
Improving Autonomous Robotic
Navigation Using Imitation Learning
Brian Cèsar-Tondreau1,2*, Garrett Warnell 2, Ethan Stump2, Kevin Kochersberger1 and
Nicholas R. Waytowich2

1Unmanned Systems Laboratory, Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA,
United States, 2Army Research Laboratory, Adelphi, MD, United States

Autonomous navigation to a specified waypoint is traditionally accomplished with a layered
stack of global path planning and local motion planningmodules that generate feasible and
obstacle-free trajectories. While these modules can be modified to meet task-specific
constraints and user preferences, current modification procedures require substantial
effort on the part of an expert roboticist with a great deal of technical training. In this paper,
we simplify this process by inserting a Machine Learning module between the global path
planning and local motion planning modules of an off-the shelf navigation stack. This model
can be trained with human demonstrations of the preferred navigation behavior, using a
training procedure based on Behavioral Cloning, allowing for an intuitive modification of the
navigation policy by non-technical users to suit task-specific constraints. We find that our
approach can successfully adapt a robot’s navigation behavior to becomemore like that of
a demonstrator. Moreover, for a fixed amount of demonstration data, we find that the
proposed technique compares favorably to recent baselines with respect to both
navigation success rate and trajectory similarity to the demonstrator.

Keywords: autonomous navigation, learning from demonstration, imitation learning, human in the loop, robot
learning and behavior adaptation

1 INTRODUCTION

Decades of work in autonomous robot navigation have resulted in a well-studied and successful
framework for safe and efficient traversal in known and unknown environments. Given an accurate
environment map, autonomous navigation can be accomplished with a combination of global path
planning (Kavraki et al., 1996; LaValle and Kuffner Jr, 2001) and local motion control (Petrovic,
2018; Thrun, 1998). Valid trajectories are typically computed by optimizing a pre-specified cost
function that measures factors such as path length, chance of collision, and execution time (Petrovic,
2018).

However, adapting this standard framework to exhibit unanticipated but necessary navigation
behaviors can be challenging. The need for such adaptation arises because what constitutes a valid
trajectory can vary across users, tasks, and the specific environments in which the agent is deployed.
For example, in situations such as disaster robotics (Doroodgar et al., 2014; Liu et al., 2012), the
ability to perform on-the-fly adaption of navigation behaviors in light of new information in dynamic
environmental conditions (e.g., decreased traversability of roads due to partial flooding), may prove
critical to the success of the mission. Explicitly modifying the navigation cost function to induce valid
trajectories may be possible, but doing so accurately and quickly currently requires substantial effort
from an expert roboticist with a great deal of technical training, if it can be done at all. Therefore, we
seek alternate methods for incorporating user preferences into autonomous navigation systems that

Edited by:
Hongbo Gao,

University of Science and Technology
of China, China

Reviewed by:
Elias Kosmatopoulos,

Democritus University of Thrace,
Greece

Reza Ghabcheloo,
Tampere University, Finland

*Correspondence:
Brian Cèsar-Tondreau

bcesarto@vt.edu

Specialty section:
This article was submitted to

Robotic Control Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 10 November 2020
Accepted: 07 May 2021
Published: 01 June 2021

Citation:
Cèsar-Tondreau B, Warnell G,

Stump E, Kochersberger K and
Waytowich NR (2021) Improving

Autonomous Robotic Navigation Using
Imitation Learning.

Front. Robot. AI 8:627730.
doi: 10.3389/frobt.2021.627730

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277301

ORIGINAL RESEARCH
published: 01 June 2021

doi: 10.3389/frobt.2021.627730

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.627730&domain=pdf&date_stamp=2021-06-01
https://www.frontiersin.org/articles/10.3389/frobt.2021.627730/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.627730/full
http://creativecommons.org/licenses/by/4.0/
mailto:bcesarto@vt.edu
https://doi.org/10.3389/frobt.2021.627730
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.627730

do not involve explicitly re-writing computer code or specifying
cost functions and are accessible to users without training in
robotics. Combining autonomous navigation with Machine
Learning is a promising approach by which such alternate
methods might be developed. In particular, Learning from
Demonstration (LfD) (Argall et al., 2009)—in which a
machine learner attempts to imitate the behavior of a
demonstrator—is directly applicable to the problem of
autonomous navigation since many humans can successfully
provide demonstrations by tele-operating the platform.
Unfortunately, precisely how LfD approaches should be
applied to the problem of autonomous navigation still remains
unclear. Existing approaches based on Inverse Reinforcement
Learning (Wigness et al., 2018) may incur large training costs,
and approaches based on Behavioral Cloning (BC) (Bojarski et al.,
2016) are limited by common issues such as data distribution shift
(Ross et al., 2010) and lack of generalization. Furthermore, many
existing approaches incur a prohibitively large human cost in
terms of amount of demonstration data required (Neu and
Szepesvári, 2012; Pfeiffer et al., 2018).

In this paper, we propose a new framework for combining
autonomous navigation and LfD to overcome these limitations.
The key idea is to combat the costs inherent in pure Machine
Learning approaches by leveraging an appropriate amount of the
existing machinery of planning and control. This idea has been
successfully used in other contexts in the form of a learned
navigation system that can propose intermediate waypoints
(Bansal et al., 2019) or approximate planner costs that have
no easy calculation (Stein et al., 2018). Such hybrid
approaches leverage the results and guarantees of decades of
work in optimal control and planning but take advantage of
specific locations where heuristics can speed up or shape the
results.

Our proposed approach adopts such a hybrid approach in
the context of LfD in two novel ways: 1) by integrating BC
directly into an off-the-shelf navigation stack through a
module we insert between the existing global path planner
and the local motion planner, and 2) by using a training
paradigm that uses demonstrations from both humans and
a classical navigation stack to increase the overall system
success rate. With respect to (1) in particular, the inserted
module takes input from both the platform’s on-board sensors
and the global path planner to produce intermediate goals for
the local planner. Unlike traditional systems in which these
intermediate goals are specified by the global planner, the goals
produced by our module are the output of a learned function
that is trained to emulate navigation behavior as demonstrated
through tele-operation by a human. We study the proposed
method experimentally in a simulated environment.
Specifically, for a fixed amount of demonstration data, we
seek to characterize the efficacy of our approach in terms of
both the similarity of the produced navigation trajectories to
that of the demonstrator as well as the overall navigation task
success rate. We evaluate the performance of our proposed
method in two simulation environments: 1) a simple proof of
concept environment simulated in Gazebo (Koenig and
Howard, 2004), and 2) a more realistic and complex

environment simulated in Unity (Unity Technologies). We
compare our technique to recently-proposed baselines that
also propose to incorporate LfD with autonomous navigation,
and we find that the proposed technique excels in
performance.

2 RELATED WORK

In this section, we discuss classical approaches for robotic
navigation, followed by a brief exploration of Machine
Learning from Demonstration, then conclude this section by
highlighting recent hybrid approaches that try to combine
the two.

Classical robot navigation is accomplished with a hierarchical
suite of navigation software. Specifically, a global path planning
module that generates optimal paths given an occupancy map,
and local planner that executes feasible control signals that adhere
to the robot’s kinematic constraints and a mathematically defined
objective function (Kalakrishnan et al., 2011; Kavraki et al., 1996;
Laumond et al., 1994; LaValle and Kuffner Jr, 2001). While this
setup can reliably generate geometrically optimal trajectories and
motions over long distances, navigation trajectories/behaviors
that are optimal with respect to user preferences or constraints are
not easily defined mathematically. Thus, necessitating inclusion
of Machine Learning approaches to traditional path planning.

Recent interest in improving upon traditional robot
navigation have been geared towards leveraging Machine
Learning techniques such as Learning from Demonstration
(LfD) to help facilitate robot navigation. Learning from
Demonstrations can be decomposed into two general areas
based on the approach: Behavioral Cloning (BC), an
application of Supervised Learning where a mapping from
observations to actions is learned (Ross et al., 2010) and
Inverse Reinforcement Learning (IRL), which generates a
reward function that explains the demonstrated behavior
(Abbeel et al., 2004; Ziebart et al., 2008). Some approaches
attempt to use Machine Learning in isolation for handling
robot navigation. For example, Chiang et al. frame the
navigation task as an end-to-end learning problem to predict
continuous controls (e.g., steering angle, translational and
rotational velocities) directly from raw state observations
(Lewis Chiang et al., 2018).

Other recent works attempt to combine Machine Learning
and classical navigation as an intuitive means to quickly model
preferences for a navigation task with the help of a human
teacher. Wigness et al. (2018) and Siva et al. (2019), combine
IRL and visual feature extraction to train navigation policies in
unstructured terrains from human demonstrations. However,
methods for IRL involve an iterative constrained search
through the space of reward functions, leading to a
disproportionate growth in solution complexity with the
problem size. Müller et al. (2018) aim to transfer driving
policies from simulation to physical platforms and achieve this
by learning policies that output a series of waypoints to be
followed by a lower-level planning and control system. They
focused on a general navigation task rather than consideration of

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277302

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

how this setup might be used as a mechanism for Imitation
Learning. Gao et al.’s intention-net (Gao et al., 2017), and
Pokle et al.’s work (Pokle et al., 2019) are similar to our own
approach as they utilize the global planner provide the general
direction that a robot should travel to reach a desired
destination in a known environment. These methods
attempt to address the shortcomings of classical navigation
with Machine Learning at the cost of high training time,
complexity, and data efficiency by training models to
replace the functionality of proven low level controllers
used in classical navigation techniques. Instead of replacing
the local controller, our approach integrates a trained policy as
an intermediate module between the path planner and local
controller modules found in any off-the shelf navigation
software. This effectively combines an intuitive interface for
a human user to adapt a proven, but inflexible, navigation
control scheme with their own preferences and behavior on
how the navigation problem should be solved.

Our key contributions are twofold. First, we introduce a novel
and efficient training scheme for using LfD in autonomous
navigation that contrasts with current-state of the art
approaches. Second, we provide empirical evidence that our
new that the proposed method can achieve high path
completion rates in both familiar training and novel testing
environments while adhering to an implicitly defined
navigation rule embedded in human demonstration.

3 APPROACH

Our proposed approach integrates a behavior cloning model
directly into an off-the-shelf navigation stack as a means to
enable adaptation via human-demonstrated navigation
behaviors. Figure 1 shows a system diagram of the proposed
architecture, wherein our behavior cloning model takes as input
the current bearing to the global goal and a windowed sequence of
sensory and state estimation information, and provides as output
a local goal for the local planner. In this section we provide a
general overview of the proposed system architecture, followed by
our model training and demonstration collection procedure.

3.1 State Space and Feature Extraction
We modify a traditional layered navigation stack of global and
local path planning modules by inserting between them a new
Machine Learning module. This module accepts as input both
platform sensor data as well as features related to the global
planner, and outputs goals for the local planner. Below, we
describe the state and action spaces for our Machine Learning
module in more detail.

The feature extraction and compilation process we use is
detailed in Figure 1B. The features include perceptual
observations of the current state (i.e., visual cues extracted
from images or spatial information from a planar lidar) and
task information in the form of the current distance and relative

FIGURE 1 | (A) Proposed execution pipeline for improved autonomous navigation: a neural network is inserted before the local planner in the default ROS
navigation stack. This network is trained using BC from human demonstrations tomap current state and task information to goals for the local planner. (B) Visualization of
image features, lidar data, distance to goal, and relative bearing to goal features are collected and transformed to low dimensional inputs to the policy model. (C) The
Imitation Learning module that maps the observations of the current state, pre-processed in the feature extraction step, to a local goal for the local planner.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277303

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

bearing to the navigation goal. As a means by which to supply the
imitation learner with historical context, we also employ a
temporal stacking technique for each of the above features. In
our work, as shown in Figure 1B, we stack m � 2 sequential
(current and previous time instant) features. For the perceptual
observations fc and fl , this amounts to moving from size 72 × 1
each to 2 × 72 × 1 each. For the task features, fB goes from 1 × 20
to 1 × 40 and fD from a scalar to 1 × 2. The state space, st ∈ S, is a
low dimensional representation of the free space in the
environment, and is comprised of the following features:

Lidar features: The lidar feature vector, fl , consists of n evenly
sampled laser range points from a 360° planar lidar. Here,
n � 72, which corresponds to a lidar measurement sampled
every 5° (see Figure 1B).
Visual features: The visual feature vector, fC , is processed from
a panoramic RGB image of the robot’s surroundings that
underwent pixel level semantic labelling of the objects in its
visual frame. Specifically, the panoramic RGB image can be
generated by a camera with a 360° horizontal field of view, or
several cameras arranged about the robot chassis to produce a
similar image. From the RGB image(s), we generate a pixel
level semantic image, labeling each object type (e.g., crate,
building, gravel, etc) in the image frame with a unique color
(see Figure 3F). While our simulator directly generates these
semantically labeled images, in real world environments, one
can acquire similar ones using deep networks for classification
and image segmentation such as Mask RCNN (He et al., 2017)
or DeepLabv3 (Chen et al., 2017). Each element in fC indicates
the presence of an object of interest (such as color, texture, or
pattern) within a segment of the camera’s horizontal field of
view (HFOV) (see Figures 1B,3E).
Goal bearing feature: The goal bearing feature, fB, provides our
network with the navigation goal location’s relative bearing to
the robot at time t. It serves to orient the model’s predicted
actions in the direction of the goal even when maneuvers to
avoid obstacles or adhere to human navigation preferences
leave the robot facing opposite to the goal location (see
Figure 1B).
Distance feature: fD is the euclidean distance between the robot
and the desired goal location at time t. We use distance to the
goal to avoid training the BC model to navigate to specific goal
locations used in training. This allows the policy to generalize
its behavior to goal locations not seen during training (see
Figure 1B).

3.2 Action Space
As discussed in Section 2, most methods combining Machine
Learning with classical navigation, train a model that directly
predicts low level control signals from raw sensory data,
effectively replacing the local planner. Our model, however,
takes advantage of the local motion planning module included
in the ROS navigation stack. To do so, our model predicts one of
L � 9 class labels, each of which corresponds to a 2D waypoint
A � {al|l � 0, . . . , L − 1}. Each waypoint was sampled at
predefined angular intervals along the arc of a semicircle in
front the robot in its coordinate frame of reference (see

Figure 2A). Given the current observation of the state, st , our
BC model outputs L scores—one for each predefined
waypoint—and the waypoint with the highest score is then
passed to the local planner. This leaves the computation of
valid low-level control signals to the local planner which is
specifically designed to consider the kinematic constraints of
the robot platform in its plan. Over the course of the model’s
execution, the model’s predicted waypoints should result in a
path that adheres to the demonstrated user preferences.

3.3 Network Architecture
Our model takes in four separate inputs: state features fl and fC
respectively, the relative bearing to goal fB, and the robots distance
to the goal location fD. fl and fC represent relevant environmental
features observed about the robot. As such, the elements in fl and
fC are spatially correlated which we leverage by performing a
single channel convolution across their respective spatial
dimensions with 64 hidden units. Each of the resulting feature
maps are passed through a max pooling operation, followed by a
dropout regularization of 50%, and finally flattened to a vector
that encodes the robots proximity to all obstacles in the
immediate vicinity and the presence of visually interesting
objects of interest in its field of view. The feature vectors
resulting from the above operations and the unperturbed
relative bearing to goal fB and distance features fD are
concatenated before finally being passed through a fully
connected output layer with SoftMax activation, and nine
hidden units matching the discrete action labels comprising
our action space. Finally, the model is optimized using
categorical cross entropy loss.

While we did not perform an exhaustive hyperparameter
search for the neural network model, we were able to find a
setting that worked well for our purposes. Given the small
number of examples we use during training, adding a
dropout layer at 50% was necessary to prevent over-fitting.
The 64 hidden units in the convolutional and dense layers were
enough to provide a large enough number of parameters for the
model to learn new behaviors from additional demonstrations
without experiencing catastrophic forgetting. We leave further
search and refinement of the neural network architecture to
future work.

3.4 Training Procedure
Our proposed method uses a two phase training procedure: a pre-
training phase followed by a human update phase. First, in the
pre-training phase (see Section 3.4.1), an initial navigation
policy, πθ0, is trained using behavioral cloning on a dataset of
demonstration trajectories, Dnav � {τ0, τ1}, where each
trajectory, τ, is comprised of a sequence of state action pairs
[(s0, a0), (s1, a1), . . .] generated by the ROS move_base
navigation stack. Second, in the human update training phase
(see Section 3.4.2), starting from πθ0, we again use behavioral
cloning to find our navigation policy πθ* using demonstrations
Dexpert � {τ0, τ1} from a human tele-operating the robot
between a predefined set of start and end locations within the
same simulated training environment in a way that adheres to an
implicit navigation rule. It should be noted that, in order to

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277304

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

reduce effort on the part of a human expert to generate
demonstration trajectories,

∣∣∣∣Dnav

∣∣∣∣≫ ∣∣∣∣Dexpert

∣∣∣∣.
This two phase training procedure allows the user to focus on

providing good demonstrations of their navigation preferences in the
second phase, that will be used to modify a “vanilla” navigation policy
trained in the first phase. The total number of training demonstrations
required by our proposed method is far fewer than other works that
utilize the classical navigation modules in their training procedure
(Gao et al., 2017; Pokle et al., 2019). This is because neither one of the
training procedures used in ourmethod is trying to create a policy that
completely replaces classical navigationmodules. Sincewe still employ
these modules at test time, the trained model need not account for
kinematic constraints or recovery behaviors.

3.4.1 Pre-Training Procedure
We train the initial policy network, πθ0, with demonstrationsDnav

only (we describe the collection procedure in Section 4.2) until
either convergence or for a fixed number of epochs. We use a
categorical cross entropy loss function between the action in the
demonstration, ai, and the predicted action label from the
network, âi, i.e.,

Loss � −∑
L−1

i�0
ailog(âi). (1)

Dnav is obtained by recording the state-action sequence (i.e., τ)
observed by the robot being driven by a modified off-the-shelf
navigation system tasked to navigate between randomly-generated

start and end locations in the simulated training environment (see
Algorithm 1 line 2). The demonstrations are obtained by first
observing and recording the robot’s state, st , and then selecting
the closest sub-goal from the navigation system’s global plan that is
at least 2.0 m in front of the robot (see Figure 2B). We then pick the
action at in our action space that is closest to that sub-goal, and task
the navigation system’s local planner to move the robot to the local
waypoint corresponding to at (see Figure 2C). This process is
repeated until the robot reaches the goal and results in a
demonstration trajectory τ with state-action pairs that align with
the state and action space used by the learner. In practice, we stack
themmost recent states and use this stack as the input to our learner.

3.4.2 Training With Human Updates
After the initial navigation policy, πθ0, is trained, we update it with
several human demonstrations, where the user tele-operates the
robot in a way that adheres to one or more semantic rules or
preferences (e.g., navigate a wide berth about objects with specific
features or always keep said objects to the right of the robot).
Demonstrations comprising Dexpert were recorded by dividing the
tele-operation history into distinct segments of 2.0 m
displacement (see Algorithm 1 line 3). The state of the robot
at the start of each segment was recorded as st (see Figure 2D),
and the action al was selected as the one that would yield a
displacement most similar to that observed in the demonstration
segment (see Figure 2E). These demonstrations are then used to
introduce human demonstrated navigation preferences or task-
specific behaviors by initializing the navigation policy πθ* with πθ0

FIGURE 2 | (A) displays each local waypoint al comprising our action space A and their respective coordinates in the robot’s reference frame. (B) and (C) show how
we extract the actions demonstrated by the navigation stack as described in Section 3.4.1. In (B) a sub-goal in front of the robot is selected from the global plan from
which (C) the closest action, al , in the action space, is inferred. Panel (D) and (E) show how we extract the actions demonstrated by human or expert user described in
Section 3.4.2. (D) shows the starting segment when the robot has been moved to a new pose approximately 2.0 m away from its pose in the starting segment,
after the current state, st was recorded. Finally, in (E), the action, al is selected as the one that yields most similar displacement to that observed in (D).

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277305

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

and then performing supervised learning using Dexpert and the
loss function shown in Eq. 1.

4 EXPERIMENTS

We perform simulation experiments with the goal of
characterizing the efficacy of our approach in terms of both
the similarity of the produced navigation trajectories to that of a
demonstrator and the overall navigation task success rate.
Specifically, the goal is to successfully navigate between a start
and goal location while adhering to an implicit navigation style,
to navigate a wide berth around any objects with a specific semantic
label encountered, that the behavior cloning module learned from
human demonstrations as a result of Section 3.4.2. We compare our
approach to recent baselines from Pfieffer et al. (2018) andBojarski
et al. (2016) and find that our proposed method outperforms each
with respect to both similarity to human demonstrations as well as
navigation success rate. We do not provide an empirical analysis
comparing our proposed method and baseline performances to
traditional navigation stack behaviors. We expect that traditional
methods would have a near-perfect navigation completion success
ratio. However, they do not have the capacity to learn from
demonstrations, and therefore would not be able to modify their
behavior to incorporate human navigation preferences.

4.1 Experimental Setup
Experiments were performed using a 0.990 × 0.670 × 0.390m
simulated Clearpath Husky. This Husky is a ground vehicle with
4-wheel differential drive kinematics, a 360° planar lidar, and four
on-board cameras, each with a 120° horizontal field of view. Each
camera is mounted at one of the four corners on the Husky’s chassis
facing outwards, and oriented such that they collectively provide a
360° visual coverage of the Husky’s surroundings.

Experiments were conducted using two different simulators.
The first set of experiments uses the Gazebo simulator and
focuses on two simplistic environments: a 10 × 12m training
environment (Figure 3A) and a 21 × 17m testing environment
(Figure 3B). The obstacles within each environment included a
large blue box, brick walls, and orange Jersey barriers. Our second
set of experiments was performed in a semi-urban environment
created using the Unity simulator. Here again we conducted
experiments in a 62 × 31m training environment (Figure 3C) and
a 48 × 21m testing environment (Figure 3D). The obstacles
within these environments include two kinds of crates, several
buildings, and lamp posts. The temporal stack is initialized with
zero vectors of the same dimensions as our model’s input, st . The
state observed at time t, st , is pushed into the temporal stack and

automatically removes the oldest element, st−m. The temporal
stack is passed as input to the BC model, πθ′ , from which it
predicts the class label, l, of the local waypoint, al , that is executed by
the local planner. All training demonstrations took place in the
respective simulator’s training environment, while evaluation of
each resulting model took place in both the training and testing
environments using navigation tasks (i.e., pairs of starting and ending
points) that were not explicitly part of the training set. In particular, we
considered six different navigation tasks for evaluation: three tasks in
the training environment and three in the testing environment
(visualized by the red blue and green paths in Figures 3A–D). For
each model and navigation task evaluated, we performed 50 trials,
i.e., we recorded the path taken by each model during the trial and
whether the system made it to the destination or not. We consider
trajectories that reach within 0.8m of the goal location successful, and
those that collide with an obstacle or exceed a 100 timesteps as failures.

The experimental scenario conducted in the Gazebo-based
environments as shown in Figures 3A,B, are two enclosed
rooms with large blocks acting as obstacles in an area between
the robot’s starting location and the goal location. The large blocks
are assigned a blue semantic label. Similarly, the experimental
scenario conducted in the Unity-based environments, has several
crates acting as obstacles in an area between the robot’s starting
location and the goal location (as shown in Figures 3A,B). Some of
the crates are semantically labeled i.e the orange crates and the red
and yellow crates in Figure 3E being assigned the blue and red
semantic labels respectively in Figure 3F. In both scenarios, the
obstacles with the blue semantic labels represent the obstacle that
should be traversed in the style of the human demonstrator.

The comparison objective is to empirically measure the
similarities of the trajectories generated by a robot, navigating
under the control of a model trained using our proposed method,
and the experimental baselines, to the exemplar trajectories
demonstrated by a human user through both the training and
testing environments (i.e., the blue paths shown in Figures
3A–D). In essence, we should see that a robot, controlled by a
model trained using our approach, successfully travels from start
to goal, while maintaining a wide distance from semantically
labeled obstacles it encounters.

4.2 Demonstration Data Collection
As described in Section 3.4, we first trained an initial behavior
cloning model, πθ0, to mimic the lowest cost to goal behavior of
the existing move_base navigation software in the ROS
navigation stack. πθ0 was trained for 90 epochs, with a batch
training size of nine examples per batch. To do this, we used
move_base to generate the 200 demonstrations of the robot
autonomously navigating from a randomly-sampled start

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277306

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

location to a randomly-sampled goal location, within each of the
training environments respectively, and record them into Dnav.

To obtain Dexpert , the author provided demonstrations
completing three different navigation tasks, recording four
trajectories per task within each of the training environments
respectively (i.e., 12 trajectories in total for each training
environment). The author generated these demonstrations by tele-
operating the robot in a way that accomplishes each task while
adhering to the following rule: navigate a wide berth around any
obstacles encountered that have the semantic label. Afterwords, we
update the initial policyπθ0 withDexpert , to obtainπθ* . During this step,
one must pay close attention to the number of training epochs used
when updating to avoid catastrophic forgetting of the initial policy
behaviorswhen introducing the humandemonstration behaviors. The
amount of training epochs used when updating πθ0, was

experimentally determined to be around 50 epochs, with a batch
training size of nine examples per batch. The author also provided 12
additional task demonstrations (four trajectories per task) that are
omitted from the training dataset. Three of which were novel tasks
within the Gazebo training environment (see Figure 3A), three in
the Gazebo testing environment (see Figure 3B), three in the Unity
training environment (see Figure 3C) and in the Unity testing
environment (see Figure 3D). These demonstrations are used to
evaluate the performance of themodels trained using our proposed
method and baseline methods.

4.2.1 Data Augmentation
To combat distributional shift in BC, we implemented a data
augmentation method inspired by the work of Bojarski et al.
(2016). For a given state-action pair in the demonstration, we

FIGURE 3 | The top row shows a top down view of the of the (A) training and (B) testing environments simulated in Gazebo. The second row shows a top down
view of the (C) training and (D) testing environments simulated in Unity. Images (A) through (D) display the exemplar paths generated by the human demonstrator
starting from the red dot to the goal location at the green dot. The bottom row of images displays the raw camera image (E), the semantically segmented version of the
raw image (F) and the object of interest extracted from the semantic image (G) used to generate the visual feature vector fC.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277307

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

produce two additional pairs by synthetically applying a
rotational transform to the fl, fC , fB, fD features comprising st
such that they represent the features that would have been
observed if the robot was oriented ± 45° from its current pose,
and a corrective action that would be necessary to bring the robot
back to a familiar state along the demonstrated trajectory under
the associated transformation. This augmentation step effectively
triples the amount of training data obtained from each
demonstration without requiring any additional sensors or
demonstrator time. We will henceforth refer to the original
state-action pairs as coming from the main frame of reference
and distinguish them from these augmented state-action pairs
coming from the corrective frame of reference. We also have a
specific procedure for temporal stacking corrective frame data
before training commences the latest state observation from one
of the corrective frames is stacked on top of them − 1 main frame
observations that precede it. This assumes that the corrective
frame states will temporally follow the main frame state(s),
providing the model with an example of the state progression to
a potential failure state and the associated action necessary to correct it.

4.3 Results
The results of our experiments are shown in Figure 4. They
indicate that, for the fixed amount of demonstration data collected
in our experiments, the proposedmethod can generate trajectories
more similar to the ground truth human demonstrations with
significantly higher completion rates than the models trained with
the comparison methods. First, for each evaluation task, we
recorded the success rate, i.e., the percentage of time that the
system successfully navigated from the start point to the goal
point. As seen in the subfigures labeled “Success Rate” in Figures
4A–D, the proposed method maintains a high task success rate in
all four evaluation environments while the methods compared
against do not. The second way in which we measured
performance was trajectory similarity to the demonstrator.
Note that, for evaluation, we compared the trajectories
generated by each model to the human demonstrations of the
evaluation task that were unique to the demonstrated trajectories
used to train the model. The subfigures labeled “Hausdorff
Distance−1” in Figures 4A–D report the inverse modified
Hausdorff distance between the successful generated trajectories

FIGURE 4 | Experimental results evaluating the performances of eachmodel trained using the baseline methods, Bojarski et al. (2016) (red) and Pfeiffer et al. (2018)
(green), and our proposed method (violet). The top row shows results of new tasks performed within a (A) training environment, and tasks performed in a different (B)
testing environment, both of which were simulated in Gazebo. The bottom row shows experiments conducted in (C) training and (D) testing environments simulated in
Unity. The bar plot titled “Trajectory Similarity from Human Demonstrations” (left) uses Modified Hausdorff distance to quantify how similar the paths resulting from
the policy rollouts are to an average of all human demonstrated paths for the same task. The bar plot titled “Successful Navigation Rate” (right) depict their success rates.
The error bars represent the standard error computed over 50 trials. “***” indicates statistical significance, as computed using a Bonferroni corrected p-value of 0.025.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277308

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

and the average human demonstration (i.e higher values indicate a
greater similarity to the human demonstrations).

Additionally, we performed t-tests to determine statistical
significance between our proposed method and our
experimental baselines using a Bonferroni-corrected p-value
threshold of 0.025. We observed that all experimental trials
except those conducted in the Gazebo training environment
(Figure 4A) were statistically significant. We posit that this is
likely due the Gazebo training environment being the simplest
environment among the four, making it easier for the all models
to match the desired behavior demonstrated by the human user.
The proposed method outperforms the competitors in this
metric, meaning that its generated trajectories were more
similar to those driven by the human.

Taken all together, our results demonstrate not only our
method’s ability to learn navigation behavior like that which
was demonstrated, but also its ability to generalize well beyond
the training environment while retaining a high success rate.

5 DISCUSSION

Our experimental results demonstrate the promise of the
proposed method for performing Imitation Learning for
autonomous robotic navigation. With very little human
demonstration, our method was able to learn navigation
behaviors like those demonstrated and retain a very high
success rate. We posit that our technique was able to
outperform others because it is able to appropriately leverage
much of the existing machinery of autonomous navigation.

During our experiments, we noted that, while the methods from
Bojarski et al. and Pfeiffer et al. were able to learn to navigate around
each environment, they had a lower success rate than our approach.
For the system proposed by Bojarski et al., which was designed for
robust lane following, we observed the agent aimlessly navigating
around the environment, avoiding the semantically labeled obstacles
but never reaching the goal until the maximum number of time steps
is reached. Themethod proposed by Pfeiffer et al. which does include
a notion of global destination, did yield a higher success rate, though,
again, not as high as the method proposed here.

While the results we presented do indeed establish the efficacy of
our approach relative to the baselines, we also found that it has certain
limitations. First, because our method relies on predicting discrete
waypoints at a fixed distance, it is limited in the complexity ofmotion
it can execute. While predicting waypoints to send to the local
planner, saves us the hours of demonstration data needed to train
a navigation policy as robust as an off-the-shelf navigation software, it
does restrict the robot fromperforming highly precisemaneuvers that
models trained to predict wheel velocity and steering commands

directly may be able to capture. Next, we noted that the proposed
technique would sometimes generate waypoints within the inflation
bounds of obstacles. When this happened, the local planner would
still attempt to reach these invalid waypoints, resulting in task failure
due to obstacle collision. In fact, the majority of unsuccessful
navigation attempts recorded for the proposed system during our
experiments were a result of this problem. This issue could possibly be
mitigated through the use of explicit action-selection heuristics.

6 SUMMARY

In this paper, we presented a novel method by which robotic
agents can adapt their navigation behaviors in response to a
demonstration of desirable behavior from a human user.
Specifically, the proposed framework involved augmenting a
traditional layered navigation system with a new machine
learning module that performed BC. By training this module
using the proposed procedure, we showed experimentally that the
system can learn to imitate stylistic navigation behaviors while
retaining the ability to perform successful navigation, even in an
unseen environment.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

BC-T, GW, and NW developed the proposed technique and the
scenarios for evaluation of the proposed concept. BC-T recorded
and analyzed the data in addition to generating the results
including all figures and all tables. GW wrote the abstract and
part of the introduction, BC-T and NW wrote the methods,
results and parts of introduction and discussion. GW, KK, and
NW gave critical feedback on all parts. BC-T, GW, ES, KK, and
NW discussed the results and wrote the overall manuscript
together. All authors contributed to the article and approved
the submitted version.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.627730/
full#supplementary-material

REFERENCES

Abbeel, Pieter., and Y Ng, Andrew. (2004). Apprenticeship Learning via Inverse
Reinforcement Learning. Proceedings of the twenty-first international
conference on Machine learning, Banff, Alberta, Canada (New York, NY:
ACM), 1. doi:10.1145/1015330.1015430

Argall, Brenna. D., Chernova, Sonia., Veloso, Manuela., and Browning, Brett.
(2009). A Survey of Robot Learning from Demonstration. Robotics autonomous
Syst. 57 (5), 469–483.

Bansal, S., Tolani, V., Gupta, S., Malik, J., and Tomlin, C. (2019). Combining
Optimal Control and Learning for Visual Navigation in Novel Environments.
Proceedings of the Conference on Robot Learning, 100, 420–429. arXiv preprint
arXiv:1903.02531 Available at: http://arxiv.org/abs/1903.02531.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6277309

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

https://www.frontiersin.org/articles/10.3389/frobt.2021.627730/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.627730/full#supplementary-material
https://doi.org/10.1145/1015330.1015430
http://arxiv.org/abs/1903.02531
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Bojarski, Mariusz., Davide Del, Testa., Dworakowski, Daniel., Firner, Bernhard.,
Flepp, Beat., Goyal, Prasoon., et al. (2016). End to End Learning for Self-Driving
Cars. CoRR, abs/1604.07316 Available at: http://arxiv.org/abs/1604.07316.

Chen, Liang-Chieh., George, Papandreou., Schroff, Florian., and Adam, Hartwig.
(2017). Rethinking Atrous Convolution for Semantic Image Segmentation.
CoRR, abs/1706.05587Available at: http://arxiv.org/abs/1706.05587.

Doroodgar, B., Yugang Liu, Yugang., and Nejat, G. (2014). A Learning-Based Semi-
autonomous Controller for Robotic Exploration of Unknown Disaster Scenes
while Searching for Victims. IEEE Trans. Cybern. 44 (12), 2719–2732. doi:10.
1109/tcyb.2014.2314294

Gao, W., Hsu, D., Sun Lee, W., Shen, S., and Subramanian, K. (2017). Intention-net:
Integrating Planning and Deep Learning for Goal-Directed Autonomous
Navigation. CoRR, abs/1710.05627 Available at: http://arxiv.org/abs/1710.05627.

He, Kaiming., Gkioxari, Georgia., Dollár, Piotr., and Ross, B. (2017). Girshick. Mask
R-CNN. CoRR, abs/1703.06870 Available at: http://arxiv.org/abs/1703.06870.

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., and Schaal, S. (2011). Learning,
Planning, and Control for Quadruped Locomotion over Challenging Terrain.
Int. J. Robotics Res. 30 (2), 236–258. doi:10.1177/0278364910388677

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE
Trans. Robot. Automat. 12 (4), 566–580. doi:10.1109/70.508439

Laumond, J.-P., Jacobs, P. E., Taix, M., and Murray, R. M. (1994). A Motion
Planner for Nonholonomic mobile Robots. IEEE Trans. Robot. Automat. 10 (5),
577–593. doi:10.1109/70.326564

LaValle, S. M., and Kuffner, J. J., Jr (2001). Randomized Kinodynamic Planning.
Int. J. robotics Res. 20 (5), 378–400. doi:10.1177/02783640122067453

Lewis Chiang, Hao-Tien., Faust, Aleksandra., Fiser, Marek., and Francis, Anthony.
(2018). Learning Navigation Behaviors End to End. CoRR, abs/1809.10124
Available at: http://arxiv.org/abs/1809.10124.

Liu, Yugang., Nejat, Goldie., and Doroodgar, Barzin. (2012). Learning Based Semi-
autonomous Control for Robots in Urban Search and rescue. IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR),
College Station, TX, 1–6. IEEE. 10.1109/SSRR.2012.6523902

Mueller, M., Dosovitskiy, A., Ghanem, B., and Koltun, V. (2018). Driving Policy
Transfer via Modularity and Abstraction. Conference on Robot Learning, 1–15.

Koenig, Nathan., and Howard, Andrew. (2004). Design and Use Paradigms for
Gazebo, an Open-Source Multi-Robot Simulator. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan (New York, NY:
IEEE), 2149–2154.

Neu, Gergely., and Szepesvári, Csaba. (2012). Apprenticeship Learning Using
Inverse Reinforcement Learning and Gradient Methods, CoRR, abs/1206.5264
Available at: http://arxiv.org/abs/1206.5264.

Petrovic, Luka. (2018). Motion Planning in High-Dimensional Spaces. CoRR, abs/
1806.07457 Available at: http://arxiv.org/abs/1806.07457.

Pfeiffer, M., Shukla, S., Turchetta, M., Cadena, C., Krause, A., Siegwart, R., et al.
(2018). Reinforced Imitation: Sample Efficient Deep Reinforcement Learning
for Mapless Navigation by Leveraging Prior Demonstrations. IEEE Robot.
Autom. Lett. 3 (4), 4423–4430. doi:10.1109/lra.2018.2869644

Pokle, A., Martín-Martín, R., Goebel, P., Chow, V., Ewald, H. M., Yang, J., et al.
(2019). Deep Local Trajectory Replanning and Control for Robot Navigation.
CoRR, abs/1905.05279 Available at: http://arxiv.org/abs/1905.05279.

Ross, Stéphane., Gordon, Geoffrey. J., and Andrew Bagnell, J. (2010). No-regret
Reductions for Imitation Learning and Structured Prediction. CoRR, abs/
1011.0686 Available at: http://arxiv.org/abs/1011.0686.

Siva, S., Wigness, Maggie., Rogers, John., and Zhang, Hao. (2019). Robot Adaptation
to Unstructured Terrains by Joint Representation and Apprenticeship Learning.
Robotics: science and systems, Freiburgim Breisgau, Germany (. Robotics: Science
and Systems XV). doi:10.15607/rss.2019.xv.030

Stein, Gregory. J., Bradley, Christopher., and Roy, Nicholas. (2018). Learning over
Subgoals for Efficient Navigation of Structured, Unknown Environments.
Conference on Robot Learning (. PMLR), 213–222.

Thrun, S. (1998). Learning Metric-Topological Maps for Indoor mobile Robot
Navigation. Artif. Intelligence 99 (1), 21–71. doi:10.1016/s0004-3702(97)00078-7

Unity Technologies.
Wigness, Maggie., Rogers, John. G., and Navarro-Serment, Luis. E. (2018). Robot

Navigation from Human Demonstration: Learning Control Behaviors. IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, QLD,
Australia (New York, NY: IEEE), 1150–1157.

Ziebart, Brian. D., Maas, Andrew. L., Bagnell, J. Andrew., and Anind, Dey, K., and
(2008). Maximum Entropy Inverse Reinforcement Learning. AAAI Conference
on Artificial Intelligence, Chicago, IL, USA (New York, NY: AAAI Press),
1433–1438.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Cèsar-Tondreau, Warnell, Stump, Kochersberger andWaytowich.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 62773010

Cèsar-Tondreau et al. Robotic Navigation Using Imitation Learning

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1706.05587
https://doi.org/10.1109/tcyb.2014.2314294
https://doi.org/10.1109/tcyb.2014.2314294
http://arxiv.org/abs/1710.05627
http://arxiv.org/abs/1703.06870
https://doi.org/10.1177/0278364910388677
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.326564
https://doi.org/10.1177/02783640122067453
http://arxiv.org/abs/1809.10124
https://doi.org/10.1109/SSRR.2012.6523902
http://arxiv.org/abs/1206.5264
http://arxiv.org/abs/1806.07457
https://doi.org/10.1109/lra.2018.2869644
http://arxiv.org/abs/1905.05279
http://arxiv.org/abs/1011.0686
https://doi.org/10.15607/rss.2019.xv.030
https://doi.org/10.1016/s0004-3702(97)00078-7
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Improving Autonomous Robotic Navigation Using Imitation Learning
	1 Introduction
	2 Related Work
	3 Approach
	3.1 State Space and Feature Extraction
	3.2 Action Space
	3.3 Network Architecture
	3.4 Training Procedure
	3.4.1 Pre-Training Procedure
	3.4.2 Training With Human Updates

	4 Experiments
	4.1 Experimental Setup
	4.2 Demonstration Data Collection
	4.2.1 Data Augmentation

	4.3 Results

	5 Discussion
	6 Summary
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

