
Chapter 4

Displacement Dependent Pressure

In the finite element analysis, there are several types of loads which can be introduced:

concentrated loads, body forces, surface forces etc. In the case of surfaces force acting

normal to the surface during the deformation, these forces are called pressures. Pressures are

follower forces and can be conservative or noncoservative. A conservative load is a load which

is independent of the deformation of the body and therefore can be derived from a potential

function. The nonconservative loads may not depend just on the local deformation on the

body but of the deformation of the entire body, and, in general, there is no potential function

from which these forces can be derived [21][57]. A clasical example of the nonconservative

forces are the aerodynamic forces which depend on the fluid flow and the deformation of the

entire structure. In this section we present another situation in which an applied pressure

depends on the displacements of the entire body.

4.1 System classification

According to Ziegler [57] and Leipholz [37], a nonconservative load is a load which depends on

spatial coordinate, displacements, displacement derivatives, velocities, and time and which

57
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Figure 4.1: Variation of eigenvalues: a) divergence-type; b) flutter-type

can not be derived from a potential. By their nature the nonconservative forces introduce

and(or) extract energy from a system (nonconservative systems) [57]. The effect of the

extraction of energy from a system is not so dramatic as the effect of the introduction

of energy in the system. The last case leads to a stability problem. Therefore many of the

studies regarding nonconservative loads have been dedicated to the effect of this type of loads

on the stability boundaries of a system [9][15][37][57]. Regarding the form of instability in

general we distingush two forms

• Static instability. This type of instability, sometimes called buckling or divergence,

occurs at zero eigenvalues as shown in Figure 4.1a. This point corresponds also to

the critical point of Figure 3.2. At this point the tangent stiffness matrix becomes

semi-positive definite.

• Dynamic instability. This type of instability is characterized by oscillations with in-

creasing amplitudes: flutter type. In this case the system loses stability when two

consecutive eigenvalues coalesce as shown in Figure 4.1b.
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Based on these two types of instability Argyris [9] and Leipholz [37] give the following

clasification.

1. Purely conservative systems (or conservative systems of the first kind). The forces act-

ing on such systems are of conservative-type, i.e., they can be derived from a potential.

These systems are conservative in the classical sense: i.e., with respect to energy, since

their energy is conserved. Loss of instability occurs only in the form of static instability.

2. Divergence type nonconservative systems or pseudo-nonconservative systems or con-

servative systems of the second kind. The external forces acting on the system are of

nonconservative-type. These systems are nonconservative in the classical sense, i.e.,

with respect to energy, since their energy is not conserved. However, depending on

the boundary conditions, a specific functional other than the energy is conserved for

such systems. These systems belong to a class of nonconservative systems, which do

behave mechanically like a conservative one. Therefore they still exhibit a static type

of instability.

3. Flutter-type nonconservative systems or purely nonconservative systems. Systems sub-

jected to a nonconservative type of load exhibiting an unsymmetric tangent stiffness

matrix. Loss of instability can only take place in the form of dynamic instability

(flutter).

4. Hybrid systems. This class of systems is characterized by the presence of nonconservative-

type of forces, but the systems can display either a divergence type of instability

(conservative type of the second kind) or flutter instability (purely nonconservative

systems). If the smallest critical load is of divergence type, the system is called pseudo-

divergence-type system, and if the minimum load corresponds to flutter, then the system

is called pseudo-flutter-type system.

A similar clasification of the systems based on the type of loads and reactions in a system

was given by Ziegler [57]. According to Ziegler, if the loads are gyroscopic (the mechanical



60

work done by these loads is allways zero) or noncirculatory (the loads can be derived from

a potential function) and the reactions are nonworking (the mechanical work done by these

reactions is zero), then the system is conservative. On the other hand, if a system contains at

least one noncoservative force such as a dissipative reaction or a circulatory or instationary

load, then the system is called nonconservative [57].

The introduction of nonconservative forces in the finite element analysis has been studied

by Argyris and Symeonidis in [9]-[11] for the general case. The particular case of a load

pressure depending on the displacements, was analyzed by Schweizerhof and Ramm [46] and

Hibbit [29]. Also in the same paper they present the case of body forces which depend on

displacements (centrifugal forces). A general conclusion of those analyses is that the presence

of nonconservative-type loads leads to two types of correction

• A load correction.

• A tangent stiffness matrix correction. The stiffness matrix correction is in general (with

some exceptions) a nonsymetric matrix and leads to a nonsymmetric tangent stiffness

matrix.

We further refer to these two corrections as load/stiffness corrections. Schweizerhof and

Ramm introduce a distinction between space attached loads and body attached loads. The

space attached loads are the loads which depend on the coordinates in the deformed config-

uration, while the body attached loads depend only on the coordinates of the initial config-

uration. Their analysis shows that the body attached loads always lead to a nonsymmetric

correction of the tangent stiffness matrix. The space attached loads under some particular

boundary conditions lead to a symmetric correction of the tangent stiffness matrix. In or-

der to derive the load/stiffness correction due to the presence of nonconservative loads for

the finite element analysis, we will use the principle of virtual work, which remains valid

for nonconservative systems [21]. We restrict the derivation to the displacement dependent

pressures since our problem requires only this type of load. In the next section we follow
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the derivation presented by Schweizerhof and Ramm [46], and we introduce a new correction

which characterizes our problem.

4.2 Load stiffness correction

Assuming that on the surface Σ of a body there is an applied pressure which depends on the

displacements, the supplementary term in the principle of virtual work (3.8) is

DχL
c
· υ =

∫

t+∆tS

t+∆ttiυi d
t+∆tΣ, ui =

t+∆tUi −
tUi, i = 1, 2, 3. (4.1)

The tractions t+∆tti can be written as

t+∆tti =
t+∆tp t+∆tni,

where t+∆tp is the value of the applied pressure at the time t+∆t and t+∆tni represent the

normal to the surface t+∆tΣ. Referring to Figure 4.2

t+∆tx(ξ, η) = tx(ξ, η) + u(ξ, η), t+∆tni d
t+∆tS = εijk

∂ t+∆txj

∂ξ

∂ t+∆txk

∂η
dξdη, (4.2)

where εijk is the third order antisymetric permutation tensor. Supposing that the surface Σ

is discretized in elements then (4.1) is written

DχL
c
· υ =

∑

e

DχL
c

e · υ.

Introducing (4.2) in (4.1) and considering only an element e, we obtain

DχL
c

e · υ = εijk

∫

ξ

∫

η

t+∆tp
∂ t+∆txj

∂ξ

∂ t+∆txk

∂η
υi dξdη. (4.3)

DχL
c

e · υ =
∫

ξ

∫

η

t+∆tp

(

∂ txj

∂ξ
+
∂uj

∂ξ

)(

∂ txk

∂ξ
+
∂uk

∂ξ

)

υi dξdη.

DχL
c

e · υ = εijk

∫

ξ

∫

η

t+∆tp
∂ txj

∂ξ

∂ txk

∂η
υi dξ dη + εijk

∫

ξ

∫

η

t+∆tp
∂uj

∂ξ

∂ txk

∂η
υi dξdη+
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Figure 4.2: An element with a pressure load.

+εijk

∫

ξ

∫

η

t+∆tp
∂ txj

∂ξ

∂uk

∂η
υi dξ dη + εijk

∫

ξ

∫

η

t+∆tp
∂uj

∂ξ

∂uk

∂η
υi dξdη. (4.4)

The last term in the equation (4.4) can be neglected because it represents a superior term

of order O(ε). We obtain

DχL
c

e · υ =
∫

ξ

∫

η

t+∆tp

(

∂ txj

∂ξ
+
∂uj

∂ξ

)(

∂ txk

∂ξ
+
∂uk

∂ξ

)

υi dξdη.

DχL
c

e · υ = εijk

∫

ξ

∫

η

t+∆tp
∂ txj

∂ξ

∂ txk

∂η
υi dξ dη + εijk

∫

ξ

∫

η

t+∆tp
∂uj

∂ξ

∂ txk

∂η
υi dξdη+

+εijk

∫

ξ

∫

η

t+∆tp
∂ txj

∂ξ

∂uk

∂η
υi dξ dη.

At this point the pressure t+∆tp can be divided into a space attached load and a body at-

tached load. For our problem at t = 0, there is no distribution of pressure depending on
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the displacements. This pressure appears only when the diaphragm starts to move and,

consequently, there is a change in the volume of gas V . Therefore, in our case the pressure

is a space attached load. Expanding t+∆tp in a Taylor series

t+∆tp = tp+
d tp

dV
∆V + . . . , ∆V = t+∆tV − tV, (4.5)

where ∆V represents the change in the gas volume enclosed by the diaphragm as shown in

Figure 2.1. Introducing (4.5) in (4.3) we obtain

DχL
c

e · υ = εijk

∫

ξ

∫

η

tp
∂ txj

∂ξ

∂ txk

∂η
υi dξ dη + εijk

∫

ξ

∫

η

tp

(

∂uj

∂ξ

∂ txk

∂η
+
∂ txj

∂ξ

∂uk

∂η

)

υi dξdη+

+
d tp

dV
∆V εijk

∫

ξ

∫

η

∂ txj

∂ξ

∂ txk

∂η
υi dξ dη+

+
d tp

dV
∆V εijk

∫

ξ

∫

η

(

∂uj

∂ξ

∂ txk

∂η
+
∂ txj

∂ξ

∂uk

∂η

)

υi dξdη. (4.6)

The first term in the equation (4.6) represents the load correction and can be written

εijk

∫

ξ

∫

η

tp
∂ txj

∂ξ

∂ txk

∂η
υi dξ dη =

∫

Σe

pυTn dS

The second term can be integrated by parts as follows

εijk

∫

ξ

∫

η

tp

(

∂uj

∂ξ

∂ txk

∂η
+
∂ txj

∂ξ

∂uk

∂η

)

υi dξdη =

=
1

2
εijk

∫

ξ

∫

η

tp

(

∂uj

∂ξ
+
∂uj

∂ξ

)

∂ txk

∂η
υi dξdη +

1

2
εijk

∫

ξ

∫

η

tp
∂ txj

∂ξ

(

∂uk

∂η
+
∂uk

∂η

)

υi dξdη =

=
1

2
εijk

∫

ξ

∫

η

tp
∂ txk

∂η

(

υi
∂uj

∂ξ
+ ui

∂υj
∂ξ

)

dξdη +
1

2
εijk

∫

bη

tp
∂ txk

∂η
ujυi dη+

+
1

2
εijk

∫

ξ

∫

η

tp
∂ txj

∂ξ

(

υi
∂uk

∂η
+ ui

∂υk
∂η

)

dξdη +
1

2
εijk

∫

bξ

tp
∂ txk

∂η
ujυi dξ =
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=
∫

Σe

υT
K

Iu dΣ +
∫

Γe

υT (KIII +K
IV )u dΓ,

where K
I, KIII, KIV are matrix operators defined below

K
I =

1

2
tp (Dξ −Dη) ,

where

Dξ =





























0 x3,η ( ξ∂ − ∂ξ) x2,η (∂ξ − ξ∂)

x3,η (∂ξ − ξ∂) 0 x1,η ( ξ∂ − ∂ξ)

x2,η ( ξ∂ − ∂ξ) x1,η (∂ξ − ξ∂) 0





























,

Dη =





























0 x3,ξ ( η∂ − ∂η) x2,ξ (∂η − η∂)

x3,ξ (∂η − η∂) 0 x1,ξ ( η∂ − ∂η)

x2,ξ ( η∂ − ∂ξ) x1,η (∂η − η∂) 0





























.

Similarly

D
III =

1

2
tp















0 − tx3,η
tx2,η

tx3,η 0 − tx1,η

− tx2,η
tx1,η 0















,

D
IV =

1

2
tp















0 tx3,ξ − tx2,ξ

− tx3,ξ 0 tx1,ξ

tx2,ξ − tx1,ξ 0















.

The operator K
I is a symmetric operator because an element on the position ij is the same

as the element on the position ji. The operators K
III and K

IV are instead skew-symmetric
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operators [46]. The integral expression in the third term of (4.6) can be written

εijk

∫

ξ

∫

η

∂ txj

∂ξ

∂ txk

∂η
υi dξ dη =

∫

Σe

υTn dΣ.

The variation of the gas volume ∆V can be written as

∆V =
Ne
∑

j=1

∆Vj, (4.7)

where ∆Vj represents the contribution to the gas volume change due to an element j. To

calculate ∆Vj we use the following formula. Suppose that V is the volume enclosed by a

surface S. Then

V =
∫

V
dV =

1

3

∫

V
∇x dV =

1

3

∫

S
x · n dS. (4.8)

When an element e of the diaphragm is displaced, it yields to a change in the gas volume.

Using (4.8) the contribution of an element e to the change in the gas volume at the time t

and t+∆t is

tVe =
1

3

∫

Σe

txini dΣ =
1

3
εijk

∫

ξ

∫

η

txi

∂ txj

∂ξ

∂ txk

∂η
dξdη.

t+∆tVe =
1

3

∫

t+∆tSe

t+∆txi
t+∆tni d

t+∆tS =
1

3
εijk

∫

ξ

∫

η

t+∆txi

∂ t+∆txj

∂ξ

∂ t+∆txk

∂η
dξdη =

=
1

3
εijk

∫

ξ

∫

η
( txi + ui)

(

∂ txj

∂ξ
+
∂uj

∂ξ

)(

∂ txk

∂η

∂uk

∂η

)

dξdη =

=
1

3
εijk

∫

ξ

∫

η

txi

∂ txj

∂ξ

∂ txk

∂η
dξ dη +

1

3
εijk

∫

ξ

∫

η

txi

∂uj

∂ξ

∂ txk

∂η
dξdη+

+
1

3
εijk

∫

ξ

∫

η

txi

∂ txj

∂ξ

∂uk

∂η
dξ dη +

1

3
εijk

∫

ξ

∫

η

txi

∂uj

∂ξ

∂uk

∂η
dξdη+

+
1

3
εijk

∫

ξ

∫

η
ui

∂ txj

∂ξ

∂ txk

∂η
dξ dη +

1

3
εijk

∫

ξ

∫

η
ui

∂uj

∂ξ

∂ txk

∂η
dξdη+
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+
1

3
εijk

∫

ξ

∫

η
ui

∂ txj

∂ξ

∂uk

∂η
dξ dη +

1

3
εijk

∫

ξ

∫

η
ui

∂uj

∂ξ

∂uk

∂η
dξdη.

t+∆tVe =
tVe +

1

3
εijk

∫

ξ

∫

η

txi

∂uj

∂ξ

∂ txk

∂η
dξdη+

+
1

3
εijk

∫

ξ

∫

η

txi

∂ txj

∂ξ

∂uk

∂η
dξdη +

1

3
εijk

∫

ξ

∫

η
ui

∂ txj

∂ξ

∂ txk

∂η
dξ dη.

εijk

∫

ξ

∫

η

txi

∂uj

∂ξ

∂ txk

∂η
dξdη = εijk

∫

bξ

txiuj

∂ txk

∂η
dη − εijk

∫

ξ

∫

η
uj

∂ txi

∂ξ

∂ txk

∂η
dξ dη =

= εijk

∫

ξ

∫

η
ui

∂ txj

∂ξ

∂ txk

∂η
dξ dη.

εijk

∫

ξ

∫

η

txi

∂ txj

∂ξ

∂uk

∂η
dξdη = εijk

∫

bξ

txiuk

∂ txj

∂ξ
dξ − εijk

∫

ξ

∫

η
uk

∂ txi

∂ξ

∂ txj

∂η
dξ dη =

= εijk

∫

ξ

∫

η
ui

∂ txj

∂ξ

∂ txk

∂η
dξ dη.

It follows that

∆Ve = εijk

∫

ξ

∫

η
ui

∂ txj

∂ξ

∂ txk

∂η
dξ dη.

∆Ve =
∫

ξ

∫

η
u ·

(

∂x

∂ξ
×
∂x

∂η

)

dξ dη =
∫

Σe

nTu dΣ. (4.9)

Therefore the third expression in (4.6) can be written

d tp

dV
∆V εijk

∫

ξ

∫

η

∂ txj

∂ξ

∂ txk

∂η
υi dξ dη =
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=
dp

dV

(
∫

Σe

υTn dΣ
)

(

∑

q

∫

Σq

nTu dΣ

)

=
dp

dV

∑

q

υT

eK
II

equq, (4.10)

where K
II

eq is the following integral operator defined as

υeK
II

equ =
(
∫

Σe

υTn dΣ
)

(

∫

Σq

nTu dΣ

)

.

It can be seen that K
II

eq = K
II

qe and therefore K
II

eq is a symmetric operator. The fourth term

in (4.6) contains higher order terms in u and therefore it will be neglected. Using (4.2) and

(4.10), equation (4.6) can be written in the following form

DχL
c

e ·υ =
∫

Σe

pυTn dΣ+
∫

Σe

υT
K

Iu dΣ+
∫

Γe

υT (KIII +K
IV )u dΓ+

∑

q

υT

eK
II

equq. (4.11)

Equation (4.11) defines the load-stiffness correction due to the presence of a pressure depend-

ing on the displacements. In addition to the terms proposed by Schweizerhof and Ramm

[46], the expression (4.11) includes also (the last term) a new stiffness correction, derived for

our problem.

4.3 Finite element implementation

Using (3.34), the relation (4.11) can be written

DχL
c

e · υ = υ
T

eF
c
e + υ

T

eK
I

eue + υ
T

e (K
III

e +KIV

e )ue +
∑

q

υT

eK
II

equq, (4.12)

where

Fc
e =

∫

Σe

Φp dΣ, (4.13)

KIII

e =
∫

Σe

ΦK
IIIΦT dΣ, KIV

e =
∫

Σe

ΦK
IVΦT dΣ, (4.14)

KI

e =
∫

Σe

ΦK
IΦT dΣ, KII

eq = ΦK
II

eqΦ
T . (4.15)
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The correction in the load vector is introduced by equation (4.13) and the stifness correction

by equations (4.14) and (4.15). BecauseK
I,II are symmetric operators the matrices (4.15) are

symmetric matrices. Similarly, because K
III,IV

eq are anti-symmetric operators, the corespond-

ing matrices (4.14) are anti-symmetric matrices. These corrections are added to the tangent

stifness matrix and the load vector (3.41). As a consequence the tangent stifness matrix

may become non-symmetric. Based on the fact that the symmetry in the stiffness matrix is

a consequence of the conservativeness of a system Schweizerhof and Ramm categorized the

systems as

• Conservative systems. The systems for which the tangent stiffness matrix is symmetric.

• Nonconservative systems. The systems for which the tangent stiffness matrix is non-

symmetric.

From equation (4.11) the symmetry in the tangent stiffness matrix is broken only if the

integrals over the boundary Γe are not zero. The symmetry is still kept if one of the following

situations occur

• Load magnitude is zero, that is

p|Γe = 0, for all Γe.

• Displacements are prescribed on Γ = ∪Γe (surface completely supported).

u = u ⇒ υ = 0.

• The surface S is sufficiently supported and properly oriented. This condition can be

ilustrated by writing the integrals in (4.11) on all Γe in the form

DχL
c

III,IV · υ =
1

2

∫

Γ
p (~u× ~υ) · τ dΓ = 0, (4.16)
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where τ is that tangent vector to the boundary Γ. The condition (4.16) imposes that the

body be constrained normal to the deformed surface such that the work done by the pres-

sure forces is zero. For our problem, the displacements prescribed on the boundary Γ are

zero and therefore the boundary terms vanish and the corrected tangent matrix remains

symmetric. According to Schweizerhof’s classification, the system is conservative. Our ob-

servations in section 1.3 indicate that the system is nonconservative. To clarify this apparent

contradiction, let us write the balance of energy in the incremental form

uTF− uTFc = uTKT u+ u
T (KI +KII) u, (4.17)

where F defines the applied load vector, Fc the correction load vector, and the matrices

KT , K
I,II are the tangent stiffness matrix and the correction stiffness matrix for the entire

body respectively. From equation (4.17) it can be seen that from the energy introduced into

the system (diaphragm) only a part is found in the deformation energy of the diaphragm.

The remaining part affects the stiffness of the diaphragm. Therefore we can not say that

the energy is conserved in the clasical sense. That is to say: the work done by the external

forces is equal to the deformation energy. However if we consider a fictious system having

the stiffness K → K +KI+II, then we can say that the new system is conservative. Using

Leipholz/Argyris clasification, the sytem is pseudo-nonconservative or conservative of the

second kind. It appears that the classification given by Schweirzhoff is a mathematical

classification rather than a physical one. The classification given by Argyris and Leipholz

seems to be closer to the physics of the problem. Introducing the boundary conditions (2.42)

the equation (4.12) becomes

DχL
c

e · υ = υ
T

eF
c
e + υ

T

eK
Iue +

∑

q

υT

eK
II

equq, (4.18)

and this represents the final form for our problem. The matrix KI

e for an element e can be

written in the form

KI

e =
∫

Σe

ΦK
IΦT dΣ =

1

2

∫

Σe

tpΦ (Dξ −Dη)Φ
T dΣ.
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For the 8-nodes brick element the surface Σe has 4 nodes and the structure of the matrix K
I

e

is the following

KI

e =





















K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44





















, (4.19)

where Kij are 3× 3 matrices defined as

Kij =
1

2

∫ +1

−1

∫ +1

−1

tpφi

(

Dξ −Dη

)

φjJ dξdη =















0 k12 k13

k21 0 k23

k31 k32 0















, (4.20)

and

k12 =
1

2

∫ +1

−1

∫ +1

−1

tp [x3,η (φi,ξφj − φiφj,ξ)− x3,ξ (φi,ηφj − φiφj,η)] J dξdη,

k13 =
1

2

∫ +1

−1

∫ +1

−1

tp [x2,η (φiφj,ξ − φi,ξφj)− x2,ξ (φiφj,η − φi,ηφj)] J dξdη,

k21 =
1

2

∫ +1

−1

∫ +1

−1

tp [x3,η (φiφj,ξ − φi,ξφj)− x3,ξ (φiφj,η − φi,ηφj)] J dξdη,

k23 =
1

2

∫ +1

−1

∫ +1

−1

tp [x1,η (φi,ξφj − φiφj,ξ)− x1,ξ (φi,ηφj − φiφj,η)] J dξdη,

k31 =
1

2

∫ +1

−1

∫ +1

−1

tp [x2,η (φi,ξφj − φiφj,ξ)− x2,ξ (φi,ηφj − φiφj,η)] J dξdη,

k32 =
1

2

∫ +1

−1

∫ +1

−1

tp [x1,η (φiφj,ξ − φi,ξφj)− x1,ξ (φiφj,η − φi,ηφj)] J dξdη.

The jacobian J is defined by the equation (3.55). The matrix KII

eq is written

KII

eq =
dp

dV

(
∫

Σe

Φn dS
)

(

∫

Σq

Φn dS

)T

,
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and has the following structure

KII

eq =
dp

dV





















b1
e

(

b1
q

)

T

b1
e

(

b2
q

)

T

b1
e

(

b3
q

)

T

b1
e

(

b4
q

)

T

b2
e

(

b1
q

)

T

b2
e

(

b2
q

)

T

b2
e

(

b3
q

)

T

b2
e

(

b4
q

)

T

b3
e

(

b1
q

)

T

b3
e

(

b2
q

)

T

b3
e

(

b3
q

)

T

b3
e

(

b4
q

)

T

b4
e

(

b1
q

)

T

b4
e

(

b2
q

)

T

b4
e

(

b3
q

)

T

b4
e

(

b4
q

)

T





















,

where the indices e and q refer to the element e and respectively element q. A vector bi

e
is

defined by

bi

e
=
∫ +1

−1

∫ +1

−1
φineJ dξdη. (4.21)

It can be seen that the matrix
(

KII

eq

)

T

is a symmetric matrix. Also the product bi
e

(

bj
q

)

T

defines a 3× 3 symmetric matrix. The vector bi

e
is a vector of 3 elements defined as follows

bi

e
=
∫ +1

−1

∫ +1

−1
φineJ dξdη =



























b1

b2

b3



























,

and

b1 =
∫ +1

−1

∫ +1

−1
φin1J dξdη,

b2 =
∫ +1

−1

∫ +1

−1
φin2J dξdη,

b3 =
∫ +1

−1

∫ +1

−1
φin3J dξdη.

The matrices KI

e and K
II

e are added to the element tangent stiffness matrix Ke
T (3.41).

Analysing these correction matrices at the element level it can be seen that KI

e affects only

the element stiffness matrix Ke
T , while K

II

e affects all elements. This leads to a fully popu-

lated stiffness matrix. Working with a fully populated stiffness matrix in the finite element

analysis is time consuming and may lead to an inefficient use of the method. Whenever such

corrections of the stiffness matrix occur, we have to put in the balance the gain in the accu-

racy of the results versus the time and storage necessary for such matrices. Another aspect
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that needs to be considered is related to the changes in the basic numerical procedures, for

example for solving a linear system or an eigenvalue problem.

Reffering to our problem we may want to introduce the stiffness corrections, but at the same

time we would like to keep the same structure of the stiffness matrix, no modifications of the

basic numerical algorithms and the same storage. This can be obtained if in the sum (4.18)

we keep only the term KII

ee. That is to say that the variation in the volume ∆V in (4.7)

can be approximated at each element by ∆V ≈ ∆Ve. In other words, the applied pressure

will depend not of the displacements of the entire body but just of the local displacements.

Hence equation (4.18) is modified

DχL
c

e · υ = υ
T

eF
c
e + υ

T

eK
Iue + υ

T

eK
II

eeue, (4.22)

where

KII

ee = K
II

e =
dp

dV

(
∫

Σe

Φn dΣ
)(

∫

Σe

Φn dΣ
)T

. (4.23)

We will use (4.23) in the numerical results in Chapter 6. The stiffness correction introduced

by KII does not have to be confused with a stiffness correction in the problems involving

an elastic foundation. In the elastic foundation case, if we admit that elastic foundation

reaction is kfun where kf is the elastic foundation stiffness matrix and un is the vector of

the normal displacements then the element stiffness correction is

Kf =
∫

Σe

ΦkΦTnT dΣ. (4.24)

Let suppose that k is such that has only diagonal terms equal with dp/dV and n = 1. The

equations (4.23) and (4.24) become

KII

e =
dp

dV

(
∫

Σe

Φ dΣ
)(

∫

Σe

Φ dΣ
)T

, Kf =
dp

dV

∫

Σe

ΦΦT dΣ. (4.25)

Equation (4.25) shows clear the difference between (4.23) and (4.24). In one case we have a

product of integrals and in the other case an integral of a product.


