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ABSTRACT 

The elderly population is growing at a rapid pace, and falls are a significant 

problem facing adults aged 65 and older in terms of both human suffering and economic 

losses. Falls are the leading cause of mortality among older adults, and non-fatal falls 

result in reduced function and poor quality of life for older adults. Although much is 

known about the mechanisms and contributing risk factors relevant to falls, falls still 

remain a significant problem associated with this age group. Therefore, new strategies 

and knowledge need to be introduced to understand and prevent falls.   

Studies show that early detection of impaired mobility is critical to the prevention 

of falls. In this study, the relationship between gait and postural parameters and falls 

among elderly participants using wearable inertial sensors was investigated. As such, 

the aim of this study is to investigate the critical gait and postural parameters 

contributing to falls, then further to classify fallers and non-fallers by utilizing gait and 

postural parameters and machine learning techniques, e.g. support vector machines 

(SVMs). Additionally, as the assessment of fall risk is linked to noisy environment, it 

is important to understand the capability of the SVM classifier to effectively address 

noisy data. Therefore, the robustness of the SVM classifier was also investigated in this 

study. 

In summary, the presented work addresses several challenges through research on 
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the following three issues: 1) the significant differences in gait and pastoral parameters 

between fallers and non-fallers; 2) a machine learning based framework for 

classification of fallers and non-fallers by using only one IMU located at the sternum; 

and 3) robustness of SVM classifier to classify fallers and non-fallers in a noisy 

environment.  

The machine learning based framework developed in this dissertation contribute 

to advancing the state-of-art in fall risk assessment by 1) classifying fallers and non-

fallers from a single IMU located at the sternum; 2) developing machine learning 

method for classification of fallers and non-fallers; and 3) investigating the robustness 

of SVM classifier in a noisy environment. 
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Chapter 1 INTRODUCTION 

 

1.1  Motivation 

The elderly population is growing at a rapid pace, and is expected to increase 

further in the coming years [1]. In the U.S., the number of persons aged 65 and older is 

projected to more than double, from 38.7 million to 88.5 million between 2008 and 

2050 [2] (Figure 1-1). 

 

 

Figure 1-1: Population of 65 years and older in the U.S. from 1950 to 2050 (U.S. 

Bureau of the Census). 

 

Fall accidents are a significant problem facing older adults in terms of both human 

physical suffering and economic losses. Falls are the leading cause of mortality among 

older adults, with non-fatal falls also resulting in reduced functional abilities and poor 

quality of life [3]. Approximately, 35-40% of healthy, community dwelling older adults 

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

1950 1960 1970 1980 1990 2000 2010 2020 2040 2050

N
u

m
b

er
 o

f 
In

d
iv

id
u

al
s

Year

U.S. Population of 65 years and older



2 
 

fall annually; after the age of 75, the rates are higher [4]. From 2001 to 2010, fall-related 

fatalities have increased by about 1.7 fold, from 15,764 to 26,852. For persons aged 65 

years and older, the number increased from 11,746 to 21,759 [5] (Figure 1-2 (a)). In 

addition, the non-fatal injuries have increased from 7,860,598 to 8,991,813 from the 

year 2001 to 2012. In 2012, almost 9.0 million non-fatal injuries were experienced by 

persons of all ages, with 2.4 million non-fatal injuries suffered by persons aged 65 and 

over (Figure 1-2 (b)) [6]. Thus, more than 25% of the older adult population 

experienced non-fatal fall-related injuries. Non-fatal injuries in the older age group are 

consistently among the top causes of injuries across all age groups, with falls being the 

leading cause of non-fatal injuries that necessitated treatment in hospital emergency 

departments. In 2010, there were 2.3 million non-fatal injuries among older adults 

treated in emergency departments, with over 662,000 of these patients requiring 

hospitalization [7]. 

 

 

 

0

5,000

10,000

15,000

20,000

25,000

30,000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

N
u

m
b

er
 o

f 
fa

ll 
re

la
te

d
 f

at
al

it
ie

s

Year

Overall 65 years and older(a)



3 
 

 

Figure 1-2: (a) Fall related fatalities in the U.S. from 2001 to 2010, and (b) non-fatal 

injuries in the U.S. from 2001 to 2012. 

 

While falls primarily contribute to physical suffering and functional impairments, 

they are also responsible for increasing medical costs, absenteeism, and negative 

psychological and social consequences, such as fear of falling and post-fall anxiety 

syndrome. Furthermore, the loss of confidence to ambulate safely leads to 

psychological limitations and dependence. Moreover, the total cost of fall related 

injuries for the persons aged 65 and older was $19.2 billion in 2000 [8], $30 billion in 

2010, and is expected to increase to $54.9 billion by 2020 [9] (Figure 1-3). Fall-related 

injuries account for 6% of all medical expenditures for older persons in the U.S. [10]. 

Approximately 95% of all hip fractures in the U.S. are the results of falling; as such, 

hip fractures among older adults rank as one of the most serious public health problems 

in the U.S., with costs expected to exceed $43.8 billion by the year 2020 [11]. 
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Figure 1-3: Cost of fall injuries for people 65 and older in 2000, 2010, and 2020. 

 

To reduce the personal and economic losses associated with falls, a considerable 

amount of research has been conducted to investigate the risk factors of fall accidents, 

and how they contribute to high occurrence of injuries and fatalities. Studies classify 

fall risk factors into two categories: intrinsic (e.g. muscle weakness, poor balance, 

functional and cognitive impairment, visual deficits, etc.) [12-16] and extrinsic (e.g. 

adverse drug interactions, use of prostheses, use of constraints, poor lighting, loose 

carpets, lack of bathroom safety) [17, 18]. Most falls are precipitated by both extrinsic 

factors, which are induced by environmental hazards and are influenced by situational 

context, and intrinsic factors, which are the result of medical illness. 

Although much has been reported regarding the mechanism and contributing risk 

factors to fall accidents, fall accidents still remain a significant problem for older adults. 

Numerous studies have proposed various types of intervention solutions [14, 19-21]; 

however, most of the intervention approaches fail to reduce fall risks and prevent 

significant injuries. This is due to the time between onset of a fall event and the 
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administration of fall intervention techniques [22]. Therefore, identification of fall-

prone individuals is a significant and critical research area, since it can provide timely 

interventions prior to a fall occurrence. 

 

1.2  Research Objective 

The primary goal of this research is to identify differences in gait and postural 

parameters between fallers and non-fallers; and further, to classify fallers and non-

fallers using machine learning techniques. Pursuant to this goal, the specific aims of 

this research are to: 

1. Analyze gait and postural characteristics for mobility analysis and fall risk 

assessment. The acquisition and analysis of gait and postural characteristics can 

provide an effective tool for evaluating and quantifying gait problems associated 

with fall-prone individuals. Therefore, we investigated the relationship between gait 

and postural parameters and fall risks. 

Hypothesis 1-a: There are significant differences in gait parameters, such as walking 

speed, step length, step width, etc., between fallers and non-fallers. 

Hypothesis 1-b: There are significant differences in postural parameters, involved in 

sit-to-stand, sit-to-walk transition or postural stability, between fallers and non-fallers. 

 

2. Investigate a support vector machine (SVM) classifier to distinguish fallers and 

non-fallers. The SVM classifier was developed to recognize fallers and non-fallers, 

by extracting crucial features from gait patterns. 
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Hypothesis 2-a: An SVM classifier has the potential to classify fallers and non-fallers. 

Hypothesis 2-b: One sensor located on the trunk is satisfactory to identify fallers and 

non-fallers. 

 

3. Evaluate the performance of the SVM classifier in a noisy environment. 

Specifically, investigate the effect of two parameters involved in an SVM algorithm 

on the classification accuracy.  

Hypothesis 3-a: The parameters in the SVM algorithm are able to adjust themselves 

according to different noisy environments, in order to achieve good classification 

accuracy. 

Hypothesis 3-b: The SVM classifier is robust enough to classify fallers and non-fallers 

in noisy environments. 

 

1.3  Organization  

There are six chapters in this dissertation. The first chapter introduces the 

motivation for the research presented in this dissertation. Specific aims and hypotheses 

are expanded upon to classify the research objective of this dissertation. Chapter 2 

provides a compendium of literature related to human physical activity assessment and 

fall risk assessment. The first section briefly presents research findings concerning risk 

factors for falls among older adults; subsequently, the second section introduces various 

classifiers and their applications in human physical activity classification. Specifically, 

the theoretical aspects of support vector machines (SVMs) are illustrated, and then the 
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advantages and disadvantages of SVMs are discussed. Finally, various fall risk 

assessment approaches are investigated. Specifically, inertial measurement units (IMUs) 

relevant to fall risk assessment methods are emphasized, since IMUs were used for data 

collection in our study. 

Chapter 3 presents study I, the investigation of the effect of gait and postural 

parameters on fall risk. This chapter starts with study objective, and then corresponding 

experiments are designed to validate the hypotheses in this study. Afterwards, gait and 

postural parameters are analyzed between fallers and non-fallers. The relationship of 

gait and postural parameters between fallers and non-fallers is identified and compared 

with previous studies. 

Chapter 4 demonstrates study II, an explicit description for the methods to identify 

fallers and non-fallers using only one IMU located at the sternum. The results are 

analyzed to confirm the potential of the SVM classifier to classify fallers and non-fallers 

using only one IMU wearable sensor. 

Chapter 5 presents study III, the performance of the SVM algorithm and the effects 

of two parameters involved in the SVM algorithm, i.e. the soft margin constant 𝐶 and 

the kernel function parameter 𝛾 are investigated. The changes associated with adding 

white noise on the classification accuracies are further discussed. 

The sixth and final chapter, Chapter 6, concludes the dissertation with a summary 

of the contributions of the dissertation, limitations of the studies, and some 

recommendations for extending the current research for future investigations.  

 

http://en.wikipedia.org/wiki/Inertial_measurement_unit
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Chapter 2 BACKGROUND AND LITERATURE REVIEW 

 

This chapter begins with a discussion of the key research findings concerning risk 

factors for falls among older adults. The second section presents human physical 

activity recognition by inertial measurement units (IMUs). Specifically, the support 

vector machine (SVM) classifier, which is used as a tool for classifying fallers and non-

fallers, are demonstrated theoretically. Additionally, the corresponding advantages and 

disadvantages of SVM classifier are further discussed. Finally, a literature review of 

different fall risk assessment approaches is presented, specifically inertial measurement 

units (IMUs) based methods are emphasized, since IMUs are used as experimental 

apparatus in this study. 

 

2.1  Mechanisms of Gait and Fall 

Human gait is defined as a continuous process of a person’s body weight’s 

transferring from one place to another [23]. Usually one gait cycle starts from the initial 

heel contact of the contacting foot and ends with the next consecutive heel contact of 

the same foot. One gait cycle usually contains two main phases: the stance phase and 

the swing phase. The stance phase is defined as the duration time when the foot is in 

contact with the ground, approximately from 0% to 60% of the gait cycle; and the swing 

phase is defined as approximately from 60% to 100% of the gait cycle [24]. Both these 

two phases could be further divided into several sub-phases. Based on Cochran’s study 

[25], the stance phase could be divided into initial contact (0%), loading response (0-
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10%), midstance (10-30%), terminal stance (30-50%), and preswing (50-60%); the 

swing phase could be divided into initial swing (60-70%), midswing (70-85%) and 

terminal swing (85-100%). A typical gait cycle is demonstrated in Figure 2-1. 

 

 

Figure 2-1: A typical gait cycle. 

 

From biomechanical perspective, a gait cycle is assumed as a repeated process of 

balance loss and regain. The center-of-mass (CoM) of an individual’s whole body is 

always outside the base of support except for the short duration time in double support 

phase [26]. However, the displacement of the whole body CoM could be well controlled 

within a range during normal gait cycle with the base of support, such as the sensory 

system, center nervous system, musculoskeletal system, etc. Therefore, though 

sometime one individual loses the local balance temporarily, he/she could modulate 

quickly during next stance phase. Consequently, global loss of balance may result from 

delayed or insufficient transition of the whole body CoM [21].   

As for a “fall,” it is defined as “unintentionally coming to the ground, or some 

lower level not as a consequence of sustaining a violent blow, loss of consciousness, 
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sudden onset of paralysis as in stroke or an epileptic seizure” [27]. Based on Lockhart’s 

study, a fall could be divided into three phases: initiation, detection, and recovery [15]. 

Falls are caused by complex interactions between intrinsic risk factors and external risk 

factor, which would be discussed in the next section.  

 

2.2  Falls Risk Factors 

As discussed previously, falls usually cause physical suffering and functional 

impairments to the individuals, but also bring increasing medical cost and absenteeism 

in the work places. Fall risk factors can be identified by two categories: intrinsic or 

extrinsic risk factors. 

 

2.2.1 Intrinsic risk factors 

Many studies show that intrinsic risk factors of falls are mainly caused by many 

factors, such as decrease in range of motion and muscle strength, sensory loss, gait 

impairment, balance impairment, syncope, hemiplegia, hypotension, cardiac problems, 

progressive neurological disorders, side effects of medications, cognitive or perceptual 

impairment, vertigo, or any disease state that may influence mobility and stability [11]. 

Usually these factors are unchangeable; however, they are manageable and controllable 

through various interventions. 
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2.2.1.1 Musculoskeletal system 

The musculoskeletal system is responsible for maintaining balance, and it declines 

as a person ages. The symptom of degraded musculoskeletal system, such as muscle 

atrophy, calcification of tendons and ligaments, increased curvature of the spine, etc., 

all affect balance [11]. 

Complex changes in muscle properties take place as a person ages. Muscle force 

production and muscle strength decreases with aging, which may influence the 

initiation of slip-induced fall accidents, and the recovery ability from slips and falls 

[11]. Aging would also lead to reduction of the total skeletal muscle mass, which is 

another main cause of the age-related decrease in muscle strength and power. It was 

reported that by 70 years old, the cross-sectional area of skeletal muscle is reduced by 

30 to 40% [19]. According to performance and biochemical characteristics of individual 

muscle cells, muscle fibers could be divided into two different types: type I (slow-

twitch) and type II (intermediate or fast-twitch). Fast twitch muscle fibers (type II) 

degrade faster than slow twitch muscle fibers (type I) [28]. It was found that decrease 

of the size of type II muscle fibers inhibits fast recovery from falling and slipping [29]; 

moreover, studies have reported that fallers have weaker lower limb muscles than non-

fallers [30], and the elderly may fall more frequently due to the lower limb muscle 

weaknesses [31]. Do et al. claimed that one person’s reaction from loss of balance is 

based on his/her ability to generate explosive strength and control rapid, large-scale 

lower extremity motions [32]. The difficulty of older adults to utilize their joints and 

extremities to counterbalance the body’s horizontal momentum during recovery from 
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falls, could explain the phenomenon of the increased frequency of fall accidents among 

the elderly. Numerous studies support this hypothesis by demonstrating that the high 

frequency of falls is caused by the declines in both voluntary muscle strength and rates 

of muscle force production. 

 

2.2.1.2 Vision 

Visual system plays a vital role in posture stabilization, locomotion guidance and 

slip response control by continually updating information to the central nervous system 

(CNS) [15, 33]. Changes of vision with age are considered as another significant cause 

of fall accidents. Many factors could increase the occurrence of falls, such as the 

difficulty to see obstacles in one’s path, changes in surface conditions, and obstacles 

such as stairs or ramps. 

Vision changes with age. An older person usually requires three times of light and 

color contrast to see the object clearly compared to a younger person. This deficit in 

vision increases a person’s risk for falling. Tinetti et al. stated that vision is important 

in controlling stability, both in standing still and ambulating [33]. Many factors of 

vision declines with age, such as visual acuity, ability of accommodating to the dark 

environment, peripheral vision, contrast sensitivity, etc. Numerous studies focused on 

the influence of age-related changes on visual input during static activities such as 

standing [34-36]. Studies show that elderly people depend more on visual cues (e.g., 

the locations of stable surroundings) during static stability [35], whereas young people 

depend more on proprioceptive and vestibular cues [37]. Therefore, the elderly may 



13 
 

pay more reliance on the spatial framework provided by vision in order to compensate 

for reduced vestibular and peripheral sensation [38]. 

It was found that the inability to maintain postural balance with age has close 

relationship with reduction in tendon stiffness and absence of visual input [35]. 

Declines of visual performance is usually related with age and visual deficits from 

common eye pathologies, such as cataracts, macular degeneration, glaucoma, etc., 

which are also associated with slips and falls in later life [39]. 

Additionally, as age increases, it will limit the gazing ability to look upwards 

because of physical limitations, such as arthritis of the neck, stoop posture, drooping 

eyelids, limited vertical eye movements [40]. Biomechanically, tilting the head will 

deviate the whole body COM outside of support base and decrease postural stability, 

which is considered as a factor associated with high risk of fall accidents.   

 

2.2.1.3 Gait 

Significant differences exist in gait between older and younger individuals [15]. 

Older adults tend to walk slower, maintain a shorter step length, and a broader walking 

base [21, 41]. Slower walking velocity could increase stance time and double support 

time for older adults to maintain the dynamic balance. In general, shorter stride length, 

broader walking base, and slower walking velocity are considered to result in a more 

stable, safer gait pattern. Studies show that slower walking velocity coupling with 

higher heel contact velocity among the elderly significantly increases fall risk 

comparing to the younger individuals [21]. 
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Although gait adjustments are considered to be helpful for reducing horizontal foot 

force to improve gait stability in older adults, they still undergo slips and falls more 

frequently than younger adults. It was hypothesized that these gait adjustments may 

relate to the initiation of slip-induced falls. However, Lockhart et al. found that the 

likelihood of slip initiations is similar across all age groups [15]. Additionally, Lockhart 

et al. indicated that older adults have slower transitional acceleration of the whole body 

COM during ambulating, which may influence slip initiation and slip recovery [21]. 

Therefore, the acquisition of gait characteristics during walking could provide 

important information about limb propulsion and control, which may lead to insight 

into muscle performance. Furthermore, gait evaluations could be used as global 

indicators of stability, as well as an effective tool for evaluating and quantifying gait 

problems associated with fall-prone individuals.  

 

2.2.1.4 Nervous system 

Human balance depends on the multiple interactions from sensory, motor, and 

nervous system. All of these systems decline significantly with age; and these 

degradations are associated with fall accidents in the elderly. The nervous system has 

two components, the central nervous system (CNS) and the peripheral nervous system 

(PNS). Although both systems are separated anatomically, they are still interconnected 

and interactive [42]. The CNS plays significant roles in integrating the sensory inputs 

from multisensory neurons of different sensory systems, as well as adapting output to 

a continuously changing internal and external environment [42]. Obviously, age-related 
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deterioration in the CNS affects goal-related sensory information integration, motor 

programs selection, and motor responses execution. 

Sensory receptors play a critical role in creating effective movements by providing 

information from the external environment. Researchers have reported that sensory 

systems including visual, vestibular, and proprioceptive systems are all relevant to 

motor control and balance maintenance [15, 43]. The accuracy of CNS decision making 

depends on the accuracy of information obtained from these sensory systems, which 

have redundant and different operating frequency ranges that affect their influence on 

postural control in different situations [44]. 

The performance of these systems declines at the different rates [45]. It was 

indicated that sensory loss with age is the main reason for which older adults lose their 

orientational sense [46, 47]. Therefore, age-related deterioration in the sensory systems 

could decrease the redundancy of sensory inputs, in order to ensure stability while one 

or two inputs are lost. 

Many other neurological conditions, such as Parkinson’s disease, seizure disorder, 

paralysis, diabetic neuropathy, etc., also affect the balance and mobility of the elderly. 

 

2.2.1.5 Cognition 

Older adults experience more cognitive impairments and dementia as age 

increases. Older adults with dementia fall twice as often as older adults without 

cognitive impairment. Impaired gait characteristics and balance brought from dementia 

cause the higher rate of fall accidents. It was indicated that the elderly with an abnormal 
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gait, which is usually one of characteristics of dementia, experience more fall accidents 

than the elderly without an abnormal gait and dementia [19, 41].  

 

2.2.1.6 History of falls 

Once an elderly person falls, the chance of falling again within a year increases 

dramatically. Unfortunately, researchers emphasize less on the influence of an 

individual’s fall history on the subsequent falls, although it is reported as one of the 

strongest risk factors, particularly in studies conducted in long-term settings. Usually 

the causes of the subsequent falls are similar: the initial fall leads to restriction of 

activity, loss of autonomy and self-confidence, depression and anxiety, deconditioning, 

possible prescription of psychoactive drugs; therefore, after the initial fall accident, the 

risk of subsequent falling will increase. And this may explain the increased risk of 

falling in individuals who had the history of falls [19].  

 

2.2.1.7 Other intrinsic factors 

Other intrinsic factors, such as cardiac system, medications, influenza, urinary 

infections, pneumonia, etc., also could cause hypotension, syncope, and electrolyte 

imbalance resulting in weakness. In addition, any condition that causes an elevated 

temperature may also cause weakness and falls. 

 

2.2.2 Extrinsic risk factors 
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The second category of fall risk is extrinsic risk factors. Extrinsic factors involve 

the environment surrounding the person, such as placement of furniture, existence of 

obstacles, use of assistive walking devices, lighting, stairs, or any other object in the 

person’s environment that may put them at risk for falls.  

 

2.2.2.1 Environment 

Forty percent of the fall accidents in the elderly population involve environmental 

hazards [10]. Many factors in the environment can increase individual’s fall risk. Glare 

on the floor, loose rugs, patterned carpets, and slippery floors are all problems for older 

adults who have poor eyesight and inability to recognize these hazards quickly. In 

addition, improper footwear could cause falls. 

 

2.2.2.2 Appliances/devices 

Various appliance and devices utilized by elderly residents can increase their risk 

for falling. The use of canes, walkers, and crutches increase the risk for falls if used 

improperly. These devices can get caught on loose rugs or small elevations on the floor 

surface and cause a person to fall.  

In general, many intrinsic and extrinsic risk factors contribute to falls, which is 

summarized in Table 2-1. This study focuses on intrinsic risk factors. Specifically, the 

relationship between gait and postural parameters and fall risk was investigated.  
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Table 2-1: Summary of fall risk factors. 

Intrinsic Risk Factors Extrinsic Risk Factors 

Musculoskeletal system Environment 

Vision Appliances/devices 

Gait  

Nervous system  

Cognition  

History of falls  

Other intrinsic factors  

 

 

2.3  Human Physical Activity Recognition 

2.3.1 Inertial measurement units (IMUs) 

An inertial measurement unit (IMU) is an electronic device which measures linear 

accelerations, angular velocities, orientation, and gravitational forces. An inertial 

measurement unit, or IMU, is a piece of miniature electromechanical device that 

measures linear accelerations, angular velocities and orientations [48]. An IMU usually 

consists of accelerometers, gyroscopes, and sometimes magnetometers. The 

accelerometer is used to measure the inertial acceleration, while gyroscope is used to 

measure angular rotation. Both sensors typically have three degree of freedom to 

measure from three axes. In 1930s, IMUs were first applied to the areas of aircraft 

guidance and navigation [49]. IMUs have limited application at that time due to its 

constraints in size, cost, and power consumption. Until recently, as the micro-

electromechanical system (MEMS) techniques develop, IMUs have been widely used 

for human motion monitoring to estimate energy expenditure, recognize daily activities 

and characterize walking [50]. 

http://en.wikipedia.org/wiki/Orientation_(geometry)
http://en.wikipedia.org/wiki/Gravitational_force
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The accelerometer in IMUs is an instrument used to measure the acceleration 

acting along a sensitive axis [51]. Although the measures of acceleration have different 

types of mechanisms, such as capacitive, piezoelectric, piezoresistive, etc.; however, 

all of them use the variation of a spring mass system for acceleration capture [51]. 

Acceleration signals have been widely used in the areas of pattern recognition, event 

detection, time-frequency analysis, and biomechanical modeling [52].  

A gyroscope in IMUs is used to measure the angular velocity with reference to a 

sensitive axis [50]. The principle is to utilize a rotating reference frame to achieve an 

apparent force, which is proportional to the angular rate of the rotation. Typically, 

gyroscopes utilize a vibrating mechanical system to obtain the vibration value by 

transferring the energy generated by the Coriolis force [53]. There are advantages and 

disadvantages for the gyroscopes. The major advantage is the robustness, which means 

the angular velocity could keep the same no matter where the gyroscope is attached on 

a body segment, as long as its sensitive axis is parallel to the axis of rotation [54]. While 

the drawbacks of gyroscopes are the requirements of more power consumption, higher 

price, more significant drifting problem, and being sensitive to shock, which limit the 

usability of this system [50]. Comparing to accelerometers, gyroscopes have not been 

widely applied in human motion monitoring; however, the promising features of 

gyroscopes may explore more applications for body movements and daily activity 

recognition [50]. 

A magnetometer is used to measures the strength and/or direction of the magnetic 

field in the vicinity of the instrument [55]. Magnetometers are usually used to evaluate 
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sensor orientation [56], and the function of magnetometers is to correct the drifting of 

accelerometer or gyroscope signals, in order to increase the measurement accuracy [55].  

In general, there are two different types of IMU, one type of IMU consists of 

accelerometer and gyroscope, as shown in Figure 2.3; and the other type consists of 

accelerometer, gyroscope and magnetometer, as shown in Figure 2.4. 

Typically, each sensor has three degrees of freedom (DOF) defined for x, y, and z 

axis, thus the IMU containing accelerometer and gyroscope will total up to six DOF. 

Acceleration values obtained from accelerometer and angular velocity from gyroscopes 

are kept separately. Angles can be measured from both accelerometers and gyroscopes, 

so both of the data could be calibrated to generate output more accurately. The 

advantage of this type of IMU is that it will not be interfered by external magnetic field 

in the ferromagnetic environment. The drawback of this type of IMU is the dependence 

on accelerometer and gyroscope which may be inaccurate due to sensors’ noise and the 

gyroscopes’ drift issues. 

 

 

Figure 2-2: IMU consisting of accelerometer and gyroscope [57]. 
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The other type of IMU, consisting of accelerometer, gyroscope and magnetometer, 

increases the DOF to nine. The magnetometer is used to measure yaw angle, thus it can 

be used to calibrate the gyroscopes’ drift. This type of IMU is suitable for dynamic 

orientation calculation and has more accurate outputs. The disadvantage of this type of 

IMU is that the measurements might be affected due to the disturbance to magnetic 

field [58].  

 

 

Figure 2-3: IMU consisting of accelerometer, gyroscope and magnetometer [57]. 

 

2.3.2 Physical activity assessment with IMUs 

IMUs have many advantages for physical activity assessment such as noninvasive 

measurement, low burden for subjects, low cost, and so forth [51, 59, 60], comparing 

to traditional motion capture techniques. Assessment of physical activities is able to 

provide information about health conditions [61], including fall risk assessment. The 

application of IMUs in physical activity assessment can be categorized into three levels: 

energy expenditure estimation, activity recognition, and gait analysis. 
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2.3.2.1 Energy expenditure 

Energy expenditure (EE) estimation is one of the applications that utilize IMUs to 

investigate physical activity assessment. The theoretical principle of EE is that 

accelerations are proportional to the muscular forces and thus are related to EE [62]. 

Typically, there are three approaches to calculate EE estimation. The first approach is 

to calculate the times that the acceleration signals cross a fixed threshold (zero or a 

certain value). The second method is to detect the maximum value for a selected time 

period as the calculation of times. The third and most commonly applied approach is to 

calculate the area under the acceleration curve (integration or average) [63, 64]. 

In the early 1980s, Wong et al. found out a rough linear correlation between the 

acceleration measurement and oxygen consumption by utilizing a waist-worn 

accelerometer device [65]. Montoye et al. found that the acceleration measurement has 

better reproducibility comparing to commercial movement counters [66]. Recently, 

numerous single or multiple, linear or nonlinear equations have been developed to 

estimate EE in physical activities. All of the equations would be applied to the different 

situations. The equations developed for locomotion activities (e.g. walking and jogging) 

usually underestimate the EE of lifestyle activities, which usually involve substantial 

upper body activities [67-70]; conversely, the equations developed for lifestyle 

activities overestimate the energy cost when they are applied to locomotion activities 

[68, 71].  

To overcome this problem, different intensities or types of activity need to be 
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identified, in order to make correct selection of different equations. One method is to 

utilize activity counts per minute to classify different types of activities, such as light, 

moderate, or vigorous activities, and then employ different models to estimate EE [72]. 

Another approach is to use the feature of coefficient of variation (CV) (standard 

deviation (SD)/mean) to distinguish locomotion and lifestyle activities, and then 

employ different models to evaluate EE [73-75]. 

 

2.3.2.2 Activity classification 

IMUs have been widely used to identify types of physical activities by different 

classifiers [76]. Most studies have used multiple IMUs [77-82]; while some studies 

have used only one IMU attached to different locations of the body [83-90].  

Classification of human physical activities in a free-living environment is an 

important aspect of many scientific investigations. There are numerous pattern 

recognition or machine learning approaches that are employed to address the problem 

of classifying human physical activities from IMUs. Activity classification is a recent 

concept involving the use of machine learning technology to automatically recognize 

different activities [82, 91]. The machine learning approaches have been widely applied 

to many fields, such as healthcare informatics [92, 93], network security [94, 95], 

natural language processing [96], as well as human physical activity recognition [82, 

91].  
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2.3.2.2.1 Classifiers  

The taxonomy of classifiers is explainable in different criteria [97]. First, classifier 

could be categorized into supervised and unsupervised classifiers [98-100]. In 

supervised classifiers, the training data is labeled, namely the categories of certain data 

are already known to the system in advance beforehand. A significant amount of labeled 

activity data is required in order to “train” the classification algorithm. Once the training 

process is complete, the classifier is able to assign an activity label to the unknown data. 

As for the unsupervised classifiers, only the number of classes is known, and then the 

system responds to the instances in the training set by assigning a label to each of them. 

Further, the classifiers can be divided into three different categories: probabilistic (such 

as naive Bayesian, logistic, Parzen and Gaussian Mixture Model (GMM) classifiers); 

geometric (such as Artificial Neural Networks (ANN), k-Nearest Neighbor (k-NN), 

Nearest Mean (NM) and Support Vector Machines (SVM) classifiers); and template 

matching.  

In the process of activity classification, the classical cross-validation (CV) [98] is 

usually adopted to evaluate the accuracy of the system in two different ways: between-

subject and within-subject evaluation. In the between-subject case, the classifier is first 

trained with data from all subjects except for a few subjects and then, tested with data 

from the excluded subjects. The accuracy is calculated by the proportion of correctly 

classified data sets across all activities. The process of excluding certain subjects and 

performing a train-test cycle is repeated until all subjects have involved in the testing 

datasets. The overall accuracy is then calculated as the average accuracy across all train-
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test cycles. If only one subject is used for the testing, then the process is called leave-

one-subject-out CV. For within-subject evaluation, training is performed by picking up 

a portion of data for a specific subject, and testing is performed by the remaining 

samples of the same subject. This process is then repeated, each time using a different 

portion of the subject samples for testing. The overall accuracy is determined by the 

average of all the cycles for all available subjects. 

Support vector machine (SVM) [101, 102] is a popular machine learning method 

which has shown to be successful in various applications including human physical 

activity recognition. In this dissertation, SVM will be adopted as a classifier to 

recognize human movements and distinguish fallers and non-fallers.  

 

2.3.2.2.2 Support vector machines (SVMs) 

The SVM is a statistical method which is introduced by Guyon and Vapnik [102, 

103] that has been widely applied to different classification needs [104-106]. The idea 

of the SVM algorithm is to map the original data (usually low-dimensional space) to a 

high-dimensional space using nonlinear mapping by finding an optimum linear 

separating hyperplane, with the maximal margin in this higher dimensional space [102, 

103]. 

The SVM is a principled approach to machine learning utilizing the concepts from 

the classical statistical learning theory [102, 107, 108] and exhibits good generalization 

of new data with a readily interpretable model. Additionally, the learning involves the 

optimization of a convex function (i.e., one solution). From the perspective of statistical 
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learning theory, the motivation for considering a binary classifier SVM comes from the 

theoretical bounds on the generalization error. These generalization bounds have two 

important features: upper bound is independent of size of the input space, and the bound 

is minimized by maximizing the margin between the hyperplane separating the two 

classes and the closest data point to each class – called support vectors. Closest points 

are called support vectors because they support where the hyperplane should be located. 

That is, moving the non-support vectors will not shift the hyperplane, whereas moving 

the support vectors will shift the hyperplane (Figure 2-4). 

 

 

Figure 2-4: Linear support vector machine separation. 

 

The basis of the SVM algorithm can be stated as follows: given a training data set: 

𝛩, containing data feature vectors 𝑥𝑖 and the corresponding data labels 𝑦𝑖, in the form 

of 

             𝛩 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3),… , (𝑥𝑛, 𝑦𝑛)              (2.1), 

where 𝑥𝑖 ∈ ℜ𝑚, 𝑚 is a dimension of the feature (real) vector, 𝑦𝑖 ∈ {0, 1}, and 𝑛 is 

the number of samples. We assume 𝑔(𝑥) is some unknown function to classify the 
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feature vector 𝑥𝑖: 

                         𝑔(𝑥): ℜ𝑚 → {0, 1}                     (2.2). 

In SVM method, optimal margin classification for linearly separable patterns is 

achieved by finding a hyperplane in m dimensional space. The linear classifier is based 

on a linear discriminant function of the form, 

                         𝑓(𝑥) = ∑ 𝑤𝑖𝑥𝑖𝑖 + 𝑏                    (2.3), 

where the vector 𝑤𝑖 is the weight vector and 𝑏 is the hyperplane bias. While 𝑓(𝑥) =

0 is called the hyperplane which separates the sampled data linearly. 

In many cases, a linear classifier cannot satisfy the demand of accuracy due to its 

simplicity, thus a more sensitive classifier is needed for real-world applications. The 

intuitive idea of converting a linear classifier to a nonlinear classifier is to map the data 

from the input space to feature space using a nonlinear function: 

                 𝑓(𝑥) = ∑ 𝑤𝑖𝜙(𝑥𝑖)𝑖 + 𝑏                         (2.4), 

where 𝜙 represents nonlinear feature mapping function: 𝑥 ∈ ℜ𝑚 , 𝜙(𝑥) ∈ ℜ𝑛 , and 

𝑛,𝑚 ∈ [1,∞) reflects the mapping from data space to feature space. Thus, each data 

𝜙(𝑥𝑖) would be corresponding to one element in feature space. 

To achieve a nonlinear transform and avoid the problem of dimensionality, the 

kernel theory was introduced by implicitly mapping data from input space into higher 

dimensional space [101]. The kernel function 𝐾(𝑥, 𝑦) can be expressed as and is 

related to the 𝜙 (𝑥) by, 

                        𝐾(𝑥, 𝑦) = 𝜙(𝑥)𝑇𝜙(𝑥)                   (2.5). 

The evaluation of a hyperplane in feature space is usually determined by the 
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distance between the hyperplane and the training points lying closest to it, which are 

named support vectors (Figure 2-4). Therefore, it is necessary to search an optimal 

separating hyperplane to maximize the distance between support vectors and the 

hyperplane [101]. The distance from the hyperplane to a support vector is 
1

‖𝒘‖
, thus we 

can get the distance between the support vectors of one class to the other class simply 

by using geometry 
2

‖𝒘‖
. 

As real life datasets may contain noise, an SVM can fit this noise leading to poor 

generalization – the effects of outliers and noise can be reduced by introducing a soft 

margin. The soft-margin minimization problem relaxes the strict discriminant by 

introducing slack variables, 𝜉𝑖 and is formulated as: 

minimize ℑ (𝑤) =  
1

2
∑ 𝑤𝑖

2𝑙
𝑖=1 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1  

subject to {𝑦𝑖(∑ 𝑤𝑖𝜙(𝑥𝑖) + 𝑏)𝑙
𝑖=1 ≥ 1 + 𝜉𝑖

∀𝑖 = 1… 𝑙
               (2.6). 

The Lagrange theory is applied to solve equation (1.6), and we can get the solved 

dual Lagrangian form of 

minimize ℑ (𝑤) = −
1

2
∑ 𝛼𝑖

𝑙
𝑖=1 +

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖𝑦𝑗)

𝑙
𝑖,𝑗=1  

subject to {
0 ≤ 𝛼𝑖 ≤ 𝐶

∑ 𝛼𝑖𝑦𝑖 = 0𝑙
𝑖=1

                                   (2.7), 

where 𝛼1, 𝛼2 , … , 𝛼𝑙 are the non-negative Lagrangian multipliers, and 𝐶 is a constant 

parameter, called regularization parameter, which determines the trade-off between the 

maximum margin and minimum classification error. 

Once we have found the Lagrangian multipliers 𝛼𝑖, then the optimal 𝒘∗ can be 

obtained by: 

                    𝒘∗ = ∑ 𝛼𝑖
𝑛
𝑖=1 𝑦𝑖𝑥𝑖                          (2.8). 
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Correspondingly, the value of optimal 𝑏∗ can be derived from the constraints, 

                   𝑦𝑖(〈𝒘, 𝑥𝑖〉 + 𝑏) ≥ 1                          (2.9). 

Thus, we can obtain the optimal 𝑏∗ value: 

            𝑏∗ = −
𝑚𝑎𝑥𝑦𝑖=−1(〈𝒘,𝑥𝑖〉)+𝑚𝑖𝑛𝑦𝑖=1(〈𝒘,𝑥𝑖〉)

2
                  (2.10). 

At this point, we have all of the necessary parameters to write down the decision 

function needed to predict the classification of a new data point 𝑥𝑛𝑒𝑤: 

 𝑓(𝑥𝑛𝑒𝑤) = 𝑠𝑔𝑛(〈𝒘∗, 𝑥𝑛𝑒𝑤〉 + 𝑏∗) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 〈𝑥𝑖 , 𝑥𝑛𝑒𝑤〉 + 𝑏∗)   (2.11). 

In essence, finding 𝛼𝑖 and 𝑏∗ and applying the choice of kernel into the decision 

function will classify new data points. In general, if 𝛼𝑖 is non-zero - it is a support 

vector and, if 𝛼𝑖 is zero - it is not a support vector. Intuitively, as illustrated in Figure 

2-4, moving the non-support vector will result in no shift of the hyperplane (i.e., 𝛼𝑖 is 

zero). The process of obtaining the quadratic program solution is known as training, 

and the process of using the trained SVM model to classify new data sets is known as 

testing.  

SVMs have shown promising and effective results in handling small datasets, 

especially when the data is not regularly distributed or has an unknown distribution. 

But as with all classification techniques, SVMs have their advantages and 

disadvantages.  

The advantages of the SVM technique can be summarized as follows: first, SVMs 

are capable of solving complex nonlinear classification problems by introducing the 

kernel trick. Therefore, the nonlinear classification problem in the original space can 

be solved linearly by mapping to the higher dimensional feature space. Correspondingly, 
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computation complexity is efficiently decreased by using the dot products. Second, 

since the kernel implicitly contains a nonlinear transformation, no assumptions about 

the functional form of the transformation, which makes data linearly separable, is 

necessary. Moreover, the SVM algorithm does not rely on human expertise judgment 

beforehand, that means if the parameters 𝐶 and 𝛾 are chosen appropriately, SVMs 

would still generate good results even when the training sample has some bias or noise. 

The robustness of SVMs will be discussed in detail in the following section. Because 

the optimization problem for SVM is convex, the solution is global and unique. This is 

an advantage compared to Neural Networks [109], which have multiple solutions 

associated with local minima and for this reason may not be robust over different 

samples. An interesting property is that the solution of the optimization problem is 

sparse. Many 𝛼𝑖  values in the solution are equal to zero. In the dual space, the 

nonlinear SVM classifier takes the form  

          𝑦(𝑥) = 𝑠𝑔𝑛[∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖)
#𝑆𝑉
𝑖=1 + 𝑏]                 (2.12), 

where the sum is taken over the non-zero 𝛼𝑖  values, which correspond to support 

vectors 𝑥𝑖 of the training set. Hence, the obtained solution is sparse. Last but not least, 

the computational complexity of SVMs does not depend on the dimensionality of the 

input space, and there are restrict mathematical formulae to support SVM theory, thus 

this is another advantage compared to Neural Networks. 

SVMs also have some drawbacks from a practical point of view. First, the most 

significant problem with SVMs is the high algorithmic complexity and extensive 

memory requirements in large-scale tasks. Another challenge for SVMs is the choice 
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of the hyper-parameters and the kernel functions; selection of suitable parameters and 

kernel functions is crucial to the classification results. Finally, the SVM classifier is 

fundamentally a two-class binary classifier, which limits its applicability. 

Modifications are needed for addressing multi-class classification problems. Several 

improvements have been suggested to the original SVM algorithm in order to make 

them more robust in terms of generality, speed, and parameter selection [110-113]. One 

such algorithm is the least squares SVM (LS-SVM) algorithm introduced by Suykens 

et al. in 1999 [114]. The underlying idea in LS-SVMs is to modify Vapkin’s SVM 

formulation [102] by adding a least squares term in the cost function. This variant 

circumvents the need to solve a more difficult quadratic programming (QP) problem 

and only requires the solution of a set of linear equations which lead to a significant 

reduction in the complexity of the solution. 

 

2.3.2.2.3 Application on human activity recognition 

There are numerous machine learning methods and models that have been applied 

for human activity recognition. Some researchers utilized threshold-based classification 

approaches to identify postural transitions by the change in segmental angles derived 

from either accelerometers [60] or gyroscopes [60, 115]. For example, Coley et al. 

utilized the peak angular velocity of the shank to differentiate stair ascent from level 

walking or stair descent [116]. And many studies have been conducted to differentiate 

between static postures and dynamic activity by only using the acceleration signals 

[117].  
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Fahrenberg et al. used a hierarchical method to recognize eight activities [118, 

119]. Using the IMUs on the chest, wrist, shank and thigh of the participants, they were 

able to achieve almost 100% accuracy in the within-subject case, and 97% accuracy for 

the between-subject case [119]. Lee et al. applied similar method to differentiate five 

static and four dynamic activities by a single waist-mounted IMU [120]. Parkka et al. 

were able to recognize eight different dynamic activities by a threshold-based 

hierarchical classification scheme [121].  

Decision trees have also been applied to physical activity classification [79, 86, 

120]. Bao et al. recognized 20 activities with 86% accuracy by using five IMUs [80]. 

Maurer et al. investigated the performance of different features and classifiers to 

recognize six different human physical activities [122].  

Foerster et al. were the first to utilize the k-NN approach to classify human 

physical activities [81]. They differentiated nine different activities in the within-

subject case. Later, Foerster and Fahrenberg improved their method by combining a k-

NN classifier with a hierarchical decision structure [123]. Therefore, they were able to 

accurately differentiate a wider range of activities than in their previous work [81]. 

Bussmann et al. used training data for each activity to specify a maximum and minimum 

value along each axis, so that they were able to achieve 89-93% accuracy for 

recognition [124].  

Artificial neural network (ANN) is also used for human physical activity 

recognition. Zhang et al. used this approach to classify four different activities with 

more than 97% accuracy [125]. Other studies compared the accuracies from ANN 
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method with those obtained with other classification approaches [78, 126-128]. 

Huynh and Schiele proposed a novel method by incorporating multiple 

eigenspaces with SVM algorithm, which demonstrated better performance comparing 

to a naive Bayes approach [129]. In another study, Krause et al. used an SVM classifier 

to recognize eight daily activities [130]. 

Researchers also utilized other machine learning classifiers to recognize human 

physical activities. For example, Lee and Lockhart proposed linear discriminant 

analysis (LDA) method to classify external load conditions during walking [131]. Pober 

et al. used a Gaussian Mixture Model (GMM) classifier to recognize four different 

activities [82]. Allen et al. also employed a GMM classifier to recognize several 

movements and postures [132]. Lester et al. utilized the hidden Markov model (HMM) 

to classify a number of daily activities [133]. Lee and Mase utilized fuzzy classifier to 

differentiate different movements [134]. Van Laerhoven and Cakmakci were the first 

to employ unsupervised learning techniques in activity monitoring [135]. Later, Krause 

et al. also used an unsupervised learning algorithm with multiple sensors for human 

physical activity recognition [136]. Table 2-2 summarizes human physical activity 

assessment methods with IMUs. 

 

Table 2-2: Human physical activity assessment methods with IMUs. 

Authors [ref.] Classifiers/methods Results 

Coley et al. [116] Threshold-based 

classification 

Differentiated stair ascent from level walking or 

stair descent. 

Mathie et al. [117]. Threshold-based 

classification 

Differentiated between static postures and 

dynamic activity. 

Fahrenberg et al. Hierarchical method Recognized eight activities. 
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[118, 119] 

Lee et al. [120] Hierarchical method Differentiated five static and four dynamic 

activities. 

Parkka et al. [121] Threshold-based 

hierarchical scheme 

Recognized eight different dynamic activities. 

Bao et al. [80] Decision trees Recognized twenty activities. 

Maurer et al. [122] Decision trees Recognized six different human physical activities. 

Foerster et al. [81] k-NN approach Differentiated nine different activities. 

Foerster and 

Fahrenberg [123] 

Combined a k-NN classifier 

with a hierarchical decision 

structure 

Differentiated thirteen motions and postures 

activities. 

Bussmann et al. [124] k-NN approach Differentiated more than twenty postures and 

motions. 

Zhang et al. [125] ANN Classified four different activities. 

Huynh and Schiele 

[129] 

Incorporated multiple 

eigenspaces with SVM 

Classified six human physical activities. 

Krause et al.  [130] SVM Recognized eight daily activities. 

Lee and Lockhart 

[131] 

LDA Classified external load conditions during walking. 

Pober et al. [82] GMM Recognized four different activities. 

Allen et al. [132] GMM Recognized three postures and five movements. 

Lester et al. [133] HMM Classified eight daily activities. 

Lee and Mase [134] Fuzzy classifier Detected transitions between preselected locations 

and differentiate sitting, standing, and walking 

behaviors. 

Van Laerhoven and 

Cakmakci [135] 

Unsupervised learning 

classifier 

Recognized seven different activities. 

Krause et al. [136] Unsupervised learning 

classifier 

Achieved human physical activity recognition. 

 

2.3.2.3 Gait analysis 

Gait analysis is another aspect of applications using the IMUs in physical activity 

assessment. Willemsen et al. used accelerometers to detect critical events during a gait 

cycle with accelerometers [137]. Afterwards, numerous gait analysis using the IMUs 

have been extensively investigated. Tong et al. assessed gait parameters mounted on 

the shank and the thigh [54]. Aminian et al. used accelerations to detect phases in a gait 
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cycle [138]. Generally, IMUs are able to provide satisfying estimation of gait 

parameters [139]. 

 

2.4  Technologies for Fall Risk Assessment 

Although much has been learned about the mechanism of risk factors which 

contribute to fall accidents, fall accidents still remain as a significant problem 

associated with older adults. Numerous studies have proposed fall risk assessment tools 

which were developed to identify at-risk populations and guide intervention by 

highlighting remediable risk factors for falls and fall-related injuries [28]; however, 

most of the approaches fail in reducing the risk of falls and resultant injuries 

significantly [21]. This is due to the time between onset of a fall event and 

administrating fall intervention approaches [22]. The following are the methodological 

approaches currently used to assess fall risks among older adults. 

 

2.4.1 “Check-lists” methods 

Numerous risk factors have been investigated and identified, the available “check-

lists” including all kinds of different fall risk factors are used to evaluate who among 

their residents are at high risk for falls. This approach is easy to use and implement; 

however, the reliability and validity of these measures are questionable [140, 141]. 

 

2.4.2 Forceplate for fall-risk assessment 
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One of the most relevant intrinsic factors for fall accidents is the ability to maintain 

static posture during standing. A decrease in the quality of balance could be caused by 

additional fall-risk factors, such as visual, vestibular or proprioceptive problems, etc. 

Therefore, postural stability is commonly used to identify the balance problems in 

elderly group. The main method for evaluating balance is to use a forceplate (FP) to 

analyze the sway [142]. The FP technique is one of approaches that have been widely 

applied in assessing postural stability in a quantitative way. The principles of 

measurement are based on the ground reaction forces generated by a body standing on 

or moving across; specifically, forceplate measure the three-dimensional components 

of the single equivalent force applied to the surface and its point of application (Center 

of Pressure, CoP). 

Recently, numerous studies have been focused on FP-based assessment of fall risk. 

Based on Piirtola’s studies, they found certain parameters from FP data may have 

predictive values for subsequent falls, especially various indicators of the lateral control 

posture [143]. Hewson et al. proposed discriminant model to find the trade-off between 

sensitivity and specificity [144]. Bigelow et al. utilized logistic regression to classify 

fallers and non-fallers in the elderly group [145]. Some researchers utilized the 

parameter of CoP velocity with eyes closed as the indicator [146-148], they found 

fallers have higher values comparing to non-fallers. Thapa et al. found fallers have 

higher sway area [149]. Bergland et al. found higher medio-lateral (ML) sway 

amplitude could be used as the indictor for the fallers [150]. Swanenburg et al. [151] 

utilized root mean square (RMS) of ML CoP sway area with eyes open as the indicator, 

http://en.wikipedia.org/wiki/Ground_reaction_force
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and Shin et al. [152] uses ML CoP velocity with both eyes open and closed to identify 

the fallers. The recent studies which found fall-related outcomes associated with 

parameters of forceplate are summarized in Table 2.3. 

 

Table 2-3: Brief review of forceplate-based fall risk assessment studies. 

Authors [ref.] Methods or Parameters 

Hewson et al. [144] discriminant function model 

Bigelow et al. [145] logistic regression 

Boulgarides et al. [146] CoP velocity with eyes closed 

Maki et al. [147] CoP velocity with eyes closed 

Stel et al. [148] CoP velocity with eyes closed 

Thapa et al. [149] sway area 

Bergland et al. [150] medio-lateral (ML) sway amplitude 

Swanenburg et al. [151] root mean square (RMS) of ML CoP sway area with eyes open 

Shin et al. [152] ML CoP velocity with both eyes open and closed 

 

2.4.3 IMUS for fall-risk assessment 

IMU technologies have also been widely accepted for the assessment by 

measuring activity level, posture transitions, static and dynamic stability, and spatio-

temporal gait characteristics [20, 115, 153, 154]. Traditionally, researchers mainly 

focus on several tasks: postural stability (PS) with different test conditions (eyes open 

(EO), eyes closed (EC)) [155-158], sit-to-stand (STS) [115, 159], timed up and 

go (TUG) test [160-164] and normal walking (NW) velocity [163, 165, 166]. Usually, 

the TUG test is the most common task, since it contains both a transfer (STS) phase and 

a walking phase, so that it could provide information about balance (STS) and gait. 

Table 2-4 summarizes the IMU-based fall risk assessment studies. 

 

http://www.unmc.edu/media/intmed/geriatrics/nebgec/pdf/frailelderlyjuly09/toolkits/timedupandgo_w_norms.pdf
http://www.unmc.edu/media/intmed/geriatrics/nebgec/pdf/frailelderlyjuly09/toolkits/timedupandgo_w_norms.pdf
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Table 2-4: Brief review of the IMU-based fall risk assessment studies. (SP represents 

specification, SE represents sensitivity, and ρ correlation coefficient.) 

Authors [ref.] Tasks Approaches Results 

Najafi et al. [118] STS Wavelet transform SP≥0.95; SE≥0.95 

Giansanti et al. [155] PS with EO and EC  Statistical clustering SP≥0.93; SE≥0.94 

Giansanti et al. [156] TUG Multi-layer perceptron 

neural network  

SP≥0.88; SE≥0.87 

Gietzelt et al. [160] TUG Decision tree SP=0.91; SE=0.89 

Marschollek et al. [161] TUG Decision tree SP=1.00; SE=0.58 

O’Sullivan et al. [157] PS with EO and EC t-test Significant difference 

Greene et al. [162] TUG Logistic regression SP=0.76; SE=0.77 

Narayanan et al. [158] TUG Linear least squares model 𝜌 =0.73 

Liu et al. [159] SS and TUG Linear least squares model 𝜌 =0.99 

Bautmans et al. [165] NW t-test SP=0.78; SE=0.78 

Caby et al. [166] NW Feature selection SP=1.00; SE=0.93 

Marschollek et al. [163] TUG and NW Logistic regression SP=0.58; SE=0.78 

Weiss et al. [164] TUG Binary logistic models SP=0.82; SE=0.87 
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Chapter 3 STUDY I: EFFECT OF GAIT AND POSTURAL 

PARAMETERS ON FALL RISK 

 

3.1  Objective 

The objective of this study was to investigate the relationship between gait, 

postural parameters and fall risk. Two groups of individuals, fallers and non-fallers, 

were recruited to analyze the differences in gait and postural parameters. Any individual 

who experienced a fall in the past four months was defined as a faller; individuals who 

did not fall in the past four months were defined as non-fallers. 

It was hypothesized that gait and postural parameters are significantly different 

between fallers and non-fallers. 

  

3.2  Methods 

3.2.1 Subjects 

Thirty community dwelling elderly persons, 19 females and 11 males, from 

Northern Virginia participated in this study. Fifteen of the older adults were fallers, and 

fifteen of them were non-fallers. All of the participants should have good health 

conditions, thus the exclusion criteria include cardiovascular, respiratory, neurological, 

and musculoskeletal problems, which had been checked for the participants before the 

experiments. The data was collected at a local senior center. All participants signed an 

inform consent form approved by the Institutional Review Board (IRB) at Virginia 

Tech prior to the inception of data collection. Participants willingly volunteered to 
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participate in this experiment and no compensation was provided. Table 3-1 

summarizes the demographic information of the study participants. 

 

Table 3-1: Characteristics of the study sample (M+SD). 

 # Males # Females Age (years) Height (cm) Weight (kg) 

Fallers 10 5 79.2±6.4 166.9±9.6 83.2±15.1 

Non-fallers 9 6 77.4±8.24 164.2±7.64 78.0±20.8 

 

 

3.2.2 Apparatus 

Participants wore three Inertial Measurement Unit (IMU) nodes [167], one is 

located at sternum level and the other two are located on lateral sides of right and left 

shank (Figure 3-1). The IMU node consisted of MMA7261QT tri-axial accelerometers 

and IDG-300 (x and y plane gyroscope) and ADXRS300, z-plane uniaxial gyroscope 

aggregated in the TEMPO [167] platform (Technology-Enabled Medical Precision 

Observation which was manufactured in collaboration with the research team at the 

University of Virginia). The data acquisition was carried out using a Bluetooth adapter 

and Laptop through a custom built LabView VI. Data was acquired with a sampling 

frequency of 128Hz. This frequency is largely sufficient for human movement analysis 

in daily activities which occurs in low bandwidth [0.8-5Hz] [168]. The data was 

processed using custom software written in Matlab (the Mathworks, Inc.) and libSVM 

toolbox [169].  
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Figure 3-1: Picture of sensor located on one participant. 

 

3.2.3 Experimental protocols 

First, participants were instructed to walk at their own preferred walking pace. 

They were allowed to use their walking aid or cane. All participants were instructed 

to lift their dominant foot first in each trial. After that, the participants were asked to 

stand comfortably on the floor and the position of the feet was marked so that initial 

foot position remained constant across all trials. 

Subsequently, participants were asked to perform a sit-to-stand (STS) task. The 

participants sat comfortably on a chair (with backrest and arm-rests) with their 

thighs and feet parallel, and then were instructed to use the armrests for support 

while performing STS task. The spacing between the feet was maintained at about 

15 cm. A chair with 45 cm height (approximate height of popliteal) was used, and 
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knee angle was maintained from 85°-90° by using a mat. Participants were then 

instructed to sit keeping the thighs apart from the seat, only with their buttocks 

rested on it. Afterwards, participants were asked to wait for an auditory signal before 

starting the task. The data was recorded for 6 seconds in total. The participants were 

given an auditory signal to stand after at least 2 seconds of data collection, in order 

to ensure sitting, postural transitions, and stabilized standing was collected in all 

trials [170]. Participants were then asked to perform the STS task twice using arms 

on the arm-chair from the previously defined sitting position.  

The participants then were asked to perform a sit-to-walk (STW) test. The STW 

test has been widely used to investigate functional mobility among elderly individuals. 

The advantage of the STW test is the high reliability and validity. All participants were 

given verbal instructions and then demonstrated how the test should be performed. 

They sat comfortably in the same chair as the STS task, with their thighs and feet 

parallel. The participants were asked to wait for an auditory signal before initiating 

movement. They were then instructed to rise from the chair (either knee or arm 

support), walk at their self-selected pace to a target 3 meters away from the chair. The 

timing started when subject’s back left the backrest of the chair, and stopped when 

the person’s buttocks touched the seat again. 
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Finally, the participants were asked to stand still for 60 seconds for the 

measurement of postural stability. One trial was collected for each eyes open and 

eyes closed condition, respectively. TEMPO data was collected during the whole 

process. For the STS and postural stability task, only one IMU located at the sternum 

was used to collect data, since it allows for the movement of the whole body to be 

tracked [171]. While for the normal walking and STW task, three IMUs – one located 

at sternum, and the other two located at the right and left shank – were utilized to track 

the motion of the lower extremities [171].   

 

3.2.4 Data analysis 

The data was processed using custom software written in Matlab (MATLAB 

version 6.5.1, 2003, computer software, The MathWorks Inc., Natick, 

Massachusetts). 

 

3.2.4.1 Signal denoising 

Empirical Mode Decomposition (EMD) [172, 173] is a data-driven, adaptive 

signal processing technique, and can adaptively decompose the IMU signals, which 

could be considered as a time series, into different intrinsic mode function (IMF) 

components according to different time scales. And noise usually concentrates in 

the high-frequency components, namely the low level IMFs.  
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                  𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑗(𝑡) + 𝑟𝑁(𝑡)𝑁
𝑗=1                 (3.1). 

The IMF should satisfy two conditions: 1) the number of extrema and the 

number of zero crossings must either equal to each other or differ at most by one, 

and 2) at any point, the local average is zero. The purpose of defining the two 

conditions is to allow for physically meaningful instantaneous frequency and 

amplitude calculation through the Hilbert transform performed on the IMFs. The 

symbol 𝑟𝑁(𝑡) represents the residue of the decomposition process, and is usually a 

constant or a function with only one extremum. 

In the EMD process, a sifting algorithm is used to extract the IMFs from the 

original signal. Specifically, the upper envelope 𝑒𝑚𝑎𝑥(𝑡)  and lower envelope 

𝑒𝑚𝑖𝑛(𝑡) of the signal 𝑥(𝑡), are formed, based on the local maxima and minima of 

the signal through cubic spline interpolation, By defining the local mean of the 

upper and lower envelopes as 
𝑒𝑚𝑎𝑥(𝑡)+𝑒𝑚𝑖𝑛(𝑡)

2
, the first component ℎ1(𝑡) is obtained 

as the difference between the signal 𝑥(𝑡) and the local mean: 

          ℎ1(𝑡) = 𝑥(𝑡) −
(𝑒𝑚𝑎𝑥(𝑡)+𝑒𝑚𝑖𝑛(𝑡))

2
                        (3.2).   

This procedure is repeated until a pre-defined threshold is satisfied: 

         𝑆𝐷 =
∑[ℎ1

𝑘−1(𝑡)−ℎ1
𝑘(𝑡)]2

∑[ℎ1
𝑘−1(𝑡)]2

< 𝑡𝑡ℎ                           (3.3), where 

𝑡𝑡ℎ is usually within the range of 0.2 ~ 0.3. The final ℎ1(𝑡) is designated as the first 

IMF: 𝐼𝑀𝐹1(𝑡). Subsequently the residue 𝑟1(𝑡) is treated as a new signal and the 
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sifting process is repeated until the residual 𝑟𝑁(𝑡) becomes a constant or a function 

with only one extremum such that no more IMF can be extracted. In the EMD 

representation of a signal, the lower-order IMFs correspond to fast oscillation 

components, while higher-order IMFs represent slow oscillations. If the EMD is 

interpreted as a time-scale analysis method, then the lower order and higher order 

IMFs correspond to the fine and coarse scales, respectively. 

Ensemble Empirical Mode Decomposition (EEMD), is another approach 

which consists of sifting an ensemble of white noise-added signal and treats its mean 

as the true result [174, 175]. We used EEMD method to denoise on IMU signals. 

The number of ensembles chosen is 100 with ratio of standard deviation of the added 

noise to that of signal as 0.2, according to previous study [176].  

 

3.2.4.2 Gait parameter computation 

Walking Velocity (m/s): Walking velocity is defined as the distance covered by the 

whole body in a given time [177]. Thus the walking velocity (WV) could be obtained 

by: 

         𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
Distance

𝑡
   (𝑚/𝑠)                   (3.4), 

where 𝑡 represents the time of completing the distance of normal walking.  

Gait Cycle Time (s): It is defined as the time interval between the exact same 

repetitive events of walking [177]. 
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Double Support Time (s): It is defined as the amount of time during gait when both 

limbs are touching the ground at the same time, occurs at the very beginning and the 

very end of each gait cycle [178]. 

Right Stance (s): It refers to the time of right limb in contact with the floor [178].  

Left Stance (s): It refers to the time of left limb in contact with the floor [178]. 

Mean Right Swing (s): It refers to the mean time of right limb not in contact with the 

floor [178]. 

Mean Left Swing (s): It refers to the mean time of left limb not in contact with the 

floor [178]. 

Step Length (m): The linear distance in the direction of progression between 

successive points of foot-to-floor contact of the first foot and other foot was measured 

on both floor surfaces. The step length was calculated from the difference between 

consecutive positions of the heel contacting the floor (resultant) using the general 

distance formula [15]. 

Cadence (steps/min): It refers to number of steps per minute [178].  

 

3.2.4.3 Sit-to-Stand (STS) parameter computation 

STS is a simple method for measuring lower limb strength and fall risks. STS 

is a regular mobility related activity in the daily life. Research has demonstrated 

STS parameters can provide significant indicator for the overall functioning and 
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balance performance of older adults [179, 180]. Based on Etnyre and Thomas’s 

study [181], STS can be divided into six event according to the vertical ground 

reaction force: (1) initial force change, (2) a counter force, (3) seat-off, (4) peak 

vertical force, (5) post-peak rebound, and (6) steady standing force. All of these 

events are divided from the aspect of forceplate.  

From the view of IMU data, the STS could be divided into five events: (1) 

initiation, (2) peak flexion angular velocity, (3) seat-off, (4) peak extension angular 

velocity, (5) termination. Figure 3-2 illustrates the entire process of performing the 

STS task. 

 

 

Figure 3-2: STS Events identified by IMU data. 

 

The event identification was based on the IMU signals. And the special epochs 

from accelerometer and gyroscope provide the determination of events. The event 

of initiation (event 1) is defined as the start point of increase of angular velocity 

http://ptjournal.apta.org/content/87/12/1651.long#F2
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from gyroscope data. Angular velocity is absolute value from event 2 to event 3. 

Therefore, peak flexion angular velocity (event 2) is defined as the maxima, and 

peak extension angular velocity (event 4) defined as the minima. The event of 

termination (event 5) is defined as the end point of angular velocity. All of the four 

events are demonstrated in Figure 3-3 (a). The event of seat-off (event 3) is defined 

from the accelerometer data, namely the minima of the acceleration, which is shown 

in Figure 3-3 (b). In general, the gyroscope data was used to determine trunk flexion 

and extension angular velocities; while the accelerometer data was used to 

determine anterio-posterior (AP) accelerations. In addition, the peak-to-peak (P2P) 

acceleration (P2P_AP_Acc_Seat-off) can be defined in two ways: one is defined 

from AP acceleration initiation (event 6) to seat-off (event 3); the other way is from 

seat off (event 3) to AP acceleration termination (event 7). P2P_Flex/Ext_Ang_Vel 

is defined as the absolute value from peak flexion angular velocity (event 2) to peak 

extension angular velocity (event 4). 
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Figure 3-3: STS events identified by IMU data. (a) Trunk angular velocity with 

events (1. STS Initiation; 2. Peak flexion angular velocity; 4. Peak extension angular 

velocity, 5. STS termination); (b) Trunk acceleration with events (3. Seat-off; 6. AP 

acceleration initiation; 7. AP acceleration termination). 

 

There are some other parameters that could be extracted from gyroscope data 

by STS task. For example, initial flexion angular acceleration 

(Initial_Flex_Ang_Acc) is calculated by the slope of angular velocities from event 

1 (initiation of angular velocity) to event 2 (peak flexion angular velocity); late 

extension angular acceleration (Late_Ext_Ang_Acc) is determined by the slope of 

angular velocities from event 4 (peak extension angular velocity) to event 5 
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(termination of angular velocity). Similarly, pre-seat-off flexion angular 

deceleration (Pre_Seat-off_Flex_Ang_Dece) is identified by the slope from event 2 

(peak flexion angular velocity) to event 3 (seat-off); while post-seat-off extension 

angular acceleration (Post_Seat-off_Ext_Ang_Acc) is calculated by the slope from 

event 3 (seat-off) to event 4 (peak extension angular velocity). 

  

3.2.4.4 Sit-to-Walk (STW) parameter computation 

From the IMU signals, the STW task can divided into eight different events: 

(1) initiation of STW; (2) peak flexion angular velocity; (3) seat-off; (4) peak 

extension angular velocity; (5) swing toe-off; (6) swing heel strike; (7) stance toe-

off; and (8) stance heel strike. Also, the STW task could be divided into three phases: 

(1) flexion momentum phase; (2) combined extension and unloading phase; and (3) 

stance phase and eight postural transition and gait events detected. All of these 

events are shown in Figure 3-4. To identify these events, three IMUs located at the 

sternum and both shanks are required. 
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Figure 3-4: Three phases of the STW task: (1) flexion momentum phase; (2) 

combined extension and unloading phase; and (3) stance phase and eight postural 

transition and gait events detected. 

 

The STW tasks include two phases: STS and normal walking. From the task of 

STW, numerous parameters could be extracted for fall risks assessment. Based on 

previous studies [182-185], gait cycle could be defined as a movement with the 

initial stepping leg designated as swing, and the second stepping leg designated as 

stance. According to the findings from Kerr et al. [183, 185] and Buckley et al. [182, 

184], the STW task could be further divided into four phases: (1) flexion momentum 

phase; (2) extension phase; (3) unloading phase; and (4) stance phase. In their 

studies, they utilized a camera system and forceplate to evaluate center-of-mass 

(COM) vertical velocity and gait initiation (GI) event. In our study, only IMUs are 

used for analyzing data, which is void of kinetic information from the forceplate. 

Therefore, we combined the extension phase (phase 2) and unloading phase (phase 
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3) together. The other reason for combining these two phases is to avoid the conflicts 

on gait initiation event detection between the studies from Kerr et al. [196] and 

Buckley et al. [182]. Although the information of distinguishing the STS task and 

gait initiation is completely missing; however, the overall time for trunk extension 

phase and unloading phase can be easily evaluated using IMUs, so that it improves 

the robustness for this detection algorithm.  

The first phase of STW task is the flexion momentum phase, and it includes 

three events: (1) initiation of STW; (2) peak flexion angular velocity; and (3) seat-

off, as shown in Figure 3-4. During this phase, high flexion velocity is first 

generated, and then seat unloading is followed.  

In the x-direction gyroscope signals from the IMU located at sternum, three 

events could be determined: event 1 (initiation of STW); event 2 (peak flexion 

angular velocity); and event 4 (peak extension angular velocity). Event 1 (initiation 

of STW) is identified as the first local maxima. And event 2 (peak flexion angular 

velocity) is defined as global minima, following event 1. In addition, the x-direction 

gyroscope signals are able to provide the information of event 4 (peak extension 

angular velocity): event 4 is defined as the second local maxima. Initial flexion 

angular acceleration of trunk is identified by fitting the slope from event 1 (STW 

initiation) to event 2 (peak flexion angular velocity event). All of these events are 

demonstrated in Figure 3-5. 
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 Event 3 (seat-off) is determined from the z-direction acceleration signals from 

the IMU located at sternum. It is defined as the first local maxima, which is shown 

in Figure 3-6.  

The second phase of STW is the combined extension and unloading phase. It 

comprises the extension velocity, momentary stabilization, gait initiation 

adjustments, and unloading. The events from 3 to 5 (seat-off, peak extension angular 

velocity, and swing toe-off) are included in the second phase. Event 5 can be 

detected from the gyroscope z-channel signals from the IMU located at left shank, 

which could provide enough information for the locomotion. It could be found by 

identifying the first local minima. Similarly, the event 6 (swing heel strike) is 

determined as the second minima in the same channel. These two events are shown 

in Figure 3-7. 

The third phase is stance phase, which contains the events from 5 to 7. The 

identification of event 7 and 8 needs the gyroscope z-channel signals from the IMU 

located at right shank. Event 7 (stance toe-off) is defined as first local maxima, and 

event 8 (stance heel-strike) is determined as the second local maxima, which is 

illustrated in Figure 3-8. 
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Figure 3-5: STW events identified by IMU data located at sternum: (1) initiation of 

STW; (2) peak flexion angular velocity; (4) peak extension angular velocity. 

 

 

 

Figure 3-6: STW events identified by IMU data located at sternum: (3) seat-off. 
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Figure 3-7: STW events identified by IMU data located at left shank: (5) swing toe-

off; (6) swing heel strike. 

 

 

Figure 3-8: STW events identified by IMU data located at left shank: (7) 

stance toe-off; and (8) stance heel strike. 

 

In summary, the gait and postural parameters could be extracted from normal 

walking, STS, and STW tasks, by three IMUs located at the sternum, and left and 
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3.2.4.5 Postural stability (PS) parameter computation 

The trunk sway average velocity and mean radius recordings in the open eyes 

and closed eyes conditions were used for PS parameters. 

The sway average velocity is defined by the path length (PL) over time. The 

PL is evaluated using the following expressions: 

       𝑃𝐿 = ∑ √(𝑥𝑛 − 𝑥𝑛−1)2 + (𝑦𝑛 − 𝑦𝑛−1)2        (𝑚)𝑁
𝑛=1           (3.5), 

where (𝑥, 𝑦) is the coordinate of ground projection of center of pressure (COP) 

from participants, and 𝑁 is the number of data points. Thus, the sway average 

velocity can be defined as: 

   sway average velocity =
∑ √(𝑥𝑛−𝑥𝑛−1)2+(𝑦𝑛−𝑦𝑛−1)2𝑁

𝑛=1

60
    (

𝑚

𝑠
)        (3.6). 

The mean radius is calculated by the formulation: 

          𝑚𝑒𝑎𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 =
∑ √(𝑥𝑛−𝑥̅)2+(𝑦𝑛−𝑦̅)2𝑁

𝑛=1

𝑁
            (𝑚)         (3.7), 

where (𝑥, 𝑦) is the coordinate of ground projection of COP, (𝑥𝑛, 𝑦𝑛) is the mean 

of all the (𝑥, 𝑦) values, and 𝑁 is the number of data points. Table 3-2 summarized 

all of the gait and postural parameters from the IMUs. 

 

Table 3-2: Summarized parameters measured from the IMUs. 

Type Parameters 

Gait  Walking Velocity 

 Gait Cycle Time 

 Double Support Time 

 Right Stance 

 Left Stance 

 Mean Right Stance 
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 Mean Left Swing 

 Step Length 

 Cadence 

Sit-to-Stand P2P_AP_Acc_Seat-off [g] 

 P2_Flex/Ext_Ang_Vel [deg/sec] 

 Peak_Flex_Ang_Vel [deg/sec] 

 Peak_Ext_Ang_Vel [deg/sec] 

 Initial_Flex_Ang_Acc [deg/sec^2] 

 Late_Ext_Ang_Acc [deg/sec^2]  

 Pre_Seat-off_Flex_Ang_Dece [deg/sec^2] 

 Post_Seat-off_Ext_Ang_Acc [deg/sec^2] 

 t1_Peak_Flex [sec] 

 t2_Seat-off [sec]  

 t3_Peak_Ext [sec] 

 t4_CompleteSTS [sec] 

 t5_Initiation to Seat-off [sec]  

 t6_Seat-off to Termination [sec] 

 t7_Between Peak Flex./Ext. Momentums [sec] 

 t8_Peak_Ext_Ang_Momentum to Termination [sec] 

 t9_PeakFlexion to Seat-off [sec] 

 t10_Seat-off to Peak Extension [sec]  

Sit-to-Walk P2P_AP_Acc_Seat-off [g] 

 P2_Flex/Ext_Ang_Vel [deg/sec] 

 Peak_Flex_Ang_Vel [deg/sec] 

 Peak_Ext_Ang_Vel [deg/sec] 

 Initial_Flex_Ang_Acc [deg/sec^2] 

 Pre_Seat-off_Flex_Ang_Dece [deg/sec^2] 

 Post_Seat-off_Ext_Ang_Acc [deg/sec^2] 

 t1_ Peak_Flex [sec] 

 t2_Seat-off [sec] 

 t3_ Peak_Ext [sec] 

 t4_Swing_TO [sec] 

 t5_Swing_HS [sec] 

 t6_Stance_TO [sec] 

 t7_Stance_HS [sec] 

 t8_Initital_Gait_Cycle [sec] 

 t9_TotalSingleStance [sec] 

 t10_GI_PartialDoubleSupport [sec] 

 t11_ Between Peak Flex./Ext. Momentums [sec] 

 t12_PeakFlexion to Seat-off [sec] 

 t13_Seat Off to Peak Extension [sec] 

 t14_Time_to_STW_Completion [sec] 

Postural stability Open Eyes Sway Velocity (m/s) 

 Open Eyes Mean Radius (m) 
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 Closed Eyes Sway Velocity (m/s) 

 Closed Eyes Mean Radius (m) 

 

 

 

 

3.2.5 Statistical analysis 

For testing hypotheses, subjects were first divided into two groups: fallers (F) 

group and non-fallers (N) group. A single-factor, fixed-effect, between-subject 

statistical model was established. The model can be expressed as: 

                    𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛾𝑗(𝑖) + 𝜀𝑘(𝑖𝑗)                  (3.8), 

where 𝑌𝑖𝑗𝑘  is a dependent variable (e.g. gait or postural characteristics), 𝜇  is the 

population mean of this variable, 𝛼𝑖 is the effect of the between-subject factor being 

at level 𝑖, and 𝛾𝑗  is the random effect of subjects, 𝜀𝑘(𝑖𝑗)  is the random error of a 

specific trial 𝑘. 

Analysis of variance (ANOVA) tests were conducted for each experiment 

respectively. A significance level of 𝛼 ≤ 0.05 was used. Two underlying assumptions 

of the ANOVA test were examined. The normality assumption was tested using the 

Shapiro-Wilk test. The homogeneity of variance assumption was tested using the 

Brown-Forsythe test.  

 

3.3  Results 

3.4.1 Gait parameters between fallers and non-fallers 
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Table 3-3 summarizes the results of gait parameters between the 15 fallers and 15 

non-fallers. Figure 3-9 and Figure 3-10 provide the means and standard deviations of 

gait parameters and note significant difference between fallers and non-fallers.  

 

Table 3-3: Results of gait parameters between fallers and non-fallers. 

Gait parameters Fallers Non-fallers p-value 

Walking Velocity (m/sec) 0.83±0.13 0.84±0.10 0.3646 

GC Time (Sec) 1.15±0.17 1.03±0.17 0.0352* 

Double Support Time (sec) 0.27±0.10 0.18±0.07 0.0095* 

Right Stance (sec) 0.66±0.08 0.60±0.11 0.0941 

Left Stance (sec) 0.62±0.05 0.61±0.12 0.7676 

Mean Right Swing (sec) 0.45±0.04 0.44±0.04 0.6779 

Mean Left Swing (sec) 0.47±0.23 0.44±0.04 0.5090 

Step Length (m) 0.45 ±0.07 0.43±0.08 0.5449 

Cadence (steps/min) 110.41±19.83 117.95±16.33 0.1330 

 

 

 

 

Figure 3-9: Means and standard deviations of gait cycle time for fallers and non-

fallers. 
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Figure 3-10: Means and standard deviations of double support time for fallers and 

non-fallers. 

 

3.4.2 Sit-to-Stand (STS) parameters between fallers and non-fallers 

Table 3-4 summarizes the results of the STS parameters between fallers and non-

fallers. Specifically, five STS parameters were significantly different between fallers 

and non-fallers. Figure 3-11 shows the box-plot comparison of these parameters 

between fallers and non-fallers. 

 

Table 3-4: Results of the STS parameters between fallers and non-fallers. 

Sit-to-Stand parameters Fallers Non-fallers p-value 

P2P_AP_Acc_Seat-off [g] 1.09±0.28 1.23±0.29 0.1867 

P2_Flex/Ext_Ang_Vel [deg/sec] 181.97±64.71 236.33±80.01 0.0503 

Peak_Flex_Ang_Vel [deg/sec] 106.52±44.34 147.33±48.46 0.023* 

Peak_Ext_Ang_Vel [deg/sec] -33.37±40.23 -66.30±47.83 0.0508 

Initial_Flex_Ang_Acc [deg/sec^2] 1.91±1.48 2.98±1.58 0.0666 

Late_Ext_Ang_Acc [deg/sec^2]  0.63±0.34 1.55±1.33 0.0153* 

Pre_Seat-off_Flex_Ang_Dece [deg/sec^2] -2.46±2.74 -4.38±4.38 0.1622 

Post_Seat-off_Ext_Ang_Acc [deg/sec^2] -2.32±2.59 -4.53±3.72 0.0694 

t1_Peak_Flex [sec] 1.44±0.43 1.01±0.35 0.0047* 

t2_Seat-off [sec]  1.89±1.66 1.68±0.82 0.6618 

t3_Peak_Ext [sec] 6.21±10.21 2.46±1.15 0.1681 

t4_CompleteSTS [sec] 9.06±9.90 4.40±1.80 0.0467* 
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t5_Initiation to Seat-off [sec]  1.89±1.66 1.68±0.82 0.6618 

t6_Seat-off to Termination [sec] 6.77±9.94 2.32±1.28 0.0967 

t7_Between_Peak_Flex./Ext. Momentums [sec] 5.07±10.19 1.45±0.91 0.182 

t8_ Peak_Ext_Ang_Momentum to Termination 2.44±0.80 1.54±0.71 0.0028* 

t9_PeakFlexion to Seat-off [sec] 0.75±1.41 0.67±0.58 0.8551 

t10_Seat-off to Peak Extension [sec]  4.62±9.88 0.78±0.69 0.1442 

 

 

  

 

(a) 

(b) 
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(c) 

(d) 
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Figure 3-11: Box plots indicate five STS parameters which significantly differentiate 

fallers and non-fallers (p < 0.05): (a) Peak_Flex_Ang_Vel; (b) Late_Ext_Ang_Acc; 

(c) t4_CompleteSTS; (d) t1_Peak_Flex; (e) t8_ Peak_Ext_Ang_Momentum to 

Termination. The top and bottom of the box plot represent the first and third quartiles, 

and the middle bar indicates the median. 

 

3.4.3 Sit-to-Walk (STW) parameters between fallers and non-fallers 

Table 3-5 summarizes the results of the STW parameters between fallers and non-

fallers.  

 

Table 3-5: Results of the STS parameters between fallers and non-fallers. 

Sit-to-Walk parameters Fallers Non-fallers p-value 

P2P_AP_Acc_Seat-off [g] 0.95±3.23 0.22±0.13 0.3831 

P2_Flex/Ext_Ang_Vel [deg/sec] 231.83±111.52 292.66±84.37 0.1032 

Peak_Flex_Ang_Vel [deg/sec] 106.52±44.34 147.33±48.46 0.0115* 

Peak_Ext_Ang_Vel [deg/sec] 146.65±81.12 165.62±50.41 0.4482 

Initial_Flex_Ang_Acc [deg/sec^2] 3.32±4.79 2.86±1.64 0.7279 

Pre_Seat-off_Flex_Ang_Dece [deg/sec^2] -4.69±4.20 -4.99±3.27 0.8313 

Post_Seat-off_Ext_Ang_Acc [deg/sec^2] -5.35±4.85 6.88±4.33 0.3714 

t1_ Peak_Flex [sec] 1.27±1.00 0.73±0.33 0.0556 

t2_Seat-off [sec] 1.24±0.47 0.73±0.20 0.0005* 

(e) 
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t3_ Peak_Ext [sec] 1.21±0.46 0.76±0.30 0.0032* 

t4_Swing_TO [sec] 1.91±1.05 1.02±0.33 0.0041* 

t5_Swing_HS [sec] 2.37±±1.07 1.49±0.27 0.0045* 

t6_Stance_TO [sec] 2.43±1.14 1.52±0.30 0.0052* 

t7_Stance_HS [sec] 2.94±1.15 1.99±0.31 0.0042* 

t8_Initital_Gait_Cycle [sec] 1.33±0.15 0.96±0.11  <0.0001* 

t9_TotalSingleStance [sec] 1.26±0.08 0.94±0.12  <0.0001* 

t10_GI_PartialDoubleSupport [sec] 0.37±0.08 0.025±0.047  <0.0001* 

t11_ Between Peak Flex./Ext. Momentums [sec] 1.02±0.91 0.48±0.17 0.0312* 

t12_PeakFlexion to Seat-off [sec] 0.66±0.50 0.26±0.12 0.0045* 

t13_Seat Off to Peak Extension [sec] 0.66±0.44 0.22±0.12 0.0009* 

t14_Time_to_STW_Completion [sec] 2.94±1.15 1.99±0.31 0.0042* 

 

3.4.4 Postural stability (PS) parameters between fallers and non-fallers 

Table 3-6 summarizes the results of the PS parameters between fallers and non-

fallers. No significant differences were found in the results. 

  

Table 3-6: Results of the PS parameters between fallers and non-fallers. 

Postural Stability parameters Fallers Non-fallers p-value 

Open Eyes Sway Velocity (m/s) 0.0133±0.0029 0.0127±0.0022 0.2032 

Open Eyes Mean Radius (m) 0.0038±0.0010 0.0029±0.0010 0.1017 

Closed Eyes Sway Velocity (m/s) 0.0172±0.0045 0.0153±0.0028 0.0893 

Closed Eyes Mean Radius (m) 0.0045±0.0031 0.0033±0.0011 0.1284 

 

 

3.5  Discussion 

The purpose of this study was to investigate the relationship between gait and 

postural parameters and fall risk among older adults. First, the gait parameters were 

investigated between fallers and non-fallers. It was determined that two parameters: 

gait cycle time and double support time, were significantly different between fallers and 

non-fallers. Fallers had longer gait cycle times, which suggests that fallers spend more 

time with their feet in contact with the ground in absolute time -- reflected by increased 
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double support times. Previous studies demonstrated similar results. Wu and Lockhart 

[186] reported that fallers have longer gait cycle times (1.16±0.14(s)) compared to non-

fallers (0.92±0.27(s)). Additionally, they reported that fallers have a longer double 

support time (0.28±0.12(s)) compared to non-fallers (0.23±0.11(s)), which are 

consistent with our findings. One explanation for this difference might be that non-

fallers have more confidence or less fear of falling compared to fallers, which also may 

affect the gait patterns. Fallers may have increased second double support time to 

reduce perturbations to balance during walking. 

No significant differences were found on the other gait parameters (e.g. gait speed, 

step length…etc.). The results are in agreement with the study of Toulotte et al. [187] 

which reported no significant difference between healthy elderly fallers and non-fallers 

walking freely under single-task conditions. Similar results also were found by Gehlsen 

and Whaley [188]; they found no differences between fallers and non-fallers in 

numerous temporal gait parameters. Pijnappels et al. [189] also reported that walking 

speed did not differ between fallers and non-fallers. However, some studies reported 

contrasting results, in which they demonstrated that fallers have shorter stride and step 

lengths, and slower walking speeds, compared to non-fallers [190-194]. For example, 

Imms and Edholm [193] found that fallers have reduced walking speeds and shorter 

step lengths. Wolfson et al. [194] reported similar results in nursing-home residents.  

For the sit-to-stand (STS) postural parameters, five parameters were significantly 

different between fallers and non-fallers (Peak_Flex_Ang_Vel, Late_Ext_Ang_Acc, 

t1_Peak_Flex, t4_CompleteSTS, and t8_ Peak_Ext_Ang_Momentum to Termination). 
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Angular velocity and acceleration values, over the total assessment were lower in fallers, 

indicating less smooth movement in this category. One explanation for this finding may 

be reduced quadricep strength and core muscle strength in fallers.  

The results are in accordance with the study of Doheny et al. [195], which 

indicated that fallers take a significantly longer time to complete an STS task compared 

to non-fallers. Similarly, Najafi et al. [115] reported increased mean postural transition 

duration for fallers.  

Additionally, fallers needed a significantly longer time to initiate movement 

(t1_Peak_Flex) compared to non-fallers, suggesting that fallers struggle with the 

flexion phase of postural transition compared to non-fallers. Likewise, fallers 

delineated longer stability times (t8_ Peak_Ext_Ang_Momentum to Termination), 

which indicate that they require more time to maintain stability following STS postural 

transitions. However, previous studies have demonstrated the value of determining the 

time taken to complete a five-time-STS to identify fall risk [180]; with a time greater 

than 15 seconds, as reported by Buatois et al., indicating increased fall risk [196]. The 

fallers examined in the present study took longer to complete the five-time-STS than 

the non-fallers. Thirty participants were examined in the community dwelling 

environment, which may not be sufficiently large to replicate the observations of 

Buatois et al., who examined 2735 participants in a clinical environment [196].  

For the sit-to-walk (STW) test, the findings demonstrate that most parameters and 

transition events were significantly different between fallers and non-fallers. Because 

sit-to-walk is a more complex task compared to the sit-to-stand task, the identification 
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of specific components during the transition from sitting to walking among the elderly 

may help identify mobility problems in various phases of the transition. However, the 

acquisition of STW information requires three IMUs: one on the sternum, and the other 

two on right and left shank.  

For the postural stability (PS) test, sway average velocity and mean radius 

recordings -- in the open eyes and closed eyes conditions -- were utilized to distinguish 

fallers and non-fallers. There were no significant differences between fallers and non-

fallers. Similar to the study of O’Sullivan et al., they found it was difficult to identify 

differences between fallers and non-fallers on a firm surface, since standing on a firm 

surface produces less sway response than standing on a foam [157]. They also found 

there was a significant difference in postural stability parameters between fallers and 

non-fallers when the participants were tested while standing on a mat. This is in 

agreement with Kamen and Cho’s studies that determined the ability of IMUs to discern 

tasks of increasing difficulty [191, 197]. In future investigations, standing on a foam 

should be used for postural stability testing, to better distinguish fallers and non-fallers. 

In summary, there were differences in gait and postural parameters in fallers and 

non-fallers; most of the tasks required three IMUs to achieve ample information. The 

STW test is able to offer the most gait and postural parameters to distinguish fallers and 

non-fallers, but it requires three IMUs (located on the sternum, left and right shank). 

Because the STW task includes both walking and STS phases, it could provide more 

robust information when comparing walking or an STS task only. 
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As we are seeking an approach to utilize only one IMU to identify fallers and non-

fallers, we turn to machine learning techniques to classify fallers and non-fallers, based 

on appropriate gait and postural features which can be obtained from only one sensor 

located on the sternum.   
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Chapter 4 STUDY II: SUPPORT VECTOR MACHINE BASED 

FALLERS AND NON-FALLERS CLASSIFICATION  

 

4.1  Objective 

The objective of this study is to develop and evaluate machine learning algorithm, 

specifically support vector machines, for classifying fallers and non-fallers with IMUs. 

It was hypothesized that only one IMU located at sternum is enough to classify fallers 

and non-fallers by the SVM classifier.  

 

4.2  Methods 

4.2.1 Subjects, apparatus and experimental protocols 

All subjects and apparatus are the same as described for Study I (see Chapter 3). 

However, in this study, only the task of normal walking was utilized to classify fallers 

and non-fallers. Additionally, only one IMU located at sternum was used in this study.  

 

4.2.2 Data analysis 

Based on the findings of previous studies [198, 199], we used a 67%/33% split for 

training and testing sets. Thus, twenty sets of data (10 fallers and 10 non-fallers) were 

used for training, and ten sets (5 fallers and 5 non-fallers) of data were used for testing. 

First, the original IMU data was scaled for conveniently solving large datasets, and then 

Principle Component Analysis (PCA) [200, 201] was employed to decrease the data 

dimensions. Subsequently, the SVM algorithm was utilized to classify fallers and non-

fallers (Figure 4-1). 
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Figure 4-1: Data analysis procedure. 

 

Input data to the SVM classifier: The original data was collected by an IMU at the 

sternum. The IMU provided three directional accelerations and angular velocities.  

The format of the original data was a matrix with 6 columns, representing 6-channel 

signals from tri-axial accelerometers and gyroscopes. The task of normal walking was 

used as the SVM classifier input. IMU signals from the sternum were truncated into 2-

second data segments to ensure the completion of one gait cycle [170].  

 

Training and testing sets: For the classification, both training and testing data sets 
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consisted of fallers and non-fallers data. Totally 30 datasets (30 participants: 15 fallers 

and 15 non-fallers) were selected for classification of fallers and non-fallers. All of the 

datasets were then split into training and testing set: 20 (10 fallers and 10 non-fallers) 

training set and 10 (5 fallers and 5 non-fallers) testing set. Since training set was kept 

around 70% of the total number of sets whereas the remaining around 30% was kept 

for testing [198, 199]. 

 

Feature extraction methods: Two different feature extraction methods were used to 

select features. One method adopted general feature information from both temporal 

and frequency domains; and the other one utilized kinematic features as input. 

 

General features - The general features were chosen to include all possible spatial and 

temporal information from the walking signals. Based on the criterion of minimizing 

computational complexity and maximizing the class discrimination, several key 

features have been previously proposed for SVM classification [202]. All features in 

this study have been extracted from raw signals, and they are displayed as below: 

 

Mean Absolute Value - The mean absolute value of the original signal, 𝑥̅, in order to 

estimate signal information in time domain: 

                       𝑥̅ =  
1

𝑁
 ∑ |𝑥𝑘|

𝑁
𝑘=1                             (4.1),                                                               

where 𝑥𝑘 is the 𝑘𝑡ℎ sampled point and 𝑁 represents the total sampled number over 

the entire signal.  
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Zero Crossings – Zero crossing is defined as the number of times the waveform crosses 

zero, in order to reflect signal information in frequency domain.  

Slope Sign Changes – It is the number of times the slope of the waveform changes sign, 

which reflects frequency content of the signal.  

Length of Waveform – It represents the cumulative curve length over the entire signal, 

in order to provide information about the waveform complexity.  

Dominant Frequency – Signals were filtered using Butterworth low-pass filter of 4th 

order with cut-off frequency of 6 Hz. Fast Fourier Transformation (FFT) was carried 

out on the filtered signal and the dominant frequency was defined as the frequency with 

the highest magnitude.  

Other general features included mean, standard deviation, maximum, minimum, 

skewness, kurtosis, and energy of original signal segments. All of these features would 

give a measure of waveform amplitude, frequency, and duration within a single 

parameter. Table 4-1 elaborates general features used in this study.  

 

Table 4-1: General features used for SVM input. 

General features: Accelerometer (Ax, Ay, Az) and gyroscope (Gx, Gy, Gz)            

               signals in all 3 directions of original data  

 Mean 

 Standard deviation 

 Maximum 

 Minimum 

 Mean absolute value: 𝑥̅ =  
1

𝑁
 ∑ |𝑥𝑘|

𝑁
𝑘=1  

 Skewness 

 Kurtosis 

 Energy 

 Number of slope sign changes 
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 Number of zero crossings 

 Length of waveform 

 Dominant frequency using low-pass filter and FFT 

 

 

Selected Features – In total, 11 kinematic features were selected from the resultant 

walking acceleration and jerk. Resultant acceleration was calculated from the raw 

accelerometer data: 

                        𝑅 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2                        (4.2), 

where Ax, Ay, Az are accelerations sensed by triaxial accelerometer situated on sternum. 

Jerk is computed as a derivative of resultant acceleration. Resultant acceleration and 

jerk of the trunk segment and their derived features, such as mean, maximum, 

minimum, range, energy and dominant frequency while walking are very important as 

they provide complete kinematics of the trunk. Skewness of resultant accelerations and 

jerk provides information of the temporal shift of peak accelerations and jerk from the 

walking signals. Jerk cost, as described by the area under squared jerk curve is an 

important measure to estimate the energy economy of walking.   

                          𝐽𝐶 = ∫ |
𝑑3𝑟

𝑑𝑡3 |2𝑑𝑡
𝑇

0
                           (4.3).  

During walking, minimizing jerk and minimizing energy are believed to be 

complementary performance criteria [203]. Table 4-2 summarizes kinematic features 

used in this study.  

 

Table 4-2: Kinematic features used for SVM input. 

Kinematic features Resultant acceleration (𝑅 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2) 

Resultant Jerk (𝐽 =
𝑑𝑅

𝑑𝑡
) 
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Resultant acceleration features 

 

 Skewness (temporal shift) 

 Energy 

 Dominant frequency 

 Maximum acceleration 

 Minimum acceleration 

 Range of acceleration 

Resultant jerk features 

 

 

 Mean jerk 

 Absolute maximum jerk 

 Absolute minimum jerk 

 Range of jerk produced abs (max-

min) 

 Jerk cost 𝐽𝐶 = ∫ |
𝑑3𝑟

𝑑𝑡3 |2𝑑𝑡
𝑇

0
 

 

 

Input data processing: Preprocessing of features is usually required before using the 

SVM classifier to maximize the classification accuracy. The input features derived from 

signals were normalized, and the dimension of the feature space was reduced using 

principal component analysis.    

a) Normalizing input data: All of the features values were normalized by combining 

training and testing feature space and dividing all of them by the maximum value 

of that particular feature. In this type of scaling the input data was kept in the range 

of 0 to 1, and 1 represented the maximum value of the feature.   

 

b) Dimension reduction of feature space: Principle Component Analysis (PCA) [204] 

was employed to decrease the dimensions. The objective of PCA is to perform 

dimensionality reduction while preserving as much of the randomness in the high-

dimensional space as possible.   
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c) Kernel schemes: A kernel is a function that transforms the input data to a high-

dimensional space where classification is possible. Kernel functions can be linear 

or nonlinear. Kernel selection plays an important role in acquiring high accuracy 

from SVM classification. An appropriate kernel may minimize generalization error, 

and increase classification accuracy. The linear kernel function is the simplest 

kernel function and works well when there are many features in the training data. 

Radial Basis Function (RBF) kernel is usually the first reasonable choice as it can 

nonlinearly map data into higher dimensional space. Polynomial kernels are non-

stationary kernels and are well suited for normalized training data.  

 

d) Cross-validation: Cross-validation is a standard technique usually adopted for 

adjusting hyperplane parameters to improve the quality of its estimates in SVM 

model. A five-fold cross-validation scheme was adopted to evaluate the 

generalizability of the SVM classifier [205, 206]. In cross-validation procedure, the 

training data set is uniformly divided into five subsets with one used for testing and 

the other four used for training and constructing the SVM decision surface. This 

process is continued until all subsets are used as the testing sample.  

 

e) Performance assessment of SVM classifier: All SVM models were trained over the 

range of cost parameter, C (2-10 to 210) using linear, polynomial and radial basis 

function kernel. The cost parameter C controls the tradeoff between training error 

and margins. The criterions used to assess the classification performance of SVM 
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classifier were:                       

                𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100%                   (4.4),    

                𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%                        (4.5), 

                𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100%                        (4.6), 

where TP represents the number of true positives, TN is the number of true 

negatives, FP indicates the number of false positives, and FN represents the number 

of false negatives. While accuracy indicates overall detection accuracy; sensitivity 

is defined as the ability of the SVM classifier to accurately classify fallers and non-

fallers; and specificity would indicate the SVM classifier’s ability to avoid false 

detection. 

Furthermore, Receiver Operating Characteristic (ROC) curve was also used to 

evaluate SVM classifier’s performance. ROC analysis is generally utilized to select 

optimal models and to quantify the accuracy of diagnostic tests. Besides, the Area 

under the ROC Curve (AUC), which is a representation of the classification 

performance, was utilized to assess the effectiveness of SVM classifier. Further, 

tests were also conducted to evaluate performance of the SVM classifier in three 

different kernel functions: linear, polynomial, and radial basis function (RBF) 

kernels.  

 

4.3  Results 

The machine learning classification results demonstrated high classification 

rates across all three types of kernel (i.e., linear, polynomial and RBF kernel) for both 
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types of feature selection approaches. We found that linear (accuracy 90%) and 

polynomial (accuracy 90%) kernels performed equally well in fallers and non-fallers 

classifications (Table 4-3). And polynomial kernel had the lowest classification 

accuracy (about 80%) amongst all three different types of kernels.   

 

Table 4-3: Fallers and non-fallers classification using IMU derived features. Accuracy, 

sensitivity, specificity and AUC (area under the Receiver operating curve) are tabulated 

for three kinds of feature selections methods and three kernels. 

Fallers and non-fallers classification 

  Linear Polynomial RBF 

General 

Features 

Accuracy 0.90 0.90 0.80 

Sensitivity 0.90 0.90 0.80 

Specificity 0.80 0.80 0.90 

AUC 0.90 0.90 0.90 

Kinematic 

Features 

Accuracy 0.90 0.90 1.00 

Sensitivity 0.90 0.80 1.00 

Specificity 0.96 0.90 1.00 

AUC 0.96 0.90 1.00 

 

Computation time for linear kernel was 90.75 seconds, polynomial kernel 

required 33.16 seconds and RBF kernel required 39.58 seconds for the classification. 

The fallers and non-fallers classification results from three different kernels are shown 

in Figure 4-2. Linear kernel defines a linear boundary to achieve classification (Figure 

4-2 a). Polynomial kernel utilizes polynomials of the original input data to classify 

fallers and non-fallers (Figure 4-2 b). It belongs to nonlinear classification, and has 

more complexity and better performance when compared to linear kernel. Radial basis 

function (RBF) kernel is the most popular kernel function, and the two curves running 

through support vectors are the nonlinear counterparts of the convex hulls (Figure 4-2 
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c). 

 

 

 

Figure 4-2: Fallers and non-fallers classification results via three different kernels: (a) 

linear kernel; (b) polynomial kernel, and (c) radial basis function kernel. 
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4.4  Discussion 

In this study, we explored the classification potential of SVM in recognition of gait 

patterns utilizing only one inertial measurement unit (IMU) associated with fallers and 

non-fallers. In the previous chapter, the results indicated that there were differences 

between fallers and non-fallers for some of the gait parameters. In this study, the results 

showed that, although these changes of gait parameters are subtle, they can provide 

helpful information for the SVM classifier to classify fallers and non-fallers. 

Gait and postural adaptations associated with fall risk, as described in Chapter 3, 

may influence the walking patterns and these changes associated with fall risks may be 

utilized to classify fallers and non-fallers. Assuming, walker’s body mass to be a point 

mass, and a rigid strut connecting it to the point of ground contact. This point mass 

reaches the highest point at the middle of the stance phase [207-209]. The trajectory of 

whole body center-of-mass (COM) follows a sinusoidal path along vertical direction 

[207-210], which may be related to fall risk. Similarly in walking, IMU located at the 

sternum allowed the measurement of mechanical work done during walking (i.e., 

inducement of fall risk and its associated relationship to economy during walking as 

assessed by the jerk cost). Energy is defined as the external work done by muscles to 

maintain locomotion and is highly correlated with vertical displacement of COM. An 

approach to minimize vertical movements of the COM (at sternum level) was detailed 

by Inman and his colleagues [211], in which they identified several mechanisms 

involved in flattening the trajectory of the COM [211, 212], including sagittal plane 

knee flexion and extension during stance phase. However, with fall risks, flattening of 
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the trajectory of the COM may not be efficient due to the kinematics of lower extremity 

joints. For example, Kellis and Liassou found that fallers decreased ankle dorsiflexion 

[213].  

Previous researchers have adopted various gait feature extraction methods for 

SVM classification. Begg and coworkers differentiated elderly and young gait patterns 

using general features on minimum foot clearance data [29]. In another study, they 

selected kinetic and kinematic gait features for classification [31]. Whereas Eskoifer et 

al. adopted concatenated waveforms from infrared markers to classify young and 

elderly gait [72]. Results of our investigation (Table 4-3) indicate that feature extraction 

methods influenced classification accuracy. In fallers and non-fallers classification, 

both kinds of input, general feature and selected feature input performed well. 

Three different types of kernels were employed in SVM classifier: linear, 

polynomial, and RBF. Both linear and RBF kernels performed well in general feature 

of falls and non-falls classification, which complied with Lee and Grimson’s report 

[214], showing that linear kernel performs better than polynomial kernel in SVM gait 

recognition. However, for selected feature input, RBF performed better than the other 

two kernels. Considering the computational cost, RBF and polynomial kernels need 

less time compared to linear kernel in the same conditions. As such, RBF kernel is the 

most promising kernel function in the fallers and non-fallers classification schemes, 

and it may also provide better applicability to real time system implementation.   

In summary, only one IMU located in sternum is able to classify fallers and non-

fallers, through the information from normal walking activity. In Chapter 3, we found 
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that there are significant differences in gait and postural parameters between fallers and 

non-fallers. And this study validates the hypothesis that the SVM classifier is able to 

classify fallers and non-fallers only using one IMU located at the sternum by utilizing 

the subtle changes of gait parameters.  
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Chapter 5 STUDY III: ROBUSTNESS OF SVM APPLIED IN 

CLASSIFICATION OF FALLERS AND NON-FALLERS 

 

5.1  Objective 

This study investigates the robustness of SVM algorithms associated with 

classification of fallers and non-fallers. To evaluate the robustness of the SVM 

algorithm, the effects of two parameters involved in SVM algorithm - the soft margin 

constant 𝐶 and the kernel function parameter 𝛾 are investigated. Furthermore, white 

noise is added into the signals, and the effects of these two parameters on the 

classification accuracy are further discussed. It was hypothesized that the SVM 

classifier is robust enough to classify fallers and non-fallers in noisy environment, by 

adjusting the parameters accordingly.  

 

5.2  Theoretical Analysis 

The SVM algorithm has two important parameters called hyper-parameters: soft 

margin constant 𝐶, and the other parameter 𝛾 reflecting the kernel function. In this 

study, Gaussian kernel was applied to the SVM classifier; correspondingly, 𝛾 refers 

to the width of a Gaussian kernel. 

For the parameter 𝐶, it reflects the tradeoff between the margin and error. When 

𝐶 value is large, margin error is small; however, the margin becomes narrow as a 

penalty. When 𝐶 is small, those points close to the boundary become margin error; but 

the hyperplane’s orientation would change, providing a much larger margin for the rest 
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of the data. 

As for the other parameter 𝛾, the expression the Gaussian kernel is: 

                𝑘(𝑥, 𝑥 ,) = 𝑒𝑥𝑝 (−𝛾‖𝑥 − 𝑥 ,‖2)                    (5.1). 

The Gaussian basis function with center 𝑥𝑖⃗⃗  ⃗ and variance 𝜎𝑖
2 can be constructed 

as: 

             𝒢(𝑥 ) =
1

(2𝜋)𝑑/2𝜎𝑖
𝑑 𝑒𝑥𝑝 (−

‖𝑥 −𝑥𝑖⃗⃗  ⃗‖2

2𝜎𝑖
2 )                     (5.2), 

where 𝑑 is the dimensional number of Gaussian RBF. 

If we construct an SVM Gaussian RBF classifier as: 

               ∑ 𝑦𝑖 𝛼𝑖 ⋅ 𝑒𝑥𝑝 (−
‖𝑥−𝑥𝑖⃗⃗  ⃗‖2

𝑐
) + 𝑏)𝑙

𝑖=1                    (5.3), 

where 𝑦𝑖 = 𝑓𝑤,𝑏(𝑥𝑖) ; 𝑤  is known as the weight vector, 𝑏  is a bias term, 𝛼𝑖  is 

Lagrangian multipliers, 𝑐 is the constant. To optimally choose the centers of 𝑥𝑖⃗⃗  ⃗, the 

centers points which are critical to the classification task would be selected. In other 

words, if the unknown sample 𝑥 goes away from the known sample centers of xi⃗⃗⃗  , 

there will be a decay and, we can use this kernel to assign weights (i.e., decision 

weights). The SVM algorithm implements this idea. The algorithm automatically 

computes the number and location of the above centers, and provides weights 𝑤𝑖, and 

the bias 𝑏 by means of the Gaussian kernel function. Therefore, in the RBF kernel 

case, SVM classifier utilizes the Gaussian kernel function to select centers, weights and 

apply threshold in order to minimize an upper bound on the expected test error. The 

advantage of the RBF approach is that it utilizes local approximators to map input to 

output, so that the system computes fast and requires fewer training samples. 

In essence, 𝛾 reflects the flexibility of the decision boundary. When 𝛾 is small, 
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it would generate a smooth decision boundary, nearly linear. When 𝛾 is large, it would 

generate a great curvature of the decision boundary. When 𝛾 is too large, it will cause 

overfitting, as shown in Figure 5-1 (d). Figure 5-1 and Figure 5-2 illustrate the effect of 

these two parameters, 𝛾 and 𝐶, on the decision boundary. 

 

 

 

Figure 5-1: The effect of the parameter γ, on the decision boundary. (a) When γ = 0.1, 

the decision boundary is nearly linear. (b) When γ = 1 the curvature of decision 

boundary increases. (c) When γ = 10, the curvature of decision boundary continues 

increasing, and causes a little overfitting. (d) When 𝛾 = 100, overfitting becomes 

serious in the classification. (Gamma is used to represent 𝛾 in the figure.) 
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Figure 5-2: The effect of the soft-margin constant, C, on the decision boundary. (a) 

When C = 2, it increases the margin and ignores the data points close to the decision 

boundary. (b) When C = 200, it decreases the margin and margin error. 

 

To find the optimal values for the two parameters, the cross-validation and grid-

search were utilized. In 𝑣-fold cross-validation, 𝑣 means the number of input data 

splits. The training data is divided into 𝑣  subsets equally. Any 𝑣 − 1 subsets are 

selected for training the model, and then the remaining subset is predicted based on the 

constructed model. The same procedure is rotated in all the subsets while keeping the 

equal chance being predicted for each subset. Therefore, each subset of the input data 

would be predicted once so the cross-validation accuracy is the percentage of data 

which are correctly classified. 

An approach combining grid-search method and cross-validation was proposed 

for searching the optimal 𝐶 and 𝛾. Different pairs of (𝐶, 𝛾) values were tried for 

predicting data, and only the best cross-validation accuracy was selected. There were 

only two parameters for search, thus it did not require too much of computational time, 

satisfying the demand of SVM classification. 
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parameters and optimal parameters. Firstly 60 sets of data were split into training data 

and test data evenly, and then LibSVM [169] with random SVM parameters was used 

to obtain the classification accuracy of 60%. Next, the grid-search and cross validation 

methods were applied to find the optimal 𝐶 and 𝛾 values (effects of selecting the 

optimal 𝐶  and 𝛾  value as compared to selecting the parameters in random are 

illustrated in Figure 5-3). 

 

 

Figure 5-3: Searching the optimal 𝐶 and γ value in three-dimension coordinates. 

 

The validation accuracy increases from 60% to 100%. However, there were 

several solution-sets of 𝐶  and 𝛾  satisfying the 100% accuracy, and here, the 
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as the optimal value since high 𝐶 value can improve the validation accuracy, however, 
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accuracy. Therefore, the optimal 𝐶  was chosen as 0.2500 and 𝛾  was chosen as 

0.0313 in this case. 

 

5.3  Experimental Analysis 

As the assessment of fall risk is linked to understanding the unwanted signals (i.e., 

noises) as well as wanted signals, it is important to understand the capability of the 

SVM classifier to effectively address noisy data. Therefore, the change of the 

parameters involved in the SVM algorithm along with the added white noise was 

investigated. 

To systematically evaluate the robustness of the SVM algorithm, the white noise 

was added into the normal walking data with different levels of signal-to-noise ratio 

(SNR). The SNR measure in the study was defined as: 

                       𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10(𝑝1/𝑝2)                   (5.4), 

where 𝑝1 is the power of the normal walking data, and 𝑝2 is the power of the noise. 

The white noise was added into the normal walking data with SNR from 10 to 0.2. 

And the same classification approaches as Chapter 4 were applied to the data sets. The 

results are shown in Table 5-1. Additionally, Figure 5-4 and Figure 5-5 illustrate the 

results from Table 5-1.  

 

 

 

 



88 
 

Table 5-1: Classification accuracies of fallers and non-fallers associated with SNR. 

 SNR 10 9 8 7 6 5 4 3 2 1 0.8 0.5 0.2 

General 

Features 

Linear 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.5 0.4 0.4 

Polynomial 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.6 0.6 0.6 

RBF 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.6 

Kinematic 

Features 

Linear 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.7 0.6 0.5 0.5 0.5 

Polynomial 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.6 0.6 0.6 0.6 

RBF 1 1 1 1 1 1 1 1 1 0.9 0.8 0.8 0.8 

 

 
Figure 5-4: Classification accuracies of fallers and non-fallers associated with SNR by 

general features. 

 

 
Figure 5-5: Classification accuracies of fallers and non-fallers associated with SNR by 

kinematic features. 
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5.4  Discussion 

Information presented in this chapter focuses on the variation of the optimal 

parameters involved in SVM algorithm: 𝐶 and 𝛾; as well as the applicability of SVM 

as a machine classifier to distinguish fallers and non-faller in the noisy environment. 

As the performance of different classifiers can be assessed by modulating the noise 

conditions [215, 216], this study utilized the white-noise to create a noisy environment 

in order to evaluate the classification capability of SVM classifier. Considering the 

large human movement variation, the range of SNR (0-10 dB) was chosen largely 

enough for the robustness. For the normal walking data, both training and test sets were 

contaminated by white-noise; however, the SVM classifier still can stably maintain 

high classification accuracy by optimizing the two parameters 𝐶  and 𝛾 . Previous 

studies have reported that 𝐶 and 𝛾 could modulate themselves for noisy data [217], 

which is accordant to our analytic results. 

In addition, the RBF kernel showed more robustness comparing to the linear and 

polynomial kernel, which is consistent with previous studies [218]. In summary, the 

parameters in the SVM classifier is robust enough to classify fallers and non-fallers in 

noisy environments. 

 

 

 

 



90 
 

Chapter 6 SUMMARY AND FUTURE WORK 

 

6.1 Major Findings  

First, this study investigated the relationship of gait and postural parameters 

between fallers and non-fallers from IMU data, in order to distinguish these two groups. 

Statistical analysis suggests that there are some significant differences between fallers 

and non-fallers; however, three IMUs – one located at the sternum and two others 

located at each shank – are needed to achieve this finding. 

Then the machine learning method - support vector machine (SVM) classifier – 

was employed to classify fallers and non-fallers. Different gait feature extraction 

methods for SVM classification were investigated and compared for classifying fallers 

and non-fallers. Additionally, three different types of kernels: linear, polynomial, and 

RBF were compared with the classification results. Both linear and RBF kernels 

performed well in general feature of fall and non-fall classifications; and for selected 

feature input, RBF performed better than the other two kernels. Considering the 

computational cost, RBF and polynomial kernels need less time compared to the linear 

kernel in the same conditions. The results of the study show that only one IMU located 

on the sternum is able to classify fallers and non-fallers by SVM classifier.  

To further expand the applications of the SVM classifier, the robustness of the 

SVM classier was investigated. Two parameters that affect the performance of the SVM 

algorithm - the soft margin constant 𝐶, and the other parameter reflecting the kernel 

function 𝛾 - have been systematically investigated. From the results, we can conclude 
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that the SVM classifier has the power to classify fallers and non-fallers in a noisy 

environment. And this study demonstrates the potential of the SVM classifier to classify 

fallers and non-fallers by utilizing only one IMU located at the sternum. 

Several health applications associated with this study could be implemented. 

Along with providing fundamental findings on the effects of gait and postural 

parameters, factors thought to be responsible for increased risk of falls have been 

thoroughly evaluated. Additionally, we have successfully implemented the 

classification of fallers and non-fallers by using only one IMU located on the sternum. 

Differences between fallers and non-fallers groups will be helpful to explain the higher 

rate of falls in the older adults with gait adaptations. The use of IMUs provides a 

platform of non-intrusive, continuous, remote mobility analysis and fall risk assessment 

for the elderly adults, due to the less burden of wearable sensors. It can be applied in 

health care facilities in the future, such as nursing houses and assisted living facilities, 

etc. 

 

6.2 Limitations and Future Work  

Several limitations existed in this study. First, the sample size for the study was 

not that large. The power was calculated as 0.8 by using the double support time 

parameter (difference of mean values = 0.09; pooled standard deviation =0.8631; 

𝛼 = 0.05). Additionally, the diversity of sample should be considered, in order to 

develop a robust fall risk assessment model that can be used in the community settings. 

Specifically, more participants are needed in the future with wide variations in age, 
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health condition, and other demographic conditions. 

Second, only one location (sternum) of the IMU was investigated in this study. 

Other sensor locations, such as the waist, thigh, and shank were not considered. 

Although one IMU located at the sternum is good enough to classify fallers and non-

fallers with walking data, more features and factors should be considered in the future.  

Fall risk assessment is only the first step of our research. In the future, a 

prediction model for fall prone individuals should be investigated. The reliability 

models based solely on event records, such as fall accident events of history records, 

have been reasonably well developed for predicting fall prone individuals. However, 

these approaches only provide general or average estimates for the entire population. 

Besides, fall behavior is a function of changes in work schedule, operating environment 

and other parameters. In the other hand, conditional monitoring data mainly provide 

information for short-term condition prediction only. Therefore, the prediction of fall 

prone individuals should be dependent on the combination of general characteristics of 

the population (such as prior knowledge, historical records, etc.) and short-term 

condition monitoring. Thus, a systematic prediction strategy which combines the 

strengths of these two approaches will be developed. The ultimate goal is to predict the 

fallers and non-fallers based on the established real time monitoring system, as well as 

prior knowledge. Specifically, machine learning methods, such as machine learning 

regression methods, have been successfully used for time series prediction and controls. 

Therefore, it is hypothesized that machine learning approaches can potentially be 

utilized for fall prediction systems.
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