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Geographic Information Systems, or GIS, has been an evolving science since its introduction.
Recently, many users have become concerned with the incorporation of error analysis into
GIS map products. In particular, there is concern over the error in the location of features in
vector data, which relies heavily on geographic x−, y− coordinates. Current work in the field
is based on bivariate normal distributions for these points, and their extension to line and
polygon features. We propose here to incorporate Bayesian methodology into this existing
model, which presents multiple advantages over existing methods. Bayesian methods allow
for the incorporation of expert and historical knowledge and reduce the number of observa-
tions required to perform an accurate analysis. This is essential to the field of GIS where
multiple observations are rare and outside knowledge is often very informative. Bayesian
methods also provide results that are more easily understood by the average GIS user. We
explore this addition and provide several examples based on our calculations. We conclude
by discussing the advantages of Bayesian analysis for GIS vector data, and discuss our on-
going work, which is being conducted under a research grant from the National Geospatial
Intelligence Agency.

KEY WORDS: Error, GIS, Vector Data, Bayesian Methods

DISCLAIMER: The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies or endorsements,
either expressed or implied, of the National Geospatial-Intelligence Agency or the U.S. Gov-
ernment.

1



Introduction

Geographic Information Systems, or GIS, has become a popular means of producing,

referencing, and manipulating map data. There are many current applications such as

planning, engineering, land management, and environmental study ([4]). The widespread

use of GIS has led to a recent concern with the error inherent in a geographic product. This

is a special concern with computerized systems because users perceive the data as extremely

accurate, when in fact there are often limitations on accuracy due to the processes involved

in creating any map product. Among other disciplines, GIS users are turning to statistics

and probability modeling to help describe and calculate risks based on this inevitable data

error.

One particular type of GIS data is vector data, which uses a system of points based

on geographic coordinates to describe point, line, and polygon features in the map setting.

Shi et al. ([10], [13], [14], [12], [11]) have developed methods for analyzing the error in a

vector GIS. They have based their model on a bivariate normal distribution for coordinate

points. We propose here the introduction of Bayesian methodology to this model, which

could improve accuracy of the error analysis as well as understanding of the results. This

work is being conducted under a research grant from the National Geospatial-Intelligence

Agency.

Geographic Information Systems Background
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The field of Geographic Information Systems, or GIS, is very popular in today’s geographical

and environmental disciplines. A GIS can be defined as a database system for storing, ana-

lyzing and manipulating spatially-referenced geographic data. Although some might expand

the term to include paper maps and information, most would agree that is a computerized

database structure. The majority of users encounter a GIS in the form of a computerized

map and an attached database containing information about individual map features. GIS

has found many applications, including research, government, military, and private uses. See

D. J. Maguire([6]) or D. F. Marble ([7]) for additional general information on GIS.

There are several ways information can be recorded and presented in a GIS map. Here

we will focus on one particular type of data storage known as vector data storage. In a

vector GIS, geographic objects are represented by points, lines, and polygons. Each point

that appears in a vector map represents a feature located at a specific coordinate pair. Lines

connecting points across a map represent larger and more complicated linear features, such

as rivers or roads. A polygon is defined as a closed set of lines, and is used to represent

features with significant area. Polygons can represent features with sharp boundaries, like

buildings and countries. Another common use for polygon features is to denote areas that

are classified differently from other nearby areas, which in reality may have very rough

boundaries. Examples of this include maps of soil types or land cover. Each polygon, line,

and point feature is linked to a database through a unique identification number, which
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enables the user to find information about that feature.

GIS users employ vector data for several reasons. It has the flexibility to model straight

lines with a small number of vertices, or more vertices can be used to plot a more complicated

line. It is a very good format to describe objects with well-defined boundaries. It also does

not require the use of a lot of computing storage space, since a relatively small number of

points need to be stored ([4]). Vector data has the potential to be infinitely precise, since

coordinates can be stored with any desired number of decimal points.

Figure 1 is an example of a vector GIS map. This map depicts several campgrounds at a

park. Polygons represent the various campgrounds, while individual cabins are represented

by point features. A stream that flows through the park is represented by a line feature. In

practice, information possibly including the names of the campgrounds, cabins and streams,

the area of the campgrounds, and the length or average depth of each of the rivers would be

available in a database. In most software applications, one can access this information by

clicking on a feature.

Error in vector GIS data

As the field of GIS continues to expand, users are paying more attention to error that may

be present in a data set. As early as 1984, Chrisman ([3]) and others began to recognize that

computers were capable of storing data much more precise than the source of the data could

provide. It has perhaps taken us so long to acknowledge this fault because many users may

4



Figure 1: Example of a vector GIS map.

not wish to admit that there is some variability or uncertainty in their data, since it may affect

how their clients or the public view their product ([8], [9]). Most people in the GIS community

now realize, however, that there must be a system in place to describe and quantify error in

GIS data, since it can be misleading and sometimes even dangerous to disregard geographic

error (for example, in a military or natural disaster planning application).

There are many possible sources of error in a vector GIS map. For example, many current

computerized GIS maps are paper maps that have been adapted through scanning and other

digitization technology. Map providers must often manually denote particular features, and

interpretation sometimes varies by operator. Another example of error in the map process

occurs during field work. Instruments that measure GPS coordinates through use of satellites

may not be accurate at all times of day or in all locations, and can impart error to the final

map product. For a more complete description of error in a GIS map, see Bolstad and Smith

([2]).
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Current Models

When the academic community surrounding GIS initially became concerned with meth-

ods for handling error in a map product, Blakemore ([1]) created the epsilon band model

for use with polygon features. While this was not a statistical model and did not allow for

specific numerical calculations, it certainly laid the groundwork for more complicated mod-

els. Figure 2 demonstrates the epsilon band model for a polygon. The figure is broken into

four regions; point (a) is considered to be definitely in the polygon, point (b) is considered

possibly in the polgon, point (c) is considered possibly out of the polygon, and point (d) is

classified as definitely out. Notice that the classification of these points is based entirely on

distance from the polygon boundary as shown.

Figure 2: Blakemore’s error model for a polygon.

This sort of pictorial representation is highly desirable, since maps contain primarily

visual information and most users are able to interpret this very naturally. The current

widely-recognized statistical model for vector data errors was initially proposed by Wenzhong
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Shi in 1998 ([10]) and has a similar visual interpretation, while also relying on statistically

sound principles that allow for error calculations.

Because the point is the basic unit of all features in a vector GIS, all error in any vector

map feature can be traced back to points (either because the points are depicted at the

wrong coordinates, or because enough points were not included to accurately describe the

geographic feature). Shi et al. begin by describing a point as having a two-dimensional

normal distribution as follows:

Q0 =




X0

Y0


 ∼ N2







µX0

µY0


 ,




σ2
X0

σX0Y0

σY0X0 σ2
Y0





 ,

where




µX0

µY0


 is the true value of the point coordinates,




X0

Y0


 is an observation taken

of that point, and




σ2
X0

σX0Y0

σY0X0 σ2
Y0


 is the variance-covariance matrix of the observations.

Note that this equation allows for variation in the X and Y directions as well as correlation

between the two, which may be quite likely in some GIS applications. They went on to use

this model as the basis for error analysis of lines and polygons in this and future papers

([10], [13], [14], [12], [11]). Shi and others often use the normal (1-α) error ellipsoid, given
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by (z − µ)′Σ−1(z − µ) ≤ χ2
2,1−α, as a means of visually portraying the distribution of the

point.

Their corresponding model for line segments is a direct extension of the point model as

we have described it. Shi and Liu ([14]) begin by describing a line segment Z0Z1 as a line

connecting two endpoints Z0 and Z1. We can geometrically represent a point on the line,

Zt = (Xt, Yt), with the equations





X(t) = (1− t)X0 + tX1

Y (t) = (1− t)Y0 + tY1

,

where 0 ≤ t ≤ 1.

Suppose now that each endpoint has the bivariate normal point distribution, that is,

zi ∼ N2(µzi
,Σzizi

)

where i = 0,1. As they point out, we can further generalize this concept by allowing for

the two endpoints of the line segment to be correlated. Shi and Liu characterize the joint

distribution of the two endpoints as

z01 ∼ N4(µz01 ,Σz01z01)
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where

z01 =




x0

y0

x1

y1




, µz01 =




µx0

µy0

µx1

µy1




, and Σz01z01 =




σ2
x0

σx0y0 σx0x1 σx0y1

σy0x0 σ2
y0

σy0x1 σy0y1

σx1x0 σx1y0 σ2
x1

σx1y1

σy1x0 σy1y0 σy1x1 σ2
y1




.

Using some basic results from linear models, Shi and Liu derive the distribution of a

point on the line segment to be

Z(t) = (X(t), Y (t))′ ∼ N2(µz(t),Σzz(t)),

where 0 ≤ t ≤ 1,

µz(t) =




µx(t)

µy(t)


 =




(1− t)µx0 + tµx1

(1− t)µy0 + tµy1




and

Σzz(t) =




σ2
x(t) σxy(t)

σyx(t) σ2
y(t)


 ,

where

σ2
x(t) = (1− t)2σ2

x0
+ 2t(1− t)σx0x1 + t2σ2

x1
,
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σxy(t) = (1− t)2σ2
x0y0

+ t(1− t)(σx1y0 + σx0y1) + t2σ2
x1y1

,

σyx(t) = (1− t)2σ2
y0x0

+ t(1− t)(σy1x0 + σy0x1) + t2σ2
y1x1

, and

σ2
y(t) = (1− t)2σ2

y0
+ 2t(1− t)σy0y1 + t2σ2

y1
.

They use this distribution to develop what is referred to as the generic error band or

G-band model. They place a bivariate normal error ellipsoid at each point along the line

segment, resulting in an infinite number of ellipsoids along the segment. Figure 3 demon-

strates this concept; Shi et al. refer to the collective outer bound of the confidence ellipsoids

as the G-band (sometimes called a confidence region).

Figure 3: Shi et al.’s G-band concept.

The extension of the error model for lines to polygons is not a difficult transition. Because

a polygon in GIS is, by definition, a closed set of lines, we can simply model the error in

each line segment on the border of a polygon. Figure 4 shows this extension.

Incorporating Bayesian Methods

We propose the incorporation of Bayesian methodology into the model for vector error
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Figure 4: Extension of Shi et al.’s G-band model to a polygon.

proposed by Shi et al. The current frequentist model has many good features, including the

ability to provide a visual interpretation of error, and to change the confidence level of the

bivariate normal ellipsoids based on a map user’s particular needs. There are several bene-

fits, however, to the addition of Bayesian methodology, including less reliance on currently

available data, the ability to incorporate expert and historical knowledge into coordinate

estimates, and easier interpretation of confidence intervals.

In particular, it is very desirable to have less dependence on currently available data

when analyzing GIS maps, specifically the amount of available data. In many cases, only

one observation per point of interest is available; it is rare to have even two “identical” maps

with slight variations in point coordinates at one’s disposal. Map producers simply do not

make many different versions of the same map. In fact, the only situations in which multiple

observations are available are those involving training data (several map digitizers or field
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surveyors in training are attempting to map the same area, for example) or in classroom

exercises. Neither of these situations are likely to apply to most analysts’ data.

Bayesian analysis is also a useful tool during the process of updating a map through the

process of ground truthing. That is, we try to produce more accurate estimates of point

coordinates by combining locations given on the map with new location data recorded on

the ground. Here we consider the distribution of the coordinates on the map at hand to

be the prior distribution for our points, and we update them with the distribution of the

data from the field surveyors. For more discussion on these issues, see the Discussions and

Conclusions section of this report.

Note that Bayes’ rule will be central to our calculations. A common form of Bayes’ rule

is

p(θ|y) ∝ p(θ)p(y|θ),

which can be found in Gelman et al.’s introductory textbook on Bayesian data analysis ([5]).

Incidentally, this textbook is a nice resource for learning more about general Bayes’ methods.

We begin with a point P0. We assume the true value of the point’s coordinates is

µ0 =




µx0

µy0


, and that we have n random observations of this value, zi0 =




xi0

yi0


,

i = 1, . . . , n. We will assume that µ0 has a normal prior distribution with parameters

(µ00 ,Λ0), and that the data points zi0 have a normal distribution with parameters (µ0,Σ0).
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To clarify the notation,

µ0 =




µx0

µy0


 ,µ00 =




µx00

µy00


 ,Λ0 =




τ 2
µx0

τµx0µy0

τµy0µx0
τ 2
µy0


 ,zi0 =




xi0

yi0


 ,

Z0 =




x10 y10

...
...

xn0 yn0




′

, and Σ0 =




σ2
x0

σx0y0

σy0x0 σ2
y0


 .

Theorem 1. Under the above assumption, the posterior distribution of a point µ0 is

µ0|Z0,Σ0 ∼ N(g0,H0),

where

g0 = (Λ−1
0 + nΣ−1

0 )−1(Λ−1
0 µ00 + nΣ−1

0 zi0), and H0 = (Λ−1
0 + nΣ−1

0 )−1.

Proof. This is an immediate result of Bayes’ rule, and appears in Gelman’s discussion of the

multivariate normal model ([5]).
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Corollary 1. The equation for the 100(1− α)% confidence ellipsoid for a point µ0 is

(µ0 − g0)
′H−1

0 (µ0 − g0) ≤ χ2
2,1−α.

where µ0 is the set of points in the ellipsoid, g0 is the Bayesian posterior mean for µ0, and

H0 is the Bayesian posterior variance matrix.

Proof. Using the mean and variance of the posterior distribution for µ0, and the fact that

this distribution is bivariate normal, we calculate the bivariate normal confidence ellipse.

The corollary follows immediately.

Bayesian error model for line segments and polygons

The basic concept of the Bayesian error model for line segments is also very similar to

the frequentist approach. Recall that any point on a line segment can be described as a

function of its endpoints. Suppose then that the endpoints of a particular line segment are

P0 and P1, with coordinates µ0 and µ1. We can then describe any point on the line with

the equation

µγ = γµ1 + (1− γ)µ0,

where 0 ≤ γ ≤ 1.

Suppose each of these coordinates has a normal prior distribution as above, with param-

eters (µ00 ,Λ0) and (µ10 ,Λ1) respectively. Suppose further that these two points may have

14



some correlation, so that the joint prior distribution of the endpoints is

µ01 ∼ N (µ010 ,Λ01)

where

µ01 =




µx0

µy0

µx1

µy1




, µ010 =




µx00

µy00

µx10

µy10




,

and

Λ01 =




τ 2
µx0

τµx0µy0
τµx0µx1

τµx0µy1

τµy0µx0
τ 2
µy0

τµy0µx1
τµy0µy1

τµx1µx0
τµx1µy0

τ 2
µx1

τµx1µy1

τµy1µx0
τµy1µy0

τµy1µx1
τ 2
µy1




.

Assume we also have n independent observations on each of these endpoints, z01i
∼
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N(µ01,Σ01) where

z01i
=




x0i

y0i

x1i

y1i




, z̄01 =




x̄0

ȳ0

x̄1

ȳ1




,µ01 =




µx0

µy0

µx1

µy1




,

and

Σ01 =




σ2
x0

σx0y0 σx0x1 σx0y1

σy0x0 σ2
y0

σy0x1 σy0y1

σx1x0 σx1y0 σ2
x1

σx1y1

σy1x0 σy1y0 σy1x1 σ2
y1




.

According to Bayes’ rule, the joint conditional posterior distribution for the endpoints is

N(g01, H01), where

g01 = (Λ−1
01 + nΣ−1

01 )−1(Λ−1
01 µ010 + nΣ−1

01 z̄01),

H01 = (Λ−1
01 + nΣ−1

01 )−1.

For clarity of notation, we will indicate the individual elements of the posterior mean and
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variance as follows:

g01 =




g0

g1


 =




gx0

gy0

gx1

gy1




,

H01 =




h2
x0

hx0y0 hx0x1 hx0y1

hy0x0 h2
y0

hy0x1 hy0y1

hx1x0 hx1y0 h2
x1

hx1y1

hy1x0 hy1y0 hy1x1 h2
y1




=




H0

hx0x1 hx0y1

hy0x1 hy0y1

hx1x0 hx1y0

hy1x0 hy1y0

H1




.

Theorem 2. Under the conditions above, the posterior conditional distribution of a point

on a line segment, µγ = γµ1 + (1− γ)µ0, is

µγ|Σ01,Z01 ∼ N(gγ, Hγ)

17



where

gγ = (1− γ)g0 + γg1,

Hγ =




h2
xγ

hxγyγ

hyγxγ hyγ


 ,

h2
xγ

= (1− γ)2h2
x0

+ 2γ(1− γ)hx0x1 + γ2h2
x1

,

hxγyγ = hyγxγ = (1− γ)2hx0y0 + γ(1− γ)hx0y1 + γ(1− γ)hy0x1 + γ2hx1y1 ,

hyγ = (1− γ)2h2
y0

+ 2γ(1− γ)hy0y1 + γ2h2
y1

.

Proof. Following some basic facts from linear models, the function γµ1 + (1− γ)µ0 can be

written as




(1− γ) 0 γ 0

0 (1− γ) 0 γ







µx0

µy0

µx1

µy1




.

Since µ01 is normally distributed, we know that this linear function of µ01 is normally
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distributed. The mean of this distribution is




(1− γ) 0 γ 0

0 (1− γ) 0 γ







gx0

gy0

gx1

gy1




= (1− γ)g0 + γg1.

The variance of this distribution is




(1− γ) 0 γ 0

0 (1− γ) 0 γ







h2
x0

hx0y0 hx0x1 hx0y1

hy0x0 h2
y0

hy0x1 hy0y1

hx1x0 hx1y0 h2
x1

hx1y1

hy1x0 hy1y0 hy1x1 h2
y1







(1− γ) 0

0 (1− γ)

γ 0

0 γ




=




h2
xγ

hxγyγ

hyγxγ hyγ




where the individual terms are as written in the theorem.

Note that the result in Theorem 2 is very similar to the result in the frequentist case.
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Corollary 2. The equation for the 100(1− α)% confidence ellipsoid for a point µγ is

(µγ − gγ)
′H−1

γ (µγ − gγ) ≤ χ2
2,1−α

where µγ is the set of points in the ellipsoid, gγ is the Bayesian Posterior mean for µγ, and

Hγ is the Bayesian posterior variance matrix.

Proof. Using the mean and variance of the posterior distribution for µγ, and the fact that

this distribution is bivariate normal, we calculate a bivariate normal confidence ellipse. The

corollary follows immediately.

Form of the posterior mean and variance for a point on a line segment

Suppose we want to find an explicit form for the posterior mean and variance of a point

on a line, µγ. In the most general case, that is for correlated x- and y- data with

Λ01 =




τ 2
µx0

τµx0µy0
τµx0µx1

τµx0µy1

τµy0µx0
τ 2
µy0

τµy0µx1
τµy0µy1

τµx1µx0
τµx1µy0

τ 2
µx1

τµx1µy1

τµy1µx0
τµy1µy0

τµy1µx1
τ 2
µy1




and Σ01 =




σ2
x0

σx0y0 σx0x1 σx0y1

σy0x0 σ2
y0

σy0x1 σy0y1

σx1x0 σx1y0 σ2
x1

σx1y1

σy1x0 σy1y0 σy1x1 σ2
y1




,

we can only substitute terms directly into the equations from Theorem 2 to calculate the

posterior mean and variance. In many cases, however, it is possible to simplify our results,
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and it is advantageous to do so. We present these cases as corollaries to our result in Theorem

2.

Corollary 3. Suppose the endpoints of a line segment, µ0 and µ1, are independent from

one another, and the variance/covariance matrices of the prior and sampling distributions

are

Λ01 =




τ 2
µx0

τµx0µy0
0 0

τµy0µx0
τ 2
µy0

0 0

0 0 τ 2
µx1

τµx1µy1

0 0 τµy1µx1
τ 2
µy1




and Σ01 =




σ2
x0

σx0y0 0 0

σy0x0 σ2
y0

0 0

0 0 σ2
x1

σx1y1

0 0 σy1x1 σ2
y1




.

The mean of the posterior distribution of µγ is then

gγ = γ(Λ−1
1 + nΣ−1

1 )−1(Λ−1
1 µ10 + nΣ−1

1 z̄1) + (1− γ)(Λ−1
0 + nΣ−1

0 )−1(Λ−1
0 µ00 + nΣ−1

0 z̄0),

and the posterior variance is Hγ = γ2H1 + (1− γ)2H0.

Proof. First, note that we can write Λ01 =




Λ0 0

0 Λ1


 and Σ01 =




Σ0 0

0 Σ1


 . Linear
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models results tell us

Λ−1
01 =




Λ−1
0 0

0 Λ−1
1


 and Σ−1

01 =




Σ−1
0 0

0 Σ−1
1


 .

Next, the Bayes’ rule formula for the posterior mean tells us

g01 = (Λ−1
01 + nΣ−1

01 )−1(Λ−1
01 µ010 + nΣ−1

01 z̄01).

By writing the equation explicitly in terms of our assumed values for Λ01 and Σ01 and

applying some linear algebra, we find

g01 =







Λ0 0

0 Λ1




−1

+ n




Σ0 0

0 Σ1




−1


−1 





Λ0 0

0 Λ1




−1

µ010 + n




Σ0 0

0 Σ1




−1

z̄01




=







Λ−1
0 0

0 Λ−1
1


 + n




Σ−1
0 0

0 Σ−1
1







−1 





Λ−1
0 0

0 Λ−1
1


 µ010 + n




Σ−1
0 0

0 Σ−1
1


 z̄01




=




Λ−1
0 + nΣ−1

0 0

0 Λ−1
1 + nΣ−1

1




−1 





Λ−1
0 µ00

Λ−1
1 µ10


 + n




Σ−1
0 z̄0

Σ−1
1 z̄1






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=




(Λ−1
0 + nΣ−1

0 )−1 0

0 (Λ−1
1 + nΣ−1

1 )−1







Λ−1
0 µ00 + nΣ−1

0 z̄0

Λ−1
1 µ10 + nΣ−1

1 z̄1




=




(Λ−1
0 + nΣ−1

0 )−1(Λ−1
0 µ00 + nΣ−1

0 z̄0)

(Λ−1
1 + nΣ−1

1 )−1(Λ−1
1 µ10 + nΣ−1

1 z̄1)


 .

By applying the results of Theorem 2, gγ = (1 − γ)g0 + γg1, we arrive at our stated

conclusion.

Next, to get the result for the posterior variance, we again use Bayes’ rule to find H01 =

(Λ−1
01 + nΣ−1

01 )−1. We can then write

H01 =




Λ−1
0 + nΣ−1

0 0

0 Λ−1
1 + nΣ−1

1




−1

=




(Λ−1
0 + nΣ−1

0 )−1 0

0 (Λ−1
1 + nΣ−1

1 )−1




=




H0 0

0 H1




where H0 and H1 are defined as in Theorem 1.
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Our posterior variance is then




(1− γ) 0 γ 0

0 (1− γ) 0 γ







h2
x0

hx0y0 0 0

hy0x0 h2
y0

0 0

0 0 h2
x1

hx1y1

0 0 hy1x1 h2
y1







(1− γ) 0

0 (1− γ)

γ 0

0 γ




,

from the proof of Theorem 2.

Multiplying through this equation gives us




(1− γ)2h2
x0

+ γ2h2x1 (1− γ)2hx0y0 + γ2hx1y1

(1− γ)2hy0x0 + γ2hy1x1 (1− γ)2h2
y0

+ γ2h2y1


 = γ2H1 + (1− γ)2H0,

which is the result stated in the corollary.

Corollary 3 provides the posterior mean and variance for a general situation that allows

the x- and y- coordinates within each endpoint to be correlated, without correlation between

endpoints. This may or may not be a valid assumption. In the case of GPS instrument

error, for example, one instrument may be more likely to always read a high x- coordinate,

or an instrument taking a different sample might always read a low one, meaning endpoints

will have correlated error. If different instruments were used at each point, however, there

may be no such correlation. Additionally, in the case of manual map digitization, a well-
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trained technician may not demonstrate any trend in error between endpoints. The following

corollaries provide details for the subset of situations in which there is no correlation between

or within the endpoints.

Corollary 4. Suppose now that there is no correlation between the endpoints µ0 and µ1,

and additionally, there is no correlation between the x- and y- coordinates at each endpoint.

That is,

Λ01 =




τ 2
µx0

0 0 0

0 τ 2
µy0

0 0

0 0 τ 2
µx1

0

0 0 0 τ 2
µy1




and Σ01 =




σ2
x0

0 0 0

0 σ2
y0

0 0

0 0 σ2
x1

0

0 0 0 σ2
y1




.

The mean of the posterior distribution of µγ is

γ







σ2
x1

σ2
x1

+nτ2
µx1

0

0
σ2

y1

σ2
y1

+nτ2
µy1


 µ10 + n




τ2
µx1

σ2
x1

+nτ2
µx1

0

0
τ2
µy1

τ2
y1

+nτ2
µy1


 z̄1




+(1− γ)







σ2
x0

σ2
x0

+nτ2
µx0

0

0
σ2

y0

σ2
y0

+nτ2
µy0


 µ00 + n




τ2
µx0

σ2
x0

+nτ2
µx0

0

0
τ2
µy0

σ2
y0

+nτ2
µy0


 z̄0



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and the variance of the posterior distribution is

γ2




τ2
µx1

σ2
x1

σ2
x1

+nτ2
µx1

0

0
τ2
µy1

σ2
y1

σ2
y1

+nτ2
µy1


 + (1− γ)2




τ2
µx0

σ2
x0

σ2
x0

+nτ2
µx0

0

0
τ2
µy0

σ2
y0

σ2
y0

+nτ2
µy0


 .

Proof. Because this is a special case of Corollary 3, we know that the mean of the posterior

distribution is

gγ = γ(Λ−1
1 + nΣ−1

1 )−1(Λ−1
1 µ10 + nΣ−1

1 z̄1) + (1− γ)(Λ−1
0 + nΣ−1

0 )−1(Λ−1
0 µ00 + nΣ−1

0 z̄0),

and the posterior variance is Hγ = γ2H1 + (1 − γ)2H0. Imposing the additional condition

that the x- and y- coordinates at each endpoint are uncorrelated, we know

Λ−1
0 =




1
τ2
µx0

0

0 1
τ2
µy0


 , Λ−1

1 =




1
τ2
µx1

0

0 1
τ2
µy1


 , Σ−1

0 =




1
σ2

x0

0

0 1
σ2

y0


 ,

and

Σ−1
1 =




1
σ2

x1

0

0 1
σ2

y1


 .
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Inserting these results into our previous equations, we get

Λ−1
0 + nΣ−1

0 =




1
τ2
µx0

0

0 1
τ2
µy0


 +




n
σ2

x0

0

0 n
σ2

y0


 =




σ2
x0

+nτ2
µx0

τ2
µx0

σ2
x0

0

0
σ2

y0
+nτ2

µy0

τ2
µy0

σ2
y0




⇒ (
Λ−1

0 + nΣ−1
0

)−1
=




τ2
µx0

σ2
x0

σ2
x0

+nτ2
µx0

0

0
τ2
µy0

σ2
y0

σ2
y0

+nτ2
µy0


 .

Calculation of
(
Λ−1

1 + nΣ−1
1

)−1
is similar.
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We can now calculate the posterior mean and variance for the general no-covariance case.

gγ = γ




τ2
µx1

σ2
x1

σ2
x1

+nτ2
µx1

0

0
τ2
µy1

σ2
y1

σ2
y1

+nτ2
µy1










1
τ2
µx1

0

0 1
τ2
µy1


 µ10 + n




1
σ2

x1

0

0 1
σ2

y1


 z̄1




+ (1− γ)




τ2
µx0

σ2
x0

σ2
x0

+nτ2
µx0

0

0
τ2
µy0

σ2
y0

σ2
y0

+nτ2
µy0










1
τ2
µx0

0

0 1
τ2
µy0


 µ00 + n




1
σ2

x0

0

0 1
σ2

y0


 z̄0




= γ







σ2
x1

σ2
x1

+nτ2
µx1

0

0
σ2

y1

σ2
y1

+nτ2
µy1


 µ10 + n




τ2
µx1

σ2
x1

+nτ2
µx1

0

0
τ2
µy1

σ2
y1

+nτ2
µy1


 z̄1




+ (1− γ)







σ2
x0

σ2
x0

+nτ2
µx0

0

0
σ2

y0

σ2
y0

+nτ2
µy0


 µ00 + n




τ2
µx0

σ2
x0

+nτ2
µx0

0

0
τ2
µy0

σ2
y0

+nτ2
µy0


 z̄0


 ,

Hγ = γ2




τ2
µx1

σ2
x1

σ2
x1

+nτ2
µx1

0

0
τ2
µy1

σ2
y1

σ2
y1

+nτ2
µy1


 + (1− γ)2




τ2
µx0

σ2
x0

σ2
x0

+nτ2
µx0

0

0
τ2
µy0

σ2
y0

σ2
y0

+nτ2
µy0


 .

Endpoints certainly may have correlation between their x- and y- coordinates. If, for

example, similar instruments were used at the same endpoint to collect data at different

times, this could cause some correlation between the errors in its coordinates. Depending

on the time of day, for instance, GPS instruments relying on satellite information may have

similar types of error in each coordinate, based on the changing positions of the satellites.
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In some cases, though, for instance manual digitization, it is probably a valid assumption

that there is no correlation in error between coordinates.

Corollary 5. Suppose there is no correlation between the endpoints µ0 and µ1, and there

is no correlation between the coordinates at each endpoint. Additionally, suppose each

endpoint has equal variance at its x- and y- coordinates (although it may be different at each

endpoint); that is, we know that Σ1 =




σ2
1 0

0 σ2
1


 , Σ0 =




σ2
0 0

0 σ2
0


 , Λ1 =




τ 2
1 0

0 τ 2
1


 ,

and Λ0 =




τ 2
0 0

0 τ 2
0


.

The posterior mean is then

gγ = γ

(
σ2

1

σ1 + nτ 2
1

µ10 +
nτ 2

1

σ1 + nτ 2
1

z̄1

)
+ (1− γ)

(
σ2

0

σ0 + nτ 2
0

µ00 +
nτ 2

0

σ0 + nτ 2
0

z̄0

)
,

and the posterior variance is

Hγ =

[
γ2

(
τ 2
1 σ2

1

σ2
1 + nτ 2

1

)
+ (1− γ)2

(
τ 2
0 σ2

0

σ2
0 + nτ 2

0

)]
I.
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Proof. It is easy to first calculate (Λ−1
1 + nΣ−1

1 )−1 and (Λ−1
0 + nΣ−1

0 )−1.

Λ−1
1 =




1
τ2
1

0

0 1
τ2
1


 , Λ−1

0 =




1
τ2
0

0

0 1
τ2
0


 ,

Σ−1
1 =




1
σ2
1

0

0 1
σ2
1


 , and Σ−1

0 =




1
σ2
0

0

0 1
σ2
0


 .

We can then calculate

Λ−1
1 + nΣ−1

1 =




1
τ2
1

+ n 1
σ2
1

0

0 1
τ2
1

+ n 1
σ2
1


 =




σ2
1+nτ2

1

τ2
1 σ2

1
0

0
σ2
1+nτ2

1

τ2
1 σ2

1




and

Λ−1
0 + nΣ−1

0 =




1
τ2
0

+ n 1
σ2
0

0

0 1
τ2
0

+ n 1
σ2
0


 =




σ2
0+nτ2

0

τ2
0 σ2

0
0

0
σ2
0+nτ2

0

τ2
0 σ2

0


 .

This gives us

(Λ−1
1 + nΣ−1

1 )−1 =




τ2
1 σ2

1

σ2
1+nτ2

1
0

0
τ2
1 σ2

1

σ1+nτ2
1


 =

(
τ 2
1 σ2

1

σ2
1 + nτ 2

1

)
I
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and

(Λ−1
0 + nΣ−1

0 )−1 =




τ2
0 σ2

0

σ2
0+nτ2

0
0

0
τ2
0 σ2

0

σ0+nτ2
0


 =

(
τ 2
0 σ2

0

σ2
0 + nτ 2

0

)
I.

We can now calculate the posterior mean and variance.

gγ = γ

[(
τ 2
1 σ2

1

σ2
1 + nτ 2

1

)
I

] [
1

τ 2
1

µ10 +
n

σ2
1

z̄1

]
+ (1− γ)

[(
τ 2
0 σ2

0

σ2
0 + nτ 2

0

)
I

] [
1

τ 2
0

µ00 +
n

σ2
0

z̄0

]

= γ

(
σ2

1

σ1 + nτ 2
1

µ10 +
nτ 2

1

σ1 + nτ 2
1

z̄1

)
+ (1− γ)

(
σ2

0

σ0 + nτ 2
0

µ00 +
nτ 2

0

σ0 + nτ 2
0

z̄0

)
,

Hγ = γ2

(
τ 2
1 σ2

1

σ2
1 + nτ 2

1

)
I + (1− γ)2

(
τ 2
0 σ2

0

σ2
0 + nτ 2

0

)
I

=

[
γ2

(
τ 2
1 σ2

1

σ2
1 + nτ 2

1

)
+ (1− γ)2

(
τ 2
0 σ2

0

σ2
0 + nτ 2

0

)]
I.

This may be a valid situation, especially in the case of human error. Suppose, for example,

that two maps of adjoined areas are combined into a larger map. Each map may have been

created by a different agency – possibly with different methods – and each agency may have

emphasized a different standard of accuracy in terms of identifying exact point location.

Therefore, some points on the large map may have small variance in error while others have

larger error variance. It would, however, be likely within an agency that error in the x- and

y- directions at each point would be quite similar.
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Corollary 6. Suppose again that there is no correlation between the endpoints µ0 and µ1,

and there is no correlation between the x- and y- coordinates at each endpoint. Suppose also

that the variance in the x coordinates is similar between the endpoints, as is the variance in

the y coordinates; that is, Σ1 = Σ0 = Σ =




σ2
x 0

0 σ2
y


, and Λ1 = Λ0 = Λ =




τ 2
µx

0

0 τ 2
µy


.

In this case, the posterior mean for a point µγ is

gγ =




σ2
x

σ2
x+nτ2

µx
0

0
σ2

y

σ2
y+nτ2

µy


 [γµ10 + (1− γ)µ00 ] +




τ2
µx

σ2
x+nτ2

µx
0

0
τ2
µy

σ2
y+nτ2

µy


 [γz̄1 + (1− γ)z̄0],

and the posterior variance is

Hγ = (2γ2 − 2γ + 1)




σ2
xτ2

µx

σ2
x+nτ2

µx
0

0
σ2

yτ2
µy

σ2
y+nτ2

µy


 .

Proof. Again calculating the individual terms involved in (Λ−1 + nΣ−1)−1, we have

Λ−1 =




1
τ2
µx

0

0 1
τ2
µy


 , and Σ−1 =




1
σ2

x
0

0 1
σ2

y


 .
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We can then calculate

Λ−1 + nΣ−1 =




1
τ2
µx

+ n 1
σ2

x
0

0 1
τ2
µy

+ n 1
σ2

y


 =




σ2
x+nτ2

µx

τ2
µxσ2

x
0

0
σ2

y+nτ2
µy

τ2
µy σ2

y


 .

This gives us

(Λ−1 + nΣ−1)−1 =




τ2
µxσ2

x

σ2
x+nτ2

µx
0

0
τ2
µy σ2

y

σy+nτ2
µy


 .
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We can now calculate the posterior mean and variance.

gγ = γ




τ2
µxσ2

x

σ2
x+nτ2

µx
0

0
τ2
µy σ2

y

σy+nτ2
µy










1
τ2
µx

0

0 1
τ2
µy


 µ10 +




1
σ2

x
0

0 1
σ2

y


 z̄1




+ (1− γ)




τ2
µxσ2

x

σ2
x+nτ2

µx
0

0
τ2
µy σ2

y

σy+nτ2
µy










1
τ2
µx

0

0 1
τ2
µy


 µ00 +




1
σ2

x
0

0 1
σ2

y


 z̄0




=




σ2
x

σ2
x+nτ2

µx
0

0
σ2

y

σ2
y+nτ2

µy


 [γµ10 + (1− γ)µ00 ] +




τ2
µx

σ2
x+nτ2

µx
0

0
τ2
µy

σ2
y+nτ2

µy


 [γz̄1 + (1− γ)z̄0],

+ (1− γ)







σ2
x

σ2
x+nτ2

µx
0

0
σ2

y

σ2
y+nτ2

µy


 µ00 +




τ2
µx

σ2
x+nτ2

µx
0

0
τ2
µy

σ2
y+nτ2

µy


 z̄0




Hγ = γ2




σ2
xτ2

µx

σ2
x+nτ2

µx
0

0
σ2

yτ2
µy

σ2
y+nτ2

µy


 + (1− γ)2




σ2
xτ2

µx

σ2
x+nτ2

µx
0

0
σ2

yτ2
µy

σ2
y+nτ2

µy




= (2γ2 − 2γ + 1)




σ2
xτ2

µx

σ2
x+nτ2

µx
0

0
σ2

yτ2
µy

σ2
y+nτ2

µy


 .

This is a possibility in a case where a map has been digitized in a situation where x-

and y- distances are not displayed at the same scale. This can happen locally, for example,

when using certain coordinate systems. A single technician digitizing a map will likely make
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the same size error at all points based on the visual display available, in both the x- and y-

directions. This means that the true size of error as measured on the ground will be different

for x- and y- coordinates at a single point, but similar over the scope of the map.

Corollary 7. Suppose again that there is no correlation between the endpoints µ0 and µ1,

and there is no correlation between the x- and y- coordinates at each endpoint. Suppose

additionally that all coordinate variances are similar; that is, Σ1 = Σ0 = Σ =




σ2 0

0 σ2


,

and Λ1 = Λ0 = Λ =




τ 2 0

0 τ 2


.

In this case, the posterior mean for a point µγ is

gγ =

(
τ 2σ2

τ 2 + nσ2

) [
(1− γ)

(
1

τ 2
µ00 +

n

σ2
z̄0

)
+ γ

(
1

τ 2
µ10 +

n

σ2
z̄1

)]
,

and the posterior variance is

Hγ = (2γ2 − 2γ + 1)
τ 2σ2

σ2 + nτ 2
I.

Proof. Again calculating the individual terms involved in the computations, we have
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Λ−1 =




1
τ2 0

0 1
τ2


 , and Σ−1 =




1
σ2 0

0 1
σ2


 .

We can then calculate

Λ−1 + nΣ−1 =




1
τ2 + n 1

σ2 0

0 1
τ2 + n 1

σ2


 =




σ2+nτ2

τ2σ2 0

0 σ2+nτ2

τ2σ2


 .

This gives us

(Λ−1 + nΣ−1)−1 =




τ2σ2

σ2+nτ2 0

0 τ2σ2

σ2+nτ2


 =

τ 2σ2

σ2 + nτ 2
I. (1)

We can now easily calculate the posterior mean and variance.

gγ = γ
τ 2σ2

σ2 + nτ 2
I







1
τ2 0

0 1
τ2


 µ10 +




1
σ2 0

0 1
σ2


 z̄1




+ (1− γ)
τ 2σ2

σ2 + nτ 2
I







1
τ2 0

0 1
τ2


 µ00 +




1
σ2 0

0 1
σ2


 z̄0




=

(
τ 2σ2

τ 2 + nσ2

)[
γ

(
1

τ 2
µ10 +

n

σ2
z̄1

)
+ (1− γ)

(
1

τ 2
µ00 +

n

σ2
z̄0

)]
,

Hγ = γ2 τ 2σ2

σ2 + nτ 2
I + (1− γ2)

τ 2σ2

σ2 + nτ 2
I

= (2γ2 − 2γ + 1)
τ 2σ2

σ2 + nτ 2
I.
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This is something of a best-case scenario, and would certainly simplify subsequent calcu-

lations using error variance. It may even be a realistic situation, for example, when all maps

involved have been digitized by a single technician. It seems reasonable that human error

would tend to be randomly and evenly distributed at all points. There are many cases in

which this assumption is not valid, however, which we have already mentioned. One example

is multiple technicians digitizing separate parts of a map. Error in instrument readings is

another example, since those types of idiosyncracies in an instrument are likely to be corre-

lated across a map. Therefore, anyone hoping to accurately discuss positional error in a GIS

product should seriously consider the types of correlation and variance that may occur, as

it may change the model considerably.

Confidence Region Boundary Calculation

Although pictures of the boundary region on a line segment are frequent in the available

literature on error in vector GIS, to our knowledge an explicit formula for the confidence

bound has never been calculated. (The bound is usually formed by placing confidence ellipses

at a large number of points along the line segment.) We believe that finding the formula for

the confidence bound will greatly aid us in solving current probability problems in vector

data, for example, the point in polygon problem we have discussed here.
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In order to compute the boundary, we must first assume that each of the infinite points

on the line has a confidence ellipsoid around it. This means we assume that the joint prior

distribution of the endpoints of the line segment is µ01 ∼ N(µ010Λ01), and that the data

distribution is z01 ∼ N(µ01,Σ01).

Next, it is clear that the points on each error ellipsoid that are at the furthest perpen-

dicular distance from the line segment will be on the boundary of its confidence region. For

a demonstration of this fact, see Figure 5. Figure a) shows this for circular point error ellip-

soids, and figure b) shows this in a more general case. A proof will follow in an upcoming

paper.

Figure 5: Points on the boundary of the confidence region.

While there are several ways to calculate this boundary point in the general case, they

are complicated calculations we will include in a an upcoming paper. If, however, the error

ellipsoid around µγ is circular, the boundary can be calculated fairly easily as follows.

Lemma 1. In the case covered by corollary 5, in which each endpoint of a line segment is

normally distributed and has equal prior and sampling variance for both of its coordinates,
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the error ellipsoid at µγ is circular.

Proof. We know from corollary 5 that Hγ =
[
γ2

(
τ2
1 σ2

1

σ2
1+nτ2

1

)
+ (1− γ)2

(
τ2
0 σ2

0

σ2
0+nτ2

0

)]
I = hγI (for

simplified notation). We can then use corollary 2 which tells us that the boundary of the

confidence ellipsoid at point µγ is (µγ−gγ)
′H−1

γ (µγ−gγ) = (µγ−gγ)
′h−1

γ I(µγ−gγ) = χ2
2,1−α.

This implies

h−1
γ (µγ − gγ)

′(µγ − gγ) = χ2
2,1−α

⇒ (µγ − gγ)
′(µγ − gγ) = hγχ

2
2,1−α

⇒ ((µxγ − gxγ )
2 + (µyγ − gyγ )

2) = hγχ
2
2,1−α

⇒
√

(µxγ − gxγ )
2 + (µyγ − gyγ )

2 =
√

hγχ2
2,1−α.

The left side of this equation is the well-known geometric formula for the distance between

µγ and gγ. The fact that this distance is equal to a constant,
√

hγχ2
2,1−α, means that the

distance to the boundary from gγ is constant, implying that the boundary is circular.

Note that this lemma applies in particular to the subset of cases discussed in corollary 7,

in which all coordinates at both endpoints have the same prior and sampling variance.

In the following theorem, we give the boundary for the line segment’s confidence region

in the event of a circular confidence ellipsoid at µγ.

Theorem 3. In the case covered by corollary 5, in which each endpoint of a line segment is
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normally distributed and has equal prior and sampling variance for both of its coordinates,

the point on the boundary of the line segment associated with point µγ is




bxγ

byγ


 =




gxγ ±
√

χ2
2,1−αhγ„

1+
“

gx0−gx1
gy0−gy1

”2
«

gyγ ∓
(

gx0−gx1

gy0−gy1

) √
χ2

2,1−αhγ„
1+
“

gx0−gx1
gy0−gy1

”2
«




.

Proof. The points on the circular error ellipse at µγ that are farthest from the line segment

(thus on the boundary of its confidence region) are the points on a line perpendicular to the

line segment at µγ. This is not true in the general case if the error ellipse is not circular.

For a heuristic demonstration, review Figure 5.

Given this fact, we next find the formula for a line perpendicular to the line segment

going through µγ. First, we know from geometry that the line connecting g1 and g0 has

slope
(

gy0−gy1

gx0−gx1

)
. We then know that the slope of the perpendicular line is the negative

inverse of this slope, or −
(

gx0−gx1

gy0−gy1

)
. The slope of the new line can also be written as

(
byγ−gyγ

bxγ−gxγ

)
where




bxγ

byγ


 = bγ is the boundary point we are searching for. This means we

can write
(

byγ−gyγ

bxγ−gxγ

)
= −

(
gx0−gx1

gy0−gy1

)
, or byγ = gyγ +

(
gx0−gx1

gy0−gy1

)
(gxγ − bxγ ).
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Next, we know already that the formula for the circular error boundary at µγ is




bxγ − gxγ

byγ − gyγ




′

h−1
γ I




bxγ − gxγ

byγ − gyγ


 = h−1

γ




bxγ − gxγ

byγ − gyγ




′ 


bxγ − gxγ

byγ − gyγ


 .

Because the boundary point is on the perpendicular line, we can substitute our information

from above about byγ and write

h−1
γ




bxγ − gxγ

gx0−gx1

gy0−gy1
(gxγ − bxγ )




′ 


bxγ − gxγ

gx0−gx1

gy0−gy1
(gxγ − bxγ )




=
(bxγ − gxγ )

2

hγ

(
1 +

(
gx0 − gx1

gy0 − gy1

)2
)

= χ2
2,1−α.

This means

(bxγ − gxγ )
2 =

χ2
2,1−αhγ(

1 +
(

gx0−gx1

gy0−gy1

)2
)

⇒ b2
xγ
− 2bxγgxγ + g2

xγ
=

χ2
2,1−αhγ(

1 +
(

gx0−gx1

gy0−gy1

)2
)

⇒ b2
xγ
− 2bxγgxγ +


g2

xγ
− χ2

2,1−αhγ(
1 +

(
gx0−gx1

gy0−gy1

)2
)


 = 0.
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This is a quadratic equation of the form ax2 +bx+c. We can now solve for bxγ by finding

the roots of the equation:

bxγ =
−b±√b2 − 4ac

2a
=

2gxγ ±
√√√√(−2gxγ )

2 − 4

(
g2

xγ
− χ2

2,1−αhγ„
1+
“

gx0−gx1
gy0−gy1

”2
«

)

2

=

2gxγ ±
√√√√4

(
g2

xγ
− g2

xγ
+

χ2
2,1−αhγ„

1+
“

gx0−gx1
gy0−gy1

”2
«

)

2

gives us

bxγ = gxγ ±
√√√√√

χ2
2,1−αhγ(

1 +
(

gx0−gx1

gy0−gy1

)2
) .

Substituting this result for bxγ in the parallel line equation to find byγ , a quick calculation

tells us that the points of interception (and the points on the boundary of the confidence

region of the line segment) are




bxγ

byγ


 =




gxγ ±
√

χ2
2,1−αhγ„

1+
“

gx0−gx1
gy0−gy1

”2
«

gyγ ∓
(

gx0−gx1

gy0−gy1

) √
χ2

2,1−αhγ„
1+
“

gx0−gx1
gy0−gy1

”2
«




.
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Examples

We now provide some theoretical examples of the incorporation of Bayesian methodology

into GIS vector data error analysis. For more examples using real data, look for an upcoming

paper.

Example 1.

The professor of a geography class assigns his five students to take GPS instruments

and record the location of a “benchmark” at the university. (A benchmark is a location

with coordinates that have been measured very precisely.) The students take the following

coordinate measurements (in meters):

i x y

1 551470.3 4119766.4

2 551464.6 4119770.2

3 551472.8 4119763.1

4 551475.3 4119767.6

5 551468.7 4119769.9

The standard deviation of the error of the instruments used by the students is known to

be 3 m. in the x direction, and 2 m. in the y direction, and the errors are uncorrelated. The
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professor also happens to know that the benchmark’s coordinates have been very carefully

measured at (551469.1, 4119766.1) with a standard deviation of .1 m in either direction, and

the errors are uncorrelated.

Frequentist Method

Traditionally, only the current information on the coordinates would be used to estimate

the true location of the benchmark. The estimate of the benchmark would be the average of

the x and y observations, (x, y) = (551470.34, 4119767.44). The variance of these estimates

is Σ = 1
5




9 0

0 4


 =




1.8 0

0 0.8


. Finally, we can represent the error pictorially by drawing

the error ellipsoid at the 95% confidence level,

(z−µ)′Σ−1(z−µ) =




551470.34− µx0

4119767.44− µy0




′ 


1.8 0

0 0.8




−1 


551470.34− µx0

4119767.44− µy0


 ≤ χ2

2,.95,

shown in black in figure 6.

Bayesian Method

The Bayesian methodology we have proposed here allows us to use the additional infor-

mation we have about the benchmark - that it has been measured much more accurately
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with a standard deviation of .1 m. We will use this as our prior distribution on µ0:




µx0

µy0


 ∼







551469.1

4119766.1


 ,




0.01 0

0 0.01





 .

Combining this prior distribution with the information from the data, we can give the

posterior distribution of the point as µ0|Z0,Σ0 ∼ N(g0, H0), where

g0 =

0
BB@

2
664

0.01 0

0 0.01

3
775

−1

+ 5

2
664

9 0

0 4

3
775

−11
CCA

−10
BB@

2
664

0.01 0

0 0.01

3
775

−10
BB@

551469.1

4119766.1

1
CCA+ 5

2
664

9 0

0 4

3
775

−10
BB@

551470.34

4119767.44

1
CCA

1
CCA

=
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CCA ,

and

H0 =

2
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3
775 .

We can represent the 95% probability error ellipsoid in this situation with the equation

(µ0 − g0)′H−1
0 (µ0 − g0) =

0
BB@

µx0 − 551469.1069

µy0 − 4119766.117

1
CCA

′ 2
664

0.00994 0

0 0.00988

3
775

−10
BB@

µx0 − 551469.1069

µy0 − 4119766.117

1
CCA ≤ χ2

2,.95 = 5.99,

shown in red in figure 6.

Method Comparison
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When we compare the results from our two methods, we can see that the Bayesian result

has markedly smaller variance, due to the inclusion of the much more accurate Bayesian prior.

Evaluating the posterior estimate of the mean, it is obvious that this estimate more closely

resembles what has already been carefully measured (the prior value on the benchmark) than

the traditional estimate does. In situations where this type of information is available, it is

clear how the Bayesian prior can improve the inference process. Figure 6 compares the error

ellipsoids around the benchmark for the frequentist (black) and Bayesian (red) methods.

Not only is the Bayesian ellipsoid much smaller, but it has an easier interpretation - rather

than being a confidence region it is a probability region. Instead of being 95% “confident”

that the coordinates are in the ellipsoid, we can say there is a 95% “probability” that the

coordinates of the benchmark are in the Bayesian ellipsoid. It is also important to note that

the Bayesian result is compatible and in agreement with the traditional result, since the

probability ellipsoid here falls well within the boundary of the traditional confidence region.

Example 2.

Suppose you are interested in learning the coordinates of two adjacent corners of a partic-

ular building from a computerized GIS map. You know the map was digitized from an aerial

photo; furthermore, based on the map scale, producer, and the program used to digitize the

photo, you know the standard deviation of the coordinates is 10 meters in either direction.

On the map, the coordinates have been placed at (376111, 2798632) and (376217, 2798650).
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Figure 6: Comparison of traditional error ellipse (black) and Bayesian error ellipse (red).

Having been digitized by hand, there is no correlation between any coordinates.

You also have access to the original plans for the building, which instructed that the two

corners of the building in question should be placed at (376100, 2798635) and (376220, 2798635).

The company has a recorded overall standard deviation in their accuracy of 5 meters. Assume

the errors are uncorrelated. 1

Frequentist Method

From the frequentist standpoint, the estimates of the vertices of the side of this building

are simply the parameters on the digitized map itself. This is true because we only have one

observation. The standard deviation of the estimates is therefore the standard deviation of

the digitizer’s accuracy. We have

1This is probably not a realistic assumption since the construction company likely has limited materials
and could not afford to accidentally extend the side of a building by say, 10 meters, but we will use this
assumption here to simplify the calculations.
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z01 =




376111

2798632

376217

2798650




and Σ01 =




100 0 0 0

0 100 0 0

0 0 100 0

0 0 0 100




.

We can follow this up with a 95% confidence ellipse around each endpoint. The ellipse

around the first endpoint is

(µ0 − z0)′Σ−1
0 (µ0 − z0) =

0
BB@

µx0 − 376111

µy0 − 2798632

1
CCA

′ 2
664

100 0

0 100

3
775

−10
BB@

µx0 − 376111

µy0 − 2798632

1
CCA ≤ χ2

2,.95 = 5.99,

and the ellipse around the second endpoint is

(µ1 − z1)′Σ−1
1 (µ1 − z1) =

0
BB@

µx1 − 376217

µy1 − 2798650

1
CCA

′ 2
664

100 0

0 100

3
775

−10
BB@

µx1 − 376217

µy1 − 2798650

1
CCA ≤ χ2

2,.95 = 5.99.

To create a confidence region around the entire line segment, we note that we can create

a confidence region around any point on the line segment with mean estimate




(1− t)x0 + (t)x1

(1− t)y0 + (t)y1


 =




(1− t)376111 + (t)376217

(1− t)2798632 + (t)2798650



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and variance

Σzz(t) =




σ2
x(t) σxy(t)

σyx(t) σ2
y(t)


 =




100 ((1− t)2 + (t)2) 0

0 100 ((1− t)2 + (t)2)


 .

The ellipsoid-based picture of the confidence region around the line segment is shown in

black in figure 7.

Bayesian Method

The Bayesian method allows us to include information from both the original design plans

and the current digitized map. According to our formulas, our Bayesian posterior estimate

of the value of the coordinates for the first point is

g0 =

0
BB@

2
664

25 0

0 25

3
775

−1

+

2
664

100 0

0 100

3
775

−11
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−10
BB@

2
664
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0 25

3
775

−10
BB@

376100

2798635

1
CCA+

2
664

100 0

0 100

3
775

−10
BB@

376111

2798632

1
CCA

1
CCA

=

0
BB@

376102.2

2798634.4

1
CCA , and the posterior variance of this estimate is H0 =

2
664

20 0

0 20

3
775 .

Our Bayesian posterior estimate of the value of the coordinates for the second point is

g1 =

0
BB@

2
664

25 0

0 25

3
775

−1

+

2
664

100 0

0 100

3
775

−11
CCA

−10
BB@

2
664

25 0

0 25

3
775

−10
BB@

376220

2798635

1
CCA+

2
664

100 0

0 100

3
775

−10
BB@

376217

2798650

1
CCA

1
CCA

=

0
BB@

376219.4

2798638.0

1
CCA , and the posterior variance of this estimate is H1 =

2
664

20 0

0 20

3
775 .
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We can now describe a 95% probability ellipse around each endpoint. The ellipse around

the first endpoint is

(µ0 − g0)′H−1
0 (µ0 − g0) =

0
BB@

µx0 − 376102.2

µy0 − 2798634.4

1
CCA

′ 2
664

20 0

0 20

3
775

−10
BB@

µx0 − 376102.2

µy0 − 2798634.4

1
CCA ≤ χ2

2,.95 = 5.99,

and the ellipse around the second endpoint is

(µ1 − g1)′H−1
1 (µ1 − g1) =

0
BB@

µx1 − 376219.4

µy1 − 2798638.0

1
CCA

′ 2
664

20 0

0 20

3
775

−10
BB@

µx1 − 376219.4

µy1 − 2798638.0

1
CCA ≤ χ2

2,.95 = 5.99.

To create a probability region around the entire line segment, we note that we can create

a probability region around any point on the line segment with mean estimate




(1− γ)gx0 + (γ)gx1

(1− γ)gy0 + (γ)gy1


 =




(1− γ)376102.2 + (γ)376219.4

(1− γ)2798634.4 + (γ)2798638.0




and variance

Hγ =




h2
xγ

hxγyγ (t)

hyγxγ h2
yγ


 =




20
(
(1− γ)2 + (γ)2

)
0

0 20
(
(1− γ)2 + (γ)2

)


 = 20(2γ2 − 2γ + 1)I.
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Alternatively, we can find the formula for the posterior mean and variance of a point on

the line segment by consulting corollary 7, and the results agree.

gγ =

(
τ 2σ2

τ 2 + nσ2

)[
(1− γ)

(
1

τ 2
µ00 +

n

σ2
z0

)
+ γ

(
1

τ 2
µ10 +

n

σ2
z1

)]

=

„
25 · 100

25 + 100

«
2
664(1− γ)

0
BB@

1

25

0
BB@

376100

2798635

1
CCA+

1

100

0
BB@

376111

2798632

1
CCA

1
CCA+ γ

0
BB@

1

25

0
BB@

376220

2798635

1
CCA+

1

100

0
BB@

376217

2798650

1
CCA

1
CCA

3
775

= 20


(1− γ)




18805.11

139931.72


 + γ




18810.97

139931.9





 =




(1− γ)376102.2 + (γ)376219.4

(1− γ)2798634.4 + (γ)2798638.0


 ,

Hγ = (2γ2 − 2γ + 1)
τ 2σ2

σ2 + nτ 2
I = (2γ2 − 2γ + 1)

25 · 100

100 + 25
I = 20(2γ2 − 2γ + 1)I.

The ellipsoid-based picture of the credible region around the line segment is shown in

red in figure 7. For a demonstration of our explicit confidence region formula, please see the

section on Confidence Region Calculation.

Method Comparison

As in our first example, we see here that the variance of our estimate is considerably

smaller when using the prior information about the building in combination with the data

currently available on the map. We can also see that our final posterior estimate of the

mean is much closer to that specified by the original business plans (thanks to the inclusion
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of this information), and therefore probably more accurate. We can also examine figure 7,

shown here, which demonstrates both the difference in placement of the line segment (where

the two endpoint vertices appear) and the variance of our estimate (the region surrounding

the posterior distribution’s line segment is smaller than the region surrounding the data

distribution’s line segment). Notice that like with the ellipses in example 1, the Bayesian

region is completely compatible with the traditional region since it falls entirely within the

traditional boundary. Furthermore, we again consider the difference in the meaning of the

two regions - the traditional region is a confidence region, and we are 95% “confident” that

the line segment is contained in that region, and the Bayesian region is a “credible” region,

and there is a 95% probability that the true line segment is contained in that region. Once

more, the benefits of Bayesian methods are clear.

Figure 7: Comparison of traditional confidence region (black) and Bayesian credible region
(red).

Confidence Region Calculation

52



We have shown the confidence and probability regions around this line segment in terms

of the collection of error ellipses along its points. We will here use the formula developed

earlier in this paper to determine an explicit calculation of the probability region boundary

in the Bayesian version of the above calculations.

Note that this case is indeed covered by theorem 3, since the variances involved are such

that there is no correlation between the endpoints µ0 and µ1, and there is no correlation

between the x- and y- coordinates at each endpoint; additionally, all coordinate variances

are similar. That is, Σ1 = Σ0 = Σ =




σ2 0

0 σ2


, and Λ1 = Λ0 = Λ =




τ 2 0

0 τ 2


.

The formula for the boundary points at a point (µxγ , µyγ ) is




bxγ

byγ


 =




gxγ ±
√

χ2
2,1−αhγ„

1+
“

gx0−gx1
gy0−gy1

”2
«

gyγ ∓
(

gx0−gx1

gy0−gy1

) √
χ2

2,1−αhγ„
1+
“

gx0−gx1
gy0−gy1

”2
«




.

Here, from our previous results, we have




gx0

gy0

gx1

gy1




=




376102.2

2798634.4

376219.4

2798638.0




, hγ = 20(2γ2 − 2γ + 1).
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Assuming we want to create a 95% probability region around our line segment, we also

know χ2
2,.95 = 5.99 from a chi-square distribution table.

First, gγ = (1− γ)g0 + (γ)g1 = (1− γ)




376102.2

2798634.4


 + (γ)




376219.4

2798638.0




=




(1− γ)376102.2 + (γ)376219.4

(1− γ)2798634.4 + (γ)2798638.0




.

We can now write the formula for the boundary points as




(1− γ)376102.2 + (γ)376219.4±
√

5.99·20(2γ2−2γ+1)“
1+( 376102.2−376219.4

2798634.4−2798638.0)
2
”

(1− γ)2798634.4 + (γ)2798638.0∓ (
376102.2−376219.4

2798634.4−2798638.0

) √
5.99·20(2γ2−2γ+1)“

1+( 376102.2−376219.4
2798634.4−2798638.0)

2
”


 .

Note that beyond the endpoints, the remainder of the boundary is calculated from the

error ellipses around the endpoints. Figure 8 offers a graphic depiction of this boundary.

The ellipse-based confidence region is included as well (in red) for comparison.

Discussions and Conclusions

In this paper, we have explored the addition of Bayesian methodology to current methods

for analyzing error in vector GIS data. There are multiple advantages to this addition. For
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Figure 8: Boundary region of a line segment based on explicit calculation.

one thing, Bayesian analysis does not rely strongly on the present data to develop an error

distribution or to estimate the location of a point. This is because the distribution of a point

can be made to rely strongly on a prior distribution that can be based on expert or historical

knowledge. This is not unreasonable in the geographic disciplines, where a lot of knowledge

may already exist to indicate coordinate locations (for example, the possible path of a stream

or the locations of certain well-studied landmarks). This is a big advantage because often only

one sample observation is available for each point on a map. Additionally, Bayesian methods

can increase the accuracy of an analysis when prior information is more reliable than the

data distribution, which could often be the case in GIS applications. Bayesian methodology

is also completely compatible with traditional methods, as seen in our examples.

Bayesian analysis is also good from the standpoint of understandability. The average non-

statistician often finds the concept of a frequentist confidence region difficult to grasp, since

it relies on the concept of confidence rather than probability; in fact, many non-statisticians
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usually interpret a confidence interval as a probability interval. The interpretation of a

Bayesian credible region, on the other hand, is direct and accessible to many users.

We are presently continuing to develop methods of Bayesian error analysis. Our current

pursuits include finding an explicit formula for the general credible region surrounding a line

segment, and using this information to do complicated probability calculations. This includes

the probability that a particular point falls within the boundary of a particular polygon, and

the probability that small extraneous “sliver” polygons created when two polygon maps are

overlaid exist in reality.

We are also developing alternative methods of defining the confidence region around a

line segment. The current model is certainly acceptable in situations where the line feature

is straight between two endpoints, often correct when dealing with man-made objects, but

unacceptable in situations where the line between two points is definitely not straight. This

is much more likely in natural situations, such as a river or the boundary of a forest.
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