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Powering Next-Generation Artificial Intelligence by Designing 
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Hongyu An 

ABSTRACT 

Human brains can complete numerous intelligent tasks, such as pattern recognition, 

reasoning, control and movement, with remarkable energy efficiency (20 W). In contrast, 

a typical computer only recognizes 1,000 different objects but consumes about 250 W 

power [1]. This performance significant differences stem from the intrinsic different 

structures of human brains and digital computers. The latest discoveries in neuroscience 

indicate the capabilities of human brains are attributed to three unique features: (1) neural 

network structure; (2) spike-based signal representation; (3) synaptic plasticity and 

associative memory learning [1, 2].  

In this dissertation, the next-generation platform of artificial intelligence is explored 

by utilizing memristors to design a three-dimensional high-performance neuromorphic 

computing system. The low-variation memristors (fabricated by Virginia Tech) reduce the 

learning accuracy of the system significantly through adding heat dissipation layers. 

Moreover, three emerging neuromorphic architectures are proposed showing a path to 

realizing the next-generation platform of artificial intelligence with self-learning capability 

and high energy efficiency. At last, an Associative Memory Learning System is exhibited 

to reproduce an associative memory learning that remembers and correlates two concurrent 

events (pronunciation and shape of digits) together. 
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GENERAL AUDIENCE ABSTRACT 

Human brains can complete numerous intelligent tasks with low power consumption 

(20 W), high accuracy, and fast speed, such as handwriting recognition. However, the 

digital computer either cannot achieve these sophisticated missions totally or has no 

capability of accomplishing them with the satisfying efficiency on power, speed, and 

accuracy. Usually, machines need an excessive amount of time and energy for calculation 

in specific algorithms.  

This research aims to is to address these challenges in the field of artificial intelligence 

through rebuilding and mimicking the structure of the human brain physically using 

circuits. This concept is so-called neuromorphic computing or brain-inspired computing.  

Moreover, a self-learning method is exhibited to remembers and correlates two concurrent 

events.  

Unlike the conventional path for realizing artificial intelligence with complicated 

mathematical concepts and equations, the approach is more straightforward. The 

significance of rebuilding the human brain is not only to reveal a way of designing a brain-

like self-learning intelligence system but also to explore a method of comprehending the 

learning mechanism of our brains.  
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1 Chapter 1. Introduction  

1.1 Motivation 

Human brains can complete numerous intelligent tasks, such as pattern recognition, reasoning, 

control and movement, in remarkable energy efficiency (20 W). In contrast, a typical computer 

only recognizes 1,000 different objects but consumes about 250 W power [1]. This performance 

significant differences stem from the intrinsic different structures of human brains and digital 

computers. The latest discoveries in neuroscience indicate the capabilities of human brains are 

attributed to three unique features: (1) neural network structure; (2) spike-based signal 

representation; (3) synaptic plasticity and associative memory learning [1, 2]. Firstly, the neural 

network structure has demonstrated its capability of handling cognition tasks in deep learning [1, 

2]. Secondly, the low firing rate of spiking signals enables the brains to operate with high energy 

efficiency. Thirdly, the synaptic plasticity and associative memory learning have been proved to 

be highly related to the memory mechanism and enable the brains to learn from the surroundings 

[3].  

Despite deep learning with neural network structure demonstrates the capability of Artificial 

Neural Networks (ANNs) in solving complicated cognition tasks, the computing platforms built 

upon von Neumann architecture restrict the performance and efficiency of ANNs [4-6]. The von 

Neumann architecture is designed for efficient Boolean calculation and rather for neural network-

based learning. Moreover, the inevitable demanding requirements on computational resources and 

large datasets restrict the deployment of ANNs on resource-constraint platforms, like cell phones, 

unmanned aerial vehicles, autonomous cars, and spacecraft [7-10]. Thereby, the next-generation 

platform of Artificial Intelligence should aim to rebuild a brain-like neuromorphic system 

physically to fully take advantage of human brains for overcoming all these challenges. 

Specifically, the novel neuromorphic system should include the following features:  

• Spike-based information representation with a low firing rate (both on forwarding inference 

and backward learning parts) to achieve brain-comparable energy efficiency; 
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• Organ-like sensory system (for example, eyes and ears) to capture signals from the external 

world and transform them into spiking signals; 

• Human-like learning methodology (associative memory) that enable the neuromorphic 

system to learn from the surroundings by themselves rather than from cumbersome datasets.  

These unique features can be achieved by reversing engineering of human brains with 

emerging technologies at all levels of the architecture, algorithm, circuit, and device. In this 

dissertation, I preliminary design and analyze a high-performance neuromorphic system with 

memristors and associative memory learning.  

The next-generation hardware platform of artificial intelligence cannot be simply designed 

with one discipline alone. A successful high-performance of neuromorphic computing system 

requires a deep understanding of neural science, mathematics, hardware design, and software. 

Figure 1-1 illustrates how these disciplines influence and support each other.  

 

Figure 1-1: Methodology of realizing high-performance next-generation platform of 

artificial intelligence 

Neuromorphic Computing, or so-called brain-inspired computing, requires deeply 

comprehensively understanding and study on brain functions. The features and operating 

mechanism should be future precisely defined and described by solid mathematic formulas, just 

like the calculus built by Leibniz and Newton in the 1600s to explain the physical world, 

particularly in the motion of objects. Despite deep learning demonstrates a massive success in 

many applications, its underlying mathematical causality is still unclear. A more comprehensive 
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mathematic theory needs to be built for explaining the functions of the neural system in the future. 

Moreover, the development of mathematical theory helps the design of software and hardware co-

design methodology. Eventually, the hardware built by the solid mathematic theory which 

precisely describing the activity of the neural system will realize an artificial intelligence system 

with full unbelievable capabilities of human brains.   

In my work [11], I first introduced and proposed three emerging neuromorphic architectures: 

Distributive Neuromorphic Computing Architecture (DNCA); Cluster Neuromorphic Computing 

Architecture (CNCA), and Associative Neuromorphic Computing Architecture (ANCA), which 

are illustrated in Figure 1-2. 

 

Figure 1-2: Emerging neuromorphic computing architectures: (a) traditional von Neumann 

Computing System (b) Distributive Neuromorphic Computing Architecture (c) Cluster 

Neuromorphic Computing Architecture (d) Associative Neuromorphic Computing 

Architecture. 

In DNCA, the neurons and synapses are placed in a distributed neural network structure 

minimizing the distance between the computing units (neurons) and the memory units (synapse). 

As a result, the computing of neural networks can be performed between physically adjacent 

neurons and synapses reducing the energy spent on signal propagation. The utilization of threshold 
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neurons and the spike-based training methods will further reduce the power consumption of the 

DNCA-based system to a brain-comparable level. 

Next, the CNCA, which is built upon the DNCA, divides the whole large neural network into 

multiple regions (Figure Figure 1-2 (b)). Each of them is responsible for a specific type of signal, 

such as visual and auditory signals. These signals are separately captured by organ-like sensors. In 

CNCA, different signals will be processed at separated neural networks, enabling a parallel 

information processing ability.   

At last, the ANCA correlates the outputs of CNCA together realizing a behavior level 

associative memory learning as illustrated in Figure 1-2(c). The ANCA-based system will have 

the brain-like self-learning capability and learn directly from dynamically changing surroundings.  

1.2 Contribution 

In my Ph.D. study, I preliminarily explored the next-generation platform of artificial 

intelligence by utilizing low-variation memristors to a high-performance neuromorphic computing 

system. The contributions can be summarized as:  

• Propose three emerging architectures of next-generation neuromorphic systems, showing a 

possible path to realizing the next-generation platform of artificial intelligence with self-

learning capability and high energy efficiency; 

• Apply emerging device memristor and three-dimensional integration technology increases 

the performance of the neuromorphic computing system; 

• Design an Associative Memory Learning System that mimics the learning mechanism of 

neural system that remembers and correlates two concurrent events together. 

In the remainder of this dissertation, Chapter 2 introduces backgrounds of the biological neural 

system, neuromorphic computing, and memristors, Chapter 3 exhibits the design of high-

performance neuromorphic computing system with memristors, Chapter 4 presents how to 

implement associative memory learning, Chapter 5 shows the three-dimensional neuromorphic 

computing system with VT two-layer memristive synapses, Chapter 6 concludes the contributions 

and future work. 
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2 Chapter 2. Backgrounds of Neural System, 

Neuromorphic Computing and Memristors 

In this chapter, the brief background of the biological neural system, neuromorphic 

computing, and memristors are introduced first at the preface of the dissertation.  

2.1 Brain Structure and Organ 

Human brains are built upon the neural networks that consist of neurons and synapse as the 

core organs. A brief introduction to the neurons and synapses is conducive to revealing a path of 

building a high-performance artificial intelligence system through mimicking their functions. In 

this section, the history of the discovery of a neural system will be introduced. Furthermore, the 

functions of neuron and synapses, the mechanism of memory at the cellular level, and how the 

signals propagate among them are discussed.   

Spanish anatomist Santiago Cajal first identified and determined that neurons are the basic 

building organs and signal processing units in a nervous system in the 1890s [3, 12]. Figure 2-1 

(a) illustrates his hand drawing of a group of neurons, which was published in 1899 [13]. The 

individual neuron under the microscope is depicted in Figure 2-1 (b). In a nervous system, neurons 

are connected with each other in a high-degree network configuration. Generally, each neuron 

connects with hundreds or even thousands of other neurons. As a result, a neuron can 

simultaneously communicate with thousands of other neurons using a sequence of low-rate spiking 

signals. The spiking signals propagating among neurons were monitored by Hodgkin and Huxley 

in 1939 (see Figure 2-1 (c)). Unlike the high-speed modern computer, the main frequency of the 

spiking signals in the nervous system is as low as ~ kilohertz level (1-10 millisecond duration) 

with millivolt-level magnitudes as illustrated in Figure 2-1 (c) [14, 15].  

Figure 2-1 (e) depicts an abstract illustration of a typical neuron. Four critical functional parts 

of a typical neuron had been identified by the neurologists, which are dendrites, soma, axon, and 

synapses as illustrated in Figure 2-1(d, e) [3, 16, 17]. The function of the tree-like dendrites is to 

receive the spiking signals from other neurons, like a receiver.  
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Figure 2-1: Neural network and the detailed neuron structure. (a) The hand drawing of the 

neural network by Santiago Cajal in 1899 [13, 18]. (b) Image of a motor neuron [3]. (c) The 

first measured membrane potential (Spikes) of a neuron in 1939 recorded by Hodgkin and 

Huxley (The interval is 2 ms) [3] (d) The structure of a typical neuron including four critical 

parts: soma, dendrites, axon, and synapse [3].  (e) Abstract illustration of a typical neuron  

Then, the received spiking signals would be integrated together at the soma, and if the 

magnitude of the integrated value exceeds a specific threshold voltage, the soma generates and 

launches a sequence of spiking signals to the axon. Therefore, the function of an axon is similar to 

a transmitter sending the signals out of the neuron.  At last, the axon sends the spiking signals to 

the dendrites of other neurons through synapses. Through the synapses, the magnitude of the 

signals propagated from the presynaptic neuron to the postsynaptic neuron can be either attenuated 

or amplified. This feature of synapses is referred to as plasticity.  

The length of the axons of neurons is at the range of 0.1 mm to 2 m. The spiking signal 

(membrane potential) propagation within a neuron is a fundamentally different mechanism with 

(a) (b) (c)

Soma 
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Synapse

Synapse

(d)

∑
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current/voltage signal traveling in conductive metal. Action potentials are generated by a sudden 

flow of Na ions (Na+) between the interior side and exterior side of the neuron. The flow of Na+ 

is generated through the opening and closing of the channels in the cell membrane. With an input 

signal exceeds the threshold of a neuron, the local high voltage in the membrane of the neuron 

stimulates the behavior of opening of channels allowing Na+ to flow between the interior and 

exterior of the membrane of the neurons. The sequence opening and closing behavior along with 

the membrane of the neuron body lead to a spiking signal propagation [3].  

A synapse acting as a connecting organ between neurons in a nervous system [3]. At average, 

there are 1011 neurons in human brains with synaptic connections in a range of 1000 to 10,000, 

leading an amount of 1014 to 1015 synapse existing in the human brains. The signals transferring 

between neurons rely on the synaptic transmission.   

The synapse is firstly introduced by Ramon Cajal in the late 19th century using simple light 

microscopy. The size of the synapse is at the range of 4 nm to 40 nm. In the chemical synapse, 

there is no real physical connection between pre- and post-synaptic neurons. Thus, the signal is 

conveyed from presynaptic neurons to postsynaptic neurons through chemical neurotransmitters.  

While a presynaptic action potential arrives at the end of the presynaptic neuron as shown in 

Figure 2-2, the voltage-gated (Ca2+) channels open, triggering a biochemical reaction that releases 

neurotransmitter into the synapse region [3]. Then, the neurotransmitter diffuses from presynaptic 

ends to the postsynaptic end and further bind to their receptors on the postsynaptic cell. More 

specifically, the synaptic transmission can be summarized into two phases: release phase and 

bonding phases. In the releasing phase, a chemical messenger containing neurotransmitter is 

released from the terminals of the presynaptic cell. In the bonding phases, the released 

neurotransmitter binds to and stimulates the receptor molecules in the postsynaptic cell as 

illustrated in Figure 2-2. Moreover, the neurotransmitter crosses a small distance (4nm to 40nm) 

to arrive at the postsynaptic neuron, a time delay will be observed between the membrane 

potentials (spikes) from presynaptic neuron and the postsynaptic neuron. Through this way, the 

signals from presynaptic neurons are conveyed to the postsynaptic neuron through the 

neurotransmitters.  
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Figure 2-2: Illustration of synaptic transmission between neurons: (a) Presynaptic 

membrane potentials (spike) and the stimulated postsynaptic potentials (spike) with a time 

delay. (b) Membrane potentials (spikes) arrives at the terminal of a presynaptic neuron 

stimulating voltage-gated channels open. (c) The opened channel produces 

neurotransmitters to diffuse from the presynaptic neuron. (d) The released neurotransmitter 

molecules diffuse across the synaptic region and eventually bind the receptors on the 

postsynaptic neuron [3].  

During the synaptic transmission, the spiking signal delivered to the postsynaptic neuron can 

be either attenuated or amplified which is determined by the connecting strength, which is referred 

to as the plasticity of a synapse. The plasticity of synapses has been widely believed as a critical 

feature for memory and other functions of human brains [3].  

 

Figure 2-3: Connection strength is gradually strong by repeated stimulus signals [3]: (a) The 

experiment setup; (b) The signals are monitored at both sensory and responsive neurons. 
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Habituation is one form of an implicit memory that can be interpreted and explained by a 

modification of synaptic plasticity. The habituation is described when an animal learns to ignore 

or present less active to a repetitive exterior stimulus, like the loud and noisy sound. The 

phenomena of habituation are prevalently existing in high-level animals. But their nervous system 

is quite complex. Here a sea slug, called Aplysia California, is selected for introducing the 

mechanism of synapse in habituation due to its relatively simple nervous system. The nervous 

system of Aplysia only contains 20,000 central neurons [3].  

As shown in Figure 2-3, Tactile stimulus signals were repeatedly applied to the siphon of sea 

slug; then monitored at both sensory and response neurons. According to the number of stimuli 

applied to the siphon, the signal magnitude of the response neuron (in this case the motor neuron 

of the gill) reduced gradually, indicating a diminution in the strength of the connection between 

the sensory and responsive neuron. The experimental results are as depicted in Figure 2-3, wherein 

the amplitude of the response waveform is observed to decay over time. In the experiments, the 

stimulus was repeatedly applied to the Aplysia’s sensory neurons as shown in Figure 2-3. This 

experiment indicates that the sea slug presents a smaller and smaller response (shrink of gill) to 

the stimulus from the siphon when the stimulus repeats many times, according to the definition of 

habituation. Meanwhile, the smaller response comes from the smaller amount of released 

neurotransmitters under repetitive stimulus signals. This phenomenon is widely considered to be 

a memory mechanism operating at the cellular level.  

During studying different neurons in brains, one interesting fact captures people’s attention 

and curiosity that the shapes and durations of the spiking signals in a nervous system are almost 

the same (spikes), whatever the signals generated by the sensation of light, of touch, or hearing.  

This fact raises several reasonable questions that if the spiking signals are stereotyped 

reflecting no properties of the stimulus, how do the neural signals carry and convey specific 

behavioral information? How does our brain distinguish the spiking signals from seeing a flying 

butterfly, or smelling a flower? After decades of research on the human brain, the neurologists 

reveal that the signals of distinct sensations are routed and processed in different regions of the 

brain and the signals are distinguished by the signal pathway rather than their particular 

magnitudes or shapes [3].   
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Figure 2-4 illustrates the regions of the human brain identified with Positron Emission 

Tomography (PET) images [3]. The PET is an imaging technique for visualizing the cerebral blood 

flow and metabolism accompanying mental activities [3]. As illustrated in Figure 2-4 (b, c), the 

visual pathways activated by receptor cells in the retina responding to light are completely different 

to the auditory sensory pathways activated by sensory cells in the ears that respond to sound. Thus, 

the function of the signal is determined not by the signal itself but by the pathway and the 

processing regions in the brain.  

 

Figure 2-4: Distinct signals are processed in different regions of the cortex. (a) The regions 

of the human brain. (b) Positron Emission Tomography (PET) image of recognizing a 

written word (c) Positron Emission Tomography (PET) image of recognizing a spoken word. 

The PET images are from the left side of the cerebrum, which represents the averaged brain 

activity. The red and yellow colors represent high activity, and blue and gray colors indicate 

low activity.  

2.2 Neuromorphic Computing  

Neuromorphic Computing is a concept developed by Carver Mead [19] in the 1980s. The 

concept of neuromorphic computing expounds an idea of realizing artificial intelligence by 

(b) Positron Emission Tomography (PET) 

image of looking at words

(c) Positron Emission Tomography (PET) 

image of listening to words

(a) The brain regions
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physically rebuilding the organs and structure of human brains. Specifically, Prof. Carver Mead 

proposes to utilize the very-large-scale integration (VLSI) technology to mimic neuro-biological 

architectures in the nervous system.  

Neuromorphic Computing [11, 20-59] exhibits a path of designing an untraditional non-von 

Neumann architecture system that potentially has the capability of achieving a high-performance 

artificial intelligence system. As we know, the human brain can process real-time signals with 

remarkable low-power consumption (about 20 Watts). Furthermore, the animals can adjust their 

behaviors according to the changes in surrounding environments and memorize and learn from 

their experiences. Neurologists believe these advantages are attributed from the network-based 

structure of neural system processing signals in parallel, and the neurons performing computing in 

low frequency. These unique signal processing characteristics are fundamentally different from 

the modern digital computers built upon von Neumann architecture computing Boolean and 

arithmetic operations.  

Unlike the network configuration of the nervous system, the electronic computer is proposed 

and designed for a superior computing capability compared to mechanical computers. The 

underlying computing methodology of electronic computer is depicted in Figure 2-5 (a). The target 

problem is first abstracted by mathematic formula and then be calculated with the algorithms. The 

corresponding algorithms and calculations are performed within the hardware constituted with 

electronic devices. The capability of von Neumann computers relies on the speed of operations of 

algorithms. In order to efficiently perform these formulae, Von Neumann proposed the architecture 

in the 1940s [60, 61].  

Since the digital computer operates Boolean and arithmetic computing, the information of the 

real world needs to be encoded into binary format through an analog-to-digital converter and a 

digital-to-analog converter. The binary data further would be used for executing the calculations 

in the arithmetic logic units (ALU) [62-64] as the critical computing units in central processing 

units (CPUs). In von Neumann architecture, the computing units and memory units are located 

separately connecting with a system bus as shown in Figure 2-5 (b). The transmission of data 

between the CPUs and the memory relies on the bus and the high-frequency signals carried on it. 

However, as the density of data continuously escalates, transferring valuable information back and 
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forth between CPUs and memory becomes computationally expensive. Specifically, as the rising 

of the data-driven artificial intelligence (deep learning), a quantity of data is dramatically 

increasing these years. The traditional von Neumann architecture based on a digital computer is 

not practical and applicable anymore since the data transferring congestion and dramatically large 

power consumption spent on data transferring [65]. The computer scientists and the neurologists 

share the same opinion that the performance difference between the digital computer and the 

human brain mainly comes from their distinctions of computing methodology and structure as 

listed in Table 2-1.  

 

Figure 2-5: von Neumann computing system: (a) the underlying computing scheme of von 

Neumann computing architecture; (b) the hardware structure of von Neumann architecture 

Table 2-1: Comparison between the computer and human brain  

 Computer Brain 

Processing 

elements 
The execution modules in CPU Soma 

Computing Arithmetic & Boolean  Integration (summation) 

Memory device 

SRAM, DRAM, etc. Synapses 

Storing the information in a binary format 

with two states  

The information is stored as the connecting 

strength (weight) in analog format with 

multiple levels 
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Signal 

transmission/ 

communication 

device 

Bus  

(Transmission lines) 

Dendrites and Axons 

Signal Format Binary signals Spiking signals 

Learning/progra

mming methods 

Manually-coding programs Self-learning  

Computer languages, like Java, PHP, 

Pythons, etc. 
Associative memory 

Communication 

scheme 

One-to-one  

(CPU-to-memory) 

Networks 

System-level 

complexity 

Low High 

CPU connecting with memory through a 

communicating bus 

20 billion neurons in a complex neural 

network topology 

Operating 

frequency 

High  Low  

~Gigahertz Level ~ Kilohertz Level 

Power 

Consumption 

High  Low  

~Kilowatts ~20Watts 

On the contract, Neuromorphic Computing attempts to mimic the real-time power-efficient 

working mechanism of the nervous system through rebuilding three critical components of the 

nervous system: (1) neuron, (2) synapse, and (3) neural network architecture. Figure 2-6 illustrates 

the main difference between the human brain and the von Neumann architecture from the device 

to the algorithm levels. In a brain-like neuromorphic computing system, the building devices 

(computing units and memory units) need to be replaced from traditional CPUs and SRAMs to the 

electronic neurons and synapses. This is the first step for mimicking the brain at the device level. 

Unlike the computing units in the CPUs which perform binary code-based computing, the data in 

the electronic neurons and synapses need to be represented in a spiking sequence format for 
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generating the brain-like signals [3]. Then, these electronic neurons and synapse are interconnected 

with each other in a brain-like neural network configuration at the architecture level, which is 

demonstrated in Figure 2-6. Table 2-2 compares the contemporary state-of-the-art fabricated 

neuromorphic chips with a neural system of human brains.  

 

Figure 2-6: Comparison between brain computing architecture, von Neumann computing 

architecture, and neuromorphic computing architecture. 

Table 2-2 Comparison of Power Density, Neuron Density, Synapse Density, and Neuron 

Connection Degree 

 

TrueNorth  

[30, 66] 

Neurogrid  

[30, 35] 

BrainScaleS 

[30, 67] 

SpiNNaker 

[30, 47, 48] 

Brain 

[30, 68] 

Neurons 1,048,576 65,535 511 20,833 20 Billion 

Synapses 256 million N/A 113,636 20,833,333 200 Trillion 

Area/volume 430mm2 168mm2 50mm2 102 mm2 1130 cm3 

Neuron 

Density 

2438.55 per 

mm2 
390 per  mm𝟐 10 per mm2 204 per mm𝟐 17,699 per mm3 

Synapses 

Density 

0.595 million 

per mm2 
N/A 2272 per mm2 

204,248 

per mm2 

177 million 

per mm3 
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Ratio of 

synapses to 

neurons 

244 N/A 222 1,000 10,000 

Power 

density 
0.15 mW/mm2 18 mW/mm2 57 mW/mm2 0.012 mW/mm2 

0.0177 

mW/mm3 

2.3  Memristor  

Four decades ago, Professor Leon Chua mathematically postulated the concept of memristor 

describing the relations symmetrizing the four fundamental circuit variables. However, the 

physical device of memristor has not been found. Although the phenomenon of nonlinear 

switching of the resistor had been observed and studied for many years, no one connects this 

particular phenomenon of resistors to the concept of memristor until HP Labs unintentionally and 

successfully found a connection between their results and the concept of memristor in 2008. In 

this section, a short review of memristor history is introduced, and after that, the characteristics of 

memristors are discussed in detail. The history of memristor exploration is summarized in Table 

2-3.  

 

Figure 2-7: Relationships between the four basic circuit variables 
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In electrical engineering, there are four basic circuit variables, which are Current i, Voltage v, 

Charge q, and Flux φ. Correspondingly, three fundamental circuit components reveal the 

relationship between them. Figure 2-7 shows these three relationships. Resistors reveal the 

relationship between the voltage and current, while the relationship between voltage and charge, 

and current and flux are defined by a capacitor and an inductor, respectively.  

Table 2-3: History of Memristor Exploration 

Year History of Memristor Exploration 

1967  
J. G. Simmons & R. R. Verderber described a hysteretic resistance switching 

phenomenon in a silicon oxide thin film with gold ions injected [69]. 

1968 F. Argall recorded a resistance switching phenomenon in a metal oxide thin film [70].  

1971 

Leon Chua mathematically postulated the concept of memristor describing the 

relations symmetrizing the four fundamental circuit variables, which is a similar 

mathematical attempt by Constantine A. Balanis in electromagnetics [71]. In his 

paper, he states that there should exist another circuit element that relates the charge 

and flux [72].  

1998 

Bhagwat Swaroop, William West, Gregory Martinez, Michael Kozicki & Lex Akers 

demonstrated an approach of using an ionic programmable resistance device for 

minimizing the complexity of an artificial synapse. [73] 

2008 

Dmitri Strukov, Gregory Snider, Duncan Stewart & Stan Williams at HP Labs 
published an article in Nature introducing a relationship between the two-terminal 

resistance switching characteristic of TaOx [74, 75].  

2008 

Leon Chua, Stan Williams, Greg Snider, Wolfgang Porod, Massimiliano Di Ventra, 

Rainer Waser, and Blaise Mouttet provided a discussion at the Symposium on 

Memristors and Memristive Systems talking the theoretical foundations of utilizing 

memristor for RRAM and neuromorphic architectures [76]. 

Initially, the missing part in Figure 2-7 is the relationship between the flux and electric charge. 

Thus Prof. Chua predicted that there should be another basic circuit device representing the 

relationship between the flux and electric charge based on symmetry. He called this hypothetical 

element as memristor. After almost four decades, finally, the HP labs build the memristor in 

physical form and further publish the paper introducing their discovery in Nature in 2008 that 

connects Chua's memristor and the resistance switching characteristic of the nanoscale device 

fabricated with Pt/TaOx/Pt as illustrated in Figure 2-8.  
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One of the main characteristics of a memristor is having a nonlinear and butterfly-shaped 

current-voltage curve [72, 74-76] as illustrated in Figure 2-9.  With the increasing frequency, the 

loop of the current-voltage curve is going to shrink until it becomes a line at a large frequency. 

 

Figure 2-8: The memristors from HP labs: (a)The scanning tunneling microscope image of a 

memristor fabricated by HP Labs (b) the memristor cell is located at the cross-point of the 

crossbar structure with a 40-nanometer cube of titanium dioxide (TiO2) in two layers. The 

lower layer is traditional of titanium dioxide with a 2:1 oxygen-to-titanium ratio.  

 

Figure 2-9: (a) Symbol of a memristor; (b) Current-voltage characteristic of the memristor 

with loops at different frequencies where 𝝎𝟏 < 𝝎𝟐 < 𝝎𝟑[76]. 
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3 Chapter 3. High-Performance Neuromorphic 

Computing System with Low-variation 

Memristive Synapses 

3.1 Introduction 

Deep Neural Networks (DNNs) inspired by the high-degree structure of neural networks in 

mammalian brains have accomplished remarkable success in many applications, such as image 

recognition, natural language processing, machine neural translation [6], etc. A pristine DNN with 

random synaptic weights has no remarkable capability until its weights are trained by tremendous 

data. The larger sizes of the datasets and the neural networks lead to a higher inference accuracy 

[7, 8]. Thereby, the demand for excessively large datasets and neural networks is becoming 

inevitable.   

 

Figure 3-1: Increase trend of the dataset and neural network sizes [8] 

As illustrated in Figure 3-1, the size of datasets is almost linearly increasing over the years, 

while the neural networks double their size roughly every two years [8, 10]. Accompanying the 
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growth of the scale of hypermeters, the capacity of the GPU memory has only increased by a factor 

of three [7, 8]. Hence, there is an urgent need for novel and reliable devices with higher capacity 

and lower power consumption, fulfilling the tremendous data storage demand for deep learning. 

Nowadays, memristors are widely considered as one of the most promising candidates for 

next-generation memory because of its high density and low power consumption [6]. However, its 

wide distribution of resistance variation restricts its feasibility in deep learning as weight storing 

devices [77, 78], since the weight variation significantly reduces the inference accuracy [78-83]. 

Several methods involving circuit and algorithm optimizations have been proposed to mitigate this 

shortcoming. However, these methods entail inevitable drawbacks, like the large latency and 

circuit design overhead [84-86].  

In this dissertation, the switching mechanism of memristors is studied to reveal the heat 

accumulated in the cell during the switching leads to a substantial metal atom diffusion effect. The 

metallic atoms diffusion at the tip ends of the conductive filaments (CFs) influences the gap size 

among of the filament in the off-regime when the filaments are ruptured [82]. As a result, the 

resistance variation increases significantly when the heat is accumulated interiorly [83, 87, 88]. In 

order to mitigate the resistance variation, a novel configuration of a memristor is designed and 

fabricated with an additional heat dissipation layer integrated into the cell’s electrodes alleviating 

the heat-related switching variation by more than 30%. Unlike using low thermal conductivity 

material for subduing heat transfer between layers [89], the proposed approach dissipates the 

accumulated heat both on the metal and insulator layers. The candidates of the heat dissipation 

layer need to satisfy several requirements, such as high thermal conductivity, low cost, fabrication 

compatibility, electrochemistry stability at high temperature, etc. Several materials (Rh, Cr, Pt, Ti, 

Cu) have been tested for heat dissipation efficiency. It turned out that the Ti glue layer used for 

the adhesion of the inert electrode had to be supplanted by Cr with the most thermal conductivity 

to render the Joules heating effects less severe.  

Furthermore, an experimentally verified memristor model capturing the electrical 

characteristics has been built. This memristor model is incorporated in the deep delay-feed-back 

reservoir computing (Deep-DFR) model for evaluation. The Deep-DFR is established by the 

system-level simulation platforms comprising PyTorch and NeuroSIM [81]. The parameters of VT 
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memristors in NeuroSIM are extracted from the measurement data. Through the proposed Deep-

DFR model, the impact of reducing the switching variations of the memristor on a deep learning 

system is analyzed. The simulation results demonstrate that the accuracy has been increased by 

~30% accompanying the reduction of the resistance variation of the memristor. The accuracy 

improvement, power consumption, design area, and latency reduction are evaluated with CIFAR-

10 and CIFAR-100 datasets. The contributions are summarized as follows: 

• A novel memristive device configuration with higher immunity to degradation induced by 

thermal effects has been fabricated and evaluated. The experiment results demonstrate a 

~30% reduction in switching variation; 

• The competent material for heat dissipation layer is determined; 

• The accuracy improvement (~30%) on classification tasks is demonstrated through the 

Deep-DFR model, which deploys the proposed memristor model;  

• The hardware performance improvement, e.g., power efficiency and design area reduction, 

is evaluated and analyzed through a co-simulation paradigm with PyTorch and the macro-

circuit simulator NeuroSIM [81].  

3.2 Memristors as Synapses 

The plasticity of a synapse can be implemented as a new non-volatile device Memristor, which 

is also widely referred to as Resistive RAM (RRAM) [74, 90-101]. A typical memristor is 

constructed in a metal-insulator-metal (MIM) configuration, as illustrated in Figure 3-2 (a). Figure 

3-2 (b-f) demonstrates an overall view of the VT memristive devices fabricated at the Micro & 

Nano Fabrication Laboratory at Virginia Tech (http://www.micron.ece.vt.edu/) [102]. The 

memristors are fabricated in a crossbar configuration on a thermally oxidized silicon wafer (730 

nm thick) shown in Figure 3-2 (b) and (c). as illustrated in Figure 3-2(f), the memristor is fabricated 

in a 5 by 5 array, containing 25 devices. Figure 3-2 (e) demonstrates the details of each memristor, 

which is located at the cross-point of two accessing nanowires crossbar.  
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Figure 3-2: Memristor structure: (a) Schematic of metal-insulator-metal (MIM) with a 

voltage source stimulus. (b) VT memristor arrays at the wafer.  (c) VT memristor arrays (d) 

Focused Ion Beam (FIB) cross-section image of a VT memristor. Cu/TaOx/Rh forms a one-

layer memristor (e) zoom-in view of a memristor at the cross-point of the array. (f) a typical 

two-layer memristor cell. 

At the ends of the nanowires, the pads are fabricated to place a testing probe. Figure 3-2  (d) 

depicts the Focused Ion Beam (FIB) cross-section image of a VT memristor forming with 

Cu/TaOx/Rh. The metals from the top and bottom contacts and the insulator is usually a resistive 

switching material [103, 104]. Its resistance is changeable through the construction and 

deconstruction of the conductive filaments in the oxide layer between two metal layers. There are 

four critical phases of the resistive switching process of a memristor. As illustrated in Figure 3-3, 

initially, the atomic structure of the memristor at its pristine state is intact, which is referred to the 

pristine stage. At this stage, the bonding between oxygen ions and metal atoms is strong. However, 

this bonding between oxygen ions and metal atoms is not unbreakable. Under the high electric 

field established by the applied voltage at the metal terminals of the memristor, some oxygen ions 

in the metal oxide would escape from the constraint of the bonding force [78]. Thus, the deficiency 

of oxygen ions leaves the oxygen vacancies or metal precipitates, consequently constructing the 

conductive filaments as depicted in Figure 3-3 [78, 105, 106]. The conductive filaments would 

provide an alternative current pathway resulting to decrease the resistance of the memristor. This 

transition process of the resistance from high to low is defined as a set process. On the opposite, 

the oxygen ions at the interface migrate back into the oxide to refill the oxygen vacancy or re-
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oxidize the metal precipitates in the reset process. After this reset process, the resistance of the 

memristor would restore to its high resistance value.  

 

Figure 3-3: Illustration of the switching mechanism of a memristor. The memristor has two 

states (HRS and LRS) marked as ① and ③, and two transition states (set and reset processes) 

marked as ② and ④, respectively. Note that this paper would mainly focus on modeling the 

set process indicated as a remembering process instead of a biological disremembering 

process. TEM images of the dynamic evolution of conductive filaments [10].  

As illustrated in Figure 3-3, when the voltage/current stimulus is applied on the terminals of 

memristors and it exceeds a specific value, the resistance of memristors will gradually change 

between its high resistance state (HRS) and low resistance state (LRS). The decrease in resistance 

of the switching material is due to the formation of the conductive filaments (CFs). As shown in 

Figure 3-3. (b). The phenomenon is called a soft breakdown in material science. This breakdown 

of the switching material can be recovered by applying a reversed stimulus at the terminals, which 

consequently resets the memristor to its high resistance state as shown in Figure 3-3. 
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3.3 Robust Deep Reservoir Computing through Reliable Memristors 

with improved Heat Dissipation Capability 

As one of the most promising candidates of next-generation memory, memristive devices 

suffer a critical issue of low reliability, which diminishes its practicability for massive deployment 

[77, 78]. The low reliability of a memristor stems from the high variation on its on-state resistance 

(Ron) value [83]. Through the comprehensive study of the switching mechanism of a memristor 

[107, 108], we have discovered that the heat-related metal atom diffusion of conductive filaments 

(CFs) increases the resistive switching variation [109]. In order to address this issue, we designed 

and fabricated a novel configuration of a memristor, which can effectively mitigate the heat-related 

resistive switching variation.  

A memristor is typically fabricated using a metallic oxide layer as a solid electrolyte 

sandwiched between an oxidizable active anode electrode and an inert cathode electrode. As 

illustrated in Figure 3-4, there are four resistively switching phases of a memristor. Initially, the 

atomic structure of the metallic oxide layer is intact.  

 

Figure 3-4: (a) Four typical switching phases of a memristor; (b) Formation mechanism of 

conductive filaments. The variation of the on-state resistance of a memristor results from a 

competition between the constructive metal atom flux and destructive metal atoms diffusion 

flux [83, 107]. 
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At this stage, the bonding between oxygen ions and metal atoms of the metallic oxide is strong. 

However, under the high electric field established by the applied voltage to the cell’s electrodes, 

the oxygen ions in the metallic oxide could be dislodged from the constraint of the bonding force 

and migrate to one of the terminals of the memristor. Consequently, the removal of oxygen ions 

leaves the oxygen vacancies behind leading to a build-up of conductive filament connecting the 

two electrodes. In another mode, the atoms of the active electrode are ionized and under the applied 

electric field migrate to the inert electrode where they are stopped and electrically reduced. Over 

time the active electrode metal atoms pile up on each other leading to a formation of metallic 

filament connecting the two electrodes. When this happens, the cell is in an on-state characterized 

by an on-resistance Ron. Otherwise, the cell is in the off-state characterized by the off-resistance 

Roff. The ratio between Roff and Ron is large and exceeds in many cases 103. The switching process 

of the resistance from Roff to Ron is referred to as a set process. In contrast, the transition from Ron 

to Roff is called the reset process. 

As illustrated in Figure 3-4 (a), the switching capability of memristors attributes to the 

construction and rupture of the conductive filaments. The shape and the size of the filaments could 

significantly influence the switching characteristic of a memristor.  

 

Figure 3-5: VT fabricated memristor die: (a) The overview of VT memristor die; (b) The 

zoom-in view of VT memristor; (c) The five by five crossbar structure of VT memristor; (d) 

The memristor located at the cross-point of the crossbar.  

Table 3-1: Comparison of the memristor resistance switching variation 

Device 

Size 

(nm) 

Thermal 

Conductivity  

Ron  

(Icc = 5 uA) 

Target 

Value 
Variation1 

Ron 

(Icc = 50 

uA) 

Target 

Value 
Variation 

javascript:;


25 

 

Cu/TaOx

/Rh/Cr 

150/25

/50/20 

Rh:150 

Cr: 94 

2.5 ± 0.1 

KΩ 
2.4 KΩ ~4 % 500 ± 5 Ω 500 Ω ~1 % 

Cu/TaOx

/Rh/Ti 

150/25

/50/20 

Rh:150 

Ti: 20 

2.3 ± 0.12 

KΩ 
2.4 KΩ ~5 % 

225 – 750 

Ω 
500 Ω ~35 % 

Cu/TaOx

/Pt/Cr 

150/25

/50/20 

Pt: 72 

Cr: 94 

2.1 ± 0.1 

KΩ 
2.1 KΩ ~4.7 % 

331 – 1000 

Ω 
400 Ω ~33.4 % 

Cu/TaOx

/Pt/Ti 

150/25

/50/20 

Pt: 72 

Cr: 20 

2.1 ± 0.9 

KΩ 
2.1 KΩ ~42.8 % 

230 – 1000 

Ω 
400 Ω ~61.5 % 

1 The variation is the cycle-to-cycle variation that is measured by percent deviation.  

During the set and reset switching processes, the considerable current flows through the CFs 

generally leads to a significant Joules heat dissipation. The temperature of the memristor cell is 

governed by the Joules heating and the rate of heat removal, which is determined by the thermal 

conductivity of the surrounding metallic oxide and the thermal conductivities of the electrodes. If 

the surrounding metallic oxide or the two electrodes cannot dissipate the heat fast enough, the 

temperature of the filament is bound to increase. Eventually, the high temperature of the CFs 

triggers a substantial metal diffusion. The metallic atoms of the filament, particularly at the tip of 

the cone-shaped CFs, diffuse out of the CFs consequently determining the size in the filament [82]. 

Macroscopically, the on-state resistance variation increases significantly  [83, 87, 88, 110]. This 

phenomenon is even more severe during the rupturing process as the reset is dominated by a 

thermal dissolution effect [109]. When current flows through the memristive cell, Joule heat is 

deposited in the conductive filament. As a result, the temperature in the narrowest part (highest 

resistance) of the filament can reach 1000 ℃ [111, 112]. Such a high temperature triggers Cu atom 

diffusion from the constriction of filaments. 

In order to address this issue, we proposed and investigated a solution of adding an extra 

metallic layer for facilitating heat dissipation. The copper (Cu) is selected as an oxidizable active 

anode due to its medium activation energy-yielding ions readily [113] Cu → Cu++e-. The 

rhodium (Rh) is used for inert cathode since it is compatible with the back-end-of-line (BEOL) 
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integration technique and potentially can be integrated on the top of the metal-oxide-

semiconductor field-effect transistors (MOSFETs) for a three-dimensional structure [114]. 

Furthermore, the Rh-Cu material configuration demonstrates a negligible solid solubility between 

two elements, rendering Rh an ideal inert electrode for Cu ions (Cu+). Besides, the Rh is 45 times 

less expensive than Pt with similar characteristics [109]. 

The oxygen-deficient tantalum oxide (TaOx) is used as the metallic oxide. In this work, the 

memristor Cu/TaOx/Pt is used as a benchmark device. VT memristive devices have been 

fabricated in a crossbar configuration on a thermally oxidized silicon wafer. The metal electrodes 

and solid electrolytes are deposited through e-beam evaporation. The TaOx layer was deposited 

by evaporating the Ta2O5 pellets with no oxygen injection at the evaporation chamber. A thin Ti 

layer was added between Pt and SiO2 to improve the adhesion of Pt to the substrate. All the layers 

(Cu, TaOx, Pt) are deposited by e-beam PVD in a Kurt Lesker PVD-250 chamber. The fabricated 

memristor die and the detailed geometry are illustrated in Figure 3-5. The range of the high 

resistance state (HRS) is ~1-900 MΩ, yielding a ratio of Roff/Ron ≈ 103−107, which effectively 

avoids the negative effect caused by the sneak path. 

The reliability of the memristive devices with different inert cathodes is evaluated by the 

variation of their on-state resistance. The testing results are summarized in Table 3-1. In Table 3-1, 

the cycle-to-cycle variation is measured by percent deviation. The precise temperature control is 

not practical in real measurement setups. Thus, we distinguish different temperatures (high and 

low) by applying different compliance currents during the set operation; they are Icc = 5 uA and 

50 uA respectively. The heat generated by the different currents, assuming constant current in the 

time interval t, is governed by 𝑤 = 𝐼2𝑅𝑜𝑛𝑡. Table 3-1 demonstrates that the memristive device 

exhibit a higher spread of on-state resistance (Ron) values with higher temperatures (larger 

compliance current). For example, the on-state resistances of the Rh/Ti configuration are at the 

range of 225 Ω to 750 Ω for Icc = 50 uA. This instability phenomenon comes from the competition 

between the constructive Cu+ electro-migration flux and the destructive Cu diffusion flux, 

illustrated in Figure 3-4 (b). The measurement results demonstrate an effective metal dissipation 

layer (Cr) could effectively suppress the heat-related metal atom diffusion phenomenon, resulting 

in a significant reduction of switching variation (by ~30%).  
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Figure 3-6: The testing setup of the memristor at Oak Ridge National Laboratory. The 

measurement was conducted at the Center for Nanophase Materials Sciences (CNMS) at 

Oak Ridge National Laboratory, which is a Department of Energy Office of Science User 

Facility.  

The measurement is performed by applying a positive voltage to the electrode of the device 

and the voltage is swept at a constant voltage ramp rate (0.2V/s). Initially, the current remains 

small until the set voltage of the memristor is reached. The current switching is caused by the 

conductive filaments (CFs) formation when the applied voltage exceeds the set voltage of the 

memristor. The measurement usually performed more than 100 times. The variation is measured 

by the percent deviation from average, which shows the average percentage that a data point differs 

from the mean value.  

The endurance of the devices depends on the compliance current (Icc). For the Icc is at the 

range of 10 μA and 5mA, the device can be switched more than 150 times. For smaller compliance 

current, like 1 μA, the endurance of the VT memristor device can be more than 1000 times 

switching. During the measurement, no incorrect switching of the unselect and adjacent memristor 

cells was detected which potentially caused by the sneak path issue. The high ratio of off-state and 
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on-state resistances of the VT memristor device (more than 103) effectively avoids the negative 

impact of the sneak path issue. 

 

Figure 3-7: Current paths of the memristor at the HRS and LRS 

Furthermore, to analyze the effect of resistance variation reduction of VT memristor on deep 

learning at a system level, a corresponding Verilog-A memristor model is built upon the filament 

growing method [115, 116]. The memristive synapse is modeled with the filament growing method 

[116] [117]. The resistance switching between HRS and LRS comes from the 

construction/deconstruction of the CFs in the metallic oxide. The CFs in the oxide provide an 

alternative current path with lower resistance. By modeling two current paths with different 

resistances, notated with 𝑅𝐷  (dielectric resistance) and 𝑅𝐶  (resistance of CFs), the memristor 

models at HRS and LRS are illustrated in Figure 3-7. 

The growth of the conductive filaments determines the values of Ron and Roff. Hence, the 

conductive filaments of our memristor are modeled as a cylinder with parameters w for the 

diameter and x for the instantaneous height . The interval of x is at 0<x<H, where H is the thickness 

of the metal oxide layer. The tantalum dioxide (TaOx) is used as the metal oxide of our memristor. 

In the filament growing modeling method, the conductive filament is modeled as a cylinder with 

adjustable w and x, which represent an adjustable conductive filament width and length 

respectively. The nonlinear hopping current (Ihop) and current flowing in CFs (ICF) with parameters 

of gap distance (x) and CF width (w) can be calculated [115, 116, 118] as: 
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𝐼 𝑜 = 𝐼0 (
𝜋𝑤2

4
)𝑒𝑥𝑝 (−

𝑥

𝑥𝑇
)𝑠𝑖𝑛ℎ (

𝑉𝑔𝑎 
𝑉𝑇

) (3-1) 

𝐼𝐶 =
𝜋𝑤2𝑉𝐶 

4𝜌(𝑥0 − 𝑥)
, (3-2) 

where 𝑥0 is the initial gap distance, 𝑥𝑇 and 𝑉𝑇 are the characteristic length and voltage in hopping, 

respectively. Vgap and VCF are the voltage over the gap region and the conductive filament region, 

respectively. w contributes the Joules heat dissipated in the filament. In the reset process, the w 

and x grow with set voltage (Vset) by the Eq. (3-3) and (3-4), while the reset process is described 

by Eq. (3-5) to Eq. (3-7) [115, 116, 118]: 

𝑑𝑥

𝑑𝑡
= 𝑎𝑓𝑒𝑥 𝑝 (−

𝐸𝑎 − 𝛼𝑎𝑍𝑒𝐸

𝑘𝐵𝑇
) (3-3) 

𝑑𝑤

𝑑𝑡
= (∆𝑤 +

∆𝑤2

2𝑤
)𝑓𝑒𝑥 𝑝 (−

𝐸𝑎 − 𝛼𝑎𝑍𝑒𝐸

𝑘𝐵𝑇
) (3-4) 

𝑑𝑥

𝑑𝑡
= 𝑎𝑓𝑒𝑥 𝑝 (−

𝐸𝑖 − 𝛾𝑍𝑒𝑉

𝑘𝐵𝑇
), (3-5) 

𝑑𝑥

𝑑𝑡
= 𝑎𝑓𝑒𝑥 𝑝 (−

𝐸 
𝑘𝐵𝑇

) sinh (
𝛼 𝑍𝑒𝐸

𝑘𝐵𝑇
), (3-6) 

𝑑𝑥

𝑑𝑡
= 𝑎𝑓𝑒𝑥 𝑝 (−

∆𝐸𝑟
𝑘𝐵𝑇

). (3-7) 

The parameters from Eq. (3-3) to Eq. (3-7) are listed in Table 3-2 in details.  

Table 3-2: Parameters of the Memristor Model 

Parameter Descriptions 

𝐼0 Hopping current density in the gap region 

𝜌 Resistivity of the CF 

𝑎 Distance between adjacent oxygen vacancy 
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f Vibration frequency of oxygen atom 

𝑥𝑇  Characteristic length in hopping region 

𝑉𝑇  Characteristic voltage in hopping 

𝑤0  Initial CF width 

𝑅𝐻 High Resistance State 

𝑅𝐿 Low Resistance State 

𝐸𝑎 Average active energy 

𝛼𝑎 Enhancement factor 

𝑍 & 𝑒 Charge number &  unit charge 

𝑘𝐵 Thermal resistance 

Figure 3-8 illustrates the V-I characteristic curve comparison of the memristor model and the 

measurement data of VT memristors.  

 

Figure 3-8: V-I switching characteristics of VT memristor (Cu/TaOx/Rh/Cr): The gray lines 

represent the measurement data, the blue line shows one typical measurement data, and the 

red line depicts VT memristor. Note: the compliance current is 1uA in this case. 
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As depicted in Figure 3-8, the resistance of the memristor model switches from ~1 MΩ to 

~940 MΩ at Vset ~0.8V, which matches the measurement data. The sudden current cut-off at ± 1 

μA in Figure 3-8 comes from the compliance current setting. The inconsistency of on-state 

resistance in Figure 5 and Table 1 comes from the different compliance current [78]. The 

relationship between Ron (low resistance state) and compliment current can be estimated by the 

equation: 

𝑅𝑜𝑛 =
𝐾

𝐼𝑐𝑐
𝑛 , 

(3-8) 

where n and K are fitting parameters and Icc is the compliance current [109]. Eq. (3-8) indicates 

the negative correlation between the compliance current and Ron.  

3.4 Performance Evaluation of the memristors on Deep Delay Feedback 

Reservoir Computing 

The emerging Deep-DFR demonstrates a strong capability of processing spatiotemporal data due 

to its recurrent loop and multiple layer structure [119, 120]. This specific structure allows the 

system to have more remarkable performance compared to other conventional reservoir computing 

system. Deep-DFR models demonstrate more than 50% better performance than the typical leaky 

echo state network (ESN) model [21, 121-125]. Furthermore, the Delay Feedback Reservoir (DFR) 

has a simplified structure, which merely consists of one nonlinear neuron in the reservoir [126, 

127]. On the contrary, the traditional reservoir system requires numerous nonlinear neurons that 

demand more hardware resources increasing the hardware design challenge [128-132].  

In this work, VT Deep-DFR model (Figure 3-9) is used for evaluating the impact of resistance 

variation reduction (cycle-to-cycle) of VT memristor on inference accuracy. In order to focus on 

studying the cause-and-effect between the resistance variation and the inference accuracy, other 

nonideal parameters of memristors that may influence the inference accuracy, e.g. device-to-

device variation, are excluded (keeping constant) in this work. At last, The hardware performance 

improvement, e.g., power efficiency, latency, and design area, is evaluated through a co-simulation 

paradigm with PyTorch and NeuroSIM [81].  
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Figure 3-9: The diagram of the hardware-software co-simulation paradigm with NeuroSIM 

and PyTorch. 

In this section, the crossbar configuration of the memristor as a memory array is introduced. 

Next, VT Deep-DFR model is introduced in detail. At last, the hybrid simulation paradigm is 

presented, combining the experimentally verified memristor model and the Python-based Deep-

DFR model. 

3.4.1 Weight Storage in Memristor Crossbar 

Memristors typically are fabricated in a crossbar structure massively. As illustrated in Figure 

3-10, the nanowires built with the inert cathodes and oxidizable active anodes are placed at the top 

and bottom of the crossbar, respectively. The metallic oxide layer is located at the cross points of 

the top and bottom nanowires. This crossbar structure is similar to the conventional memory array. 

As illustrated in Figure 3-10 (b), each memory cell of the memory array connects to a wordline 

and a bitline.  

For example, the DRAM (Dynamic Random-access Memory) uses a capacitor for each 

memory cell, and the SRAM (Static Random-access Memory) generally has six transistors as one 

memory cell. The stored information is represented by the voltage states at the terminals of 

capacitor or transistor.  
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Figure 3-10: Configuration comparison between the memristive crossbar and the memory 

array with SRAM memory cells in NeuroSIM [81]: (a) the traditional memory array with 

SRAM (6T); (b) the structure of the memristive crossbar.   

For memristor, the values are encoded in the resistance of a memristor and the nanowires 

serve as the bitline and wordline for accessing the memristive memory cells. In the writing phase, 

a voltage pulse, larger than set voltage, is applied to the nanowire of the crossbar structure and 

modifies the resistance value of the memristor. In the reading stage, the applied voltage is much 

smaller than the set voltage in order to preserve the resistance of the cell unaltered. The resistance 

value of the selected memristor equals the applied voltage divided by the measured current at the 

end of the nanowire. The weight matrices are mapped to the passive memristor crossbar with the 

memory cell selection devices, such as transistor or diode. The decoder of the system uses the 

wordline and bitline to access to every single memory cell. As illustrated in Figure 3-10 (a), the 

operations of weight sum and update in NeuroSIM are row-by-row-based write and reading [81]. 

The row selection is activated through the WL decoder. Then the BLs are precharged to each cell 

access. The memory data are captured by the sense amplifier (S/A). After that, the adder and 

register are used to sum the weight values in a row-by-row style. By replacing the SRAM core 

memory with the memristors, the architecture is not significantly modified. But the size of the 

memory cell reduces due to the intrinsic nanoscale of memristors. The weighted sum operation in 
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the memristor-based synaptic core is also a row-by-row style expect the use of multiplexers (Mux) 

[81]. 

3.4.2 Deep Reservoir Neural Network 

Nowadays, hardware-friendly DFR demonstrates an impressive capability of processing 

temporal information [119, 120]. In this work, several convolutional layers are added for 

constructing a deep DFR structure. Figure 3-9 illustrates the details of the Deep-DFR structure. 

The six convolutional layers serve as feature extractor, which is followed with a delay-feed-back 

layer extracts the one-dimensional time series characteristics. Two fully connected layers are used 

for reducing the output dimensional serving as a classifier.  The number of time delay reservoir 

layers matches the output of the convolutional layer. Initially, the weights in the reservoir (𝑾𝑟𝑒𝑠) 

layer is assigned as zeros. During the training process, the updating equation of the reservoir state 

is expressed as:  

𝑅𝑒𝑠(𝑡) = 𝛼 × 𝑅𝑒𝑠(𝑡 − 1) + 𝑓𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑯
𝑖𝑛(𝑡)), (3-9) 

where t is the time step, Res(t) is the reservoir state, 𝛼  is the decay factor, 𝑓𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟  is the 

nonlinear activation function, and 𝑯𝑖𝑛  is the hidden layer. This equation reveals that the current 

state of the reservoir is not only determined by the current input but also highly related to the last 

time step.  

To evaluate VT memristor performance, e.g., design area, accuracy, power consumption, a 

hardware-software co-simulation is established with PyTorch and NeuroSIM [81], as illustrated in 

Figure 3-9. The model is built as follows steps: 

Firstly, the Deep-DFR model is built of six convolutional layers for extracting features, 

followed by a Delay Feedback Reservoir Layer, and two full-connected layers. There are no 

weights within the delay feedback loop [126]. The Deep-DFR model is trained on the PyTorch 

platform with CIFAR-10 and CIFAR-100 datasets. During the training progress, the weights and 

neural network configuration are monitored and stored. 

Secondly, the experimentally verified memristor model is incorporated into the micro-

architecture simulator NeuroSIM [81] including the set voltage, on-state resistance, off-state 

resistance. The resistance variation with different levels is incorporated in the memristor model in 
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NeuroSIM. To reveal intently the cause-and-effect relationship between resistance variation 

(cycle-to-cycle) and inference accuracy, other nonideal parameters of memristors are not included 

for eliminating the interference from them.  

Algorithm 3.1: Performance Estimation 

Initialize: The configuration of the Deep-DFR and the corresponding weights 𝑾𝑖,𝑗  with small random 

numbers 

Initialize: 𝐖res of the reservoir as all zeros 

Initialize: Memory cell configuration 

Initialize: Peripheral circuits configuration  

1 For epoch = 1, M do   

2    While batch in dataset do 

4             𝒚𝑐𝑜𝑛𝑣
𝑜𝑢𝑡 ← six convolutional layers to batch (input) 

3             𝒉𝑟𝑒𝑠_1 =𝑾𝑟𝑒𝑠
𝑖𝑛 × 𝒚𝑐𝑜𝑛𝑣

𝑜𝑢𝑡 + 𝑏𝑖𝑎𝑠   

4             𝑾𝑟𝑒𝑠 =  𝛼 ×𝑾𝑟𝑒𝑠 + 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝒉𝑟𝑒𝑠_1)   

5             𝒉𝑟𝑒𝑠_2 =𝑾𝑟𝑒𝑠
𝑜𝑢𝑡 ×𝑾𝑟𝑒𝑠 + 𝑏𝑖𝑎𝑠     

6              𝒚𝑟𝑒𝑠
𝑜𝑢𝑡 =  𝑓𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝒉𝑟𝑒𝑠_2) 

7              𝒚𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟
𝑜𝑢𝑡 ← full-connected layer as classifier to 𝒚𝑟𝑒𝑠 

8             𝒚̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝒚𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟
𝑜𝑢𝑡 ) 

7             𝑙𝑜𝑠𝑠 = 𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝒚̂, 𝒚)  

8            Minimize(loss) 

9      End While 

10 End For 

11 Store weights and neural network configuration  

12 Calculate Area of Peripheral circuits based on their configuration 

13 Calculate total area = memristor memory array area + Σ area of the peripheral circuits 

14 Recall Stored weights  

15 For number of the weight index = 1, N do   

16    Calculate latency of Peripheral circuits with RC as load parameters  

17    Total latency = Σ (latency) of peripheral circuits in each operation 

18    Total energy = array dynamic/static energy + Σ (dynamic energy) of peripheral circuits in each operation 

19 End For 
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Thirdly, the Python API deploys the saved weights and configurations of the Deep-DFR to 

the NeuroSIM for hardware performance inference. The deployment method evaluates the 

performance of the neural network system on an offline training environment which demands a 

local computation. Compared to Online Learning, Offline Learning training keeps the trained 

neural network at the client-side and perform all prediction computation locally [133], due to the 

limited energy and space budget at the client-side.  

At last, the performance improvements of VT memristor on energy, design area, execution 

latency, and accuracy are estimated through the co-simulation paradigm. The pseudocode of the 

hardware-software co-simulation paradigm is introduced in Algorithm 3.1. 

3.4.3 Performance Evaluation 

Using the co-simulation paradigm introduced in the previous subsection, the performance 

improvement of VT memristor on deep learning at the system level is evaluated and estimated. 

The inference accuracy degrades significantly while the resistance variation of the memristor 

increase [78, 82, 83]. Figure 3-11 presents a correlation analysis between the variation of the 

weights and the inference accuracy of the Deep-DFR model. The Deep-DFR models are trained 

with the CIFAR-10 and CIFAR-100 datasets in 150 epochs. The model structure details are 

depicted in Figure 3-9. The simulation results demonstrate a strong negative correlation between 

the testing accuracy and the variation of the weights. For example, in Figure 3-11 (a), the testing 

accuracy significantly reduces while the variation of the weight increases, specifically in the range 

from 0.2 to 0.6. After the weight variations reach the range larger than 0.6, the testing accuracies 

tend to be stable and are at low levels (lower than 13%). The testing accuracies with different 

memristive devices, associating with their variations, are marked in the testing accuracy curve. VT 

memristive device (Cu/TaOx/Rh/Cr) reaches the highest testing accuracy (~90%) due to its lower 

variation compared to other devices. The simulation results using the CIFAR-100 dataset (Figure 

3-11 (b)) illustrates a similar degradation trend of the testing accuracy. The difference is the testing 

accuracy on CIFAR-100 reduces faster than CIFAR-10 and reaches its stable range on 0.4 weight 

variation.  

The simulation results with CIFAR-10 and CIFAR-100 both demonstrate the accuracies of 

the Deep-DFR models constituted of VT memristor (1% variation) outperform the other state-of-
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the-art memristors, and other material configurations we explored (listed in Table 3-1). The main 

advantage of storing weights of the neural networks in memristors is to enhance hardware 

performance. In this work, VT memristor is compared with SRAM and other state-of-the-art 

memristor reported, which are implemented with other materials, such as Ag:SiGe [134] and 

AlOx/HfO2 [135].  

The hardware performance enhancement with different memory techniques in the design area, 

power consumption, and computing latency are inferred and compared using NeuroSIM [81]. The 

settings of the model are summarized in Table 3-3. The SRAM is implemented in the typical six-

transistor cell (6T) with 32 nm technology. The weights are stored in memristors in digital format 

since the analog memristive synapse degrades the learning accuracy [9]. The weights are stored in 

4-bit precision. The feature size of the memristor is assigned at 40 nm because the current industry 

technology of integrating memristors and the transistors is at the range of 40 nm to 28 nm [9]. The 

simulation calculates all the latency, design area, and power consumption from different function 

modules, including the main memory module (SRAM and memristors) and the periphery circuits. 

The breakdown results of each module are listed in Table 3-4, which uses CIFAR-10 dataset.  

 

Figure 3-11: The reduction in the accuracy accompanying the increase of the weight 

variation: (a) CIFAR-10 and (b) CIFAR-100.  The neural network model is the Deep-DFR. 

The blue cycles indicate the simulation results and the red line represents the fitted curve. 

The memristive device of Ag:SiGe and AlOx/HfO2 are from [134] and [135] respectively. 



38 

 

Table 3-3: Simulation Setting of NeuroSim Model 

Device SRAM Memristors 

Frequency 1 GHZ 1 GHZ 

Temperature 301 K 301 K 

Subarray size 64 × 64 64 × 64 

Read Voltage 1.1 V 0.5 V 

Read Pulse Width N/A 10 ns 

Structure 6T 1R 

Technology 32 nm 40 nm 

Table 3-4: Simulation Result Breakdown of Chip Performance 

Device [34] [35] SRAM VT Memristor 

Chip Area (mm2) 98.05 138.83 166.17 85.97 

IC Area on chip (mm2) 2.90 3.50 4.24 2.70 

ADC Area on chip (mm2) 14.03 14.03 42.68 14.03 

 Periphery circuits (mm2) 47.50 84.66 52.89 39.05 

Chip total Read Latency (us) 423.34 1082.33 803.38 264.97 

Chip total Read Dynamic Energy (uJ) 44.1533 55.48 70.88 41.51 

Chip total Leakage Energy (nJ) 223.37 699.91 966.03 108.90 

Chip total Leakage Power (uW) 791.09 791.09 3074.87 791.09 

Chip buffer Read Latency (us) 12.36 12.36 12.36 12.36 

Chip buffer read Dynamic Energy (uJ) 4.16 4.16 5.87 4.16 
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Chip IC Read Latency (us)  36.22 49.40 28.40 32.77 

Chip IC Read Dynamic Energy (uJ) 24.39 34.38 25.94 21.92 

ADC Read Latency (us) 39.93 39.34 81.66 42.25 

Periphery circuits read Latency (us) 214.10 873.62 93.78 53.48 

ADC Read Dynamic Energy (uJ) 3.77 3.39 13.12 4.01 

Periphery circuits read Dynamic 

Energy (uJ) 
30.60 42.30 35.01 27.71 

Figure 3-12 demonstrates that VT memristor reduces chip area, power consumption and 

latency reduce by ~48%, ~42%, and ~67% with respect to SRAM, respectively. Furthermore, the 

performance is improved at various degrees compared to other state-of-the-art memristors [134, 

135]. The improvements show similar levels with the datasets of CIFAR-10 and CIFAR-100 in 

Figure 3-12  (a) and Figure 3-12  (b). This phenomenon probably stems from the same neural 

network model (Deep-DFR) and a similar value range of data (CIFAR-10 and CIFAR-100), which 

leads to a similar number and values of the weights.  

 

Figure 3-12: Performance evaluation on the different memory techniques: (a) CIFAR-10 and 

(b) CIFAR-100. The memristive device of Ag:SiGe and AlOx/HfO2 are from [134] and [135] 

respectively 



40 

 

The area difference of memristors in Figure 3-12 mainly comes from the periphery circuits. 

The larger area of periphery circuits of memristors of Ag:SiGe and AlOx/HfO2 [134, 135] stem 

from their small on-state resistance [134-136]. The small on-state resistance requires the larger 

size (W/L) of transistors in peripheral circuits, e.g., Mux or switch matrixes, to avoid the significant 

current drop and impedance mismatch [136]. Accordingly, the latency of periphery circuits also 

increases due to the large size of the transistors, which needs a longer time for charging and 

discharging.  

As a non-volatile device, the memristors store the data in their resistances. Unlike SRAM, the 

non-volatile memory cores do not need a power supply to retain the data in memory cells thus their 

leakage power is much smaller than a typical SRAM. The energy reduction of other state-of-the-

art memristors (Ag:SiGe and AlOx/HfO2 [134, 135]) is much less than VT memristors because of 

their smaller on-state resistance (Ron). The small on-state resistance leads the array static energy 

(consumed by cells) dominates rather than the dynamic energy in the system. The static energy 

consumes more energy in the system, which leads VT memristor is much energy efficient 

compared to  Ag:SiGe and AlOx/HfO2 [134, 135].  

In this work, a novel memristor configuration with the enhanced heat dissipation feature is 

designed and fabricated. The measurement data demonstrate VT memristor has higher immunity 

to degradation induced by the thermal effect. The on and off resistance variations are reduced 

correspondingly, leading to an increase of the testing accuracy within the same range. The Deep-

DFR model is used for evaluating VT memristor as the weight storing devices. The datasets 

CIFAR-10 and CIFAR-100 are used for training the Deep-DFR model. The design area, power 

consumption, and latency of the system using VT memristor are reduced by ~48%, ~42%, and 

~67% compared to conventional SRAM memory technique. At last, these hardware parameters 

are also improved at various degrees (~13%-73%)  compared to other state-of-the-art memristors 

[134, 135].   

3.5 Discussion 

In this work, a novel memristor configuration with the enhanced heat dissipation feature is 

designed and fabricated. The measurement data demonstrate VT memristor has higher immunity 
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to degradation induced by the thermal effect. The on and off resistance variations are reduced 

correspondingly, leading to an increase of the testing accuracy within the same range. The Deep-

DFR model is used for evaluating VT memristor as the weight storing devices. The datasets 

CIFAR-10 and CIFAR-100 are used for training the Deep-DFR model. The design area, power 

consumption, and latency of the system using VT memristor are reduced by ~48%, ~42%, and 

~67% compared to conventional SRAM memory technique. At last, these hardware parameters 

are also improved at various degrees (~13%-73%)  compared to other state-of-the-art memristors 

[134, 135].   
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4 Chapter 4. Three-dimensional Neuromorphic 

Computing System with Two-layer Memristive 

Synapses 

Three-dimensional Integrated Circuits (3D-ICs) is a cutting-edge design methodology of 

placing the circuitry vertically to providing high speed, low power consumption, and small design 

area. In this chapter, a novel 3D neuromorphic system constituted with monolithic 3D integration 

and VT two-layer memristive synapse is proposed and analyzed. The simulation results 

demonstrate VT fabricated two-layer memristors outperform the one-layer configuration on design 

area, power consumption, and latency with the factors of 2, 1.48, and 2.58, respectively. The 

proposed 3D low-variation memristive synapse shows the significant improvement (10% to 66%) 

on design area, power consumption, and latency, compared with the SRAM (Static Random-access 

Memory) and other state-of-the-art memristive synapses. The performance of the neuromorphic 

system with our memristors is evaluated through the benchmark datasets (MINST and CIFAR-10) 

and the system-level simulator NeuroSIM. 

4.1 Introduction 

Human Brains demonstrates a remarkable energy-efficiency on numerous cognition tasks [3]. 

The low power consumption of the neural system in human brains stems from the unique threshold 

neurons, discretely spiking signal representation, and neural network configuration. Neuromor-

phic Computing System (NCS) is an approach of achieving a power-efficient artificial intelligence 

system through mimicking human brains with low-precision spiking communication of threshold 

neurons (activation functions) [137]. The significantly high energy budget makes NCS more 

suitable to the resource-constraint applications, such as self-driving vehicles, unmanned aerial 

vehicles, and smartphones [138, 139]. The outputs of the threshold functions are either zero or 

one, which requires less hardware utilization and communication energy since the zero or one 

output can be represented as one single pulse (Spike) [137]. Several neuromorphic chips have been 

demonstrated the capability of NCS, such as the Loihi chip developed by Intel and TrueNorth built 
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by IBM [20, 140]. However, the non-differentiability of the threshold activation functions 

(neurons) of NCS deprives of the learning capability that relies on the gradient descent algorithm. 

Nowadays, a so-called Whetstone method overcoming this issue has been proposed [137]. In this 

particular method, different activation functions are used at the training and inference stages [137]. 

Initially, the neural networks are trained through the conventional backpropagation algorithms 

with differentiable activation functions, such as ReLU, sigmoid, etc. Nevertheless, these activation 

function will gradually transform into a threshold function during the training process. This 

activation transformation process is referred to as a sharpening procedure [137]. Through the 

sharpening procedure, the NCS can be trained through the conventional backpropagation 

algorithms. In this chapter, a hardware design with VT low-variation and two-layer memristors are 

discussed and analyzed for the Whetstone-based neuromorphic computing system.   

Typically, the memristors are fabricated in a one-layer crossbar structure. However, this one-

layer structure suffers the larger signal propagation delay, chip area, and power consumption [11, 

58]. In this chapter, the aforementioned VT low-variation memristors (see Figure 3-5) are scaled 

vertically into a three-dimensional structure (two layers) for further increase the device density. 

As a result, VT two-layer memristors structure demonstrates a reduction on the design area (2×), 

power consumption (1.48×), and latency (2.58×), compared to the traditional one-layer structure. 

Furthermore, the VT 3D low-variation memristive synapse outperforming the SRAM-based 

synapses and other state-of-the-art memristive synapses [134, 141] on design area, power 

consumption, and latency at various degrees (10% to 66%).  

4.2 Monolithic Three-dimensional Integration with Memristors 

Modern computers upon the von Neumann architecture was designed for Boolean algebra and 

arithmetic calculation. To perform these calculations efficiently, the central processing units 

(CPUs) in computers extract data from memory. The transmission of data between the CPUs and 

the memory relies on the bus and the high-frequency signals carried on it. However, as the rising 

of the data-driven artificial intelligence (deep learning), a quantity of data is dramatically 

increasing these years. Thereby, the unprecedented demand for computational resources becomes 

the most critical challenge.  
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The latest researches reveal a strong correlation between the inference accuracy of deep 

learning and data quantity. Thus, the more data is used for learning, the higher inference accuracy 

can be expected [7, 8]. The strong correlation between the data quantity and learning accuracy 

inevitably leads to an endless pursuit of large datasets. The massive amounts of data also 

accompany the successive data transferring between CPU and memory that will significantly 

increase the power consumption. The computational and power demands for the data-driven 

learning methodologies, such as deep learning, cannot be resolved by merely improving current 

transistors and memory technologies alone [93]. Hence, there is an urgent need for a novel 

integrated circuit (IC) structure to overcome these fundamental limitations of the scaling issue of 

modern computers. The high memory device density and more compacted IC structure can be 

achieved through the utilization of the so-called monolithic 3D integration technology and a 

nanoscale memory device memristor [74]. Unlike traditional 3D integration technology using 

Through silicon Vias (TSVs) and interposers at micrometer scales, monolithic 3D integration can 

connect the modules at different layers through nanoscale monolithic inter-tier vias (MIVs) [142-

153] that further reduce the design area. The size among a TSV, an inter-tier via, and a memristor 

is illustrated in Figure 4-1.  

 

Figure 4-1: Size comparison among a TSV, an inter-tier via, and a memristor 

Moreover, the fabrication processes of the monolithic 3D integration technology are 

compatible with 3D memristor fabrication processes. A typical transistor level monolithic 3D 

integration structure is illustrated in Figure 4-2.  
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Figure 4-2: Monolithic 3D integration at transistor level 

 

Figure 4-3: (a) Acceptor wafer fabrication; (b)Donor wafer fabrication; (c)Implant hydrogen 

to generate cleave plane; (d) Combining the donor wafer to the acceptor wafer and perform 

Ion-Cut cleave; (e) Remove the donor wafer and complete the Ion-Cut; (f) Fabricate another 

layer of transistors at low temperature 
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Unlike conventional TSV-based 3D-ICs technology, which fabricates discrete layers 

separately, the monolithic 3D integration technology fabricates the layers sequentially at low 

temperature, while concurrently interconnecting the layers with nanoscale monolithic inter-

tier vias (MIVs). Figure 4-3 illustrates the details of Pulsed-laser and ion-cut fabrication 

procedures [154, 155].  

For such fabrication process, circuits in an acceptor wafer, which include both transistors and 

interconnections, are first built conventionally. Meanwhile, the donor wafer containing both p – Si 

and n + Si layers is constructed on a new wafer; the dopants are activated applying the normal high 

temperature techniques. Then the hydrogen is implanted into the donor wafer with the p – Si and 

the n + Si regions, and a cutting plane is created. After the two wafers are formed, the donor wafer 

is inverted and bonded to the acceptor wafer of 3D-ICs. Then the donor wafer is cleaved along a 

plane created using either a low temperature anneal, or an applied sideways mechanical force. 

Then a recessed channel transistor (RCAT) architecture is utilized to create transistors in this thin 

layer under low temperature; without damaging the connections in the acceptor wafer.  

The monolithic technology is a three-dimensional integration technology that can combine 

the memristors with traditional silicon-based transistors to further reduce the power consumption 

and design area. Through monolithic technology and low-temperature fabrication method, the 

memristors can be stacked on a silicon wafer as shown in Figure 4-4.  

 

Figure 4-4: Monolithic 3D neuromorphic architecture constituted with memristive synapse 

and neurons. The neurons and memristive synapses are integrated through monolithic 3D 

integration technology.  
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The low temperature of fabrication protects the prior fabricated transistors at the bottom layer 

as shown in Figure 4-4. The fabrication temperature of the memristor is generally can be as low 

as 300°C [93]. The access of memristors which are at different layers is realized through nanoscale 

monolithic interlayer vias. With the Monolithic 3D technology, the vertical routing paths, the 

critical path lengths diminish by a factor of three, the power consumption can be decreased by 

50%, and the design areas reduces by 35% [156].  

4.3 Two-layer Memristor Fabrication and Evaluation 

This section introduces the fabrication procedure of our three-dimensional (two layers) 

memristor. Our three-dimensional memristors are fabricated on a silicon wafer with a two-layer 

crossbar structure. Additionally. the cycle-to-cycle switching variation of our two-layer 

memristors reduces by more than 30% through heat dissipation layers. Furthermore, the 

corresponding three-dimensional model of the two-layer structure is built. The simulation indicates 

our 3D (two-layer) memristor structure reduces the design area, power consumption, and latency 

by 2×, 1.48×, and 2.58×, respectively. Figure 4-5 (a) shows that our memristors are fabricated in 

a crossbar configuration on a thermally oxidized silicon wafer (730 nm thick). The magnified 

figure of crossbars on the silicon wafer is shown in  Figure 4-5 (a). Each crossbar structure contains 

25 devices at a 5 by 5 array as illustrated in Figure 4-5 (c).  

 

Figure 4-5: VT two-layer memristors: (a) two-layer memristor arrays at the wafer; (b) the 

memristor arrays at the wafer; (c) a typical two-layer memristor cell; (d) zoom-in view of a 

memristor at the cross-point of the array. 

Each memristor cell is located at the cross-point of two accessing nanowires crossbar as 

illustrated in Figure 4-5 (d). At the ends of the nanowires, the pads are fabricated for placing a 

testing probe. Both metal electrodes and oxide (solid electrolyte) are deposited by electron beam 

evaporation and patterned by lift-off technology. A thin layer (20 nm) of chromium (Cr) is 
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deployed between Rh and SiO2 to improve the adhesion of the rhodium (Rh) layer and enhance 

the capability of the heat dissipation. The processes are performed twice forming two layers of 

memristors. Moreover, the additional heat dissipation layers are added at each layer to reduce the 

cycle-to-cycle switching variations. The cross-section view of our two-layer memristors with heat 

dissipation layers is illustrated in Figure 4-6 through Focused Ion Beam (FIB) technology. The 

material Cr is used for the heat dissipation layer in our work.  

 

Figure 4-6: Focused Ion Beam (FIB) cross-section image of the two-layer memristor 

The metals Cr and Rh have been selected as electronics due to their superior thermal 

conductivity properties among the traditional Ti, Pt, W, or TN metals. The oxygen-deficient TaOx 

(x≈1.9) is deposited in the PVD-250 chamber through evaporating Ta2O5 pellets without O2 

injection into the evaporation chamber. The layer of TaOx deposited on our device is 25 nm. Its 

thickness (TaOx) is controlled during the deposition process through a calibrated quartz crystal. 

Our Kurt J. Lesker PVD-250 e-beam evaporation system possesses a built-in quartz crystal 

microbalance oscillator, which has the capability of precisely measuring deposited thin film 

thickness by the material and chamber geometry parameters, such as density, Z-ratio, and tooling 

factor. The width of nanoscale metal lines is 5μm resulting in rectangular device areas of the device 

at 25 μm2. All metal layers (Cu, Rh, Cr) are deposited by Physical Vapor Deposition (PVD) in a 

Kurt Lesker e-beam PVD-250 chamber.  

Before fabricating the second (top) layer of memristor, a layer (70nm) of TaOx is deposited 

by evaporating Ta2O5 pellets into the e-beam evaporation system with oxygen injection into the 
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chamber. The purpose of oxygen injection is to improve the stoichiometry of the TaOx layer. This 

stoichiometric Ta2Ox (x = 2.5) layer is less defective and provides electrical isolation between two 

memristor layers. This step is followed by the deposition of the Cr adhesion layer. The Rh bottom 

electrode layer is fabricated through electron beam evaporation and patterned with lift-off 

technology. Then the oxygen-deficient TaOx (x≈1.9) layer and Cu top electrode layer are deposited 

and patterned with lift-off technology in a similar fabrication process of the first layer. The detailed 

geometry of the layers is illustrated in Figure 4-7. 

 

Figure 4-7: Structure of the two-layer memristor crossbar  

During the switching of memristors, the active metal ion electromigration, which completes 

the conductive filaments (CFs) at the tip of the growing CFs, significantly influences the size of 

the filament and the value of the on-resistance Ron [82]. Because of the stochastic nature of ion 

migration and atom diffusion, the variation of the on-resistance Ron is rather high, especially in 

high temperature [82]. The temperature will increase gradually during the switching since the 

movement of oxygen atoms and ions in the metal oxide accumulates the heat inside of the 

memristor. The high-temperature interior device further enhances the metal diffusion effect. The 

latest research indicates the heat diffusion effect of metal will increase the resistive variation [83]. 

Thus, a reasonable attempt of mitigating the temperature-related resistance variation of memristors 

is to dissipate the accumulated heat inside of memristors. The high temperature can be reduced 

naturally by using an additional heat dissipation layer. Thereby, another heat dissipation layer with 

high heat conductivities is added to enhance the heat dissipation capability of memristors. Due to 

the high conductivity of the additional layer, the accumulated energy will be removed from the 

cells of memristors. In the measurement, the compliance current is set in 50 uA denoted as Icc. 

Figure 4-9 illustrates the resistance variation of the memristors fabricated with different materials. 
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A positive correlation between the cycle-to-cycle resistance variation (Ron) and the thermal 

conductivity of the heat dissipation layer can be observed clearly in Figure 4-9. Note that the value 

of conductivity is the sum of the heat dissipation layer, such as Rh and Cr layers. Figure 4-9 

illustrates the combination of Titanium (Ti) and Chromium (Cr) as the dissipation layer 

demonstrates the most effective mitigation of resistance variation, which is as small as ~1%.  

 

Figure 4-8: Mechanism of heat dissipation layer.  

 

Figure 4-9: Resistance variation of the switching process of the memristors fabricated with 

different materials and the correlation between the memristor variation and thermal 

conductivity of heat dissipation layers 

 

4.4 Three-dimensional Memristive Neuromorphic Computing System  

In this section, the three-dimensional memristive neuromorphic computing system is designed 

using the circuit model of our fabricated memristor array and the model of the three-dimensional 
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structure of the memristors. The memristor model is built based on the filament growing method 

[115], capturing the main characteristics of our two-layer low-variation memristors, such as set 

voltage, on-state resistance (Ron), and off-state resistance (Roff). The three-dimensional structure 

of the memristors is modeled with the corresponding resistances and capacitances of the two-layer 

crossbar structure.   

Based on the equations from Eq. (3-1) to (3-7), we built a Verilog-A model for our two-layer 

memristors. The model parameters are summarized in Table 4-1. Figure 4-10 illustrates the V-I 

characteristic curve of our model and the measurement data. The 1 A of compliance current is 

applied for the protection purpose since the large current flowing through the devices will 

permanently damage the memristors. Furthermore, in the measurement, the characteristics of the 

memristors from the top and bottom layers have no significant differences. This probably due to 

the identical materials, size, and fabrication processes of those two memristor layers.  

 

Figure 4-10: V-I curve of our two-layer memristor (Cu/TaOx/Rh/Cr): The blue line and 

brown lines represent two typical measurement data of the memristor at the top and bottom 

layers, respectively. The red line depicts our model capturing the critical switching 

characteristics. 
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Table 4-1: Parameters of the Memristor Model 

Parameter Descriptions values 

𝐼0 Hopping current density in the gap region 1e13 

𝜌 Resistivity of the CF 1.9635e-5 

𝑎 Distance between adjacent oxygen vacancy 0.2e-9 

f Vibration frequency of oxygen atom 1e13 

𝑥𝑇  Characteristic length in hopping region 0.4e-9 

𝑉𝑇  Characteristic voltage in hopping 0.4 

𝑤0 Initial CF width 5e-9 

𝐸𝑎 Average active energy 0.75 

𝛼𝑎 Enhancement factor 0.75e-9 

𝑍 & 𝑒 Charge number &  unit charge 1 & e 

𝑘𝐵 Thermal resistance 8.61733e-5 

To evaluate the two-layer structure of our memristors, a full-wave model is built upon the 

resistances and capacitances of the 3D crossbar structure. A SPICE model of our two-layer 

memristor crossbar structure is developed that incorporates the memristor Verilog-A model and 

the resistance and capacitance list in Table 4-2. The improvement of 3D structure comes from the 

much less resistance and capacitance of the two-layer structure than the one-layer structure. Figure 

4-11 demonstrates the geometry details of our models. The models are built using industry-

standard simulator ANSYS Q3D extractor [157].  

These two models have the same number of memristors, but the different structures. For the 

one-layer memristor (Figure 4-11 (a-c)), the memristor is modeled in 5 by 10 array. For the two-

layer memristors (Figure 4-11 (d-f)), the same quantity of memristors is placed in two layers. Thus, 

the 25 memristors are located in a 5 by 5 array at every single layer. The resistances of the 

connecting nanowires (top and bottom electrodes) and the parasitic capacitance between them are 

extracted from ANSYS Q3D extractor. Table 4-2 summarizes the resistance and capacitance of 

one-layer and two-layer memristors. As a non-volatile device, memristors retain their resistances 
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(HRS and LRS) with no extra exterior voltage, as a result, saving the static power consumption. 

The main power consumption comes from the resistance of the accessing nanowires of the crossbar 

structure. Three critical parameters are used for evaluating the hardware performance of our two-

layer design, which are power consumption, design area, and latency. The design area can be 

directed extracted from the device geometry. The power consumption caused by the resistance of 

nanowires is calculated with the equation 𝑃 = 𝐼2𝑅, where 𝑅 is the resistance and I is the current. 

The latency is calculated by the signal latency equation [158]: 

𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 0.7 𝑅𝐶, (4-1) 

where the R and C are the resistance and capacitance of the nanowires listed in Table 4-2. Figure 

4-12 illustrates the comparison between one-layer and two-layer memristors on these three critical 

parameters: design area, power consumption, and the latency. Figure 4-12 demonstrates that these 

three parameters have been reduced by a factor of 2, 1.48, and 2.58, respectively, through stacking 

the memristors from one layer into two layers. 

 

Figure 4-11: Full-wave model of memristor structure: (a) One-layer memristor (5×10×1); (b) 

Top-view of one-layer memristor; (c) Side-view of the of one-layer memristor; (d) Two-layer 

memristor (5×5×2); (e) Top-view of two-layer memristor; (f) Side-view of two-layer 

memristor. 
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Table 4-2 Parameters of our two-layer memristor structure 

Characteristics Descriptions 
Two Layer Memristor 

Characteristics Values 

One Layer Memristor 

Characteristics Values 

RTop Electrode 
The resistance of the top electrode (150nm 

copper layer) 
1.582 Ω 3.0172 Ω 

RBottom Electrode 

The resistance of the bottom electrode 

(50 nm Rh layer, 200 nm Copper heat 

dissipation layer, and 20 nm Cr layer) 

0.855 Ω 0.855 Ω 

CElectrode 
The capacitance between the top and bottom 

metal electrodes of a single memristor  
0.0337 pF 0.035 pF 

Cadjacent 

The capacitance between the adjacent 

nanowires 

(Rh layer to Rh layer) 

0.00016 pF 0.00025 pF 

Cadjacent_top 

The capacitance between the adjacent 

nanowires 

(Copper to copper) 

7.9e-5 pF 0.0007 pF 

At last, our two-layer memristor is incorporated into a Whetstone-based neuromorphic system 

for a system-level evaluation [137]. 

 

Figure 4-12 Comparison between one-layer and two-layer memristors on the critical 

performance parameters of the design area, power consumption, and latency.  

In this paper, our two-layer is incorporated into a system-level simulator NeuroSIM [81] for 

hardware performance evaluation. Three critical hardware parameters, design area, power 

consumption, and latency, are compared with the SRAM-based synapse and other state-of-the-art 
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memristive synapses, such as Ag:SiGe [134] and AlOx/HfO2 [141]. Figure 4-13 illustrates the 

methodology of evolution and the diagram of NeuroSIM. First, conventional neural networks are 

trained through Whetstone [137], which is an emerging technology that transforms a traditional 

neural network to a spiking neural network with threshold activations. in this work, we trained the 

MLP and CNN with two benchmark datasets, MNIST and CIFAR-10. These neural networks 

(MLP and CNN) initially utilize the traditional bounded ReLU activation.  

 

Figure 4-13: Diagram of our hardware-software co-simulation paradigm with NeuroSIM 

and Whetstone.  (a) The neural networks are trained through Whetstone. (b) The weights are 

evaluated through NeuroSIM. (c) The architecture of the NeuroSIM. (d) The architecture of 

each Tile. (e) The structure of each Processing Element (PE). (f) The architecture details of 

each Synaptic Array (SA).  

During the training, the bounded ReLU activation functions are gradually transformed into 

the threshold functions. Since the transition of activation function gradually occurs during the 

training, the derivatives of the activation function vanish rather suddenly than gradually.  

Algorithm 4.1: Performance Estimation 

Initialize: The configuration of the artificial neural network  

Initialize: Memristive synapse configuration 

Initialize: Peripheral circuits configuration  

1 For epoch = 1, M do   

2    While batch in dataset do 

3           For number of the layers = 1, N do   

5                  sharpening the activation function (BReLU) through 𝛼 → 0.5, ℎ → 1  

6            End For 



56 

 

7      End While 

8 End For 

9 Store weights and neural network configuration  

10 Calculate Area of Peripheral circuits based on their configuration 

11 Calculate total area = memristor memory array area + Σ area of the peripheral circuits 

12 Recall Stored weights  

13 For number of the weight index = 1, N do   

14    Calculate latency of Peripheral circuits with RC as load parameters  

15    Total latency = Σ (latency) of peripheral circuits in each operation 

16    Total energy = array dynamic/static energy + Σ (dynamic energy) of peripheral circuits in each operation 

17 End For 

   

 

Eq. (4-2) illustrates the bounded reified linear unit (bRELU) [137] with the assert of 

|𝛽 − 0.5| =  |𝛼 − 0.5|.  

hα,β = { 

1,
xi − α

β − α
,

0 

if xi  ≥  β 
        if α ≤ xi  ≤  β

if xi  ≤  α
. (4-2) 

As shown in Eq. (4-2), with 𝛼 = 0 and 𝛽 = 1, ℎ𝛼,𝛽 is a generic bound ReLU function. As 

𝛼 → 0.5, ℎ → 1, the function ℎ𝛼,𝛽  is gradually sharpened into a threshold function. Thus, the 

final trained neural networks maintain a satisfying accuracy (~1% accuracy loss for MNIST and 

~5% accuracy loss for CIFAR-10). During the training, the weights and neural network 

configurations are stored and extracted. Then, the stored weights are further imported into a macro-

architecture simulator NeuroSIM. The pseudocode of this evaluation methodology is demonstrated 

in Algorithm 4.1. 

Figure 4-13 illustrates the NeuroSIM framework showing its critical modules hierarchically, 

which contains multiple tiles, global buffer, accumulation units, and activation units. Each tile has 

several processing elements (PEs). The communication among Tiles is under a tree network 
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structure as illustrated in Figure 4-13 (c). The responsibility of the tile buffer is to load activations, 

accumulation modules for adding sums from PEs and transferring the result to the output buffers. 

Each PE module constructs with a group of synaptic arrays (SAs). The synapses in SA can be 

assigned with multiple memory devices, such as SRAM, memristors. The memristor crossbar 

structure is incorporated in the SA as shown in Figure 4-13 (e). Each memory cell of the memory 

array connects to a wordline and a bitline. For memristor, the values are encoded in the resistance 

of a memristor and the nanowires serve as the bitline and wordline for accessing the memristive 

memory cells. The resistance value of the selected memristor equals the applied voltage divided 

by the measured current at the end of the nanowire. The decoder of the system uses the wordline 

and bitline to access to every single memory cell. The operations of weight sum and update in 

NeuroSIM are row-by-row-based write and reading. The row selection is activated through the 

WL decoder. Then the BLs are precharged to each cell access. The memory data are captured by 

the sense amplifier (S/A). After that, the adder and register are used to sum the weight values in a 

row-by-row style.  

In this work,  the performance among our two-layer memristor-based neuromorphic system 

with SRAM and other state-of-the-art memristor [134, 141] are compared. The MLP includes three 

full-connected layers with the training accuracy at 98%; while the CNN contains the six 

convolutional layers with the training accuracy at 83%. The neural networks utilize the dataset 

benchmarks of MNIST and CIFAR-10, respectively. Figure 4-14 summaries performance 

comparisons. VT two-layer memristor shows a significant reduction in the design area (50%), 

power consumption (60%), and latency (66%). As shown in Figure 4-14, the design area, power 

consumption, and latency of the threshold-based neuromorphic system are reduced by 10%, 36%, 

and 23% compared with the system using Ag:SiGe [8], respectively; while the design area, power 

consumption, and latency are reduced by 10%, 58%, and 78.1% respect to the system with the 

electronic memristor AlOx/HfO2 [9].  
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Figure 4-14: Performance evaluation of the different techniques 

4.5  Discussion 

In this work, VT two-layer memristive electronic synapses, constituting a Three-dimensional 

(3D) neuromorphic system. The 3D structure shows a significant improvement in the design area, 

power consumption, and latency with the factors of 2, 1.48, and 2.58, respectively. The 

improvement stems from the much less resistance and capacitance of the two-layer structure. At 

last, the performance of the neuromorphic system with the 3D memristors is evaluated through the 

benchmark datasets (MINST and CIFAR-10). These simulation results demonstrate an 

improvement in the design area, power consumption, and latency at various degrees compared to 

other state-of-the-art memristors (10% to 66%) [134, 141].   

The integration of memristors and three-dimensional technology propels a neuromorphic 

system to a new stage of high performance on design area, power consumption, and latency. The 

improvements inherently come from the shorter signal propagation distance. Furthermore, the 

vertical connections among different layers are implemented by the nanoscale MIVs, which further 

reduce the vias from microscale (TSVs) to nanoscale (MIVs). Many approaches have been 

conducted to building a three-dimensional neuromorphic system with memristors [93, 159-164].  
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In [159], a three-dimensional system with eight layers of memristors is presented for CNNs 

specifically. The memristors in [159] are fabricated using materials of Pt/HfO2/Ta in an eight-

layer three-dimensional structure. Similar to our multiple layer crossbar structure, the memristors 

in [159] are fabricated in a horizontal 3D structure with the feature sizes of 300 nm and 4 μm. The 

high state resistance and low state resistance are at 10KΩ and 1KΩ, respectively. These values are 

relatively low and the resistance ratio is small. Based on the discussion and analysis in Chapter 3, 

lower resistance may require a larger size of the transistors at peripheral circuitry, leading to a 

large design area and latency. Moreover, the ROFF/RON ratio (the ratio of off-state resistance to on-

state resistance) is relatively small, which potentially triggers the undesired switching due to the 

sneaking path. On the contrary, the ROFF/RON ratio is 1000 that efficiently avoids the impact of 

sneaking path. The detailed comparison between VT 3D memristors and 3D memristors in [159] 

are listed in Table 4-3. Due to the scale limitation of fabricated memristors, the authors in [159] 

utilize a software (MATLAB) and hardware co-simulation method for evaluation that is similar to 

my approach.  The system is evaluated with MNIST dataset reaching a satisfying inference 

accuracy (97.91%).  

The work in [159] purposely designs a multiple-layer memristive structure to enhance the 

kernel calculation of CNNs that compromises the generality of the system. On the contrary, the 

typical VT two-layer memristors have a much simple structure, which is more friendly to the 

fabrication process. Moreover, the switching variation of memristors is still observed in the 

measurement data of their work. Based on the analysis in Chapter 3 (see Figure 3-11), the high 

variation significantly decreases the inference accuracy. At last, the neural network of our 

approach is spiking neural networks with threshold function, which is a more biology-plausible 

design compared to the other nonlinear activation functions used in [159]. 

Table 4-3: Comparison between VT 3D memristors and the 3D memristors of University of 

Massachusetts at Amherst 

Specifications VT 3D Memristors [159] 

Number of Layers 2 8 
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3D structure Horizontal Crossbar Structure Horizontal Crossbar Structure 

Neural Network Model Spiking Neural Networks Convolutional Neural Networks 

Materials Cu/TaOx/Rh/Cr Pt/HfO2/Ta 

Set Voltage 0.7 V – 1.2 V 0.5 V - 1 V 

Feature Size 5 µm to 35 µm 300 nm to 4 µm 

Low Resistance Value 1 MΩ 1 KΩ 

High Resistance Value 1 GΩ 10 KΩ 

ROFF/RON Ratio 1000 10 
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5 Chapter 5. Neuromorphic System with 

Associative Memory Learning 

5.1 Introduction 

As the core mission of artifical intelligence, the self-learning capability of brains attracts the 

scientists for a long time [19]. Self-learning capability of organisms stems from associative 

memory learning [3]. This particular real-time learning method enables the organisms to correlate 

two concurrent events together [3, 165-168]. Thus, dogs can learn the sound of whistle as a sign 

of food [3, 165]. Similarly, the children remember the words representing the objects while the 

parents repeatedly teach them. Thereby the investigation on the associative memory not only 

potentially disclose a path of designing a self-learning artificial intelligence system but also 

provide a method of comprehending the learning mechanism of organisms.  

The nervous system is constructed with basic neurons connecting through synapse in a 

network configuration. The neural science scientists indicate that the modification of synaptic 

connecting strengths, also referred to synaptic weights, play a critical role in the associative 

memory learning [3]. The weight of a synapse represents the connection strength between two 

neurons. The connecting strength is realized by the amount of the chemical neurotransmitters as 

aforementioned in Chapter 2 (see Figure 2-2). This synaptic weight between neurons can be 

implemented by an emerging device memristor. The memristors are the nanoscale two terminal 

devices with an adjustable resistance under the exterior stimulus, which is similar with the function 

of synapses [78]. Several pioneers have applied memristor as electronic synapses on small scale 

associative memory learning recently [99, 167, 169-175]. But, these works only correlate several 

simple signals together with a few of neurons [99, 167, 170, 172-175]. Additionally, the 

information carried by simple two channels of signals is restricted [3, 176]. However, one of the 

most important steps to implement a self-learning artificial intelligence system is to make the 

system have a capability of correlating several pieces of sophisticated information together [176].   

In the neural system of human brain, the different kinds of signals, such as auditory and visual 

signals, are processed at different regions [3] with distinct neural networks (see Figure 2-4). 
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Through this way, the information of auditory and visual signals captured by the eyes and ears are 

extracted by these neural networks using the spiking signals as the outputs. Similarly, artificial 

neural networks (ANNs) processes different types of signals independently [8, 177-179], and 

abstracts the input information into the probabilistic grades. For instance, the convolutional neural 

networks (CNNs) are used for processing image signals [178], while recurrent neural networks 

(RNNs) are more suitable for processing series signals [179].  A set of scores as the outputs of 

these neural networks that represent the probabilities of the input belonging to a particular 

category. Inspired by ANNs and distributed signal processing of brains, a behavior-level 

associative neuromorphic system is proposed and introduced in this chapter. Instead of relating 

simple signals together, the proposed system associates the outputs of the multiple ANNs together 

by correlating these outputs together. The correlation is realized by first transforming the output 

grades into corresponding spiking signals and then adding them together. The adding spiking 

signals are used for modification of synaptic weight. The association of spiking signals are 

implemented with one more layer of the neural network, referred to the associative memory 

network (AMN). 

Specifically, the proposed system transforms the outputs (probabilistic scores) of the ANNs 

into the corresponding spiking signals with different frequencies and magnitudes. This function is 

implemented by a new neuron named Signal Intensity Encoding Neurons (SIENs). Then the 

spiking signals are imported into the AMN for an analog-based association. Through this way, the 

information preprocessed by the ANNs is associated together. The detailed contributions can be 

summarized as:  

1) Proposed a large-scale associative memory learning system for correlating several ANNs 

together; 

2) Associated the auditory signal and visual signal together; 

3) Designed the corresponding circuitry modules: signal intensity encoding neurons that 

transforms the input into the magnitude and frequency of a spiking signal, a model of the 

vertical memristive synapse array; 

4) Implemented a 3D large-scale associative memory learning system including 20 neurons 

and 100 memristive synapses.  
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5.2 Associative Memory in Biology 

Associative memory is a ubiquitous learning mechanism in nature world that first investigated 

by Ivan Pavlov through a series of experiments on dogs [3] as illustrated in Figure 5-1. Initially, 

dogs have no salivation response to the sound of bells, while they salivate if the food is presented 

in front of them. Thereby, this experiment indicates the sound of bells does not evoke the 

salivation.  

Next, Pavlov sounded the bell and presented the food to the dog simultaneously [3] and repeat 

this behavior several times. Then he observed that the dog started to salivate when the bell sounded 

around him even no sight of food. By studying this phenomenon, Pavlov indicated that salivation, 

normally from a visual sight of food, can also be stimulated from a normally different signal 

perception pathway.  

 

Figure 5-1: Pavlov’s experience of associative memory learning on dogs 

In this study, the visual perception (seeing food) is referred to as an unconditional stimulus 

(US) signal pathway since it unconditionally stimulates the salivation. Meanwhile, the auditory 

perception (hearing ringing the bell) is defined as a conditional stimulus (CS) because it needs the 

learning process for evoking the salivation. This research exhibits that the stimulus signals from 

two concurrent events can be correlated with each other if they occur repeatedly [3].   
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How do these associative memory learning between two initially unrelated events happens? 

As previously discussed in Chapter 2 (see Figure 2-4), the captured visual and auditory signals 

travel along two distinct signal pathways and are processed in different brain regions. With this 

major premise, a reasonable hypothesis of the incapability of bell’s sound (conditional stimulus) 

on evoking the salivation reflection is the impassible signal pathway between the sensory neurons 

of the sound of bells and the response neurons of salivation reflection. Meanwhile, the visual signal 

of the presence of food determinedly (unconditionally) travels to the group of neurons stimulating 

the salivation refection. Thus, an underlying possible reason the phenomena of salivation reflection 

of dogs evoked by the conditional stimulus, the sound of the bell, after the associative memory 

learning process is a signal pathway modification process, which means the signal pathway of the 

sound of the bell is modified so that it learned the capability of stimulating the reflection of 

salivation. The associative memory is a pervasive learning mechanism in organisms, including 

primates, invertebrates, etc. Figure 5-2 illustrates the associative memory learning of mice 

correlating the tone and shock signals together [3].  

 

Figure 5-2: Associative memory in mouse.  

However, how is this signal pathway modification achieved? The investigation of cellular 

level associative memory on Aplysia reveals the mechanism of signal pathway modification. The 

associative memory learning conducted by Dr. Kandel’s research on Aplysia (2000 Nobel Prize) 

reveals the relationship between the synaptic weight and the associative memory learning [3]. The 

Aplysia was selected as the research object due to the simplicity of its neural system. The 

associative memory learning in Aplysia includes two signal pathways connecting the sensory and 

response neurons marked in blue and red respectively in Figure 5-3. 
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Normally, the gill motor is unresponsive to the siphon stimulation of the siphon before 

learning. However, by performing a training experiment which consisted of applying a shock to 

the tail (US) and touching the siphon (CS) simultaneously and repeatedly, the gill motor neuron 

became more responsive to inputs from the siphon sensory neuron (CS).  As depicted in Figure 

5-3 (b), the stimulus from the US and CS are paired and overlapped with each other in the time 

that is considered as a trigger condition of associative memory learning at the cellular level [3]. 

The increased magnitude of the gill motor response results from a stronger synaptic connection 

induced or imprinted between the sensory neuron of the siphon and the motor neuron of the gill 

during the associative learning process. This cellular association learning behavior comes from the 

increment connection strength between the sensory neuron and response neuron due to the 

repeatedly and simultaneously US and CS.  

 

Figure 5-3: (a) Aplysia (b) The experimental setup (c) The siphon of aplysia and tail are 

stimulated by touching and shocking respectively. The received signal of response neuron 

(Gill motor neuron) stay almost same before and after training under the unpaired 

stimulation (d) Under the paired simulation, a larger magnitude of the received signal at gill 

motor neuron under is monitored [3]. 

The investigations on associative memory at the cellular level reveal that the changes in 

synaptic weight play a critical role in the associative memory [3]. The weight of a synapse, the 

amount of the chemical neurotransmitters, represents the connection strength between two 
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neurons. With the increase of the connecting strength between neurons, the relationship between 

two concurrent stimuli is memorized [3].  

5.3 Realizing Associative Memory Learning with Memristive Synapses  

In this subchapter, the methodologies of realizing associative memory learning are introduced 

and discussed. Figure 5-4 exhibits a neural network model mimicking associative memory learning 

in Aplysia (Figure 5-3) that consists of two main signal pathways: conditional and unconditional 

pathway. The unconditional pathway directly connects the sensory neuron A1 (US) to the response 

neuron, while the conditional pathway connects sensory neuron B1 (CS) to the response neuron 

through a memristive synapse. On the conditional signal pathway, an analog summation device is 

used to couple conditional stimulus (from neuron B1) and an unconditional stimulus (from neuron 

A1) together.  

Initially, the stimulus signal from B1 to response neuron is small due to the attenuation effect 

of the high resistance of the memristive synapse.  Furthermore, the magnitude of the spiking 

signals generated by A1 and B1 are both smaller than the set voltage of the memristive synapse, 

meaning the signals from A1 and B1 cannot modify the resistance of memristive synapse alone. 

Consequently, the associative memory learning cannot be accomplished. However, when the 

neuron A1 and B1 fire simultaneously generating overlapped spiking signals in time, the outputs 

spiking signals from them will couple together. Then the coupled signals potentially excee the set 

voltage of the memristive synapse resulting in decreasing its resistance. Thus, the magnitude of 

the signal arriving at response neuron is increased due to the reduced resistance of memristive 

synapses. This model (Figure 5-4) perfectly reproduces the cellular level associative memory 

learning of Aplysia.  

The cellular level associative memory model (Figure 5-4) only associates signals that carries 

less sophisticated information. These two signal pathways merely mimic the simple exterior 

stimulus, like the tough from the tail and the cut from siphon (see Figure 5-3). The simplicity of 

the model restricts the capability of the system from learning more complex information, such as 

auditory or visual signals.  
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Figure 5-4: Cellular level associative memory model with two signal pathways and 

memristive synapse  

 

Figure 5-5: Large-scale associative neuromorphic system associating two ANNs together.  

In order to resolve this limitation, a large-scale model of associative memory learning is 

proposed (Figure 5-5). In this model, the pieces of sophisticated information are preprocessed by 

various ANNs mimicking the distributed signal processing method in the brains (see Figure 2-4). 

The outputs of an ANN are usually a probabilistic number (score) between “0” to “1”, representing 

a degree of prediction accuracy. The score indicates the probability of the original import data, 

e.g., image, voice, belonging to a specific category. In this way, the information carried by these 

input images, voices, etc., is transformed and embedded into a series of probabilistic scores. 
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Therefore, if these scores can be associated together, the information carried by these scores 

theoretically will be also correlated together. Generally, the neural networks are separated into 

training and operating phases [3]. In the operating phase neural network topology and synaptic 

weight are constant, whereas the synaptic weights are changeable. In the proposed associative 

architecture, the ANNs are in the operating phase, while the associative memory network is in the 

training/learning phase.  

5.4 Signal Intensity Encoding Neuron 

The main functionalities of a neuron as a computing unit can be summarized as: (1) to 

integrate/sum spiking signals from other neurons; (2) to generate a spiking signal sequence under 

the condition of the integrated signal exceeding some specific threshold voltage. The intrinsic 

behavior of the neuron is defined as the firing behavior. In the past century, many successful 

neuron models, as listed within Table 5-1, have been proposed to implement the two characteristics 

of the neuron.  

Table 5-1: State-of-the-art Neuron Models 

Neuron Model Year Reference 

Integrate and Fire 1907 [180] 

Hodgkin-Huxley 1952 [181] 

Leaky integrate-and-fire 1965 [182] 

Izhikevich 2003 [183] 

However, all these neuron models focus on the spiking waveform characteristics (i.e. shapes, 

magnitude, rising/falling time, etc.) while ignoring the firing rate of the neurons which correspond 

to the stimulus signal intensity, which is a universal neuron firing feature in real biological systems. 

For example, the skin cold receptor neurons firing rate is corresponding to the temperature[184].  

In our novel neuron design, we emphasize that actual biological neurons possess this 

capability  In order to model this input intensity-dependent firing characteristic of the neurons, we 

designed a Signal Intensity Encoding Neuron (SIENs) using the Integrate and Fire neuron model 

[180] as the core spiking signal generating module. In the proposed associative memory learning 
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models (see Figure 5-4 and Figure 5-5), SIENs are used for encoding the analog input signals into 

spiking signals with different the frequencies and magnitudes [185]. The specific frequency and 

magnitude of spiking outputs of the SIEN depends on its input. A bigger input generates a spiking 

output signals with higher frequency and larger magnitude.  

In the neural system. the amplitude and frequency of spiking signals is proportional to the 

input stimulus. For instance, the amplitude and duration of a muscle neuron, depend on the 

intensity of the muscle stretch [3]. The more intensive stretch stimulates a spiking signal with 

higher firing frequency [3]. Although these features widely exist in biological neurons [3], other 

state-of-the-art neuron designs [103, 183, 186-202] lack the realization of these features. The 

associative memory learning is realized through updating the synaptic weight with a concurrent 

firing behavior of the sensory neurons at US and CS pathways. The weight updating behavior 

occurrence depends on whether the magnitude of the coupling signal from the sensory neurons 

exceeds the set voltage of the memristive electronic synapse. Thus, the SIENs, as the sensory 

neurons, are specifically designed to generate a spiking signal, whose magnitude and firing 

frequency is proportional to the input stimulus. The model of SIEN is simulated by TSMC 180nm 

technology. The schematic of SIEN is illustrated in Figure 5-6. 

 

Figure 5-6: Signal Intensity Encoding Neuron (SIEN) schematic  

As a result, the external stimulus signal with lower magnitude generates the spiking signals 

with smaller magnitude accordingly, which thus can not trigger the associative memory learning. 

The coupled spiking signal from neurons is responsive to updating the weight of memristive 
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synapse. The higher main frequency (smaller intervals between spikes) of the spiking signal would 

increase the opportunity of superposition of two spiking signals.  

As depicted in Figure 5-6, there are three central parts of a SIEN: Current Starved Ring 

Voltage Controlled Oscillator (VCO), a switch pair, and a resistor-capacitor (RC) oscillator. The 

analog input signal would firstly be imported into the Current Starved VCO to generate an 

oscillating signal, and its frequency is proportional to the input signal magnitude. Next, this 

oscillating signal controls a switch pair constructed with a PMOS (positive channel metal oxide 

semiconductor) transistor and an NMOS (negative channel metal oxide semiconductor) transistor. 

By controlling the oscillating signal, the switch pair would be charging and recharging the RC 

oscillator to generate a spiking signal sequence. The frequency of the generated spiking signal 

sequence by RC oscillator would be proportional to the magnitude of the input analog signal due 

to the Current Starved VOC controlling the “on” and “off” switching frequency of the switch pair. 

The neuron firing frequency is determined by the Current Starved VOC with the governing 

equation [203]:  

𝑓𝑓𝑖𝑟𝑒 =
𝐼 

𝑁𝐶𝑡𝑜𝑡𝑎𝑙𝑉𝐷𝐷
, (5-1) 

where N is the number of inverter stage, 𝐶𝑡𝑜𝑡𝑎𝑙  is total charging and discharging capacitance of one 

stage inverter in Current Starved VOC, and  𝑉𝐷𝐷  is the power supply voltage. The firing frequency 

is determined by the current  𝐼 , controlled by the input stimulus as illustrated in Figure 5-6.  

Moreover, the source terminal of the PMOS transistor in the switch pair is connected to the 

input signal serving as a charge provider to control the magnitude of the output spiking signal. The 

effective switching resistances of the PMOS and the NMOS are denoted as 𝑅  and 𝑅𝑛 , 

respectively.  

The governing equations of the charging and discharging processes are listed as:  

𝑉𝑐 𝑎𝑟𝑔𝑒 = 
𝑅1

𝑅1 + 𝑅𝑐
× 𝑉𝑖𝑛 𝑢𝑡(1 − 𝑒−𝜏𝑡), (5-2) 

𝑉 𝑖𝑠𝑐 𝑎𝑟𝑔𝑒 =
𝑅1

𝑅1 + 𝑅 + 𝑅2
𝑒−𝑡/(𝑅𝑑𝐶1) × 𝑉𝑖𝑛 𝑢𝑡 , (5-3) 
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where 𝑅𝑐  equals 𝑅2 + 𝑅 , τ is (𝑅1 + 𝑅𝑐) 𝑅1𝑅𝑐𝐶1⁄ , 𝑅  represents 𝑅1𝑅𝑛 (𝑅1 + 𝑅𝑛)⁄ . The steady-

state voltage value of the output is governed by the equation:  

𝑉𝑜𝑢𝑡 𝑢𝑡 =
𝑅1

𝑅1 + 𝑅 + 𝑅2
𝑉𝑖𝑛 𝑢𝑡 . (5-4) 

Moreover, the SIENs could also generate positive and negative signals simultaneously, which 

is critical for the novel memristive synapse updating method. Figure 5-7 demonstrates the positive 

and negative output spiking signals of a SIEN with 700mV square waveform as the stimulus input. 

The firing response frequency and magnitude corresponding to the different input voltages is 

illustrated in Figure 5-8(a). As aforementioned, the behavior associative memory learning will 

correlate two type of information together (see Figure 5-5). In this Chapter, the pronunciations 

(auditory signal) and images (visual signal) of digits are associated together to perform a behavior 

level associative memory learning. The SIENs need to map the scores into the frequency and the 

magnitude of outputs. As depicted in Figure 5-8(b), the scores mainly distribute within the 

intervals [0 0.05] and [0.95 1], indicating the lowest and highest scores respectively. This means 

the input of SIENs will be within two separated ranges, below 0.05 V and above 0.7 V, 

accordingly, which are marked in Figure 5-8(a).  

 

Figure 5-7: Positive and negative output spiking signals of a SIEN with 700 mV square wave 

signal as an input stimulus. 
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The scores in Figure 5-8(b) are generated by using the datasets of Modified National Institute 

of Standards and Technology database (MNIST) for digit image recognition  [204], and Spoken 

Digit Commands Dataset (SDCD) for digit speech recognition. SDCD is a subset of the Speech 

Commands Dataset from Google containing 10,000 training and 1,000 test recordings 

corresponding to spoken digits from 0 to 9 [205]. 

 

Figure 5-8: (a) Characteristics curve of SIEN outputs (b) Distribution of image and speech 

recognition scores on digits using the datasets: MNIST and Spoken Digit Commands Dataset 

5.5 Modeling of Vertical Three-dimensional Memristive Synapse  

The memristive device, also referred to Resistive Random-access Memory (RRAM), is widely 

applied as an ideal electronic synapse candidate due to its programmable resistance [99]. The 

resistance of a memristor is modified with the applied voltage on its terminals excesses a specific 

value, called as its set voltage. The resistance modification from the high resistance state (HRS) to 

the low resistance state (LRS) is defined as a set process. Typically, the memristor is constructed 

by the metal-insulator-metal configuration. The decrease of the resistance is caused by the 

formation of the conductive filament in its insulator layer. The increase strength of synaptic 

connection, indicating a successful associative memory learning behavior [3], can be realized by 

programming the resistance of the memristor from its HRS into LRS. Consequently, the received 
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voltage/current of the postsynaptic response neuron increases demonstrating the accomplishment 

of the associative memory learning [3].   

In the metal oxide, the bonding between oxygen ions and metal atoms is breakable. Under the 

high electric field (>10MV/cm) stimulated by the applied voltage, some oxygen ions in the 

metallic oxide would escape from the constraint of the bonding force and drift toward the anode 

side of a memristor [78]. The deficiency of oxygen ions leaves the oxygen vacancies or metal 

precipitates, which would further construct the conductive filaments (CFs) [105, 106, 206]. As a 

result, two current paths exist in its LRS. One is through the original oxide and the other is through 

CFs. These two paths in the parallel lead to the decline of the memristor resistance. In the reset 

process, the oxygen ions at the interface migrate back into the oxide to refill the oxygen vacancy 

or re-oxidize the metal precipitates to update the resistance of the memristor back to its HRS.  

 

Figure 5-9: The memristor array and the experiment setup with semiconductor parameter 

analyzer from Micro & Nano Fabrication Laboratory at Virginia Tech 

(http://www.micron.ece.vt.edu/) 

The memristive synapse in this paper is used for demonstrating a biological-like associative 

memory mechanism (Figure 5-3) indicating the synaptic connection strengthening between 

neurons as the associative learning accomplishment. This strengthening behavior is modeled as 
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the memristor resistance switching from HRS to LRS. Therefore, this paper would mainly focus 

on modeling the set process of the memristor without discussing the reset process, which reduces 

the connection strength between neurons and is considered as a biological disremembering 

phenomenon [3]. 

Based on the conductive filament evolution concept, we develop a memristor model for the 

memristive synapse array simulation in the large-scale associative memory learning system. Figure 

5-10 illustrates the V-I characteristic curve comparison in the set process of VT memristor model 

and the measurement data. The measurement setup of the memristor is illustrated in Figure 5-9. 

As depicted in Figure 5-10, the resistance of the memristor model would switches from its HRS 

(1.6 MΩ) to LRS (64 KΩ) at ~3.2 V. the current is at ~50 uA, which matches the measurement 

data. The current response mismatch above 50 𝜇  comes from the activated current-compliance 

for protecting the device on the measurement setting. The detailed parameters of the memristor 

model are listed in Table 5-2.  

 

Figure 5-10: Switching V-I characteristic curve of the memristor. The current response 

mismatch above 50 𝝁𝑨  comes from the activated current-compliance for protecting the 

device on the measurement setting.  
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The measurement data in Figure 5-10 come from the memristive device (Cu/TaOx/Rh) 

fabricated at the Micro and Nanofabrication Laboratory at Virginia Tech [108]. In the memristor, 

Copper (Cu) serves as a top metal electrode, oxygen-deficient tantalum oxide (TaOx) as solid 

electrolyte and Rhodium (Rh) as a bottom electrode. The device has been characterized by 

monitoring the forming voltage (Vform) when conductive filaments (CFs) are being formed 

initially. The reset voltage (Vreset), the set voltage (Vset), and the resistance switching 

characteristic with the applied ramp-shape stimulus having a rate of 2.0V/s. Table 5-3 lists the 

characteristic parameters of the fabricated memristor. For this device, the set voltage is 2.85V and 

the reset voltage is -3V.  

Table 5-2: Parameters of the Memristor Model 

Parameter Descriptions Values 

I0 
Hopping current density in the gap 

region 
1E13 A/m2 

ρ Resistivity of the CF 2.5E-4 Ω/m2 

a 
Distance between adjacent oxygen 

vacancy 
0.25 nm 

f Vibration frequency of oxygen atom 1E13 

x0 Initial length of the memristor 5E-9 

xT Characteristic length in hopping region 0.4Ee-9 

VT Characteristic voltage in hopping 0.4 

w0 Initial CF width 1E-9 

RH High Resistance State 1.6 MΩ 

RL Low Resistance State 64 KΩ 

Ea Average active energy 1.2eV 
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αa Enhancement factor 0.75 nm 

𝑍 & 𝑒 Charge number &  unit charge 1 & 𝑒 

kB Thermal resistance 0.86177e-5 

T Temperature 300K 

Table 5-3: Measurement results of the Memristor 

Parameters Value 

Vform 4 V 

Vset 2.85 V 

Vreset -3 V 

Thickness of Cu layer 150 nm 

Thickness of TaOx layer 25 nm 

Thickness of Rh layer 50 nm 

Set voltage ramp rate 2.0 V/s 

The traditional large-scale memristor array is fabricated in a 2D crossbar configuration which 

suffers the large design area, power consumption, etc. Therefore, in this paper, we use a  vertical 

memristor structure to offer the following promising benefits, the design area, and power 

consumption would be reduced by 50% [6] and 35%  [156], respectively. Furthermore, we use a 

plane as the layer access port due to the large resistance attenuation effect of the narrow nanowire 

on accessing multiple memristors [114].  
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Figure 5-11: 3D vertical memristor structure 

Figure 5-11 illustrates the vertical 3D memristive synapse array structure. The geometry of 

the structure is illustrated in Figure 5-12 and Figure 5-13. This structure uses vertical planes and 

monolithic inter-tier vias (MIVs) serving as horizontal and vertical access ports. The MIVs 

electrode and the plane materials were modeled as copper and rhodium, respectively. The TaOx is 

used as memristor material sandwiched at the intersection region between the horizontal plane and 

the vertical MIVs. The 3D vertical memristor structure can be modeled with an array configuration 

illustrated in Figure 5-14. Since the memristor at each layer are connected with each other with a 

plane metal physically, the port denoted as 𝑃𝑜𝑟𝑡_𝑃𝑖, can access each memristor with the plane 

resistance denoted as 𝑅 𝑙𝑎𝑛𝑒 . The resistances of the MIVs is denoted  𝑅𝑣 . The values of the 

parasitic capacitance between the planes (𝐶 _ ), the plane to the via (𝐶 _𝑣), and the MIV to the 

MIV (𝐶𝑣_𝑣) are listed in Table 5-4. These values are extracted by the ANSYS Q3D Extractor, an 

industry standard tool for capacitance and resistance computation. The detailed geometry of the 

3D vertical memristive synapse structure is listed in Table 5-5. Due to the extremely small parasitic 

capacitance (~fF), the effect of parasitic capacitance in the design is negligible. 
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Figure 5-12: Top view of the 3D vertical memristive synapse structure 

 

Figure 5-13: Side view of the 3D vertical memristive synapse structure 

Table 5-4: Parameters of the vertical 3D memristive synapse model 

Parameters Descriptions Values 

𝑅 𝑙𝑎𝑛𝑒  The resistance of the plane 1.179 Ω 

𝑅𝑣𝑖𝑎 
The resistance of inter-

layer via 
0.406 Ω 

𝐶𝑣_𝑣 
The parasitic capacitance 

between the vias 
1.19 E-8 pF 

𝐶 _𝑣 
The parasitic capacitance 

between the plane and the via 
7.43 E-6 pF 

𝐶 _  
The parasitic capacitance 

between the planes 
7.6 E-5 pF 
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Figure 5-14: Model of the vertical memristive synapse array  

Table 5-5: The geometry and materials of the vertical 3D memristive synapse  

Parameters/Descriptions Values 

The distance between the MIVs 300 nm 

The radius of the MIVs 50 nm 

The distance between the MIVs and the anti-pads 25 nm 

The size of the plane 1000 nm × 1300 nm 

The distance between the planes 40 nm 

The thickness of the plane 20 nm 

The material of the plane Copper 

The material of the via Rhodium 

The insulator between the planes SiO2 
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5.6 Cellular Level Small-scale Associative Memory Learning  

The cellular level small-scale associative memory model with memristor (see Figure 5-4) 

requires additional nanowires and adders for the signal coupling, which increases the circuit design 

area [207]. To address this issue, a novel memristor weight (resistance) updating scheme (see 

Figure 5-15) is proposed without adding modules. Furthermore, the memristor resistance updating 

behavior of the proposed scheme is controlled by the applied voltage at its two terminals rather 

than through a selector device. Thus, the proposed memristor updating scheme makes a nanoscale 

synaptic array practicable, since the design area of the memristor array is mainly limited by the 

large selector device, e.g., transistors or diodes [208]. 

As depicted in Figure 5-15, the memristor in this scheme receives two opposite polarity 

signals at its terminals whose voltage potential difference is the stimulus signal for triggering  

resistance updating of the memristor. The spiking signals from neuron B1 and A1 can be 

considered as the waveforms propagating in the wires. With the impedance matched terminals, no 

reflection signals would cause a distortion of the spiking signals. The resistance of the memristor 

would be modified when the voltage potential at the terminals exceeds its set voltage.  

 

Figure 5-15: Novel memristor weight updating scheme 

Figure 5-16 and Figure 5-17 illustrate the simulation results of the proposed memristor weight 

updating scheme. The output spiking signal of SIEN B1 is negative. In Figure 5-16, two square  

inputs of SIENs are not perfectly synchronized and only partially overlapped. At the non-
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overlapping part, both signals are small, and cannot trigger the memristor switching alone (see 

Figure 5-17).  

 

Figure 5-16：Input analog signals and output spiking signals of Neuron A1 and Neuron B1 

 

Figure 5-17: Voltage potential at terminals of the memristor, which is the superposed voltage 

of Neuron A and B outputs, and the corresponding current.  

Signals superpose together
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At the overlapping part, two signals are superposing their peak values with each other. 

Consequently, the magnitude of the superposed spiking signal will be larger than the set voltage 

of the memristive synapse, resulting in a resistance modification behavior. As illustrated in Figure 

5-17, the current after learning is larger than the current before learning indicating a successful 

associative memory learning behavior at the cellular level in Aplysia (see Figure 5-3).  

5.7  Behavior Level Large-scale Associative Memory Learning 

The next approach of realizing associative memory learning is to extend the scale of the 

system from small to large for enhancing the learning capability. In the model of behavior level 

large-scale associative memory learning (see Figure 5-5), the original data is first processed by the 

ANNs. The information carried by the original data is abstracted into the output scores of ANNs. 

Then the scores are further imported into the SIENs, Next, SIENs encode the scores into a series 

of spiking signals whose magnitudes and frequencies corresponding to the values of the scores. 

The highest scores would be transferred into a spiking signal with the highest peak magnitudes 

and the shortest interval between spikes, accordingly. At last, the spiking signal outputs of SIENs 

are delivered to a synaptic array for a large-scale association. The size of the synaptic array is 𝑖 ×   

which are the index of SIENs at two stimulus pathways as illustrated in Figure 5-5. For instance, 

in the experiments of Pavlov’s dog, the input original data of these two stimulus pathways could 

be visual and auditory signals, corresponding to the presence of food and sound of bells. In this 

paper, we associate the visual (image) and auditory data (pronunciation) of digits together. 

In the synaptic array, the spiking signals couple and superpose with each other at the synaptic 

cells described with the equation: 

𝑉𝑠𝑦𝑛𝑎 𝑠𝑒 = 𝑉𝑐𝑜𝑢 𝑙𝑒 =  𝑉𝐴𝑖 + 𝑉𝐵𝑗 , (5-5) 

where 𝑉𝐴𝑖  and 𝑉𝐵𝑗 are the output spiking signals from neuron  𝑖 and   , respectively. 𝑉𝑠𝑦𝑛𝑎𝑝𝑠𝑒 is the 

voltage potential between the terminals of the synapse, which is the sum of the 𝑉𝐴𝑖   and 𝑉𝐵𝑗. Since 

the scores from ANNs are different (within the interval [0 1]), the magnitudes of the 𝑉𝐴𝑖  (𝑉𝐵𝑗) are 

various accordingly. Apparently, the largest spiking signals  𝑉𝑠𝑦𝑛 𝑎𝑠𝑒𝑚𝑎𝑥
would be generated from 

the largest signals of SIEN  𝑖 (𝑉𝐴𝑚𝑎𝑥  
) and    (𝑉𝐵𝑚𝑎𝑥

). An associative memory learning behavior 
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would occur under the condition of 𝑉𝑠𝑦𝑛 𝑎𝑠𝑒𝑚𝑎𝑥
> 𝑉𝑠𝑒𝑡 , where 𝑉𝑠𝑒𝑡  is the set voltage of the 

synaptic.  

By employing the SIENs and memristive synapse array, the behavior level large-scale 

associative memory learning is reproduced and mimicked in this section. As illustrated in Figure 

5-5, unlike the cellular level associative memory with two simple nanowires, the US and CS signal 

pathways in the proposed behavior level large-scale associative memory learning system are 

constructed by two ANNs that can preprocess and inference the visual and auditory signals 

respectively. These two ANNs are both serving as operating phases. In Figure 5-18, the auditory 

signal and the visual signal of digit number “3” are separately imported into the ANNs for 

preprocessing. The output is ten scores indicating the probability of the input original data belongs 

to a specific category. The scores for auditory and visual information of digit 3 are listed in Figure 

5-18 (a). In this paper, we use MNIST [204] and SDCD for the visual and auditory input data, 

respectively. SDCD is a subset of the Speech Commands Dataset from Google containing spoken 

digits from 0 to 9 [205].  We can observe that the scores for “3”, marked in red, are highest among 

other scores. The values of these scores would be further mapped into corresponding spiking 

signals by SIENs.  

In Figure 5-18, the SIENs from visual data is notated as  𝑖 within the unconditional signal 

pathways. Meanwhile, the sensory neurons ( 𝑗) at conditional signal pathways are connected to 

the response neurons through a memristive synapse array. Through the SIENs, the largest scores 

would generate a spiking signal with the largest magnitudes and highest frequencies and vice versa. 

The memristive synapses connecting the sensory neuron  𝑖 and  𝑗 are notated as 𝑀_ 𝑖_ 𝑗. The 

memristive synapse array for the unconditional pathways (red-dash lines) is modeled by the 3D 

vertical memristor structure. As illustrated in Figure 5-18 (a), the memristive associative memory 

network contains 20 neurons and 100 memristive synapse. 

Figure 5-18 (b) and (c) depict the simulation results. With different analog input signals 

corresponding the scores, the superposed voltage difference at the memristive synapses is different 

accordingly. The synapse of 𝑀_ 4_ 4 has the largest input stimulus due to the corresponding 

highest scores. 
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Figure 5-18: (a) Behavior level large-scale associative memory learning procedure. (b) the 

detailed associative memory learning signals at the memristive synapse of M_A4_B4. (c) the 

resistance values of the memristive synapses (HRS and LRS) before and after associative 

memory learning. The associative memory learning only occurs at M_A4_B4 marked in the 

red square. 

Figure 5-18 (b) illustrates the detailed current response in memristive synapse 𝑀_ 4_ 4. 

When only the auditory signal is provided (no firing behavior in  𝑖  neurons), the current in 

𝑀_ 4_ 4 is very small (<1uA). During the learning process, the visual and auditory input are 

presented simultaneously (firing behavior occur in  𝑖 and  𝑗 neurons), the current in  𝑀_ 4_ 4 is 

gradually increasing, which indicates the resistance reduction of the memristor and the associative 

memory learning behavior is accomplished. In Figure 5-18 (c), the memristive synapse of 

𝑀_ 4_ 4 switches from its HRS (1.6 MΩ) to its LRS (64KΩ). On the contrary, other memristive 
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synapses, connecting the sensory neurons receiving lower input analog stimulus signals, do not 

switch since the voltage potentials of the spiking signals at their terminals are lower than the set 

voltage of the memristors 

5.8 Discussion 

The novel behavior-level associative memory learning methodology has been proposed and 

analyzed with the corresponding neuromorphic circuitry designs including SIENs, 3D memristive 

synapse array, and a novel memristive synapse updating scheme. The approach successfully 

associates two large-scale ANNs together, realized by associating the outputs of ANNs with an 

extra layer of neural network referred to an associative memory network. The outputs of the ANNs, 

representing the probabilities of the input belonging to a particular category or prediction, would 

be encoded into the magnitudes and frequencies of spiking signals and associated together for 

updating the corresponding memristive synapse weights. The coupling signal from the two highest 

values of the outputs of ANNs would decrease the resistance of the memristive synapse from HRS 

to LRS. The decrease of the resistance of the memristors demonstrates that the connection between 

presynaptic and postsynaptic neurons is becoming strong, which further indicates an 

accomplishment of successful associative memory behavior. 

Compared with other state-of-the-art memristor-based associative memory models (<10 

synapses) listed in TABLE 5-6, the proposed large-scale memristive synapse model successfully 

relates the signals from 20 neurons together with 100 memristive synapses, realizing a behavior 

level large-scale associative memory learning of associating the auditory and visual information 

of digits together like our brain.   

Table 5-6: Comparisons of scales and Association Capability with other related works 

 

Scale Synapse 

Neuron 
Association 

Methodology 

Association 

capability Neuron

s 
Synapse Device Structure 

[175] 6 3 RRAM 
2D 

memristor  

Binary 

neuron model 
Hopfield network Associate signals 
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(cellular level) 

[173] 3 1 RRAM 2D 

leaky 

integrate-and-

fire 

Spike-rate-

dependent 

plasticity 

Associate signals 

(cellular level) 

[174] 5 6 RRAM 2D/1R N/A N/A 

Associate signals 

(cellular level) 

[172] 3 1 RRAM 2D/1R N/A N/A 

Associate signals 

(cellular level) 

[170] 3 1 RRAM 2D/1R N/A Adding 

Associate signals 

(cellular level) 

[167] 3 2 

RRAM 

+ ADC 

+ 

digital 

control

ler 

N/A 

Electronic 

neuron 

(ADC + 

microcontroll

er) 

Hebbian rule 

Associate signals 

(cellular level) 

[171] N/A N/A PCM N/A 
Integrate-and-

fire neurons 

Spike timing 

dependent 

plasticity 

Associate signals 

(cellular level) 

This 

work 
10 + 10 10 × 10 RRAM 

3D RRAM 

structure 
SIEN (Ver. 2) 

Associate the 

output of multiple 

neural networks 

Associate two 
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6 Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

People have been exploring the surrounding world for thousands of years. The knowledge 

learned in this exploration has promoted our civilization to unprecedented prosperity. Now, it is 

time for us to switch the focus from surroundings into an interior world of neural science and 

brains and cogitation. the research direction of mimicking neural networks of brains through 

algorithms and circuitry, which is referred to as neuromorphic computing, has a great potential to 

be the foundation of next-generation artificial intelligence platform.  

 In this dissertation, three emerging architectures of next-generation neuromorphic systems 

are proposed showing a promising path to realizing next-generation platform of artificial 

intelligence with self-learning capability and high energy efficiency. Additionally, memristors and 

three-dimensional integration technology are applied for designing a high-performance 

neuromorphic computing system. In this work, a Deep-DFR model is used for evaluating the VT 

low variation memristors as the weight storing devices. The datasets CIFAR-10 and CIFAR-100 

are used for training the Deep-DFR model. The design area, power consumption, and latency of 

the Deep-DFR system with VT low-variation memristor are reduced by ~48%, ~42%, and ~67% 

compared to conventional SRAM memory technique. At last, these hardware parameters are also 

improved at various degrees (~13%-73%)  compared to other state-of-the-art memristors [134, 

135].   

Furthermore, a new learning method with solid biological rationale Associative Memory 

Learning is exhibited which has the capability of remembering and correlating two concurrent 

events together. The novel design of the behavior-level associative memory learning system 

includes SIENs, 3D memristive synapse array, and a novel memristive synapse updating scheme. 

The main contribution of this work successfully associates the signals from 20 neurons together 

with 100 memristive synapses, realizing a behavior level large-scale associative memory learning 

of associating the auditory and visual information of digits together like the brains.   
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6.2 Future Work  

Artificial Intelligence is always one of the most challenging and exciting scientific missions 

in mankind history. Neuromorphic computing is an emerging approach to realizing an artificial 

intelligence system through mimicking neural systems mathematically and physically. In my 

future research, I will devote myself to build a self-learning neuromorphic system with brain-

comparable energy efficiency. The details of my research plan are illustrated in Figure 6-1. I 

focused on designing a Spiking Associative Memory Learning System through Three-dimensional 

Memristors in my Ph.D. period. Moving forward, I will consummate these works and investigate 

their board impact on artificial intelligence and seek more board applications.   

 

Figure 6-1: Overview of ongoing and future research  

The energy efficiency of human brains mainly stems from their low firing rate of neurons and 

the low magnitude (several tens of millivolts) of membrane potentials (spikes). Inspired by these 

unique features of human brains, I want to design a spike-based neuromorphic system with a low 

firing rate (both on forwarding inference and backward learning) to achieve the brain-comparable 

energy efficiency. For now, I am developing a method to convert the traditional ANNs into a 

spiking neural network with more biological threshold neurons during the training process. This 

method can achieve a binary communication scheme in a well-trained neural network with 

satisfying accuracy. The binary communication between neurons can be represented by one single 

spike. As a result, the energy spent on communication is significantly reduced. My future work 

will address this limitation of training algorithms for BNNs and investigate the spike-based 
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backpropagation algorithm. In this way, the communication signals among neurons, including 

forward and backward, are entirely in the form of spiking signals rather than high computational 

digital signals.  

Building a neuromorphic computing system with a self-learning capability like the brain has 

been investigated for a long time [19]. The animals learn skills on their own through experience 

based on a unique learning method so-called associative memory learning [3]. Through this 

learning method, dogs can learn the sound of bells as a sign of food; people can remember a word 

representing an object [3, 165]. In my work [209], I have designed a memristor-based associative 

memory system that successfully correlates the visual and auditory signals together forming a 

behavior level associative memory learning.  

Based on associative memory learning, the neuromorphic system should have the capability 

of constantly collecting data from surroundings and learning through their own experiences. The 

learning process is no longer dependent on the manually processed datasets, but the signals from 

real-world. In the future, I want to further investigate associative memory learning on theory, 

implementations, and applications. In theory, I plan to exploit the relationship between the 

associative memory learning and the short-term/long-term memory. The self-learning 

neuromorphic system requires an organ-like sensory system to constantly capture and process 

signals from surroundings, which is not available now. In my work [210], I have preliminarily 

investigated the functionality of synapse on the attention mechanism of the visual system. In the 

future, I will further design a memristor-based visual sensor system capturing the objection motion 

with low power consumption and real-time information processing capability. In applications, I 

would investigate the self-learning machine in the autonomous system, like self-driving cars.  

Furthermore, the research on Spiking Associative Memory Leaning provides a solution to 

avoid large datasets by enabling neuromorphic systems to learn from their surroundings and 

experience. Since the self-learning neuromorphic systems with associative memory learning can 

interact with the surroundings, they will have some level of self-adaptivity and the capability of 

independent working. The neuromorphic system with self-adaptivity is competent to work in some 

environments where are not suitable for humans, like volcanos, deep oceans, high radiation 

environments, and outer space. 
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Additionally, as a next-generation platform of artificial intelligence, neuromorphic chips 

potentially power the society into the next level of the industrial revolution (Industry 4.0 [211]). 

Three Industrial Revolutions occurred in human history. The First Industrial Revolution occurred 

in the 18th century accompanying the invention of a steam engine. The extensive utilization of 

steam engines successfully transited the production activities of human society from hand 

production to machine manufacturing. Next, the Second Industrial Revolution at the beginning of 

the 20th century further improved productivity through the massive employment of electrification 

and the production line. Lastly, the Third Industrial Revolution started in the late 1950s has 

propelled our society into the information age, which is built upon integrated circuits, digital 

computers, and the internet.  Since the Third Industrial Revolution, the computer-powered 

machines in modern factories have enhanced our manufacturing capability to an unprecedented 

level. However, the machines still lack one of the essential features to further free people from 

tedious works, which is the capability of independent, smart, and autonomous manufacturing 

without any human intervention. The thrust of realizing this level of autonomous manufacturing 

is called the Fourth Industrial Revolution, also referred to as Industry 4.0 [211]. Industry 4.0 

requires a smart and autonomous manufacturing system that is capable of performing tasks on their 

own and making necessary decisions independently [11, 79, 209, 212, 213]. This novel 

neuromorphic-powered Industry 4.0 system replaces conventional von Neumann-based chips 

invented in the Third Industrial Revolution with neuromorphic chips. Then each machine at the 

so-called light-out factory will deploy self-learning and adaptive neuromorphic chips that can 

seamlessly connect each other through the Internet of Things. Moreover, the control system built 

upon the neural networks can make rapid and adaptive responses to the changes in the 

environment. For example, birds can constantly adjust the flying height and direction to avoid 

obstacles. The capabilities of real-time response and adaptivity of the neural network-based motion 

system are highly suitable for complex manufacturing tasks in Industry 4.0.  The neural network-

based robotics would help us to design next-generation advanced robotics for autonomous 

manufacturing in Industry 4.0 [213-217].  

At last, I always believe that the significances of the neuromorphic system are not only limited 

in engineering but also to neuroscience, such as potential explanations to an optical illusion, visual 

agnosia, and Alzheimer’s disease [3, 218-221]. For example, recent research proves that synapse 
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loss highly correlates to the cognitive deficits of human brains (Alzheimer’s disease) [222-224]. 

Modeling the neural system of human brains through neuromorphic systems can provide a 

simulation platform to comprehensively understand the mechanism of these diseases. 
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