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The thrust of the present work is to analytically and experimentally study the response of a 
simply supported beam driven by multiple piezoelectric actuators in an effort to understand 
distributed excitation of the structure. The results indicate that the theoretical model provides 
the basis for a viable means of determining appropriate locations for piezoelectric actuators for 
exciting desired modal distributions in the structural response. 
PACS numbers: 43.40.Cw, 43.88.Fx 
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Wp• width of piezoelectric element 
x,y,z rectangular coordinates 
Xlk,X2k k th actuator boundaries 
Greek 
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•' time 
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y coherence 
•bk phase of voltage 
• ( * ) delta function 
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Subscripts 
b beam 

i interface between actuator and beam 

inin noise on output 
n modal indice 

nn noise on input 
pe piezoelectric element 
uu true input 
vv true output 
x x direction 

INTRODUCTION 

In recent years, much research has been dedicated to 
application of piezoelectric actuators and sensors to the ac- 
tive control of structural vibration. Past studies have been 
devoted to application of piezoelectric devices in structural 
control and development of the theoretical response of the 
structure due to excitation of a piezoelectric actuator bonded 
to the structure surface. 1-3 The work presented here is an 
extension of work previously done by Crawley and de Luis 
with emphasis on understanding and characterizing the ex- 
citation of the structure with a distribution of multiple, inde- 
pendently driven actuators. In work previously conducted 

by Crawley and de Luis, an expression for the static and 
dynamic response of a cantilevered beam configured with 
two piezoelectric actuators was developed and experiments 
were conducted to evaluate this model. l 

In this study, a theoretical model of a simply supported 
beam configured with multiple piezoelectric actuators is de- 
veloped, and the experimental results are compared to the 
theoretical results at a variety of test frequencies both on and 
off resonance. The range of linearity for structural excitation 
was studied as well to determine the appropriate range for 
comparing experimental and theoretical results. To accom- 
plish these goals, a simply supported beam was built and a 
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pair of piezoelectric actuators were bonded to the surface of 
the beam. The beam was then driven at various test frequen- 
cies with different combinations of actuator forcing func- 
tions, and the modal response was measured. 

Before attempting to study the aforementioned goals, a 
modal analysis of the beam was performed. Results from this 
experimental study can be compared to theoretical results 
obtained from an analysis of the structure based on assump- 
tions of Euler beam theory. A complete outline of the theory 
behind this work is presented in Sec. I. A description of the 
hardware necessary to conduct the experiment follows with 
emphasis on fabrication of the beam and bonding of the actu- 
ator to the surface. After developing the background and 
necessary tools for analysis, the results are presented from 
the modal analysis, linearity test, and study of distributed 
excitation. 

I. THEORY 

A. Beam and actuator model 

Since the structure tested was thin with respect to its 
length, Euler beam theory was used to model the simply 
supported beam. This theory assumes that the rotary inertia 
of the beam and shear deformation is negligible. 4 The equa- 
tions for system response were modified to include structural 
damping by making the material stiffness complex. s With 
these assumptions, Hamilton's extended principle can be 
used to develop the boundary-value problem. The resulting 
equation of motion of the structure is separable, and the 
eigenvalue problem can be readily solved. 

The well-known solution for the simply supported beam 
is 

w(x,r) - • Wn sin n•rx do•. (1) 
•= 1 Lx 

Based on the expansion theorem, the system response to a 
harmonic input can be obtained in terms of the eigenvectors 
(modal response) of the system. Before developing the re- 
sponse of the beam, an approximate model of the input from 
the actuator must be developed. 

1. Analysis of actuator 

Piezoelectric elements are activated by applying a polar- 
ization voltage along their polarization direction. If an actu- 
ator is unconstrained, polarization in the z direction will re- 
sult in equally induced strains in the x and y directions of the 
actuator. The magnitude of this strain can be expressed as a 
function of the piezoelectric strain constant d3,, the applied 
voltage V, and the actuator thickness t: 

(fix)pc = 6pc = (d3,/t) V, (2) 
where 

d 3, = 180E -- 12 m/V (for G 1195 material). 

The subscripts pe and b will be used when referencing prop- 
erties of the piezoelectric material and beam, respectively. 2 

In developing the simplified theoretical model, the pie- 
zoelectric elements are assumed to be perfectly bonded to the 
structure with zero glue thickness. While a finite bonding 
layer will be encountered in practice, the negative effect of 

shear lag losses will be compensated to some extent by the 
increase in net moment loading as the shear stresses induced 
by the actuators are displaced from the neutral axis of the 
beam. In fact, previous work based on finite-element models 
of the glue layer, piezoelectric actuator, and structure indi- 
cate that a thin bonding layer results in a response identical 
to that of the case of zero glue thickness. In addition, results 
from finite-element analysis demonstrate that for thin bond- 
ing layers, material properties of the glue, such as the 
Young's modulus, have negligible effect on the structural 
response due to excitation by the piezoelectric actuator. 6 

Since the stiffness of the beam about the x axis is 9.5 

times greater than that about the y axis and the length of the 
actuator in they direction is 2.3 times smaller than that in the 
x direction, the bending of the beam about the x axis will be 
negligible in comparison to that about the y axis. As a result 
of this observation, the spatial response of the beam can be 
expressed simply as a function of the x direction. The term 
actuator will apply to a patch pair, one bonded to the top of 
the structure surface and the other bonded to the bottom of 

the structure surface at the same coordinates. Since excita- 

tion of flexural waves is desired, when extension is induced in 
the piezoelectric element on the top surface, compression is 
induced in the corresponding element on the bottom surface, 
resulting in pure bending moments about the neutral axis of 
the beam. The following analysis follows directly from a pre- 
vious analysis of a rectangular plate by Dimitriadis et al. 2 as 
well as that of Crawley and de Luis.' 

A schematic of the stress distribution is presented in Fig. 
1. "3 Since the actuators strain normal to the direction of 

polarization, a voltage applied in the z direction will induce 
interface stresses and strains in the x direction as well as in 

they direction. As a result, the schematic of Fig. 1 represents 
the assumed x-z stress distribution at any point within the 
piezoelectric-beam structure.' The equivalent bending mo- 
ments can be obtained by integrating the actuator stresses. 

The normal stress distribution can be reduced to couples 
per unit length as follows, where y is into the paper (in Fig. 
1): 

•+h 

J rrxz dy dz- mx dy. (3) --h 

The strain distribution is linear and can be represented by 

z 

Piezo 

Beam 

Piezo 

FIG. 1. Stress distribution. 
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ex =.z/rx, (4) 

where 1/r• denotes the curvature of the neutral surface par- 
allel to the x-z plane at any point on the beam. By substitut- 
ing Eq. (4) into Hooke's law and replacing the normal stress 
tr• with the couple m•, the following expression can be 
obtained: • 

m• = D( 1/rx ), (5) 

where 

D-- 2Eoh 3/3. (6) 

Solving Eq. (6) for 1/r•, 

1/r• = m•/D. (7) 

The actuator patch can be replaced by creating pure bending 
of the beam such that the bending surface of the beam is 
equal to the interface stress when the patch is activated. 

To begin, the beam and piezoelectric patch interface 
stress-strain relations are derived directly from Hooke's law: 

(%)• =E•%. (8) 
By superimposing the external beam strains at the interface 
and unconstrained piezoelectric element strains, the actu- 
ator stresses can be derived: 

(a,,,)p½ = Ep½ (e,,,--%½). (9) 
The bending stresses in the beam are linear in z and can be 
written in terms of the interface values: 

(cr•)a -- [ (cr•,)b/h ]z. (10) 
Similarly, the stresses in the piezoelectric element are 

(%,)pc = (%,,)pc -- (%,,)a (1 --z/h). (11) 
After determining the interface stress of the beam, the uni- 
formly distributed moments can be determined to produce 
the assumed linear stress distribution. However, the inter- 
face strains and beam-bending stresses must be derived in 
terms of the constituent material properties and uncon- 
strained actuator strains since Eq. (8) is a function of the 
unconstrained piezoelectric strain and actuator interface 
strains. 

Applying moment equilibrium about the neutral axis of 
the beam, 

;• fa •+' (0' x )b Z & + (a x )pe Z & = O. (12) 

Substituting Eqs. (10) and ( 11 ) into Eq. (12) and evaluat- 
ing the integral yields 

3th(2h + t) 

(a•,)0 --2(h3 + t3 ) + 3ht2 (ffx,)pe' (13) 
For convenience, a nondimensional parameter K is defined 
as follows: 

3th(2h + t) 
K= (14) 

2(h 3 + t 3) + 3ht 2' 
Equation (13) may now be substituted into Eqs. (8) and (9) 
to eliminate the interface beam strains from the expression: 

(1 --P)e,,, = -- Pepe, (15) 

where 

P = -- (gpe/E o )K. (16) 

Rearranging Eq. (14) yields the interface strain relation 

% = -- [P/( 1 -- P) ]epe. (17) 
At this point, the interface strains have been reduced to a 
function of the unconstrained piezoelectric element strains 
and the constituent material properties. As a result, the uni- 
formly distributed moments which produce the interface 

stress, (try) b, can be determined. Substituting the bending- 
curvature-stress relationship into Eq. (5) yields 

m• = •h 2(cr,,,)b. (18) 
Substituting the interface-stress-piezoelectric-strain cou- 
pling relations Eqs. (8) and (17) into Eq. (18) yields the 
distributed surface moment: 

mx = Co%e, (19) 
where 

Co = -- Eb [2P/3(1 -- P)]h 2. (20) 
The previous formulation was based on the assumption of an 
infinite beam and piezoelectric element. Since in reality both 
are finite, a justification of the earlier assumption must be 
given. For a finite actuator patch pair, the normal stress dis- 
tribution does not hold at the free edge where equilibrium 
conditions require the normal stress at the actuator bound- 
ary to be zero. However, Liang and Rogers 7 showed that the 
actuator stress field for a distributed actuator is unaffected 

by the free edge up to approximately four actuator thick- 
nesses from the boundary. As a result, if the actuator is large 
compared to its thickness, the assumed stress field depicted 
in Fig. 1 creates a case of pure bending in the beam, which is 
the fundamental premise of the formulation. Crawley and de 
Luis • have also shown that when a finite piezoelectric strip is 
perfectly bonded to a beam, the induced moments effectively 
act at the element boundaries and result in pure bending of a 
one-dimensional structure. In the following derivation, the 
response of the simply supported beam due to excitation 
with a piezoelectric actuator will be derived. 

2. Excitation of simply supported beam 

After developing the piezoelectric-actuator-induced 
stress relations, the response of a finite beam due to excita- 
tion with a bonded rectangular actuator is derived. The 
beam depicted in Fig. 2 is simply supported at the boundar- 
ies as previously noted. To maintain consistency with the 
model, the actuator consists of two piezoelectric elements 
bonded symmetrically to the beam. Activation of the piezo- 
electric actuator will induce internal moments across the 

patch, and the strains are the same in both the x and y direc- 
tions. Since the model for the beam is one dimensional, the 

strain induced in the y direction will not be considered. This 
strain serves to increase the local stiffness of the beam about 

the x axis due to the curvature induced. Since the stiffness 

about the x axis is much greater than that about the y axis, 
the curvature is small in comparison. To consider the effect 
of strain induced in the y direction, a two-dimensional model 
of the structure is required. However, the purpose of this 
study is to evaluate the one-dimensional model by compar- 
ing modal amplitudes obtained from experiments and 
theory. 
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•__ •X, Piezoceramic Element Simple Supports 

Beam thickness: 2 mm 

40 mm 

Piezoceramic dimensions: 16 mm x 38.1 mm x 0.2 mm 

FIG. 2. Simply supported beam. 

The moment in the beam can be written in terms of the 

unit-step function where x• and x2 indicate the spatial loca- 
tion of the actuator. In addition, since the actuator does not 
extend across the full width of the beam, the ratio of the 
width of the actuator to that of the beam will be used to scale 

the moment. By scaling the moment, the stress induced by 
the local strain of the actuator is distributed over the full 

width of the beam. This is analogous to distributing a con- 
centrated load over the surface of application. The moment 
mx has the units of moment per unit length about the y 
coordinate: 

m,, =Co•e[U(x--x1) --U(X--X2)](Wpe/Wb). (21) 
By oscillating the voltage across the actuator, the induced 
moment m• will oscillate at the same frequency. The equa- 
tion of motion for the beam can be written due to excitation 

by the oscillating moment. The mass and stiffness loading on 
the beam due to the actuator are assumed negligible. The 
equation of motion is written in terms of the internal bending 
moment M• and the actuator-induced moment m• as 
follows: 

+ m"ib = 0, (22) 
cgx • 

where m" is the area mass density of the beam, and w is the 
transverse displacement of the beam. 5 

The moment m• can be transferred to the right-hand 
side of Eq. (23), representing the external beam load. The 
internal moment M• can be expressed in terms of the dis- 
placement of the beam w, yielding the final form of the equa- 
tion of motion: 

6•2mx 
" • (23) D•74w -[- m ib = •3x• , 

where D is the flexural rigidity of the beam. 
The external loads on the beam can be obtained by dif- 

ferentiating Eq. (21 ): 

6•2m• -- Co•-pe [•'(x -- Xl) -- •'(x -- x2)] (Wp•e•. (24) 
r3x 2 \wb / 

Substituting the above expression into the equation of mo- 
tion yields 

D•74w + rn"ib 

= Co•'pe [6'(X -- Xl) -- 6'(X -- X 2) ](Wpe/W b ). (25) 
A moment M acting upon a structure can be expressed as a 
dipole force with magnitude M6' (x- Xo), where Xo is the 
location of the moment. Thus uniformly distributed reaction 
moments in the beam are the result of external line moments 

acting along the boundaries of the piezoelectric element. 
The solution of Eq. (25) can be obtained by performing 

a modal expansion on the response previously outlined in 
Eq. ( 1 ). Substituting Eq. ( 1 ) into the equation of motion 
[Eq. (23)], 

• (co2• -- 02) Wn sin mrx = c• 2m x n=• L• r•' •-•' (26) 
where 

2 __ D [ (nrr)4/L 4 m" ]. (27) On x 

As mentioned earlier, to include the effects of structural 
damping, the beam stiffness Eb was defined to be complex. 5 
The resulting equation for modal amplitudes will yield finite 
results at a resonance which corresponds to results expected 
in real systems. Replacing the flexural rigidity in Eq. (27) by 
Eq. (6) and recalling that the structural stiffness is complex, 

2 
con can be written as 

2Eo ( 1 + i•7)h 3(n7'/') 4 
2 (28) 

3L 4 ,, xm 

After applying the orthogonality condition, the modal am- 
plitudes can be obtained: 

2CoEpe n lrWpe 
2 co2)L 2 m" (On • x Wb 

X [cos( n•rx2 Lx )--cos(nrrxl . 
The maximum modal amplitude will occur when the driving 
frequency is equivalent to the real part of Eq. (28).5 To ob- 
tain the modal amplitude resulting from excitation of multi- 
ple actuators, the superposition principle is invoked. Recall- 
ing Eq. (2), 

(•'x)pe = •'pe : (d3•/t) V, 
we observe that the strain induced in the piezoelectric ele- 
ment is proportional to the voltage. To vary the modal re- 
sponse of the structure, the phase of the voltage between 
independent actuators can be varied, and the resulting mod- 
al amplitude can be computed in general for rn actuators: 

m 

W• m = CV • [cos(•k ) +j sin(•k ) ]f(x•k,x2 • ), 
k.=l 

where 

2Cod3•n•rWpe 
2 n 

(c02• -- co2)tL xm wb 

f(x•k,x2•)=[cos(n•rx2•h--cøs(n•rx•] ' [ \Lx! \L•/ 

(30) 

(31) 

(32) 

After obtaining the final expression for the modal ampli- 
tudes, a summary of the previous assumptions is in order. 
The piezoelectric patch is assumed to be perfectly bonded to 
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the beam, resulting in equivalent interface strains in the ac- 
tuator and beam. As outlined by Crawley and de Luis, 1 sig- 
nificant thickness of the bonding layer can render this as- 
sumption invalid. In addition, the piezoelectric element is 
assumed to have negligible effect on the inertial mass and 
stiffness of the beam. This assumption will certainly be de- 
pendent on relative size of the actuator compared to that of 
the structure; however, for commercially available piezoe- 
lectric elements with a thickness on the order of 0.2 mm and 

beams of the order of 2 mm, the assumption is justified. 

II. EXPERIMENTAL DISCUSSION 

After developing the theoretical predictions for the 
modal response of the structure, a simply supported beam 
was designed and built. The theory to experimentally inves- 
tigate the modal response of the structure as well as the range 
of linearity of response was developed. 

A. Experimental setup 

The experimental setup focused around the test and 
evaluation of the piezoelectric actuators bonded to a simply 
supported steel beam shown in Fig. 2. This beam was at- 
tached to light-gauge steel supports at the end points, and 
these supports were attached to a rigid steel structure. The 
ends of the beam were fixed spatially in the z direction; how- 
ever, the beam was relatively free to rotate about its ends, 
creating the desired simply supported boundary conditions. 
The beam itself was made of plain carbon steel. It is 380 mm 
in length, 40 mm wide, and 2 mm thick. Eighteen measure- 
ment locations are identified as shown, with the first location 
being the first interior line measured from the left side of the 
figure and the 18th location being the rightmost interior 
point. These measurement locations were referenced from 
the center of the beam and spaced at even 20-mm intervals. 
The measurement locations were chosen such that the struc- 

ture could be mapped for the modal analysis. In addition, 
discrete grid points provide a means of studying the effects of 
measurement location on the response of the structure. 

The piezoelectric strips are referenced as G 1195 materi- 
al with dimensions of 38.1 mmX 15.8 mmX0.2 mm. M- 
bond 200 adhesive material was used to attach the actuators 

to the surface of the structure at spatial locations of 76 and 
268 mm from the left end of the beam, as illustrated in Fig. 1. 
Before bonding the actuator to the structure, an insulating 
layer of glue is required to prevent shorting of the electrical 
contacts. 

The piezoelectric actuators were driven with a signal 
generator configured with the B&K 2032 signal analyzer. A 
power amplifier was used to boost the signal, and a trans- 
former with a 17 to 1 ratio was used to increase the voltage 
necessary to drive the piezoelectric actuators. The input sig- 
nal was measured prior to the transformer, and the output 
signal was obtained from a B&K 4374 microaccelerometer 
configured with a B&K type 2635 charge amplifier. Since 
the accelerometers weigh only 0.65 g, mass coupling was 
assumed small. The signals were converted from analog to 
digital via the B&K 2032 signal analyzer, and the data was 
transferred to a personal computer by an IEEE-488 instru- 
mentation interface. 

During all tests, the frequency response for the output 
signal was limited to 2000 Hz since higher frequencies do not 
provide significant additional information and limit the fre- 
quency resolution. In addition, the expected application for 
active vibration and noise control is most likely well below 
this frequency. A Hanning window was applied to the time- 
dependent signal, and 64 averages were obtained for each 
complete data set with 50% overlap processing. 

Several preliminary tests were conducted before pro- 
ceeding with experiments devoted to studying distributed 
excitation of the structure. A modal analysis of the structure 
was performed to compare mode shapes and resonant fre- 
quencies from the designed structure and theoretical model. 
A discussion of the modal analysis is included in the Appen- 
dix. In addition, the range of linearity for the structural re- 
sponse must be identified before comparing results between 
experiments and theory. A description of this test and meth- 
ods of analysis are also included in the Appendix. 

B. Distributed excitation and spatial decomposition 

The primary experimental test to be performed pertains 
to the topic of distributed excitation. Since the piezoelectric 
actuator is finite and must be bonded to the structure at some 

predetermined spatial coordinates, the possibility of driving 
the structure at any chosen mode was considered. To investi- 
gate this possibility, a spatial decomposition was per- 
formed. 8 In other words, the piezoelectric device was driven 
at a constant amplitude and frequency, and the structural 
response was measured and decomposed into modal ampli- 
tudes. Two accelerometers were placed on the structure, 
with one of the accelerometers being the reference. The ref- 
erence accelerometer was located at the first grid point such 
that all modes could be detected. The "floating" accelero- 
meter was moved over eight grid points, allowing computa- 
tion of eight modal amplitudes. 

The frequency response function between the accelero- 
meters was measured as well as the autospectrum of the ref- 
erence accelerometer. The autospectrum provides a means 
of scaling the data in terms of engineering units. By comput- 
ing the frequency response function, phase information is 
also obtained. If the beam is assumed to respond as predicted 
in the theoretical analysis from Euler beam theory, a matrix 
of spatial coefficients can be generated from the theoretical 
eigenvectors by substituting the spatial coordinates of the 
"floating" accelerometer into the equation. After repeating 
this for eight separate measurement locations, since eight 
distinct modal amplitudes can be computed, an 8 X 8 matrix 
of the eigenvectors will result. After measuring the accelera- 
tion at each of these coordinates, a system of linear algebraic 
equations results: 

[W] ---- [S][A ], (33) 
where 

W1 

[W] = •n ' (34) 
A• 

[A ] ---- • , (35) 
n 
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IS] = 

where 

'S• S•2 S•3 "' S u' 
S21 S22 S23 *** S2j 
S31 S32 S33 ''' S3j 

.sl ... %. 

, (36) 

S o = sin(jrrxi/L• ). (37) 
In the above equation, j represents the mode number and i 
represents the spatial position of the "floating" accelero- 
meter for each data set. The modal accelerations were ex- 

tracted by solving this system of linear equations. This meth- 
od of obtaining the modal amplitudes should be contrasted 
to that of the typical modal approach. The standard ap- 
proach in modal analysis is to obtain the experimental re- 
sults from accelerometers placed at discrete spatial locations 
and compute frequency response functions (FRFs) between 
these measured outputs and the forcing inputs. The modal 
response is then obtained by curve fitting the experimentally 
obtained FRFs. The method utilized in this test can only be 
used when prior knowledge of the system response is known 
either analytically or experimentally; however, it enables the 
determination of modal amplitudes in off-resonance cases. 

To determine if independent modes could be dominant- 
ly excited, the structure was driven at a variety of frequencies 
and phasing between the two actuators bonded to the beam. 
Some spillover is expected in other modes since the piezoe- 
lectric actuator is distributed over the surface of the struc- 

ture. The goal is to determine the ability to excite indepen- 
dent modes of the structure. In Fig. 3 the orientation of the 
piezoelectric actuators can be seen with respect to the simply 
supported beam. The first six modes are depicted graphically 
to illustrate the relationship between the orientation of the 
actuator and nodal lines for each respective mode. For exci- 
tation of the second and third modes, the actuator lies in a 
region of significant curvature of the structure during vibra- 

First Mode 

::'""•'"':'•] I '•":4• Second Mode 

:4'• Third Mode 

tion. As a result, the actuator is expected to readily excite 
those modes of the structure. However, for the fourth mode 
of the simply supported beam, the center line of the actuator 
lies on the modal line. At this location, an inflection point 
would occur in the structure, resulting in a minimum con- 
cavity. Since the actuator essentially creates bending mo- 
ments, this location conflicts with the coupling between the 
actuator and structure. Because of this conflict, spillover 
into adjacent modes is expected, with little or no excitation 
of the fourth mode. 

III. RESULTS 

A modal analysis of the beam was initially performed to 
determine if the assumption of Euler beam theory was justi- 
fied in modeling the beam. Upon completing the modal anal- 
ysis, the linearity test was studied to determine an appropri- 
ate working range of input voltages for the piezoelectric 
actuators. Finally, a test was performed such that experi- 
mental and theoretical results could be compared. 

A. Modal analysis and theoretical analysis 

The experimental modal analysis was performed to de- 
termine if the structural response exemplified a simply sup- 
ported beam. For comparison, the theoretical eigenvalues 
and eigenfunctions for the experimental beam were comput- 
ed. Common material properties for steel were chosen with a 
Young's modulus of 29 Mpsi ( 200 GPa) and a density of 487 
lb/ft 3 (7800 kg/m3). The modal analysis of the structure 
yielded 13 eigenvalues, 6 of which are presented in Table I. 

Tabulated with the experimental results are the theo- 
retical predictions for the first six resonant frequencies of the 
structure. It should be noted that the theoretical model in- 

cludes a term for structural damping; however, this term 
simply serves to create a finite response at resonance. For the 
first four modes of the structure, the predicted values of the 
resonant frequencies are less than the experimentally mea- 
sured values; however, for modes 5 and 6, the predicted val- 
ues exceed the measured values. In both cases, the percent 
difference in predicted and measured values for resonant fre- 
quencies is on the order of 3 %. 

The first four resonant frequencies obtained experimen- 
tally are observed to be higher estimates of the theoretical 
resonant frequencies. This can be explained by examining 
the spectral resolution. Since the base bandwidth was 2000 
Hz and 400 spectral lines were displayed, the spectral resolu- 
tion was 5 Hz. For the first mode, the resonant frequency 
was estimated between the discrete spectral lines of 30 and 

Fourth Mode 

Fifth Mode 

Sixth Mode 

FIG. 3. Modes of beam with respect to actuators. 

TABLE I. Theoretical versus experimental resonant frequencies. 

Mode Theoretical f. (Hz) Experimental f. (Hz) 

1 31.1 32.9 
2 124.4 126.9 
3 280.0 282.3 
4 497.7 498.6 
5 777.7 768.7 
6 1119.9 1077.0 
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FIG. 5. Average frequency response function of simply supported beam. 

FIG. 4. Theoretical mode shape versus experimental data. 

35 Hz, resulting in poor resolution. To more accurately ana- 
lyze the lower modes, a smaller base bandwidth could be 
chosen or zoom processing could be imposed. However, 
since the goal of this study was to compare results primarily 
for operating conditions other than resonance, results ob- 
tained from the modal analysis were sufficient to proceed. 

The curve-fitting routine also yielded estimates of the 
eigenvectors for each respective mode. The theoretical and 
experimental eigenvectors were normalized, and the mode 
shapes for the first six modes were plotted from the theoreti- 
cal and experimental analysis and superimposed on each 
other. An example is presented in Fig. 4. The experimental 
and theoretical modes compare well for the first five modes; 
however, some deviation was noted at the sixth mode. This 
deviation results from the fact that contributions of higher 
modes, above the 2000-Hz frequency range, are not available 
for curve fitting. 

For the goals outlined in this study, the structural re- 
sponse can be considered to follow that of a simply support- 
ed beam as desired. While this lends confidence to analysis of 
the remaining results, it was essential for performing the spa- 
tial decomposition based on the theoretical eigenfunctions. 

B. Linearity 

The results of the linearity tests demonstrated that the 
piezoelectric material excited the beam in a linear manner 
for input voltage levels ranging from 5 to 75 V rms over the 
2000-Hz range. The results have been quantified with a fre- 
quency response plot for the acceleration measured at the 
first grid point as described earlier. For 95% confidence in- 
tervals on the magnitude of the FRF, the separation between 
the upper and lower confidence bounds was on the order of 
0.4 dB. To clarify the plot, only the average of the frequency 
response functions was plotted, realizing that all of the FRFs 
were within the computed confidence interval. Refer to Fig. 

5. Large deviations in the response were noted at frequencies 
below 100 Hz; however, coherence was poor in this region 
because of the inability of the piezoelectric actuator to re- 
spond efficiently in this operating range. To clarify the re- 
sults, plotting of the data in this regime was suppressed. 

Results from a statistical analysis of the phase were eli- 
minated since they essentially replicated that of the magni- 
tude in linearity. As previously mentioned, a 95% confi- 
dence interval was chosen as the criterion for determining 
the range of linearity. This confidence interval is based upon 
the normalized error of the FRF, which, in turn, is depen- 
dent upon the coherence. Before continuing, a few notes 
about the coherence are worthy of mentioning. The coher- 
ence of the output to the input was on the order of 0.95, 
except at resonance where the coherence dropped signifi- 
cantly. This can be expected since the force decreases on 
resonance, reducing the signal-to-noise ratio. This problem 
could be eliminated by implementing burst random excita- 
tion. The separation of the confidence intervals were on the 
order of 1.2 dB at both resonance and antiresonance. The 

large separation at antiresonance is due to low output from 
the structure. Based on this knowledge, the response of the 
structure in the frequency range tested can be considered 
linear for the input levels previously documented. 

After completing the test with a bandlimited input vol- 
tage, a harmonic input voltage was used to drive the struc- 
ture. The frequency response function was measured as pre- 
viously described; however, the only frequency of interest 
was the driving frequency. Harmonic inputs at frequencies 
of 128, 200, 278, 400, and 500 Hz were utilized to drive the 
structure, and the voltage was varied from approximately 15 
to 150 V rms in 15-V increments. The response of the struc- 
ture was linear in voltages ranging from 30 to 90 V rms ap- 
plied across the actuator. A 5% rise in the frequency re- 
sponse function was noted from the 15-30-V rms range, 
while a 5% decrease in the FRF was noted in the 90-150-V 

rms range. 

Results from the linearity tests indicate that the struc- 
, 

352 J. Acoust. Soc. Am., Vol. 90, No. 1, July 1991 Clark eta/.' Multiple piezoelectric actuators 352 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.173.126.47 On: Tue, 12 May 2015 16:28:48



tural response is linear under typical operating voltages and 
deviations from linear response are on the order of 5% for 
higher voltage levels. Since only discrete frequencies were 
tested with harmonic inputs, the results from the bandlimit- 
ed input can be used to infer that the linearity measured at 
these frequencies is typical for inputs in the 100-2000-Hz 
frequency range for voltage levels ranging from 30 to 90 V 
rms. 

C. Distributed excitation and spatial decomposition 

To study the effects of distributed excitation, the piezoe- 
lectric actuator was driven at various harmonic frequencies 
on and off resonance. The goal was to determine the ability 
of the actuator to excite various modes of the structure and 

examine the effects of spillover. For the purpose of this 
study, spillover will be used to describe the response of unde- 
sired modes due to the chosen spatial location of the actu- 
ators on the structure, and the undesired modes will be 
termed residual modes. In other words, relative phasing of 
voltage between actuators can be chosen to elicit the re- 
sponse of a desired mode; however, because of the location of 
the actuators on the structure, other residual modes will con- 
tribute to the overall response. A variety of tests were con- 
ducted to compare the predicted and measured response of 
the desired modes and residual modes of the structure due to 

harmonic excitation of piezoelectric actuators. 
Since the theoretical and experimental eigenfunctions 

compared well, the spatial matrix of eigenvectors utilized in 
forming the system of linear algebraic equations was used to 
determine the modal amplitudes at a given frequency from 
the displacement data. The actuators were driven both inde- 
pendently and coupled. During the first series of tests, the 
leftmost actuator was driven at frequencies of 100, 200, and 
350 Hz. Following this test, the actuators were driven simul- 
taneously both in phase and out of phase at frequencies of 
100, 150, 200, and 350 Hz. Since the goal of the study was to 
compare the theoretical response of the structure to the ex- 
perimental response, a computer program was written to 
predict the modal amplitudes for the above chosen tests from 
Eq. (38). 

Results from excitation of the leftmost actuator at fre- 

quencies of 200 Hz are presented in Fig. 6. Since this fre- 
quency of excitation lies between the second and third mode 
of the structure, both theoretical and experimental results 
indicate structural response at the corresponding modes. 
Results are plotted in units of modal amplitude, which can 
readily be obtained from the modal acceleration for harmon- 
ic excitation by multiplying the modal acceleration by the 
square of the circular frequency. Results from excitation of a 
single actuator at 100 and 350 Hz were not as interesting 
since they simply illustrated dominant response of the struc- 
ture at the second and third modes, respectively. As illustrat- 
ed in Fig. 6, the theoretical response of the structure at the 
fourth mode was negligible. This result is due to the location 
of the piezoelectric actuator on the structure. When an actu- 
ator is excited at a given frequency, it essentially responds by 
bending at that frequency. This motion is opposed to the 
motion of the structure in the region of a nodal line since an 
inflection of the structure is observed at this location. Spill- 
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Experimental 

1 2 3 4 5 6 7 8 
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FIG. 6. Modal response versus mode number (patch pair 1,200 Hz). 

over into adjacent modes occurs where the response of the 
structure is better aligned with the motion of the actuator. 

In contrast to the theoretical results presented in Fig. 6, 
experimental results indicate some response at the fourth 
mode; however, these results are subject to errors due to the 
truncation of higher modes in solving for the modal ampli- 
tudes (i.e., spatial aliasing). The error due to truncation of 
higher modes is assumed small since the structure was driv- 
en by a single harmonic voltage. However, in view of this 
problem, the computed response of modes on the order of 20 
dB lower than the response of the dominant modes is 
suspect. 

For the case of distributed excitation, results from tests 
conducted at 100 Hz with actuators out of phase and 150 Hz 
with actuators in phase are presented in Figs. 7 and 8, respec- 
tively. When exciting the two actuators out of phase at 100 
Hz, the second mode of the structure is dominant in the 
response. By driving the actuators 180 ø out of phase, the 
motion of the actuators correspond to that of the second 
mode of the structure, which can be seen by referring to Fig. 
3. The same actuators were then driven in phase at 150 Hz. 
This excitation frequency is nearest the second mode; how- 
ever, the dominant response of the structure was at the third 
mode. This result was confirmed both experimentally and 
theoretically, illustrating that selection of location and phas- 
ing of the actuators is as important as the choice of the exci- 
tation frequency in driving the structure at a desired mode. 
Another observation worthy of mention is the response of 
the structure at the first mode for each of the previous test 
cases. When the actuators were driven in phase, the first 
mode contributed significantly to the structural response. 
However, when driven out of phase, the contribution of the 
first mode was suppressed, thus demonstrating control over 
residual modes of the structure. 
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FIG. 7. Modal response versus mode number (patch pairs 1 and 2, out of 
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FIG. 9. Modal response versus mode number (patch pairs 1 and 2, in phase 
at 200 Hz). 

Further indication of the importance of phasing was ob- 
served when driving the actuators at 200 Hz. When driven in 
phase, the structural response was greatest at the third mode 
as seen in Fig. 9. In Fig. 10 results for excitation of the actu- 
ators out of phase are presented at the same frequency. The 
second mode of the structure was dominant in response for 
this configuration, and the remaining modes were sup- 

pressed. Again, these results are clarified upon referring to 
Fig. 3, which illustrates the position of the actuator in refer- 
ence to the modes of the structures. Comparing the results of 
Figs. 9 and 10 to those of Fig. 6 again demonstrates that not 
only can the dominant mode be affected with distributed 
excitation, but also the residual modes. In Fig. 6 it is appar- 
ent that both the second and third modes respond strongly. 

Theoretical 

07 • 
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Modes 

FIG. 8. Modal response versus mode number (patch pairs 1 and 2, in phase 
at 150 Hz). 
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FIG. 10. Modal response versus mode number (patch pairs 1 and 2, out of 
phase at 200 Hz). 
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When two in phase actuators are used, the response switches 
to the third mode while the second mode is suppressed. 
When two out of phase actuators are used, the second mode 
is dominant while the residual (third) mode is suppressed. 

From the results presented, it is apparent that imple- 
mentation of a greater number of actuators will lead to in- 
creased excitation of selected modes with reduced spillover. 
In fact, the ideal actuator for steady-state excitation would 
be, as shown by Meirovitch and Norris, 9 an infinite number 
of infinitely small independently controlled elements com- 
pletely covering the beam. In this way, a generalized control 
force can be created which is orthogonal to all modes except 
that which is required to be excited. In summary, phasing of 
the actuators in achieving excitation of chosen structural 
modes was shown to be as significant as choice of excitation 
frequency. In addition, the theoretical and experimental re- 
sults were, on the average, within 25% of each other for the 
dominant modes of the structure. Differences in experimen- 
tal and theoretical results were thought to be due to a num- 
ber of factors, of which the most important were likely to be 
finite bonding layer, variation in the d 31 constant, asymme- 
try of actuator bonding and position, and errors inherent in 
the modal decomposition procedure. 

IV. CONCLUSIONS 

A theoretical and experimental study of the nature of 
multiple piezoelectric patches as a distributed actuator has 
been made. A number of important conclusions have been 
obtained. 

( 1 ) The analytical model for the response of the simply 
supported beam to a single piezoelectric excitation source 
gave predictions which were within 25% of experimental 
results for a wide range of frequencies. The distribution of 
residual modes was also well predicted. Thus the analytical 
model has been largely confirmed and is useful in determin- 
ing optimal actuator configurations for one-dimensional 
systems. 

(2) Likewise, the response of the beam to multiple inde- 
pendently driven patches was also well predicted. In particu- 
lar, the use of multiple independent actuators in selectively 
exciting required modes as well as suppressing unwanted 
residual modes was demonstrated. The model is thus useful 

in designing arrays of multiple independently driven piezo- 
electric actuators in order to selectively excite modes with 
control over the residual response. 

(3) The response of the simply supported beam to exci- 
tation by piezoelectric actuators employed in this experi- 
mental test was demonstrated to be linear over a wide range 
of input voltages from 30 to 90 V rms with only a 5% devi- 
ation in the 90-150-V rms range. Excitation of the structure 
with piezoelectric elements below 50 Hz was found to be 
difficult. 

Discrepancies between the modal amplitudes predicted 
from theory and those resolved from structural measure- 
ments are likely the result of several assumptions made in the 
analysis. Since a one-dimensional equation was used to pre- 
dict the response of the simply supported beam, the effective 
increase in stiffness of the beam due to strain in the y direc- 
tion was not included in the model. In addition, since the 

piezoelectric actuators did not span the full width of the 
beam, the induced moment was scaled by the ratio of the 
width of the actuator to that of the beam. This is analogous 
to distributing a concentrated load over the surface of appli- 
cation. Finally, in the experimental analysis, a finite number 
of structural measurements were taken, limiting the number 
of modes which can be resolved computationally. As a re- 
sult, spatial aliasing of the unresolved higher modes possibly 
contributed to the noted discrepancies between theoretical 
and experimental results for the residual modes. 

If the goal is to predict a more accurate response of the 
beam, a finite-element analysis is in order, including the 
structural response in the x and y directions. However, for 
the purpose of choosing optimal actuator locations and rela- 
tive structural response for a given control application, the 
one-dimensional model is more than sufficient. Even if the 

goal is to more accurately predict the response of the beam, a 
model such as that presented is best suited for initial studies 
to determine optimal actuator locations for eliciting the de- 
sired beam response since the computational time required is 
minimal compared to that required by finite-element 
analysis. 
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APPENDIX 

1. Modal analysis 

Before attempting to characterize the relationship 
between the piezoelectric actuator and the structure, a mod- 
al analysis of the simply supported beam was performed. A 
grid was sketched on the beam as depicted in Fig. 2. An 
accelerometer was located at the first grid point since this is 
close to the support in a region where all of the modes within 
the desired frequency range could be measured. The acceler- 
ometer was used to measure acceleration, and an impact 
hammer was used to supply the forcing input. The structure 
was tapped at all of the grid points except at locations where 
piezoelectric actuators were bonded to the structure. The 
measured frequency range was from 0 to 2000 Hz. Frequen- 
cy response functions between the reference point (location 
of the accelerometer) and the impact locations were ob- 
tained, totaling 12 independent data sets. A series of data sets 
are required, including the point mobility of the excitation 
position to obtain an estimate of the eigenvalues and eigen- 
functions of the structure. 

Each data set was saved and a computer program imple- 
menting a Forsythe orthogonal polynomial to curve fit each 
FRF was used to perform the modal decomposition. lO From 
this program, the modal parameters, resonant frequencies, 
and corresponding damping coefficients were obtained. The 
program ultimately improves the estimate of the modal pa- 
rameters by reducing the impact of the fit of the data in 
regions of poor coherence. lO The curve fit results in a numer- 
ator polynomial and a denominator polynomial for each 
FRF. The denominator of each curve fit should be consistent 

since this is essentially the characteristic equation of the 
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structure, containing the natural frequencies and damping 
coefficients. The numerator contains information necessary 
to extract the mode shapes. After curve fitting all of the fre- 
quency response functions, the results can be combined and 
the corresponding mode shapes are computed. 

2. Linearity test 

The linearity of the strain applied by the piezoelectric 
material may be characterized by examining the response of 
a driven structure for a variety of voltage levels applied to the 
piezoelectric material. If the response of the structure differs 
at different voltages levels by a constant of proportionality, 
the system may be considered linear. The response of the 
structure can be characterized by the FRF. The FRF repre- 
sents the ratio of the output response to input response for a 
system over some range of frequencies. Therefore, a linear 
system should have the same FRF for all input voltage lev- 
els. If an increase of the input amplitude above a certain level 
causes the FRF to deviate too far (this must be specified 
statistically) from the mean path, the nonlinear threshold 
can be identified. 

The first step in determining the FRF of a system is 
recording the input and output levels of the system. An easy 
way to make sense of the system input and output records is 
to convert the time histories to the frequency domain using 
the Fourier transform. Generally, a model for the FRF is 
created based upon the assumption that there is an uncorre- 
lated noise content disturbing the measurement of either the 
input or output. Because this noise is not correlated with the 
true output or input, the expected value of the product of the 
FFT for the output or input with this noise over a large 
number of averages is zero. The H• model was used to esti- 
mate the FRF, assuming noise on the output only, wh':ch will 
suffice for this experiment: 

H, (/co ) = Gxy (/co ) /Gxx •[co ) . (A1) 
By using Hi (/co) and ignoring the possibility of noise on the 
measurement of the input signal, the results could be biased. 
However, the amount that the FRF is biased should not 

change with the variance of the input signal because it is 
assumed that the noise is uncorrelated to the output (or in- 
put). Thus, when increasing the variance of the input signal 
produces a value of H• (/co) that deviates significantly from 
values previously calculated for smaller input variances at a 
given frequency, the system response will be assumed non- 
linear. TM 

While the H1 model achieves adequate noise reduction 
on the output, it is necessary to determine what content of 
the measured signal is noise in order to obtain a good statisti- 
cal estimate of H• (/co). With the assumption ofuncorrelated 
noise, 

G• = Guu + G,,,,, (A2) 

Gyy = Go,, + Gram, (A3) 

Gxy -G•,o. (A4) 

The measure of noise content is the coherence; its value ap- 
proaches zero for large noise content and one for zero noise 
content: 

jo) = jo) %x (/o) (^5) 
where 

A confidence interval for the FRF can be calculated based 

on the normalized rms error and Student's t test for large 
data sets. The normalized error for the frequency response 
function is • • 

= __. (A7) 

A 95% confidence interval was used to determine bounds for 

significant variation of the calculated values: 

H• Uo) ( 1 - 1.96e) <H• Uo) 

<H•Uo)(1 + 1.96e). (A8) 

With a means of evaluating linearity, the test can be per- 
formed. For this study, the input is created with both a ran- 
dom noise generator and a harmonic oscillator. The input 
voltage to the piezoelectric actuator was measured since it is 
assumed proportional to the forcing function. The output is 
obtained by placing an accelerometer on the beam at the first 
nodal point. All signals were filtered with an antialiasing 
filter, and the time histories were windowed with a Hanning 
window to reduce the uncorrelated content. By utilizing ran- 
dom noise as an input, a broadband of frequencies can be 
characterized with each test; however, the input must be 
characterized by a variance on the bandlimited noise ap- 
plied. To gain a better understanding of the range of linear- 
ity, a harmonic oscillator is also used to excite the piezoelec- 
tric actuator at various frequencies in the range of the 
random noise generator. By using a harmonic input, a 
threshold of input voltage for linearity can be identified as 
opposed to a variance of input voltage. 
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