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(ABSTRACT) 

A theoretical study of the deformation fields of the cornea under internal 

pressure is presented. The general elasticity equations describing a thin 

shell of variable thickness are solved using finite difference 

techniques. To gain insight into the natural corneal structure, the 

constant thickness case is compared to one of normal thickness. The 

bending stresses are found to influence the cornea's natural curvature. 

In the third case, the normal thickness is increased 10% to model the 

edematous state resulting from the incisions made during radial 

keratotomy. A comparison of the third case reveals the increased 

thickness in the peripheral cornea makes a minor contribution to the 

displacement; but moreover, the curvature change is opposite to that 

desired from radial keratotomy. The incisions are necessary to weaken the 

lateral support of the shell allowing the displacement and change in 

curvature which corrects myopia. 
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1.0 INTRODUCTION 

Myopia, commonly referred to as nearsightedness, is a condition in ~hich 

parallel rays entering the eye come to focus anterior to the retina. • 

The condition was first defined by Kepler in 1611. Analyzing the eye 

anatomically in 1632, Plempius reasoned myopia was due to the 

lengthening of the eye's axial diameter. Today the most widely known 

theory of axial lengthening is the eye's natural susceptibility to adapt 

to its environmental demands. The demands of reading increase with 

higher levels in cultural and technological development. Near work 

deforms the eye by requiring that it maintain a constant near focus. As 

the eye develops at an early age, the eye tends to retain its 

near-sighted focus. In agreement with this theory, myopia has been 

found to develop rapidly in teen-agers and stabilize at the age of 21 or 

22. 9 

Once the development has stabilized, the patient has several 

alternatives: eyeglasses, contacts, keratomileusis, orthokeratology, 

and radial keratotomy. Usually used for far-sightedness, keratomileusis 

or "corneal changing" is a complicated surgical procedure in which the 

central portion of the cornea is sliced off, frozen, reshaped with a 

• Anterior means toward the front of the eye as opposed to posterior 
meaning toward the rear of the eye. 
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lathe, and sewn back on. Another technique, orthokeratology, 

mechanically flattens the curvature of the cornea by wearing a 

successive series of hard contact lenses and may involve the use of a 

retainer. Keratomileusis and orthokeratology have met with varying 

degrees of success. Recently, opthalmologists view radial keratotomy, a 

relatively simple surgical procedure, as a more viable solution for 

those patients who are not satisfied with eyeglasses or contact lenses 

for either cosmetic or occupational reasons. 48 

Radial keratotomy is designed to correct low to moderate degrees of 

myopia. Ophthalmologists specify the appropriate range of vision as 

-2.00 to -8.00 diopters. A diopter is a unit of measurement 

corresponding to the inverse of the farthest distance at which the eye 

can properly focus. If a patient has four diopters of myopia, it means 

that the far point of vision is one-fourth of a meter from the eye. 

According to the Boston Framington Eye Study, approximately 70 million 

Americans, 33% of the population, are nearsighted. Of these 70 million, 

10 million are in the range of -2.00 to -8.00 diopters. 47 

Keratotomy, derived from the prefix, kerato-, relating to the cornea and 

the root, -tomy, meaning a cutt~ng operation, is defined as an incision 

through the cornea. When performing radial keratotomy, the surgeon 

makes eight radial incisions in the cornea extending from the central 

optical zone. The incisions do not interfere with the central field of 
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vision. 36 Figure 1 illustrates the frontal and horizontal views of the 

incisions. The frontal view looks similiar to the spokes of a wheel 

radiating from the central hub. The objective of the operation is to 

change the corneal curvature and move the focal point towards the 

retina. The incisions weaken the mechanical strength of the peripheral 

cornea allowing the intraocular pressure to deform the cornea, 

steepening the periphery and flattening the central portion. 

The corneal deformation undergone after radial keratotomy is influenced 

by several factors: the incisions, themselves; an increase in 

thickness; and an internal change in the corneal material properties. 

The incisions cut the supporting structure of the cornea producing a 

discontinuity in the circumferential stress field. Once the incisions 

are made, the injuried tissue absorbs water and produces swelling. This 

process, called edema, alters the rigidity of the tissue by increasing 

the thickness and possibly changing its material properties. 

The objective of this paper is to determine the contribution of an 

increase in thickness produced through edema to the deformation caused 

by radial keratotomy. In addition, the influence of normally varying 

thickness on the supporting capability of the corneal structure is 

examined. 

A prior knowledge of the anatomy and physiology of the cornea is 
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necessary in understanding its structural behavior in this problem. 

material properties. Chapter 3 summarizes the development, surgical 

technique, and complications of radial keratotomy. This chapter also 

includes the previous work done in analyzing the cornea as a shell 

structure. In the next chapter, the problem is defined with the 

formulation of the governing equations and boundary conditions 

describing the deformation of the cornea under internal pressure. The 

solution of these equations by finite difference techniques is discussed 

in Chapter 5. Finally, the results and conclusions are presented in 

Chapter 6. 
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2.0 ANATOMY AND PHYSIOLOGY OF THE CORNEA 

2. 1 INTRODUCTION 

As illustrated in Figure 2, the eye is practically a hollow sphere 

filled with a transparent fluid, the aqueous humor. Within the sphere, 

the lens surrounded by the iris forms the anterior division which splits 

the eye into two chambers. The transparent portion of the shell, the 

cornea, and the lens serve a boundaries for the anterior chamber while 

the vitreous chamber is bounded by the lens and the retina. As light 

enters the eye, the cornea refracts it onto the lens which focuses the 

image on the retina. Converging to form the optic nerve, the nervous 

fibers of the retina receive light rays and transmit the visual signals 

to the brain for interpretation as visual perception. 

The total refractive power of the eye's lens system is approximately 59 

diopters, and of that total strength, the cornea provides nearly 44 

diopters. In a simplified lens system, the cornea has two refractive 

interfaces: the interface between the air and anterior surface, and the 

interface between the posterior surface and the aqueous humor. The 

anterior surface is not uniformly curved but is approximately spherical 

and acts as a concave lens. Whereas the refractive index of the cornea 

is markedly different from that of the air, the anterior surface 
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Figure 2. A Meridional Cross-Section of the Eye Illustrating Its 
Major Structural Components. 

Anatomy and Physiology of the Cornea 7 



provides about 48 diopters in refractive power, while the more strongly 

This is due to the slight difference in refractive indices between the 

posterior surface and the aqueous humor. 17 With respect to the 

differing radii of curvature, 7.8 mm of the anterior surface and 6.6 mm 

of the posterior surface, the thickness of the cornea varies from 0.5 mm 

in the center to 0.66 mm as the periphery is approached. 7 

Other factors such as the structure and composition of the cornea 

influence its refractive properties. The next section deals with the 

anatomy and structure of the cornea as it relates to its transparency 

and material properties. 

Since the investigation is of a surgical procedure, the third section 

discusses the physiology of corneal healing. The final section deals 

with the material properties of the cornea. 

2.2 ANATOMY AND STRUCTURE 

The protective envelope of the eye is a dense fibrous tunic which can be 

divided into two segments. The posterior segment, the sclera, forms 

nearly 5/6 of the outer envelope, and the more curved segment, the 

cornea, forms the anterior sixth of the outer coat. With the radius of 

curvature averaging 7.2 mm, the transparent membrane of the cornea 
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appears to be a section of a smaller sphere attached to the sclera, a 

larger sphere with a radius nearly 12 mm. At the sclerocorneal 

junction, the margin of the cornea overlapped with the sclera is defined 

as the limbus. In this region, circular fibers support the changing 

radii. The conjunctiva, the mucous membrane joining the anterior 

surface of the eye and the eyelids, begins at the sclerolimbal region. 7 

The cornea is composed of five layers: 

1. Epithelium 

2. Bowman's membrane 

3. Strama 

4. Descemet's membrane 

5. Endothelium. 

(For identification of the layers, refer to Figure 3 for a cross-section 

across the corneal thickness.) 

Epithelium 

Covering the free surface of the cornea, the epithelium consists of 5-6 

layers of cells with a total uniform thickness of 50-100 µ. 6 

Structurally, the epithelium exhibits great regularity and is continuous 
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Figure 3. A Cross-Section Across the Corneal Thickness Illustrating 
the Relation Between Each Layer: (From Davson [6]) 
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with the conjunctiva. The first two layers of the surface are squamous 

help hold the tear film in place, minute microvilli cover the surface of 

the squamous cells. 15 The next three layers are polyhedrical wing-shaped 

cells, convex on the anterior surface and concave on the posterior 

surface thus fitting onto the next layer. The last layer is a single 

row of basal cells, 18 µ in height and 10 µ in breath. These cells 

secrete the basement membrane, a thin layer that intervenes between the 

epithelium and connective tissue. The basement membrane is 10-30 µ 

thick and can be resolved into a lipid layer with a reticular fiber 

meshwork. 6 

Th~ epithelial cells are bound together by desmosomes, an adhesive 

bridge between the cells. By joining the cells at the edges, these 

complex attachments prevent slippage and deformity. During corneal 

edema, the epithelial cells become separated except at the desmosomal 

attachments. 15 This creates an uneven surface which can not be smoothed 

by the precorneal tear film. 17 

The average life of an epithelial cell is 4-8 days and is replaced 

through mitotic division. Upon injury the epithelium undergoes rapid 

regeneration. Within 24 hours, a single cell layer is formed, and 

within several weeks, the epithelium is again 5-6 layers thick. The 

basement membrane is also reproduced after injury. 6 

Anatomy and Physiology of the Cornea 11 



Bowman's Membrane 

Below the epithelium, Bowman's Membrane is 8-14 µ thick and ends 

abruptly at the limbus. There is no sharp difference between Bowman's 

membrane and the remainder of the stroma. Bowman's membrane simply 

appears to be a less ordered region of the stroma. 6 The consistency is 

similiar to the stroma; however, the load carrying collagen fibers, 

100-150 A in diameter are closely but randomly packed. 1 s The following 

section on the stroma will give a more detailed description of the 

collagen matrix configuration. 

In no case is Bowman's membrane regenerated. Once an incision is made, 

a combination of epithelial slide and mitotic division fill the gap with 

epithelial cells. Some reparation is done by invading cells which 

deposit fibrous tissue, but the matrix never reaches its original 

thickness. 1 s 

Stroma 

Approximately 90% of the corneal thickness, the stroma serves as the 

framework-of the cornea. Collagen, the major portion of the thin 

connective tissue,.provides the fibrous basis of the structure. 6 

Constructed of a polymer of three polypeptide strands bonded in a 
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helical configuration, the basic structural units of the collagen 

fibrils form a highly ordered lattice. 30 The fibrils run parallel to 

each other and extend the full length of the cornea where they 

interweave with the scleral collagen as shown in Figure 4. The parallel 

fibers form bundles which also run parallel to the surface forming 

• nearly 200 laminae. Each lamina is 1.3-2.5 µ in thickness and 9-260 µ 

in width. 6 The laminae lay flat upon one another with almost no 

interweaving so that the layers slide easily over one another giving 

virtually no resistance in shear. 10 In each successive lamina, the 

fibers are essentially orthogonal to each adjacent layer. If the layers 

form right angles with each other, the normal stress in the principal 

direction of each ply should exhibit a maximum value; however 

experimentally, this does not appear. 35 Varying more or less at right 

angles to each other, the laminae of the collagen fibers form a fibrous 

composite cemented by a protein-mucopolysaccaride complex. 

Flattened in the plane of the laminae lie the corneal corpuscles which 

function as fibrocytes, elongated cells which are usually present in 

connective tissue and capable of forming collagen fibers. 6 The corneal 

corpuscles, refered to as keratocytes, synthesize the bulk of the 

collagen and protein-mucopolysaccaride complex. 31 

• The laminae are referred to medically as lamallae. 
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Figure 4. Illustration of the Difference in Structure of the Cornea 
and Sclera: Upon crossing the the limbus, the corneal 
laminae interweave with the scleral fibers. Note the 
difference in the regularity of the fiber diameter between 
the two tissues. (From Fatt (101) 
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The protein-mucopolysaccaride complex is commonly known as the ground 

term, proteoglycan, means that the polysaccaride component is the major 

portion of the complex and that the proteins are conjugated to the 

polysaccarides. The proteoglycans found in the cornea are keratan 

sulphate, dermatan sulphate, chrondroitin sulphate and its desulphated 

derivative, chrondroitin. 6 The highly negative proteoglycan chains 

arise from covalent bonds mainly to the serine and threonine amino acid 

segments of the protein core. The aggregrate is thus formed into linear 

polymers with closely spaced negative charges repelling each other to 

maintain a maximum distance between charged groups. 37 The aggregrate is 

oriented parallel to the collagen fibril with the protein core of the 

proteoglycan chains perpendicular to the long axis of the fibril, 

similiar to the bristles on a round brush. 13 Consequently, around each 

fibril, the proteoglycan aggregrate creates a negative field necessary 

to maintain the spatial separation between fibrils. 

The cornea is the most rigorously parallel-fibered structure in the 

body. 14 The marked difference in uniformity and organization of the 

collagen between the cornea and the sclera can be correlated to the 

proteoglycan composition. Figure 5 illustrate the distribution of 

proteoglycans from the mid-cornea to the sclera. Only keratan sulphate 

and chrondroitin can be found at the central zone. The prescence of the 

highly negative keratan sulphate is sufficient to keep the spatial order 
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of the collagen. In the peripheral cornea, chrondroitin is replaced by 

the more negative chrondroitin sulphate. The combination of keratan 

sulphate and chrondroitin sulphate may account for the greater 

intrafiber distance in the periphery. At the limbus. keratan sulphate 

is replaced by dermatan sulphate. In the sclera, the aggregrate also 

associates with hyaluronic acid, a mucopolysaccaride that usually forms 

a gelatinous material in tissues spaces and acts as an intracellular 

cement. 13 There is a loss of uniformity in diameter, regularity in axial 

period, and order in the collagen lattice as the transition from keratan 

sulphate to the less negatively charged and more highly sulphated 

compounds begins in the limbus region. 31 The fibers in the cornea are 

homogeneous in diameter, 25-35 nm, with a characteristic axial period of 

64 nm while the irregularly spaced scleral fibers vary in diameter from 

28-260 nm with a wide range in axial period of 30-300 nm. In addition, 

the cornea is composed of 4.5% ground substance compared to 1% in the 

sclera. 10 Sin~e the cornea differs from the sclera in a more negatively 

charged and greater concentration of proteoglycans, a higher ordered 

lattice is acheived in the cornea. 

The corneal stroma has two separate indices of refraction for light 

polarized in different planes: the refractive index for collagen fibers 

is 1.55, and the index for the ground substance is 1.375. When light 

enters a material with two refractive indices, the light is refracted 

twice and split into two rays. Such a material is said to be 
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Figure 5. Schematic Representation of the Proteoglycan Distribution 
from the Mid-Cornea to Sclera: (From Davson [6]) 
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birefringent, and the birefringence is defined to be the difference 

scatter light independently of one another. most of the incident light 

would be scattered; however, this is not the case. The diameter of the 

fibrils is greater than the wavelength of visible light, and 

accordingly, diffraction becomes important. Due to the regular spacing 

of the lattice, the diffracted rays passing forward tend to cancel each 

other by destructive interference. Since the light scattered by fibrils 

is destructive, the cornea appears transparent functioning as a complex 

diffraction grating. 10 

The cornea's transparency can be contrasted to the opaqueness of the 

sclera. The irregular spacing of the collagen fibrils causes the 

forward diffracted rays to no longer be cancelled by destructive 

interference. This forward scattering gives the sclera its 

characteristic appearance as the white of the eye. 10 

When the cornea swells, there is a change in the observed 

birefringence. 18 Swelling of the stroma results from the increased 

hydration of the matrix. Furthermore, this affinity to water is due to 

the presence of a large number of negatively charged proteoglycans. 13 

Assuming all the incoming water goes into the matrix, swelling takes 

place only in the plane perpendicular to the surface. The arrangement 

of the fibers is distorted. 17 Moving the fibrils apart changes the 
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relationship between the fiber spacing and the wavelength of the light 

while the optical properties of the fibrils remain unchanged. 10 Edema 

causes the tissue to act as a diffraction grating so that light is 

broken into its component color appearing as a halo of surrounding 

light. 34 

Descemet!s Membrane 

Between the stroma and the endothelium lies a basement membrane secreted 

by the endothelium. Descemet's membrane is 5-10 µ thick 6 and thins as 

it approaches the limbus where it continues as the basement membrane of 

the scleral endothelium. 30 

The membrane's composition is different from the stromal composition. 

The characteristic polypeptide chains on the collagen molecules are not 

the same. The fibrils have an axial period of 117 nm as compared to 64 

nm in the stromal fibrils. The membrane's collagen is similiar to the 

types found in the lens capsule and cartilage whereas the stromal 

collagen is similiar to the types found in the skin, bone, and tendon. 6 

When Descemet's membrane is cut, the elastic fibers retract curling up 

into a forward directed spiral. If the damage is done on the posterior 

surface of the cornea, endothelial cells migrate into the gap left by 
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the contracted fibers. 15 Should Descemet's membrane be perforated from 

the anterior side, stromal cells will migrate to the injuried site. 

Keratoblasts form a plug which becomes fibrous tissue in the large gap. 

The fibrous tissue shows no continuity with the endothelium. 8 Although 

the membrane is capable of regeneration by the endothelium, the cut 

edges never reunite. 15 

Endothelium 

Covering the posterior surface of the cornea, the endothelium is formed 

by a single layer of large, flattened hexagonal cells about 5 µ high and 

20 µ wide. 6 Microvilli cover the posterior surface greatly increasing 

the surface area. 15 

At first, the opthalmologists believed that the anterior and posterior 

surfaces were impermeable to water. These layers are now known to be 

permeable to water and salts. 10 The polysaccaride gel of the stroma has 

a tendency to take up water. As the fluid passively enters from the 

tears, the fluid must be pumped out of the cornea to maintain its 

thickness. The endothelial cells possess the ion pump necessary to 

extract the water bonded in the stroma and transport it into the 

anterior chamber. 13 The cells' role in the dehydration of the cornea and 

as a permeability barrier is of vital importance to the corneal tissue 

Anatomy and Physiology of the Cornea 20 



and its clarity. 22 

Even though the endothelial cells have the ability to synthesize 

collagen and secrete Descemet's membrane, the endothelium cannot be 

regenerated. Mitotic division only occurs with growth and does not keep 

pace with the increase in surface area thus flattening the cells. 6 

Progressive cell loss occurs with age; and furthermore, the loss is 

increased by cell damage through injury and disease. The endothelial 

cells are capable of compensating for a reduction in cell population by 

spreading out and enlarging three to four times their original size. 15 

However, there is a limit at which the cell loss is too great for the 

new endothelium to support the full activity of the fluid pump. At this 

point the normal thickness of the cornea cannot be maintained; and 

consequently, the corneal clarity is compromised. 6 

2.3 PHYSIOLOGY OF CORNEAL HEALING 

The cornea has no blood or lymphatic vessels. When a clean incision is 

made during radial keratotomy, the cornea heals in an avascular manner. 

If the wound was extensive, blood and lymphatic vessels would grow into 

the cornea to accelerate the healing process. 8 

The tissue reaction begins in the anterior stroma. As tears flow into 

the wound, edema rapidly spreads until reaching maximum opaqueness 
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within twenty-four hours.a 

Following the influx of water, the epithelial cells infiltrate the wound 

forming a protective layer over the injured tissue. As the individual 

epithelial cells flatten, spread, and undergo mitotic division, the 

cells attempt to fill every crevice to make the surface smooth and 

regular again. The epithelial cells, particularly the basal cells, are 

believed to manufacture several chemical substances which initiate the 

assistance of the stromal cells.a 

Within one hour, many stromal cells in the vicinity die losing their 

projections and synaptic pattern. In the surrounding areas, the cells 

proliferate and send out coarse projection~. 15 Travelling through the 

laminae, these keratoblasts develop into long spindle cells resembling 

fibroblasts from which they were originally derived.a Once the damaged 

area is reacheq, these cells synthesize three mucoploysaccarides: 

keratan sulfate, chrondroitin, and chrondroitin sulfate. 15 Later, the 

stromal cells supplement the matrix synthesis with the formation of 

collagen fibrils.a 

The cornea is first invaded by polymorphonuclear leucocytes, white blood 

cells. Initially, the cells escape the conjunctival vessels near the 

limbus, transverse the conjunctiva, and pass superficially to the wound 

by way of the tear film. Later the cells, migrating from the perilimbal 
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vessels, also travel through the laminae deformed into long spindle 

shapes. Crowding around the injuried area mainly under the epithelium, 

the leucocytes function as scavengers ingesting dead tissue, degenerated 

cells, bacteria, foriegn particles and the like. The phagocytic activity 

is well established within twenty-four hours and lasts for three to four 

days before the formation of collagen. The polymorphonuclear leucocytes 

begin to disappear in a week. 8 

Within fourty-eight hours, a second invasion of macrophages occurs. At 

first, the large ameboid mononuclear cells act as scavengers removing 

cellular debris but are later transformed into keratoblasts forming new 

collagen fibrils and corneal corpuscles.is 

Cuts that are made along the meridian of the cornea become V-shaped gaps 

in cross-section due to the intraocular pressure. Bridging the gap, the 

keratoblasts are aligned perpendicular to the walls of the wound. The 

somewhat spindle shaped fibrils are deposited parallel to the elongated 

surface of the keratoblasts and are irregularly disposed in a reticular 

fashion running in non-parallel bundles. The courser regenerated 

fibrils do not have the same regularity in axial period as do the 

fibrils in the normal laminae, and the average diameter of the fibrils 

in the scar is much wider than that of the uninjuried tissue. 38 

Accordingly, the regenerated matrix does not form a perfect optical 

medium. 8 
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About fourty-five days into the healing process, the structure of 

fibrils becomes more regular, and the cells, originally plentiful under 

the epithelium, diminish in number. 8 Carrying the tension applied by 

the intraocular pressure, the fibrils tend to conform to the 

configuration of the normal laminae, and align perpendicular to the 

incision in order to contract the gaping margins of the wound. 15 By 

assuming this configuration, the collagen fibrils only support the 

tension applied normal to the incision. As the wound contracts, the 

thin hairline scars diminish in cloudiness; however, the ideal optical 

and mechanical state is not attained. 

2.4 MATERIAL PROPERTIES 

The cornea displays material properties characteristic of soft tissue. 

Its behavioral features include a non-linear stress-strain relationship 

under load-elongation, hysteresis in cyclic loading, stress relaxation 

at constant strain, creep at constant stress, and preconditioning in 

repeated cycles. 14 

To determine the rheological properties in the plane of the corneal 

surface, Nyquist performed uniaxial tension tests on the tissue. After 

observing the non-linear stress-strain relationship, he concluded that 

for small' stresses in the physiologic range, the mechanical properties 

are nearly linear whereas at higher stresses, the non-linear 

Anatomy and Physiology of the Cornea 24 



characteristics predominate. 35 Kobayashi and Larson's uniaxial tension 

tests were in quantitative agreement with Nyquist's data. 23 

Based upon Nyquist's work, the viscoelastic cornea is simplified to 

behave as a Hookean elastic solid in the physiologic range of stress. 

From his data, an acceptible value for Young's modulus, E, is 4.86 x 10 7 

dynes/cm 2 • 

Due to its large water content, the cornea behaves similiar to most 

biological materials in that it i~ incompressible. Thus, Poisson's 

ratio, v, is 0.5. 

Anatomy and Physiology of the Cornea 25 



3.0 SURGICAL PROCEDURE 

3.1 DEVELOPMENT OF RADIAL KERATOTOMY 

The development of radial keratotomy began in Japan before contact lens 

technology was developed. In 1939, Dr. Sato of Japan experimented with 

making 35 posterior corneal incisions and 40 anterior incisions. At 

that time, the role of endothelium in corneal dehydration and clarity 

was unknown. Within six months to a year, Dr. Sato's patients developed 

corneal edema. An average of twenty years after the operations, there 

was an absence of endothelium and abnormal collageneous material 

posterior to Descemet's membrane. 47 

In 1972, Dr. Svyatoslav N. Fyodorov treated Boris Petrov, a sixteen year 

old Russian boy, whose glasses shattered in a fist fight lacerating his 

cornea. Once the glass was removed, Dr. Fyodorov observed that the 

boy's myopia decreased. He then reviewed the literature and modified 

Dr. Sato's technique by making only anterior incisions. Fyodorov and 

Durnev found that 16 incisions gave almost the same results as 20, 24, 

or 32, and are also credited with realizing varying the diameter of the 

optical zone altered the degree of correction. They determined the 

correction was a function of corneal diameter, optical zone diameter, 

radius of curvature, scleral rigidity, and a practical coefficient for 
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the surgeon. 38 An equation was formulated to predict the correction, 

yet in view of a constant varying with each surgeon's experience, the 

equation has no basis from an engineer's point of view. 

Experience with the procedure has reduced the number of incisions from 

sixteen to eight. Eight incisions produce more than 80% of the effect 

of sixteen incisions. They provide fewer scars and potentially less 

glare, fewer overcorrections, and the option of making additional 

incisions for an undercorrected case. Additionally, the cornea remains 

rigid during the procedure. 47 

3.2 CLINICAL MEASUREMENT AND EVALUATION 

Radial keratotomy is a surgical procedure of which almost every aspect 

remains under debate. Over the last decade, the controversy comes from 

surgical techniques differing with each surgeon's experience. 

Furthermore, the data has mostly been taken from office records intended 

for patient management, not research. Two organizations, the National 

Radial Keratotomy Group and the Keratorefractive Society, have been 

undertaken studies intended for research. 47 

To study the effectiveness of the procedure, measurements of refraction, 

visual acuity, and corneal shape are taken before and after surgery, and 

during several follow-up examinations. Visual acuity is measured by 
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standardized charts, corneal curvature by keratometry, and corneal 

topography through photokeratoscopy. Ocular dominance is also 

determined to study the effect of performing surgery on one eye. The 

near point of accommodation is found to study the effect on the ability 

to read without glasses. To quantify the complications after surgery, 

glare, endothelial cell size, the smallest diameter of the central zone, 

and the scar length and depth are measured. 47 

3.3 SUMMARY OF OPERATIVE PROCEDURE 

On an outpatient basis, the surgery is performed under sterile 

conditions using an operating microscope. No mydraitic drops which 

cause pupil dilation are used. A small pupil helps to prevent 

accidental misplacement of the visual axis and reduces photophobia, 

sensitivity to light. A topical anesthia is applied, and the cornea is 

kept moist with a balanced salt solution. 47 

The visual axis is determined by asking the patient to fix upon a point 

within the microscope. The surgeon marks the epithelium with a 

hyperdermic needle. A dull marking trephine, a circular saw, is placed 

so that the intersection of the cross hairs within the trephine 

coincides with the small epithelial defect marking the visual axis. 

Setting the diameter of the trephine to the optical zone previously 

determined by the degree of myopia, the trephine makes a circular 
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indentation in the epithelium without damaging Bowman's membrane. 47 

The thickness is measured with an ultrasonic pachymeter at the center 

and at 90°, 180°, 270°, and 360° postions on the trephine mark. Using a 

screw type micrometer, the knife length is then advanced to 85~ of the 

thinnest pachymeter reading. The diamond blade knife with a 45° cutting 

angle extends between two parallel footplates. The 1.27 mm wide, smooth 

flat surfaces of the footplate are designed to slide easily over the 

surface. Fixating the cornea at the limbus with forceps, the surgeon 

places the blade 180° away from the fixation point. The blade pierces 

the tissue directly without the footplate compressing or displacing the 

cornea, and then is moved slowly and smoothly to the limbus. The 

surgeon makes eight radial cuts equidistant around the cornea. 47 (Refer 

to figure 1 noting the order of the incisions.) 

Each wound is irrigated with a balanced salt solution, and the depth of 

the incisions is verified with a micrometer. Antibotic drops are used 

post-operatively with the application of a mild pressure patch. 47 

3.4 COMPLICATIONS AND RESULTS 

Severe complications such as perforation of the lens, microbial 

inflammation of the cornea, or inflammation of the internal structures 

of the eye are possible but highly unlikely to occur. 47 
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After the incisions weaken the cornea, the intraocular pressure pushes 

the cornea into its new configuration and holds the deformed state until 

the wounds heal. Since the intraocular pressure varies during the day, 

patients experience fluctuating vision for 2-4 months until the cornea 

stabilizes. Sensitivity to light, photophobia, and glare are also 

noticed a few weeks after surgery. The wounds scatter light that may 

degrade the retinal image by decreasing contrast, but as the wounds 

heal, the scars become less opaque decreasing the glare and 

photophobia. 47 Each patient has different healing capacities which may 

result in only partial improvement of these symptoms and return of some 

myopia. 

Villasenor, et al (45] observed that during surgery, a significant 

reduction in corneal thickness occured probably resulting from the heat 

of the operating room lights. Using ultrasonic pachymetry both 

centrally and peripherally, the decrease in thickness averaged 10% with 

a range of 7.8-15% with a modest reversal post-operatively. Surgeons 

may be cutting under the assumption the cornea thickens through edema. 

Thus the probability of perforation increases. Kramer (26] noted in at 

least 10% of the cases that perforation of the cornea occured thus 

damaging the endothelium. 

Even if perforation does not occur, trephination and scalpel pressure 

may destroy and stretch the endothelial cells by indirectly stretching 

Surgical Procedure 30 



the endothelial sheet. In addition, the posterior surface area is 

increased with deformation flattening the cells centrally and 

peripherally. 32 ~liller and Weiss (32] observed membrane wrinkling and 

cell destruction for up to two cell widths on each side of the incision. 

The buckling of Descemet's membrane appeared to be proportional to the 

deformation produced. Along these same lines, Yamaguchi, et al (51] 

found the appearance of a fold in Descemet's membrane within a week 

after surgery. No mention was made as to how long the fold remained, 

but one ridge appeared underneath each incision and seemed to be under 

mechanical pressure. With these factors in mind, Miller and Weiss 

estimated a 10-20% cell loss whereas Hoffer, et al [19] concluded a 

mean endothelial loss of 10%. With a loss of this magnitude, the 

endothelial cells may be separated and will lead to edema. Considering 

the additional loss through aging, decades of follow-up may be necessary 

to determine if the loss is clinicially significant. 

A wide range of discrepancy exists concerning the change in thickness 

following surgery. Bores [2] found that edema extended from the bottom 

of the incisions anteriorly, and in no case involved the central optical 

zone. In all of his cases, edema disappeared within five weeks. Reddy 

(36) also observed a return to the original pre-operative thickness. 

Schachar (38] stated that the thickness did not return to its previous 

depth; however, the edematous condition disappeared within 3-6 months. 

Furthermore, Fyodorov (40] concluded that the cornea became thicker by 
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40 µatone year after surgery. 

3.5 LITERATURE REVIEW 

In the literature, the papers analyzing the cornea as a thin shell have 

been mostly limited to the cornea's response under the loading of an 

applanation tonometer. Providing a method for diagnosing glaucoma, a 

tonometer applies a small flat disk to the anterior surface estimating 

the intraocular pressure by the cornea's resistance to deformation. The 

first attempts used simple membrane theory to understand the tissue 

response to the compressive loading, yet a more rigorous model was 

necessary to improve the precision of the measurements. Schwartz [40] 

used a thin spherical, shallow shell to approximate the cornea, but as 

shown in the next section, the assumption of shallowness is not valid 

for the corneal geometric constraints. With regard to the differing 

elastic properties of each layer, Mow [32] predicted the deformation 

through thin shell theory. However, Kobayashi, et al. [24] pointed out 

that Nyquist's experimental data determined the material properties 

across the entire thickness of the cornea and not each layer. Later, 

Kobayashi and Woo [24], [48] modeled the elastic structural response by 

finite element analysis. They assumed Poisson's ratio to be 0.49, 

nearly incompressible, and incorporated the non-spherical geometry and 

non-homogeneous material properties of the corneo-scleral shell into 

their analysis. These studies have a limited application to the 
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conditions of this problem except for gaining insight into the material 

behavior. 

Schachar, Black, and Huang [38] is the only paper in which a 

mathematical model for radial keratotomy is constructed. Considering 

the cornea as a thin spherical shell, they developed a linear small 

displacement model based on the principle of minimum total strain 

energy. The model was approximated analytically by the Rayleigh-Ritz 

method. In the formulation of the model, the bending component of 

strain was neglected, and the shell was assumed to be axi-symmetric, 

homogeneous, linearly elastic with E = 4.86xl0 7 dynes/cm 2 , 

incompressible with v = 0.45, and orthotropic. Schachar, et al. stated 

that aiter the operation, the thickness was no longer equal to the 

pre-operative thickness. To consider the effective thickness, they kept 

the thickness constant, and modified Young's modulus as a function of 

meridional and.circumferential arc length, the ratio of the incision 

depth to the thickness, and a coefficient representing the probability 

of cutting collagen fibrils. In this way, the orthotropic assumption 

was made, and they predicted the corneal deformation that would occur in 

a shell of uniform thickness as Young's modulus was decreased. They 

found that the normal movement near the optical zone to be about 50-75 µ 

forward. The entire cornea moved outward with most of the movement 

occurring near the optical zone. The small displacement produces large 

changes in curvature resulting in the flattening of the cornea with the 
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greatest amount in the central region. Schachar, et al. concluded that 

radial keratotomy deformed the cornea through stretching the entire 

cornea not through peripheral bulging as Fyodorov surmised. 
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4.0 PROBLEM DEFINITION 

4. 1 INTRODUCTION 

The cornea is a thin shell loaded only by internal pressure. 

Intraocular pressure is applied uniformly to the posterior surface of 

the cornea, and therefore, is symmetric with respect to the entire 

shell. The following assumptions on the shell are made: axi-symmetric, 

spherical, homogeneous, isotropic, incompressible, and linearly elastic. 

The behavior of a spherical shell, whose thickness is a function of 

meridional arc length but whose elastic properties are independent of 

position, is analyzed. 

The first section defines the geometric parameters of the problem and 

the parameters classifying the thin shell assumption. The following 

section formulates the governing equations of shell behavior under 

internal pressure loading, and the last section specifies the boundary 

conditions as a simply-supported shell. 
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4.2 GEOMETRY 

Figure 6 illustrates the basic notation used to characterize a spherical 

shell. The cornea can be described as a thin shell bounded by its 

anterior and posterior surfaces. These two closely spaced curves do not 

have concentric radii of curvature; nevertheless, the behavior of the 

cornea is assumed to be governed by the behavior of the middle surface. 

In other words, the displacements throughout the shell can be determined 

by the displacement of the middle surface. As the middle surface's 

radius of curvature is defined as the average radius of the bounding 

surfaces, the middle surface is located equidistant from the anterior 

and posterior surfaces. The thickness of the shell can be specified 

along a normal to that surface at any given point as the distance 

between the anterior and posterior surfaces. Designating the form of 

the middle surface and the thickness at every point, the shell is 

defined geometrically. 

The shell is generated by the rotation of a plane curve about a vertical 

axis. One principle line of curvature, the plane curve or the middle 

surface, is refered to as the meridian. The second line of curvature is 

defined by the rotation of any given point on the meridian about the 

vertical axis, forming a horizontal circle called the hoop. The 

positive directions are shown in Figure 7. In a shell of revolution, 

all geometric parameters are considered axisymmetric. Also, since the 
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Figure 6. Cross-Sectional Geometry 
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loading of internal pressure on the cornea is symmetric, all shell 

spatial dependence to one independent variable, ¢. 

The cornea has the following dimensions: 

a = 7.2 mm 

R = 7.8 mm 
0 

R. = 6.6 mm 
1 

t = 0.5 mm 
0 

t1 = 0.66 mm 

H = 2.684 mm 

d = 11. 7 mm 

¢1 = 48.5°, 

where: 

a - radius of curvature of the middle surface 

R - radius of curvature of the anterior surface 
0 

R. - radius of curvature of the posterior surface 
1 

t - thickness at the corneal apex 
0 

t1 - thickness at the limbus 

H - shell height 

d - diameter of the base 

¢1 - angle of opening. 
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The plane through the outer visible border at which the limbus begins is 

the base of the cornea. The height of the shell is measured from the 

base to the anterior surface. 

Two parameters are defined as criteria to satisfy the assumptions 

characterizing the shell type. The assumption of thinness requires that 

the thickness of the shell be small in comparision with the radius of 

curvature and the dimensions of the middle surface. For this to be 

valid, the ratio of thickness to radius of curvature is usually less 

than one-tenth. The requirement of shallowness is that the ratio of 

height to base diameter must be less than one-eighth. For the corneal 

dimensions, 

t 0.5 
0 0.069 = 

R 7.2 

H 2.684 
= 0.229. 

d 11.7 

From these parameters, the cornea can be classified as a thin shell but 

cannot be further assumed to be a shallow one. The shell's thickness 

still is not thin enough to neglect the bending effects. 
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4.3 EQUATION FORMULATION 

The technical theory of thin shells is based on certain approximate 

assumptions. The first of ~hich, thinness, was discussed in the 

previous section. The other postulates are as follows: 

• The displacements and displacement gradients are small in comparison 
with the thickness of the shell. 

• The transverse normal stress is negligible in comparison to the 
in-plane normal stresses. 

• Straight lines normal to the middle surface remain normal subsequent 
to deformation and undergo no change in length. 

These simplifying assumptions allow a reasonable description of thin 

shell behavior in the development of general bending theory. 

Figure 7 illustrates the resultant forces and moments acting on the 

shell element. The equations of static equilibrium for a spherical 

shell can be Wfitten as: 

where prime denotes a derivative with respect to~. and the 
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Figure 7. Resultant Forces and Moments Acting on a Spherical Element 
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resultant quanities are defined as: 

N - resultan~ normal force 

M - resultant moment 

Q - resultant transverse shear force 

p - internal pressure loaded perpendicular to the middle surface. 

In order to consider variable thickness, the thickness is assumed to be 

a function of¢. Thus the flexural rigidity, D, and the extensional 

rigidity, K, are also dependent upon arc length, and are defined as: 

t = t(¢) (4.4) 

Et 3 (¢) 
DC¢) = (4.5) 

12(1-v 2 ) 

Et(¢) 
KC¢) = (4.6) 

l-v 2 

The constitutive equations are given by: 

N¢ = KC¢) [e:¢ + ve:9] (4. 7) 

NS = K(¢)(e:9 + VE:¢] (4.8) 

M¢ = D(¢)(X¢ + vX8] (4.9) 

Ma = D(¢)[x 8 + vx¢], (4.10) 
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where: 

t - normal strain 

X - change in curvature during deformation 

u¢ - displacement along the meridian 

f3 ¢ - meridional angle of rotation. 

The deformation is related to the strains through: 

I 

£¢ = ~¢ + w 
a 

(4.11) 

1 
£8 = (u¢cot¢ + w) 

a 

(4.12) 

1 

K¢ = f3¢ 
I 

a 

( 4. 13) 

Ke = ~¢ cot¢, (4.14) 

a 

where: 

1 

f3¢ = (u¢ - WI)• 

a 
( 4. 15) 

Including the equations of equilibrium, the constitutive relations, the 

strain-displacement relations, and the definition of f3¢' we have twelve 

equations and twelve unknowns. These equations can be reduced to two 
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simultaneous second-order ordinary differential equations in terms of 

the rotation, S¢' and transverse shear, Q¢. The derivation of the 

governing equations for a thin shell of variable thickness is available 

in Kraus' thin shell theory text [26]. For this case, we have: 

3t' 3cot¢t' 
8,i," + (cot¢ + - )8 ' - 8 cot 2 ¢ - v(l -

'1' t ¢ ¢ )8¢ 
t 

= 

t' cot¢t' 
Q,i.11 + (cot¢ - - )Q ' - (cot 2 ¢ - v(l + 

'I' t ¢ t 

t' 
= - Et8¢ + f(l-v)pa 

t 

Once 8¢ and Q¢ are known, the stress resultants, moments, and 

displacements qre obtained from: 

N¢ = Q¢cot¢ + -!pa 

Ne = Q I + 1pa ¢ 

DC¢) 
M¢ = [8/ + vcot¢8¢] 

a 

D(¢) 
Me = [8¢cot¢ + vS¢'l 

a 
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¢ a (1 +v) 1 
uqi = sin¢ [ J (N¢ - N¢) d¢ + c2 J 

0 Et(¢) sin¢ 
(4.22) 

a 
w = -- (N - vN ) - u¢cot¢, 

Et(¢) e ¢ 
(4.23) 

where c2 is the constant of integration satisfying the boundary 

condition on axial displacement of a reference point on the shell. The 

integral for determining u¢ is fixed at the origin. c2 must be 

specified to fix the reference point at the limbus. In the derivation 

of the expression for N¢, the boundary condition representing the net 

axial component of any end loads applied to the shell is set to zero. 

4.4 BOUNDARY CONDITIONS 

At the apex of the cornea, the transverse shear and rotation vanish to 

insure no tendency for the adjoining edge to slide with respect to one 

another. In addition, these terms must be set to zero so that the 

varibles will be finite as the cotangent approaches infinity at this 

point. Thus, 

at¢= 0°. (4.24) 

With an abrupt geometric change in the limbal region, the circular 

fibers provide a natural boundary condition functioning essentially as a 

reinforcing ring. These fibers introduce an inward radial thrust 
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balancing the tension in the cornea and sclera. The ring almost 

entirely prevents the outward motion of the boundary while allowing 

rotation of the corneal surface. Thus, a simply supported edge is 

prescribed at the limbus. 

The following conditions must be satisfied to define a simply supported 

edge: 

• The edge is simply supported allowing for rotation, but there can be 
no momemt at the edge, 

• There can be no displacement at the shell edge, 

Specifying the boundary condition in terms of Q¢ and e¢ involves the 

formulation of two first-order differential equations. For the first 

condition, the stress-strain equation for M¢ is set to zero. Thus, 

at¢= 0°. (4.25) 

For the remaining condition, u¢ and ware expressed as the horizontal 

displacement o: 

0 = (4.26) 

0 = (4.27) 
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Recalling the strain-displacement relation for the circumferential 

strain and the stress-strain equations for the normal stress, 

0 = i:ea sin¢ 

asin¢ 
0 = (N¢ - vN8). 

K(¢)(1-v 2 ) 

Since there can be no horizontal displacement, 

= 0. 

(4.28) 

(4.29) 

(4.30) 

Finally, the condition is given in terms of Q¢ through the equations of 

equilibrium used in obtaining the normal stresses: 

(4.31) 

To summarize the boundary conditions, 

Q¢ = 0, e = o at ¢ = 00 (4.24) 
¢ 

ect> ' + ve¢cot¢ = 0 at ¢ = ¢1 (4.25) 

Q¢ ' vQ¢cot¢ - to - v)pa = 0. (4.31) 
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5.0 NUMERICAL SOLUTION 

5.1 INTRODUCTION 

Finite difference techniques are used to solve the governing equations 

(§4.3) and the accompanying boundary conditions (§4.4). 

Defined in the next section, the forward difference analogs are 

substituted into the governing equations to yield the finite difference 

equations. These equations are given in the third section, and the 

application of the difference analogs to the boundary conditions is 

discussed in the fourth section. Finally, the last section deals with 

solving the system of finite difference equations. 

5.2 FINITE DIFFERENCE ANALOGS 

The independent variable, ¢, varies from 0° to ¢1 . This interval is 

divided into R increments of equal spacing, A¢. Varying from 1 to R, 

the index i is used to indicate position along the ¢-axis. 
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The forward difference analogs cooresonding to the discretized forms of 

the first and second derivatives of a dependent variable with respect to 

¢ are defined by: 

1 
c;" = 

These analogs are second-order correct with all higher-order terms 

truncated. 

5.3 FINITE DIFFERENCE EQUATIONS 

(5. 1) 

(5. 2) 

The finite difference equations are obtained by substituting the forward 

difference analogs into the governing equations. The resulting set of 

simultaneous equations are of the form: 

c:Q + B:Q + B~8 1 n: + A.Q¢ = (5.3a) 
1 ¢i+l 1 ¢. 1 ¢. 1 i-1 1 

1 1 

C~8 3 4 + A~8 + B.Q¢ + B.8¢ = 0' (5.3b) 
1 ¢i+l 1 . 1 . 1 ¢. 1 1 1 1-
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where: 

1 1 t. ' 
A~ = (cot¢. - _i_) 

l M 2 2M l t. 
l 

(5.3c) 

1 1 3t. ' 
A~ (cot¢. l = ---) 

l t.q,2 2M l t. 
l 

(5.3d) 

2 cot¢.t. ' 
B~ cot 2 ¢. + \) (l + l l ) = - - -

1 t.q,2 l t. 
l 

(5.3e) 

B: = Et. (S.3f) 
l l 

BJ 
12a 2 (l-n2) 

= 3 l Et. 
(5.3g) 

l 

2 3cot¢t. ' 
B~ cot 2 ¢. \) (l l ) = - - - - -

l t.q,2 l t. 
l 

(5.3h) 

1 1 t. ' cl (cot¢. l = -+ --) 
l t.q,2 2M l t. 

l 

(5.3i) 

1 1 3t. ' 
c~ = + (cot¢. _l_) 

l l:!.¢2 21:i.¢ l t. 
l. 

(S.3j) 

t. ' 
D~ l. = f (1-v)pa ~. 

l 
(5.3k) 

l 

This procedure yields two finite difference equations written about each 

discretized point for a total of 2xR equations and 2xR unknowns. 
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5.4 APPLICATION OF THE BOUNDARY COUNDITIONS TO THE FINITE 

DIFFERENCE EQUATIONS 

The first and Rth finite difference equations at each endpoint are 

different from those given above. 

At the apex, the values fore¢ and Q¢ are prescribed and are therefore 

known. These values are applied to the first finite difference 

equations such that: 

When i=O, (5.4) 

When i=l, 1 1 2 Dl ClQ¢ BlQ¢ + B1e¢ = 1 
(5.Sa) 

2 1 1 

4 3 + B4e o, c1e¢ + B1Q¢ = 
1 ¢1 

(5.5b) 
2 1 

1 4 where A1 = A1 = 0 and the remaining coefficients are given by the 

expressions in §5.3. 

In order to impose the boundary conditions at the limbus, a fictitious 

point outside the region is used to specify the value of the first 

derivative at the boundary. The analog of the first derivative is 

applied to the boundary conditions. th Written for the R+l value, these 

two relations are: 
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= p - 2A¢(vcotc/)Rp~) 
c/JR-1 ~R 

(5.oa) 

= Q + 2A¢(vcot¢RQ~ - !(1-v)pa). 
c/JR-1 ~R 

(5.6b) 

The dependent variables at the ficitious point are eliminated through 

substitution of these relations into the finite difference equation 

about the Rth point. th . The R equation is of the same form of those 

given in §S.3 with the coefficients specified as follows: 

Al A4 
2 

= = R R A¢2 
(5.6c) 

Bl 
2 2vcotc/JR 

= + - (1-v)cot 2¢R + v R Ac/)2 A¢ 
(5.6d) 

B2 = R EtR (S.6e) 

B3 
12a 2(1-n2) 

= 3 R EtR 
(5. 6f) 

B4 
2 2vcotc/JR 

= - (l+v)cot 2¢ - v R Ac/)2 A¢ 
(5.6g) 

cl = c4 = 0 R R 
(5.6h) 

Dl 
2 

= !(1-v)pa [ + cot(/,]. R M 
(5.6i) 

In this manner, the correct analogs are obtained at the boundaries. 
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5.5 SOLUTION OF THE FINITE DIFFERENCE EQUATIONS 

The finite difference equations constitute a system of equations 

cooresponding to each equally spaced base point from 1 to R. Since the 

two governing equations are linear, the set of simultaneous equations 

generated are linear, and are solved by the algorithm for the 

bi-tridiagonal matrix. Accordingly, the values for the dependent 

variable are calculated at each point. 

Once the values for Q¢ and S¢ are approximated, the stress resultants, 

moments, and displacements are found through the equations in §4.3. For 

the equations involving the first derivative, the forward difference 

analog is applied. To compute u¢, the trapezoidal rule is used to 

approximate the integral. 

The computer program for solving the system of finite difference 

equations is given in Appendix A. 

The numerical approximation is compared to an illustrative example given 

in Krauss' (27]. The problem is that of an isotropic, hemispherical cap 

of constant thickness with clamped ends and loaded by internal pressure. 

In Figure 8 the non-dimensionalized Na, M¢, and Ma are plotted as 

functions of meridional position and of the ratio of R/h equivalent to 

10 and 100. These results are almost identical to Krauss' general 
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solution in terms of hypergeometric functions. The close comparison 

lends credibility to this formulation and numerical procedure. 

Direct comparison with a thin shell of variable thickness was not 

possible as a literature search turned up only one other effort in this 

area which was a shell loaded under its own weight (42]. 

Numerical Solution 54 



l. l ,----,----,----,----,------,-------,-------,-------,----, 

-.---·- ----: I.~ 1-------~~-=· -=-::.:·.=-:...·_-________ ___;,,_'-:-___ -~ R.·T•l0B 

> ,8 

" 
0 ,7 

"' "' 
" .. 

• 5 

HUN[IHCAL (XANPL[ TAKEN FRON KRAUSS 

.2 l_ ___ ._ ___ "---~"---~--------------------• 10 20 30 •• 50 •• 70 80 90 
M[RIDIOHAL AHGL[ IH DEGREES ,----,----,----,----,------,-------,-------,-------,------,.,T 

~/\ 
~ 0l----1----l----j-----i-----t-==,=.::.;;;.;;;.;;;..4~-;.,'c::::-+"t-~ 

- -\--- 10 
Q 

~ -2 
> 
Q 

J 

"' z 
0 

Q 

"' "' ,: 

,., . . 
" "' Q 

z 

"' "' 

-• 

-• 
-8 

-10 

~ -3 
:, 
u 
; 

10 20 30 

HUl"l[RJCAL (XAMPL[ TAK[H FRON t<RAUSS 

100 

•• 58 •• 70 80 •• 
M[R lDJOHAL AHGL[ 1H DEGREES 

100 

HUN(RICAL [XAl'1Pl[ TAIC'[H ff~ON t<RAU~S 

-4 "----"---~---~-------------------~---~ • 
Figure 8. 

10 28 30 40 50 60 ,. 80 90 

MERIDIONAL ANGLE IH DEG.REES 

Circumferential Normal Force, Axial Moment, and 
Circumferential Moment Distributions for Kraus' Numerical 
Example: An isotropic, hemispherical shell of constant 
thickness with clamped ends and loaded by internal 
pressure. 

Numerical Solution 55 



6.0 RESULTS AND CONCLUSIONS 

6.1 INTRODUCTION 

The main objective of this investigation is to compare deformation 

fields in the cornea. First, a shell of constant curvature will be 

compared to a shell of natural curvature. Second, a shell of natural 

thickness will be compared to a shell with a 10% increase in natural 

thickness. 

To gain insight into the cornea's natural configuration, a comparison is 

made between the displacement field predicted by a constant thickness 

shell model and the one of normally varying thickness. In the past, 

most analysis of the cornea have been based on uniform thickness and 

neglected bending stresses in the shell. The cornea's variable 

thickness increases the shell's efficiency in distributing the bending 

stresses. 

The increasing thickness in the periphery of the shell attempts to model 

the edematous state resulting from the incisions. It is thought that 

the increasing depth would play a significant role in the corneal 

deformation after radial keratotomy. However, the results show that the 

displacement due to an increasing thickness is not great enough to 
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produce the results expected from radial keratotomy. In addition, the 

radius of curvature changes in the opposite direction. The primary 

contribution is believed to be the incisions, themselves, as they 

relieve the residual stresses in the cornea. 

In the next section, the results comparing a shell of constant thickness 

to one of naturally varying thickness will be discussed. Then, the 

third section will present the results from increasing the normal 

thickness and deal with its effect on the cornea. 

6.2 COMPARISON OF A CONSTANT THICKNESS AND A NATURALLY 

VARYING THICKNESS SHELL 

Due to its curvature, a shell is able to transmit surface loads through 

membrane stresses parallel to the tangential plane. In general, thin 

shells are thi~k enough to carry loads by compressive, tensile and shear 

stress, but thin enough not to develop appreciable bending stresses. As 

discussed in §4.2, this is not the case in the cornea. Its thickness is 

dictated by bending disturbances rather than by membrane stresses. 

Bending is introduced by the support condition at the limbus. At the 

boundary, internal pressure tends to move the shell out while the 

reinforcing ring constrains the shell and tends to move it in. When the 

reactions are not tangent to the meridian along the boundary, bending 
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stresses occur in the neighborhood of the boundary. Hence, it is 

necessary to increase the thickness to increase the bending rigidity of 

the shell. 

To model the normally varying thickness of the cornea, the following 

thickness function is assumed: 

t(¢) = t (1 + A(sin¢)), 
0 

where A is a coefficient determined by the thickness at the limbus, 

Figures 9-10 are plots of the transverse shear, normal, and bending 

resultant force distributions for a shell of constant thickness and one 

of normally varying thickness. The difference in the transverse shear 

and normal distributions between the constant and the normal thickness 

cases is slight compared to the reduction in bending moments. Figure 10 

shows that the moments are greater in the periphery of the shell, and 

the natural thickness of the cornea is very efficient in transmitting 

the bending stresses introduced at the boundaries. 

Figure 11 is a plot of the displacements in the cornea, and plots those 

displacements as the deformed shape of the middle surface. At the apex, 

the cornea is displaced about 1 µ as the thickness is changed from 
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constant to normal. The shell of greater thickness does not deform as 

much when loaded by internal pressure. This could be predicted by the 

increased bending rigidity of the shell. 

Figure 12 is a plot of the change in curvature and angle of rotation of 

the middle surface during deformation. As can be seen in both plots, 

the change in curvature in the periphery decreases as the shell depth 

increases from constant to normal. Recalling K¢ is the inverse of the 

change in radius of curvature, the decrease in K¢ increases the radius 

of curvature in this region. Whereas at the central cornea, the 

increase in K¢ decreases the radius of curvature. Figure 11 of the 

deformed middle surface better illustrates the difference in curvature. 

Under normal thickness, the cornea flattens in the periphery and 

steepens toward the center much like its normal shape. The cornea owes 

a portion of its curvature to the variable thickness of the shell. 
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6.3 RES UL TS FROM INCREASING THE NATURAL THICKNESS OF THE 

CORNEA 

The natural corneal thickness is increased by 10~ in the peripheral 

cornea, and the transition to the central optical zone is fit with a 

sine curve. Figure 13 illustrates the thickness function itself and the 

effective shape of the anterior surface. 

The distribution of shell variables across the shell are plotted in 

Figures 14-17. The jump in the thickness curve at 10° results from the 

sharp transition in the effective thickness. Intuitively, one would 

expect the results of an additional increase in thickness to be similiar 

to the results of the previous section, except not as dramatic. This is 

indeed the case. 

With an increase in thickness, the normal displacement is less than 0.3 

µ at the apex of the cornea while the difference in radius of curvature 

is on the order of 5 µ. Referring to Table 1, the change in refractive 

power of the cornea is minute in comparison to the change needed to 

correct myopia. 

The deformed shape of the middle surface is graphed in Figure 17. With 

the increased bending rigidity of the periphery, the cornea moves inward 

becoming flatter in the peripheral zone and steeper in the central zone. 
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This movement is exactly opposite of that experienced by radial 

keratotomy. 

Physically, the movement of the cornea with increased thickness is 

limited by the virtue of the lateral support in a shell structure. The 

meridians of the shell are supported by the parallels which restrain 

their lateral displacement by developing circumferential stresses. The 

hoop stresses permit a small amount of movement in and out of the 

meridian but do not allow large displacement. Consequently, incisions 

must be made along the meridians to release the hoop stresses, and allow 

large displacements exhibited by radial keratotomy. 
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Table 1. Comparison of Refractive Parame~ers• 

Constant 
Thickness 

Normal 
Thickness 

10~~ Increase 
in Thickness 

Normal 
Deflection 

w (µ) 

15. 0 

14.0 

13.8 

Change In 
Curvature 

(102) 

-2.785 

1.096 

2.140 

Deformed 
Radius of 

Curvature (mm) 

7.215 

7.194 

7.189 

• The refractive power of the cornea, D, is calculated by the 
standard keratometry equation with the index of refraction, n, 
assumed to be 1.3375. The data can be compared to a normal 
cornea with a radius of 7.2 mm where D = 46.88. 
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Dioptic 
Power 

D 

46.78 

46.91 

46.95 
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6.4 CONCLUSIONS 

This thesis accomplishes the following: 

1. The cornea is defined as a thin shell of variable thickness, and 

modeled by the general shell equations of elasticity. 

2. This formulation is the first appearance of an analysis of a cornea 

of variable thickness taking into consideration the contribution of 

bending stress. 

3. The governing equations for a normal cornea under the loading of 

intraocular pressure are solved through finite difference 

techniques. 

4. In the comparison of a cornea of constant thickness and one of 

normal thickness, it is concluded that the normal curvature of the 

cornea is influenced by its variable thickness. The bending 

rigidity of the cornea is increased with increasing thickness. 

5. The increase in thickness in the edematous state resulting from 

radial keratotomy is modeled by a 10% increase in the normal 

thickness in the area of the incisions. Results indicate a further 

stiffening of the cornea and more importantly an increase in 
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curvature at the apex. This is opposite to the desired decrease in 

curvature for radial keratotomy. Corneal displacement is minute in 

comparison to the displacement needed to correct myopia. Thus, 

edema induced by other techniques in the hope of reversing myopia 

could not produce the desired results. 

6. In order to model radial keratotomy, the model must take into 

account the circumferential weakening produced by the incisions and 

the subsequent healing in the deformed state. 

To model the incisions, future efforts could consider the orthotropic 

properties of the cornea as functions of position such that E¢ = E¢(¢,9) 

and E9 = E9 (¢,9). By varying Young's modulus along the meridian, the 

length of incisions could be modeled. With Young's modulus varying 

periodically along the circumference, the discontinuity in hoop stresses 

caused by the incision could be taken into account. Another approach 

might be to relax the spherical assumption and introduce r 9 as a 

function of arc length. The incision opening necessary to deform the 

cornea to a desired state could be determined by altering the 

circumferential radius in the incised area. 
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A.O COMPUTER CODE FOR FINITE DIFFERENCE SOLUTION 

C THIS PROGRAM WILL SOLVE THE THIN SHELL EQUATIONS FOR A SPHERICAL 
C SHELL OF VARIABLE THICKNESS UNDERINTERNAL PRESSURE ONLY 
C USING FINITE DIFFERENCE TECHNIQUES. 
C 
C 

REAL*B EL1(101), EL2(101), EL3(101),EL4(101),B2(101),B3(101), 
1 Gl(lOl), G2(101), Bl(lOl), Al(lOl), B4(101), Cl(lOl), Dl(lOl), 
2 Tl(lOl), X(lOl), CT(lOl), T2(101), T3(101), T4(101),T5(101), 
3 QPHI(lOl), B(lOl), T(lOl), DT(lOl), DDT(lOl), BT1(101),T7(101), 
4 BT2(101), BT3(101), BT4(101), DTl(lOl), DT2(101), NPHI(lOl), 
5 NHOOP(lOl), MPHI(lOl), MHOOP(lOl), KPHI(lOl), KHOOP(lOl), 
6 UPHI(lOl), W(lOl), BPHI(lOl), F(lOl), A4(101), C4(101),T8(101), 
7 R, PHI, DX, P, E, POIS, TF, A, T6, ANG, PI, DEG(lOl), C, CI, 
8 XI(lOl), YI(lOl), XF(lOl), YF(lOl), DEL, PR, D(lOl), DI, T9(101) 

C 
C IN IS THE NUMBER OF INCREMENTS . 
C DX IS THE LENGTH OF THE INCREMENT. 
C PHI IS THE LENGTH FROM THE APEX TO THE LIMBUS IN RADIANS. 
C R IS THE RADIUS OF CURVATURE IN CM. 
C 

C 

IN=lOO 
PI=3.1415392654DOO 
PHI=0.846DOO 
R=0.72DOO 
DX=PHI/IN 
X(l)=O. ODOO 
T(l )=O. OSDOO 
DT(l)=O.ODOO 
DDT(l)=O. ODOO 
INMl=IN-1 
INPl=IN+l 

C PIS THE INTRAOCULAR PRESSURE IN DYNES PER CM SQUARED. 
C POIS IS POISSON'S RATIO. 
C EIS YOUNG'S MODULUS IN DYNES PER CM SQUARED. 
C 

C 

P=20666.7DOO 
POIS=0.5DOO 
E=48600000.0DOO 

C FOR A CHANGE IN THICKNESS, SOLVE FOR THE COEFFICIENT A. 
C 
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C 

DEL=O.OSDOO 
TF=0.066DOO 
A=eTF/DEL-1.0DOO)/DSINePHI) 

C FIND THE THICKNESS AT EACH POINT, WHERE TIS THE THICKNESS, DT 
C IS THE FIRST DERIVATIVE OF THE THICKNESS WITH RESPECT TO 
C PHI, AND DDT IS THE SECOND DERIVATIVE WITH RESPECT TO PHI. 
C 
C CALCULATE T ACCORDING TO THE NOR:!AL THICKNESS FUNCTION. 
C 

DO 4 I=2,INP1 
X(I)=X(I-l)+DX 
Te I) =DEL'': e 1. ODOO+A,\-DS IN ex e I))) 
DTe I )=DEU:A,':DCOS ex (I)) 

4 DDT(I)=-DEL*A*DSINeX(I)) 
C 
C INCREASE T BY 10~~ IN THE PERIPHERY. 
C 

DO 5 I=32,INP1 
5 T(I)=T(I),':1. lODOO 

C 
C CALCULATE T ACROSS THE TRANSITION REGION. 
C 

C 
DI=T(32)-Te22) 

DO 6 ·I=22,32 
N=I-32 
ANG=PI*el.ODOO+N/10.DOO) 

6 T(I)=T(22)+DI*el.ODOO+DCOSeANG))/2.0DOO 
C 

DO 7 I=22,IN 
DT(I)=(T(I+l)-TeI-1))/e2.0DOO*DX) 

7 DDT (I)= eT e I+l) -2. ODoo,':T (I )+T (I-1)) / eDx,·,,.,2) 
C 
C XI, YI ARE THE COORDINATES OF THE MIDDLE SURFACE BEFORE DEFORMATION. 
C 

DO 8 I=l,101 
XI(I)=R*DSIN(X(I)) 
YI(I)=R*DCOS(X(I)) 

8 CONTINUE 
C 

DO 9 I=l, INPl 
9 DEG(I)=X(I)*180.0DOO/PI 

WRITE(6,140) A,(DEG(I),T(I),XI(l),YI(I),I=l,101) 
140 FORMAT(//lX,'A = ',E14.7///101(4(5X,E14.7)/)///) 

C 
C THEN WE WILL CALCULATE THE COMPOt,,TENTS OF THE COEFFICIENTS OF THE 
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C FINITE DIFFERENCE EQUATIONS. 
C 

DO 10 I=2,INP1 
CT(I)=l.ODOO/DTAN(X(I)) 
Tl(I)=l.ODOO/(DX**2) 
T2 (I) =CT (I ) ''"'0 2 
T3(I)=DT(I)*CT(I)/T(I) 
T4(I)=(CT(I)-DT(I)/T(I))/(2.0DOO*DX) 

10 TS(I)=(CT(I)+3.0DOO*DT(I)/T(I))/(2.0DOO*DX) 
C 
C CALCULATE THE COEFFICIENTS OF THE FINITE DIFFERENCE EQUATIONS FROM 
C POINT 1 TO R-1 
C 

DO 11 I=2, IN 
Al(I)=Tl(I)-T4(I) 
A4(I)=Tl(I)-TS(I) 
B 1 ( I )=-2. ODOQ,':-Tl ( I )-T2 ( I )+POIS,'•( 1. ODOO+T3 (I)) 
B2 (I)=E'' 0T(I) 
B3(I)=-12.0DOO*R**2*(1.0DOO-POIS**2)/(E*T(I)**3) 
B4(I)=-2.0DOO*Tl(I)-T2(I)-POIS*(l.OD00-3.0DOO*T3(I)) 
Cl(I)=Tl(I)+T4(I) 
C4(I)=Tl(I)+TS(I) 

11 Dl(I)=POIS*P*R*DT(I)/(2.0DOO*T(I)) 
C 
C INITIALIZE THE VALUES OF THE FUNCTIONS. 
C 

DO 12 I=l, INPl 
QPHI(I)=O.ODOO 

12 B (I )=0. ODOO 
C 
C 
C FROM THE BOUNDARY CONDITIONS AT THE APEX, INITIALIZE THE COEFFICIENT 
C A FOR THE FINITE DIFFERENCE EQUATION AT POINT 3. 
C 

A1(2)=0.0DOO 
A4(2)=0.0DOO 

C 
C CALCULATE THE COEFFICIENTS OF THE RTH FINITE DIFFERENCE EQUATION 
C ACCORDING TO THE PRESCRIBED BOUNDARY CONDITIONS FOR U. 
C 

C 
T6=2.0DOO*P0IS*CT(INP1)/DX 

Al(INP1)=2.0DOO*Tl(INP1) 
A4(INPl)=Al(INPl) 
B 1 (INPl )=-2. OD00'''Tl (INP 1 )+T6-POIS,'0T2 (INPl )+POIS 
B2(INP1)=E*T(INP1) 
B3(INP1)=-12.0DOO*R**2*(1.0DOO-POIS**2)/(E*T(INP1)**3) 
B4(INP1)=-2.0DOO*Tl(INP1)-T6-(1.0DOO+POIS)*T2(INP1)-P0IS 
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C 

Dl(INP1)=P0IS*P*R/2.0D00*(2.0DOO/DX+CT(INP1)) 
Cl(INPl)=O.ODOO 
C4 (INPl)=O. ODOO 

C INITIALIZE THE VALUES OF THE FUNCTIONS COMPUTED IN THE ALGORITHM 
C ACCORDING TO THE FIRST EQUATION AT POINT 1. 
C 

C 

BT1(2)=B1(2) 
BT2(2)=B2(2) 
BT3(2)=B3(2) 
BT4(2)=B4(2) 
DT1(2)=D1(2) 
DT2(2)=0.0DOO 
EM=B1(2)*B4(2)-B2(2)*B3(2) 
EL1(2)=B4(2)*C1(2)/EM 
EL2(2)=-B2(2)*C4(2)/EM 
EL3(2)=-B3(2)*C1(2)/EM 
EL4(2)=B1(2)*C4(2)/EM 
G1(2)=B4(2)*D1(2)/EM 
G2(2)=-B3(2)*D1(2)/EM 

C COMPUTATION OF THE FUNCTIONS COMPUTED FOR THE BI-TRIDIAGONAL 
C MATRIX ALGORITHM. 
C 

C 

C 

C 

C 

C 

C 
C 
C 

DO 13 I=3, INPl 

BTl(I)=Bl(I)-Al(I)*ELl(I-1) 
BT2(I)=B2(I)-Al(I)*EL2(I-1) 
BT3(I)=B3(I)-A4(I)*EL3(I-1) 
BT4(I)=B4(I)-A4(I)*EL4(I-1) 

EM=BT1(I)*BT4(I)-BT2(I)*BT3(I) 

EL1(l)=BT4(I)*Cl(I)/EM 
EL2(I)=-BT2(I)*C4(I)/EM 
EL3(I)=-BT3(I)*Cl(I)/EM 
EL4(I)=BT1(I)*C4(I)/EM 

DTl(I)=Dl(I)-Al(I)*Gl(I-1) 
DT2(I)=-A4(I)*G2(I-l) 

Gl(I)=(BT4(I)*DT1(I)-BT2(I)*DT2(I))/EM 
13 G2(I)=(BTl(I)*DT2(I)-BT3(I)*DTl(I))/EM 

C THE BACK SOLUTION IS: 
C 
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C 

C 

QPHI(INPl)=Gl(INPl) 
B ( INPl )=G2 ( INPl) 

DO 14 I=l,INMl 
J=INPl-I 
QPHI(J)=Gl(J)-ELl(J)*QPHI(J+l)-EL2(J)*B(J+l) 

14 B(J)=G2(J)-EL3(J)*QPHI(J+l)-EL4(J)*B(J+l) 

C QPHI IS THE TRANSVERSE SHEAR FORCE IN THE PHI-DIRECTION. 
C BIS THE ANGLE OF ROTATION. 
C 
C 
C ONCE QPHI AND BETA ARE KNOWN AT EACH POINT, WE CAN THEN CALCULATE 
C THE NORMAL STRESSES, MOMENTS, AND CHANGES IN CURVATURE: 
C WHERE NQHI IS THE RESULTANT NORMAL FORCE IN THE QHI-DIRECTION, 
C NHOOP IS THE RESULTANT NORMAL FORCE IN THE THETA-DIRECTION, 
C MPHI IS THE MOMENT IN THE PHI-DIRECTION, MHOOP IS THE MOMENT IN 
C THE THETA-DIRECTION, KPHI IS THE CHANGE IN CURVATURE IN THE 
C PHI-DIRECTION, AND THE KHOOP IS THE CHANGE IN CURVATURE IN THE 
C THETA-DIRECTION. 
C 

PR=P>':R/2. ODOO 
C 

C 

C 

C 

DO 15 I=2,INP1 
15 T8(I)=B(I)*CT(I) 

NPHI (1 )=PR 
NHOOP(l)=PR 
KHOOP(l)=0.0000 
KPHI(l)=O.ODOO 
KPHI(INP1)=-POIS/R*T8(INP1) 
MPHI(l)=O.ODOO 
MHOOP (1 )=O. 0000 
MPHI(INPl)=0.0000 
MHOOP(INPl)=E*T(INP1)**3*TS(INPl)/(12.0DOO*R) 

DO 16 I=2,INP1 
NPHI(I)=QPHI(I)*CT(I)+PR 

16 KHOOP(I)=T8(I)/R 

NHOOP(INPl)=POIS*NPHI(INPl) 
C 

C 

DO 17 I=2,IN 
T7(I)=(B(I+l)-B(I-l))/(2.0DOO*DX) 
D(I)=E*T(I)**3/(R*l2.0DOO*(l.ODOO-P0IS**2)) 

NHOOP(I)=(QPHI(I+l)-QPHI(I-1))/(2.0DOO*DX)+PR 
MPHI(I)=D(I)*(T7(I)+P0IS*T8(I)) 
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MHOOP(I)=D(I)*(T8(I)+POIS*T7(I)) 
17 KPHI(I)=T7(I)/R 

C 
C NOW WE CAN ALSO CALCULATE THE DEFLECTIONS WHERE UPHI IS THE 
C DEFLECTION IN THE PHI-DIRECTION AND WIS THE DEFLECTION NORMAL TO 
C THE SL:RFACE. THE TRAPEZOIDAL RULE IS USED TO EVALUATE THE INTEGRAL 
C IN THE EXPRESSION FOR UPHI. 
C 

C 

C 

C 

F(l)=O.ODOO 
UPHI(l)=O.ODOO 
UPHI(INPl)=O.ODOO 
Wel)=R*NPHI(l)*POIS/(E*Tel)) 
W (INPl )=O. ODOO 
T9el)=O.ODOO 

DO 18 I=2,INP1 
FeI)=eNPHieI)-NHOOPeI))/eTeI)*DSINexeI))) 

18 T9(I)=T9eI-l)+F(I-l)+FeI) 

CI=R*el.ODOO+POIS)/E 
C=-T9eINPl)*CI*DX/2.0DOO 

DO 19 J=2,INP1 
UPHI(J)=DSINexeJ))*eCI*T9eJ)*DX/2.0DOO+C) 

19 WeJ)=R/eE*TeJ))*eNHOOPeJ)-POIS*NPHieJ))-UPHieJ)*CT(J) 
C 
C XF, YF ARE THE COORDINATES OF THE MIDDLE SURFACE AFTER DEFORMATION. 
C 

DO 20 I=l, INPl 
XF (I )=XI (I)+ e -UPHI (I )·'·DCOS ex e I) )+W(I )-'·DS IN ex (I))) 

20 YF(I)=YI (I)+eUPHI eI)-'<DSIN(X(I) )+WeI)·'·DCOS eX(I))) 
C 
C 
C WRITE(6,100) (DEG(I),QPHI(I),NPHI(I),NHOOP(I), I=l,101) 
C WRITEe6,120) eDEG(I),MPHI(I), MHOOP(I), I=l,101) 
C WRITE(6,100) (DEG(I),B(I),KPHI(I),KHOOP(I),I=l,101) 
C WRITEe6,120) eDEG(I),UPHieI),WeI),I=l,101) 

WRITEe6,100) exieI),YieI),XFeI),YFeI),I=l,101) 
100 FORMATe//10le4eSX,E14.7)/)///) 

C 120 FORMATe//10le3eSX,E14.7)/)///) 
RETURN 
END 

C$ENTRY 
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