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Geographic Information Systems, or GIS, has been an evolving science since its introduction.
Recently, many users have become concerned with the incorporation of error analysis into
GIS map products. In particular, there is concern over the error in the location of features in
vector data, which relies heavily on geographic x—, y— coordinates. Current work in the field
is based on bivariate normal distributions for these points, and their extension to line and
polygon features. We propose here to incorporate Bayesian methodology into this existing
model, which presents multiple advantages over existing methods. Bayesian methods allow
for the incorporation of expert and historical knowledge and reduce the number of observa-
tions required to perform an accurate analysis. This is essential to the field of GIS where
multiple observations are rare and outside knowledge is often very informative. Bayesian
methods also provide results that are more easily understood by the average GIS user. We
explore this addition and provide several examples based on our calculations. We conclude
by discussing the advantages of Bayesian analysis for GIS vector data, and discuss our on-
going work, which is being conducted under a research grant from the National Geospatial
Intelligence Agency.
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Introduction

Geographic Information Systems, or GIS, has become a popular means of producing,
referencing, and manipulating map data. There are many current applications such as
planning, engineering, land management, and environmental study ([4]). The widespread
use of GIS has led to a recent concern with the error inherent in a geographic product. This
is a special concern with computerized systems because users perceive the data as extremely
accurate, when in fact there are often limitations on accuracy due to the processes involved
in creating any map product. Among other disciplines, GIS users are turning to statistics
and probability modeling to help describe and calculate risks based on this inevitable data
error.

One particular type of GIS data is wvector data, which uses a system of points based
on geographic coordinates to describe point, line, and polygon features in the map setting.
Shi et al. ([10], [13], [14], [12], [11]) have developed methods for analyzing the error in a
vector GIS. They have based their model on a bivariate normal distribution for coordinate
points. We propose here the introduction of Bayesian methodology to this model, which
could improve accuracy of the error analysis as well as understanding of the results. This
work is being conducted under a research grant from the National Geospatial-Intelligence

Agency.

Geographic Information Systems Background
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The field of Geographic Information Systems, or GIS, is very popular in today’s geographical
and environmental disciplines. A GIS can be defined as a database system for storing, ana-
lyzing and manipulating spatially-referenced geographic data. Although some might expand
the term to include paper maps and information, most would agree that is a computerized
database structure. The majority of users encounter a GIS in the form of a computerized
map and an attached database containing information about individual map features. GIS
has found many applications, including research, government, military, and private uses. See
D. J. Maguire([6]) or D. F. Marble ([7]) for additional general information on GIS.

There are several ways information can be recorded and presented in a GIS map. Here
we will focus on one particular type of data storage known as wvector data storage. In a
vector GIS, geographic objects are represented by points, lines, and polygons. Each point
that appears in a vector map represents a feature located at a specific coordinate pair. Lines
connecting points across a map represent larger and more complicated linear features, such
as rivers or roads. A polygon is defined as a closed set of lines, and is used to represent
features with significant area. Polygons can represent features with sharp boundaries, like
buildings and countries. Another common use for polygon features is to denote areas that
are classified differently from other nearby areas, which in reality may have very rough
boundaries. Examples of this include maps of soil types or land cover. Each polygon, line,

and point feature is linked to a database through a unique identification number, which



enables the user to find information about that feature.

GIS users employ vector data for several reasons. It has the flexibility to model straight
lines with a small number of vertices, or more vertices can be used to plot a more complicated
line. It is a very good format to describe objects with well-defined boundaries. It also does
not require the use of a lot of computing storage space, since a relatively small number of
points need to be stored ([4]). Vector data has the potential to be infinitely precise, since
coordinates can be stored with any desired number of decimal points.

Figure 1 is an example of a vector GIS map. This map depicts several campgrounds at a
park. Polygons represent the various campgrounds, while individual cabins are represented
by point features. A stream that flows through the park is represented by a line feature. In
practice, information possibly including the names of the campgrounds, cabins and streams,
the area of the campgrounds, and the length or average depth of each of the rivers would be
available in a database. In most software applications, one can access this information by

clicking on a feature.
Error in vector GIS data

As the field of GIS continues to expand, users are paying more attention to error that may
be present in a data set. As early as 1984, Chrisman ([3]) and others began to recognize that
computers were capable of storing data much more precise than the source of the data could
provide. It has perhaps taken us so long to acknowledge this fault because many users may
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Figure 1: Example of a vector GIS map.

not wish to admit that there is some variability or uncertainty in their data, since it may affect
how their clients or the public view their product ([8], [9]). Most people in the GIS community
now realize, however, that there must be a system in place to describe and quantify error in
GIS data, since it can be misleading and sometimes even dangerous to disregard geographic
error (for example, in a military or natural disaster planning application).

There are many possible sources of error in a vector GIS map. For example, many current
computerized GIS maps are paper maps that have been adapted through scanning and other
digitization technology. Map providers must often manually denote particular features, and
interpretation sometimes varies by operator. Another example of error in the map process
occurs during field work. Instruments that measure GPS coordinates through use of satellites
may not be accurate at all times of day or in all locations, and can impart error to the final

map product. For a more complete description of error in a GIS map, see Bolstad and Smith

([2))-



Current Models

When the academic community surrounding GIS initially became concerned with meth-
ods for handling error in a map product, Blakemore ([1]) created the epsilon band model
for use with polygon features. While this was not a statistical model and did not allow for
specific numerical calculations, it certainly laid the groundwork for more complicated mod-
els. Figure 2 demonstrates the epsilon band model for a polygon. The figure is broken into
four regions; point (a) is considered to be definitely in the polygon, point (b) is considered
possibly in the polgon, point (c¢) is considered possibly out of the polygon, and point (d) is
classified as definitely out. Notice that the classification of these points is based entirely on

distance from the polygon boundary as shown.

Figure 2: Blakemore’s error model for a polygon.

This sort of pictorial representation is highly desirable, since maps contain primarily
visual information and most users are able to interpret this very naturally. The current

widely-recognized statistical model for vector data errors was initially proposed by Wenzhong



Shi in 1998 ([10]) and has a similar visual interpretation, while also relying on statistically
sound principles that allow for error calculations.

Because the point is the basic unit of all features in a vector GIS, all error in any vector
map feature can be traced back to points (either because the points are depicted at the
wrong coordinates, or because enough points were not included to accurately describe the
geographic feature). Shi et al. begin by describing a point as having a two-dimensional

normal distribution as follows:
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Note that this equation allows for variation in the X and Y directions as well as correlation
between the two, which may be quite likely in some GIS applications. They went on to use
this model as the basis for error analysis of lines and polygons in this and future papers

([10], [13], [14], [12], [11]). Shi and others often use the normal (1-a) error ellipsoid, given



by (z — p)’E 7 (z — p) < X3, as a means of visually portraying the distribution of the
point.

Their corresponding model for line segments is a direct extension of the point model as
we have described it. Shi and Liu ([14]) begin by describing a line segment ZyZ; as a line
connecting two endpoints Z; and Z;. We can geometrically represent a point on the line,

Z; = (Xy,Y;), with the equations

X(t) = (1 — )Xo+ tX,

Y(t) = (1 —=8)Yo + Y

where 0 <t < 1.

Suppose now that each endpoint has the bivariate normal point distribution, that is,

zl’ ~ NQ(I"’ZN EZZ'ZZ')

where i = 0,1. As they point out, we can further generalize this concept by allowing for
the two endpoints of the line segment to be correlated. Shi and Liu characterize the joint

distribution of the two endpoints as
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where
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Using some basic results from linear models, Shi and Liu derive the distribution of a

point on the line segment to be

where 0 <t <1,

:ux(t) (1 - t);uxo + t”m
p(t) = =
11y (1) (1 — ) ptyo + tpiy,
and
. ox(t)  ouy(t) |
oye(t)  o(t)
where

o2(t) = (1 = t)%02, + 2t(1 — t)04ye, + t70-
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Uwy(t) = (1 - t)202 + t<1 - t) (leyo + Uwozn) + t20§1y17

ZoYo

Uyr(t) =(1- t>202 +t(1 - t)(aywo + Uyorl) + tQUzwv and

Yoxo

oo(t) = (1 —t)%0;, + 2t(1 — t)oy,y, + 20,

They use this distribution to develop what is referred to as the generic error band or
G-band model. They place a bivariate normal error ellipsoid at each point along the line
segment, resulting in an infinite number of ellipsoids along the segment. Figure 3 demon-

strates this concept; Shi et al. refer to the collective outer bound of the confidence ellipsoids

as the G-band (sometimes called a confidence region).

Figure 3: Shi et al.’s G-band concept.

The extension of the error model for lines to polygons is not a difficult transition. Because
a polygon in GIS is, by definition, a closed set of lines, we can simply model the error in

each line segment on the border of a polygon. Figure 4 shows this extension.
Incorporating Bayesian Methods

We propose the incorporation of Bayesian methodology into the model for vector error
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Figure 4: Extension of Shi et al.’s G-band model to a polygon.

proposed by Shi et al. The current frequentist model has many good features, including the
ability to provide a visual interpretation of error, and to change the confidence level of the
bivariate normal ellipsoids based on a map user’s particular needs. There are several bene-
fits, however, to the addition of Bayesian methodology, including less reliance on currently
available data, the ability to incorporate expert and historical knowledge into coordinate
estimates, and easier interpretation of confidence intervals.

In particular, it is very desirable to have less dependence on currently available data
when analyzing GIS maps, specifically the amount of available data. In many cases, only
one observation per point of interest is available; it is rare to have even two “identical” maps
with slight variations in point coordinates at one’s disposal. Map producers simply do not
make many different versions of the same map. In fact, the only situations in which multiple

observations are available are those involving training data (several map digitizers or field

11



surveyors in training are attempting to map the same area, for example) or in classroom
exercises. Neither of these situations are likely to apply to most analysts’ data.

Bayesian analysis is also a useful tool during the process of updating a map through the
process of ground truthing. That is, we try to produce more accurate estimates of point
coordinates by combining locations given on the map with new location data recorded on
the ground. Here we consider the distribution of the coordinates on the map at hand to
be the prior distribution for our points, and we update them with the distribution of the
data from the field surveyors. For more discussion on these issues, see the Discussions and
Conclusions section of this report.

Note that Bayes’ rule will be central to our calculations. A common form of Bayes’ rule
is

p(0)y) o< p(0)p(y|0),

which can be found in Gelman et al.’s introductory textbook on Bayesian data analysis ([5]).
Incidentally, this textbook is a nice resource for learning more about general Bayes’ methods.

We begin with a point P,. We assume the true value of the point’s coordinates is

Ha Zi0

Wty = ’ , and that we have n random observations of this value, z;; = ,
Hyo Yio

1 = 1,...,n. We will assume that py has a normal prior distribution with parameters

(to,, Ao), and that the data points z;o have a normal distribution with parameters (g, 2o).
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To clarify the notation,

Hoag Haoo Tyzo T g by 40
I"’OZ 7,—1’00: 7A0: y Zi0 = ;
2
Hyo Hyoo Tuyotag iy, Yio
/
T10 Y10
2
O-QC() Uxoyo
Zy = , and g =
2
O-y0$0 Uyo
Ino  Yno

Theorem 1. Under the above assumption, the posterior distribution of a point g is

,U'O’ZOaEO ~ N(QO,HO);

where

go = (Aa1 + nﬁal)*l(Aaluoo + nEEliio), and Hy = (Aa1 + nZal)*l.

Proof. This is an immediate result of Bayes’ rule, and appears in Gelman’s discussion of the

multivariate normal model ([5]). O
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Corollary 1. The equation for the 100(1 — a))% confidence ellipsoid for a point pg is

(o — go)' Hy (1o — 90) < X31_a-

where pg is the set of points in the ellipsoid, gq is the Bayesian posterior mean for pg, and

H, is the Bayesian posterior variance matrix.

Proof. Using the mean and variance of the posterior distribution for pg, and the fact that
this distribution is bivariate normal, we calculate the bivariate normal confidence ellipse.

The corollary follows immediately. O

Bayesian error model for line segments and polygons

The basic concept of the Bayesian error model for line segments is also very similar to
the frequentist approach. Recall that any point on a line segment can be described as a
function of its endpoints. Suppose then that the endpoints of a particular line segment are
Py and Py, with coordinates gy and pq. We can then describe any point on the line with

the equation

py = yp1 + (1 — ) po,

where 0 < v < 1.
Suppose each of these coordinates has a normal prior distribution as above, with param-
eters (po,, Ao) and (p1,, A1) respectively. Suppose further that these two points may have
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some correlation, so that the joint prior distribution of the endpoints is

o1 ~ N (fory, Ao1)

where
/‘LIO /‘1’5500
Hyo Hyoo
Ho1 = y o1 = )
l’['l’l #3710
/’Lyl /’l/le
and

2
T/Lzo T/on Hyg T/‘mo Haq T/Jﬂ'?o Hyq

Tﬂyo Haq Hyo Tﬂyo Haq 7-Myo Hyq
Ao =
T, T, T2 T

Haxy P Haq Hyg My Hzq Hyq

2
Tlvbyl Haq Tﬂyl Hyg T:U'yl Haq T,uyl

Assume we also have n independent observations on each of these endpoints, zg, ~
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N([l,()l, 201) where

and

According to Bayes’ rule, the joint conditional posterior distribution for the endpoints is

N(go1, Ho1), where

For clarity of notation, we will indicate the individual elements of the posterior mean and

Zo,

Yo,

X1

Y1,

y 201 = y o1 =

Oz0  Oz0y0 Omoz1 Ozoyn

2
Oyozo Uyo Oyoz1 Oyoun

2
Ozizg Omiyo T2y  Omiy

2
Uylﬂco Uylyo Uylwl Uy1

Hy = (Ag +nXg) ™"

16

22

lu’yo

My

Hoyy

gor = (Ag] + n2q )~ (Agt por, + 1247 Zo1),




variance as follows:

Gzo
9o Gyo
go1 = = )
g 9z,
Iy
2
h:vo hxoyo hxom hxoy1 hxowl hxoy1
H,
2
hyowo h‘yo hyom hyoy1 hyoxl hyoy1
H()l — =
2
hzlmo hzlyo hml hmlyl hm&?o hﬂﬂlyo
H,
2
hyll‘o hylyo hy1x1 hy1 hywo hy1yo

Theorem 2. Under the conditions above, the posterior conditional distribution of a point

on a line segment, p, = yp1 + (1 —y)po, is

1y | 201, Zo1 ~ N(gy, H,)
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where

g, = (1 —=7)go + 791,

ha, ey,
hyyay Ty,
hy = (1=7)°h2, 4+ 29(1 = Vhage, +7°h2,,
oy = Pywy = (1= 7)hagye + (L = Nhagyy + 71 = Nhyoay + 7 My,

hy, = (L=7)h2 4 27(1 = 7)hyyy, + 7R .

Proof. Following some basic facts from linear models, the function yu; + (1 — v)po can be

written as
Hag
1=9) 0 50 fyo
0 (1-7) 0~ fay
Hoy

Since po; is normally distributed, we know that this linear function of pg; is normally
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distributed. The mean of this distribution is

9z
(I-9) 0 40 9o
= (1 =7)go + 791
0 (1 - 7) 0 Y 9z
gyl
The variance of this distribution is
h?co hffoyo hmol“l h$0y1 (1 - 7) 0
(1 - /7) 0 Y 0 hyowo hg240 hyoﬂ?l hyoyl 0 (1 - ’7)
0 (1 - 7) 0 ~ Payzo Py h?cl Py Y 0
hyll"o hylyo hylxl hzl 0 Y
B hiw huyw
hyvxv hyv

where the individual terms are as written in the theorem.

Note that the result in Theorem 2 is very similar to the result in the frequentist case.
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Corollary 2. The equation for the 100(1 — )% confidence ellipsoid for a point g is

(b — g”/)/ny_l(Nv —g,) < Xg,l—a

where ., is the set of points in the ellipsoid, g, is the Bayesian Posterior mean for p., and

H., is the Bayesian posterior variance matrix.

Proof. Using the mean and variance of the posterior distribution for p., and the fact that
this distribution is bivariate normal, we calculate a bivariate normal confidence ellipse. The

corollary follows immediately. O]

Form of the posterior mean and variance for a point on a line segment
Suppose we want to find an explicit form for the posterior mean and variance of a point

on a line, p.. In the most general case, that is for correlated z- and y- data with

2 2
Tﬂzo Tuaohyy  Thaoghay  Thag by, 929 Ozoyo  Omoz1  Tzown
T, T, 2 T, T g g, 2 g (%
Hyg Mg Hyg Hyg Haq Hyo Hyq YyoZo Yo Yyoxi Yoy1
AOl = and 201 = y
2 2
Tﬂzl Haq Tﬂzl Hyg T,uml Tﬂzl Hyq Ozizog  Oziyo Uml Oz
T, T, T, T 2 g g g g, 2
Hyy Hxq Ky Hyg Ky Baq Hyy Y10 Y190 Y1T1 1

we can only substitute terms directly into the equations from Theorem 2 to calculate the

posterior mean and variance. In many cases, however, it is possible to simplify our results,
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and it is advantageous to do so. We present these cases as corollaries to our result in Theorem

2.

Corollary 3. Suppose the endpoints of a line segment, py and p, are independent from

one another, and the variance/covariance matrices of the prior and sampling distributions

are
2
Timg  Thaohug 0 0 0%  Ozoyo U 0
2 2
Tuyonzg  Thy, 0 0 Tyozo Oy 0 0
A01 = and 201 =
2 2

0 0 Tiwy  Thaybiy, 0 0 O3 oy

2 2

0 0 Thyipar Ty, 0 0 oya 0y

The mean of the posterior distribution of g, is then

gy =Y AT ST T A iy F 0B 2) + (1= ) (AT 3 A o, + 135" Zo),

and the posterior variance is H., = v>?H; + (1 — v)>H.

Ay O 0 O
Proof. First, note that we can write Ay, = and g, = . Linear

0 A1 0 21
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models results tell us

Next, the Bayes’ rule formula for the posterior mean tells us

go1 = (Agf + nEgll)_l(A(ilumo + 722511201).

By writing the equation explicitly in terms of our assumed values for Ag; and g, and

applying some linear algebra, we find

-1 -1 —1 -1 -1

AO 0 20 0 AU 0 20 0
go1 = +n Ho1, + 1 201
0 A1 0 21 0 Al 0 E1
-1
Ayt 0 >t 0 Ayt 0 >t 0
= +n o1, + 10 20
0 A7 0 X! 0 A7 0 X!
-1
Ayt 4+ n3gt 0 Ay o, 'z
= +n
0 AT+t A, 'z
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(Ag' +n3gh) ™ 0 Ag o, + 13"z

0 (AT +nZ )t Ay, +n37tz

(Ag" +n3g ") (Ag ' po, + 1y Z0)
(Ar" 402 ) (A i, + 03 21)
By applying the results of Theorem 2, g, = (1 — v)go + 791, we arrive at our stated
conclusion.
Next, to get the result for the posterior variance, we again use Bayes’ rule to find Hy; =
(A +nX5 )"t We can then write

Ayt 4+ gt 0 (Agt+n3gh)! 0

0 S o 0 (AT + 2y

where H, and H; are defined as in Theorem 1.
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Our posterior variance is then

W2 hayy O 0 1-9) 0
(=) 0 40 hyowy Doy 0 0 0 (1-7)
0 1-7v) 0 ~ 0 0 h2 ey, v 0 |
0 0 Dy hzl 0 ol

from the proof of Theorem 2.
Multiplying through this equation gives us

(L =)2h3, + 2221 (1= 7)?hagy + 7Ry, ) ,
=7"H; + (1 — )" H,,

(1- V)thowo + 72hy1w1 (1- 7)2]150 + 2hy
which is the result stated in the corollary. ]

Corollary 3 provides the posterior mean and variance for a general situation that allows
the x- and y- coordinates within each endpoint to be correlated, without correlation between
endpoints. This may or may not be a valid assumption. In the case of GPS instrument
error, for example, one instrument may be more likely to always read a high z- coordinate,
or an instrument taking a different sample might always read a low one, meaning endpoints
will have correlated error. If different instruments were used at each point, however, there
may be no such correlation. Additionally, in the case of manual map digitization, a well-
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trained technician may not demonstrate any trend in error between endpoints. The following
corollaries provide details for the subset of situations in which there is no correlation between

or within the endpoints.

Corollary 4. Suppose now that there is no correlation between the endpoints gy and g,

and additionally, there is no correlation between the x- and y- coordinates at each endpoint.

That is,

2.0 0 0 o2 0 0 0

0 2 0 0 o2 0 0
A[)l = o and 201 = %0

0 0 T2 0 0 0 o2 0

0 0 o0 72 0 0 0 o

Uzl O Tltwl 0
o2 +nt? o2 +nt2 _
/Y T Hxq “10 _|_ n T Hxq , zl
2
oz T
Y1 Hyq
0 o2 +nt? 0 T2 +nT?2
Y1 Hyq Y1 My
2 2
UIO O TIJ«CDO O
2 2 2 2
Oz N7 Oz N7, _
+(1—7) 0o +n 07 o z
v PR '
Y0 Y0
0 i 0 e
Yo Hyo Yo Hyo
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and the variance of the posterior distribution is

2 2 2 2
Thay o1 0 Tuzg P20 0
o2 +nt? o2 +nr2
72 7 Haxq + (1 . ,7)2 z( g
22 g2 72 g2
O Ky "Y1 O Hyg Y0
02 +nt2 02 +nt2
Y1 Hyq Y0 Hyq

Proof. Because this is a special case of Corollary 3, we know that the mean of the posterior

distribution is

gy = YA +nET) AT iy 020 2) 4+ (L= ) (A 4+ 030" T (A o, + nEg ' 20),

and the posterior variance is H, = v*H; + (1 — v)*H,. Imposing the additional condition

that the z- and y- coordinates at each endpoint are uncorrelated, we know

1 Tﬁl 0 1 731 0 1 é 0
— x —1 _ x — 0
AO - 0 7A1 - ! ) 20 - )
0 = 0 = 0 =
T, o
Fyo Hyq Y0
and
1
-1 o2 0
21 — 1
1
0 72
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Inserting these results into our previous equations, we get

2 2
1 0 n 0 0950—"_”7—”300 0
_1 _1 T2 o2 72 o2
AO + nZO — Hzxq + zQ — Kxg~ZQ
2 2
1 n Uyo'H”—uyo
0 = 0 & 0w
Hyo Yo Hyo ~ Y0
2 2
THZOUTO 0
1 —1\—1 o2 +nt?
= (Aj' +nXgl) = 0t
2 2
TS O
0 Hyp Y0
2 2
Jyo+n7uy0

Calculation of (A7" + nEfl)fl is similar.
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We can now calculate the posterior mean and variance for the general no-covariance case.

2 2
T o
nax x
e 2= 0 & 0
g, = azl+nTM11 Tuzl in o2, =
v =7 2 g K1, 1
0 Hyq Y1 O 1 O 1
02 +nt2 T2 o2
Y1 Hyq Hyq Y1
2 2
Thag P 1 1
o2 Jr’rLTF 0 ‘rﬁ 0 2 0
0 ok z 0o -~
=+ (1 - 7) 0 9 5 0 Ho, +n 20
0 Suie 0 0 4
Uyo—f—n’ruyo Tuyo 40
2
03251 O Tﬂxl 0
2 2 2 2
Ty 'H”—le Iz, +n7—“z1 >
= 10+ 1n Z1
gl L 11, 2
Y1 Y1
o2 +nt2 0 02 +nt2
Y1 Hyq Y1 Hyq
2 2
Uzo 0 THzo 0
2 2 2 2
o2 +nt2. O3 TN, _
+ (1 — ) 0 0 0 +n 0 0 20
gl . Hoq ) :
0 - 0 -
2 2
%50 +n'ruyo %50 +m—uy0
2 2 2 2
Tiiz, Oy 0 ’THIO T30 0
2 oF, i, 2 T3t
H, =~ : +(1-7) :
7_2 0.2 T2 0.2
% +n’ruy1 7N —Hvruyo

]

Endpoints certainly may have correlation between their x- and y- coordinates. If, for
example, similar instruments were used at the same endpoint to collect data at different
times, this could cause some correlation between the errors in its coordinates. Depending
on the time of day, for instance, GPS instruments relying on satellite information may have

similar types of error in each coordinate, based on the changing positions of the satellites.
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In some cases, though, for instance manual digitization, it is probably a valid assumption

that there is no correlation in error between coordinates.

Corollary 5. Suppose there is no correlation between the endpoints gy and 1, and there
is no correlation between the coordinates at each endpoint. Additionally, suppose each

endpoint has equal variance at its z- and y- coordinates (although it may be different at each

o? 0 o 0 7 0
endpoint); that is, we know that 3; = , X0 = LA = ,
0 o? 0 of 0 7
0
and Ay =
0 72

The posterior mean is then

_ o2 N nti 5) 4 (1) ol N ntg S
9y =7 al—l—m'fﬂlo o1 + nti ! i 00+n7'02“0° oo+ ntg 0]

and the posterior variance is
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Proof. Tt is easy to first calculate (A7* +n37') " and (Ay' +nXy!)

1 1
a7 A
Al = ) AO = )
1 1
0 3 0 2
1 1
P R
X = , and ¥, = 0
0 % 0 %
P p=:
We can then calculate
1 1 o2 4nT?
= + n—z 0 172”21 0
Al_l +n21—1 — 1 1 — 191
2 2
1 1 oitnTi
O wtng O T
and
2 2
1 1 og5+nT
Al -1 3 T sz 0 073030 0
0o tndg = =
1 1 o2+ntd
Comtrg T
This gives us
2 2
Ti0% 0
2 2
e e - ( -
1 - - 2 2
0 7'120% 01 + nTl
Ul—i-m'l2
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and
2 2

270‘702 0 9 9
-1 —1\—1 _ o5+nTy _ T0 00
(Ag" +nX, ) = = (—02+n7'2 I
0 Tga'g 0 0
Jo—i—n'rg

We can now calculate the posterior mean and variance.

2 2 2 2
7197 1 n _ T0 00 1 n _
& 7Kaf+nrf> Hﬁ?“’“o—%“}” ”Kaéwfé) HTg’“‘%*ag%}

O

This may be a valid situation, especially in the case of human error. Suppose, for example,
that two maps of adjoined areas are combined into a larger map. Each map may have been
created by a different agency — possibly with different methods — and each agency may have
emphasized a different standard of accuracy in terms of identifying exact point location.
Therefore, some points on the large map may have small variance in error while others have
larger error variance. It would, however, be likely within an agency that error in the x- and

y- directions at each point would be quite similar.
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Corollary 6. Suppose again that there is no correlation between the endpoints g and e,

and there is no correlation between the z- and y- coordinates at each endpoint. Suppose also

that the variance in the x coordinates is similar between the endpoints, as is the variance in

2 2
o; 0 T, 0
the y coordinates; that is, 33y = 3y = X = ,and Ay = Ag=A =
2 2
0 o, 0 7,
In this case, the posterior mean for a point p., is
o2 7'2
o%—&—;’rg O U%—l-’;LITE 0 _
9, = T Y10 + (1 = 7) proo] + R vz + (1 = 7)Z],
O 20'—y2 O 2Tl‘y 5
O'y-f—nTuy Uy+"7'uy

and the posterior variance is

2.2

: Aoy,
H,=(2v"—-2vy+1) .
oyTh,
0 O’Z+7’L7%y

Proof. Again calculating the individual terms involved in (A~ +nX~1)~! we have

1 1
A a_| = !

A= He , and X7 =
1 1
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We can then calculate

+ +ng
Altgpnt=| " .
0o 4
This gives us
(At hH =

33

2 2
crx-i—m'uz
7 2
— Tia 0%
1
TLF 0
y
2 2
Tug % 0
oZ4ntZ,
2 2
0 Ty %y
Uy—l—’mﬁy

o24nT2

Y Hy

2 52
Tiiy Ty



We can now calculate the posterior mean and variance.

T2 o
R 0 = 0 5 0
O'I+TLTHZ Tin oz _
gy =7 s o M1, + 21
T2 o
Hy“y 1 1
O oy+nt? 0 T2 0 o2
Y Ly My Y
Ui 1 1
o‘%—{-rm’ﬁ O TEL O 0_920 0
xT xr -~
+1—=7) . Mo, + 2o
T2 0
by Y 1 1
0 ay+nT5y 0 TEy 0 o2
2
i 0 S0
oz+nTy oz+nTy
= o [V + (1 = 7) o] + T, 2+ (1 =7)2],
0 % 0
U§+T7,T3y a§+n7ﬁy
S0 S ()
Ugg+n‘r#ac o'z+n‘r#ac _
+(1=7) . o, + , Zo
0 Oy 0 by
og+nTs, og+nTs,
9 oZ+ntz 0 2 oZ4ntZ 0
H, =~ +(1=9)
o272 52,2
0 Y Hy 0 Y Hy
J§+nT3y U%—l—nr&y
O'g‘lﬁl O
2 a%—&-nrgz
= (27" —2y+1) .
oyTﬂy
0 0'5+n7'3y

]

This is a possibility in a case where a map has been digitized in a situation where x-
and y- distances are not displayed at the same scale. This can happen locally, for example,

when using certain coordinate systems. A single technician digitizing a map will likely make
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the same size error at all points based on the visual display available, in both the x- and y-
directions. This means that the true size of error as measured on the ground will be different

for z- and y- coordinates at a single point, but similar over the scope of the map.

Corollary 7. Suppose again that there is no correlation between the endpoints g and e,

and there is no correlation between the x- and y- coordinates at each endpoint. Suppose

o 0
additionally that all coordinate variances are similar; that is, 3; = 3y = 3 = ,
0 o2
2 0
and A1 = AO =A=
0 72

In this case, the posterior mean for a point p., is

202 1 n _ 1 n _
9y = 2 1 no? (1—7) ﬁﬂ%*‘;zo +7 ﬁ.ulo"';zl ,

and the posterior variance is

7_202
H,=(2*—-2v+1)—1.
Y (’y '}/‘i‘ >0_2_|_n7_2

Proof. Again calculating the individual terms involved in the computations, we have
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We can then calculate

o [EEer 0 e o
- +n - = =
0 L+nk 0 i
This gives us
2 2
_T0” 0 2 9
o2+nt?
A ltnz =] 7F S — (1)
2,2 0% 4+ nr?
0 o2+nt?
We can now easily calculate the posterior mean and variance.
7202 T% 0 % 0 _
9y = VWI M1, + z
1 1
= 0 %
7202 T% 0 % 0 _
+(1- )0'2+TlT2 Hop + =0
0 % 0 =%
7202 n _ n
2wz ) |7\ 2k + =z ) +(1—7) —3 Moo + =520
2 2 2 2
TO TO
H 2 A2
LA + 7)02+n72
2 2
o2 TO
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]

This is something of a best-case scenario, and would certainly simplify subsequent calcu-
lations using error variance. It may even be a realistic situation, for example, when all maps
involved have been digitized by a single technician. It seems reasonable that human error
would tend to be randomly and evenly distributed at all points. There are many cases in
which this assumption is not valid, however, which we have already mentioned. One example
is multiple technicians digitizing separate parts of a map. Error in instrument readings is
another example, since those types of idiosyncracies in an instrument are likely to be corre-
lated across a map. Therefore, anyone hoping to accurately discuss positional error in a GIS
product should seriously consider the types of correlation and variance that may occur, as

it may change the model considerably.

Confidence Region Boundary Calculation

Although pictures of the boundary region on a line segment are frequent in the available
literature on error in vector GIS, to our knowledge an explicit formula for the confidence
bound has never been calculated. (The bound is usually formed by placing confidence ellipses
at a large number of points along the line segment.) We believe that finding the formula for
the confidence bound will greatly aid us in solving current probability problems in vector

data, for example, the point in polygon problem we have discussed here.
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In order to compute the boundary, we must first assume that each of the infinite points
on the line has a confidence ellipsoid around it. This means we assume that the joint prior
distribution of the endpoints of the line segment is po; ~ N(po1,A01), and that the data
distribution is zg; ~ N (o1, Xo1)-

Next, it is clear that the points on each error ellipsoid that are at the furthest perpen-
dicular distance from the line segment will be on the boundary of its confidence region. For
a demonstration of this fact, see Figure 5. Figure a) shows this for circular point error ellip-
soids, and figure b) shows this in a more general case. A proof will follow in an upcoming
paper.

a) b)

Figure 5: Points on the boundary of the confidence region.

While there are several ways to calculate this boundary point in the general case, they
are complicated calculations we will include in a an upcoming paper. If, however, the error

ellipsoid around ., is circular, the boundary can be calculated fairly easily as follows.

Lemma 1. In the case covered by corollary 5, in which each endpoint of a line segment is
normally distributed and has equal prior and sampling variance for both of its coordinates,
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the error ellipsoid at p., is circular.

Proof. We know from corollary 5 that H, = [72 <%) + (1 —~)? (%ﬂ I = h,I (for

simplified notation). We can then use corollary 2 which tells us that the boundary of the

confidence ellipsoid at point g is (py—g ) H (14, —g,) = (1 —87)' 0 T(py—gy) = X310
This implies

hf(lh - gv)/(uv - g’y) = X%,l—a
= (:Uw - gv)l(ﬂw - g'y) = h”YX%,lfoz

= ((:uz»y - gz»y)Z + (/’Ly'y - gy»y>2) - hVX%,l—a

= \/(:ul"y - gx'y)2 + (:uy'y - 997)2 = \/h’YX%,l—Ot'

The left side of this equation is the well-known geometric formula for the distance between
p and g,. The fact that this distance is equal to a constant, |/h,x3,;_,, means that the

distance to the boundary from g, is constant, implying that the boundary is circular. O]

Note that this lemma applies in particular to the subset of cases discussed in corollary 7,
in which all coordinates at both endpoints have the same prior and sampling variance.
In the following theorem, we give the boundary for the line segment’s confidence region

in the event of a circular confidence ellipsoid at ..

Theorem 3. In the case covered by corollary 5, in which each endpoint of a line segment is
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normally distributed and has equal prior and sampling variance for both of its coordinates,

the point on the boundary of the line segment associated with point g, is

g :l: X%,lfah’Y
T — 2
bx Y (1+(ga:079x1> )
Y 9yo —9y1
b :F 9axg—9Gxy X%,l—ah"/
y’Y gy’y gygfgyl Jzg —9zq 2
=)

9yo —9vy1

Proof. The points on the circular error ellipse at ., that are farthest from the line segment
(thus on the boundary of its confidence region) are the points on a line perpendicular to the
line segment at p.. This is not true in the general case if the error ellipse is not circular.
For a heuristic demonstration, review Figure 5.

Given this fact, we next find the formula for a line perpendicular to the line segment
going through p.. First, we know from geometry that the line connecting g; and gy has

slope (M) We then know that the slope of the perpendicular line is the negative

9zg—9zq

inverse of this slope, or — (%). The slope of the new line can also be written as
Yo Y1
b
by, —9; Ty . . . .
<%> where = b, is the boundary point we are searching for. This means we
T~ T~
by,
: by, —gy Gz —9z Jzg—9a
can write (—~—= | = — (=== ) or b, = =0 %1 —b,).
(bgg,y—ggw 9yo—9v1 )’ Yy gy«, + Gyo—9u1 (gxw xv)
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Next, we know already that the formula for the circular error boundary at p. is

!/ /

bx.y - gx.y I bz»y - gac.y _ h;l ba:'y - gx,y bx»y - gz.y

byv - gyw by“/ - gyw byw - gyv byv - qu
Because the boundary point is on the perpendicular line, we can substitute our information
from above about b, and write

!/

—1 vy vy Y vy
h’Y
9zg—9Gz 9zg—9Gz
gygTyI(gu —bs,) gyzfgyj(gmy — b))
2 2
_ (bxw _ gx“/) 1+ (gxo — gxl) _ X% -
h’Y Gyo — Gy 7
This means
2
X2,1fah’7
(bx»y - gx»y)Q - 2
9xg—9Gxy
(1 + (gyofgyl) )
2
2 2 _ X2,1—alty
= by — 20,90, + 95, = e
xp —9zy
(1 T <9yo_9y1) )
X%,kahv

=0.

2 2
= bmw - 2b:v,ygxa, + gxﬁY -

1 + (gzo_gzl )2
9yo —9v1
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This is a quadratic equation of the form az? +bx +c. We can now solve for b,., by finding

the roots of the equation:

2 .k
20, £, [(—29,,)? —4 (9?67 - %)
b+ VB2~ dac B (H(m> )

bs
K 2a 2

29, £ |4 <g2 Sy g— LEP . )
T x T 20 —gzr \ 2
v v v (1+<7Zy8*3yi) )

2

gives us

2
X2,17ah’7
v = o * Jag—9 2\’
To _dzy
(1 T (9y0*9y1> >

Substituting this result for b, in the parallel line equation to find b, , a quick calculation

bz

tells us that the points of interception (and the points on the boundary of the confidence

region of the line segment) are

g :l: X%,lfah’Y
b Ty 1+<910*9m1)2
Ly 9yg —9y1
_ X2 h
g :F Jxg—9xq 2,1—a’"Y
Yy Yy 9yo —9v1 (1+(9x0—gggl >2)

=

9y0 ~9y1
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Examples

We now provide some theoretical examples of the incorporation of Bayesian methodology

into GIS vector data error analysis. For more examples using real data, look for an upcoming

paper.

Erample 1.

The professor of a geography class assigns his five students to take GPS instruments
and record the location of a “benchmark” at the university. (A benchmark is a location

with coordinates that have been measured very precisely.) The students take the following

coordinate measurements (in meters):

1 T Y

1] 551470.3 4119766.4
2| 551464.6 4119770.2
3| 551472.8 4119763.1
4 | 551475.3 4119767.6
5 | 551468.7 4119769.9

The standard deviation of the error of the instruments used by the students is known to

be 3 m. in the x direction, and 2 m. in the y direction, and the errors are uncorrelated. The
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professor also happens to know that the benchmark’s coordinates have been very carefully
measured at (551469.1,4119766.1) with a standard deviation of .1 m in either direction, and
the errors are uncorrelated.

Frequentist Method

Traditionally, only the current information on the coordinates would be used to estimate
the true location of the benchmark. The estimate of the benchmark would be the average of

the = and y observations, (7,7) = (551470.34,4119767.44). The variance of these estimates

9 0 1.8 0
isX = % = . Finally, we can represent the error pictorially by drawing

0 4 0 0.8
the error ellipsoid at the 95% confidence level,

/ —1

. 551470.34 — iy, 1.8 0 551470.34 — 1y, )
(Z—p)E(z—p) = < X2,95
4119767.44 — py, 0 038 4119767.44 — py,
shown in black in figure 6.
Bayesian Method

The Bayesian methodology we have proposed here allows us to use the additional infor-

mation we have about the benchmark - that it has been measured much more accurately
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with a standard deviation of .1 m. We will use this as our prior distribution on p:

o 551469.1 0.01 O

Ly, 4119766.1 0 0.01

Combining this prior distribution with the information from the data, we can give the

posterior distribution of the point as po|Zy, 3o ~ N(go, Hp), where

-1 —1\ 1 -1 -1
0.01 0 9 0 0.01 0 551469.1 9 0 551470.34
go = +5 45
0 0.01 0 4 0 0.01 4119766.1 0 4 4119767.44
551469.1069

4119766.117

and

0.00994 0
Hp =

0 0.00988

We can represent the 95% probability error ellipsoid in this situation with the equation

!/ —1
R fay — 551469.1069 0.00994 0 fay — 551469.1069 )
(Ho — go) Hy " (1o — go) = < X395 = 5.99,

[y, — 4119766.117 0 0.00988 fyo — 4119766.117

shown in red in figure 6.

Method Comparison
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When we compare the results from our two methods, we can see that the Bayesian result
has markedly smaller variance, due to the inclusion of the much more accurate Bayesian prior.
Evaluating the posterior estimate of the mean, it is obvious that this estimate more closely
resembles what has already been carefully measured (the prior value on the benchmark) than
the traditional estimate does. In situations where this type of information is available, it is
clear how the Bayesian prior can improve the inference process. Figure 6 compares the error
ellipsoids around the benchmark for the frequentist (black) and Bayesian (red) methods.
Not only is the Bayesian ellipsoid much smaller, but it has an easier interpretation - rather
than being a confidence region it is a probability region. Instead of being 95% “confident”
that the coordinates are in the ellipsoid, we can say there is a 95% “probability” that the
coordinates of the benchmark are in the Bayesian ellipsoid. It is also important to note that
the Bayesian result is compatible and in agreement with the traditional result, since the
probability ellipsoid here falls well within the boundary of the traditional confidence region.

FExample 2.

Suppose you are interested in learning the coordinates of two adjacent corners of a partic-
ular building from a computerized GIS map. You know the map was digitized from an aerial
photo; furthermore, based on the map scale, producer, and the program used to digitize the
photo, you know the standard deviation of the coordinates is 10 meters in either direction.

On the map, the coordinates have been placed at (376111,2798632) and (376217, 2798650).
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4119764 4119766 4119768 4119770 4119772
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551466 551468 551470 551472 551474

7.

Figure 6: Comparison of traditional error ellipse (black) and Bayesian error ellipse (red).

Having been digitized by hand, there is no correlation between any coordinates.

You also have access to the original plans for the building, which instructed that the two
corners of the building in question should be placed at (376100, 2798635) and (376220, 2798635).
The company has a recorded overall standard deviation in their accuracy of 5 meters. Assume
the errors are uncorrelated. !

Frequentist Method

From the frequentist standpoint, the estimates of the vertices of the side of this building
are simply the parameters on the digitized map itself. This is true because we only have one
observation. The standard deviation of the estimates is therefore the standard deviation of

the digitizer’s accuracy. We have

! This is probably not a realistic assumption since the construction company likely has limited materials
and could not afford to accidentally extend the side of a building by say, 10 meters, but we will use this
assumption here to simplify the calculations.
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376111 100 0 0 0

2798632 0 100 O 0
Z01 = and 201 =

376217 0 0 100 O

2798650 0 0 0 100

We can follow this up with a 95% confidence ellipse around each endpoint. The ellipse

around the first endpoint is
’ —1
- [z — 376111 100 0 fhzo — 376111
(o — 20)' 25 (po — z0) = < x3,.95 = 5.99,
fiyo — 2798632 0 100 fiyo — 2798632
and the ellipse around the second endpoint is

’ —1
_ Moy — 376217 100 0 oy — 376217
(m—2z)'S (1 —z1) = < X3,.95 = 5.99.
[y, — 2798650 0 100 [y, — 2798650

To create a confidence region around the entire line segment, we note that we can create

a confidence region around any point on the line segment with mean estimate

(1 —t)zo + () (1—1)376111 + (£)376217

(1—t)yo + (O (1 — £)2798632 + (£)2798650
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and variance

02(t)  0uy(t) 100 ((1 —t)? + (¢)?) 0
3..(t) = =
oye(t)  op(t) 0 100 (1 —¢)* + (¢)?)

The ellipsoid-based picture of the confidence region around the line segment is shown in
black in figure 7.

Bayesian Method
The Bayesian method allows us to include information from both the original design plans
and the current digitized map. According to our formulas, our Bayesian posterior estimate

of the value of the coordinates for the first point is

-1 —1y —1 -1 q-1
25 0 100 0 25 0 376100 100 0 376111
go = + +
0 25 0 100 0 25 2798635 0 100 2798632

376102.2 . . . . .
= , and the posterior variance of this estimate is Ho, =
2798634.4

Our Bayesian posterior estimate of the value of the coordinates for the second point is

-1 -1 -1 -1

25 0 100 O 25 0 376220 100 O 376217
g1 = + +

0 25 0 100 0 25 2798635 0 100 2798650

376219.4 . ) ) ) : 20 0
= ., and the posterior variance of this estimate is m, = .

—1

2798638.0 0 20
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We can now describe a 95% probability ellipse around each endpoint. The ellipse around

the first endpoint is
/ -1
R fizg — 376102.2 20 0 [z — 376102.2 ,
(o — go) Hy ~ (o — go) = < X2,.95 = 5.99,
fiyo — 2798634.4 0 20 [y — 2798634.4
and the ellipse around the second endpoint is

! —1
- fin, — 376219.4 20 0 fia, — 376219.4
(1 —g1) Hy (i —g1) = < X395 = 5.99.
[y, — 2798638.0 0 20 [y, — 2798638.0

To create a probability region around the entire line segment, we note that we can create

a probability region around any point on the line segment with mean estimate

(1 = 9)Gzo + (7) Gy (1 —+)376102.2 + ()376219.4
(1-— v)gyo + (v)gy1 (1 —+)2798634.4 + ()2798638.0
and variance
h2 g, (t 20 (1 — )% + (v)? 0
H,Y _ ~ 'vyv( ) _ (( ’Y) (7) ) — 20(2'}’2 _ 2,}/ + 1)1’
hyo, B2 0 20 ((1—=7)*+(7)?)
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Alternatively, we can find the formula for the posterior mean and variance of a point on

the line segment by consulting corollary 7, and the results agree.

7202 1 n_ 1 n_
gy = 2 1 no? (1—7) —2 Hoo + 5270 +7 —2Ho + prrd
< 25 . 100 ) N se100 | 1 [ s76nLL O S = T
- (22 P 2+ i 1
25+100 25\ 2798635 1001 9708632 25\ 2798635 1001 9708650

18805.11 18810.97 (1 —7)376102.2 + (7)376219.4
=20 |(1=7) +7 =

139931.72 139931.9 (1 —~)2798634.4 + (+)2798638.0

7202 25-100

H, = (27 —-2v+1 IT=(2vV—2v+1)———T =20(27® — 2y + 1) 1.
v =27 =2y+1) (2 7+)100+25 (29" =2y +1)

0% 4+ nt?

The ellipsoid-based picture of the credible region around the line segment is shown in
red in figure 7. For a demonstration of our explicit confidence region formula, please see the
section on Confidence Region Calculation.

Method Comparison

As in our first example, we see here that the variance of our estimate is considerably
smaller when using the prior information about the building in combination with the data
currently available on the map. We can also see that our final posterior estimate of the

mean is much closer to that specified by the original business plans (thanks to the inclusion
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of this information), and therefore probably more accurate. We can also examine figure 7,
shown here, which demonstrates both the difference in placement of the line segment (where
the two endpoint vertices appear) and the variance of our estimate (the region surrounding
the posterior distribution’s line segment is smaller than the region surrounding the data
distribution’s line segment). Notice that like with the ellipses in example 1, the Bayesian
region is completely compatible with the traditional region since it falls entirely within the
traditional boundary. Furthermore, we again consider the difference in the meaning of the
two regions - the traditional region is a confidence region, and we are 95% “confident” that
the line segment is contained in that region, and the Bayesian region is a “credible” region,
and there is a 95% probability that the true line segment is contained in that region. Once

more, the benefits of Bayesian methods are clear.

)
Qo -

376100 376150 376200
ﬂ'r

2798660
1

Hy

2798620
1

Figure 7: Comparison of traditional confidence region (black) and Bayesian credible region
(red).

Confidence Region Calculation
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We have shown the confidence and probability regions around this line segment in terms

of the collection of error ellipses along its points. We will here use the formula developed

earlier in this paper to determine an explicit calculation of the probability region boundary

in the Bayesian version of the above calculations.

Note that this case is indeed covered by theorem 3, since the variances involved are such

that there is no correlation between the endpoints pg and py, and there is no correlation

between the z- and y- coordinates at each endpoint; additionally, all coordinate variances

are similar. That is, 31 =Xy =X =

a2 0

0 o2

The formula for the boundary points at a point (g, fty, ) is

by

~

y

+ X%,l—ah"/
gm"/ 1+<910*911>2
9yg —9y1
_ X2 h.
g ¥ <9z0 gaq ) 2,1—a’"r
Yy 9yo —9y1 (1+<M)2)

9Y0 ~9v1

Here, from our previous results, we have

Gxq

gyo

Gay

gy1

376102.2

2798634.4

376219.4

2798638.0

53

,andAle():A:

L hey = 20(29% — 2 + 1).

2 0

0 72



Assuming we want to create a 95% probability region around our line segment, we also

know x3 g5 = 5.99 from a chi-square distribution table.

' 376102.2 376219.4
First, g, = (1 —v)go + (7)g1 = (1 — ) +(7)
2798634.4 2798638.0

(1 —7)376102.2 4 (7)376219.4

(1 —~)2798634.4 + ()2798638.0

We can now write the formula for the boundary points as

1 ( 376102.2—376219.4 )2
2798634.4—2798638.0

(1 —)376102.2 + (7)376219.4 + \/ 599202722y 1)

23 . 5.99-20(272—2v+1
(1 —7)2798634.4 + (7)2798638.0 F (255573 5roseso) \/ (EEEE

2798634.4—2798638.0

Note that beyond the endpoints, the remainder of the boundary is calculated from the
error ellipses around the endpoints. Figure 8 offers a graphic depiction of this boundary.

The ellipse-based confidence region is included as well (in red) for comparison.
Discussions and Conclusions

In this paper, we have explored the addition of Bayesian methodology to current methods

for analyzing error in vector GIS data. There are multiple advantages to this addition. For
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Figure 8: Boundary region of a line segment based on explicit calculation.

one thing, Bayesian analysis does not rely strongly on the present data to develop an error
distribution or to estimate the location of a point. This is because the distribution of a point
can be made to rely strongly on a prior distribution that can be based on expert or historical
knowledge. This is not unreasonable in the geographic disciplines, where a lot of knowledge
may already exist to indicate coordinate locations (for example, the possible path of a stream
or the locations of certain well-studied landmarks). This is a big advantage because often only
one sample observation is available for each point on a map. Additionally, Bayesian methods
can increase the accuracy of an analysis when prior information is more reliable than the
data distribution, which could often be the case in GIS applications. Bayesian methodology
is also completely compatible with traditional methods, as seen in our examples.

Bayesian analysis is also good from the standpoint of understandability. The average non-
statistician often finds the concept of a frequentist confidence region difficult to grasp, since

it relies on the concept of confidence rather than probability; in fact, many non-statisticians
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usually interpret a confidence interval as a probability interval. The interpretation of a
Bayesian credible region, on the other hand, is direct and accessible to many users.

We are presently continuing to develop methods of Bayesian error analysis. Our current
pursuits include finding an explicit formula for the general credible region surrounding a line
segment, and using this information to do complicated probability calculations. This includes
the probability that a particular point falls within the boundary of a particular polygon, and
the probability that small extraneous “sliver” polygons created when two polygon maps are
overlaid exist in reality.

We are also developing alternative methods of defining the confidence region around a
line segment. The current model is certainly acceptable in situations where the line feature
is straight between two endpoints, often correct when dealing with man-made objects, but
unacceptable in situations where the line between two points is definitely not straight. This

is much more likely in natural situations, such as a river or the boundary of a forest.
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