieve global objectives,

(2) includes methods and techniques for accomplishing individual tasks (within the framework
of global objectives), and

(8) prescribes an order in which certain classes of decisions are made and the ways of making
those decisions that lead to the desired objectives.

Particularizing with respect to simulation, a methodology should respond to the needs of the
simulation user (manger, modeler, analyst, programmer) by identifying the objectives and by guiding

the modeler in the execution of the process to achieve those objectives.

In the paragraphs to follow, we characterize a methodology as: (1} enunciating clearly defined
objectives and (2) defining the principles to be employed to achieve those objectives (see [Arthur et
al, 1986]). Further, the principles employed should produce recognized atéributes in the product. The
principle/attribute refationship provides a basis for scoping the needs for software utilities and

designing the requisite assistance tools.

2.2, Simulation Analysis: The Methodological Needs

Drawing from the software engineering experience, the model life cycle is considered to be the
initiation of the methodological needs, Figure 1 from {Nance 1984, p. 76] is an expansion of an ear-
lier version that stresses the model development phases [Nance et al. 1981]. The Conical Methodol-
ogy focuses on the model development phases — the circular set of activities beginning with the sys-
tem and objectives definition. Within these phases are the model construction, verification, and v.ali—

dation processes. The role of the CM is defined in terms of the guidance imparted to these processes,

CORMUNICATED

PROBLEM

PROBLEM
DEFINITION
PHASES

Problem
Formulation

FORMULATED

PROBLEM

Investigation |
DECISION SUPPORT of Solution |
PHASES Techniques i
1
DECISTON PROPOSED SOLUTION
TECHNIQUE

MAKERS

(Modeling}

System

INTEGRATED
Investigation

DECISION
SUPPORT

MODEL DEVELOPMENT
PHASES

SYSTEM AND OBJECTIVES
BEFIRITION

~._Model Formulation

!
I
I

i R

Presentation s’
of Vi CONCEPTUAL
/ MODEL
MUdBIIRESUItS / Redefinition
[’ : X
i f 4 Mpdel
H / ' ' ' Representation
I [
I
' MODEL COMMUNICATIVE
RESULTS MODEL (5}
J I -
- \ : J Programming
) \\Experimentation '

PROGRAMMED

Ay
LY

MIDEL

EXPERIMENTAL

MODEL —Experinental

Pesign

-~
-
J— o

Figure 1. Phases in the Chronological Periods of the Model Life Cyele

2.2.1. Objectives of the Conical Methodology

The model development phases, from system and objectives definition to experimental model,
can be properly viewed as model iransformations, wherein both the input and output of each phase
are model specifications. The progr‘ession toward the experimental model consists of a series of
processes {albeit with provisions for considerable feedback) through which non-procedural forms are
transformed into an ultimate procedural and executable form. The Conical Methodology is a concep-

tual “blueprint” for conducting these processes to achieve five primary objectives:
4

(1) Model correctness: The capability for assuring that the mode! behavior “mimics” the sys-
tem behavior within some specified tolerance consistent with the modeling requirements.

(2) Testability. the comparison between model specifications in different forms and between
the model and system behavior.

(3) Adaptability: the ability to change the successive model specifications with relative ease so
that the applicability can be rapidly extended with little cost.

(4) Reusability: the ability to extract model components and reuse them in subsequent model-
ing tasks.

(5) Maintainability. the property of model specifications that enables their modification to
meet originally unstated needs.

The CM prescribes a top-down model definition stage, illustrated in an outline format in Figure
2. The definition stresses:

(1) model decomposition — partitioning a model into component submodels,

(2) assignment of attributes to the objects defined (submodels), and classification of each
attribute by

(3) type, according to the taxonomy tree shown in Table 1.
Attribute dimensions and the range of atiribute values are additional information extracted during
the definition process. In essence, a static description of the model is produced in the definition

stage.

Model dynamics are imparted in the specification stage, during which the modeler stipulates the
expression evaluation for each defined attribute. The typing, dimensionality, and value information
supplied by the modeler enable subsequent diagnosis for consistency (type) and correspondence

(dimensions and value range).

2.2.2. Conical Methodology Principles

Principles form the nucleus of a methodology. From principles are derived the directions and
procedural guidance that enable achievement of the targeted objectives. The Conical Methodology
emphasizes the principles described in Table 2. (Note that other principles may be employed but are
not emphasized.) To assist in the understanding of the principles, Table 2 also includes the instruec-

tive guidance derived from each principle and identifies related software engineering principles.

5

Table 1. The Tree of Conical Methodology Types

Attribute
(Object description)

Indicative Relational
{Provide knowledge (Relates an object
about object) to other objects)
Permanent Transitional Hierarchical - Coordinate
{(Value assigned once) (Value assigned (Object subordination) (Non-subordinate
more than once) bonding)
Status Temporal

(Value assigned (Value assigned is
from a finite set a function of time

of possible values)

3. METHODOLOGY SUPPORT: THE USER PERSPECTIVE

The CM adheres to the philosophy of direct and open communication with users. Practically,
this statement means that both the objectives and principles are presented, explained, and even justi-
fied to the user (or prospective user). The novice user may not appreciate the significance, but grow-

ing appreciation is likely to accompany experience.

3.1. The Dual Contribution of Principles

Recent work in the evaluation of software development methodologies draws a causality linkage
among objectives, principles, and atfributes [Arthur et al. 1986]. Briefly, the authors argue that the
achievement of a specific objective relies on conformance with designated principles that result in the

presence of desirable attribuses in the software (programs and documentation). An approach to

L Statement of Study Objectives
A. Definitions
B. Assumptions regarding objectives
II. Modeling Environment
A. Modeling effort
1. Organization creating model, dates, individuals, ete,
2. Scope of effort in time and money
B. Model sssumptions
1. Boundaries
2. Interaction with environment
(2) Input deseription
{b] Assumptions on model/environment feedback or cross effects
(¢) Output and format decisions
II. Model Definition
A. Model attributes
1. Value attributes
2. Relational attributes
B. Submodels
1. Submodel at the first level
{a) Value attributes
(b) Relational attributes
{(1)) Submodel at the second level
((a)) Value attributes
({5)) Relational attributes
.
.
.
(-..(1}...) Object at level n
{...(2)...) Value attributes
(-..(b)...) Relational attributes
2. Submeodel at the first level
N
.
.
IV. Mode! Validation and Verification Procedures
A. Validation {ests
B. Verification criteria and tests
V. Model Experimentation
A. Hypotheses to be tested
B. Experimental design

VI, Implementation Requirements

Figure 2. The Conical Methodology Approach to Model Specification Documentation
— QOutline Hlustration

Table 2. The Conical Methodology Principles

Conical Methodology
Principle

Procedural Guidance Derived
From the CM Principle

Related Software
Engineering Principles

(1) Top-down model
definition is
followed by
bottom-up model
specification.

{2) Documentation and
specification are
inseparable.

(3) Iterative refinement
and progressive
elaboration are
essential in large
modeling efforts.

(1.1) Definition must precede
specification.

(1.2) The transition from specification to
definition must be swift and easy.

(2.1) Model documentation is produced in
madel specification.

{(2.2) The model specification and

consequent documentation should
support different views {aspects) of
the modeling task.

The degree of detail in submodel
desecription should be contrelled by
the modeler. Submodel “stubbing”
should be supported so that later
addition of detail is facilitated.

(3.1)

Hierarchical Decomposition

Functional Decomposition

Concurrent Documentation

Abstraction

Information Hiding
Hierarchical Decomposition
Functional Decomposition
Stepwise Refinement

(3.2} The functional expansion
{progressive elaboration) of the
model should be supported.
{4) Verification must {4.1) Diagnosis of model representations Life Cycle Verification
begin with should begin as early as possible,
communicative certainly prior to the program form.
models and continue (4.2) Automated or semi-automated
throughout the diagnosis is a requirement.
development
process.
(5) Model specification {(5.1) The execution {implementation) Abstraction
should be details should be ignored in the Division of Concerns
independent of model development (specefication)
model process.
implementation.

empirical examination gathering evidence of the presence or absence of the attributes is described.

The above claim that principles form the nucleus of a methodology is substantiated in the

evaluation procedure for software development methodologies. Examination of the middle column of

Table 2 reveals basic beliefs about how the modeling activity should be carried out.

Equally important is the contribution of principles to the statement of requirements for fools

to enable the modeling activity to be done properly. The middle column of Table 2 essentially lays
out the design goals for the software utilities needed in an environment supporting model develop-
ment. Thus, the principles state how the objectives of the CM are to be achieved and at the same

time what is needed so that the development process can realize those objectives.

3.2. Environments: The Integration of Simulation Utilities

A MDE (model development environment) should provide an integrated and com-
plete collection of computer-based tools which offer continuous and cost-effective

support to all phases, processes and stages of the model development life cycle....

A MDE should implement a model development methodology [Balci 1986].

All too often a project or an organization, driven by one, two or three existing utilities,
attempts to structure an “environment” around these tools. In the worst of circumstances the exist-
ing tools are not compatible. Such an undertaking is doomed to failure. The key terms in the above
quotation é,re “integrated” and “cost-effective.” A true “environment” can exist only with both of

these qualities.

The Conical Methodology has se-rved as the foundation for a prototype MDE under develop-
ment since 1983. Key characteristics of this environment are illustrated in Figure 3, which depicts a
layered architecture that at the level of the Minimal Model Development Environment (MMDE)
includes eleven software tools. Communication among the tools uses the Kernel Interface, which
relies on the kernel (KMDE) functions layered over the host computer éystem. An in-depth discus-
sion of the component tools is beyond the scope of this paper; the interested reader should_consult

[Nance et al. 1984] or {Balci 1986].

The principles-of the CM and, more specifically, the derived procedural guidance shown in

Table 2 have influenced the defirition of simulation support tools, for example

° the identification of a Model Analyzer that includes the diagnostic analysis to be applied
to communicative model specifications long before an executable version exists [Overstreet

and Nance 1986] , and

. the stipulation of a Model Translator to be applied to a communicative model (specifica-
tion) to produce an executable version (implementation).

Model
Analyzer

Model
Generator

Model
Translator

Command
Language
Interpreter

Model
Verifier

KMDE
Functions

Source
Code
Manager

Assistance
Manager

Hardware and
Operating System

Electronic
Mail
System

Premodels
Manager

I ernel Interface

Project
Manager

MMDE ' MDE

Figure 3. The Structure of Model Development Environments.

The influence of the CM is even more apparent in a tool such as the Model Generator, where the

top-down definition followed by bottom-up specification is clearly enforced.

What is moét Sié;nificant in the message conveyed in this section (and perhaps the entire paper)
is the necessity for maintaining the distinction between the methodélogy and an environment. The
Conical Methodology exists as a set of principles from which is derived the specification of software
to assist simulation users. The user sees the software toéIs first-hand. If what is seen is unappealing

or perceived as unhelpful, no argument based on principles is likely to be convincing.

10

4. A CONCLUDING COMMENTARY

Prescribing a methodology for accomplishing any task is an inherently presumptuous undertak-
ing. Tt smacks of an evangelical message that this is the way. Critics are quick to respond with com-
ments such as:

(1) It looks like nothing more than —______ with different terms or a few more claims.

(2) If it is so good, what has it been used for?

We conclude with a few remarks directed at these understandable reactions.

4.1. The CM Resembles Software Development Methodologies

The Conical Methodology shares some features with software development methodologies, the
most obvious being the top-down approach to model (program) development. The similarities
between modeling and programming have only recently achieved wide recognition in the software
engineering and prégramming languages communities. With the exception of Lehman, who has long
held the view that program development should be viewed as a modeling activity [Lehman 1980, the
remainder of the community has awaited the recogrition of the applicability of the entity-
relationship (E-R) modeling technique, generally attributed to Peter Chen [Chen 1976], and the
object oriented paradigm (see [Unger 1986] for an historical perspective). The current trend is
toward the perception of programming and software development as a problem-solving activity just

as is modeling.

The Conical Methodology casts the programming activity as subordinate to the modeling
activity. The programmed model is developed from preceding communicative models, and software
engineering techniques may not apply in producing the earlier representations. Additionally, the CM
differs noticeably from software development methodologies in:

(1) the explicit relationship between top-down and bottom-up construction techniques,

(2} the emphasis on model and data validation,

(3) the inclusion of experimental design and statistical analysis requirements, and

11

{4) the explicit relationship between documentation and specification.

4.2. Applications of the Conical Methodology

The CM has been applied in the development of numerous small or “toy-size” models that have
been used for academic instruction or examples (see [Overstreet and Nance 1985] for example). How-
ever, it has proved capable of modeling the data transfer laboratory requirements for Naval experi-
mentation [Nance 1982], the evaluation of personal computers for an acquisition decision [Evaluation

Committee 1985], and the design of an expert system shell [Lee 1985].

The major test of the CM remains: the success of the model development environment for
which it provides the architectural framework. Early experiences with the prototypes are encourag-

ing, and we anticipate positive results in the future expansion of the simulation support environment.

ACKNOWLEDGMENTS

This research was sponsored in part by the Naval Sea Systems Command and the Office of
Naval Research under Contract N60921-83-G-A165 through the Systems Research Center at Virginia
Tech.

REFERENCES

Arthur, J.D., R.E. Nance, and S.M. Henry (1986), “A Procedural Approach to Evaluating Software
Development Methodologies: The Foundation,” Technical Report SRC-86-008, Systems Research
Center, Virginia Tech, Blacksburg, Va., Sept.

Balei, O. (1986), “Requirements for Model Development Environments,” Computers & Operations
Research 18,1 (Jan. - Feb.), 53-67.

Barger, L.F. and R.E. Nance (1986), “Simulation Model Development: System Specification Tech-
niques,” Technical Report SRC-86-005, Systems Research Center, Virginia Tech, Blacksburg, Va.,

Aug.

Chen, P.P. (1976), “The Entity-relationship Model — Toward a Unified View of Data”. ACM Tran-
saclions on Database Systems 1, 1 (Mar.), 9-36.

Evaluation Committee (1985), “A Questionaire for Evaluating Personal Computers for Computer _
Science Students at Virginia Tech,” Department of Computer Science, Virginia Tech, Blacksburg,

Va., Sept.

Gass, S.I. (1979), Computer Science and Technology: Computer Model Documentation: A Review
and an Approach,” National Bureau of Standards Pub. No. 500-39, Washington, D.C., Feb.

Geoffrion, A.M. (1986), “Modeling Approaches and Systems Related to Structured Modeling,” Work-
ing Paper No. 339, Western Management Science Institute, UCLA, Los Angeles, July.

12

Hansen, R.I. {1984), “The Model Generator: A Crucial Element of the Model Development Environ-
ment,” Technical Report SRC-85-004, Systems Research Center, Virginia Tech, Blackshurg, Va.,

Aug.

Hooper, J.W. (1986), “Language Assessment Criteria for Discrete Simulation,” In Proceedings of the
1986 Winter Simulation Conference (Washington, D.C., Dec. 8-10), IEEE, Piscataway, N.J., pp.
404-408.

Lee, N.S. (1985), “GUESS1: A General Purpose Expert Systems Shell, ” Master’s Thesis, Department
of Computer Science, Virginia Tech, Blacksburg, Va., Mar.

Lehman, M. M. (1980), “Programs, Life Cycles, and Laws of Software Evolution,” Proceedings of the
IEEE 68, 9 (Sept.), 1060-1076.

Moose, R.L., Jr. (1983}, “Proposal for a Model Development Environment Command Language Inter-
preter,” Technical Report SRC-85-012, Systems Research Center, Virginia Tech, Blacksburg, Va.,
Dec.

Nance, R.E. (1977), “The Feasibility of and Methodology for Developing Federal Documentation
Standards for Simulation Models,” Final Report to the National Bureau of Standards, Depart-
ment of Computer Science, Virginia Tech, Blacksburg, Va., June.

Nance, R.E. (1979), “Model Representation in Discrete Event Simulation: Prospects for Developing
Documentation Standards,” In Current Issues in Computer Stmulation, NR. Adam and A.
Dogramaci, Eds. Academic, New York, pp. §3-97.

Nance, R.E. (1981a), “The Time and State Relationships in Simulation Modeling,” Communications
of the ACM 24, 4 (Apr.), 173-179.

Nance, R.E. (1981b), “Model Representation in Discrete Event Simulation: The Conical Methodol-
ogy,” Technical Report CS81003-R, Department of Computer Science, Virginia Tech, Blacksburg,
Va., Mar.

Nance, R.E., A.L. Mezaache, and C.M. Overstreet (1681}, “Simulation Model Management: Resolv-
ing the Technological Gaps,” In Proceedings of the 1981 Winter Simulation Conference (Atlanta,
Ga., Dec. 9-11), IEEE, Piscataway, N.J., pp. 173-179.

Nance, R.E. (1982), “Data Transfer Architectures: Development of the Capability for Comparative
Evaluation,” NSWC Technical Report 82-345, Naval Surface Weapons Center, Dahlgren, Va.,
Mar.

Nance, R.E., O. Balci, and R.L. Moose, Jr. (1984), “Evaluation of the UNIX Host for a Model
Development Environment,” In Proceedings of the 1984 Winter Simulation Conference (Dallas,
Tex., Nov. 28-30), IEEE, Piscataway, N.J., pp. 577-584. '

Overstreet, C.M. (1982), Model Specification and Analysis for Discrete Event Simulation, PhD Disser-
tation, Department of Computer Science, Virginia Tech, Blacksburg, Va., Dec.

Overstreet, C.M. and R.E. Nance (1985), “A Specification Language to Assist in Analysis of Discrete
Event Simulation Models,” Communications of the ACM 28, 2 (Feb.), 190-201.

Overstreet, C.M. and R.E. Nance (1986), “World View Based Discrete Event Model Simplification,”
In Modelling and Simulation Methodology in the Artificial Intelligence Era, M.S. Elzas, T.I. Oren,
and B. P. Zeigler, Eds., North-Holland, pp. 165-179.

Unger, B.W. (1986), “Object Oriented Simulation — Ada, C4++, Simula,” In Proceedings of the 1986
Winter Simulation Conference, (Washington, D. C., Dec. 8-10), IEEE, Piscataway, N.J., pp. 123-
124.

13

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE o rREAD INSTRUCTIONS
T. REPORT NUMBER 2. GOVT ACCESSION NGJ I, RECIPIENT'S CATALGG NUMBER
SRC 87-002/ (CS TR-87-8) -
4. TITLE (and Subtitie) 5. TYPE OF REPDORT & PERIOD COVERED
The Conical Methodology: A Framework for Interim

Simulation Model Development

&. PERFORMING ORG. REPORT RUMBER

SRC 87-002/ (CS TR-87-8)

T. AUTHOR(x) 8. COH-TrRACT OR GRANT KUMBER(a)
Richard E. Nance N60921-83-G-Al165
9. PERFORMING DRGANIZATION NAME AND ADDRESS 10. PRCGRAM ELEMENT, PROJECT, TASK

Systems Research Center and Dept. of Com. Sci. AREA & WORK UNIT NUMBERS

Virginia Tech
Blacksburg, VA 24061

1I. CONTROLLING DFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Sea Systems Command December 1986
SEAGLE T3 NUMBER OF PAGES
Washinpgton, D.C. 20362 17

14, MONITORING AGENCY NAME & ADDRESS(i! different irom Controlling Office) 18, SECURITY CLASS. {of thia raport)

Naval Surface Weapons Center

Dahlgren, VA 22448- y Unclassified

t5a2, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

‘6. DISTRIBUTION STATEMENT (of thie Report)

This report is distributed te¢ scientists and engineers at:'the Naval Surface
Weapons Center and i1s made available on request to cther Navy scientists.

A limited number of copies is distributed for peer review.

17. DISTRIBUTION STATEMENT (of tha abstract entered In Block 20, !f difterent from Report)

To Navy research and development centers and university-based laboratories.

i8. SUPPLEMENTARY NOTES

19, KEY WORDS {Continue on reverse aide If necesaary and {dentify by block numbar)

Simulation, Model Development, Methodology, Software Engineering,
Environments, Principles, Objectives, Conical Methodology, Model Specificatio

20, ABSTRACT (Continue on roverasa gide if necessary and identify by block numbar)

The Conical Methodology, intended for large discrete event simulation modellng,
is reviewed from twe perspectives. The designer perspective begins with the
question: What is a methodology? From an answer to that question is framed
an inquiry based on an objectives/principles/attributes linkage that has proved
useful in evaluating software development methodologies. The user perspective
addresses the role of a methodology vis a vis the software utilities (the toolsg
that comprise the environment. Principles of a methodolcgy form the needs
analvsis by which the requirements for tool desion can be derived. A

DD o5, 1473 eoimion oF 1 HOV €515 0BSOLETE UNCLASSIFIED
S/N 0162- LF- D14- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered}

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered}

comparision with software development methodologies and some applications of the
Conical Methodology comprise the concluding summary.

S/N 0102- LF- 014~ 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Daia Entersd)

