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Thermal and Mechanical Response of Curved Composite Panels

 

Nicole L. Breivik

(ABSTRACT)

Curved panels constructed of laminated graphite-epoxy composite material are of potential inter-

est in airframe fuselage applications.  An understanding of structural response at elevated temper-

atures is required for anticipated future high speed aircraft applications.  This study concentrates

on the response of unstiffened, curved composite panels subjected to combinations of thermal and

mechanical loading conditions.  Mechanical loading is due to compressive end-shortening and

thermal loading is due to a uniform temperature increase.  Thermal stresses, which are induced by

mechanical restraints against thermal expansions or contractions, cause buckling and postbuckling

panel responses.  Panels with three different lamination sequences are considered, including a

quasi-isotropic laminate, an axially soft laminate, and an axially stiff laminate.  These panels were

chosen because they exhibit a range of stiffnesses and a wide variation in laminate coefficients of

thermal expansion.  The panels have dimensions of 10 in. by 10 in. with a base radius of 60 in.

The base boundary conditions are clamped along the curved ends, and simply supported along the

straight edges.  Three methods are employed to study the panel response, including a geometri-

cally nonlinear Rayleigh-Ritz solution, a finite element solution using the commercially available

code STAGS, and an experimental program.  The effects of inplane boundary conditions and

radius of curvature are studied analytically, along with consideration of  order of application in

combined loading.  A substantial difference is noted in the nonlinear load vs. axial strain
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responses of panels loaded in end-shortening and panels loaded with uniform temperature change,

depending on the specific lamination sequence, boundary conditions, and radius of curvature.

Experiments are conducted and results are presented for both room temperature end-shortening

tests and elevated temperature tests with accompanying end-shortening.  The base finite element

model is modified to include measured panel thicknesses, boundary conditions representative of

the experimental apparatus, measured initial geometric imperfections, and measured temperature

gradients.  With these modifications, and including an inherent end displacement of the panel

present during thermal loading, good correlation is obtained between the experimental and numer-

ically predicted load vs. axial strain responses from initial loading through postbuckling.
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Chapter 1 - Introduction

 

Future high-speed supersonic civil aircraft are expected to operate in an elevated temperature

environment, resulting in simultaneous thermal and mechanical loading [1].  In order to reduce

overall weight and cost of the aircraft, organic matrix composites appear to be an attractive option

for both wing and fuselage structures.  Simulating fuselage sections between stringers, this study

concentrates on the geometrically nonlinear response of unstiffened, curved, laminated graphite-

epoxy composite panels.  Geometrically nonlinear response is considered because buckling and

postbuckling behavior are felt to be the most important response of such panels.  Thermal stresses,

which are induced by mechanical restraints against thermal expansions or contractions, cause

buckling and postbuckling behavior.  Response due to thermal stresses at temperatures up to

350

 

°

 

F is of particular interest.  Mechanical loading in the form of end-shortening is considered

separately for comparison to thermal loading response, and in combination with elevated temper-

atures to better simulate an actual loading environment.  Understanding the interaction of thermal

expansion and Poisson’s expansion is key to understanding the behavior of such structures.

Literature relevant to this study includes the buckling response of curved panels due to both axial

compression and thermal stresses.  A review of this literature follows, along with a review of some

recent summary papers on the topic of thermal structural response.  Although little has been pub-

lished recently in the area of thermal structural testing, a review of past studies is included here.

 

1.1 Literature Survey

 

Although axial compression of flat plates and complete circular cylinders has been considered

extensively in the literature, the response of cylindrically curved panels has received less atten-

tion.  The study of curved panels incorporates substantially different issues than the study of either

flat panels or complete circular cylinders, requiring coupling of membrane and bending in the

equilibrium equations and boundary conditions on four edges.  Therefore, the literature surveyed

for this study is focused on the response of cylindrically curved panels to axial compression

and/or thermal stresses.
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1.1.1 Thermal Response Review Papers

 

A number of review papers which detail progress in thermal-structural interaction have appeared

in recent years.  Thorton [2] considered advancements in high temperature structures from a his-

torical perspective through 1990.  A number of future research directions were suggested, includ-

ing the need for further experimental studies at elevated temperatures.  Tauchert [3] reviewed the

response of flat plates to thermal loading in studies conducted prior to 1991.  References were

included on thermally induced bending, bucking, postbuckling, and vibrations.  Noor and Burton

[4] reviewed thermal modeling approaches for both flat plates and shell structures, with an empha-

sis on multilayered composite structures.  A variety of applications, including heat transfer, curing

stresses, buckling, vibration, and transient problems, were included.  A review focusing on the

thermal buckling characteristics of plates and shells was published by Thorton [5] in 1993.  An

examination of experimental studies up to that time revealed very limited data, and lacked any

results for composite shells. 

 

1.1.2 Axial Compression of Curved Panels

 

The buckling response of curved panels has been considered either in terms of a bifurcation buck-

ling analysis, or by solution of the geometrically nonlinear equilibrium equations.  Linear bifurca-

tion buckling analyses often begin by assuming a membrane prebuckling solution, as occurs for

flat plates.  

Early studies on the response of isotropic cylindrically curved panels were based on the shell

equations formulated by Donnell [6] in terms of radial displacement and a stress function.  Levy

[7] considered a Fourier series bifurcation buckling solution for a panel of infinite length with

simply supported edges.  Leggett [8] used linear bifurcation buckling equations in terms of dis-

placements to study the response of an infinite length panel with either clamped or simply sup-

ported sides.  Koiter [9] presented an exact bifurcation buckling solution for an isotropic curved

panel with all four edges simply supported.  Initial geometric imperfections were included in the

form of the first buckling mode.  An initial postbuckling theory was presented based on the sign of

the second derivative of the total potential energy in the vicinity of buckling.  Tamate and Sekine

[10] presented an approximate solution to the geometrically nonlinear equilibrium equations

based on Galerkin’s method for very shallow, simply supported panels under compression.  Due to

the shallow geometry, postbuckling response was stable so solution beyond buckling was pre-

sented with no particular difficulties.  Hsueh and Chajes [11] considered linear bifurcation buck-

ling of curved panels with 8 different sets of boundary conditions using a finite difference solution
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scheme.  Postbuckling was studied using geometrically nonlinear Donnell-type equilibrium equa-

tions with initial geometric imperfections. 

Early studies on the buckling response of curved composite panels were conducted by Wilkins

[12, 13].  Experimental end conditions were clamped, and straight edges were either simply sup-

ported or clamped.  Results were compared to an approximate linear bifurcation buckling analysis

based on a Rayleigh-Ritz solution for clamped ends and simply supported straight edges.  Analyt-

ical predictions were substantially higher than experimentally measured collapse loads.  Soldatos

and Tzivanidis [14] presented an exact linear buckling solution for the special case of cross-ply

laminates with simply supported edges.  Donnell shell theory and membrane prebuckling

response was assumed.  Soldatos [15] later expanded the study to incorporate the effects of trans-

verse shear deformations and angle ply stacking sequence, which required Galerkin’s method to

obtain a solution.  Whitney [16] presented linear bifurcation buckling solutions for two types of

simple support boundary conditions.  An approximate Galerkin’s method was required for general

laminates, but for specially orthotropic laminates the solution was reduced to an exact linear buck-

ling solution.  Reddy and Liu [17] expanded on this exact solution using Sander’s shell theory [18]

and incorporating the effects of parabolically distributed transverse shear strains.  Palazotto and

Linnemann [19] used the formulation presented by Reddy and Liu [17] with a modified Galerkin’s

solution technique to study the linear bifurcation buckling of cross-ply and angle-ply laminates.

Hui [20] considered linear bifurcation buckling of cross-ply laminates with simply supported

edges and applied Koiter’s initial postbuckling theory.  

Solution of the geometrically nonlinear equilibrium equations can also lead to a buckling solution.

Satyamurthy, Khot, and Bauld [21], Bauld and Khot  [22], and Khot and Bauld [23] noted that

buckling of curved panels may be due to a bifurcation, a limit point, or excessive displacements,

and a geometrically nonlinear analysis is required to predict buckling that is not attributed to

bifurcation.  A finite difference code based on Sander’s nonlinear shell theory was presented.

Measured imperfections were incorporated into the model [22] to improve correlation with exper-

imentally determined load vs. end-shortening response.  Becker, Palazotto, and Khot [24] com-

pared experimental buckling loads to buckling predictions from linear bifurcation and nonlinear

collapse analyses conducted with a finite element program.  Nonlinear analysis with assumed geo-

metric imperfections provided the best correlation.  Zhang and Matthews [25, 26] presented a

nonlinear solution, formulated in terms of radial displacement and a stress function, for a curved

panel with simply supported boundary conditions.  The effects of assumed geometric imperfec-

tions were included.  Snell and Morley [27] compared linear and nonlinear analyses to experimen-
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tally determined buckling loads and load vs. end-shortening responses for panels with general

symmetric stacking.  Nonlinear analysis resulted in better agreement with experiments than linear

analysis methods.  The effects of initial imperfections were studied both analytically and experi-

mentally, by intentionally manufacturing panels with known geometric shape imperfections.

Imperfections of magnitudes up to one half of the panel thickness had little effect on the buckling

load.  Kobayashi, Sumihara, and Koyama [28] compared experimental buckling loads and load vs.

end-shortening responses to a nonlinear 1-mode Galerkin solution and a nonlinear finite element

solution.  Good agreement was obtained between the finite element solution and experimentally

determined buckling load.  Knight and Starnes [29] used a geometrically nonlinear finite element

model to predict the postbuckling response of symmetric laminated curved panels.  Load vs. end-

shortening numerical results and postbuckling mode predictions compared favorably to experi-

ments.  The nonlinear analysis included measured geometric imperfections and used Riks’

method [30] to obtain solutions beyond the nonlinear collapse load. 

 

1.1.3 Thermal Response of Curved Panels

 

The thermal buckling response of doubly curved isotropic panels was studied by Mahayni [31]

using Galerkin’s method to solve nonlinear equilibrium equations.  A nonuniform temperature

distribution was considered along with two types of simple support boundary conditions, one with

tangential edge restraint and one without.  It was found that both boundary conditions resulted in

snap-buckling, with a lower value in critical temperature when the edges were free to translate in

the tangential directions. 

The thermal response of laminated composite panels can be studied using linear equilibrium equa-

tions to find deformations and stresses below the level of buckling.  Birman, Bert, and Elishakoff

[32] studied the linear prebuckling response of composite cylindrical panels subjected to thermal

loading.  Specially orthotropic panels were considered using Galerkin’s method with simple sup-

port boundary conditions and a parabolic temperature distribution.  Khdeir, Rajab, and Reddy [33]

also studied the linear prebuckling deformations of specially orthotropic panels, this time using

Levy’s method to determine the effects of variations in the boundary conditions along two oppo-

site edges.  A higher order shear deformation theory was compared to first order shear deforma-

tion theory and classical theory. 

Thermal buckling of laminated composite cylindrical panels was studied by Chen and Chen [34],

using a linear bifurcation analysis.  For loading due to a uniform change in temperature, a mem-

brane prebuckling solution was assumed, and Galerkin’s method was used to solve the buckling
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equations.  Both clamped and simply supported boundary conditions were considered.  Chen and

Chen [35] improved on their previous study by including a nonlinear prestress solution with a

nonuniform thermal gradient, and using the finite element method to find the bifurcation point.

Chandrashekhara [36] considers linear bifurcation buckling accounting for transverse shear defor-

mations by using a finite element solution.  Chang and Chui [37] used a higher order transverse

shear deformation theory in conjunction with the finite element method to study bifurcation buck-

ling due to a uniform temperature change.  A nonlinear prestress solution was used for the study of

simply supported, angle-ply laminates. 

For thermal buckling due to a limit point or excessive deformations, a geometrically nonlinear

analysis is required.  Huang and Tauchert [38] used the finite element method to conduct a geo-

metrically nonlinear analysis that incorporated Riks’ method to allow solution into the postbuck-

ling region.  Depending on the panel geometry, it was noted that either limit point or bifurcation

buckling might occur.  Kossira and Haupt [39] conducted a geometrically nonlinear analysis using

the finite element method to study the effects of nonuniform temperature distributions and shear

loading on an angle-ply laminate.  Averill and Reddy [40] used a higher order shear deformation

theory with the finite element method to study postbuckling of cylindrical panels subjected to uni-

form temperature distribution and a transverse normal strain at the panel edges.  The effect of

restricting transverse normal strain was to reduce the center deflection of the panel, as compared

to previous studies which neglected this strain.  Patlashenko and Weller [41] used a spline colloca-

tion solution method with a geometrically nonlinear formulation including transverse shear defor-

mations.  Temperature dependent material properties and initial geometric imperfections were

found to reduce the buckling loads due to either axial compression or uniform temperature

change.  Librescu et al. [42] considered the effect of nonuniform temperature distributions, com-

pressive edge loads, and transverse pressure on transversely isotropic three-layer panels.  Simple

support boundary conditions with different levels of tangential restraint were studied using Galer-

kin’s method for solution of the geometrically nonlinear equilibrium equations. 

The geometrically nonlinear thermal response of composite cylindrical panels with a hole was

considered by Madenci and Barut [43] using the finite element method.  Noor, Starnes and Peters

[44] considered combined thermal loading and compressive end shortening of a composite cylin-

drical panel with a hole.  The finite element method was used to study postbuckling response and

the effect of variations in panel geometry and laminate stacking sequence.
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1.1.4 Thermal-Structural Testing

 

Early work in the area of thermal structural testing was concerned both with structural response

and appropriate measurement techniques.  Heldenfels and Roberts [45] present results for flat alu-

minum-alloy panels heated along a centerline with parallel edges water cooled to provide an

inplane  thermal gradient.  A technique is presented for measurement of the thermal response

characteristics of wire strain gages by initial uniform heating of the test panel.  Measured thermal

stresses correlate well with theoretical stresses.

After Heldenfels and Roberts, thermal structural testing focused primarily on the response of

unstiffened isotropic cylinders to non-uniform heating.  In 1959, Hill [46] conducted thermal

buckling tests on simply supported aluminum and steel cylinders heated along a 1 in. wide axial

strip.  Heating was accomplished using two quartz lamps in the interior of the 4 ft. long by 10.375

in. diameter cylinders.  Cylinders were heated quickly until buckling occurred.  Johns [47] reports

experimental results for thermal buckling of a steel cylinder with clamped ends and an axially

varying temperature distribution.  A rare study on stiffened cylinders was presented by Anderson

and Card [48], who tested stainless steel ring-stiffened cylinders in pure bending then applied a

nonuniform temperature distribution until buckling occurred.  Cylinders were 45.75 in. long with

19 in. diameters and either five or nine ring stiffeners.  Two heating schemes were achieved by

selective placement of axially aligned quartz lamp heaters around the circumference of the cylin-

ders.  The first configuration involved heating only the portion of the cylinder circumference that

was under compressive stresses during bending, while the other configuration used equally spaced

lamps all the way around the circumference to achieve circumferentially uniform heating.  All

heating was conducted rapidly to achieve a thermal gradient in the skin and between the skin and

stiffeners of the stiffened cylinders.   

Returning to unstiffened shells, Ross, Mayers, and Jaworski [49] extended the study by Hill on the

buckling of cylinders heated along an axial strip to include strips of various widths.  Heating was

from both interior and exterior quartz lamps.  Different widths of black strips were painted on the

surface of the cylinder to obtain different heating widths.  Ross, Hoff, and Horton [50] considered

uniformly heated cylinders with the ends restricted from axial expansion and circumferential

expansion, resulting in compressive thermal stresses that eventually led to buckling.  The 48 in.

long by 10.375 in. diameter stainless steel and cold-rolled steel cylinders were heated rapidly

using interior quartz lamp heaters.  Although the cylinders were found to buckle at the same stress

whether the load was applied as axial compression or thermal stress, the temperatures that pro-

duced the buckling stress were higher than the predictions from linear theory due the substantial
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circumferential expansion that occurs with uniform heating.   In an analytical study by Bushnell

and Smith [51], a finite difference based code called BOSOR3 was used to interpret some of the

experimental results published in refs. [46], [48], [49], and [50].  

Somewhat more recently, Frum and Baruch [52]  studied combined thermal and mechanical load-

ing for clamped cylindrical shells preloaded in axial compression, then heated along two opposite

generators.  Results are presented for 46 tests on aluminum-alloy cylinders that were 26.4 in. long,

0.025 in. thick, and had a diameter of 15.0 in.   After an initial axial preload, additional end-dis-

placement during heating was prevented by making manual corrections.  The amount of axial dis-

placement during heating was found to significantly effect the buckling results.  Ari-Bur, Baruch,

and Singer [53] continued this study by adding torsional preloading.  Aluminum-alloy cylinders of

the same dimensions as ref. [52] were used, with the testing apparatus modified slightly to allow

for the introduction of torque.  For small torques, the critical temperature was not significantly

affected.  For medium torques, a buckling mode interaction of local and torsional patterns was

believed to have contributed to the observed decrease in buckling temperatures.  For large torques,

the buckling mode was torsional and the buckling temperatures were further reduced.  

Combined thermal and mechanical loading was addressed for a flat stiffened panel by Percy and

Fields [54] for a 24 in. square titanium hat-stiffened panel.  Uniform heating to 500

 

°

 

F was

achieved using quartz lamps inside a ceramic insulation box.  For some tests, an inplane tempera-

ture gradient was applied by use of heated and water-cooled platens.  The panel and heating appa-

ratus were placed within a hydraulic uniaxial load frame in order to apply axial compression.

Testing was stopped prior to buckling so that additional tests could be conducted with the same

panel, though buckling was estimated from strain gage bending data.  Linear predictions using a

finite element model compared well to the estimated buckling loads.  Extending this study to com-

posite materials, Thompson and Richards [55] tested a 24 in. square titanium matrix composite

hat-stiffened panel using the methods developed for the titanium panel.  Heating to 500

 

°

 

F and

1200

 

°

 

F was achieved, and the resulting temperature gradient was measured.  Tests were con-

ducted by first allowing the panel to reach an equilibrium temperature, then applying a compres-

sive load, with data presented only after an equilibrium temperature had been achieved.

Correlation to analysis was not presented.

Returning to the problem initially proposed in ref. [45], Thorton, Coyle and McLeod [56] con-

ducted tests of flat panels which were heated transiently along their centerlines while two parallel

edges were water cooled to maintain a constant temperature.  Test panels measured 10 in. wide by

15 in. long measured parallel to the lamp, with a 0.125 in. thickness.  Except for the heated center-
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line strip, the remainder of the panel was thermally insulated from the outside environment.

Results demonstrated that localized heating can result in buckling and substantial out-of-plane

deformation for freely supported flat panels.  

 

1.2 Objective and Approach

 

Experimental results for the thermal buckling response of curved composite panels are not avail-

able in the open literature.  Although numerous analytical results have been presented, the effects

of boundary conditions, stacking sequence, and curvature are not fully understood in the context

of cylindrically curved panels subjected to thermal loading.  Room temperature experimental

results are available for the end-shortening of curved panels with clamped curved ends and simply

supported straight edges, along with successful nonlinear analyses using the finite element

method, although this method often obscures the equations required to formulate the problem.

Less cumbersome but equally accurate approximate solutions have not been presented. 

The objective of the present work is to study the thermal, mechanical, and combined ther-

mal/mechanical response of curved laminated composite panels.  Three different laminates,

[

 

±

 

45/0/90]

 

s

 

, [

 

±

 

45/90

 

2

 

]

 

s

 

, and [

 

±

 

45/0

 

2

 

]

 

s

 

,  are considered.  The effects of inplane boundary condi-

tions and radius of curvature are considered, along with the effects of combined loading, including

consideration of the order of application of the combined loading.  An approximate solution to the

geometrically nonlinear response problem, based on the Rayleigh-Ritz approach, is presented for

a shallow curved panels with clamped curved ends and simply supported straight edges.  Numeri-

cal results based on the STAGS finite element code [57] are presented to provide comparison with

the Rayleigh-Ritz solution, and to provide additional insight into the problem by considering sev-

eral boundary conditions and several radii of curvature.  As part of this study, ten curved panels

were fabricated and tested at room temperature and elevated temperatures.  A fixture was con-

structed for supporting the panels and mechanically loading them by way of end-shortening.  An

insulated and heated enclosure, in addition to the support fixtures, provided a temperature increase

to the panels so that thermal loading, combined with mechanical loading, could be studied.

Experimental results are presented and compared to predictions from the finite element analysis.

The formulation of the specific problem is presented in Chapter 2.  A simplified linear bifurcation

buckling solution is presented that is used as a basis for comparison with the nonlinear solutions

obtained using the Rayleigh-Ritz method and the finite element program STAGS.  The approxi-

mate nonlinear Rayleigh-Ritz solution is described, along with some theory behind the selected

finite element analyses.  Convergence of the Rayleigh-Ritz solution is discussed in Appendix A.
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Analytical results are presented in Chapter 3, including results from the simplified linear solution,

results from the Rayleigh-Ritz solution, and finite element results.  End-shortening and uniform

temperature change are considered for three stacking sequences and variations of the boundary

conditions.  Additional parametric studies are presented on the effects of radius and combined

thermal and mechanical loading.

The experimental apparatus and procedure are described in Chapter 4, and experimental results

are presented.  The measured geometric shape imperfections are discussed in Appendix B, and

measured thermal gradients are presented in Appendix C.  

Chapter 5 begins with an analytical study of modeling refinements that became necessary due to

the nature of the experimental apparatus.  These include modified boundary conditions to repre-

sent the finite dimensions of the support fixtures, measured thicknesses, measured geometric

imperfections and measured temperature gradients.  Analytical predictions which incorporate

these modeling refinements are compared to the experimental responses. 

Concluding remarks are presented in Chapter 6 regarding the analytical parametric studies, the

experimental results, and the correlation between analysis and experiment.  Suggestions are made

for future improvements to the study.



 

10

 

Chapter 2 - Formulation

 

The curved cylindrical panel considered in this study is analyzed by a combination of methods.

An approximate solution to the geometrically nonlinear equilibrium equations is obtained by the

Rayleigh-Ritz method, with instability predicted by considering the determinant of the Jacobian

matrix.  The equations are formulated using Donnell’s shell theory and Kirchhoff-Love approxi-

mations.  The geometrically nonlinear equilibrium equations are also studied using the finite ele-

ment code STAGS (STructural Analysis of General Shells) [57].  A simplified linear buckling

solution is obtained for specially orthotropic stacking with membrane prebuckling.  It is presented

to provide a normalization for the more rigorous results.

The coordinate system and loading for the specific problem studied are shown in Fig. 2-1.  The

cylindrical panel is of length 

 

a

 

, opening angle 

 

β

 

, arc length 

 

b

 

, and thickness 

 

H

 

.  The reference sur-

face, which is at mid-thickness of the panel, has radius 

 

R

 

.  The origin of the coordinate system is

in the corner.  The mechanical loading is represented by a spatially uniform end-shortening 

 

∆

 

u

 

,

and the thermal loading is represented by a spatially uniform temperature change 

 

∆

 

T

 

.

Figure 2-1  Coordinate system and loading convention

∆u

∆T

β

R

a bx θ

z

H = thickness
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2.1 Kinematics and Constitutive Relations

 

The kinematic relations according to Donnell’s assumptions can be expressed as

(2.1)

with the superscript zero signifying displacements and rotations at the reference surface.  Follow-

ing the Kirchhoff-Love hypothesis, the reference surface rotations are defined as

. (2.2)

 The nonlinear strain-displacement relations can be expressed as

, (2.3)

where the midsurface strains and curvatures are given by

(2.4)

(2.5)

It is seen that geometric nonlinearities in the sense of von Karman are included.  The stress-strain

relations for the 

 

k

 

th ply of the laminate are given by
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, (2.6)

where  are the free thermal strains.  For this study, the free thermal strains will be

assumed to be a linear function of temperature change, namely,

, (2.7)

where , , and  are the coefficients of thermal expansion.  Defining 

, (2.8)

the stress-strain relation can be written as

. (2.9)

The force and moment resultants are defined as

. (2.10)

Performing the integration results in the classical lamination theory relations
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. (2.11)

The thermal force and moment resultants are given by

. (2.12)

When the temperature change  is uniform, the thermal force and moment resultants can be

expressed as

, (2.13)
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where the hatted quantities are referred to as unit thermal force and moment resultants, but they

are strictly material properties.

2.2 Exact Buckling Solution for a Simplified Problem

An exact analytical buckling solution can be found for a curved panel subject to a number of sim-

plifying assumptions.  Begin by considering the linearized Donnell shell equilibrium equations to

determine the prebuckling response.  These linear equations are given by

. (2.14)

For the special case of balanced, symmetric, specially orthotropic laminates with

, the linear force resultants can be written as

(2.15)

If we further consider a membrane, or momentless, prebuckling solution, the equilibrium equa-

tions reduce to

(2.16)
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The boundary conditions for a membrane solution with axial end-shortening are:

at , at ,

(2.17)

at , at , 

. (2.18)

To satisfy the displacement boundary conditions at  and , let

. (2.19)

Then the stress resultants which satisfy the equilibrium equations and remaining boundary condi-

tions are given by

(2.20)

The buckling equations, based on Donnell shell theory, can be written as

, (2.21)

where the subscript 1 denotes a buckling, or incremental, quantity and no subscript denotes a pre-

buckling quantity.  The force and moment resultant  increments can be written as

x 0= x a=

u° 0=

Nxθ 0=

u° ∆u=

Nxθ 0=

θ 0= θ β=

Nxθ 0=

Nθ 0=

Nxθ 0=

Nθ 0=

x 0= x a=

u° x θ,( ) ∆u
a

------- 
  x=

Nx

A11A22 A12
2

–

A22
-------------------------------- ∆u

a
------- 

  ∆T
A12

A22
-------- N̂θ

T
N̂x

T
– 

 +=

Nθ 0=

Nxθ 0= ⋅

Nx1
∂

x∂
-----------

Nxθ1
∂
R θ∂

--------------+ 0=

Nxθ1
∂

x∂
--------------

Nθ1
∂
R θ∂
-----------+ 0=

M
2

x1
∂

x
2∂

-------------- 2
M

2
xθ1

∂
R θ x∂∂
----------------

M
2

θ1
∂

R
2 θ2∂

--------------- Nx

w
2

1∂

x
2∂

----------- 2Nxθ
w

2
1∂

R θ x∂∂
---------------- Nθ

w
2

1∂

R
2 θ2∂

---------------
Nθ1

R
--------–+ + + + + 0=
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(2.22)

(2.23)

Writing the buckling equations in terms of displacement increments, and noting that, according to

the prebuckling solution,  ,

. (2.24)

Next, assume buckling displacements of the form

(2.25)

Nx1
A11

u1∂
x∂

-------- A12

v1∂
R θ∂
----------

w1

R
------+ 

 +=

Nθ1
A12

u1∂
x∂

-------- A22

v1∂
R θ∂
----------

w1

R
------+ 

 +=

Nxθ1
A66

u1∂
R θ∂
----------

v1∂
x∂

--------+ 
 =

Mx1
D– 11

w
2

1∂

x
2∂

----------- D– 12

w
2

1∂

R
2 θ2∂

---------------=

Mθ1
D– 12

w
2

1∂

x
2∂

----------- D– 22

w
2

1∂

R
2 θ2∂

---------------=

Mxθ1
2– D66

w
2

1∂
R θ x∂∂
----------------=

⋅

Nθ Nxθ 0= =

A11

u
2

1∂

x
2∂

---------- A12

v
2

1∂
R θ x∂∂
----------------

1
R
---

w1∂
x∂

---------+
 
 
 

A66

u
2

1∂

R
2 θ2∂

---------------
v

2
1∂

R θ x∂∂
----------------+

 
 
 

+ + 0=

A66

u
2

1∂
R θ x∂∂
----------------

v
2

1∂

x
2∂

----------+
 
 
 

A12+
u

2
1∂

R θ x∂∂
---------------- A22

v
2

1∂

R
2 θ2∂

---------------
1
R
---

w1∂
R θ∂
----------+

 
 
 

+ 0=

D11

w
4

1∂

x
4∂

----------- 2 D12 2D66+( )
w

4
1∂

R
2 θ2

x
2∂∂

----------------------- D22

w
4

1∂

R
4 θ4∂

---------------+ +

Nx

w
2

1∂

x
2∂

-----------–
A12

R
--------

u1∂
x∂

--------
A22

R
--------

v1∂
R θ∂
----------

w1

R
------+ 

 + + 0=

u1 Umn
mπx

a
----------- 

  nπθ
β

---------- 
 sincos=

v1 Vmn
mπx

a
----------- 

 sin
nπθ

β
---------- 

 cos=

w1 Wmn
mπx

a
----------- 

 sin
nπθ

β
---------- 

 sin=
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and substitute them into Eq. (2.24) to obtain

, (2.26)

where

(2.27)

To solve for , set  to obtain

, (2.28)

where the subscript cr denotes a critical, or buckling, quantity.  Substituting the expressions for

 and  from Eq. (2.27) and solving for the axial end load per unit length   gives

. (2.29)

C11 C12 C13

C12 C22 C23

C13 C23 C33 Pcr–( )

Umn

Vmn

Wmn 
 
 
 
  0

0

0 
 
 
 
 

=

C11 A11
mπ
a

------- 
  2

A66
nπ
βR
------- 

  2
+=

C12 A12 A66+( ) mπ
a

------- 
  nπ

βR
------- 

 =

C22 A22
nπ
βR
------- 

  2
A66

mπ
a

------- 
  2

+=

C23

A22

R
-------- nπ

βR
------- 

 –=

C33 D11
mπ
a

------- 
  4

2 D12 2D66+( ) mπ
a

------- 
  2 nπ

βR
------- 

  2
D22

nπ
βR
------- 

  4 A22

R
2

--------++ +=

Pcr Nx
mπ
a

------- 
  2

=

C13

A12

R
-------- mπ

a
------- 

 –=

⋅

Pcr det Cij[ ] 0=

Pcr C33

2C12C13C23 C11– C23
2

C22– C13
2( )

C11C22 C12
2

–( )
------------------------------------------------------------------------------+=

Cij Pcr Nx Ncr–=

N– cr D11
mπ
a

------- 
  2

2 D12 2D66+( ) nπ
βR
------- 

  2
D22

a
mπ
------- 

  2 nπ
βR
------- 

  4
+ +=

1

R
2

------
A11A22 A12

2
–( )

A11
mπ
a

------- 
  A11A22 A12

2
–

A66
-------------------------------- 2A12– 

  nπ
βR
------- 

  2
A22

a
mπ
------- 

  2 nπ
βR
------- 

  4
+ +

----------------------------------------------------------------------------------------------------------------------------------------------------+
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Notice that the first bracketed term in Eq. (2.29) represents the buckling solution for a flat plate.

For an isotropic shell with  and , Eq. (2.29) simplifies to 

, (2.30)

which was obtained by Koiter in ref. [9].  Notice that the first term of Eq. (2.30) is the buckling

solution of a square, isotropic flat plate.  

The buckling solution occurs when  m and n  are chosen to give a  minimum value of .  For a

square, flat, isotropic plate, the buckling solution is obtained when , however this is

not true for a cylindrically curved panel.  The minimum value of   can be found trying differ-

ent integer values for m and n, and selecting the values that gives the lowest value of .  When

end-shortening and temperature change are applied separately, their critical values are obtained

from Eq. (2.20) for a specially orthotropic curved panel as 

. (2.31)

2.3 Rayleigh-Ritz Solution to Nonlinear Response Problem

The total potential energy of a cylinder according to Donnell’s assumptions can be expressed as

(2.32)

where  is the total potential energy of the applied load.  Inplane axial and circumferential

edge loads are included by

(2.33)

inplane shear loading is included by

(2.34)

a βR= m n 1= =

N– cr
Eh

3

3 1 ν2
–( )

---------------------- π
a
--- 

  2 1

R
2

------ a
π
--- 

  2Eh
4

-------+=

Ncr

m n 1= =

Ncr

Ncr

∆ucr

NcraA22

A11A22 A12
2

–( )
-------------------------------------= ∆Tcr

NcrA22

A12N̂θ
T

A22N̂x
T

–
--------------------------------------=and

π 1
2
--- σx σx

T
–( )εx σθ σθ

T
–( )εθ+ +[

z
∫

θ
∫

x
∫=

τ xθ τ xθ
T

–( )γxθ ] R z θ x πload+ddd

πload

πload Nx
–

θ( )u° 0 θ,( )R θ Nx
+

θ( )u° a θ,( )R θd
θ
∫–d

θ
∫=

Nθ
–

x( )v° x 0,( ) xd Nθ
+

x( )v° x β,( ) xd
x
∫–

x
∫+ ,

πload Nxθ
–

θ( )v° 0 θ,( )R θd Nxθ
+

θ( )v° a θ,( )R θd
θ
∫–

θ
∫=

Nxθ
–

x( )u° x 0,( ) xd Nxθ
+

x( )u° x β,( ) xd
x
∫–

x
∫+ ,
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and outward radial loading is included by

. (2.35)

The terms  and  refer to applied edge loads per unit length, and  is a load per unit

area.  This study focuses on panel response due to a combination of a known end shortening and

temperature change. As a result, .  Integrating Eq. (2.32) through the thickness with no

applied edge loads results in 

. (2.36)

Using Eqs. (2.4), (2.5), and (2.11), the total potential energy  can be written as a function of the

reference surface displacements , , and .  The first variation in the total potential energy

with respect to displacements can be found by incrementing each of the displacements an infini-

tesimally small amount .  Operationally, the incrementing can be expressed as the following sub-

stitutions:

, (2.37)

where  is a small scaler quantity and, as mentioned previously, the subscript 1 is associated with

incremental quantities.  Incrementing the displacements results in increments for other quantities

that are functions of displacement, including strains and stress resultants.  In terms of these incre-

ments, an expression for the incremented total potential energy is given by

(2.38)

Substitution of the displacement increments of Eq. (2.37) into the definitions of strains and curva-

tures from Eq. (2.4) results in

πload q x θ,( )w° x θ,( )R θ xdd
θ
∫

x
∫–=

N
+

N
–

q x θ,( )

πload 0=

π 1
2
--- Nx Nx

T
–( )ε°x Nθ Nθ

T
–( )ε°θ Nxθ Nxθ

T
–( )γ°xθ+ +[

x
∫

θ
∫=

Mx Mx
T

–( )+ κ°x Mθ Mθ
T

–( )κ°θ Mxθ Nxθ
T

–( )κ°xθ++ ] R θdd

π
u° v° w°

ε

u° u° εu°1+→

v° v° εv°1+→

w° w° εw°1+→

ε

1
2
--- Nx ∆Nx Nx

T
–+( ){ ε°x ∆ε°x+( ) Nθ ∆Nθ Nθ

T
–+( ) ε°θ ∆ε°θ+( )+

x
∫

θ
∫

Nxθ ∆Nxθ Nxθ
T

–+( )+ γ°xθ ∆γ°xθ+( )

Mx ∆Mx Mx
T

–+( ) κ°x ∆κ°x+( ) Mθ ∆Mθ Mθ
T

–+( )+ + κ°θ ∆κ°θ+( )

Mxθ ∆Mxθ Mxθ
T

–+( )+ κ°xθ ∆κ°xθ+( )} R θ xdd

π ∆π+ =

⋅
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(2.39)

. (2.40)

By grouping powers of , the strain and curvature increments can be written as

(2.41)

, (2.42)

where

, (2.43)

ε°x ∆ε°x+
u° εu°1+( )∂

x∂
----------------------------

1
2
---

w° εw°1+( )∂
x∂

------------------------------
2

+=

ε°θ ∆ε°θ+
v° εv°1+( )∂

R θ∂
---------------------------

w° εw°1+( )
R

---------------------------
1
2
---

w° εw°1+( )∂
R θ∂

------------------------------
2

+ +=

γ°xθ ∆γ°xθ+
u° εu°1+( )∂

R θ∂
----------------------------

v° εv°1+( )∂
x∂

---------------------------
w° εw°1+( )∂

x∂
------------------------------

w° εw°1+( )∂
R θ∂

------------------------------+ +=

κ°x ∆κ°x+
w° εw°1+( )2∂

x
2∂

--------------------------------–=

κ°θ ∆κ°θ+
w° εw°1+( )2∂

R
2 θ2∂

--------------------------------–=

κ°xθ ∆κ°xθ+ 2
w° εw°1+( )2∂
R θ x∂∂

--------------------------------–=

ε

∆ε°x ε ε°x1
( ) ε2 ε°x2

( )+=

∆ε°θ ε ε°θ1
( ) ε2 ε°θ2

( )+=

∆γ°xθ ε γ°xθ1
( ) ε2 γ°xθ2

( )+=

∆κ°x ε κ°x1
( )=

∆κ°θ ε κ°θ1
( )=

∆κ°xθ ε κ°xθ1
( )=

ε°x1

u°1∂
x∂

--------- w°∂
x∂

---------
w°1∂
x∂

----------+=

ε°θ1

v°1∂
R θ∂
----------

w°1
R

------- w°∂
R θ∂
----------+

w°1∂
R θ∂
----------+=

γ°xθ1

v°1∂
x∂

--------
u°1∂

R θ∂
---------- w°∂

x∂
---------+

w°1∂
R θ∂
---------- w°∂

R θ∂
----------

w°1∂
x∂

----------+ +=
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, (2.44)

and

. (2.45)

Now the increments in the force and moment resultants can be written in terms of the strain and

curvature increments to obtain

. (2.46)

Making use of Eq. (2.41) and grouping powers of , the incremented force and moment resultants

can be rewritten as

ε°x2

1
2
---

w°1∂
x∂

---------- 
 

2

=

ε°θ2

1
2
---

w°1∂
R θ∂
---------- 

 
2

=

γ°xθ2

w°1∂
x∂

----------
w°1∂

R θ∂
----------=

κ°x1

w°1
2∂

x
2∂

------------–=

κ°θ1

w°1
2∂

R
2 θ2∂

---------------–=

κ°xθ1
2

w°1
2∂

R θ∂ x∂
----------------–=

∆Nx

∆Nθ

∆Nxθ 
 
 
 
  A11 A12 A16

A12 A22 A26

A16 A26 A66

∆ε°x
∆ε°θ
∆γ°xθ 

 
 
 
  B11 B12 B16

B12 B22 B26

B16 B26 B66

∆κ °x
∆κ °θ
∆κ °xθ 

 
 
 
 

+=

∆Mx

∆Mθ

∆Mxθ 
 
 
 
  B11 B12 B16

B12 B22 B26

B16 B26 B66

∆ε°x
∆ε°θ
∆γ°xθ 

 
 
 
  D11 D12 D16

D12 D22 D26

D16 D26 D66

∆κ °x
∆κ °θ
∆κ °xθ 

 
 
 
 

+=

ε
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, (2.47)

where

(2.48)

and

. (2.49)

Substituting Eqs. (2.41), (2.42), and (2.47) into Eq. (2.38) gives an expression for the total poten-

tial energy that can be written in shorthand notation as

(2.50)

where  is the first variation in the total potential energy,  is the second variation,  is the

∆Nx ε Nx1
( ) ε2

Nx2
( )+=

∆Nθ ε Nθ1
( ) ε2

Nθ2
( )+=

∆Nxθ ε Nxθ1
( ) ε2

Nxθ2
( )+=

∆Mx ε Mx1
( ) ε2

Mx2
( )+=

∆Mθ ε Mθ1
( ) ε2

Mθ2
( )+=

∆Mxθ ε Mxθ1
( ) ε2

Mxθ2
( )+=

Nx1

Nθ1

Nxθ1
 
 
 
 
  A11 A12 A16

A12 A22 A26

A16 A26 A66

ε°x1

ε°θ1

γ°xθ1
 
 
 
 
  B11 B12 B16

B12 B22 B26

B16 B26 B66

κ °x1

κ °θ1

κ °xθ1
 
 
 
 
 

+=

Mx1

Mθ1

Mxθ1
 
 
 
 
  B11 B12 B16

B12 B22 B26

B16 B26 B66

ε°x1

ε°θ1

γ°xθ1
 
 
 
 
  D11 D12 D16

D12 D22 D26

D16 D26 D66

κ °x1

κ °θ1

κ °xθ1
 
 
 
 
 

+=

Nx2

Nθ2

Nxθ2
 
 
 
 
  A11 A12 A16

A12 A22 A26

A16 A26 A66

ε°x2

ε°θ2

γ°xθ2
 
 
 
 
 

=

Mx2

Mθ2

Mxθ2
 
 
 
 
  B11 B12 B16

B12 B22 B26

B16 B26 B66

ε°x2

ε°θ2

γ°xθ2
 
 
 
 
 

=

π ∆π+ π επ1 ε2π2 ε3π3 ε4π4+ + + +=

π1 π2 π3
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third variation, and  is the fourth variation.  Equilibrium is obtained when the first variation is

equal to zero.  The first variation is given by 

. (2.51)

This expression can be further simplified by substituting the expressions for , , , ,

, and  from Eq. (2.48) and regrouping to obtain

. (2.52)

This expression plays a key roll for approximate solutions, such as the Rayleigh-Ritz approach.

For a Rayleigh-Ritz solution, the assumed solution the must satisfy the essential boundary condi-

tions. For this formulation, the essential boundary conditions involve the displacements and the

first derivative of . The first set of boundary conditions considered is denoted as clamped/slid-

ing simple supports, and is defined by

at , at ,

(2.53)

at , at ,

. (2.54)

The assumed forms of the displacements which satisfy the essential boundary conditions of

clamped/sliding simple supports are

π4

π1
1
2
--- Nx Nx

T
–( )[

θ
∫

x
∫ ε°x1

Nx1
ε°x Nθ Nθ

T
–( ) ε°θ1

Nθ1
ε°θ+ + +=

Nxθ Nxθ
T

–( )γ°xθ1
Nxθ1

γ°xθ Mx Mx
T

–( )κ°x1
Mx1

ε°x+ + + +

Mθ Mθ
T

–( )κ°θ1
Mθ1

ε°θ Mxθ Mxθ
T

–( )κ°xθ1
Mxθ1

γ°xθ ] Rdθdx+ + + +

Nx1
Nθ1

Nxθ1
Mx1

Mθ1
Mxθ1

π1 Nxε°x1
Nθε°θ1

Nxθγ°xθ1
Mxκ°x1

Mθκ°θ1
Mxθκ°xθ1

+ + + + +( )Rdθdx
θ
∫

x
∫=

wo

x 0= x a=

u° 0= u° ∆u=

v° 0=

w° 0=

w°∂
x∂

--------- 0=

v° 0=

w° 0=

w°∂
x∂

--------- 0=

θ 0= θ β=

Nxθ 0= Nxθ 0=

Nθ 0=

w° 0=
Mθ 0=

Nθ 0=

w° 0=
Mθ 0=
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(2.55)

Notice that the non-essential or natural boundary conditions, those involving the stress resultants,

are not satisfied on a term-by-term basis. 

The second set of boundary conditions considered is denoted clamped/fixed simple supports.

These boundary conditions differ from clamped/sliding simple supports in the amount of tangen-

tial restraint along the straight edges. Clamped/fixed simple supports are defined by

at , at ,

(2.56)

at , at ,

(2.57)

The assumed forms of the displacements for clamped/fixed simple supports are

u° x θ,( ) x∆u
a

---------- Uij
c iπx

a
-------- 
 sin

jπθ
β

--------- 
 cos

j 0=

2N

∑
i 1=

2N

∑ Uij
s iπx

a
-------- 
 sin

jπθ
β

--------- 
 sin

j 1=

2N

∑
i 1=

2N

∑+ +=

v° x θ,( ) Vij
c iπx

a
-------- 
 sin

jπθ
β

--------- 
 cos

j 0=

2N

∑
i 1=

2N

∑ Vij
s iπx

a
-------- 
 sin

jπθ
β

--------- 
 sin

j 1=

2N

∑
i 1=

2N

∑+=

w° x θ,( ) Wij
i 1–( )πx

a
---------------------- 
  i 1+( )πx

a
---------------------- 
 cos–cos

jπθ
β

--------- 
 sin
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. (2.58)

In addition to satisfying the essential boundary conditions, this form of the assumed displace-

ments also satisfies the natural boundary condition  at .  The natural boundary

condition  at  is not satisfied on a term-by-term basis except for the special case

of balanced, symmetric, specially orthotropic laminates with .

The Rayleigh-Ritz solutions are obtained by substituting the assumed forms for the displace-

ments, Eqs. (2.55) or (2.58), into the expression for the first variation in total potential energy, Eq.

(2.52).  The displacement increments are assumed to have the same form as the displacements.

By carrying out the integration and grouping the coefficients of the displacement increments, non-

linear algebraic equations are obtained in terms of the unknown coefficients in the assumed forms

for the displacements.  The number of equations is equal to the total number of terms in the dis-

placement series, which is also the number of unknown coefficients.  The substitution, integration,

and grouping of coefficients into equations was accomplished using the symbolic manipulator

Mathematica® [58].  From the equations obtained with Mathematica®, a FORTRAN computer

program was developed to account for an theoretically unlimited number of terms in the approxi-

mation series.  The nonlinear equations are solved using the IMSL [59] subroutine DNEQNJ,

which is based on a variation of Newton’s method, and requires a user supplied Jacobian matrix.

Further description of the algorithm for the subroutine DNEQNJ is documented in reference [60].

The Jacobian matrix is also used to access stability of the curved panel by computing the determi-

nant of the Jacobian matrix using IMSL subroutines DLFTRG and DLFDRG.  

2.4 The Finite Element Code STAGS

The finite element code STAGS is also used to predict the nonlinear response.  The code is partic-

ularly useful for predicting response in the postbuckling range.  A corotational formulation [61] is

included to account for large rotations, and Riks’ method [30]  is incorporated to allow solution

along an unstable loading path.  
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The cylindrically curved panels considered here are modeled with 411 type elements, according to

the STAGS naming convention.  These elements are 8-noded quadrilateral faceted shell elements

which are identical to the 4-noded 410 element [62], but with the addition of midside nodes.  Both

the 410 and 411 elements are formulated according to the Kirchhoff-Love hypothesis with

Lagrangian nonlinear strain-displacement relations.  Each node is allowed 6 degrees of freedom,

comprised of three translations and three rotations.  The three rotations are   and , and a

“drilling” rotation .  Nodal degrees of freedom as shown in Fig. 2-2.

For panels in the parametric study section, a uniform grid of 20 elements by 20 elements will be

used.  When using STAGS to predict experimental results, a mesh of 23 elements by 23 elements

will be used, with smaller elements near the edges to better represent the boundary conditions due

to the testing fixture.  This will be discussed in a later chapter.

Buckling is predicted with a nonlinear STAGS analysis by noting the number of negative roots, or

eigenvalues, in the reformed tangent stiffness matrix.  The tangent stiffness matrix, which is

equivalent to the Jacobian matrix, is reformed after each load step to represent the current

deformed configuration of the structure.  When the determinant of the reformed tangent stiffness

matrix changes sign from positive to negative, a change in the stability of the load path is indi-

cated.   For a stable prebuckling solution, the tangent stiffness matrix has zero negative eigenval-

ues.  When a secondary load path is encountered, points on an unstable path will have one

negative eigenvalue.  Points on a stable secondary load path, if such a path exists, will have zero

negative eigenvalues. 

Consider geometrically nonlinear inplane load vs. inplane strain relations, as in Fig. 2-3.  For the

flat panel response shown in Fig. 2-3(a), point A is the bifurcation point marking the intersection

of the primary and secondary equilibrium paths.  The portion of the primary path from the origin

to point A represents the panel remaining flat prior to buckling, which is a stable prebuckling

βx βθ
βz

Figure 2-2  Nodal degrees of freedom

x θ

z

u v

w

−βx

βz
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response.  The portion of the primary path between points A and C represents an unstable config-

uration, with one negative eigenvalue in the reformed tangent stiffness matrix.  This represents the

panel remaining flat even though the load is above the buckling load, which is an unstable

response.  From point A to point B is the secondary equilibrium path, which is a stable configura-

tion with no negative eigenvalues.

The geometrically nonlinear inplane load vs. inplane strain relation for a typical cylindrically

curved panel is shown in Fig. 2-3(b).  The line from the origin to point A represents stable behav-

ior.  Unlike the flat panel, deflections perpendicular to the panel do occur in this load range due to

curvature, Poisson effects, and boundary effects.  Point A again represents a bifurcation between

the primary and secondary paths.  The portion of the primary path from point A to point D is an

unstable configuration with one negative eigenvalue in the reformed stiffness matrix.  On the sec-

ondary loading path, the path between points A and B is also unstable, indicated by the appear-

ance of one negative eigenvalue.  However beyond point B, the region from point B to point C

again represents a stable configuration with no negative eigenvalues in the reformed tangent stiff-

ness matrix.

Koiter [9] suggests a determination of stable or unstable postbuckling response based on the slope

of the initial postbuckling curve, i.e., from point A to point B in Fig. 2-4.  When strain is pre-

scribed, as opposed to load being prescribed, a vertical downward slope in the immediate vicinity

of the bifurcation point is the limiting case separating stable from unstable response.  In Fig. 2-4,

the vertical path from A to B represents this transition, with stable configurations to the right, and

(a) Flat Panel (b) Curved Panel

Figure 2-3 Typical postbuckling response, normalized load vs. axial strain
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unstable configurations to the left.  For unstable response after point A, a decrease in applied

strain is required to stay on the response path, while for stable response after point A, an increase

in applied strain is required.   

Figure 2-4  Postbuckling stability according to initial slope, prescribed inplane strain
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Chapter 3 - Analytical and Numerical Results

 

Results presented in this section consider the influence of a variety of boundary conditions and

panel geometries.  The boundary conditions considered cover the range of possibilities that may

be seen in the experimental portion of the study.  For example, although the goal is to keep the

curved edges clamped, they may in fact slide in the circumferential direction.  Different values of

the radius of curvature are considered to determine how the observed responses depend on the

shallowness of the panels. End-shortening and uniform temperature change are considered sepa-

rately and in combination.

For this portion of the study, only geometrically perfect panels with 10 in. by 10 in. rectangular

planforms are considered.  Only three laminates are considered, but they represent a range of lev-

els of orthotropy.  Where the 0 deg. is the axial direction, the stacking sequences are: [

 

±

 

45/0/90]

 

s

 

,

a quasi-isotropic lay-up; [

 

±

 

45/0

 

2

 

]

 

s

 

, an axially stiff lay-up; and [

 

±

 

45/90

 

2

 

]

 

s

 

, an axially soft lay-up.

The panels are assumed to be fabricated from IM7/5260 with a layer thickness of 0.005 in.  Ana-

lytical results are based on material properties for IM7/5260 from ref. [44]. These properties are

given in Table 3-1.

Interpretation of the results also requires laminate coefficients of thermal expansion, which are

defined as

 

Table 3-1 Material properties for analytical studies

 

22.1 Msi

1.457 Msi

0.258

0.860 Msi

/

 

°

 

F

/

 

°

 

F

E1

E2

ν12

G12

α1 0.01250 10
6–×

α2 14.91 10
6–×



 

Chapter 3 - Analytical and Numerical Results

 

30

(3.1)

and the laminate major Poisson’s ratio, which is given by

. (3.2)

For the laminates of interest, the coefficients of thermal expansion and Poisson’s ratios are given

in Table 3-2.  The thermal expansion characteristics and the Poisson’s ratios of these three lami-

nates offer a contrast.  Note that the Poisson’s ratio of the quasi-isotropic laminate is very similar

to that of a metal, such as aluminum, for example.  The coefficients of thermal expansion for that

laminate, on the other hand, are an order of magnitude less than aluminum.  The Poisson’s ratio

for the axially soft [

 

±

 

45/90

 

2

 

]

 

s

 

 laminate is smaller than that of the quasi-isotropic laminate, and the

coefficient of thermal expansion in the 

 

y

 

-direction is actually negative.  On the other hand, the

coefficient of thermal expansion in the 

 

x

 

-direction is positive and much larger than for the

quasi-isotropic laminate, although still less than aluminum.  The Poisson’s ratio for the axially

stiff [

 

±

 

45/0

 

2

 

]

 

s

 

 laminate is quite large, being greater than the value of 0.5, the upper limit for isotro-

pic materials.  The coefficients of thermal expansion of the axially stiff laminate are reversed from

those of the axially soft laminate.

 

Table 3-2 Laminate coefficients of thermal expansion and Poisson’s ratios
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3.1 Simplified Linear Analysis

 

The results from the simplified linear buckling analysis for 10 in. by 10 in. curved panels with

radii of 60 in. are given in Table 3-3.  The value of the critical, or buckling, load is derived from

Eq. (2.29), independent of whether the loading is due to thermal effects or mechanical effects.

The number of half waves in the axial (

 

m

 

) and circumferential (

 

n

 

) directions is indicated.  Note the

multiple half waves in the axial direction.  Note also that Eq. (2.31) predicts a negative buckling

temperature for the [

 

±

 

45/0

 

2

 

]

 

s

 

 laminate, indicating that raising the temperature will not cause ther-

mal buckling.  This is because of the coefficient of thermal expansion of this laminate in the axial

direction  is negative, whereas with the other two laminates the axial expansion coefficient is pos-

itive.  Since in the solution to Eq. (2.29) only the axial prebuckling force resultant is involved, it is

the axial coefficient of thermal expansion that is important.  Recall that this solution assumes a

membrane prebuckling state, that  and  are zero, and that the boundaries are simply sup-

ported.  The load  from this solution will be used to normalize the results of nonlinear analyses

from the STAGS and Rayleigh-Ritz solutions.

 

3.2 Effect of Boundary Conditions

 

The boundary condition that is of primary interest has clamped supports on the curved edges, with

simple supports that allow circumferential displacement on the straight edges.  It is hoped that this

set of conditions, referred to earlier as clamped/sliding simple support, will be provided by the

experimental set-up.  Before broad generalizations are made about the behavior of curved panels,

it is important to understand the sensitivity of thermal and mechanical response to specific bound-

ary conditions.  Because the effects of circumferential restraint are expected to substantially effect

response, boundary conditions which vary this restraint are studied.

 

3.2.1 Clamped/Sliding Simple Support Boundary Conditions

 

Clamped/sliding simple support boundary conditions are defined for use in STAGS as shown in

Fig. 3-1.  For end-shortening, the specified displacement 

 

u

 

+

 

 is equal to the prescribed end-shorten-

 

Table 3-3 Buckling values from simplified linear analysis

 

N

 

cr

 

, lbs./in.
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F

[±45/0/90]s m = 4, n = 1 -141.0 -0.00412 362.9

[±45/902]s m = 4, n = 1 -145.0 -0.00988 227.5

[±45/02]s m = 3, n = 1 -100.3 -0.00197 -1242.4
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ing ∆u along the curved end at  x = a, and it is equal to zero at  x = 0.  For elevated temperature

loading, u+ is equal to zero along both curved ends.  Because u+ is required to be uniform along

the curved edge, the drilling degree of freedom  is set to zero there.  Along the straight edge, the

sliding simple support boundary condition includes  being set equal to zero, which is not

explicitly required by the Rayleigh-Ritz solution.  This rotation is not part of the variationally con-

sistent boundary conditions, Eqs. (2.53) and (2.54), but is required by the finite element analysis

to accurately model the physical testing conditions.  And although the Rayleigh-Ritz solution is

not required to match this boundary condition, the particular choice of assumed displacements,

Eq. (2.55), does result in  being equal to zero along the straight edges. 

Table 3-4 gives the buckling results for the Rayleigh-Ritz and STAGS nonlinear analyses for

clamped/sliding simple support boundary conditions.  Buckling is predicted by the Rayleigh-Ritz

solution when the determinant of the Jacobian matrix changes sign, and by STAGS when the

reformed tangent stiffness matrix has one negative root.  This behavior is characteristic of bifurca-

tion buckling, defined earlier as the intersection between the primary load path and a secondary

load path.   

Again, 10 in. by 10 in. IM7/5260 panels with radii of 60 in. are considered.  Axial force resultants,

Nx, are normalized by the buckling load, Ncr, from the simplified linear solution of Table 3-3.  In

Table 3-4, and other results that follow, Nx is the average axial force along the curved end of the

panel, divided by the arc length b.  The assumed displacements for the Rayleigh-Ritz solution

with clamped/sliding simple support boundary conditions are given in Eq. (2.55).  The results pre-

sented in this section are for N = 5, which gives a total of 445 unknown constants to be determined

in the solution of the nonlinear equations.  Results using less terms did not compare as favorably

to STAGS, as shown Appendix A, where convergence of the Rayleigh-Ritz solution is considered.

βz

βx

βx

x θ

z

Figure 3-1 Clamped/sliding simple support boundary conditions for STAGS analysis
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For the axially stiff [±45/02]s laminate, the Rayleigh-Ritz solution does not predict buckling when

N = 5 terms are used, although the STAGS solution predicts a buckling temperature of 1150.0°F.

A further increase in the number of terms in the Rayleigh-Ritz solution exceeds current computer

limitations.  More insight on this convergence problem will be provided in the discussion of

clamped/fixed simple support boundary conditions. 

It is important to note that with the nonlinear analysis, either the end-shortening ∆u is prescribed,

or the temperature increase ∆T is prescribed, depending on whether a mechanical or thermal load-

ing is being considered.  Critical, or buckling, values of these parameters are sought.  The value of

Nx at the critical values of these parameters is an outcome of the analysis.  Comparison between

the simplified linear and nonlinear analyses reveals a weakness in the linear approach.  For the

[±45/0/90]s laminate, for example, the value of Nx when ∆u reaches its critical value is not the

same as the value of Nx when ∆T reaches its critical value.  The simplified linear analysis predicts

one axial buckling load Ncr regardless of whether the loading was introduced through end-short-

ening or temperature change, as is apparent from Eq. (2.29).  In the nonlinear analysis the magni-

tude of the buckling load Nx is seen to depend on how the load was introduced.

Nonlinear Response

The nonlinear response predicted by STAGS is shown in Fig. 3-2(a) for the quasi-isotropic

[±45/0/90]s laminate.  The average force resultant on the curved end is normalized by the simpli-

fied linear buckling values of Table 3-3 to form the vertical axis.  The horizontal axis has the

Table 3-4 Buckling values from STAGS and Rayleigh-Ritz nonlinear analysis solutions, 
clamped/sliding simple support boundary conditions

Mechanical loading Thermal loading

∆umax, in. Nx / Ncr ∆Tmax,°F Nx / Ncr

[±45/0/90]s                  STAGS -0.00404 (b)* 0.964 512.8 (b) 1.087

Rayleigh-Ritz -0.00403 (b) 0.963 522.2 (b) 1.117

[±45/902]s                    STAGS -0.00906 (b) 0.910 206.7 (b) 0.905

Rayleigh-Ritz -0.00901 (b) 0.907 206.1 (b) 0.903

[±45/02]s                      STAGS -0.00254 (b) 1.184 1150.0 (b) -1.36

Rayleigh-Ritz -0.00254 (b) 1.186 does not buckle

* Bifurcation buckling is indicated by a (b), limit point buckling is indicated by an (l).
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dimensions of axial strain.  The average inplane axial strain due to end-shortening can be

expressed as ∆u/a, which is often referred to as the total strain.   The average inplane axial strain

due to temperature change can be expressed as -αx∆T, referred to as the thermal strain.  The super-

position of these two average strains gives the average elastic, or mechanical, strain.  This average

mechanical strain is conveniently used as the horizontal axis.  By comparing Tables 3-3 and 3-4,

the simplified linear analysis is seen to provide a reasonable prediction for buckling due to

end-shortening, ∆u = -0.00412 for the simplified linear analysis vs. ∆u = -0.00404 in. for the geo-

metrically nonlinear analysis.  The simplified linear buckling temperature of 362.9°F, however, is

far from the buckling temperature of 512.8°F  predicted by the geometrically nonlinear analysis.

Returning to Fig. 3-2(a), it is seen that the panel subjected to end-shortening reaches a bifurcation

point at A on the solid line, then collapses with an unstable postbuckling behavior. When Nx

reaches the first local minimum just before point B, the panel becomes stable until a second unsta-

ble collapse occurs just after point B.  After Nx reaches its second minimum near point C, the

panel returns to a stable response.  In contrast, the panel subjected to uniform temperature change

continues along the primary loading path well beyond the bucking load predicted by the simplified

linear analysis.  At point D, the bifurcation point, unstable collapse occurs and the response

remains unstable until Nx reaches a minimum.  Stable panel response continues for the remainder

of the temperature range considered. 

Prebuckling and postbuckling deformed shapes are shown in Fig. 3-2(b-f). The prebuckling defor-

mations at points A and D exhibit similar shapes. The initial postbuckling response at points B and

E is also similar in terms of deformed shapes, although the end-shortening panel eventually

reaches the shape at point C.

For the axially soft [±45/902]s laminate, the buckling value from the simplified linear analysis

somewhat overestimates both the maximum end-shortening and the maximum temperature found

in the nonlinear analyses, as shown in Tables 3-3 and 3-4.  From Fig. 3-3, it is seen that the ther-

mal response is nearly identical to the mechanical response.  That is because the laminate thermal

expansion coefficient in the circumferential direction, αy is nearly zero.  For both loading condi-

tions, the panel reaches a bifurcation point and collapses onto an unstable postbuckling path.

Deformations for prebuckling and stable postbuckling response are shown in Fig. 3-3(b-e).  Like

the load vs. strain responses, the deformations are very similar for both thermal and mechanical

loading.  

For the axially stiff [±45/02]s laminate, the response is shown in Fig. 3-4.  The thermal and

mechanical responses are entirely different due to the very small but negative coefficient of ther-
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mal expansion in the axial direction, αx.  The mechanical response is similar to the response seen

for the other two stacking sequences, but the thermal response indicates that an increase in tem-

perature produces a decrease in axial load Nx.   For both thermal and mechanical loading, buckling

occurs at a bifurcation point.  The deformation shapes in Fig. 3-4(b-d) indicate that the mechani-

cally induced deformations are similar to the mechanically induced deformations for the
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quasi-isotropic [±45/0/90]s laminate, Fig. 3-2(b-d).  The thermally induced deformation, Fig.

3-4(e), retains the same general shape for the range of temperatures considered.

Force Resultant Distributions

The difference in the thermal and mechanical responses can be better understood by examining

the force resultant distributions of the curved panels immediately prior to buckling. These force

distributions are shown in Figs. 3-5, 3-6, and 3-7, where the buckling load from the simplified lin-

ear analysis is used for normalization.   For the quasi-isotropic panel, the force resultant  is

much higher along the curved ends for the panel subjected to uniform temperature change, Fig.

3-5(d), than for the panel loaded with end-shortening, Fig. 3-5(b).  In the simplified linear analy-

sis, the membrane prebuckling assumption required  to be zero throughout the panel.  This,

apparently, is not a good assumption, particularly for the thermal case.  For the end-shortening

problem, interaction between Nx and  is through the Poisson’s ratio of the laminate.  For the

temperature problem, the coefficients of thermal expansion in both the axial and circumferential

directions, as well as Poisson’s ratio, are important in controlling interaction between responses in

the axial and circumferential directions.  The coefficients of thermal expansion are particularly

important at the boundary, where boundary conditions may run counter to the natural tendency of

the material to expand or contract as the temperature is changed.  

Consider the definition of  as given in sec. 2.1 and repeated here in terms of displacements as

 (3.3)

Using the assumed form of the displacements from the Rayleigh-Ritz solution, and considering

 along the curved edges results in

(3.4)

Then for mechanical loading considered alone,  governs the magnitude of  along the

curved edges.  For thermal loading, both  and  are involved, so the value of  along the

curved edges is a function of Poisson’s ratio and the coefficients of thermal expansion.  Note in

Fig. 3-5 the spikes, or sharp peaks, in the value of the force resultants at the corners.  These are
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simply supported straight edge and the clamped curved edge.   The fact that the straight edge has

no circumferential restraint on it except at the corner points leads to the sharp peaks in the force

resultants there.  

The distributions of force resultants for the axially soft [±45/902]s laminate are shown in Fig. 3-6.

Just as the thermal and mechanical responses for this laminate were seen to be the same in Fig.

3-3, the force resultant distributions are also nearly the same for the two different loading condi-

tions.
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laminate, clamped/sliding simple support boundary conditions
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For the axially stiff [±45/02]s laminate, the force resultants for mechanical response immediately

prior to buckling are shown in Fig. 3-7(a) and (b), while the force resultants for thermal response

at 300°F are shown in Fig. 3-7(c) and (d).  Keeping in mind that the normalization factor Ncr for

this panel is negative, from Fig. 3-7(c) we can see that Nx is generally positive, or tensile, for ther-

mal response.  This is the opposite sense as the force resultant distribution of Nx for mechanical

response.  From Fig. 3-7(d),  is seen to be always negative, or compressive, for thermal

response.  

Figure 3-6 Distribution of force resultants immediately prior to buckling for a [±45/902]s 
laminate, clamped/sliding simple support boundary conditions
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Summary

Buckling of curved panels with clamped/sliding simple support boundary conditions loaded with

end-shortening or temperature change is due to bifurcation.  For the [±45/0/90]s laminate and the

[±45/02]s laminate, the nonlinear response due to end-shortening is not the same as the nonlinear

response due to temperature change. Response due to end-shortening is the same as response due

to temperature change for the [±45/902]s laminate.  Force resultant distributions are characterized

by sharp peaks in the corners, due to the restriction of v-displacement imposed by the clamped
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curved ends.  The peaks are most pronounced in the thermal loading response of the [±45/0/90]s

and [±45/02]s laminates.

3.2.2 Clamped/Fixed Simple Support Boundary Conditions

In order to determine the effects of in-plane boundary conditions on the response of curved pan-

els, the boundary conditions on the straight edges were changed to give clamped/fixed simple sup-

port conditions, as defined for use in STAGS in Fig. 3-8.  As discussed earlier for clamped/sliding

simple supports, the straight edges of the panel were allowed to expand freely in the circumferen-

tial direction except at the ends, where the clamped curved edge restricted expansion.  For

clamped/fixed simple supports, circumferential expansion all along the straight edges is restricted

by specifying v = 0 there.  The variationally consistent boundary conditions used in the equivalent

Rayleigh-Ritz solution are given by Eqs. (2.56) and (2.57).

The buckling results for the Rayleigh-Ritz and STAGS nonlinear analyses with clamped/fixed

simple support boundary conditions are given in Table 3-6.  The assumed displacements for the

Rayleigh-Ritz solution with clamped/fixed simple support boundary conditions are given in Eq.

(2.58).  Results are again presented for N = 5, yielding 235 unknown constants to be determined in

the solution of the nonlinear equations.  For the particular case of a [±45/02]s laminate subjected

to uniform temperature change, because of convergence difficulties, additional terms were

required in the assumed displacement series to predict a buckling temperature.  

Buckling for clamped/fixed simple support boundary conditions generally occurs when the

response curve reaches a limit point.  In the Rayleigh-Ritz solution, limit point buckling with

unstable postbuckling results in an inability of the solution to converge.  When the postbuckling

path is stable, solution can continue and buckling is determined by a local maximum in the load

Figure 3-8 Clamped/fixed simple support boundary conditions
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vs. mechanical strain response.  Buckling is indicated in the STAGS solution by a local maximum,

which may be followed by a stable solution, or an unstable solution with one negative root in the

tangent stiffness matrix.  More will be said shortly of the convergence difficulties for thermal

loading of the axially stiff [±45/02]s laminate.

The simplified linear solution provides a reasonable estimate for the mechanically induced buck-

ling load, except for the [±45/02]s laminate, as shown in Table 3-6.  By comparing Tables 3-3, 3-4,

and 3-6, it can be seen that the simplified linear thermal solution is better at predicting the occur-

rence of buckling for clamped/sliding simple support boundaries than for clamped/fixed simple

support boundaries.  The simplified linear solution predicts buckling for a positive temperature

changes for both the [±45/0/90]s and [±45/902]s laminates, as occurs for the clamped/sliding sim-

ple supports boundaries in Table 3-4, but not for the clamped/fixed simple support boundaries in

Table 3-6.  This is because the circumferential restraint conditions for the simplified linear solu-

tion were equivalent to sliding simple supports on the straight edges.  For clamped/fixed simple

supports, the axially stiff [±45/02]s laminate buckles with elevated temperature, while the

quasi-isotropic [±45/0/90]s laminate does not.  Buckling of the [±45/02]s laminate can be expected

due to the large coefficient of thermal expansion in the circumferential direction opposed by the

restraint in circumferential displacement along the straight edges.  That the quasi-isotropic lami-

nate does not buckle cannot be explained without more detailed investigation.

Table 3-5 Buckling values from STAGS and Rayleigh-Ritz solutions, clamped/fixed simple 
support boundary conditions

Mechanical loading Thermal loading

∆umax, in. Nx / Ncr ∆Tmax,°F Nx / Ncr

[±45/0/90]s              STAGS -0.00459 (l)* 1.050 does not buckle

Rayleigh-Ritz -0.00456 (l) 1.049 does not buckle

[±45/902]s              STAGS -0.01039 (l) 1.029 236.0 (l) 1.020

Rayleigh-Ritz -0.01036 (l) 1.029 235.0 (l) 1.020

[±45/02]s                 STAGS -0.00358 (b) 1.346 799.8 (l) -1.434

Rayleigh-Ritz -0.00359 (b) 1.354 835.0** (l) -1.529**

* Bifurcation buckling is indicated by a (b), limit point buckling is indicated by an (l).

** Uses N = 7 in the assumed form for the displacements, Eq. (2.58).
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Nonlinear Response

The nonlinear response as predicted by STAGS for the quasi-isotropic [±45/0/90]s laminate with

clamped/fixed simple supports is shown in Fig. 3-9(a).  Normalization of the axial force resultant

on the vertical axis is again with respect to the simplified linear buckling values of Table 3-3.  The

simplified linear analysis predicts a buckling value associated with thermal loading, but nonlinear

analysis shows that buckling does not occur.  The panel subjected to thermal loading responds to

elevated temperatures without encountering a secondary load path or reaching a limit point.

Additionally, the postbuckling response is stable for mechanical loading, so the Rayleigh-Ritz

solution is able to continue into the postbuckling range.  For both thermal and mechanical loading,

the panel exhibits significant load carrying capacity beyond the bifurcation load predicted by the

simplified linear analysis.   

Deformations at various stages of loading are shown in Fig. 3-9(b-d).   The panel subjected to

mechanical loading is seen to approach its postbuckling shape before it reaches buckling,  as

shown in Fig. 3-9(b) and (c).  The panel subjected to elevated temperatures shows only radial out-

ward deformations, Fig. 3-9(d).

The nonlinear response of the axially soft [±45/902]s laminate with clamped/fixed simple support

boundary conditions is shown in Fig. 3-10(a). Thermal and mechanical response are seen to be

nearly identical, as they were for the clamped/sliding simple support boundary conditions shown

in Fig. 3-3.  The laminate circumferential coefficient of thermal expansion, αy,  is nearly zero, so

thermal expansion is essentially uniaxial.   Both end-shortening and elevated temperatures cause

the development of axial strains much greater in magnitude than the circumferential strains.  For

both loading conditions, the panel reaches a limit point before collapse to an unstable postbuck-

ling path.  Deformations are also seen to be similar for both loading conditions, as shown in Fig.

3-10(b-e).

For the axially stiff [±45/02]s laminate with clamped/fixed simple supports, nonlinear response is

shown in Fig. 3-11.  The mechanical response shows a change in stiffness between points A and

B, then bifurcation buckling at point C.  Even after passing the bifurcation point, mechanical

response continues to be stable.  Note the similarity of the slope of the postbuckling path from

point C to point D as compared to the stable postbuckling paths shown in Fig. 2-4.  Thermal

response again indicates that an increase in temperature results in a tensile axial force resultant Nx

along the curved edge, as was seen for clamped/sliding simple support boundary conditions in

Fig. 3-4.  Thermal buckling occurs at a limit point, and postbuckling is stable.
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Deformations corresponding to the nonlinear response are shown in Fig. 3-11(b-g).  Notice that

the prebuckling deformation for the thermal response, Fig. 3-11(f), is similar to the prebuckling

deformation for mechanical response, Fig. 3-11(b), but rotated by 90°.  This is because the cir-

cumferential coefficient of thermal expansion, , is much larger than the axial coefficient of

thermal expansion.  As a result, the panel behaves as though loaded in compression in the circum-

ferential direction.  

Figure 3-9 Nonlinear response for a [±45/0/90]s laminate, clamped/fixed simple support 
boundary conditions
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Force Resultant Distributions

The force resultant distributions immediately prior to buckling are given in Figs. 3-12, 3-13 and

3-14 for clamped/fixed simple supports, where the buckling solution Ncr from the simplified linear

analysis is used for normalization.  Notice that the force resultants have no sharp peaks in the cor-

Figure 3-10 Nonlinear response for a [±45/902]s laminate, clamped/fixed simple support 
boundary conditions

0

0.2

0.4

0.6

0.8

1

1.2

-0.0012-0.0009-0.0006-0.00030

∆u
∆T

A

B

C

D

(a) Normalized axial force resultant vs. average mechanical strain response

(b) Deformation at point A, ∆u = -0.01039 in.

Nx

Nx

(c) Deformation at point B, ∆u = -0.01039 in. 

Nx

Nx

(d) Deformation at point C, ∆T = 236.0°F

Nx

Nx

(e) Deformation at point D, ∆T = 236.0°F

Nx

Nx

∆u/a     or   -αx∆T

N
x 

/ N
cr



Chapter 3 - Analytical and Numerical Results

47

-1.5

-1

-0.5

0

0.5

1

1.5

-0.0006-0.0004-0.000200.0002

∆u
∆T

A
B

C

D

E

F

(a) Normalized axial force resultant vs. average mechanical strain response

(b) Deformation at point A, ∆u = -0.00219 in.

Nx

Nx

(c) Deformation at point B, ∆u = -0.00263 in.

Nx

Nx

(d) Deformation at point C, ∆u = -0.00358 in.

Nx

Nx

(e) Deformation at point D, ∆u = -0.00396 in.

Nx

Nx

(f) Deformation at point E, ∆T = 799.8°F

Nx

Nx

Figure 3-11 Thermal and mechanical response for a [±45/02]s laminate, clamped/fixed 
simple supports
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ners, as they did for clamped/sliding simple support boundary conditions of Figs. 3-5, 3-6 and 3-7.

This is because the v-displacement has been restrained to be zero along the straight edge, just as it

is at the corner points.   For both thermal and mechanical loading, the distribution of Nx is rela-

tively uniform.  However, the distribution of  shows substantial gradients in the axial direction,

particularly for the thermal response.  Since the v-displacement was specified to be zero at all four

edges, the force resultant  is expected to be non-zero.  The gradient in the axial direction can

be attributed to the coupling between  and moment resultant Mx along the curved ends due to

the clamped boundary condition.  These two resultants are coupled in the third equilibrium equa-

tion, which is given in linear form in Eq. (2.14). 
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Force resultant distributions for the [±45/902]s laminate are shown in Fig. 3-13.  The force result-

ant distributions for thermal and mechanical loading are essentially the same, just as they were for

the clamped/sliding simple support boundary conditions.  Again there are gradients in the x-direc-

tion for force resultant .  

For the axially stiff [±45/02]s laminate, the force resultants immediately prior to buckling are

shown in Fig. 3-14.  The force resultant distributions for the mechanical response are seen to be

similar to the distributions observed for the other stacking sequences.  The distribution of Nx is

generally negative, or compressive, over the panel, and the distribution of  is near zero.   The

resultant Nx, however, is not nearly as uniform as for the other laminates.  Recalling that the nor-
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malization factor Ncr is negative for this stacking sequence, we note that Nx  from the thermal

response is generally positive, or tensile, as it was for the clamped/sliding simple support bound-

ary conditions.  Also similar to the thermal response of clamped/sliding simple support boundary

conditions,  is seen to be always negative, or compressive, but here  is much larger in mag-

nitude due to the explicit enforcement of v = 0 along the straight edges.  

In order to better understand the convergence difficulties encountered in the Rayleigh-Ritz solu-

tion for thermal loading of the axially stiff [±45/02]s laminate, a comparison of the force and

moment resultant distributions for both the STAGS and Rayleigh-Ritz solutions is shown in Fig.
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3-15.  Rayleigh-Ritz solutions with N = 5 and N = 7 are considered, using the assumed displace-

ments given in Eq. (2.58).  Since for this case buckling is dominated by expansion in the circum-

ferential direction, which is opposed by the v-displacement restriction along the straight edges,

distributions of  and  are considered.  The postbuckling deformation, Fig. 3-11(g), is seen

to resemble the prebuckling deformation, Fig. 3-11(f), but with the addition of a depression in the

center of the panel.  This implies that the distribution of force and moment resultants near the cen-

ter of the panel are critical to panel buckling.  In Fig. 3-15, the distributions of  from the Ray-

leigh-Ritz solutions for N = 5 and N = 7 are seen to closely resemble the distribution of  from

STAGS.  However, the distribution of  for the Rayleigh-Ritz solution with N = 5 differs from

the distribution of  from STAGS, particularly near θ = β/2, where the Rayleigh-Ritz distribu-

tion indicates a positive moment and STAGS indicates a negative moment.  The Rayleigh-Ritz

solution for   N = 5 does not give a buckling solution for this panel with thermal loading.  The dis-

tribution of  for the Rayleigh-Ritz solution with N = 7 shows a closer match with the distribu-

tion of  from STAGS, particularly near θ = β/2 where both solutions indicate a negative

moment.  The Rayleigh-Ritz solution with N = 7 gives a reasonable solution for buckling, as was

shown in Table 3-6, though it is less accurate than the solutions for the other stacking sequences.

The Rayleigh-Ritz solution for N = 6 did not differ significantly from the solution for N = 5.

Summary

Curved panels with clamped/fixed simple support boundary conditions loaded with end-shorten-

ing or temperature change generally exhibit limit point buckling, when buckling occurs.  The non-

linear responses due to end-shortening and due to temperature change are not the same for the

[±45/0/90]s and [±45/02]s laminates.  For the [±45/902]s laminate, responses due to end-shorten-

ing and due to temperature change are the same.   Force resultant distributions are smooth, but

with substantial gradients in  in the axial direction.  As compared to clamped/sliding simple

support boundary conditions, curved panels with clamped/fixed simple support boundary condi-

tions generally buckle at higher loads, and exhibit a different response character.

3.2.3 Sliding Clamped/Sliding Simple Support Boundary Conditions

In contrast to the boundary condition termed clamped/fixed simple supports, which has complete

restriction of v-displacement on the boundaries, the effects of unrestricted v-displacement are con-

sidered with the boundary condition termed sliding clamped/sliding simple supports, as defined in

Fig. 3-16.  This boundary condition is studied only with STAGS.  It differs from the original

clamped/sliding simple support boundary condition of sec. 3.2.1 only in the amount of circumfer-
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ential restraint provided along the curved edges.  The curved end boundary condition is termed

sliding clamped because, like the clamped condition, radial w-displacement and all of the rota-

tions are restricted, but unlike the clamped condition, circumferential v-displacement is allowed.

Such a situation might occur in an experiment when the clamps were sufficiently tight to prevent

rotation of the curved ends, but would not prevent tangential displacement due to Poisson or ther-

mal expansion effects.  In fact, these boundary conditions closely match the prebuckling mem-

brane boundary conditions of the simplified linear analysis.  

Buckling results from STAGS are given in Table 3-6.  The buckling force Ncr from the simplified

linear solution of Table 3-3 is used to normalize the axial force resultants, Nx.  Buckling for slid-

ing clamped/sliding simple support boundary conditions occurs at a bifurcation point followed by

an unstable postbuckling response.   

For the quasi-isotropic [±45/0/90]s laminate and the axially soft [±45/902]s laminate, the axial

force resultant at bucking, Nx, is the same for both mechanical and thermal loading, as seen in

Table 3-6 Buckling values from STAGS solution, sliding clamped/sliding simple support 
boundary conditions

Mechanical loading Thermal loading

∆umax, in. Nx / Ncr ∆Tmax,°F Nx / Ncr

[±45/0/90]s                  STAGS -0.00386 (b) 0.936 339.9 (b) 0.936

[±45/902]s                   STAGS -0.00888 (b) 0.898 204.4 (b) 0.898

[±45/02]s                     STAGS -0.00199 (b) 1.008 does not buckle

* Bifurcation buckling is indicated by a (b), limit point buckling is indicated by an (l).

Figure 3-16 Sliding clamped/sliding simple support boundary conditions
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Table 3-6.  This can be attributed to the uniaxial character of the loading, either thermal or

mechanical, that occurs when circumferential v-displacement is unrestricted.   Since both thermal

and mechanical loading produce uniaxial stresses, both also give the same buckling load Nx.  The

axially stiff [±45/02]s laminate does not buckle due to an increase in temperature.  This is because

the thermal expansion in the axial direction is negative, while the positive thermal expansion in

the circumferential direction encounters no resistance.  Recall the coefficients of thermal expan-

sion given in Table 3-2.  For all three laminates, the buckling displacements, temperatures, and

force resultants are lower than those seen in Table 3-6 for clamped/sliding simple supports.  A

decrease in the amount of restraint at the edges results in a decrease in the buckling values.

Nonlinear Response

The geometrically nonlinear response predicted by STAGS for the quasi-isotropic [±45/0/90]s

laminate with sliding clamped/sliding simple supports is shown in Fig. 3-17(a).  As with previous

responses, the axial force resultant on the vertical axis is normalized by the simplified linear buck-

ling values of Table 3-3.  The geometrically nonlinear responses for mechanical loading, ∆u, and

thermal loading, ∆T, are the same.  This is unlike the responses of the [±45/0/90]s laminate for the

other two boundary conditions, Figs. 3-2(a) and 3-9(a), which were different for mechanical vs.

thermal loading.  The character of the response is very similar to the response for clamped/sliding

simple supports shown in Fig. 3-2(a), except that the prebuckling response for both loadings is lin-

ear, with no radial w-displacement.  Identical postbuckling deformations are shown in Fig. 3-17(b)

for end-shortening and Fig. 3-17(c) for uniform temperature change.

The nonlinear response of the axially soft [±45/902]s laminate is shown in Fig. 3-18(a) for sliding

clamped/sliding simple supports.  The thermal and mechanical responses are nearly identical, as

was observed for the [±45/902]s laminate with clamped/sliding simple supports, Fig. 3-3(a), and

clamped/fixed simple supports, Fig. 3-10(a).  The response is very similar to the response

observed for clamped/sliding simple supports, Fig. 3-3(a), with bifurcation buckling followed by

an unstable postbuckling response.  Prebuckling response is linear, with no radial w-displace-

ments.  Postbuckling deformations for end-shortening are shown in Fig. 3-18(b), and for uniform

temperature change in Fig. 3-18(c).  The deformations are again the same for both loading condi-

tions.    

Nonlinear response of the axially stiff [±45/02]s laminate with sliding clamped/sliding simple sup-

ports is shown in Fig. 3-19(a).  For end-shortening, bifurcation buckling occurs at a lower load

than it did for the clamped/sliding simple supports of Fig. 3-4(a), and just after the point where
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stiffness changed in the response of the clamped/fixed simple support laminate, point A of Fig.

3-11(a).  Buckling due to mechanical loading is followed by a collapse to an unstable postbuck-

ling configuration, which quickly regains stability as the end-shortening is further increased.  The

thermal response does not indicate buckling with an increase in temperature, and instead indicates

a decrease in axial load with the same load vs. strain slope as the mechanical response.  Postbuck-

ling deformations are shown in Fig. 3-19(b) and (c).  The postbuckling deformation for mechani-

cal response is similar to the final postbuckling deformation for the mechanical response of

clamped/sliding simple supports, Fig. 3-4(d).  The panel subjected to uniform temperature change

does not exhibit any radial w-displacement, similar to the prebuckling response of all the lami-

nates with sliding clamped/sliding simple supports.  Because the coefficient of thermal expansion

in the axial direction, αx,  is negative, an increase in temperature will results in a positive axial

force Nx.  With circumferential v-displacement unrestricted, no circumferential force  devel-
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Figure 3-17 Nonlinear response for a [±45/0/90]s laminate, sliding clamped/sliding simple 
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ops, so the panel tends to shrink in the axial direction and expand in the circumferential direction

without resistance and without occurrence of radial w-displacements.

Force Resultant Distributions

The force resultant distributions for sliding clamped/sliding simple support boundary conditions

are essentially uniform.  Since circumferential v-displacement is unrestricted all along the straight

edges, including the corners, the circumferential force resultant  is zero both at the edges and

over the interior of the panel.  The unrestricted circumferential expansion also results in a uniform

axial force resultant Nx.
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Summary

Curved panels with sliding clamped/sliding simple support boundary conditions loaded with

end-shortening or temperature change buckle due to bifurcation, when buckling occurs.  The non-

linear responses for the [±45/0/90]s and [±45/902]s laminates due to end-shortening and due to

temperature change are the same.  For the [±45/02]s laminate, responses due to end-shortening

and due to temperature change are different, since a positive temperature change results in a posi-

tive axial force.   The force resultant distribution of Nx is uniform, and  is equal to zero.  As

compared to clamped/sliding simple support boundary conditions, curved panels with sliding

clamped/sliding simple support boundary conditions buckle at lower loads.
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3.3 Effect of Panel Radius

Before generalizations can be made about the behavior of curved panels, the effects of panel

radius need to be considered.  With the panel dimensions of 10 in. by 10 in. held constant, and

considering the clamped/sliding simple support boundary conditions, the panel radius was gradu-

ally changed from 60 in. to 20 in.  The resulting buckling values are listed in Table 3-7.  For both

mechanical and thermal loading, the buckling load increases with decreasing radius.  The

end-shortening at buckling also increases with decreasing radius, while the temperature at buck-

ling generally increases except for the change from R=60 in. to R=50 in. for the [±45/0/90]s lami-

nate,  when buckling temperature decreases slightly.   

Table 3-7 Buckling values from STAGS solution, radius effect, clamped/sliding simple 
support boundary conditions 

Mechanical loading Thermal loading

∆umax, in. Nx, lbs./in. ∆Tmax,°F Nx, lbs./in.

[±45/0/90]s               R = 60 in. -0.00404 -135.9 512.8 -153.3

         R = 50 in. -0.00447 -151.5 468.0 -157.0

           R = 40 in. -0.00535 -182.3 511.4 -180.0

R = 30 in. -0.00743 -252.8 682.3 -240.8

               R = 20 in. -0.01064 -362.4 959.3 -345.6

[±45/902]s                 R = 60 in. -0.00906 -132.0 206.7 -131.2

         R = 50 in. -0.01008 -147.0 231.4 -147.5

           R = 40 in. -0.01204 -176.0 276.5 -176.6

R = 30 in. -0.01560 -229.0 358.5 -229.0

               R = 20 in. -0.02256 -331.1 520.8 -332.5

[±45/02]s                  R = 60 in. -0.00254 -118.7 1150.0 136.0

         R = 50 in. -0.00273 -129.4 1276.8 148.7

           R = 40 in. -0.00312 -149.5 1495.1 172.4

R = 30 in. -0.00397 -192.6 1759.2 257.7

               R = 20 in. -0.00605 -288.6 2465.0 372.2



Chapter 3 - Analytical and Numerical Results

59

The nonlinear response of the quasi-isotropic [±45/0/90]s laminate subjected to uniform

end-shortening is shown in Fig. 3-20(a) for various radii.  The slope of the prebuckling response

remains constant with changes in radius, but the postbuckling response shows a change in charac-

ter from R = 40 in. to R = 30 in. and again for R = 20 in.  This corresponds to the changes in post-

buckling deformed shapes, as shown in Fig. 3-20(b-f).  Postbuckling deformed shapes are shown

at three times the end-shortening at buckling, ∆umax, from Table 3-7.  As the radius decreases, the

postbuckling deformation pattern approaches the diamond-shaped pattern commonly observed in

postbuckling of complete cylinders, see refs. [63, 64] for example.  

For the quasi-isotropic [±45/0/90]s laminate subjected to temperature change, the nonlinear

responses for various radii are shown in Fig. 3-21(a).  The initial slope of the prebuckling response

is the same for all radii.  The slope of the prebuckling response near buckling changes slightly

depending on the radius, particularly for R = 60 in., R = 50 in., and R = 40 in., which all buckle at

similar temperatures.  The character of the postbuckling response and the postbuckling deformed

shapes remain essentially the same for all the radii considered.   Postbuckling deformed shapes,

Fig. 3-21(b-f) are shown at three times the temperature change at buckling, ∆Tmax, from Table 3-7.

The postbuckling responses for the thermal case are somewhat simpler than for the end-shortening

case, there not being as many secondary instabilities with the thermal case.

The nonlinear response of the axially soft [±45/902]s laminate subjected to uniform end-shorten-

ing is shown in Fig. 3-22(a) for various radii.  For all radii considered, the prebuckling stiffness is

the same, although the postbuckling response changes character for R = 20 in. as compared to R =

30 in. or more.  Correspondingly, the postbuckling deformation pattern for R = 20 in. has three

inward buckles as shown in Fig. 3-22(f).  The postbuckling deformation patterns for R = 30 in. and

greater have just one inward buckle each as shown in Fig. 3-22(b-e).  As with the [±45/0/90]s lam-

inate, a decrease in radius to 20 in. results in postbuckling behavior for a curved panel similar to

the postbuckling behavior of a complete cylinder.  

For loading due to temperature change, the nonlinear response of the axially soft [±45/902]s lami-

nate for various radii is shown in Fig. 3-23(a).  By comparing Figs. 3-22(a) and 3-23(a), the

response due to thermal loading is seen to be nearly identical to the response due to end-shorten-

ing for each radius considered, as has been the case for the this laminate throughout the study.

Postbuckling deformation patterns also correspond for thermal and mechanical loading of this

laminate, with the deformation pattern notably changing for R = 20 in., Fig. 3-23(f) as compared

to R = 30 in. and greater, Fig. 3-23(b-e).  
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Figure 3-20 Nonlinear response for [±45/0/90]s laminates with different radii due to 
end-shortening
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(d) Deformation at ∆T/∆Tmax = 3.0, R = 40 in.
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Figure 3-21 Nonlinear response for [±45/0/90]s laminates with different radii due to 
temperature change
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(b) Deformation at ∆u/∆umax = 3.0, R = 60 in.
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Figure 3-22 Nonlinear response for [±45/902]s laminates with different radii due to 
end-shortening
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(d) Deformation at ∆T/∆Tmax = 3.0, R = 40 in.
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Figure 3-23 Nonlinear response for [±45/902]s laminates with different radii due to 
temperature change
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The nonlinear response of the axially stiff [±45/02]s laminate with various radii loaded in uniform

end-shortening is shown in Fig. 3-24(a).   Again, the prebuckling stiffness is the same for all radii.

The character of the postbuckling response changes from R = 40 in. to R = 30 in., and appears to

change again from R = 30 in. to R = 20 in., although the postbuckling solution for R = 20 in. could

not be completed due to the close proximity of many solution paths.  The postbuckling deforma-

tion pattern for R = 30 in., Fig. 3-24(e), is correspondingly different than the postbuckling defor-

mation patterns for R = 40 in. and more, Fig. 3-24(b-d).  The deformation for R = 30 in. is

(d) Deformation at ∆u/∆umax = 3.0, R = 40 in.
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(c) Deformation at ∆u/∆umax = 3.0, R = 50 in.

Nx

Nx
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Figure 3-24 Nonlinear response for [±45/02]s laminates with different radii due to 
end-shortening
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approaching the diamond pattern typically associated with the postbuckling of complete cylin-

ders.

The nonlinear response due to temperature change for the axially stiff [±45/02]s laminate with var-

ious radii is shown in Fig. 3-25(a).  For R = 60 in. through R = 30 in. the prebuckling stiffness is

the same, but for R = 20 in. the prebuckling stiffness is slightly softer.  Although the character of

the postbuckling response changes slightly from R = 40 in. to R = 30 in., the corresponding post-

buckling deformations, Fig. 3-25(d-e) are essentially the same.  For R = 20 in., the postbuckling

solution again could not be completed due to the close proximity of multiple solutions.  Even at R

= 30 in., the postbuckling deformation pattern still appears similar to the postbuckling pattern of

the original shallow curved panel, R = 60 in. in Fig. 3-25(b).  This is because the buckling of this

laminate under thermal loading is dominated by circumferential strains due to this laminates large,

positive αy and small, negative αx.  A complete cylinder would not experience the same circum-

ferential strains as this curved panel with clamped supports along the curved ends and sliding sim-

ple supports along the straight edges.  

3.4 Combined Loading

The effects of combined thermal and mechanical loading are studied using geometrically nonlin-

ear analysis conducted with STAGS for clamped/sliding simple support boundary conditions as

defined in Fig. 3-1.  End-shortening and temperature change are applied sequentially, with their

magnitudes based on the buckling values, ∆umax and ∆Tmax,  predicted for end-shortening and

temperature change applied separately, as listed in Table 3-6.  Six loading combinations are con-

sidered, including three with end-shortening, ∆u, applied first, and three with temperature change,

∆T, applied first.   The initial loading is held at either 25%, 50% or 75% of the buckling value, fol-

lowed by the other loading applied until the panel buckles and achieves a stable postbuckling

response.  Buckling combinations of ∆u/∆umax, ∆T/∆Tmax, and the normalized load at buckling

are listed in Tables 3-8, 3-9, and 3-10.  The buckling load Nx is normalized by the buckling load

from the simplified linear analysis Ncr, as listed originally in Table 3-3.  

By examining Table 3-8 for the quasi-isotropic [±45/0/90]s laminate, buckling due to combined

thermal and mechanical loading is seen to occur at lower axial strains than when loading was

applied separately, as indicated by ∆u/∆ucr + ∆T/∆Tcr < 1.0.  The load at buckling due to com-

bined end-shortening and temperature change falls between the predicted load for end-shortening

alone and temperature change alone, as seen by comparison between Table 3-8 and 3-4.      
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From Table 3-9 for the axially soft [±45/902]s laminate, note that buckling occurs when ∆u/∆ucr +

∆T/∆Tcr = 1.0.  This indicates that the axial strain required for buckling is the same for combined

end-shortening and temperature change or loading applied separately.  This is very interesting but

is to be expected, since the axial strains and loads at buckling were the same for end-shortening

alone and temperature change alone, as shown in Fig. 3-3(a).
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Figure 3-25 Nonlinear response for [±45/02]s laminates with different radii due to 
temperature change
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Table 3-8 Buckling combinations from STAGS solution, [±45/0/90]s, combined loading

∆u/∆umax
∆umax = -0.00404

∆T/∆Tmax
∆Tmax = 512.8°F

Nx / Ncr
Ncr = -141.0 lbs./in.

[±45/0/90]s
Initial loading ∆T

0.217 0.750 1.054

0.450 0.500 1.021

0.707 0.250 0.988

[±45/0/90]s
Initial loading ∆u

0.250 0.713 1.049

0.500 0.449 1.014

0.750 0.211 0.984

Table 3-9 Buckling combinations from STAGS solution, [±45/902]s, combined loading

∆u/∆umax
∆umax = -0.00906

∆T/∆Tmax
∆Tmax = 206.7°F

Nx / Ncr
Ncr = -145.0 lbs./in.

[±45/902]s
Initial loading ∆T

0.250 0.750 0.906

0.500 0.500 0.907

0.750 0.250 0.909

[±45/902]s
Initial loading ∆u

0.250 0.750 0.906

0.500 0.500 0.907

0.750 0.250 0.909

Table 3-10 Buckling combinations from STAGS solution, [±45/02]s, combined loading

∆u/∆umax
∆umax = -0.00254

∆T/∆Tmax
∆Tmax = 1150.0°F

Nx / Ncr
Ncr = -100.3 lbs./in.

[±45/02]s
Initial loading ∆T

does not buckle 0.750 does not buckle

does not buckle 0.500 does not buckle

does not buckle 0.250 does not buckle

[±45/02]s
Initial loading ∆u

0.250 1.027 -1.217

0.500 1.059 -1.088

0.750 1.094 -0.979
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The buckling combinations for the axially stiff [±45/02]s laminate are listed in Table 3-10.  When

initial loading is due to temperature change, buckling does not occur.  This is likely due to the

radial deformations that occurs during thermal loading, shown in Fig. 3-4(e), which are never

overcome by the axially applied end-shortening.  When initial loading is due to end-shortening,

buckling still occurs at very near the same temperature, ∆Tmax, as when no initial mechanical

loading was present, as indicated by values of ∆T/∆Tmax near 1.0.  This is because thermal buck-

ling of this laminate is dominated by strain in the circumferential direction, which is influenced

only through Poisson’s ratio during end-shortening.  Therefore, since the circumferential strain

induced by axial end-shortening is small compared to the circumferential strain induced by tem-

perature change, the initial axial end-shortening has little effect on buckling temperature.  How-

ever, since initial end-shortening causes a compressive endload on the panel, increasing levels of

initial end-shortening reduce the tensile buckling load Nx due to thermal loading.

The nonlinear responses for the [±45/0/90]s laminate subjected to combined loading are shown in

Fig. 3-26.  The solid line indicates that initial loading is due to temperature change, followed by

loading due to end-shortening, as in Fig. 3-26(a), (c), and (e).  Since ∆u/a is plotted along the hor-

izontal axis, the initial thermal loading portion of the response appears as a vertical line at ∆u/a =

0.  For these three cases, notice that the character of the postbuckling response is quite similar.

The dashed line indicates that initial loading is due to end-shortening, followed by loading due to

temperature change, as in Fig. 3-26(b), (d), and (f).  These response curves are plotted with -αx∆T

on the horizontal axis, so the initial end-shortening portion of the response appears as a vertical

line at -αx∆T  = 0.  Comparing the postbuckling response for these three cases, note that for a large

initial end-shortening, Fig. 3-26(f), the response takes on the character of mechanical loading

alone, and for a small initial end-shortening, Fig. 3-26(b), the response is similar in character to

thermal loading alone, (see Fig. 3-2(a)).    

Points A-F represents solutions where ∆u/∆ucr + ∆T/∆Tcr = 1.0.  These correspond to the deforma-

tion patterns of Fig. 3-27.  Although the nonlinear responses in Fig. 3-26(a) and (b) are quite dif-

ferent, the postbuckling deformation patterns at points A and B are identical, Fig. 3-27(a) and (b),

as are their corresponding loads, Nx / Ncr.  This indicates that a particular solution is independent

of load path, since for ∆u/∆ucr = 0.25 and ∆T/∆Tcr = 0.75, only one postbuckling solution exists

with one unique load and deformation pattern.  This observation regarding path independence is

further supported by the examining the deformation patterns of Fig. 3-27(c) and (d) and Fig.

3-27(e) and (f).  
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Figure 3-26 Nonlinear response for a [±45/0/90]s laminate due to combined loading
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The nonlinear combined loading responses for the axially soft [±45/902]s laminate are shown in

Fig. 3-28.  Again, solid lines indicate that initial loading is due to temperature change, and dashed

lines indicate that initial loading is due to end-shortening.  For all six combined loading cases, the

character of the postbuckling response is the same, since the responses due to end-shortening

alone and temperature change alone were also the same.  Points A-F again represent solutions

where ∆u/∆ucr + ∆T/∆Tcr = 1.0.  The corresponding deformation patterns are shown in Fig. 3-29.

Although all of the deformation patterns appear alike, the deformation patterns and loads are iden-
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(b) Point B, ∆u/∆ucr = 0.25, ∆T/∆Tcr = 0.75,
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(c) Point C, ∆T/∆Tcr = 0.5, ∆u/∆ucr = 0.5,
Nx / Ncr = 0.823

Nx

Nx
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Figure 3-27 Postbuckling deformations for a [±45/0/90]s laminate at 
∆u/∆ucr + ∆T/∆Tcr = 1.0
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tical for pairs that also share the same values of ∆u/∆ucr  and ∆T/∆Tcr, such as Fig. 3-29(a) and (b),

Fig. 3-29(c) and (d), and Fig. 3-29(e) and (f).  This observation supports the earlier conclusion that

a particular solution is independent of the order of loading.  Equally interesting is the similarity in

the postbuckling paths for the cases represented by Fig. 3-28(a) and (f), and (e) and (b), where the

proportion of initial thermal loading for one of the cases that are paired is the same as the propor-

tion of initial end-shortening for the other case.  

The nonlinear response for the axially stiff [±45/02]s laminate subjected to combined loading are

shown in Fig. 3-30.  For initial loading due to temperature change, represented by the solid lines

(a) Point A, ∆T/∆Tcr = 0.75, ∆u/∆ucr = 0.25,
Nx / Ncr = 0.417
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Figure 3-29 Postbuckling deformations for a [±45/902]s laminate at 
∆u/∆ucr + ∆T/∆Tcr = 1.0
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Figure 3-30 Nonlinear response for a [±45/02]s laminate due to combined loading
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in Fig. 3-30(a), (c), and (e), buckling does not occur, but instead the panel stiffness slowly dimin-

ishes.  For initial loading due to end-shortening, Fig. 3-30(b), (d), and (f), the initial loading

causes a shift of the response but no significant difference in the character of the response.  For all

cases, the points A-F where ∆u/∆ucr + ∆T/∆Tcr = 1.0 occur in the prebuckling range of loading,

suggesting that combined loading results in a increased resistance to buckling than either of the

loading conditions applied separately.  Deformation patterns corresponding to points A-F are

shown in Fig. 3-31.  As with the previous laminates, the solutions for a particular ∆u/∆ucr  and

(a) Point A, ∆T/∆Tcr = 0.75, ∆u/∆ucr = 0.25,
Nx / Ncr = -0.888

Nx

Nx

(b) Point B, ∆u/∆ucr = 0.25, ∆T/∆Tcr = 0.75,
Nx / Ncr = -0.888

Nx

Nx

(c) Point C, ∆T/∆Tcr = 0.5, ∆u/∆ucr = 0.5,
Nx / Ncr = -0.299

Nx

Nx

(d) Point D, ∆u/∆ucr = 0.5, ∆T/∆Tcr = 0.5,
Nx / Ncr = -0.299

Nx

Nx

(f) Point F, ∆u/∆ucr = 0.75, ∆T/∆Tcr = 0.25,
Nx / Ncr = 0.338

Nx

Nx

(e) Point E, ∆T/∆Tcr = 0.25, ∆u/∆ucr = 0.75,
Nx / Ncr = 0.338

Nx

Nx

Figure 3-31 Postbuckling deformations for a [±45/02]s laminate at 
∆u/∆ucr + ∆T/∆Tcr = 1.0
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∆T/∆Tcr combination are unique, as indicated by the identical deformation patterns and loads in

Fig. 3-31(a) and (b), Fig. 3-31(c) and (d), and Fig. 3-31(e) and (f).   

This concludes the discussion of some of the important issues in curved panel response due to

axial end-shortening and uniform temperature change.  The results have shown that there is a sig-

nificant range of response, and that the influence of boundary conditions, lamination sequence,

and panel radius of curvature are considerable.  The discussion now turns to the experimental

aspects of the study, where parameter studies are much more difficult.  In addition, testing under a

thermal environment offers a number of challenges.  Therefore, the experiments will be limited to

panels with R = 60 in., the three lamination sequences, simulation of clamped/sliding simple sup-

ports conditions, and a few important loading conditions. 
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Chapter 4 - Experimental Considerations

 

The experimental phase of this study consumed a considerable portion of the total effort.  Manu-

facturing of the curved panels introduced unwanted effects, as it is virtually impossible to manu-

facture perfect composite specimens.  Machining tolerances are always an issue in experimental

work, but with buckling studies involving small end-shortening displacements (see Table 3-4),

machining tolerances with the loading fixtures can lead to nonuniform load introduction, and the

fixtures have compliances that are often difficult to quantify.   Application of loads, both mechan-

ical and thermal, is challenging, particularly when heat conduction and thermal expansion are

involved.  Here, thermal expansion of the composite panels was a major focus of the study, but

thermal expansion of the fixtures accompanies thermal expansion of the composite panels and

could influence the results.  Finally, control of the end-shortening and temperature is important,

and is only possible to within a certain tolerance.  This chapter discusses these and other relevant

issues, and provides insight into structural testing in a thermal environment.

 

4.1 Overview of the Experimental Setup

 

To provide axial end-shortening, a hydraulic load frame with flat and parallel loading platens was

used in conjunction with a specially designed elevated temperature testing apparatus.  Panels were

supported with a stainless steel fixture designed to accommodate the curvature.  The fixture pro-

vided clamped boundary conditions on the loaded curved ends and sliding simple supports on the

straight unloaded edges.  The introduction of temperature change into the composite panels was

accomplished by heating and circulating the air inside an insulated box, and providing additional

localized heating of the test fixture supporting the panel.  The size of the insulated box was deter-

mined by the maximum width between the supports of the load frame platens.  The composite

panels were sized to fit within the insulated box, while still allowing sufficient space for air move-

ment and instrumentation wiring.  

Twelve separate tests were conducted on test specimens measuring 10 in. long by 10 in. along the

arc length, and with a radius of 60 in.  The following sections provide a  further description of the

required test apparatus, test panels, instrumentation, and testing procedure.  
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Preliminary design and development of the insulated box was conducted by Waters and Sikora

[65] in anticipation of future high temperature testing. 

 

4.2 Apparatus

 

Tests on the end-shortening of curved composite panels have been conducted previously, see, for

example, refs. [12], [22-24], and [27-29].  The fixture designed for the present study was a smaller

version of the curved panel compression test fixture used by Knight and Starnes [29].  Because the

present fixture was to be used at elevated temperatures, it was constructed of stainless steel.

Details of the support conditions are provided in Fig. 4-1.  The panel was held in curved end grip

fixtures to provide clamped boundary conditions.  All displacements and rotations were restricted

on the curved ends.  The curved end grips provided support over 0.375 in. of the panel length on

each end.  The straight edges of the panel were held in knife edge supports, which provide restric-

Figure 4-1 Schematic of curved panel compression test fixture

TOP VIEW

SIDE VIEW

KNIFE EDGE SUPPORT

STABILIZING BLOCK

CURVED END GRIP

STABILIZING BLOCK

KNIFE EDGE SUPPORT
STABILIZING BLOCK
CURVED END GRIP

CURVED PANEL

0.125 in.

GAP 0.375 in.
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tion from radial displacement approximately 0.125 in. inward circumferentially from the edges.

The knife edge support was held in place by stabilizing blocks.

The insulated box and curved panel compression test fixture assembly is shown schematically in

Fig. 4-2,  with a corresponding photograph shown in Fig. 4-3.  The interior of the insulated box is

20 in. wide by 26 in. deep by approximately 11 in. high.  The walls are made of two layers of 1 in.

thick ceramic board

 

1

 

.  The top and bottom of the oven are made from the same board except for a

12 in. by 5 in. hole in the center of each for introduction of the load by the load frame platens.

Inside each of the two side walls of the insulated box is a coil resistance heater.  Air is circulated

over the heaters and around the box by a fan and baffle combination located at the back of the

oven.  

Two layers of ceramic

 

2

 

, cut into small blocks, fit inside the 12 in. by 5 in. holes in the top and bot-

tom of the insulated box.  The ceramic is meant to thermally isolate for the curved end grips from

the massive heat sink potential of the load frame platens, and transfer the load from the load frame

platen to the curved end grips.  Because a single, larger piece of ceramic tended to warp

out-of-plane when heated, it was cut into a number of smaller blocks measuring 2.0 in. by 2.5 in.

 

1. Cotronics, 360-4 ceramic board
2. Mycroy/Mycalex Ceramics, grade 500 Supra Mica

PANEL

LOAD FRAME PLATEN

LOAD FRAME PLATEN

CERAMIC
BLOCKS
HEATED PLATEN
CURVED END GRIP

CARTRIDGE
HEATER
COIL
RESISTANCE
HEATER

INSULATED BOX

Figure 4-2 Schematic of thermal test apparatus

KNIFE EDGE SUPPORT
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by 0.75 in. thick, with 0.5 in. deep grooves cut in a  0.5 in. grid pattern.  Measurement of the

deflection of the ceramic at elevated temperatures up to 450

 

°

 

F indicated that the ceramic blocks

deflect from flat and parallel less than the machining tolerances of  

 

±

 

0.003 in.   

To further insure that the thermal environment of the panel is controlled, a set of heated platens is

inserted between the ceramic blocks and the curved end grips.  Each heated platen contains eight

cartridge heaters, which are meant to provide additional heating to the curved end grips.  By

including this additional conduction source, the temperature increase of the curved end grips can

be controlled to be the same as the increase in air temperature, rather than lagging behind due to

the substantial mass of the stainless steel.  Each of the knife edge support pieces is heated by a

cartridge heater attached along the length of the support.

 

4.3 Test Panels and Test Matrix

 

The panels are made from unidirectional layers of IM7/5260 BMI.  Three panels, with stacking

sequences [

 

±

 

45/0/90]

 

s

 

, [

 

±

 

45/0

 

2

 

]

 

s

 

, and [

 

±

 

45/90

 

2

 

]

 

s

 

, were layed up on a curved base plate to form 22

in. by 22 in. panels with 60 in. radii.  Each large panel was cut into four 10 in. by 10 in. test pan-

Figure 4-3 Photograph of thermal test apparatus
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els, with the edges ground flat and parallel to within 

 

±

 

0.003 in.  An ultrasonic scan was conducted

for each test panel to search for manufacturing imperfections such as excessive voids, delamina-

tions, or embedded materials. Of the original twelve panels, only ten were used in the experimen-

tal study.  The remaining two panels were failed prematurely while developing the test

methodology.   The corner displacement listed in Table 4-1 is a measure of the initial warpage

observed in the panels at room temperature.  The warpage was measured by noting the maximum

deflection at one corner of the panel, 

 

x

 

 = 

 

a

 

 and 

 

θ

 

 = 0, when the other three corners were held down

against a flat surface.   Radial imperfections were measured at 0.125 in. increments in the axial

and circumferential directions on both the inside radius and outside radius surfaces of the panels.

The thickness at each point was calculated by the difference between the two measurements.  The

average measured thickness for each panel is given in Table 4-1.  The average radial imperfections

are shown in Appendix B. 

The panel numbers and corresponding test numbers and test descriptions are listed in Table 4-2.

Four tests with four different loading sequences were run for each type of laminate.  The first

loading sequence was axial end-shortening with no temperature change, denoted 

 

∆

 

u

 

 only.  The

next loading sequence was temperature change with axial end-shortening restricted, denoted 

 

∆

 

T

 

only.  Two combined loading cases were considered, axial end-shortening followed by tempera-

 

Table 4-1 Summary of measured panel geometry

 

Panel Number
Average Measured 

Thickness, in.
Corner Displacement, 

in.

[

 

±

 

45/0/90]

 

s

 

1 0.0431 0.192

2 0.0430 0.106

3 0.0431 0.108

[

 

±

 

45/90

 

2

 

]

 

s

 

4 0.0428 0.102

5 0.0428 0.072

6 0.0432 0.098

7 0.0429 0.039

[

 

±

 

45/0

 

2

 

]

 

s

 

8 0.0429 0.085

9 0.0425 0.096

10 0.0428 0.115
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ture change, denoted 

 

∆

 

u

 

 then 

 

∆

 

T

 

, or temperature change followed by axial end-shortening,

denoted 

 

∆

 

T

 

 then 

 

∆

 

u

 

.  Axial end-shortening was restricted during all loading by temperature

change.  For the [

 

±

 

45/0

 

2

 

]

 

s

 

 laminates, the test with temperature change only was not run because

the test apparatus was not equipped to handle the predicted tensile loads, but a free thermal expan-

sion test was substituted instead.

 

4.4 Instrumentation

 

Room temperature tests and elevated temperature tests required different instrumentation.  All

panels were instrumented with forty-two back-to-back strain gages, as shown in Fig. 4-4.  Axial

and circumferential gages had 0.25 in. gage lengths, and rosettes had 0.125 in. gage lengths.  For

tests N1 and Z1, tested only at room temperature, Micromeasurements, Inc. gages CEA-06 were

used.  For all other tests, Micromeasurements, Inc. gages WK-00 were used.  These gages were

designated to compensate for a coefficient of thermal expansion of zero.  

For the room temperature tests, one direct current differential transformer (DCDT) was used to

measure radial displacement at the center of the panel, and three DCDT’s were placed on the cor-

 

Table 4-2 Panel identification and test description

 

Panel Number Test Number Loading

[

 

±

 

45/0/90]

 

s

 

1 Q1

 

∆

 

u

 

 only

2 Q2

 

∆

 

T

 

 only

3 Q3

 

∆

 

u

 

 then 

 

∆

 

T

 

1 Q4

 

∆

 

T 

 

then 

 

∆

 

u

 

[

 

±

 

45/90

 

2

 

]

 

s

 

4 N1

 

∆

 

u

 

 only

5 N2

 

∆

 

T

 

 only

6 N3

 

∆

 

u

 

 then 

 

∆

 

T

 

7 N4

 

∆

 

T

 

 then 

 

∆

 

u

 

[

 

±

 

45/0

 

2

 

]

 

s

 

8 Z1

 

∆

 

u

 

 only

10 Z2 free thermal 
expansion

9 Z3

 

∆

 

u

 

 then 

 

∆

 

T

 

10 Z4

 

∆

 

T

 

 then 

 

∆

 

u
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ners of the load platen to measure axial end-shortening.  Shadow moiré interferometry equipment

was used to qualitatively view the postbuckling mode shape.  Axial load was determined from the

load cell of the hydraulic load frame. 

For elevated temperature tests, panels were instrumented with eighteen back-to-back thermocou-

ples, type K, to map the axial, circumferential, and through the thickness thermal gradients of the

panel.  Shadow moiré was not available through the insulated box.  No direct measure of axial

end-shortening was obtained during thermal loading, although two linear variable differential

transformers (LVDT’s) were placed inside the insulated box with the intention of measuring

end-shortening.  The LVDT’s did not give a satisfactory measurement of end-shortening because

they were not thermally compensated, only high temperature tolerant.  During changing tempera-

tures, the LVDT’s changed calibration, resulting in unreliable results.  The LVDT’s could be used

at a constant temperature to provide a relative measure of axial displacement, assuming that cali-

bration had been conducted at temperature.  For this study, the LVDT measurements were disre-

garded.

 

4.5 Test Procedure

 

Testing was conducted at NASA-Langley Research Center in the Structural Mechanics Labora-

tory.  Testing for this study can be broken into two groups: end-shortening only, and elevated-tem-

perature testing.

Figure 4-4 Typical instrumentation pattern
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For end-shortening tests conducted at room temperature, a 120-kip hydraulic load frame was

used.  Special attention was given to the installation of the panels in the compression test fixture,

including careful alignment of the upper and lower curved end grips under a compressive load of

-50 lbs. to avoid testing the panel with an initial twist.  The knife edge supports were adjusted

until they were perpendicular to the loading surface.  Panels were compressed at a rate of 0.002 in.

per minute.   

Panel failure for this type of load fixture initiates in the corners, where a gap exists between the

curved end fixture and the knife edge supports.  Since this type of failure gives no information

about curved panels in general, testing was stopped prior to panel failure.  Loading was continued

beyond buckling until the slope of the postbuckling response could be fully determined.   The end

displacement was reversed and returned to zero before noticeable failure occurred, allowing fur-

ther examination of the panel in its original state after testing.  

Elevated temperature testing was conducted in a larger, 300-kip hydraulic load frame to restrict

axial expansion.  The larger load frame was required to provide sufficient space for the elevated

temperature testing apparatus.  Specimen alignment was assured by applying a compressive load

of -50 lbs. then checking the knife edge supports for perpendicular alignment using a 90

 

°

 

 bubble

level.  Testing began with axial end-shortening to a compressive load of -1000 lbs., then back to

zero.  This provided a measure of room temperature stiffness for each panel.  For tests that began

with a thermal loading phase, a small end-shortening was applied until a compressive load of -50

lbs. was reached to assure that all the layers of ceramic and steel between the load frame platens

and the panel were making good contact.  For thermal loading, temperature was increased slowly,

requiring two hours to heat up from room temperature to 400

 

°

 

F.  Data were recorded during panel

heat up. 

An attempt was made to restrict axial end-shortening during thermal loading, but this was not pos-

sible with the particular experimental apparatus.  First, the load frame was designed to apply load

by moving the lower load frame platen while the upper platen remained fixed.  Unfortunately,

when the load frame was held at a constant level, a small leak in the hydraulic system allowed the

lower load frame platen to drift slowly downward with time.  For these thermal tests, the hydraulic

leak resulted in a small axial displacement in the tensile direction during thermal loading.  This

displacement was measured with an external DCDT which measured the drop of the lower load

frame platen.   In addition to the downward displacement of the lower load frame platen, the panel

experienced axial compression from the steel fixtures inside the insulated box.  When the temper-

ature inside the box was increased, the steel curved end fixtures and the steel heated platens
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expanded thermally.  This expansion caused a compressive shortening of the test panel.  Proper

accounting for these two competing displacements was necessary to understand the thermal

response of the panels.

 

4.6 Postprocessing of Experimental Results

 

The experimental data in raw form contained information about response of the test fixture, strain

gages, and load frame that needed to be separated from the response of the panels.  The thermal

expansion of the strain gages, the displacement of the lower load frame platen, the thermal expan-

sion of the steel end fixtures, and the compliance of the end fixtures and ceramic insulation com-

bination were extracted from the original data to provide panel load, displacement, and

temperature change results.

To account for the influence of temperature change on the strain gages, two reference gages of the

same type as used on the panels were mounted on a piece of glass ceramic

 

1

 

 with a near zero coef-

ficient of thermal expansion.  Since the glass ceramic did not expand, the apparent strain recorded

for the reference gages was due to the resistivity of the gages changing with temperature, as

shown in Fig. 4-5.  By subtracting the apparent thermal expansion of the reference gages from the

strain recorded by the panel gages, the resulting strain represents the change in length per initial

length of the panel. 

 

1. Schott Glass Technologies, Inc., Zerodur, 
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To find the net axial displacement of the panels, three different methods were employed.  During

the prebuckling phase of loading, the end-shortening can be obtained from the average axial strain

gage readings by multiplying the strain by the length of the panel.  This provides a measure of

end-shortening for either mechanical or thermal loading.  After buckling, the strain gages can no

longer be used to measure axial end-shortening because substantial bending occurs.  

The second method for determining axial displacement is based on the superposition of the mea-

sured downward drift of the lower load platen, and a calculated thermal expansion of the steel fix-

tures.  However, the steel fixtures were located between the ceramic insulation and the end of the

panel, as shown in Fig. 4-2.  When the steel expanded, some of the expansion shortened the panel,

while some of the expansion compressed the ceramic insulation.  The ceramic insulation had a

stiffness based  on the geometry of the multiple layers of insulation.  Because the individual

blocks of ceramic were not perfectly flat and parallel, and because each block was not of the iden-

tical thickness as its neighboring blocks,  the stiffness of the ceramic reflects not only the com-

pressive modulus of the ceramic, but also some settling and bending of the ceramic blocks.   The

stiffness of the panel is known from the strain gage data, and the stiffness of the overall system is

known from the external DCDT.  The stiffness of the insulation and steel fixture combination can

be found as the difference between the panel stiffness and the overall system stiffness.  By com-

paring the stiffness of the panel to the stiffness of the insulation/steel fixture combination, an esti-

mate can be made of the percentage of steel expansion that contributes to panel end-shortening.  

The third method for calculating end-shortening is even more indirect, and requires the room-

temperature panel stiffness obtained from the initial compressive preload of -1000 lbs.  Using the

average of the axial strain gages during preload, the slope of axial strain vs. load can be found.

With this slope and a calculated value of αx for the panel, the panel end-shortening can be written

as a function of load and temperature as

. (4.1)

Since this calculation is based on the prebuckling stiffness due to end-shortening, the resulting

axial displacement ∆u is valid only up to buckling for loading due to end-shortening.  For post-

buckling due to thermal loading, this calculation of axial displacement is also valid, since nothing

has been assumed about panel stiffness in the thermal strain portion of the calculation.

∆u
ε
P
--- 

 
preload

P⋅ α x∆T+ a=
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4.7 Experimental Results

Experimental results are presented for global load vs. strain responses.  Because all tests con-

ducted at elevated temperatures included both thermal and mechanical loading, response is pre-

sented for both load vs. displacement and load vs. temperature.  For comparison purposes,

displacement is normalized by panel length, and temperature change is multiplied by the com-

puted axial coefficient of thermal expansion of the panel.  

The load vs. strain responses from tests Q1 and Q4, with [±45/0/90]s stacking sequences, are

shown in Fig. 4-6.  These two tests are presented together to allow comparison between loading in

end-shortening only, test Q1, and heating first to 240°F then loading in end-shortening, test Q4.

Notice that the prebuckling and postbuckling stiffnesses are the same for both tests, although the

buckling load is greater for test Q4 than for test Q1.  This discrepancy in buckling loads is likely

due to both the difference between predicted thermal and mechanical buckling loads for a

[±45/0/90]s laminate, and the fact that both tests were run on the same specimen, with test Q4 run

before test Q1.  A small amount of damage may have occurred in the panel during the first test,

test Q4, resulting in a lower buckling load for the second test, test Q1. 

The load vs. strain responses from tests Q2 and Q3, with [±45/0/90]s stacking sequences, are

shown in Fig. 4-7.  Both of these tests have thermal loading as the final loading phase.  Test Q2

begins with a -50 lb. load due to end-shortening, then temperature is increased slowly to 400°F.

Test Q3 is loaded in end-shortening to an initial load of -800 lbs. before being heated slowly to
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Figure 4-6 Load vs. strain responses for [±45/0/90]s laminates, test Q1 and test Q4
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400°F.  Note that the slopes of the load vs. displacement curves during thermal loading are differ-

ent for the two tests, due to the different rates of downward drift of the lower load frame platen.

The different slopes of the load vs. displacement curves correspond to different slopes of the load

vs. temperature curves for the two tests.  Test Q3 reaches a buckling load, but test Q2, which never

exceeds an axial load of -700 lbs., does not reach a buckling load in the temperature range consid-

ered.  Both test Q2 and test Q3 experience a change is stiffness at a temperature of approximately

330°F, which may be due to temperature dependent material properties.

The load vs. strain responses from test N1 and test N4, with [±45/902]s stacking sequences, are

shown in Fig. 4-8.  Test N1 is an end-shortening only test, and test N4 is heated to 240°F, then

loaded in end-shortening.  The end-shortening portions of the tests are nearly identical, with both

tests have the same prebuckling stiffnesses, nearly the same buckling loads, and nearly the same

postbuckling stiffnesses.  

The load vs. strain responses for tests N2 and N3, with [±45/902]s stacking sequences, are shown

in Fig. 4-9.  Test N2 begins with a -50 lbs. load due to end-shortening before the temperature is

increased slowly to 400°F.  Test N3 is loaded to -800 lbs. with end-shortening, then heated slowly

to 400°F.  The slope of the load vs. displacement curves are slightly different during the thermal

loading portions of the tests, indicating a different rate of lower platen downward drift from test to

test.  The slopes of the load vs. temperature curves are correspondingly different between the two

tests.  The buckling load of test N2 is less than the buckling load of test N3, although after buck-
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Figure 4-7 Load vs. strain responses for [±45/0/90]s laminates, test Q2 and test Q3
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ling, both reach the same postbuckling load.  The difference in buckling loads is not expected

from the analytical studies of [±45/902]s panels, which indicated the same buckling load for ther-

mal and mechanical loading.  The difference may therefore be due to experimental differences

between the tests, including initial geometric imperfections of the panel, and differences between

the alignment of each panel in the test apparatus.  A stiffness change occurs beyond 330°F, consis-
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Figure 4-8 Load vs. strain responses for [±45/902]s laminates, test N1 and test N4

T, °F

-αx∆T∆u/a

∆u, in.
P,

 lb
s.

P,
 lb

s.

Test N1

Test N4

Test
N4

-0.0016-0.00080

-1500

-1000

-500

0

0 100 200 300 400

-0.00100.001

-1500

-1000

-500

0

-0.0100.01

Figure 4-9 Load vs. strain responses for [±45/902]s laminates, test N2 and test N3
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tent with the observations for tests Q2 and Q3, and possibly indicating temperature dependent

material effects. 

The load vs. strain responses for tests Z1 and Z4, with [±45/02]s stacking sequences, are shown in

Fig. 4-10.  Test Z1 is loaded in end-shortening only, and test Z4 is heated first to 240°F, then

loaded in end-shortening.  The prebuckling and final postbuckling stiffnesses from both tests are

essentially the same.  The buckling load for test Z4, loaded at 240°F, is slightly lower than the

buckling load of test Z1, which is loaded at room temperature.  Note from the load vs. temperature

curve that the load stays constant during panel heat-up, rather than immediately decreasing as

expected from the analytical studies of [±45/02]s laminates.  This is likely due to the axial dis-

placement  of the panel due to drift of the lower load platen and thermal expansion of the steel fix-

tures.  

The load vs. strain responses for test Z3, with a [±45/02]s stacking sequence, are shown in Fig.

4-11.  Test Z3 is loaded in end-shortening to -800 lbs., then heated slowly to 400°F.  The mea-

sured load drops off rapidly when thermal loading begins, due to the negative axial coefficient of

thermal expansion for the [±45/02]s laminate.  The load vs. temperature slope changes continu-

ously after the initial drop, and eventually reaches an asymptote near -400 lbs.  Although the exact

reason for this asymptote is unknown, a number of possible conditions may have caused this

behavior.  One possibility is that the knife edge supports began to carry some of the load, due

either to friction between the stabilizing blocks and the knife edge supports or to friction between
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Figure 4-10 Load vs. strain responses for [±45/02]s laminates, test Z1 and test Z4

T, °F

-αx∆T∆u/a

∆u, in.

P,
 lb

s.

P,
 lb

s.

Test Z1

Test Z4 Test Z4



Chapter 4 - Experimental Considerations

90

the knife edge supports and the panel.  Another possible cause is that the panel was carrying some

load due to the weight of the load frame itself, resulting from imprecise tolerances in the load

frame.  From just one test result, the exact cause is unclear.

Because the experimental load frame apparatus was not designed to accommodate tensile loads, a

pure thermal test of a [±45/02]s laminate was not possible.  Recall that this laminate was predicted

to shrink in the axial direction when heated, resulting in a tensile load due to the fixed u-displace-

ment boundary condition.  As a substitute for this test, and to lend insight into the question of tem-

perature dependent material properties, test Z2 was conducted as a free thermal expansion test.

No loads or boundary conditions were applied, and the only data recorded were strains and tem-

peratures. 

The relationship between strains from axial and circumferential strain gages located at the center

of the panel and the temperature change from test Z2, with a [±45/02]s stacking sequence, is

shown in Fig. 4-12.  The slopes ε/∆T of the curves are the coefficients of thermal expansion.  At

temperatures below 330°F, an increase in temperature produces a positive strain in the circumfer-

ential direction, indicating circumferential expansion, and a negative strain in the axial direction,

indicating axial contraction or shrinking.  The corresponding coefficients of thermal expansion are

positive in the circumferential direction and negative in the axial direction.  Above a temperature

of 330°F, the panel begins to contract in the circumferential direction and to expand in the axial

direction, as indicated by the changing slopes in Fig. 4-12.  This change in slope implies a change
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in the sign of the coefficients of thermal expansion.  At approximately 330°F, the coefficient of

thermal expansion in the circumferential direction changes from positive to negative, while the

coefficient of thermal expansion in the axial direction changes from negative to positive.  

These changes in the coefficients of thermal expansion, coupled with a likely change in the mate-

rial stiffness properties, could be an explanation for the loss of stiffness that occurred in tests Q2,

Q3, N2 and N3 when heated to 400°F.  Thus, the loss of stiffness that occurs at 330°F likely due to

a change in material properties of this IM7/5260 material as opposed to a structural phenomenon.

A further examination of the material behavior as a function of temperature is included in Appen-

dix C.  Due to the unexpected changes in coefficients of thermal expansion at 330°F, the cure

cycle of these panels was questioned.  Although the details are included in Appendix C, it is

important to note here that the cure cycle used to manufacture these panels was unusual.  There-

fore, all test results for temperatures greater than 330°F should not be attributed to regular

IM7/5260 material behavior. 

Figure 4-12  Free thermal expansion for a [±45/02]s laminate, test Z2
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Experimental results are compared to predictions obtained with the STAGS finite element code.

In order to match the experimental conditions, numerous refinements were necessary in the base

numerical model.  The base model has clamped/sliding simple support boundary conditions, uni-

form temperature, and ideal geometry, as considered in section 3.2.  There the base model was

studied using both STAGS and the Rayleigh-Ritz approximate solution.  In the following sections,

the refinements to the numerical model will be considered one at a time for both temperature and

end-shortening applied separately, then experimental results will be compared to the numerical

models which incorporate all of the relevant refinements.  Discrepancies between measured and

predicted results will be noted and discussed.

 

5.1 Refinement of the Numerical Model

 

The base model was defined in section 3.2 and is repeated here in Fig. 5-1. Boundary conditions

are clamped along the curved edges, with sliding simple supports along the straight edges. 

 

 

 

The

geometry is assumed to be perfect, that is, no initial geometric imperfections are considered.  The

layer thickness is assumed to be 0.005 in., resulting in an eight-layer panel thickness of 0.04 in.

β
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a bx θ
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Figure 5-1  Panel geometry and boundary conditions for base model
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Loading is due to either an axial end-shortening with no temperature change, or a uniform temper-

ature change with axial end-shortening restricted to zero.

Experimental conditions were not as ideal as those assumed for the base model.  Measured panel

geometry, experimentally imposed boundary conditions, and thermal gradients contributed to

small but significant discrepancies between the base model and experimental measurements of

panel response.  The following refinements were added to the base model in order to better repre-

sent experimental conditions.

1. Measured panel thickness was introduced.

2. Application of knife-edge simple support conditions was shifted 0.125 in. inward cir-

cumferentially from the edges of the panel (see Fig. 4-1). 

3. Application of clamped support conditions was extended 0.375 in. inward axially from 

the curved ends of the panel (see Fig. 4-1).

4. Measured initial geometric imperfections were included in the model.

5. Through-thickness temperature gradients were included in the model.

6. Inplane temperature gradients were included in the model.

7. Clamped boundary conditions were relaxed to sliding clamped boundary conditions 

during thermal loading.

Each of these refinements will be considered separately to determine the relative effects of each

refinement as compared to the base model.  The effects of the refinements are considered for all

three stacking sequences since each exhibits a unique response character.  The buckling loads

obtained from the refined models, 

 

N

 

x

 

, are compared in Tables 5-1 and 5-2 to the buckling loads

obtained from the simplified linear analysis, 

 

N

 

cr

 

. from Table 3-3.  Also in Tables 5-1 and 5-2 are

the differences between the base models and each of the refined models, listed as percentages.  

 

5.1.1 Mechanical Response

 

For panels subjected to mechanical loading, the nonlinear response due to axial end-shortening is

considered.  For consistency with the analytical results of Chapter 3, nonlinear response results in

Figs. 5-2 to 5-12 are normalized by the buckling loads obtained from the simplified linear analy-

sis, 

 

N

 

cr

 

, listed in Tables 5-1 and 5-2.  Notice that the rows corresponding to the base model also

correspond to Table 3-4, which lists the buckling values from STAGS for clamped/sliding simple

support boundary conditions.     
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The first model refinement is to replace the base panel thickness of 0.04 in., from ref. [44], with a

measured thickness.  The representative measured thickness considered here is 0.0431 in.  Mea-

sured thicknesses were obtained as the difference between the initial geometric imperfection

scans of the inside and outside surfaces,  from which an average panel thickness was calculated.

Analyses were conducted by assuming this average value as the constant panel thickness. 

The representative measured thickness is approximately 8% greater than the thickness assumed

for the base model.  The effects of measured thicknesses on the nonlinear response are shown in

Fig. 5-2.  The prebuckling stiffnesses, buckling loads, and initial postbuckling loads are substan-

tially increased, but the postbuckling stiffness is relatively unaffected, compared to results for the

thinner base model.  From Eq. (2.30), for a panel with a large radius 

 

R

 

 it can be assumed that the

buckling load is approximately proportional to the thickness cubed, so it is expected that an 8%

increase in thickness would result in a 26% increase in the buckling load.  The results in Table 5-1

suggest that this calculation provides a good approximation for the increase in buckling load as

compared to the base model.  

 

Table 5-1 Buckling loads for refined numerical models, 

 

∆

 

u

 

 loading

 

∆

 

u loading

[

 

±

 

45/0/90]

 

s

 

[

 

±

 

45/90

 

2

 

]

 

s

 

[

 

±

 

45/0

 

2

 

]

 

s

 

N

 

x 

 

/ N

 

cr

 

N

 

cr

 

=-141.0
lbs./in.

 Difference
 from base 

model

 

N

 

x 

 

/ N

 

cr

 

N

 

cr

 

=-145.0
lbs./in.

 Difference
from base 

model

 

N

 

x 

 

/ N

 

cr

 

N

 

cr

 

=-100.3
lbs./in.

 Difference
 from base 

model

Base model 0.96 0.91 1.18

Measured thickness 1.17 +21% 1.10 +21% 1.49 +25%

Shifted simple 
supports

0.99 +2% 0.95 +4% 1.21 +2%

Extended clamped 
supports

1.00 +3% 0.91 0% 1.31 +11%

Initial geometric
 imperfections, 
panel number 3

0.85 -12% 0.79 -13% 1.09 -8%

Initial geometric
 imperfections, 
panel number 5

0.68 -29% 0.63 -31% 0.99 -17%
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Since the curved end fixtures provide clamped support over 0.375 in. of the panel length at each

end, and the knife edge supports are applied 0.125 in. inward from the straight edges, the analyti-

cal boundary conditions required modification from those used for the base model to represent the

experimental boundary conditions.  The constraint on the radial displacement, 

 

w 

 

= 0, was moved

0.125 in. inward circumferentially from the straight edges.   Along the curved edges, the con-

straint on the radial displacement, 

 

w

 

 = 0, was extended 0.375 in. inward axially from the curved

ends.  The effect of these experimental boundary conditions on the analytical results are shown in

Figs. 5-3 and 5-4.     

 

Table 5-2 Buckling loads for refined numerical models, 

 

∆

 

T

 

 loading

 

∆

 

T loading

[

 

±

 

45/0/90]

 

s
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45/90
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]

 

s
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±

 

45/0

 

2

 

]

 

s

 

N

 

x 

 

/ N

 

cr

 

N

 

cr

 

=-141.0
lbs./in.

Difference 
from base 

model

 

N

 

x 

 

/ N

 

cr

 

N

 

cr

 

=-145.0
lbs./in.

Difference 
from base 

model

 

N

 

x 

 

/ N

 

cr

 

N

 

cr

 

=-100.3
lbs./in.

Difference 
from base 

model

Base model 1.09 0.90 -1.36

Measured thickness 1.39 +28% 1.09 +21% -1.69 +25%

Shifted simple 
supports

1.15 +6% 0.94 +4% -1.27 -6%

Extended clamped 
supports

1.13 +4% 0.90 0% -1.37 +1%

Initial geometric
imperfections,
panel number 3

1.03 -5% 0.78 -13% -1.31 -3%

Initial geometric
imperfections,

 panel number 5

0.80 -26% 0.62 -31% -1.26 -7%

Through-thickness
temperature gradient

1.09 +1% 0.90 0% -1.39 +3%

Midsurface
 temperature gradient

1.05 -3% 0.90 -1% -1.33 -2%

Sliding clamped 
boundary conditions

0.94 -14% 0.90 -1% does not 
buckle
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The analytical buckling loads due to end-shortening increase  2% to 4% for panels with shifted

simple supports as compared to panels with base boundary conditions, as listed in Table 5-1.  The

postbuckling stiffnesses are higher for the shifted simple support boundary conditions than for the

base model, although the initial postbuckling loads are unaffected by the change in boundary con-

ditions.  The increase in postbuckling stiffness may be due to the shortened unsupported arc

length for the model with shifted edge supports as compared to the base model, leading to less

panel material to form the postbuckled shape of one inward buckle.

For panels loaded in end-shortening with extended clamped boundary conditions, the buckling

load is 0% to 11% greater than the buckling load for the base model.  Postbuckling stiffnesses and

initial postbuckling loads are essentially unaffected by the extended clamped supports.  This sug-
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gests that little radial deflection occurs in the 0.375 in. of panel length nearest the curved ends,

even when the original clamped supports of the base model are applied.

Initial geometric imperfections were measured and approximated with a Fourier series expansion

according to the method described in Appendix B.  The Fourier approximation for one of the ini-

tial geometric imperfections, measured from panel number 3 according to the designation of

Table 4-2, is shown in Fig. 5-5(a).  The radial imperfection  is normalized by the nominal layer

thickness of 0.005 in.  The magnitude of the maximum imperfection is on the order of two layer

thicknesses, or 25% of the total panel thickness.

The nonlinear responses that are presented in Fig. 5-5 include the measured initial geometric

imperfections of Fig. 5-5(a).   Compared to the results for the base model, including this particular
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initial geometric imperfection has little effect on the panel stiffness due to end-shortening either

before or after buckling, or on the initial postbuckling load.  The bucking loads for end-shortening

are decreased by 8% to 13% depending on the laminate, as shown in Table 5-1. 

For completeness, the effects of a different initial geometric imperfection are shown in Tables 5-1

and 5-2 by considering the buckling loads.  The initial geometric imperfection from panel number

5, shown in Appendix B, causes a  substantial change in the buckling load as compared to the base

model.  The decrease in buckling load due to this particular measured imperfection is from 17% to

31%, shown in Table 5-1 for loading due to end-shortening.  Comparing this decrease to the

decrease noted with the imperfection from panel number 3, the specific geometry of the imperfec-
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tion is seen to be important, resulting in either a very small or very substantial decrease in buck-

ling load due to end-shortening.

5.1.2 Thermal Response

The thermal responses of the refined models as compared to the base model generally follow the

observations noted for the mechanical responses.  Additional refinements are also considered,

including temperature gradients and sliding clamped boundary conditions along the curved end.
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Again the response for a typical measured thickness of 0.0431 in. is compared to the response for

a base thickness of 0.04 in, as obtained from ref. [44].  A 21% to 28% increase in the thermal

buckling load is observed for the increased thickness model, as listed in Table 5-2.  

The effects of measured thicknesses on the nonlinear response due to thermal loading are shown

in Fig. 5-6.  For the [±45/0/90]s and [±45/902]s laminates, the prebuckling stiffnesses and the

buckling loads are substantially greater for the model with measured thickness compared to

results obtained for the base model, as was observed for loading due to end-shortening.  For the

[±45/02]s laminate, the buckling load is similarly increased for the measured thickness as com-

pared to the base model, but the prebuckling stiffness is unaffected.  Repeating the approximation

that the buckling load is proportional to the thickness cubed, the 8% increase in thickness result-

ing in a 26% increase in the buckling load again provides a good approximation.  
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The effects of shifted application of the knife edge supports 0.125 in. from the straight edge can

be seen in Fig. 5-7 for loading due to temperature change.  Each laminate responds to the change

in edge conditions differently.  The [±45/0/90]s laminate shows a 6% increase in buckling load, an

increased initial postbuckling load, and a slight increase in postbuckling stiffness.  The [±45/902]s

laminate shows a 4% increase in buckling load and an increased postbuckling stiffness with no

change in initial postbuckling stiffness, similar to the noted response for loading due to end-short-

ening.  The [±45/02]s laminate shows an 6% decrease in buckling load, but is otherwise unaf-

fected.

Extending the clamped supports 0.375 in. from the curved ends has little effect on the thermal

response of [±45/0/90]s and [±45/902]s laminates compared to the base model, as seen in Fig. 5-8.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.001-0.0008-0.0005-0.00030

0

0.2

0.4

0.6

0.8

1

-0.002-0.0015-0.001-0.00050
-2.5

-2

-1.5

-1

-0.5

0

0.5

00.00010.00020.00030.0004

0.125 in.

Sliding simple
supports

Sliding simple
supports

∆T

x θ

z

Nx

Nx

N
x 

/ N
cr

N
x 

/ N
cr

Shifted simple 
supports

Base model

Shifted simple 
supports

Base model

Base model

N
x 

/ N
cr

-αx∆T

-αx∆T-αx∆T

Shifted simple 
supports

(a) Model with shifted simple supports (b) Nonlinear response, [±45/0/90]s

(c) Nonlinear response, [±45/902]s (d) Nonlinear response, [±45/02]s

Figure 5-7  Effect of shifted simple supports on the nonlinear thermal response



Chapter 5 - Experimental and Numerical Comparisons

102

For the [±45/02]s laminate, the response with extended clamped supports is surprisingly less stiff

than the response for the base model, although the buckling load is virtually unchanged.

The Fourier approximation for the initial geometric imperfection measured for panel number 3 is

shown in Fig. 5-9(a),  where the radial imperfection  is normalized by the nominal layer thick-

ness of 0.005 in.   Considering the initial geometric imperfection of Fig. 5-9(a), a 3% to 13%

reduction in the thermal buckling load is observed as compared to the buckling load of the base

model, as seen in Table 5-2.  Prebuckling stiffnesses, initial postbuckling loads, and postbuckling

stiffnesses are, for the most part, unaffected.  The initial imperfection for panel number 5, shown

in Appendix B, has a more substantial effect on the buckling loads.  The decrease in buckling

loads as compared to the base model ranges from 17% to 31% for this imperfection, as shown in

Table 5-2.  Comparing the buckling load results for imperfections from panel number 3 and
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imperfections from panel number 5, the specific geometry of the initial imperfection is seen to

cause either a  very small or very substantial decrease in the buckling load due to thermal loading. 

The effects of thermal gradients are separated into through-thickness temperature gradients,

which are assumed to be linear in the z-direction but zero in the x- and θ-directions,  and midsur-

face gradients, which are assumed to be non-zero in the x-and θ-directions but zero in the z-direc-

tion.

The effects of through-thickness temperature gradients are shown in Fig. 5-10.   For a gradient, it

is assumed that the temperature of the outside surface of the curved panel is 0.75% greater than

the temperature of the reference surface, and that the temperature of the inside surface is 0.75%
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less than the temperature of the reference surface, resulting in a 1.5% temperature gradient

through the thickness.  When the midsurface temperature ∆T=400°F, the difference between the

inside and outside surface temperatures is 6°F.  This 6°F difference in surface temperatures

approximates the surface temperature difference noted in the experiments.  The effects of this

through-thickness temperature gradient are seen in Fig. 5-10(b-d).  Response is virtually unaf-

fected.

The typical midsurface temperature gradient shown in Fig. 5-11(a)  was obtained by fitting a poly-

nomial approximation to experimental data using the methods described in Appendix D.  Nonlin-

ear response curves are generated using ∆Tave, which is the average temperature at the midsurface,
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obtained by summing the temperatures at each nodal location and dividing by the number of

nodes in the finite element model.  When ∆Tave=216°F there is a maximum temperature difference

of 20°F between the hottest and coolest points on the midsurface.  The effects of this midsurface

temperature gradient are shown in Fig. 5-11(b-d), where ∆T along the horizontal axis is actually

∆Tave for the panel.  The response with a midsurface temperature gradient is seen to be virtually

the same as compared to the base model.  Combined with the results in Fig. 5-10 for

through-the-thickness temperature gradients, it can be concluded that the temperature gradients

observed in the experiments are sufficiently small and thus the experiments can be expected to

provide useful insight into the problem of uniform temperature change.

The final model refinement has to do with the thermal expansion of the end grip fixture used for

clamping.  The fixture was constructed of stainless steel, which has a coefficient of thermal expan-

sion  α = 6.0x10-6 in./in./°F.  As a result of this coefficient of thermal expansion, the circumferen-

tial displacement of the clamped ends of the panels were not zero during temperature changes.

Instead, they moved in the circumferential direction.  This boundary condition was referred to

previously as sliding clamped/sliding simple supports.  A comparison is made in Fig. 5-12

between the base model and a model with sliding clamped/sliding simple supports.  The only dif-

ference between the two models is that for sliding clamped supports, v ≠ 0 along the curved ends.

The response is seen to differ greatly for the [±45/0/90]s and [±45/02]s laminates with sliding

clamped boundary conditions as compared to the clamped boundary conditions of the base model.

In fact, for the [±45/02]s laminate, the classical postbuckling drop in load disappears altogether.

Apparently the v = 0 condition on the clamped ends of the base model triggers the load drop phe-

nomenon for this laminate.  However for the [±45/902]s laminate, the response is the same for

both sliding clamped and clamped boundary conditions.  These response characteristics are due to

the very small negative coefficient of thermal expansion for the [±45/902]s laminate as compared

to the larger positive coefficients of thermal expansion for the other two laminates, listed in Table

3-2.  As a result, the [±45/902]s panel exhibits very little circumferentially movement during ther-

mal loading whether or not v-displacement is restricted, so the nonlinear response is unaffected.

5.2 The Effects of Circumferential Restraint

A more detailed investigation on the effects of circumferential restraint is considered for three

representative tests, including, for completeness, one test from each stacking sequence.  A fully

refined numerical model is considered, which includes the effects of measured thickness, shifted

edge supports, extended clamped supports, initial geometric imperfections, and thermal gradients.
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A comparison between the experimentally determined buckling load and the buckling loads

obtained using the fully refined numerical model and either clamped/sliding simple support or

sliding clamped/sliding simple support boundary conditions is shown in Table 5-3 for these three

representative tests.  Also listed in Table 5-3 are the buckling loads obtained for models with spec-

ified v-displacements along the curved edges equal to the thermal expansion of steel.  The expres-

sion for this specified v-displacement, assuming an origin at one corner of the panel, is

, (5.1)

where  is the coefficient of thermal expansion of steel.

Recall from Chapter 4 that the test Q3 is loaded first in end-shortening then heated to 400°F.  The

test Z4 is heated first to 250°F, then loaded in end-shortening.  The test N3 is loaded first in

end-shortening, then heated to 400°F.   These three tests were selected because they demonstrated

the clearest numerically predicted differences between clamped supports and sliding clamped

supports among each of their respective stacking sequences.  During loading by end-shortening,

curved end boundary conditions are clamped supports.  The sliding clamped support and specified

v-displacement boundary conditions are imposed only during thermal loading to simulate the

thermal expansion of the steel end grips.  

For the quasi-isotropic [±45/0/90]s laminate, the model assuming clamped supports does not pre-

dict buckling at all, while the model with sliding clamped supports predicts buckling at a load 5%

below the experimental buckling load, and the model with a specified v-displacement predicts

Table 5-3 Buckling loads for different end support conditions

Experiment
Pmax, lbs.

Clamped 
supports
P/Pmax,

Sliding clamped 
supports
P/Pmax,

Specified 
v-displacement

P/Pmax,

[±45/0/90]s
Test Q3

-1350 does not buckle 0.95 0.74

[±45/02]s
Test Z4

-1090 1.81 0.94 0.79*

[±45/902]s
Test N3

-1270 0.93 0.84 0.75

*  Does not correspond to a maximum load, but the load at the last solution on the linear prebuckling path.

v° α s∆T θR
b
2
---– 

 =

α s 6
6–×10=
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buckling at a load 26% below the experimental buckling load.  For the [±45/02]s laminate, the

model with clamped supports over predicts the buckling load by 81%, while the model with slid-

ing clamped supports under predicts the buckling load by just 6%, and the model with a specified

v-displacement underpredicts the buckling load by 21%.  Clearly, for both [±45/0/90]s and

[±45/902]s laminates, thermal loading should be modeled assuming sliding clamped supports,

which allow v-displacement along the curved ends according to the expansion of the laminates.  

For the [±45/902]s laminate, the buckling load predicted from the model with clamped supports is

7% below the experimental buckling load, while the buckling load predicted from the model with

sliding clamped supports is 16% below the experimental buckling load, and the model with a

specified v-displacement is 25% below the experimental buckling load.  For this laminate and this

particular example, the buckling results suggest the use of clamped supports rather than either

sliding clamped supports or a specified v-displacement.  This is likely due to the nature of the

experimental apparatus.  The use of sliding clamped supports became necessary in order to

account for the thermal expansion of the steel end supports, but the [±45/902]s laminate contracts

in the circumferential direction when heated, so allowing sliding clamped supports results in a

compressive v-displacement rather than the tensile v-displacement suggested by the experimental

conditions. 

For all three laminates, assuming a specified v-displacement equal to the thermal expansion of the

steel end grips, as in Eq. (5.1), results in a much lower buckling load that the experimental mea-

surement.  This suggests that some amount of sliding occurs between the curved end grip and the

curved laminate during thermal loading, so that the correct boundary condition along the curved

end is neither entirely clamped with v-displacement equal to zero, or perfectly fixed to the steel

curved end grips, with v-displacement specified as in Eq. (5.1).  The assumption of sliding

clamped support boundary conditions seems a reasonable compromise between the two extremes.

5.2.1 Experimental and Analytical Considerations, [±45/0/90]s Laminate

When analyzing experimental results, loading due to both end displacement and temperature

change must be accounted for in the model.  As described in Chapter 4, when attempting to hold a

constant displacement, the lower load frame platen drifted downward with time due to a small

hydraulic leak.  Also during heating, the steel fixtures expanded, causing an axial end-shortening

of the panel.  As a result of these two factors, thermal loading was always accompanied by axial

displacement, which could be obtained from experimental data.  Therefore, loading of the model

consisted of either end shortening alone, or temperature change coupled with end shortening.  To
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simulate the measured relationship between the two coupled loadings, ∆u is applied as a linear or

piecewise linear function of ∆T, and Riks’ method [30] operates on the ∆T portion of loading. The

outcome of the analysis is the axial load P that results from the applied temperature and end short-

ening.

The nonlinear load vs. displacement and load vs. temperature responses for test Q3 with a

[±45/0/90]s stacking sequence are shown in Fig. 5-13.  Experimental results are compared to

numerical results for the fully refined models with clamped supports, sliding clamped supports,

and a specified v-displacement.  In the prebuckling range, all numerical models are seen to predict

the same response.  However, the model with sliding clamped supports is the only one to accu-

rately predict buckling near the experimental buckling load.   

A closer examination of the prebuckling response is obtained by examining the selected experi-

mental strain gage results, shown in Fig. 5-14.  As indicated in the strain gage diagram, gages are

considered in back-to-back pairs with the even numbered gages located on the outside surface of

the curved panel and the odd numbered gages located on the inside surface.  Gages 7 and 8 and

gages 37 and 38 are axial gages, while gages 19 and 20 and gages 27 and 28 are circumferential

gages.  Strain gages in back-to-back pairs can be used to access the bending or change in curva-

ture of the panel, as described in Fig. 5-15.  When back-to-back gages diverge, a positive or nega-
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tive change in curvature is indicated, depending on the relative value of the strains.  When the

strain of the even numbered outside gage is greater, algebraically, than the strain of the odd num-

bered inside gage, a positive change in curvature results.

For loads up to -800 lbs., test Q3 was loaded at room temperature by applying axial end-shorten-

ing.   Beyond -800 lbs., the displacement of the load frame platen was fixed while the temperature

was increased to 400°F.  Prebuckling strains for test Q3 are shown in Fig. 5-14.  Considering first
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the ∆u loading up to -800 lbs., axial gages 7/8 and 37/38 indicate positive curvature.   Circumfer-

ential gages 19/20 and 27/28 indicate negative curvature.   These observations are consistent with

the deformation pattern of Fig. 5-16(a). Beyond -800 lbs., when ∆T loading is applied, axial gages

37/38 change from positive curvature to negative curvature, and circumferential gages 27/28

change from negative curvature to positive curvature.  Considering Fig. 5-16(b), the model with

clamped/sliding simple supports maintains the same deformation pattern during ∆T loading as it

had during ∆u loading, Fig. 5-16(a).  The model with sliding clamped/sliding simple supports

shows a new deformation pattern for ∆T loading, Fig. 5-16(c), as compared to ∆u loading, Fig.

5-16(a).  This change in deformation pattern is consistent with the changes in curvatures noted for

gages 37/38 and 27/28, suggesting that sliding clamped supports are a more realistic representa-

tion of the actual experimental boundary conditions than are clamped supports.  Note that gages

19/20 do not indicate a change in curvature when ∆T loading is applied, although Fig. 5-16(a) and

(c) suggest that a change in curvature should occur.  This discrepancy is likely due to a slight shift

in the measured postbuckling deformation pattern due to an uneven load distribution across the

curved end of the panel.  The deformation pattern for the model with a specified v-displacement in

shown in Fig. 5-16(d).  This model also shows a new deformation pattern for ∆T loading as com-
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pared to the pattern for ∆u loading, although this new pattern  does not match the changes  in cur-

vature of the strain gages as well the model with sliding clamped supports, Fig. 5-16(c).  

From Fig. 5-13,  the assumption of sliding clamped boundary conditions significantly improves

the predicted buckling load as compared to the model with clamped boundary conditions, but the

postbuckling response is still not predicted correctly.  In the experiment, the load gradually

decreases after buckling, while the analysis with sliding clamped boundary conditions predicts a

sudden drop in load.  This suggests that, in the experiment, additional support is acting on the

panel after buckling and preventing the expected sudden drop in load.  

(b) ∆T loading, clamped supports

P
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(c) ∆T loading, sliding clamped supports
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(a) ∆u loading, clamped supports
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Figure 5-16  Prebuckling deformations, test Q3, [±45/0/90]s laminate
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5.2.2 Experimental and Analytical Considerations, [±45/02]s Laminate

The nonlinear load vs. displacement and load vs. temperature responses for test Z4 with a

[±45/02]s stacking sequence are shown in Fig. 5-17.  Numerical results from the fully refined

models with clamped supports,  and sliding clamped supports, and a specified v-displacement are

compared to experimental results.  The panel is heated first to 250°F, then loaded in axial

end-shortening.  The prebuckling stiffness during end-shortening is slightly different for the

three different boundary conditions, with the sliding clamped boundary condition providing

the best match to experiment.  At buckling, the model with sliding clamped supports pro-

vides a good estimate of both the buckling load and postbuckling stiffness, while the model

with clamped supports predicts a much higher buckling load. 

The strain gage results during thermal loading are shown in Fig. 5-18.  The divergence of axial

gages 7/8 and 37/38 indicate a negative change in curvature, as do the divergence of circumferen-

tial gages 19/20 and 27/28.  The deformation pattern shown in Fig. 5-19(a) for clamped/sliding

simple supports, ∆T loading, suggests positive curvature at the selected strain gage locations.  The

pattern of negative change in curvature  indicated by the strain gages is consistent with the defor-

mation pattern shown in Figs. 5-19(b) and 5-19(c) for the models with sliding clamped supports

and a specified v-displacement, respectively.   
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5.2.3 Experimental and Analytical Considerations, [±45/902]s Laminate

The nonlinear load vs. displacement and load vs. temperature responses for test N3 with a

[±45/902]s stacking sequence are shown in Fig. 5-20.  Experimental results and numerical results

from the fully refined models with clamped supports, sliding clamped supports, and a specified

v-displacement are compared.  The panel is loaded first by applying end-shortening at room tem-
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perature, then by applying temperature to 400°F.  The responses for the three refined models are

seen to be relatively the same.   From the nonlinear response shown in Fig. 5-20, none of the

boundary conditions clearly predicts experimental response better than the other boundary condi-

tions.   

Examining the prebuckling strain gage results of Fig. 5-21, the divergence of axial gages 7/8 and

37/38 indicate a positive change in curvature, gages 19/20  indicate no change in curvature, and

gages 27/28 indicate a negative change in curvature.   This is consistent with the prebuckling

deformation for ∆u loading shown in Fig. 5-22(a) for clamped supports.  During thermal loading,

axial gages 7/8 and 37/38 change from a positive change in curvature to a negative change in cur-

vature, while circumferential gages 27/28 maintain a negative change in curvature and gages

19/20 continue to indicate no change in curvature.  The deformations for ∆T loading of the model

with clamped supports, Fig. 5-22(b), indicates no substantial change from the deformation rela-

tive to that for ∆u loading, Fig. 5-22(a).  The deformations for ∆T loading shown in Fig. 5-22(c)

for sliding clamped supports and Fig. 5-22(d)  for a specified v-displacement boundary condition

are in agreement with the strain gage results, although the buckling loads obtained from these

models do not compare as well to experimental buckling loads as did the model with clamped

(a) ∆T loading, clamped supports
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(b) ∆T loading, sliding clamped supports
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Figure 5-19  Prebuckling deformations, test Z4, [±45/02]s laminate
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supports.  In order to obtain a deformation during thermal loading consistent with the strain gages,

and a more reasonable estimate of the buckling load, a model was constructed with a limited

expanding v-displacement along the curved ends that is less than the thermal expansion of the

steel curved end grips.  Since no measurement of the actual v-displacement along the curved ends

was obtained during testing, a displacement of

(5.2)

was assumed, where  is the coefficient of thermal expansion of steel.  With Eq.

(5.2), the maximum v-displacement along the curved edge is 15% of the expansion of the steel

end fixture.  

The deformation pattern obtained using this limited v-displacement model, with v-displacement

as given in Eq. (5.2), is shown in Fig. 5-22(e).  The pattern shows the correct trends as compared

to the change in curvature observations obtained from the strain gages.  

Buckling loads obtained from experiment and the numerical models with clamped supports, slid-

ing clamped supports, a specified v-displacement equal to the expansion of steel, and a limited

v-displacement are compared for test N3 in Table 5-4.  Three of these case have been seen before
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in Table 5-3.  All of the numerical models under predict the buckling load, with the best prediction

being obtained from the model with clamped supports, which differs from experiment by only

7%.  The model with a limited v-displacement under predicts the experimental buckling load by

13%.   

The nonlinear load vs. displacement and load vs. temperature responses for test N3 are shown in

Fig. 5-23 comparing experiment, clamped supports, and a limited v-displacement.  The responses
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Table 5-4 Buckling load comparison for circumferentially expanding supports

Experiment
Pmax, lbs.

Clamped 
supports
P/Pmax,

Sliding 
clamped 
supports
P/Pmax,

Specified 
v-displacement

P/Pmax,

Limited 
v-displacement

P/Pmax,

[±45/902]s
Test N3

-1270 0.93 0.84 0.75 0.87

(b) ∆T loading, clamped supports

P

P

(c) ∆T loading, sliding clamped supports

P

P

(a) ∆u loading, clamped supports

P

P

P

P

(d) ∆T loading, specified v-displacement

Figure 5-22  Prebuckling deformations, test N3, [±45/902]s laminate

(e) ∆T loading, limited v-displacement, 
15% of steel expansion
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P
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obtained from the two numerical models, clamped supports and a limited v-displacement, are

nearly the same, and both show reasonable agreement with experiment.  Additionally, the bound-

ary condition variations illustrated in Fig. 5-20 also show reasonable agreement with experiment.

The question of which boundary condition best represents experimental conditions is not clear for

this stacking sequence, the [±45/902]s laminate.  Examination of the prebuckling deformations

suggests a model with sliding clamped supports or a limited v-displacement, comparison of buck-

ling loads suggests clamped supports, and consideration of the nonlinear responses is inconclu-

sive.  Since no measurement is available for the circumferential v-displacement along the curved

ends, the remainder of the tests on [±45/902]s laminates will be compared to numerical models

with clamped supports.

By comparing the experimental and predicted responses of all three laminates, Figs. 5-13, 5-17,

and 5-20, and considering the laminate coefficients of thermal expansion, it may be possible to

predict which laminates are best modeled by clamped boundary conditions and which are best

modeled by sliding clamped boundary conditions during thermal loading.  Note that the sliding

clamped boundary condition model predicts the prebuckling, buckling and postbuckling

responses of the [±45/02]s laminate in test Z4 very accurately, shown in Fig. 5-17.  In test Q3, with

a [±45/0/90]s laminate, the prebuckling and buckling behaviors are predicted well with the sliding
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Figure 5-23  Nonlinear response with clamped vs. limited v-displacement boundary 
conditions, test N3, [±45/902]s laminate
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clamped boundary condition model, but postbuckling is not predicted as well, as shown in Fig.

5-13.  For test N3, with a [±45/902]s laminate, the assumption of sliding clamped boundary condi-

tions causes a worse buckling prediction than the model with clamped boundary conditions,

shown in Fig. 5-20.  With these observations in mind, consider the ratio of the laminate coeffi-

cients of thermal expansion to the coefficient of thermal expansion of steel, as listed in Table 5-5.

Note that the best match between laminate and steel coefficients of thermal expansion occurs for a

[±45/02]s laminate, which also shows the most accurate prediction of experimental results when

sliding clamped boundary conditions are assumed.  The next closest match between laminate and

steel coefficients of thermal expansion occurs for the [±45/0/90]s laminate, which shows reason-

able agreement between experiment and prediction when sliding clamped boundary conditions

are used.  Finally, the [±45/902]s laminate shows the greatest mismatch between laminate and

steel coefficients of thermal expansion, and likewise shows little agreement between prediction

and experiment when sliding clamped boundary conditions are assumed.  From these observa-

tions, a correlation is suggested between similar laminate and steel coefficients of thermal expan-

sion, and the accuracy of assuming sliding clamped boundary conditions.

5.3 Nonlinear Postbuckling Results

The experimental results are compared to the solutions obtained with the fully refined numerical

model and considering the effects of circumferential restraint along the curved ends as described

in section 5.2.  The experimental and numerical buckling values for all of the buckling tests are

listed in Table 5-6.  The columns headed “STAGS” and “STAGS without imperfections” contain

the numerical buckling loads normalized by the experimentally determined buckling loads for

each particular test.  The heading “STAGS” indicates the fully refined numerical model with slid-

ing clamped/sliding simple support boundary conditions during thermal loading, and

clamped/sliding simple support boundary conditions during mechanical loading, unless otherwise

noted by an asterisk.  The heading “STAGS without imperfections” indicates that the fully refined

model without the effects of measured geometric imperfections is used.  This column is included

to help access the relative sensitivity of each test configuration to measured geometric imperfec-

Table 5-5 Circumferential thermal expansion of laminates compared to steel

[±45/0/90]s [±45/902]s [±45/02]s

0.19 -0.03 0.72α y

α steel
-------------
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tions.  Also, the refined model which incorporates measured initial geometric imperfections gen-

erally under predicts the experimental buckling load, while the model without measured initial

geometric imperfections generally over predicts the experimental buckling load.  This may be due

to the assumption of constant panel thickness with a midsurface geometric imperfection.  The

Table 5-6 Experimental and numerical buckling loads

Experiment
Pmax, lbs.

STAGS
P/Pmax

STAGS without 
imperfections

P/Pmax

Test Q1
[±45/0/90]s

∆u only -1670 0.87 1.04

Test Q2
[±45/0/90]s

∆T only does not buckle does not buckle

Test Q3
[±45/0/90]s

∆u then ∆T -1350 0.95 1.09

Test Q4
[±45/0/90]s

∆T then ∆u -1920 0.71
0.81*

0.85
0.95*

Test N1
[±45/902]s

∆u only -1410 0.98* 1.17*

Test N2
[±45/902]s

∆T only -1090 0.97* 1.48*

Test N3
[±45/902]s

∆u then ∆T -1270 0.93* 1.29*

Test N4
[±45/902]s

∆T then ∆u -1420 0.89* 1.15*

Test Z1
[±45/02]s

∆u only -1210 1.08 1.33

Test Z3
[±45/02]s

∆u then ∆T does not buckle does not buckle

Test Z4
[±45/02]s

∆T then ∆u -1090 0.94 1.29

* Indicates STAGS solution with clamped/sliding simple support boundary conditions.  All other STAGS solutions 
use sliding clamped/sliding simple support boundary conditions during thermal loading, and clamped/sliding 

simple support boundary conditions during mechanical loading.
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actual initial geometric imperfections may have included local thickness variations, in addition to

midsurface geometric imperfections.  

In general, [±45/0/90]s and [±45/02]s laminates are modeled using sliding clamped/sliding simple

supports during thermal loading, and clamped/sliding simple supports during mechanical loading.

An exception to this is test Q4, which is modeled both with sliding clamped/sliding simple sup-

ports during thermal loading, and with clamped/sliding simple supports throughout loading.

Notice that the model with clamped supports provides a better estimate of the buckling load than

the model with sliding clamped supports.  Note also that even without imperfections, the numeri-

cal predictions are below the experimental buckling load.  

Considering the sensitivity of the different stacking sequences to measured geometric imperfec-

tions, observe that the buckling loads of the [±45/0/90]s laminates change little when imperfec-

tions are included, while the buckling loads of the [±45/902]s and [±45/02]s laminates show

substantial change due to including imperfections.   This difference in behavior between laminates

can be explained by recalling Tables 5-1 and 5-2, where it was shown that different measured

imperfections can cause different changes in the buckling load.  For the [±45/902]s and [±45/02]s

laminates, including measured initial geometric imperfections always improves the prediction of

buckling load as compared to the model without imperfections.  For the [±45/0/90]s laminate,

however, the model without imperfections provides a better buckling load prediction.

5.3.1 Nonlinear Response, [±45/0/90]s Laminates

The geometrically nonlinear load vs. displacement response of test Q1 is compared to numerical

predictions in Fig. 5-24.  Test Q1 was loaded in end-shortening at room temperature.  Both the

prebuckling and postbuckling responses predicted by STAGS agree well with the experimentally

measured response.  The only significant difference between the model with imperfections and

the model without imperfections occurs in the predictions of the buckling load.  The deformation

mode shape of the postbuckling response is indicated by the photograph of the shadow moiré

fringe pattern shown in Fig. 5-25 along with the predicted response from STAGS.  The two defor-

mation shapes agree qualitatively, with both indicating a single inward buckle pattern at the center

of the panel.     

Nonlinear load vs. displacement and load vs. temperature results for test Q2 are shown in Fig.

5-26.  Although test Q2 was meant to access the effects of thermal loading only, mechanical load-

ing occurs due to downward drift of the lower load platen and thermal expansion of the steel fix-

ture and heated platen, as discussed in Chapter 4.  The STAGS response does not predict buckling



Chapter 5 - Experimental and Numerical Comparisons

124

in the temperature range considered.  Since response with and without imperfections is the same

during prebuckling, only response with imperfections is included here.  Note that at a temperature

of approximately 330°F, the measured response of the panel changes, and the load does not

increase with increasing temperature.  The STAGS model does not predict this behavior, because

it does not include the change in material properties that may occur above 330°F.
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Figure 5-24  Nonlinear response, test Q1, [±45/0/90]s laminate
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Figure 5-25  Postbuckling deformations, test Q1, [±45/0/90]s laminate
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The nonlinear load vs. displacement and load vs. temperature responses of test Q3 are shown in

Fig. 5-27.  Test Q3 begins with mechanical loading to -800 lbs., then the panel is heated to 400°F

while attempting to hold the end-shortening at a constant value.  For loads prior to buckling, the

STAGS predictions closely follow the experimental response.  A good estimate of the buckling

load is predicted, but the postbuckling response observed in experiment is not what the STAGS

response suggests should happen.  According to the predicted response, the load should drop off

after buckling to a value of approximately -1080 lbs., but the experiment shows only a gradual

decrease in load after buckling.  This may be due to load being carried by the knife edge supports,

which grip the panel increasingly tighter as the temperature is increased, or inaccurate modeling

of the circumferentially expanding curved end boundary condition.  A second discontinuity in

stiffness can be seen at a temperature of approximately 330°F, due to the possible changes in

material properties at temperatures above 330°F.

The nonlinear load vs. displacement and load vs. temperature responses of test Q4 are shown in

Fig. 5-28 for sliding clamped/sliding simple support boundary conditions during thermal loading.

Test Q4 is heated first to approximately 250°F while attempting to hold the end-shortening con-

stant, then loaded in end-shortening while holding the temperature at a constant 250°F.  From Fig.

5-28, it is seen that both the prebuckling and postbuckling stiffnesses at temperature are slightly
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Figure 5-26  Nonlinear response, test Q2, [±45/0/90]s laminate
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Figure 5-27  Nonlinear response, test Q3, [±45/0/90]s laminate
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greater for the experiment than were predicted by STAGS.   The load that the panel carries after

buckling is predicted accurately by the STAGS models.  The buckling load is under predicted

compared to the experimental results by both the model with imperfections and the model without

imperfections.  

In an attempt to improve the agreement between model and experiment, clamped/sliding simple

support boundary conditions are considered for both mechanical and thermal loading, as shown in

Fig. 5-29.  The most notable difference between the previous model with sliding clamped/sliding

simple supports during thermal loading and this model with clamped/sliding simple supports is in

the values of the buckling loads.  The model that assumes clamped/sliding simple supports more

accurately predicts the experimentally determined buckling load, although the buckling load of

the model with imperfections is still substantially less than the measured buckling load.  The

buckling load results bring into question the assumption of sliding clamped boundary conditions

during thermal loading for a stacking sequence of [±45/0/90]s.  No final conclusion can be drawn

from the limited experimental data presented here. 
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Figure 5-29  Nonlinear response with clamped supports, test Q4, [±45/0/90]s laminate
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5.3.2 Nonlinear Response, [±45/902]s Laminates

The nonlinear load vs. displacement response of test N1 with a [±45/902]s stacking sequence is

shown in Fig. 5-30.  Test N1 is an end-shortening test conducted at room temperature.  For all

tests of [±45/902]s laminates, the model boundary conditions are assumed to be clamped/sliding

simple supports throughout testing.  From Fig. 5-30, the STAGS models are seen to provide good

predictions of the prebuckling stiffness, and the model with imperfections agrees well with the

experimentally determined buckling load.  The postbuckling stiffness predicted by the two models

is less than the stiffness measured experimentally, although the initial postbuckling load shows

good agreement between model and experiment.  The deformation mode shape of the postbuck-

ling response is represented in the shadow moiré fringe pattern shown in Fig. 5-31(a).  It is seen to

match qualitatively with the predicted deformation mode shape of Fig. 5-31(b), indicating a single

buckle pattern at the center of the panel. 

The nonlinear load vs. displacement and load vs. temperature responses of test N2 are shown in

Fig. 5-32.  Test N2 was meant to be pure thermal loading, so the only mechanical loading is due to

the drift of the lower load frame platen and thermal expansion of the steel fixture and heated

platen.  The prebuckling stiffness and buckling load show good agreement between experiment
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Figure 5-30  Nonlinear response, test N1, [±45/902]s laminate
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and the STAGS models.  After buckling, the model with imperfections predicts an initial post-

buckling load of approximately -700 lbs., but the experimental results show an initial postbuck-

ling load of approximately -880 lbs.  As with test Q3, this may be due to load being carried by the

knife edge supports, which grip the panel increasingly tighter as the temperature is increased, or

an inaccurate modeling of the circumferentially expanding curved end supports.  Note that both

Figure 5-31  Postbuckling deformations, test N1, [±45/902]s laminate

(a) Shadow moiré-fringe pattern (b) STAGS contour, with imperfections

P

P

Experiment
STAGS
STAGS without imperfections

-2000

-1500

-1000

-500

0
-0.0024-0.0016-0.00080

100 200 300 400 500 600
-2000

-1500

-1000

-500

0
-0.000800.0008

-0.00800.008

∆u, in.

P,
 lb

s.

P,
 lb

s.
T, °F

Figure 5-32  Nonlinear response, test N2, [±45/902]s laminate
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tests N2 and Q3 involve buckling during thermal loading, and both show greater than predicted

postbuckling load carrying capacity, suggesting an experimental problem at elevated tempera-

tures.  Returning to test N2, after the discrepancy in the initial  postbuckling load, the postbuck-

ling stiffness is also incorrectly predicted by the models.  Note again the discontinuity in

postbuckling stiffness that occurs near 330°F.

The nonlinear load vs. displacement and load vs. temperature responses of test N3 are shown in

Fig 5-33.  Test N3 begins with mechanical loading to -800 lbs. at room temperature, then thermal

loading is applied to a temperature of 400°F while attempting to hold end-shortening constant.

From Fig. 5-33, the prebuckling response and buckling load predicted by the STAGS model with

imperfections are seen to agree well with the experimentally determined responses.  The initial

postbuckling load also shows good agreement, although the experimentally determined postbuck-

ling stiffness is greater than the predicted stiffness, up to a temperature of approximately 330°F.

Beyond this temperature, the measured postbuckling stiffness decreases, consistent with previous

observations.

The nonlinear load vs. displacement and load vs. temperature responses for test N4 are shown in

Fig. 5-34.  Test N4 was heated first to approximately 240°F while attempting to hold end-shorten-

ing fixed, then loaded in end-shortening while maintaining a constant temperature.  The predic-
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tions from the STAGS models agree well with experiments during prebuckling, and the STAGS

model with imperfections provides a reasonable estimate of the buckling load.  The experimen-

tally determined initial postbuckling load is greater than predicted by the models, although the

postbuckling stiffness shows good agreement between model and experiment.  

5.3.3 Nonlinear Response, [±45/02]s Laminates

The nonlinear load vs. displacement response for test Z1 is shown in Fig. 5-35.  Test Z1 was an

end-shortening test conducted at room temperature.  The prebuckling stiffness shows good agree-

ment between experiment and model.  The buckling load is slightly over predicted by the STAGS

model with imperfections, while the postbuckling stiffness is slightly under predicted, but both

show reasonable agreement with experiment.  The postbuckling deformations from a shadow

moiré fringe pattern and the STAGS model with imperfections are shown in Fig. 5-36.  Qualitative

agreement is obtained, with both indicating a single inward buckle at the center of the panel.    

The nonlinear load vs. displacement and load vs. temperature responses for test Z3 are shown in

Fig. 5-37. Test Z3 was first loaded to -800 lbs. by applying end-shortening at room temperature,

then heated to 400°F while attempting to hold the end-shortening constant.  Model and experi-

ment show excellent agreement.  The measured load drops off rapidly when thermal loading
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begins, due to the negative axial coefficient of thermal expansion for the [±45/02]s laminate.  The

load vs. temperature slope changes continuously after the initial drop, and eventually reaches an

asymptote near -400 lbs.  As explained in Chapter 4, the cause of this asymptote is not fully

understood but may be due to experimental error from either the knife edge supports or the load

frame platen.  The experiment and numerical model match because the actual panel end-shorten-
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Figure 5-35  Nonlinear response, test Z1, [±45/02]s laminate
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ing, as obtained from strain gage readings, was included in the model, thus accounting for experi-

mental errors due to hardware problems. 

The nonlinear load vs. displacement and load vs. temperature responses of test Z4 are shown in

Fig. 5-38. Test Z4 was heated first to approximately 240°F while attempting to hold end-shorten-

ing constant, then loaded in end-shortening while holding temperature constant.  The prebuckling

and buckling predictions obtained with the STAGS model that includes imperfections agree well

with the experimental data.  Beyond buckling, the initial response matches very well, but some

discrepancy in both stiffness and load carrying capacity is observed as the end-shortening

progresses.   

This chapter has presented a considerable amount of information on the modeling aspect of ther-

mal testing.  The sections on model refinement reflect the realities of imperfect specimens and the

physical characteristics of the test fixture.  Deviations from perfection were seen to have minimal

or no effect in some cases, as for thermal gradients, but potentially large effects for other cases, as

for measured initial geometric imperfections.  Boundary conditions, particularly the circumferen-

tial restraint component, were seen to play a large role in the predicted behavior.  Because the

actual boundary conditions are almost impossible to quantify exactly, the analysis was used to

consider different possible conditions.
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Figure 5-37  Nonlinear response, test Z3, [±45/02]s laminate
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Thermal testing, in general, and the load frame used, in particular, had important bearings on the

measured results.  Drifting of the lower load frame platen and thermal expansion of the steel end

grips prevented the application of pure thermal loading, and resulted in a net axial expansion of

the panel during heating.  However, this effect was successfully accounted for in the numerical

analysis.  Good agreement was obtained between measured response and numerical predictions

for both stiffness and buckling results.  Although the numerical model involved assumptions and

did not account for all of the experimental anomalies, the validity of this type of modeling was

verified.  The nonlinear finite element code STAGS, using quadrilateral faceted shell elements,

accounting for large rotations using a corotational formulation, and using Rik’s method to obtain

solutions along an unstable loading path, is appropriate for studies on the thermal buckling and

postbuckling of composite shells.  

As the first experimental thermal buckling study of composite shells, the results of the experimen-

tal investigation, in conjunction with the corresponding numerical studies, provide a unique con-

tribution to the knowledge of thermal and mechanical buckling.  Important conclusions can be

drawn from the results, and improvements can be suggested for future thermal testing investiga-

tions.  These are the subject of the final chapter.
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6.  Conclusions and Recommendations

 

The goal of this research was to study the buckling and postbuckling responses of curved compos-

ite panels subjected to combinations of thermal and mechanical loading.  Experimental and

numerical studies were planned.  Curved composite panels were selected to simulate the unsup-

ported sections of fuselage skin between stringers and stiffeners.  Loading due to axial end-short-

ening and uniform temperature change were of particular interest, driven by the thermal stresses

that arise when a structure is heated while restricting axial displacement.  To study this topic in

detail, a base geometry was chosen consisting of a 10 in. by 10 in. cylindrically curved panel with

a 60 in. radius.  Three lamination sequences were studied, including a quasi-isotropic [

 

±

 

45/0/90]

 

s

 

laminate, an axially soft [

 

±

 

45/90

 

2

 

]

 

s

 

 laminate, and an axial stiff [

 

±

 

45/0

 

2

 

]

 

s

 

 laminate.  

Boundary conditions for the base model were clamped edges along the curved ends, and simply

supported with 

 

v

 

-displacement unrestricted along the straight edges.  This configuration was cho-

sen because it simulated the boundary conditions of the experimental apparatus.  A simplified lin-

ear buckling solution was presented for the curved panel by assuming simply supports on all four

boundaries.  For clamped/sliding simple support boundary conditions, the buckling load from a

nonlinear prebuckling state was obtained using an approximate Rayleigh-Ritz solution and the

geometrically nonlinear finite element code STAGS.  Postbuckling responses were further studied

using STAGS.  A number of parametric studies were conducted to determine the effects of bound-

ary conditions, radius, and combined loading on the nonlinear responses including postbuckling.  

Experiments were conducted at room temperature and elevated temperatures up to 400

 

°

 

F to pro-

vide verification to the analyses.  Tests were conducted on the three laminates of interest, loaded

with end-shortening alone, with elevated temperature alone, with end-shortening followed by ele-

vated temperature, and with elevated temperature followed by end-shortening.   Load vs. axial

strain results were compared to predictions from STAGS.  Refinements to the base STAGS model

were considered, including measured thicknesses, boundary conditions modified to reflect the test

fixture, measured initial geometric imperfections, measured thermal gradients, and modifications

to the circumferential component of the displacement at the curved end boundary conditions.  It
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was discovered during testing that axial end displacement of the panel occurs during the slow

thermal heat-up of the panel.  The magnitude of end displacement was determined and incorpo-

rated into the STAGS model.  With the model refinements and inclusion of axial end displace-

ment, the nonlinear STAGS predictions provided good correlation to the experimentally

determined buckling loads and load vs. axial strain responses.

 

6.1 Conclusions

 

Conclusions are organized based on the different areas of emphasis for this study.  The following

presentation is meant to follow the order of the main text: 

• The results of analytical parametric studies to determine the effects of boundary conditions,

panel radius, and combined loading are summarized.

• The lessons learned while conducting thermal/structural experiments are detailed.

• The effects of modeling refinements to better simulate experimental conditions are noted.

• Comparisons are made between the load vs. axial strain responses predicted by the analyses

and measured in the experiments.

 

6.1.1 Analytical Results and Parametric Studies

 

A simplified linear solution was presented for curved composite panels with simply supported

boundary conditions loaded in end-shortening or uniform temperature change.  A geometrically

nonlinear Rayleigh-Ritz solution was developed for curved panels with either clamped/sliding

simple supports or clamped/fixed simple supports, loaded in end-shortening and uniform tempera-

ture change.  Comparison of the simplified linear solution and the approximate Rayleigh-Ritz

solution suggested that the simplified solution could be used to provide an initial estimate of the

buckling load in most cases. For the [

 

±

 

45/0

 

2

 

]

 

s

 

 laminate loaded by uniform temperature change,

the simplified linear solution predicted a negative axial buckling load, while the nonlinear Ray-

leigh-Ritz solution showed that thermal buckling for this laminate would only occur in the pres-

ence of a tensile axial load and a compressive circumferential load.  

Parametric studies were performed using the geometrically nonlinear finite element code STAGS

with the following results:

• The effects of boundary conditions were studied by first restricting the circumferential dis-

placement of the straight edges, creating a boundary condition termed clamped/fixed simple
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supports, then by freeing the circumferential displacement along the curved ends, for a bound-

ary condition termed sliding clamped/sliding simple supports.  The base model with

clamped/sliding simple supports was found to buckle due to bifurcation.  Thermal and

mechanical responses for a given laminate may be either the same or entirely different,

depending on the specific laminate considered.  Clamped/fixed simple supports induce buck-

ling at a limit point with buckling loads that are higher than those of clamped/sliding simple

supports.  The character of response is significantly different than clamped/sliding simple sup-

ports.  Sliding clamped/sliding simple supports buckle at a bifurcation point and have lower

buckling loads than clamped/sliding simple supports.  For mechanical loading, clamped/slid-

ing simple supports and sliding clamped/sliding simple supports have similar response charac-

teristics, but for thermal loading, different responses are noted for the two boundary

conditions.

• The effect of varying the panel radius is considered.  As the radius decreases, the prebuckling

stiffness remains constant while buckling load increases.  Beyond 

 

R

 

 = 30 in., the character of

the postbuckling response changes.  For [

 

±

 

45/0/90]

 

s

 

 and [

 

±

 

45/90

 

2

 

]

 

s

 

 laminates, the postbuck-

ling deformations for small radii approach the deformation pattern expected for a full cylinder.

For the [

 

±

 

45/0

 

2

 

]

 

s

 

 laminate, buckling is dominated by circumferential strains that are not simi-

lar to full cylinders.  

• The effects of combined loading are considered by simulating the loading of panels either with

end-shortening followed by temperature change or with temperature change followed by

end-shortening.   Panels loaded by either sequence reach the same solution (load and deforma-

tion pattern) for the same loading combinations, although the response path to reach that solu-

tion may be notably different.

 

6.1.2 Lessons Learned From Conducting Experiments

 

While conducting elevated temperature experiments and attempting correlation to previously con-

ducted analyses, the following lessons were learned that may aid in future elevated temperature

testing:

• Axial displacement occurs during thermal loading due to drift of the load frame platen and

thermal expansion of the steel fixtures.  Although other types of equipment may have elimi-

nated the platen drift, thermal expansion of steel supports is inevitable.  The resulting axial

displacement affects the panel response.  Three methods have been suggested for determining

this axial displacement using a combination of measured and calculated quantities.
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• For the specific heating arrangement chosen, thermal gradients occurred in the panel with a

maximum temperature difference between the hottest and coldest points of approximately

20

 

°

 

F.  This difference was established by 200

 

°

 

F and continued throughout the test.  Based on

analytical comparisons of models with and without the thermal gradient, this gradient was

found to have a negligible effect of the load vs. axial strain response of the panel.

• Boundary conditions along the curved ends are difficult to determine during thermal testing.

Comparison to analytical results suggests that circumferential displacement occurs in the

panel as a result of the thermal expansion of the steel end grips.  The actual magnitude of the

panel expansion was unknown for these experiments.

 

6.1.3 Model Refinements

 

The base finite element model with clamped/sliding simple supports that was originally consid-

ered for parametric studies required the following minor modifications to accurately represent

experimental conditions: 

• The average measured panel thickness was used, which was about 8% greater than the panel

thickness originally assumed for parametric studies.  Since the buckling load is approximately

proportional to the thickness cubed, this thickness increase resulted in approximately a  26%

increase in buckling load.

• To better match boundary conditions as they were applied by the experimental apparatus, the

sliding simple supports were shifted 0.125 in. inward from the straight edges and the clamped

supports were extended  0.375 in. inward from the curved ends.  These changes had little

effect on the buckling load, although postbuckling stiffnesses generally increased due to the

shift of the sliding simple supports.

• Measured initial geometric imperfections caused a decrease in the buckling load but did not

substantially alter either the prebuckling or postbuckling stiffnesses.  The percent decrease in

buckling load depended strongly on the particular imperfection used.

• The typical measured temperature gradient, consisting of a linear through-thickness variation

of 6

 

°

 

F and a second order polynomial variation in the 

 

x

 

 - and 

 

θ

 

-directions with a maximum

temperature difference of 20

 

°

 

F, has negligible effect on the buckling load or nonlinear

response.

• Sliding clamped boundary conditions along the curved ends during thermal loading improves
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the correlation with experiments for [

 

±

 

45/0/90]

 

s

 

 and [

 

±

 

45/0

 

2

 

]

 

s

 

 laminates, but not for

[

 

±

 

45/90

 

2

 

]

 

s

 

 laminates.  Allowing the circumferential expansion of the panel to equal the ther-

mal expansion of the steel end grips does not improve correlation with experiments.  The best

correlation for the [

 

±

 

45/90

 

2

 

]

 

s

 

 laminate occurs when a small outward circumferential expan-

sion is applied to the panels.  However, the improvement over clamped supports is small, and

no measure of the actual circumferential expansion is available.

 

6.1.4 Comparison Between Analysis and Experiment

 

Analytical results from the STAGS geometrically nonlinear analysis are compared to the experi-

mental results with the following observations:

• Good agreement is obtained between the experiments and the geometrically nonlinear STAGS

analyses for the overall load vs. axial strain response.  To obtain this agreement, sliding

clamped/sliding simple support boundary conditions are assumed during thermal loading of

the [

 

±

 

45/0/90]

 

s

 

 and [

 

±

 

45/0

 

2

 

]

 

s

 

 laminates, and clamped/sliding simple support boundary condi-

tions are assumed during thermal loading of the [

 

±

 

45/90

 

2

 

]

 

s

 

 laminates and during all mechani-

cal loading.  Model refinements and the axial displacement of the panel that occurs during

thermal loading are also accounted for by the model.  

• The refined STAGS model generally underpredicts the measured buckling loads, and the

STAGS model that neglects measured geometric imperfections generally overpredicts the

measured buckling load.

• By considering the free thermal expansion of a [

 

±

 

45/0

 

2

 

]

 

s

 

 laminate, and noting a discontinuity

in the response of the other laminates, it is suggested that the coefficients of thermal expansion

of this panel material change sign at a temperature of approximately 330

 

°

 

F.  Since these pan-

els did not undergo the complete recommended cure cycle, this result is not necessarily

expected for all structures made from IM7/5260.

 

6.2 Recommendations For Future Work

 

Although the buckling and postbuckling response of curved composite panels has been studied

extensively in this work, further improvements to the effort are possible.  Future work in this area

can be divided into refinements to the current study, and new topics to be explored.
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6.2.1 Further Refinements To This Study

 

The following improvements to the study could be made to further improve correlation between

analysis and prediction:

• Consider imperfections in the axial direction, i.e. 

 

u

 

-displacement, and include an uneven load

distribution in the model.  This would likely allow correlation of individual strain gage results

with analytical predictions,  which would be necessary in a more complex structure where

failure prediction might be of interest.

• Include radial or 

 

w

 

-displacement imperfections as thickness variations rather than just midsur-

face strain imperfections.  

• Further investigate the issue of circumferential displacement along the curved ends during

thermal loading, perhaps by conducting more experiments, while taking special care to instru-

ment the specimens close to the ends.

• Measure the temperature dependent nature of the material properties of properly cured

IM7/5260, and incorporate this into the analysis if necessary.

 

6.2.2 Related Areas To Explore

 

As an extension of the current work, the following might be considered as the next issues of inter-

est, leading to the final goal of designing a high temperature composite fuselage structure:

• Consider the effects of stiffeners, particularly stiffeners with a different coefficients of thermal

expansion than their adjacent skin.

• Apply additional mechanical loading schemes,  including pressure loading and/or shear load-

ing.

• Conduct additional parametric studies to determine the effects of increasing the number of

layers, changing the aspect ratio of the panel to better represent the unsupported skin between

stiffeners, and applying boundary conditions to represent a curved panel which is really a por-

tion of a complete cylinder. 
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Appendix A - Convergence of the Rayleigh-Ritz Solution

 

Convergence of the geometrically nonlinear Rayleigh-Ritz solution  is based on the calculated dif-

ference between the approximate solution and a solution perceived as exact.  An actual exact solu-

tion was not available for this problem, which is why the Rayleigh-Ritz method was used.

Instead of an exact solution, a Rayleigh-Ritz solution is used that has a very high number of terms

in the assumed displacement series.  Convergence is determined when the difference between this

solution and a more approximate solution, one with fewer terms in the displacement series, is suf-

ficiently small and unchanging.

Displacements were calculated from the Rayleigh-Ritz coefficients every 1/2 in. over the surface

of the panel.  Displacements are given by

(A.1)

for clamped/sliding simple supports, and by 

, (A.2)
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for clamped/fixed simple supports.  The displacement solutions for N = 5 in Eqs. (A.1) and (A.2)

were used for comparison to the solutions for N = 4, 3, 2 and 1, except for the case of [±45/02]s

laminate with clamped/fixed simple supports, where the N = 7 solution was used for comparison.

The errors in the displacement solutions are given by

, (A.3)

, (A.4)

, (A.5)

where u, v, and w represent displacement solutions for N = 4, 3, 2, and 1.  These errors are shown

graphically in Fig. A-1 for clamped/sliding simple supports and Fig. A-2 for clamped/fixed simple

supports.

Note that Fig. A-1(f), representing the thermal loading of the [±45/02]s laminate with clamped/

sliding simple supports, has a maximum of N = 5 terms.  Recall from Chapter 3 that N = 5 does

not represent a converged solution for this case, according to comparison with the STAGS finite

element solution.

By examining Figs. A-1 and A-2, it can be seen that  for mechanical loading only, errors are very

small for N = 3, while for thermal loading the errors in the displacements are still substantial at N

= 4.   This can be attributed to the difficulty in matching u-displacement that is encountered in the

thermal loading solution.  For the mechanical loading solution, u-displacement is dominated by

, representing the overall inplane deformation of a panel of length a due to an end dis-

placement ∆u.  This provides a very good approximation even for N = 1.  

Comparing Fig. A-1 for clamped/sliding simple supports with Fig. A-2 for clamped/fixed simple

supports, the convergence of the v-displacement is generally seen to be much faster when v is

fixed along the straight edges, as in Fig. A-2.  An exception to this is the thermal loading of the

[±45/02]s laminate with clamped/fixed simple supports, Fig. A-2(f), which cannot be modeled

with any accuracy using fewer than N = 3 terms. 

error
uN 5= u–( )2∑

uN 5=( )2∑
-------------------------------------=u

error
vN 5= v–( )2∑

vN 5=( )2∑
-------------------------------------=v

error
wN 5= w–( )2∑

wN 5=( )2∑
---------------------------------------=w

x a⁄( )∆u
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Figure A-2 Convergence of Rayleigh-Ritz solution, clamped/fixed simple supports
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Appendix B - Measured Imperfections

Specimens were installed in the curved panel compression test fixture for measurement of surface

imperfections.  The surface imperfections of the specimens were measured every 0.125 in. along

the axial and circumferential directions, with measurements taken on both the inside radius and

outside radius surfaces of the panels.  Subtracting the inside surface measurements from the out-

side surface measurements yielded a thickness measurement.  The average thickness for each

specimen was used in the STAGS analysis.  These average measured thicknesses are given in

Table B-1.  The corner displacement listed in Table B-1 is a measure of the initial warpage

observed in the panels at room temperature, before they were installed in the curved panel com-

pression test fixture.  When three corners of a panel were held against a flat surface, the corner dis-

placement was measured as the maximum deflection of the other corner of the panel, at x = a and

Table B-1 Panel designation and measured panel geometry

Panel Number Test Number
Average 

Measured 
Thickness, in.

Corner 
Displacement, 

in.

[±45/0/90]s 1 Q1 and Q4 0.0431 0.192

2 Q2 0.0430 0.106

3 Q3 0.0431 0.108

[±45/902]s 4 N1 0.0428 0.102

5 N2 0.0428 0.072

6 N3 0.0432 0.098

7 N4 0.0429 0.039

[±45/02]s 8 Z1 0.0429 0.085

9 Z3 0.0425 0.096

10 Z2 and Z4 0.0428 0.115
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θ = 0.  Proper installation of the panels in the compression test fixture required the four corners of

the panels to be planar, so a warpage measurement was not intentionally included in the surface

imperfection measurements.

Imperfections were incorporated into STAGS by representing the measured imperfections as a

double Fourier series.  At each measurement point, an average of the inside and outside imperfec-

tions was used to estimate the imperfection at the midsurface.  The Fourier series representation of

the midsurface imperfection was calculated using a trapezoid rule for numerical integration.  The

Fourier series was in the form

, (B.1)

where  is the origin of the imperfection data.  Imperfections beyond the region of mea-

surement, including the portions of the specimens inside of the end grips and beyond the knife

edge supports, were assumed to be the same as the nearest measured point. 

Since the measured imperfection data included surface roughness due to a porous release cloth in

the manufacturing process, a limited number of terms were included in the Fourier series to filter

out the unwanted surface effects.  Due to the relatively large size of the elements, approximately

0.45 in. square, compared to the 0.125 in. grid of measurement points, too much accuracy in the

Fourier representation could result in a choppy or discontinuous finite element representation.  A

series with  and  was found to give satisfactory results, based on an error

calculation given by

(B.2)

where the summation is taken over the total number of measurement points.  The error for

 and  was sufficiently small for all of the panels, and showed little improve-

ment when additional terms were added to the Fourier approximation.  

The measured imperfections and the Fourier approximation as incorporated into STAGS are

shown in Figs. B-1 through B-12.  The radial imperfection is normalized by the layer thickness, t,

where t is one-eighth of the total panel thickness.
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Figure B-1 Geometric imperfections for panel number 1, tests Q1 and Q4, [±45/0/90]s 
laminate

(a) Measured imperfections (b) Approximated imperfections
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(a) Measured imperfections (b) Approximated imperfections
Figure B-2 Geometric imperfections for panel number 2, test Q2, [±45/0/90]s laminate
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Figure B-3 Geometric imperfections for panel number 3, test Q3, [±45/0/90]s laminate
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Figure B-4 Geometric imperfections for panel number 4, test N1, [±45/902]s laminate

(a) Measured imperfections (b) Approximated imperfections
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Figure B-5 Geometric imperfections for panel number 5, test N2, [±45/902]s laminate
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Figure B-6 Geometric imperfections for panel number 6, test N3, [±45/902]s laminate
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Figure B-7 Geometric imperfections for panel number 7, test N4, [±45/902]s laminate
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Figure B-8 Geometric imperfections for panel number 8, test Z1, [±45/02]s laminate
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Figure B-9 Geometric imperfections for panel number 9, test Z3, [±45/02]s laminate
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Figure B-10 Geometric imperfections for panel number 10, tests Z2 and Z4, [±45/02]s 

laminate
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Appendix C - Panel Cure Effects

In an effort to better understand the apparent change in material properties that occurred at a tem-

perature of 330°F, a thermal analysis of the 5260 BMI resin system was performed.  Using an

edge scrap from one of the original 22 in. by 22 in. panels, a differential scanning calorimetry

(DSC) test was conducted, with the results shown in Fig. C-1.  A DSC test measures the amount of

energy required to maintain a reference sample and the test sample at the same temperature during

heating, as explained in ref. [C1].  The increase in the energy that occurred near 318°F, according

to the DSC results shown in Fig. C-1, indicates that an exothermic chemical reaction began at this

temperature.  This behavior was unexpected, and indicates that the resin system in the panel scrap

was not completely cured.  

Further investigation of the actual curing cycle used in the manufacture of these panels uncovered

an error.  The recommended cure cycle of the 5260 resin system is shown in Fig. C-2(a) as

obtained from ref. [C2].  The actual cure cycle used to manufacture the panels used in this study is
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shown in Fig. C-2(b).  The panels were apparently never postcured, resulting in incomplete curing

of the resin.  

It is noted that material changes in the panel scrap began at approximately 318°F, as indicated in

Fig. C-1, compared to changes at 330°F that were seen in the panels during thermal testing.  This

small discrepancy is likely the result of a partial postcure of the panels which occurred during

instrumentation, but did not occur for the panel scrap.  Namely, elevated temperature strain gages,

Micromeasurements, Inc. type WK-00, were applied to the panels undergoing thermal testing.

The gage adhesive was cured for 2 hours at a temperature of 250°F.  Since the gages were put on

in groups of 8 to 10 gages, the cure time for each panel ranged from 8 to 10 hours at a temperature

of 250°F.  After all of the gages were mounted, each panel was postcured for 1 hour at 375°F.  The

combined gage adhesive thermal curing, particularly the 1 hour postcure at 375°F, likely provided

a partial postcure of the 5260 resin system of the panel that was not present in the panel scrap.

To determine definitively whether or not the panels were fully cured, one last test was conducted.

A second scrap of the original panel was postcured at 420°F for 5 hours, and a DSC test was per-

formed for comparison to the previous DSC results.  The results of this test are shown in Fig. C-3,

where the curve labeled “Before postcure” represents the first scrap, and the curve labeled “After

postcure” represents the second scrap which has been postcured.  The presence of a glass transi-

tion temperature, Tg, and the lack of an exothermic reaction in the second scrap, indicates that the

first scrap was indeed not fully cured.  It is therefore concluded that the apparent material property
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changes occurring near 330°F in the panels used for thermal structural testing, which had a ther-

mal history closely matching that of the first scrap, can be attributed to an incomplete cure cycle.

Therefore, results from thermal structural tests at temperatures above approximately 318°F are

specific to these particular panels with their incomplete cure cycles. 
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Appendix D - Measured Temperature Gradients

Temperature gradients within the test specimens were measured using eighteen type K thermo-

couples distributed evenly on the inside and outside radius surfaces of the panels, as shown in Fig.

D-1.  Thermocouples were located approximately 1/2 inch from the edges, and at the center of the

panel.  Measurements were collected once per second for the duration of the test, including the

two hour heat-up cycle to bring the panels slowly to 400°F.   

For incorporation of the thermal gradients into the numerical analysis using the STAGS finite ele-

ment package, one set of measurements was used, representing temperatures at one instant in

time.  The set of measurements was chosen at an average temperature of approximately 220°F.

This average temperature was chosen because it was reached by all elevated temperature tests and

because it allowed time for a steady temperature gradient to be established in the panels.   The

time vs. temperature relations for the hottest and coldest points on the panels can be seen in Figs.

D-2 through D-10.  The locations of the hot point and cold point are shown in Fig. D-1.

The finite element representation  required a continuous thermal gradient over the surface of the

panel, so that a different temperature could be considered at each nodal locations.  For both the
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inside and outside radius surfaces, and second order polynomial approximation was fit through the

data having the form

, (D.1)

where the constants C1-C9 were determined from the nine temperature readings on each surface.

The change in temperature, ∆T, represents the difference between the measured temperature and

the initial room temperature.  Through-thickness thermal gradients were assumed to be linear.

The approximate temperature distributions for each panel are shown in Figs. D-2 through D-10, as

obtained from Eq. (D.1).  The gradients remained relatively steady throughout the test, and are

likely due to partially obstructed air flow and thermal shading within the insulated box.  Contribu-

tors to the obstruction and shading include the knife edge support fixtures, the instrumentation

wires, and the internal LVDT’s.   
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Figure D-4 Temperature distribution for test Q4, [±45/0/90]s laminate
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Figure D-5 Temperature distribution for test N2, [±45/902]s laminate
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Figure D-6 Temperature distribution for test N3, [±45/902]s laminate
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Figure D-7 Temperature distribution for test N4, [±45/902]s laminate
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Figure D-8 Temperature distribution for test Z2, [±45/02]s laminate
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Figure D-9 Temperature distribution for test Z3, [±45/02]s laminate
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Figure D-10 Temperature distribution for test Z4, [±45/02]s laminate
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