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ABSTRACT

Computational fluid dynamics (CFD) has been widely used to simulate turbulent flows.
Although an increased availability of computational resources has enabled high-fidelity sim-
ulations (e.g. large eddy simulation and direct numerical simulation) of turbulent flows, the
Reynolds-Averaged Navier-Stokes (RANS) equations based models are still the dominant
tools for industrial applications. However, the predictive capability of RANS models is lim-
ited by potential inaccuracies driven by hypotheses in the Reynolds stress closure. With
the ever-increasing use of RANS simulations in mission-critical applications, the estimation
and reduction of model-form uncertainties in RANS models have attracted attention in the
turbulence modeling community. In this work, I focus on estimating uncertainties stemming
from the RANS turbulence closure and calibrating discrepancies in the modeled Reynolds
stresses to improve the predictive capability of RANS models. Both on-line and off-line
data are utilized to achieve this goal. The main contributions of this dissertation can be
summarized as follows: First, a physics-based, data-driven Bayesian framework is developed
for estimating and reducing model-form uncertainties in RANS simulations. An iterative
ensemble Kalman method is employed to assimilate sparse on-line measurement data and
empirical prior knowledge for a full-field inversion. The merits of incorporating prior knowl-
edge and physical constraints in calibrating RANS model discrepancies are demonstrated
and discussed. Second, a random matrix theoretic framework is proposed for estimating
model-form uncertainties in RANS simulations. Maximum entropy principle is employed to
identify the probability distribution that satisfies given constraints but without introducing
artificial information. Objective prior perturbations of RANS-predicted Reynolds stresses
in physical projections are provided based on comparisons between physics-based and ran-
dom matrix theoretic approaches. Finally, a physics-informed, machine learning framework
towards predictive RANS turbulence modeling is proposed. The functional forms of model
discrepancies with respect to mean flow features are extracted from the off-line database of
closely related flows based on machine learning algorithms. The RANS-modeled Reynolds
stresses of prediction flows can be significantly improved by the trained discrepancy function,
which is an important step towards the predictive turbulence modeling.
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GENERAL AUDIENCE ABSTRACT

Turbulence modeling is a critical component in computational fluid dynamics (CFD) sim-
ulations of industrial flows. Despite the significant growth in computational resources over
the past two decades, the time-resolved high-fidelity simulations (e.g., large eddy simulation
and direct numerical simulation) are not feasible for engineering applications. Therefore,
the small-scale turbulent velocity fluctuations have to resort to the time-averaging model-
ing. Reynolds-averaged Navier-Stokes (RANS) equations based turbulence models describe
the averaged flow quantities for turbulent flows and are believed to be the dominant tools for
industrial applications in coming decades. However, for many practical flows, the predictive
accuracy of RANS models is largely limited by the model-form uncertainties stemming from
the potential inaccuracies in the Reynolds stress closure. As RANS models are used in the
design and safety evaluation of many mission-critical systems, such as airplanes and nuclear
power plants, properly estimating and reducing these model uncertainties are of significant
importance. In this work, I focus on estimating uncertainties stemming from the RANS tur-
bulence closure and calibrating discrepancies in the modeled Reynolds stresses to improve
the predictive capability of RANS models. Several data-driven approaches based on state-
of-the-art data assimilation and machine learning algorithms are proposed to achieve this
goal by leveraging the use of on-line and off-line high-fidelity data. Numerical simulations
of several canonical flows are used to demonstrate the merits of the proposed approaches.
Moreover, the proposed methods also have implications in many fields in which the governing
equations are well understood, but the model uncertainties come from unresolved physical
processes.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) has been widely used to simulate turbulent flows. Al-
though the rapidly increasing availability of computational resources enables high-fidelity
simulations, e.g., Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS),
it is not yet computationally feasible to routinely apply them for complex, industrial flows.
The numerical models based on Reynolds-Averaged Navier-Stokes (RANS) equations are
still the workhorse tools for turbulent simulations in engineering analysis, design, and op-
timizations. Despite with less computational cost, the predictions of RANS models have
large uncertainties for the flows with strong pressure gradients, non-parallel shear layers,
and mean flow curvature [I]. These uncertainties are mostly attributed to the phenomeno-
logical closure models of the Reynolds stress [2], [3], which are referred to as model-form
uncertainties. Model-form uncertainties are the dominant source of uncertainties in RANS
simulations, which largely diminish their predictive capability for practical lows. Therefore,
it is of critical importance to estimate and reduce these uncertainties to make risk-informed
decisions, especially in the context of applying RANS to mission-critical systems, e.g., the
thermo-hydraulic system in the nuclear industry.

The main focus of this work is on the development of methodologies to estimate model-form
uncertainties in RANS simulations and to reduce them based on available high-fidelity data.
The uncertainties are directly introduced onto the source of the RANS model inadequacy by
perturbing the RANS-modeled Reynolds stresses. Two approaches of Reynolds stress per-
turbation are proposed. One is based on the physics-based decomposition by using random
scalar fields, and the other is based on the random matrix theory with the maximum en-
tropy principle. The realizability has been imposed in both approaches. In the physics-based
approach, the physical prior knowledge can be easily encoded. To reduce the model-form un-
certainties, a Bayesian approach, i.e., iterative ensemble Kalman method, is employed. Both
sparse on-line data and prior physical knowledge are assimilated to calibrate the Reynolds
stress discrepancies within the Bayesian approach. Finally, the data-driven uncertainty re-
duction (calibration) approach is extended to apply to the flows for which on-line data are



Jian-Xun Wang Chapter 1. Introduction 2

not available.

1.1 Previous Work

1.1.1 Black-Box, Parametric Approach

Previous efforts in estimating and reducing model-form uncertainties in RANS simulations
have mostly followed parametric approaches, which are based on a universal Bayesian un-
certainty quantification and calibration framework proposed by Kennedy and O’Hagan [4].
In their seminal work, the uncertainties associated with the computer model are assumed
to stem from two sources: model parameters and model inadequacy. Therefore, the true
quantity of interest (Qol) @(x) can be expressed as,

u(x) = u(x, 0) + e(x, a), (1.1)

where u is the modeled Qol; x denotes the input parameter vector; 6 is the model parameter
vector; €(x, ) is the model inadequacy term, which is the difference between the mathemat-
ical model and the physical reality. This model inadequacy term is modeled as a black-box,
Gaussian process (GP) and « represents its hyper-parameter vector. The model uncertainties
can be estimated by perturbing the model parameters 6 and model inadequacy field €(x, «).
The prior distributions of model parameters 6 and hyper-parameters a of GP random field
can be updated by data within the Bayesian framework. This framework has been used in
many applications, and a number of sophisticated variants have been developed [5, 6] [7]. For
estimating and reducing model uncertainties in RANS simulations, extensive research and
development can be attributed to this black-box, parametric framework.

Some researchers tried to estimate uncertainties in RANS turbulence models by only per-
turbing model parameters. For example, Platteeuw et al. [§] perturbed coefficients of the k-&
model based on the collocation method, while Dunn et al. [9] performed similar perturbations
by using the Latin Hypercube sampling method. The perturbed coefficients involve repeating
RANS simulations, and the sensitivities of the propagated Qols are observed. When relevant
data (e.g., experimental measurements of velocity field) are available, these uncertainties can
be reduced, and the mean of each parameter can be calibrated within a Bayesian framework.
This is also referred to as the Data Assimilation (DA) problem. The initial perturbations of
model parameters can be seen as the Monte Carlo samples of their prior distributions, which
will be updated to the posteriors by assimilating available data. Sagaut and co-works [10]
constructed priors of the parameters for two popular RANS models, k- model and k-w SST
model, through generalized Polynomial Chaos. These perturbed parameters were calibrated
by minimizing the discrepancies between the propagated Qols and corresponding data. Ray
et al. [11] also conducted the Bayesian perturbation and calibration of RANS model param-
eters for jet-in-cross flows. However, these parametric approaches are still constrained by
the functional form of turbulence models, e.g., stress-strain relationship based on Boussinesq
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eddy viscosity assumption. This assumption may not be valid for many types of flows, and
the uncertainties or discrepancies introduced by the assumption cannot be captured in the
parametric approaches. In other words, these approaches neglect model-form discrepancies
that stem from inadequacies in the hypothesized stress-strain relationship.

To consider the structural uncertainties due to potentially inaccurate assumptions in RANS
turbulence models, an inadequacy term modeled as a Gaussian random field is introduced.
Edeling et al. [12] employed a multiplicative inadequacy term on the Qols and calibrated both
coefficients of the k—< model and hyper-parameters of the inadequacy term within a Bayesian
framework. In addition to the model inadequacy term, some researchers [13] [14] [15] also in-
troduced an ensemble of RANS models and considered the differences among the predictions
of the multiple models. With data, the predictions of competing models are weighted based
on the posterior plausibility of each model. This approach is referred to as the model-scenario
averaging method. While considering the model inadequacy by introducing a Gaussian ran-
dom field and an ensemble of RANS models has had some success, these physics-neutral
uncertainty quantification and reduction approaches have essential limitations to fully ex-
plore the uncertainty space. First, the model inadequacy term is modeled as a black-box
random field and is directly added to the model predicted Qol. As a result, the physical
prior knowledge is difficult to incorporate, and the physical constraints (e.g., conservation
law) cannot be guaranteed. Moreover, the generality of the calibration is largely restricted.
Recently, Brynjarsdottir and O’Hagan [16] emphasized the importance of incorporating prior
information, but they also highlighted the difficulties of enforcing prior information in the
black-box framework. They pointed out that a simple constraint (e.g., zero-gradient bound-
ary condition) on the model inadequacy is challenging to enforce. Realistic prior knowledge
in turbulence modeling, e.g., realizability of Reynolds stress, conservation law, is generally
even more complicated. Second, introducing multiple competing RANS models to estimate
model-form uncertainty may not fully explore the uncertainty space, since these models are
likely to share similar biases. For example, Oliver and Moser [14] analyzed a group of widely
used RANS models including k—¢, k—w, Spalart-Allmaras, shear stress transport (SST), and
v2—f models. However, these RANS models are all based on the scalar eddy viscosity as-
sumption, and thus the corresponding predictions share similar biases. The uncertainties
are significantly underestimated by only considering this ensemble of models.

1.1.2 Open-Box, Nonparametric Approaches

Recently, several research groups in the turbulence modeling community have recognized the
limitations of the black-box, parametric approaches and started to embed the model inade-
quacy term locally into the closure models, where the source of the model-form uncertainties
locates. We refer these efforts to as open-box, nonparametric approaches, which are reviewed
in detailed below.

Moser and co-workers [3] explicitly pointed out that the model inadequacy of RANS equa-
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tions is originated from the closure model of Reynolds stresses. That is, the RANS equations
based on physical theories (e.g., conservation law) are reliable, except for the approximations
made in the embedded turbulence closure for modeling unresolved physics, i.e., Reynolds
stresses. laccarino and co-workers [17, [I§] held the same insight and proposed a physics-
based, non-parametric approach to estimate the model-form uncertainties in RANS simula-
tions. In their framework, uncertainties are injected onto physically meaningful projections
of the RANS-modeled Reynolds stress, i.e., its eigenvalues, eigenvectors, and turbulence ki-
netic energy. Since the realizability constraints of Reynolds stresses provide perturbation
bound on the eigenvalues of the Reynolds stress anisotropy (in the form of the classical
Lumley triangle [I9] or the recently proposed barycentric triangle [20]), the perturbations
are only introduced in the eigenvalues by perturbing the Reynolds stresses towards their
three limiting states within the physically realizable range. Gorlé et al. [21I] proposed a
marker function and used it to identify regions where the RANS-predicted Reynolds stress
divergence is inaccurate. Based on the marker function, the eigenvalue perturbations are
only conducted to the regions where the baseline turbulence model is believed to perform
poorly. This uncertainty estimation framework based on eigenvalue perturbation has been
successfully applied to several engineering applications [22], 23] 24]. Most recently, Mishra et
al. [25] complemented this framework by exploring envelopes of uncertainties in the eigen-
vectors with two more perturbations. The seminal works of laccarino and co-workers provide
practical methods to estimate model-form uncertainties in RANS simulations from a non-
parametric sense. Moreover, the framework has moderate computational overhead, since
only less than five additional RANS simulations are required. However, it should be noted
that this approach only serves as an empirical estimation of uncertainties and does not fully
explore the entire uncertainty space. This is because the Qols are not necessarily linear
combinations of the ones propagated from the turbulence limiting states, though the true
Reynolds stress is a convex linear combination of the Reynolds stresses in the limiting states.

Recently, Xiao et al. [26] proposed a Bayesian framework for quantifying and reducing model-
form uncertainties in RANS simulations by assimilating limited amount of observation data
and available physical prior knowledge. Compared to the enveloping estimation framework
of Taccarino et al. [17, 18, 25], where the uncertainties were estimated by perturbing the
Reynolds stresses towards their three or five limiting states, the physics-based, Bayesian
framework of Xiao et al. [26] modeled the discrepancies in the magnitude and eigenval-
ues of Reynolds stresses as Gaussian random fields. Wang et al. [27] complemented the
perturbation framework by parameterizing and perturbing the eigenvectors with the Euler
angle system. This physics-based framework systematically explored the uncertainty space
of Reynolds stress fields. Moreover, an iterative ensemble Kalman method was employed
to reduce the uncertainties by assimilating all sources of available information, including
empirical prior knowledge, physical constraints, and a limited amount of observation data.
Wang et al [28] discussed the merits of incorporating various types of prior knowledge in the
proposed uncertainty estimation and reduction framework. Details of this framework can
be found in Chapters 2 and 3. While the physics-based framework has achieved significant
success and been applied to complex, three-dimensional flows [29], it is challenging to spec-
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ify prior distributions over these physical variables without introducing artificial constraints.
The priors play a critical role in the uncertainty propagation and Bayesian inference, par-
ticularly when the data are limited [28]. However, it is not clear if or how much artificial
information is introduced into the prior distributions of each physical component specified
in [26]. To address this issue, Xiao et al. [30] proposed a random matrix theoretic (RMT)
approach with maximum entropy principle to estimate model-form uncertainties in RANS
simulations. The RMT approach is an alternative to the physics-based approach, where the
realizability of perturbed Reynolds stresses is guaranteed automatically by injecting uncer-
tainties directly in the set of positive semidefinite matrices. More importantly, the RMT
approach provides objective priors for Bayesian inferences that satisfy the given constraints
without introducing artificial information. Wang et al. [27] utilized the RMT approach to
assess and improve the specification of priors used in the physics-based, Bayesian framework.
The details of the RMT framework are presented in Chapters 4 and 5.

The Bayesian frameworks for calibrating model discrepancies and reducing model uncer-
tainties (including parametric [14], [10, 12] [15] and nonparametric ones [26, 28]) can only
be applied to scenarios where on-line observation data (e.g., sparse velocity measurements,
pressure and lift coefficients measurements) are available. However, in the design stage of
engineering system where the target configuration has not been built yet, the on-line mea-
surement data are not available. Instead, the data sets of closely related flows, e.g., flows
with same geometry but at different Reynolds numbers or flows with slightly changed ge-
ometries, are usually accessible. These data sets are referred to as off-line databases. Most
recently, researchers started to investigate the use of off-line data to reduce the model-form
uncertainty by applying data-driven, machine learning algorithms. Dow and Wang [31] used
DNS data from a plane channel flow to infer the full-field discrepancy in the turbulent vis-
cosity modeled by the kw model. The inferred discrepancy field is used to improve flows in
channels with wavy boundaries. In a similar vein, Wu et al. [32] extended the framework of
Xiao et al. [26] and showed that the full-field Reynolds stress discrepancies calibrated with
sparse velocity data could be extrapolated to flows at much higher Reynolds numbers. The
extrapolated discrepancy has led to significant improvement of the predicted Qols. How-
ever, both the extrapolation approaches of Dow et al. [31] and Wu et al. [32] are largely
limited for that they infer model discrepancy terms in the physical coordinates x. As a
result, the predictions can only be applied to the flows in the same geometry at the same
location. Duraisamy and co-workers [33] 34] also proposed a two-step approach to reduce
the RANS model discrepancies. They introduced a multiplicative discrepancy field 5(x)
into the transport equations of turbulent quantities (e.g., w in k—w models) to adjust the
production-dissipation balance in the model equation. In the first step, a full-field inversion
of the discrepancy term f(x) is performed for flows where data are available. In the second
step, neural networks are employed to extract the functional form of discrepancy f(q) with
respect to the flow and model variables q. This two-step framework has been tested on
a few simple flow configurations [35], [34] a priori, further a posteriori tests have yet to be
demonstrated. Although the learning is performed in the flow feature q space in [35] 34],
the input feature vector was constructed with a very small number (three) of features and



Jian-Xun Wang Chapter 1. Introduction 6

the invariant properties were not fully considered. Ling et al. [36] pointed out the merits
of embedding the invariant properties into machine learning process. They proposed a rich
set of invariant input features and explored several machine learning models for identifying
the regions where RANS assumptions are violated [37]. Most recently, they also attempted
to directly learn the anisotropy tensors of Reynolds stresses by using random forests [3§]
and deep neural networks [39]. By comprehensively considering the physical interpretability
of learning targets and the invariance properties of input features, Wang et al. [40] pro-
posed a physics-informed machine learning (PIML) approach to use off-line data to learn the
functional form of Reynolds stress discrepancy on its six physically meaningful projections
with respect to a group of ten invariant mean flow features. They successfully demonstrated
that the trained (calibrated) discrepancy model could be used to improve RANS-modeled
Reynolds stresses in flows with slightly changed configurations. Wang et al. [41] further
expanded the input feature space by using an invariant basis and demonstrated significant
success in using PIML towards predictive turbulence modeling in flows with same geometries
but at different Reynolds numbers. The PIML framework for reducing model uncertainties
and calibrating model discrepancies based on off-line data is depicted in Chapter 6.

1.2 Contribution

The contribution of this dissertation to the turbulence modeling community can be summa-
rized as follows:

1. A physics-based, data-driven Bayesian framework was developed for estimating and
reducing model-form uncertainties in RANS simulations. This framework accounts for
empirical prior knowledge and leverages the use of sparse on-line measurement data.
The merits of incorporating prior knowledge and physical constraints in calibrating
RANS model discrepancies were demonstrated and discussed.

2. A random matrix theoretic framework was proposed for estimating model-form uncer-
tainties in RANS simulations. Maximum entropy principle was employed to identify the
probability distribution that satisfies given constraints but without introducing artifi-
cial information. Objective prior perturbations of RANS-predicted Reynolds stresses
in the physical projections were provided based on comparisons between the physics-
based and random matrix theoretic perturbation approaches.

3. A physics-informed, machine learning framework towards predictive RANS turbulence
modeling was proposed. The functional forms of model discrepancies with respect to
mean flow features were extracted from the off-line database of closely related flows
based on machine learning algorithms. The RANS-modeled Reynolds stresses of pre-
diction flows can be significantly improved by the trained discrepancy function, which
is an important step towards predictive turbulence modeling.
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1.3 Outline

This dissertation is formated in the “manuscript” format (“multi-paper” format), in which
each of the main chapters is in the format of a peer-reviewed journal.

The first chapter introduces the concept of model-form uncertainties in RANS simulations
and the significance of estimating and reducing them for mission-critical engineering applica-
tions. A literature review of previous studies on RANS model-form uncertainty estimation
and reduction is given to discuss the current state and standing issues in this area. The
contents of this dissertation are summarized as follows. First, a physics-based, Bayesian
framework of estimating and reducing model-form uncertainties in RANS simulations is
proposed in Chapter 2, where the uncertainties are injected to the physical projections of
RANS-modeled Reynolds stresses. Moreover, physical prior knowledge and sparse on-line
velocity data are assimilated by using an iterative ensemble Kalman method to reduce these
uncertainties. In Chapter 3, the merits of incorporating various types of prior knowledge
are discussed, which suggests that the informative physical prior plays an important role in
improving the performance of reducing RANS model uncertainties, and the proposed physics-
based, the Bayesian framework is an effective way to encode empirical knowledge from various
sources of turbulence modeling. However, challenges associated with this physic-based ap-
proach are to assess the amount of artificial information introduced into the estimated prior
uncertainties and to avoid imposing unwarranted constraints. Therefore, in Chapter 4, a
random matrix approach is proposed for estimating the model-form uncertainties in RANS
simulations by using the maximum entropy principle to identify the probability distribution
that satisfies the known constraints but without introducing artificial information. Chap-
ter 5 compares and discusses the advantages and disadvantages of the physics-based and
random matrix theoretic approaches for RANS model-form uncertainty estimation. In addi-
tion, the specification of priors in the physics-based approach is assessed and improved based
on the comparison. In the proposed framework, the on-line data (i.e., data of the flow to
be predicted) are required to reduce the uncertainties by a Bayesian calibration. However,
for engineering design, the on-line measurement data are usually not available. Instead, off-
line databases of the closely related flows (e.g., flows at different Reynolds numbers or with
slightly changed geometries) can be accessed. The Reynolds stress calibration approach is
extended the to scenarios where no on-line data are available by using the mean flow fea-
tures as the input instead of referring to the spatial coordinates. Moreover, machine learning
techniques are employed to learn the function form of discrepancy in the RANS-predicted
Reynolds stress from the off-line flow data sets. Finally, the last chapter concludes the dis-
sertation by highlighting the key findings of this work and further perspectives for future
work.
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1.4 Contribution to Co-Authored Papers

Five of the journal papers were prepared in collaboration with co-authors. The contributions
by the author of this dissertation are listed below.

1. Chapter 2.

e Took part in planning the paper

e Took part in developing the theory

e Made the numerical implementations
e Took part in numerical simulations

e Took part in writing the paper
2. Chapter 3.

e Took major part in planning the paper
e Made the numerical implementations
e Carried out the numerical simulations

e Wrote major part of the paper
3. Chapter 4.

e Took part in planning the paper
e Took part in developing the theory
e Made the numerical implementations

Carried out the numerical simulations

e Took part in writing the paper
4. Chapter 5.

e Took major part in planning the paper
e Made the numerical implementations
e Carried out the numerical simulations

e Wrote major part of the paper
5. Chapter 6.

e Took major part in planning the paper
e Took part in developing the theory

e Made the numerical implementations

e Carried out the numerical simulations

e Wrote major part of the paper
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Quantifying and Reducing
Model-Form Uncertainties in
Reynolds-Averaged Navier—Stokes
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Abstract

Despite their well-known limitations, Reynolds-Averaged Navier-Stokes (RANS) models are
still the workhorse tools for turbulent flow simulations in today’s engineering analysis, design
and optimization. While the predictive capability of RANS models depends on many factors,
for many practical flows the turbulence models are by far the largest source of uncertainty. As
RANS models are used in the design and safety evaluation of many mission-critical systems
such as airplanes and nuclear power plants, quantifying their model-form uncertainties has
significant implications in enabling risk-informed decision-making. In this work we develop
an data-driven, physics-informed Bayesian framework for quantifying model-form uncertain-
ties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses
and are represented with compact parameterization accounting for empirical prior knowl-
edge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative
ensemble Kalman method is used to assimilate the prior knowledge and observation data
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in a Bayesian framework, and to propagate them to posterior distributions of velocities and
other Quantities of Interest (Qols). We use two representative cases, the flow over periodic
hills and the flow in a square duct, to evaluate the performance of the proposed framework.
Both cases are challenging for standard RANS turbulence models. Simulation results sug-
gest that, even with very sparse observations, the obtained posterior mean velocities and
other Qols have significantly better agreement with the benchmark data compared to the
baseline results. At most locations the posterior distribution adequately captures the true
model error within the developed model form uncertainty bounds. The framework is a major
improvement over existing black-box, physics-neutral methods for model-form uncertainty
quantification, where prior knowledge and details of the models are not exploited. This ap-
proach has potential implications in many fields in which the governing equations are well
understood but the model uncertainty comes from unresolved physical processes.

2.1 Introduction

2.1.1 Model-Form Uncertainties in RANS-Based Turbulence Mod-
eling

In Computational Fluid Dynamics (CFD), the Reynolds-Averaged Navier-Stokes (RANS)
solvers are still the workhorse tool for turbulent flow simulations in today’s engineering
analysis, design and optimization, despite their well-known limitations, e.g., poor perfor-
mance in flows with separation, mean pressure gradient, and mean flow curvature [I]. This
is due to the fact that high-fidelity models such as Large Eddy Simulation (LES) and Direct
Numerical Simulation (DNS) are still prohibitively expensive for engineering systems of prac-
tical interests. Moreover, in engineering design and optimization, many simulations must
be performed with short turn-around times, which precludes the use of these high fidelity
models.

The RANS equations employ a time- or ensemble-averaging process to eliminate temporal
dependency for stationary turbulence. The averaging leads to an unclosed correlation tensor,
the Reynolds stress, which needs to be modeled [I} 2]. Turbulence modeling is a primary
source of uncertainty in the CFD simulations of turbulent flows. Hundreds of RANS turbu-
lence models have been proposed so far. Each has better performance in certain cases yet
none is convincingly superior to others in general. This is due to the fact that the empirical
closure models cannot accurately model the regime-dependent, physics-rich phenomena of
turbulent flows. Predictions obtained with any of these models have uncertainties that are
difficult to quantify. The model-form uncertainties in RANS simulations originating from
the turbulence models are the main focus of this work.
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2.1.2 Model-Form Uncertainty Quantification: Existing Approaches

A traditional approach for estimating RANS modeling uncertainties involves repeating the
simulations by perturbing the coefficients used in the turbulence models, or by using several
different turbulence models [3] (e.g., k—¢, k—w, and eddy-viscosity transport models [1]) and
observe the sensitivity of the Quantities of Interests (Qols). However, different models are
often based on similar approximations, and they are likely to share similar biases [4]. Con-
sequently, this ad hoc model ensemble approach tends to underestimate of the uncertainty
in the model. In turbulence modeling, the Boussinesq assumption states that the Reynolds
stress tensor is aligned with and proportional to the local traceless mean strain rate tensor.
This assumption is shared by all linear eddy-viscosity models that are commonly used in
engineering practice, including the k—¢, k—w, and eddy-viscosity transport models.

In their seminal work, Kennedy and O’Hagan [5] developed a Bayesian calibration approach
that includes a model discrepancy term to account for Model-Form Uncertainty (MFU). In
this approach the MFU is quantified by parameterizing the difference between the outputs
of the computational model and experimental observations as a stationary Gaussian process
whose hyperparameters can be inferred from data [5]. This framework has been used in many
applications, and a number of sophisticated variants have been developed, e.g., by introduc-
ing non-stationary Gaussian processes to model the discrepancy [6], using multiplicative
discrepancy term [7], or using high-fidelity models and field measurements to provide obser-
vation data [8, [, [7]. While this approach has had some success, the physics-neutral approach
treats the entire numerical model as a black box and does not exploit the prior information
that often exists about the nature of the MFU in a given model. Moreover, this framework
addresses MFU only in terms of the Qols, whereas the modeling errors in RANS simulation
arise specifically from the modeled Reynolds stress term. Recent work of Brynjarsdottir and
O’Hagan [10] emphasized the importance of incorporating prior information, but they also
highlighted the difficulties of enforcing prior information in this black-box framework. Even
a simple constraint such as zero-gradient boundary condition on the discrepancy is challeng-
ing to enforce as shown in [I0]. Realistic prior knowledge in engineering practice is generally
even more complicated.

Recently, several prominent groups in the CFD community (e.g., Moser and co-workers [11],
12, [13], Taccarino and co-workers [14], [15] [16}, 17, 18], and Dow and Wang [19]) have recognized
the limitations of the black-box approach and attempted to open the box by injecting the
uncertainties locally into the closure models (i.e., not on the model output directly). Research
from these groups is reviewed in detailed below. These approaches have some similarities
to earlier work of Berliner et al. [20] 21] in the context of geophysical fluid dynamics, where
uncertainties were introduced to the discretized coefficients of the governing geostrophic
equations.

Moser and co-workers [I1], 12, [13] are the first to explicitly point out and utilize the “com-
posite nature” of the RANS equations. That is, the equations are based on reliable theories
describing conservation of mass, momentum, and energy, but contain approximate embedded
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models to account for the unresolved or unknown physics, i.e., the Reynolds stress terms.
Based on this insight, they introduced a Reynolds stress discrepancy tensor €, which is added
to the modeled Reynolds stress (77*"*) in the RANS equations to account for the uncertainty
due to the modeling of 77%"*. Stochastic differential equations forced by Wiener processes
are formulated for the discrepancy €. These equations are structurally similar to but simpler
than the Reynolds stress transport equations commonly used in turbulence modeling [e.g.,
22, 1]. Applications to plane channel flows (where only the plane shear component of the
Reynolds stress tensor is important) at various Reynolds numbers have shown promising
results, while extensions to general three-dimensional flows are underway (Moser and Oliver,

personal communication).

laccarino and co-workers [14L [15] [16], 17, 18] proposed a framework to estimate the model-form
uncertainty in RANS modeling by perturbing the Reynolds stress projections towards their
limiting states within the physically realizable range. Empirical indicator functions are used
to ensure the spatial smoothness (i.e., spatial correlation) of the perturbations in the physical
domain, and to inject uncertainties only to the regions where the baseline turbulence model is
believed to perform poorly. The novelty of their framework is that both physical realizability
and spatial correlations are accounted for, which are two pieces of critical prior information in
turbulence modeling. Another advantage of their framework is the moderate computational
overhead, since only a few limiting states of the Reynolds stresses are computed. On the
other hand, it should be noted that the obtained scattering of the states can only serve
as an empirical estimation of the uncertainties, and are not guaranteed to cover the truth.
While the true Reynolds stress is a convex linear combination of the Reynolds stresses in
the limiting states, the true velocities or other Qols are not necessarily linear combinations
of their respective limiting states.

Dow and Wang [19] quantified model-form uncertainties in the k—~w model by finding the
eddy viscosity field that minimizes the misfit in the computed velocity field compared to
the DNS data. While their approach has some similarities with that of Iaccarino et al., the
most notable difference is that uncertainties are injected to the eddy viscosity and not to
the Reynolds stresses directly. Another key difference is that they used DNS data, while
Iaccarino et al. did not and instead focused only on forward propagation of uncertainties in
the Reynolds stress.

Duraisamy et al. [23 24 25], on the other hand, introduced uncertainties as full-field multi-
plicative discrepancy term S in the production term of the transport equations of turbulent
quantities (e.g., 7 in the SA model and w in the k—w models). Full-field DNS data or sparse
data from experimental measurements were used to calibrate and infer uncertainties in this
term. It is expected that the inferred discrepancy field can provide valuable insights to the
development of turbulence models. They also suggested the possibility of extrapolating the
learned discrepancy fields to similar flows via machine learning techniques.

In summary, the CFD community has recognized the advantages of open-box approaches for
quantifying model-form uncertainties in RANS simulations, and promising results have been
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obtained. However, much work is still needed.

2.1.3 Objective and Novelty of the Present Work

In this work, we focus on a scenario where a limited amount of data (usually from measure-
ments at a few locations) is available. This is often the case when CFD is used in practical
applications in conjunction with experimental data to provide predictions. Examples in-
clude prediction of flows in a wind farm and atmospheric pollutant dispersion in a city [14].
Built on existing insights and experiences in the literature, the objective of this work is to
develop a rigorous, open-box, physics-informed framework for quantifying model-form un-
certainties in RANS simulations. Compared to the pioneering framework of Taccarino et
al. [14, 15] 16] 17, 18] where the model-form uncertainty in RANS simulations was estimated
by perturbing the Reynolds stresses towards their three limiting states, the novelty of our
approach is that an ensemble-based Bayesian inference method is used to incorporate all
sources of available information, including empirical prior knowledge, physical constraints
(e.g., realizability, smoothness, and symmetric), and available observation data.

This work aims to quantify and reduce the model form uncertainty by utilizing both state-
of-the-art statistical inference techniques and domain knowledge in turbulence modeling. As
a first step, we focus on an idealized scenario where model-form uncertainty is the dominant
source of uncertainty, and the coupling with other uncertainties, e.g., model input uncertainty
and numerical uncertainty, is not considered.

The proposed framework has been evaluated on two canonical flows, the flow over periodic
hills and the flow in a square duct, in the present work. Further application to a more com-
plicated, three dimensional flow of critical relevance to aerospace engineering, i.e., the flow
over a wing-body junction, has also been explored and presented in a separate work [26].
While the authors believe that the present contribution is novel and represents an advance-
ment over the state of the art, we expect significant challenges that need to be addressed
before the proposed approach can be extended to industrial flows, e.g., the flows past an
aircraft or in a gas turbine.

The rest of the paper is organized as follows. The model-form uncertainty quantification
framework is introduced in Section 2, and numerical implementation details are given in
Section 3. Numerical results for two application cases, the flow over periodic hills and
the flow in a square duct, are presented in Section 4 to assess the merits and limitations
of the developed framework. The success, limitations, practical significance, and possible
extensions of the proposed method are further discussed in Section 5. Finally, Section 6
concludes the paper.
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2.2 Proposed Framework

2.2.1 Prior Knowledge in RANS Modeling

An important feature of the proposed framework is the explicit, straightforward represen-
tation of prior knowledge in a Bayesian inference framework. As such, we summarize the
prior knowledge in RANS-based turbulent flow simulations below, some of which has been
reviewed in Section [6.1k

1. Composite model: The uncertainties in the modeled Reynolds stresses are the main
source uncertainties in the RANS model predictions [11].

2. Physical realizability: The true Reynolds stress at any point in the domain resides in
a subspace of a six-dimensional space [27, [17].

3. Spatial smoothness: The Reynolds stress field usually has smooth spatial distribu-
tions except across certain discontinuous features (e.g., shocks and abrupt changes of
geometry).

4. Problem-specific prior knowledge: There are some well-known scenarios where eddy
viscosity models are expected to perform poorly as enumerated above, e.g., flow sepa-
ration, mean flow curvature. Taking the flow over periodic hills as shown in Fig. for
example, the flood contour indicates typical prior knowledge of the relative magnitude
of the Reynolds stress discrepancies in each region, i.e., the regions with recirculation,
non-parallel free-shear flow, and the strong mean flow curvature have larger discrep-
ancies.

2.2.2 Representations of Prior Knowledge in the Modeling Frame-
work

In light of the prior knowledge presented above and based on the existing methods in the
literature [I11, [I7, [19], we make the following modeling choices to represent the prior knowl-
edge.

Composite Model

~rans

The true Reynolds stress 7 is modeled as a random field of symmetric tensors with 7

~rans

as its deterministic mean field, where 7 is the Reynolds stress field given in the baseline
RANS simulation whose model-form uncertainty is to be quantified ]

~rans

"'We use ~ to emphasize the fact that is a deterministic field, which is in contrast to the random
field 7.
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Ly

general flow direction free shear layer

circulation zone
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z

Figure 2.1: Domain shape for the flow over periodic hills. The x-, y- and z-coordinates are
aligned with streamwise, wall-normal and spanwise directions, respectively. All dimensions
are normalized with H with L,/H =9, L,/H = 3.036. The contour shows the variance field
o(x), where darker color represents the larger variance. The locations where velocities are
observed are indicated as crosses (x).

Physical Realizability of Reynolds Stresses

To ensure physical realizability of its realizations, the value of the Reynolds stress field 7 at
any given location x is projected onto a space with six physically meaningful dimensions via
the following eigen-decomposition [17, [14]:

1 1
T =2k (§I - a) = 2k (51 + VAVT) (2.1)

where k is the turbulent kinetic energy, I is the second order unit tensor, a is the anisotropy
tensor, V = [vy, vy, v3], and A = diag[\;, A2, \3] are its orthonormal eigenvectors and eigen-
values, respectively, with A\; + Ao + A3 = 0. This decomposition transforms the Reynolds
stress to a space represented by six variables with clear physical interpretations: magnitude
(represented by the turbulent kinetic energy k, which must be non-negative), shape (repre-
sented by two scalars A, A2), and orientation (represented by three mutually orthonormal
vectorsEl vy, va, and v3) of the Reynolds stress tensor |28 [14]. Further, A\;, Ay, and A3
are transformed to the Barycentric coordinates (Cy, Cy, C3), with C} + Cy + C3 = 1, and
subsequently to the natural coordinates (£, 7). With the mapping from Barycentric co-
ordinates to natural coordinates (see Fig. [6.1)), the physically realizable turbulent stresses
enclosed in the Barycentric triangle (panel a) are transformed to a square (panel b), i.e.,
{(&n) € € [-1,1],n € [-1,1]}, which is more convenient for parameterization. Details of
the mapping are presented in In summary, we transform the Reynolds stress tensor to
six physical dimensions denoted as (k, &, n, v, va, v3). All mappings involved are linear and
invertible except for a trivial singular point in (C, Cy, C3) — (&, 7).

2They can be considered as the three orthogonal axes of an ellipsoid, and thus the three vectors have
three degrees of freedom in total, i.e., its orientation in three-dimensional space.
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Figure 2.2: Mapping between Barycentric coordinates and natural coordinates, transforming
the Barycentric triangle that encloses all physically realizable states [28| [16] to a square via
standard finite element shape functions (detailed in . Corresponding edges in the two
coordinates are indicated with matching colors. The singular point 3(4) in the Barycentric
coordinate, which maps to the edge 34 in the natural coordinate, does not pose any practical
difficulties.

After the mapping of Reynolds stress 77%"* to the physically meaningful dimensions, i.e., k,
&, m, uncertainties are injected to the projected space on these variables. This is achieved
by modeling the corresponding truths k(z), £(z), and n(z) as random fields with k" (x),
€75 ( ), and 777°"(x) as priors. Specifically,

log k(z) = log k™™ (z) + 6" (z) (2.2a)
E(w) = € (2) + 6%(x) (2.2b)
n(x) = 7" (x) + 6"(x) (2.2¢)

where the spatial coordinate z is the index of the random fields. Note that the logarithmic
discrepancy of the turbulent kinetic energy k is modeled in Eq. (6.5d) to ensure the non-
negativity of k.

The realizability in this framework is ensured by bounding the perturbed anisotropy (7, &)
within the square [—1, 1] x [—1, 1] in the &~ plane as shown in Fig. 2b. Any perturbed state
outside this range will be bounded to the edge of the square, which is admittedly an ad hoc
modeling choice. As a result, the prior may become non-Gaussian and the perturbation sam-
ple may deviate from zero-mean if a large number of perturbations are bounded. However,
note that for a Gaussian prior the percentage of out-of-bound points can be estimated, and
thus the variance of the perturbation can be controlled straightforwardly given an allowable
ratio of out-of-bound points. This is one of the advantages of mapping the Barycentric tri-
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angle to the square before introducing perturbation as opposed to directly perturbing the
baseline within the Barycentric triangle.

The bounding scheme for ensuring realizability can distort the distribution of the sampled
Reynolds stresses from the specified prior. Specifically, when the baseline Reynolds stresses
are located near the realizability boundaries, e.g., the top vertex of the Barycentric triangle
for points near walls, the bounding can cause the sample distribution to become truncated
Gaussian. However, note that the tail truncation and the associated probability mass con-
centration near the boundaries are caused by the bounding procedure to ensure realizability,
regardless of whether Barycentric coordinates or natural coordinates are used. This issue
is further investigated in two follow-on studies [29] [30], where we proposed a random ma-
trix approach which directly samples a maximum entropy distribution defined on the set
of positive semidefinite matrices, and the artificial probability mass concentration described
above is avoided. However, note that the approximate Bayesian inference method (i.e., the
ensemble Kalman method) used in this work is not sensitive to the prior. From a practi-
cal point of view, the prior can be alternatively interpreted as an “initial guess” used in
optimization [e.g., 24].

Perturbing the orientations of the modeled Reynolds stress tensor can potentially cause
instability in the RANS momentum equation. Consistent with the work of laccarino et
al., we focus on the magnitude (k) and the shape (A; and Ay, or equivalently the natural
coordinates ¢ and 7) of the Reynolds stress tensor 7, and do not introduce uncertainties
into the orientations (vy,vg, v3). Consequently, the assumed uncertainty space of Reynolds
stresses may not contain the truth because the true Reynolds stresses are likely to have
different orientations from those of the RANS predictions. The implications of this fact will
be further discussed in Section 2.4.1]

Spatial Smoothness of Reynolds Stress Distribution

To ensure spatial smoothness and to reduce the dimension of the uncertainty space, the
random fields to be inferred, i.e., 8%, 6¢, and &7, are projected to a deterministic functional
basis set {¢;(z)}. That is,

(z,60%) = Zw o di() (2.3a)
(z,60%) = Zoﬁ\@g bi(z) (2.3b)

(z,0m) Zw lon ¢i(x) (2.3¢)
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s wf, and w; are random Variable depending on
the realized outcome of 6, 65, and 67, respectively, and ¢;(x) are deterministic spatial basis
functions. An orthogonal basis set is chosen in this work as will be detailed below, but the
orthogonality is not mandatory.

where the coefficients of the it mode w*

Remarks: The mapping in Section [2.2.2|involves linear transformation of the Reynolds stress
at a given point to physical variables, which ensures the physical realizability of the Reynolds
stresses in the prior. The orthogonal projection in Section aims to represent the spatial
distribution function on a basis set in a compact manner, which ensures spatial smoothness
and reduces the uncertainty dimensions of 7(x).

Representation of Problem-Specific Prior Knowledge

Finally, problem-specific knowledge is encoded in the choice of basis set {¢;}. Here we will
use the flow over periodic hills as example to illustrate the representation of the problem-
specific prior knowledge.

We model the prior of the discrepancies 6%, ¢ and 6" as zero-mean Gaussian random fields
(also known as Gaussian processes) GP(0, K), where

K(z,2') = o(z)o(2) exp (-"”_Z—Q$|2> (2.4)

is the kernel indicating the covariance at two locations x and z’. The variance o(z) is a spa-
tially varying field specified (see the flood contour in Fig. to reflect the prior knowledge
that large discrepancies in modeled Reynolds stress are expected in certain regions. The
correlation length scale [ can be specified based on the local turbulence length scale, but is
taken as constant in this work for simplicity.

The orthogonal basis functions ¢;(x) in Eq. 1} take the form ¢;(z) = V/ S\qul(x), where
Ai and ¢;(z) are eigenvalues and eigenfunctions, respectively, of the kernel K in Eq. |)
computed from the Fredholm integral equation [31]:

/K(a:, 2 )p(x') dx' = Ao(x) . (2.5)
With this choice of basis set the expansions in Eq. (5.5) for the fields 6%, §¢ and 67 become

Karhunen—Loeve (KL) expansions [31], such that wF, wf, and w; are uncorrelated random
variables with zero means and unit variances.

3Throughout the manuscript, subscripts denote indices, and superscripts indicate explanation of the
variable. For example, w? is the coefficient for the i*" mode in the expansion of the discrepancy field §* for
the turbulent kinetic energy k. Tensors are denotes in bold (e.g., 7) and not with index notation.
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Remarks The Gaussian process and KL expansions are intentionally presented in this
Section to emphasize the fact that they are our specific choices for this problem and prior
knowledge only. The optimal choice of basis set depends on the specific characteristics (e.g.,
smoothness, compactness of support) of the prior. Other functional basis sets, including
wavelets [32] or radial basis functions [33], will be explored in future work.

2.2.3 Inverse Modeling Based on an Iterative Ensemble Kalman
Method

After the transformations above, the Reynolds stress random field 7(x) is parameterized by
the coefficients w¥, w*, and w! in Eq. (5.5), which are truncated to m modes and written in
a stacked vector form as follows}

k£ k€

_ n n k
W= [w17 Wy, Wy, Wy, Wy, Wy, =--, W

3
my W

oy Wil (2.6)
We employ an iterative, ensemble-based Bayesian inference method [34] to combine the
prior knowledge as represented above and the available data to infer the distribution of
w. This method is closely related to ensemble filtering methods (e.g., ensemble Kalman
filtering), which are a class of standard data assimilation techniques commonly used in
numerical weather forecasting [35]. An overview of the ensemble Kalman method based
inverse modeling procedure is presented in Fig. 2.3 In the iterative ensemble method, the
state of the system x is defined to include both the physical variables (i.e., velocity field u)
and the unknown coefficients w, i.e., x = [u,w|T. This is called “state augmentation” [34].
One starts with an ensemble of states {x;}}_, drawn from their prior distributions. During
each iteration, all samples in the ensemble are updated to incorporate the observations
through the following procedure:

1. reconstruction of Reynolds stresses from the coefficients w,

2. computation of velocity fields from the given Reynolds stress fields by solving the
RANS equations (implemented as forward model tauFoam, detailed in Section |4.3.5)),
and

3. a Kalman filtering procedure to assimilate the velocity observation data to the com-
puted states, leading to an updated ensemble.

The updating procedure is repeated until the ensemble is statistically converged. The con-
vergence is achieved when the two-norm of the misfit between the predictions and the ob-
servations falls below the noises level of the observations [34]. The converged ensemble is

41t is trivial for each variable to have a different number of modes, but this possibility is omitted here to
simplify notation.
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considered a sample-based representation of the posterior distribution of the system state,
from which the mean, variance, and higher moments can be computed. The algorithm of
the inversion scheme is presented in [2.B] and further details can be found in [34].

The noises added to the observations represent a combination of measurement errors and
process errors [36]. The former is likely to be negligible for DNS data. However, the latter
can be significant and is used to account for the fact that the observed system and the system
described in the numerical model can have different dynamics. From a Bayesian perspective,
adding the process noise allows the likelihood and the prior distribution to have overlap in
their supports and thus be able to reconcile with each other in the inference procedure. As
long as the chosen noise level 04, is larger than a threshold (1% of truth in this work), the
inferred posterior means are not sensitive to this parameter. See further discussion in [e.g.,
34].

Ensemble of Augmented States
(Physical Variables & Parameters)

Physics-Based i 00
Yy Brios Sampling .' o oo
Distributions e o 08.60°
v Ensemble of Observations Data Ensemble of
- Propagated States Updated States
Forward Model
(RANS solver with
parameterized turbulent | Bayesian Updating

stress discrepancies)

Filtering Procedure

Figure 2.3: Inference of coefficients in the parameterized model discrepancies (e.g., discrep-
ancies in RANS modeled Reynolds stresses) using an iterative ensemble Kalman inversion
method. This approach combines prior knowledge of a given problem and available data to
quantify and reduce model-form uncertainty.

An important property of the iterative ensemble Kalman method is that the posterior en-
sembles and its mean all lie in the linear space A spanned by the prior ensemble {xj}évzl.
In essence, this scheme attempts to search the space A to find the optimal solution that
minimizes the misfit between the posterior mean and the observations, accounting for the
uncertainties in both [34]. As with many inverse problems, this problem is intrinsically ill-
posed. Specifically, because of the sparseness of the observation (the scenario of concern in
our work), the amount of data is usually not sufficient to constrain the uncertainties in the
states, which include the model discrepancies as components. The forward model essentially
provides the regularization of the ill-posedness with its physical representation of the system
dynamics.

The ensemble Kalman-based uncertainty quantification scheme used here is an approximate
Bayesian method, and is computationally cheaper than the exact Bayesian scheme based on
Markov Chain Monte Carlo sampling. It is not expected to give posterior distributions with
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comparable accuracy to those obtained from exact Bayesian schemes [37]. This limitation
will be further discussed in Section LA

2.2.4 Summary of the Algorithm in the Proposed Framework

In summary, the overall algorithm of the proposed framework for quantifying and reducing
uncertainties in a RANS simulation is presented as follows.

1. Perform the baseline RANS simulation to obtain the velocity 4""*(z) and Reynolds
stress 77" (z).

2. Perform the transformation 77" s (k7@ns, £rans jrans),

3. Compute KL expansion to obtain basis set {¢;(x)}*,, where m is the number of modes
retained.

4. Generate initial prior ensemble of coefficient vectors {w; };V: 1, where NV is the ensemble
size.

5. Use iterative scheme shown in Fig. to obtain the posterior ensemble of the state
distribution. Specifically, in each iteration do the following:

(a) Recover the discrepancy fields 6%, 6%, and 6" from the coefficient {w;}}_; in the
current state and the basis functions via Eq. (5.5)), and obtain realizations of k,
¢, and 7 from Eq. (5.10]) for each sample in the ensemble.

(b) Obtain Reynolds stress ensembles {7;}_, via mapping (k,&,n) — 7.

(c) For each sample in the ensemble {7;}}_,, solve the RANS equations for velocity

field w; with given Reynolds stress field ;.

(d) Compare the ensemble mean with velocity observations, and use the Kalman
filtering procedure to correct the augmented system state ensemble {x;})*,, where
x; = [uj,w;]". The updated coefficient vector ensemble w; is thus obtained as
part of the system state ensemble.

(e) Stop if statistical convergence of the ensemble as defined in Section is
achieved.

2.3 Implementation and Numerical Methods

The uncertainty quantification framework including the mapping of Reynolds stresses and the
iterative ensemble Kalman method is implemented in Python, which interfaces with RANS
models and the KL expansion procedures to form the complete framework. The package
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UQTk developed by Sandia National Laboratories is used to perform the KL expansions [38].
Two types of RANS solvers are used in this framework, a conventional baseline RANS solver
simpleFoam and a forward RANS solver tauFoam which computes velocity field with a given
Reynolds stress field. Both solvers are described as below.

The baseline simulation uses a built-in RANS solver simpleFoam in OpenFOAM for in-
compressible, steady-state turbulent flow simulations. OpenFOAM (for “Open source Field
Operation And Manipulation”) is an open-source, general-purpose CFD platform based on
finite-volume discretization. The platform consists of a wide range of solvers and post-
processing utilities. The SIMPLE (Semi-Implicit Method for Pressure Linked Equations)
algorithm [39] is used to solve the coupled momentum and pressure equations. Collocated
grids are used, and the Rhie and Chow interpolation is used to prevent the pressure—velocity
decoupling [40]. Second-order spatial discretization schemes are used to solve the equations
on an unstructured, body-fitting mesh. Given the specification of the flow including initial
conditions (to start the iteration), boundary conditions, geometry, and the choice of turbu-
lence model, the simpleFoam solver computes the velocity field along with Reynolds stresses
by solving the RANS equations as well as the equations for the turbulence quantities (e.g.,
turbulent kinetic energy k and the rate of dissipation e for k— models). We choose the
Launder—Sharma low Reynolds number k— model [41] in the baseline simulations. Accord-
ingly, the meshes are refined wall-normal direction near the wall to resolve the boundary
layer. This is to avoid the complexity of using wall-functions, which is in consistent with the
work of Emory et al. [I7]. As can be seen in the overall algorithm presented in Section [2.2.4]
for each uncertainty quantification case the baseline simulation is performed only once.

The forward RANS model tauFoam is invoked repeatedly in the Bayesian inference proce-
dure. This solver is adopted from and similar to simpleFoam except that it computes the
velocity directly with a given Reynolds stress field. There is no need to specify a turbulence
model and or to solve the equations for turbulence quantities, since the Reynolds stress is
given. Moreover, as the forward RANS simulations are initialized with the converged base-
line solutions, the number of iterations needed to achieve convergence is much smaller than
that in the baseline simulation. As a result, the computational cost for each call of the
forward RANS model tauFoam is much lower than that of the conventional RANS solver
simpleFoam. In the simulations presented below, the forward RANS simulations need only
10% of the computational cost as that of the baseline simulation to achieve the same residual.

2.4 Numerical Simulations

Two canonical flows, the flow in a channel with periodic constrictions (periodic hills) and
the fully developed turbulent flow in a square duct, are chosen to evaluate the performance
of the proposed framework. The periodic hill flow features a recirculation zone formed by a
forced separation, a strong mean flow curvature due to the domain geometry, and a shear
layer that is not aligned with the overall flow direction. All these features are known to pose
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challenges for turbulence modeling. The square duct flow is characterized by a secondary
flow pattern in the plane perpendicular to the main flow. The in-plane secondary flow is
driven by the imbalance in the normal components of the Reynolds stress tensor, which
cannot be captured by models with isotropic eddy viscosity turbulent models including most
of the widely used models such as k—, k—w, and eddy viscosity transport models. The
two challenging cases are chosen to demonstrate the capability of the proposed framework
in quantifying and reducing uncertainties in the RANS model predictions by incorporating
sparse observations.

2.4.1 Flow over Periodic Hills
Case Setup

The periodic hill flow is widely used in the CFD community to evaluate the performance of
turbulence models due to the availability of experimental and numerical benchmark data [42].
The geometry of the computational domain and the coordinate system are shown in Fig. [5.2]
The Reynolds number based on the crest height H and the bulk flow velocity U, at the crest
is Re, = 2800. Periodic boundary conditions are applied in the streamwise (z) direction, and
non-slip boundary conditions are applied at the walls. The mean flow is two-dimensional,
and thus the spanwise (z) direction is not considered for the RANS simulations.

The mesh and computational parameters used in the uncertainty quantification procedure
are presented in Table [3.2] Despite the coarse meshes, the walls are adequately resolved in
both cases as required by the Lauder—Sharma turbulence model [4I]. The distance between
the center of the first cell and the wall is smaller than 1 in most regions for periodic hill
case and 0.7 for the square duct case. Parameters of the meshes for both cases are shown in

Table B.2L

The uncertainties in &, 1, k are all considered, and thus 6%, 67 and 6* are all random fields.
This choice is based on our prior knowledge that both the Reynolds stress anisotropy (in-
dicated by the shape 7, or equivalently, £ and 7n) and turbulent kinetic energy k predicted
by the RANS model are biased, and both are important for the accurate prediction of the
flow behavior. The length scale parameter [ is chosen according to the approximate length
scale of the flow, which can be obtained either from our physical understanding of the flow
or, if that is not available, from the baseline RANS simulation. Velocity observations are
generated by adding Gaussian random noises with standard deviation o, to the truth from
DNS data. Specifically, the observations used in each iteration are independent realizations
from a Gaussian distribution whose mean is the truth and standard deviation o, is 10%
of the true mean value. The noises at different locations are uncorrelated. The observation
points are arranged so that they are closer in regions where the spatial changes of the flow
are more rapid (the recirculation zone leeward of the hill and the reattached flow region
windward of the hill), and are further apart in the free shear region downstream of the hill
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crest. This arrangement of observations is expected in actual experiments. The ensemble
usually converges in approximately 10 iterations. For all cases presented in this work, 60
samples are used in the ensemble. We have performed detailed sensitivity studies on the en-
semble size, and it was found that the inferred velocities and Qols do not vary if more than
30 samples are used. This finding is consistent with earlier studies when EnKF was used in
data assimilations in applications such as weather forecasting [43]. The computational cost
of the proposed procedure is further discussed in Section [2.5.1]

The non-stationary Gaussian process models for 6%, 67 and §* share the same variance field
o(x), which are shown as flood contour in Fig. . Design of the variance field is strictly
based on physical prior knowledge as described in Section 2.2.2] and does not take the DNS
data into account, since the complete field of the true Reynolds stresses are rarely known
in practical applications. Specifically, the variance fields of the priors as shown in Figs. [5.2
and are constructed by superimposing a constant background value oy and a spatially
varying field 0j,cq1(), i.e., 0(x) = 00 + 01pcar(x). For the periodic hill case, the background
0p is set to be 0.2. To obtain the field gjyeq(x), we specify that oy, = 0.5 at the following
locations, where RANS predictions are considered less reliable: (1) the hill crest, (2) the
center of the recirculation region, (3) the windward side of the hill, and (4) the free-shear
layer downstream the crest. Interpolations based on radial basis functions with exponential
kernels are used to obtain gy, (x) at other locations. As such, its value decays to zero far
away from the locations specified above. The length scale of the basis functions is estimated
based on the characteristic length of the mean flows, which is chosen as the hill height H.

The first sixteen modes obtained from the KL expansion are used to reconstruct the dis-
crepancy field. The number of modes retained is chosen such that the reconstructed field
has at least 80% of the total variance of the original random field. A rule of thumb is that
a coverage ratio of 80% is adequate for a faithful representation. Increasing the number
of modes increases the difficulty of the inference and may lead to deteriorated results for a
given amount of observation data.

Parameter sensitivity analysis has been conducted to ensure that reasonable variations of the
computational parameters above do not lead to significantly different results or conclusions.
In particular, we have shown in a follow-on study [44] that even in the complete absence
of prior knowledge (i.e., a constant variance field o(z)), the inferred velocities are still sig-
nificantly improved, albeit slightly less so than that with an informative prior. Specifically,
in the region near the upper wall, much more uncertainties are presented in the posterior
ensemble when a non-informative, constant variance field is used.

Results

The first six modes of the KL expansion are presented in Fig. along with two typical
realizations. This is to illustrate the uncertainty space of the Reynolds stress discrepancy
field (or more precisely its projections §¢, §" and §*) . All the modes have been shifted and
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Table 2.1: Mesh and computational parameters used in the flow over periodic hills and the
flow in a square duct.

cases \ periodic hill square duct
mesh (n, X ny,) 50 x 30 30 x 30
domain size (L, x L, x L,) 9H x 3.306H x 0.1H 0.4D x 0.5D x 0.5D
Az x Ay x Az in y* 35 x [2,65] x 850 24 x [1.4,30] x [1.4,30]
first grid point in y™* ~ 1, below 2y* in most region 0.7
number of samples N 60
fields with uncertainty &k &Em
number of modes m per field 16 8
length scale(® H 0.1D
number of observation 18 25(%)
std. dev. observation noise (o) 10% of truth

(a) Normalized by hill crest height H and domain size h for the periodic hill case and
square duct case, respectively.
(b) Only 13 points of velocity data are supplied effectively due to the diagonal symmetry.

normalized to the range [0,1]. It can be seen that in all the models and the realizations
the variations mostly concentrate in the three pre-specified regions (recirculation zone, free
shear region, and the reattached flow windward of the hill), and the upper part of the channel
has rather small variations. This is consistent with our physical prior knowledge specified
through the variance field design.

Accurate predictions of the recirculation and the reattachment of the flow are of the most
interest in the flow over periodic hills. Therefore, we identify three quantifies of interest
for this case: (1) the velocity field, in particular the velocities in the recirculation zone and
reattached flow region windward of the hill, (2) the distribution of shear stresses 7, on the
bottom wall, and (3) the reattachment point zsecn. Other quantities that are important in
engineering design and analysis (e.g., friction drag, form drag, size of separation bubble) are
closely related to the three Qols above.

The prior and posterior ensembles of the velocities are presented in Fig. with comparison
to the DNS benchmark results. The geometry of the domain is also shown to facilitate
visualization. From Fig. it can be seen that the prior mean velocity profiles are very close
to those from the baseline RANS simulation, with only minor differences at a few locations
(e.g., near the bottom wall at x/H = 4, 5, and 6). This is not surprising, since the Reynolds
stresses prior ensemble use the RANS modeled Reynolds stress 7""* as the mean. In other
words, the ensemble is obtained by introducing perturbations to the 7"*"**. Therefore, the
similarity between the velocity profiles in the baseline simulation and those of the prior
ensemble indicates that the mapping from Reynolds stress to velocity is approximately linear
with respect to the perturbations introduced to the prior Reynolds stresses ensemble. Clearly,
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) mode 1 ) mode 2 ) mode 3 ) mode 4
) mode 5 ) mode 6 ) realization 1 ) realization 2

Figure 2.4: Hlutstration of KL expansion modes of the periodic hill case. All the modes
have been shifted and scaled into the range between 0 (lightest) and 1 (darkest) to facilitate
presentation, and the legend is thus omitted. Panels (a) to (f) represent modes 1 to 6,
respectively. Lower modes are more important. Panels (g) and (h) show the turbulent

kinetic energy associated with two typical realizations of the Reynolds stress discrepancy
fields.

both the baseline velocities and the prior mean velocities deviate significantly from the
benchmark results, particularly in the recirculation region (leeward of the hill). From Fig.
it can be seen that the posterior ensemble mean of the velocities along all the lines are
significantly improved compared to the baseline results.

The remaining differences between the obtained posterior mean and the benchmark data
can be attributed to two sources: (1) the sparseness of the observation data, and (2) the
inadequacy of the proposed inference model, specifically, the posterior mean Reynolds stress
does not reside in the space A spanned by the prior ensemble. However, note that obtaining
the correct Reynolds stresses is a sufficient but not necessary condition to infer the correct
velocities. For example, if the divergence of the true Reynolds stresses resides in the space
spanned by the prior ensemble, the true mean velocity can still be obtained. This is not
surprising since it is the divergence of the Reynolds stress tensor field that appears as source
term in the RANS momentum equation. To illustrate this point, it is particularly interesting
to investigate the scenario when large amounts of data are available, since any remaining
discrepancies should then be explained solely by the inadequacy of the inference processes.
We performed an experiment where all the benchmark velocities along ten sampled lines
at ©/H = 0,0.5,1,2,--- ,8 were used as observations. In this scenario the posterior mean
velocities agree with the benchmark data very well, even in the regions between the sample
lines, where no data are available. However, significant discrepancies still remain between
the inferred posterior mean of the Reynolds stresses and the benchmark. We argue that
the inability to obtain the correct Reynolds stress field is not an intrinsic limitation of
the proposed method. Rather, it can be explained by the non-unique mapping between
Reynolds stress and velocities as described by the RANS equations. That is, two distinctly
different Reynolds stress fields can lead to identical or very similar velocity fields, because the
divergence of the Reynolds stress appears in the RANS equation as pointed out above. The
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non-unique mapping is further discussed in Section [2.5.3] However, when we assume that
some sparse measurements of Reynolds stresses are available, which admittedly are difficult
to obtain in practical experiments, the inferred Reynolds stresses did improve significantly.
The results are omitted here for brevity.

In order to obtain the true Reynolds stresses, the posterior mean Reynolds stress must
reside in the space A spanned by the prior ensemble, but in practical inferences there is no
guarantee this will be the case. There are two reasons for this. First, uncertainties are only
introduced to the magnitude (k) and shape (£ and 1) of the baseline Reynolds stresses, and
not to the orientations (vy, vo, and v3). Second, a limited number of modes are retained in
the KL expansion, which correspond to very smooth fields of Reynolds stress discrepancies.
Therefore, if we think of the true Reynolds stress as residing in a high-dimensional space, in
the current framework we assume that the truth is reasonably close to the baseline prediction
7" and thus we only search the vicinity of 7"*"** for realizable candidates. This is justified
by the confidence that the chosen baseline RANS model is rather capable, usually backed

by previous experiences accumulated by the community on the model of concern.

Finally, we emphasize that if the true Reynolds stresses do reside in the space spanned by the
prior ensemble, the posterior mean velocity and the Reynolds stresses would indeed coincide
with the truths. This scenario could occur if the baseline Reynolds stress 77" only differs
from the true Reynolds stress in magnitude k and shape £ and 7, and the discrepancy is
smooth enough to be represented by the chosen number of modes. However, both scenarios
are rather unlikely in any nontrivial cases. For verification purposes we have designed a case
of flow over periodic hills with synthetic data (as opposed to DNS data) that satisfies the
requirements above, and have confirmed that the obtained posterior mean velocity indeed
exactly agrees with the truth in this case, and that the true Reynolds stress can also be

obtained. The results are detailed in a separate work [44].

This claim that the prior has small influence to the prior is apparently contradictory to the
Bayesian inference theory, which states that the posterior is proportional to the product of the
prior and the likelihood informed by the observation data. However, in the ensemble Kalman
method used in this work, the observation data are imposed on the prior iteratively (albeit
with different noises in each iteration). As a result, the influence of the prior on the posterior
diminishes as the posterior proceeds to statistical convergence. From a practical perspective,
the iterative ensemble Kalman method can also be interpreted as an optimization procedure
(e.g., that used by Parish et al. [24]), with the prior corresponding to the initial guess. This
interpretation, as an alternative to the Bayesian interpretation, has been advocated in the
literature [34], [45].

Figure shows the 95% credible intervals estimated from the data in the prior and posterior
velocity ensembles. That is, at each point, 95% of the samples fall within the shaded region
(light /pink shaded for the prior and dark/blue shaded for the posterior). Note that the
credible intervals shown here are point estimations and do not contain information on the
spatial correlations of the velocity profiles. It can be seen from Fig. that the 95%
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samples —-=- sample mean —- baseline

— DNS (Breuer et al. 2009) X X observations

y/H

x/H;, 2U,/U,+z/H
(a) Prior velocities ensemble

x/H; 2U,/U,+z/H

(b) Posterior velocities ensemble

Figure 2.5: The prior and posterior ensembles of velocity profile for the flow over periodic
hill at eight locations z/H = 1,--- ,8 compared with benchmark data and baseline results.
The locations where velocities are observed are indicated with crosses (x).
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credible interval in the posterior is significantly narrowed compared to that in the prior,
which suggests that the model form uncertainty is reduced by incorporating the velocity
observation data. Such a reduction of uncertainty is more visible in the recirculation zone,
where more observation data are available. In contrast, the prior uncertainty near the upper
wall largely remains, which is due to the lack of observation data in this region.

’ Prior [ Posterior —— DNS (Breuer et al. 2009) ‘

3.0
2.5

2.0
T

— 1.5
B

1.0
0.5

0.0

x/H; 2U,/U, +x/H

Figure 2.6: The 95% credible intervals of the prior (light/pink shaded region) and posterior
(dark/blue shaded region) ensembles of velocity profiles for the flow over periodic hills.

The other two Qols, bottom wall shear stress 7,, and the reattachment point .y qcn, are
shown in Fig. 2.7 Similar to the velocity profiles in Fig. 2.5, both prior and posterior
ensembles are presented and compared with benchmark data and baseline results. It can be
seen from Fig. that the prior ensemble means of both 7, and Z.uqcn deviate from the
benchmark DNS data significantly. In particular, the baseline RANS simulation predicts a
much smaller recirculation zone than the truth. Figure shows that in most of the region
(between z/H = 1 and x/H = 8) the posterior ensemble mean has better agreement with
the DNS data than the baseline results. In fact, in this region, all samples in the posterior
ensemble have better agreement with the benchmark than the baseline results in terms of
both wall shear stress and reattachment point. This improvement demonstrates the merits of
the current framework. Incorporating observation data and physical prior knowledge indeed
leads to improved predictions of both Qols.

It is noted that in the immediate vicinity of the hill crest, i.e., near /H = 0.5 and x/H = 8.5,
the posterior ensemble is similar to or even slightly deteriorated compared to the baseline
in terms of agreement with DNS data. The reason is that in this region the flow has rapid
spatial variations. Specifically, there is a separation between 0 < x/H < 1, and a large
mean flow curvature with strong pressure gradient between 8 < z/H < 9. Consequently, the
length scales of the coherent structures in this region are small, and thus the correlations
between this part of the flow and other regions are weak. On the other hand, no velocity ob-
servations are available in this region. Here we point out an important fact that the Bayesian
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inference based on ensemble Kalman method primarily relies on the correlation between the
predicted system state variables at different locations to make corrections. Specifically, the
observations only bring information to the states at the locations correlated to the observed
states. Hence, poor prediction is expected for a region that has neither observations within
it nor statistically significant correlations with the regions that have observations. The role
of correlation in the current framework is further discussed in Section 2.5.2]

The prior and posterior distributions of the reattachment point represented by samples are
shown in Fig. (bottom panels). It can be seen that the bias in the prior distribution as
compared to the DNS data is large, while in the posterior distribution the bias is significantly
corrected. Moreover, the prior sample scattering is wide, indicating large uncertainties. In
contrast, the posterior distribution is significantly narrowed, which indicates increased con-
fidence in the prediction by incorporating velocity observations into the Bayesian inference.
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Figure 2.7: (a) Prior ensemble and (b) posterior ensemble of the bottom wall shear stress 7,
(top panels) and reattachment point Zuacn (bottom panels) for the flow over periodic hills.
The region with negative shear stress 7, indicates the extent of recirculation zone on the
bottom wall. The reattachment point is the downstream end of the recirculation zone, which
can be determined by the location at which the wall shear stress changes from negative to
positive. Note that certain samples in the ensemble have two recirculation zones that are
very close to each other. In these cases the reattachment point of the downstream one is
taken.

The comparison of 95% credible interval obtained from the prior and posterior ensemble of
wall shear stresses are presented in Figure 2.8 Similar reduction of model-form uncertainty
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as shown in Fig. is observed here. Compared to that in the prior, the 95% credible interval
in the posterior has a much smaller uncertainty and a better coverage of the benchmark data
in the region between 2/ H = 1 and 5. This is because there are more observations available in
the vicinity. Admittedly, in some regions, e.g., between 0 < z/H < 1 and 8 < z/H < 9, the
posterior credible interval does not improve or even deteriorate compared to the prior, which
is due to the lack of observation data and the relatively small length scale in these regions as
discussed above. It is noted that in some regions the 95% credit intervals, e.g., in Figs. [2.6
and [2.8] failed to cover the truth, which indicates that the current method should still be
used with caution when making high-consequence decisions. The iterative ensemble Kalman
method tends to underestimate uncertainties in the posterior distributions, a difficulty shared
by many other maximum likelihood estimators as well [46].

0.06 - - - . .
— DNS (Breuer et al. 2009)

O\ 95% probability (prior)

0.04! B#A 95% probability (posterior)

Wall Shear Stress(r,,)

—-0.02

Figure 2.8: The 95% credible intervals of the prior (light/pink shaded region) and posterior
(dark/blue shaded region) ensembles of bottom wall shear stress for the flow over periodic
hills.

Figure shows that the bias in the turbulent kinetic energy (TKE) from baseline RANS
prediction has been partly corrected, especially for the upstream region. It is possible that
the production of TKE due to the instability in the free-shear region after the separation
is the driving factor. Consequently, the improved prediction of TKE in this region leads to
the corrections for the velocities and other Qols in the entire field. However, note that the
posterior mean of TKE is not necessarily better than the baseline results at all locations.
The TKE levels immediately downstream of the hill crest have been increased, but at the
downstream locations the posterior mean are not significantly better than the baseline. In
the process of minimizing misfit with the observations, some compromises are inevitably
made, with some regions such as the upstream experiencing more corrections than other
regions such as the downstream region. A possible explanation is that the TKE in the free-
shear region has stronger correlations with the velocities at the observed locations. However,
it is also possible that the TKE does not necessarily need to be improved to provide better
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velocity field due to the non-unique mapping from Reynolds stress field to velocity field, as
has been discussed above. More detailed discussion can be found in Section [2.5.3
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Figure 2.9: Posterior ensemble of the turbulent kinetic energy k£ with its mean compared
to the baseline results and the benchmark DNS data. The prior ensemble is omitted for &,
since its mean is the same as the baseline prediction.

2.4.2 Fully Developed Turbulent Flow in a Square Duct
Case Setup

The fully developed turbulent flow in a square duct is a widely known case for which many
turbulence models fail to predict the secondary flow induced by the Reynolds stresses. The
geometry of the case is shown in Fig. [6.3. The Reynolds number based on the edge length
D of the square and the bulk velocity U, is Re, = 10320. All lengths presented below are
normalized by the height A of the computational domain, which is half of D. Extensive
benchmark data from DNS are available in the literature [47, [48].

Standard computational setup as used in the literature is adopted in this work. Only one
quadrant of the physical domain is simulated considering the symmetry of the flow with
respect to the centerlines along y- and z-axes as indicated in Fig.[6.3, We emphasize here that
our study is concerned with the mean flow, since the objective is to quantify the uncertainties
in RANS simulations. The instantaneous flows are beyond the scope of our discussions, and
they do not have the symmetries mentioned here. Non-slip boundary conditions are imposed
at the walls and symmetry boundary conditions (zero in-plane velocities) are applied on the
symmetry planes. Theoretically, one can further reduce the computational domain size to
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1/8 of the physical domain by utilizing the symmetry with respect to the square diagonal.
However, this symmetry is not exploited, as it would be difficult to impose proper boundary
conditions on the diagonal. The symmetry in the baseline RANS simulation results is implied
by the diagonal symmetry of the geometry and boundary conditions. When conducting
forward RANS simulations with given Reynolds stress fields, caution must be exercised to
ensure that the perturbations introduced to 7""* have diagonal symmetry, which will be
discussed later. Otherwise, the posterior velocities may be asymmetric with respective to
the diagonal.

! 7
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flow velocities are shown in Fig.13.

(b)

Figure 2.10: (a) Schematic for the fully developed turbulent flow in a square duct. The z
axis is aligned with the streamwise direction. Secondary flows exist in the y—z plane, which
are schematically represented with contours. (b) Symmetry of the (mean) flow with respect
to the centerlines in y- and z-directions and along the diagonals. (c) The computational
domain covers only a quarter of the physical domain due to the centerline symmetry. The
cross-sections along which Qols (e.g., velocities and Reynolds stress imbalance) are compared
to benchmark data are also indicated.

The mesh and computational parameters for this case are shown in Table 3.2 Choice of
parameters can be motivated similarly as in the periodic hill case. A notable difference is
that only uncertainties in the shape of the Reynolds stress (i.e., £ and 1) are considered in
the square duct flow case. The Qol for this flow is the in-plane flow velocities, which are
primarily driven by the normal stress imbalance 7, — 7.., a quantity that is associated with
the shape of 7. The design of the variance field ¢ is based on the same principle as in the
periodic hill flow. Specifically, we chose oy = 0.2 throughout the field and ;,.,; = 0.5 at the
lower left corner. The length scale of the radial basis kernel is chosen as 0.1D based on the
estimation of length scale of secondary flow (see Table . It is known that RANS models
have more difficulties in predicting the flow near the corner, which justifies the large value
of o(x) near the corner and the gradual decrease away from the corner as well as towards
the diagonal. Moreover, the variance field is chosen to be symmetric along the diagonal of
the y—z plane in consideration of the flow symmetry.
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sigma

0.2

y/h

Figure 2.11: Contour of the variance field o(x) and locations of the observations for the
square duct flow case. Larger variances are allowed near the corner due to the difficulties
RANS models have in predicting the secondary flow in this region. The variance field is
chosen to be symmetric along the diagonal of the y—z plane in consideration of the flow
symmetry.

Results

The first six modes of KL expansion are shown in Fig.[2.12|along with two typical realizations.
All the modes have been shifted and normalized into the range [0, 1]. Only the diagonally
symmetric modes are retained to guarantee the symmetry of the Reynolds stress along the
diagonal, which leads to the symmetry of the posterior velocities. The observations are
obtained from the DNS data [47] by adding Gaussian random noises as in the periodic hill
flow. Velocities are observed at 25 points as shown in Fig half of which are distributed
along the line y/h = 0.5 and the other half along z/h = 0.5. Note that half of the information
from the observations is redundant due to the diagonal symmetry of the flow.

The ability of a numerical model to predict the secondary flow in y—z plane is of most
interest for the flow in square duct. Therefore, the in-plane velocity field is identified as the
Qol for this case. The in-plane flow velocity (U,) on the four cross-sections as indicated in
Fig. [6.3 are presented to facilitate quantitative comparison with the baseline and benchmark
results. The velocity profiles U, in the z direction have similar characteristics as U, (but
are not identical) and are thus omitted. The prior and posterior ensembles of the velocity
profiles for U, are shown in Fig. Only the velocity profiles in the region below the
diagonal are presented due to the diagonal symmetry. It can be seen from Fig. that the
baseline RANS simulation predicts uniformly zero in-plane velocities as expected. Around
the baseline prediction, the prior ensembles are scattered due to the perturbation of é¢ and 9,,.
The large range of scattering indicates that the secondary flow is sensitive to the anisotropy
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) model ) mode 2 ) mode 3 ) mode 4
) mode 5 ) mode 6 ) realization 1 ) realization 2

Figure 2.12: Tllustration of KL expansion modes for the square duct flow case. All presented
modes have been shifted and scaled into a range of 0 (lightest) to 1 (darkest) to facilitate
presentation, and the legend is thus omitted. Panels (a) to (f) denote modes 1 to 6, respec-
tively, with lower modes being more important. Only the modes with diagonal symmetry
are retained to guarantee the symmetry of perturbed Reynolds stresses field. Panels (g) and
(h) show the magnitude of Reynolds stress imbalance |7, — 7..| associated with two typical
realizations of the discrepancy fields.
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of Reynolds stresses tensor, which has been reported in previous studies [I8, 47]. Compared
to the prior ensemble mean and the baseline RANS prediction, the posterior ensemble mean
of the velocities are significantly improved along all four cross sections, as shown by good
agreements with the benchmark data. The scattering has been significantly reduced as well,
while still covering the truth adequately in most regions. The remaining differences and
the regions where the ensemble fails to cover the truth can be explained similarly as in the
periodic hill case. Similar to that in the periodic hill case,

samples —-= sample mean —- baseline

— DNS (Huser et al. 1993) X X observations
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Figure 2.13: (a) Prior velocity ensemble and (b) posterior velocity ensemble at four spanwise
locations y/h = 0.25,0.5,0.75 and 1 with comparison to baseline and benchmark results.
The velocity U, in the z direction have similar characteristics and are thus omitted. The
velocity profiles in the prior ensemble are scaled by a factor of 0.3 for clarity.

Figure shows a comparison of the posterior ensemble mean field of the in-plane flow
velocity and the benchmark data. They are presented as vector plots to show the overall
features of secondary flow and particularly the vortex structure. The length and direction
of an arrow indicate the magnitude and direction, respectively, of the in-plane flow velocity
at that location. The plots are arranged such that a perfect agreement between the two
would show as exact symmetry of the two panels along the center line. The vector plot
of the velocity field from the baseline RANS prediction is omitted since it is uniformly
zero. It can be seen that the posterior ensemble mean demonstrates a very good agreement
with the benchmark data in most aspects, i.e., the direction and the intensity of secondary
flow at most locations as well as the center of vortex structure. Only minor differences
between the two can be identified. For example, the posterior mean velocity has a slightly
smaller gradient of velocity magnitude compared to the benchmark results near the symmetry
line. The agreement clearly demonstrates the merits of the current framework, particularly
considering the fact that most of the commonly used turbulence models are not capable of
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predicting the in-plane flow. Specifically, all isotropic eddy viscosity models completely miss
the secondary flow, which is explained by the negligible 0U, /0y and 0U,/0z terms and the
Boussinesq assumption that Reynolds stress is proportional to local strain rate of the mean
flow. Even advanced models (e.g., Reynolds stress transport models) tend to underestimate
the flow intensity [49]. Admittedly, velocity observations at some locations are used in this
method, but the amount of data used in the inference is rather small compared to the total
degrees of freedom of the Reynolds stress field.
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Figure 2.14: Comparison of the velocity field in a square duct between the posterior mean
and benchmark DNS data.The length and direction of an arrow indicate the magnitude and
direction, respectively, of the in-plane flow velocity. The plots are arranged such that a
perfect agreement between the two would show as exact symmetry of the two panels along
the vertical center line. The vector field from the baseline RANS prediction is omitted since
it is uniformly zero.

As mentioned above, the normal stress imbalance 7,, — 7., is the main driving force of
the secondary flow. Therefore, the prior and posterior ensembles of the imbalance at five
locations, y/h = 0.25,0.5,0.6,0.75, and 1, are presented in Fig. . It can be seen that the
baseline RANS prediction of 7, — 7., is zero. Compared to the baseline RANS prediction,
the posterior normal stress imbalance shows a significant improvement in regions close to
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the observations (y/h = 0.5), although differences still exist, especially in the regions far
away from the observations (e.g., at y/h = 1). It is consistent with the argument made in
Section that the correlation decreases with distance, and that the quality of correction
heavily depends on correlations. Note that the inferred stress imbalances at y/h = 0.75
agree with the benchmark much better than do those at y/h = 0.25, although they have
approximately the same distances from the observations, which are distributed along y/h =
0.5. This can be explained by the fact that the length scale of the flow decreases towards
the corner (e.g., near y/h = 0.25) due to the constriction of the duct walls, and thus the
correlation decreases much faster in this region than near the symmetry line.

10 y/h=0.25 y/h=0.5 y/h=0.6 y/h=0.75 y/h=1.0
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Figure 2.15: Comparison of the normal stresses imbalance at five locations y/h =
0.25,0.5,0.6,0.75 and 1.0. A larger horizontal axis range is used in the panel for y/h = 0.25
due the large range of values 7, — 7., at this location.
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2.5 Discussion

2.5.1 Computational Cost of the Model-Form Uncertainty Quan-
tification

As mentioned in Sections [£.3.5] The ensemble Kalman method uses 60 samples (see Ta-
ble and needs approximately 10 iterations to achieve statistical convergence. Therefore,
each uncertainty quantification case involves 600 evaluations of the forward RANS model
tauFoam. Since each forward RANS evaluation is only 10% as expensive as a baseline RANS
simulation (see Section , the total computational cost of the uncertainty quantification
procedure is 60 times as that of the baseline simulation. However, note that the propagation
of samples can be done in parallel, i.e., in each iteration the 60 forward RANS simulations
were run simultaneously on 60 CPU cores. As a result, the wall time of the uncertainty
quantification procedure is approximately the same as that of the baseline simulation, as-
suming the latter is run on a single core. Finally, the computational costs associated with the
projection of Reynolds stresses, the KL expansion, and the Kalman filtering are all neglected
in the analysis above. This is justified because the computational cost of the uncertainty
quantification is indeed dominated by the forward model evaluations.

2.5.2 The Role of Correlation in Current Framework

It has been pointed out that the relatively poor inference performance is expected in the
vicinity of the crest, which is due to the lack of observations in the region and statistically
significant correlations with the regions that have observations. The concept of correlation
plays an important role in the current inference framework and warrants further discussions.

In three-dimensional complex flows more measurement data may be needed to obtain results
of similar quality as presented here. In particular, when the flow consists of a number of
distinct regions that are weakly correlated, a design of experiment study is needed to ensure
all regions of interest have measurements data if possible. However, note that the correlation
within the flow field can be studied a priori solely based on an ensemble of RANS simulations
before any measurements are performed. Based on the study of correlations, the measure-
ments can subsequently be optimized. Therefore, such simulation-informed experimental
design is feasible in practice. We have performed such a correlation study in a more complex
flow, the flow over a wing-body junction, and the detailed results are presented in ref. [26].

It is essential to choose proper correlation length scales based on that of the mean flow, which
is part of the physics-based prior knowledge. While an overly small length scale would fail to
make corrections to the regions without observation, an overly large length scale would lead
to spurious corrections. The correlation structure (e.g., of the velocities) in a flow field is very
complex and difficult to visualize due to the high dimensionality of the state. However, we
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can illustrate the idea by considering the streamlines of the mean flow. Intuitively, velocities
at two points on the same streamline should have a relatively high correlation. Consequently;,
observing the velocity at one point can inform us about velocities at other points on the same
streamline. Two points in different coherent structures or regions as mentioned above, e.g.,
one point in the recirculation zone and another in the shear zone, are likely to be on different
streamlines. This explains why points within the same region have higher correlations than
the correlations among different regions. That also justifies the arrangement of observation
points shown in Fig. with observations scattered in all three regions of interest. This
explanation of correlation structure is of course a highly simplified picture. In reality, fluid
flows are highly complex, coupled dynamic systems. Velocities at different points can be
correlated due to continuity requirements and pressure. It is well known that the pressure is
described by an elliptic equation (for incompressible flows), which has whole-domain coupling
characteristics.

2.5.3 Success and Limitation of the Current Framework

The overall idea of the proposed method is to improve flow field and Qol predictions and to
quantify the uncertainties therein by combining all sources of available information, includ-
ing observation data, physical prior knowledge, and RANS model predictions. A Bayesian
framework based on an iterative ensemble Kalman method is used for the uncertainty quan-
tification. Numerical simulation results have demonstrated the feasibility of the framework.
In particular, even with velocity observations at very few locations, the posterior velocities
are significantly improved compared to the baseline results.

One may also expect that the uncertainties in the modeled Reynolds stresses can be quan-
tified and reduced. Indeed, the posterior ensemble obtained from the Bayesian inference
process also has information on the Reynolds stresses. However, our experience suggests
that the posterior mean of an arbitrarily chosen component or projection of the Reynolds
stresses is not significantly more accurate than those of the baseline prediction.

This apparent contradiction can be explained from two perspectives: the high dimensionality
of the Reynolds stress field and the mapping 7 — u from Reynolds stresses to mean veloc-
ities. The most straightforward reason as mentioned in Section is that the Reynolds
stress discrepancy is a tensor field in a high-dimensional uncertainty space, and thus the
amount of velocity data is not sufficient to constrain its uncertainties, even when other prior
information is considered. Moreover, the RANS equations describe a many-to-one mapping
from Reynolds stresses to mean velocities, and thus the mapping 7 + u is not invertible
(i.e., a given velocity field may correspond to many possible Reynolds stress fields). This
is evident from the fact that the divergence of the Reynolds stress tensor, rather than the
Reynolds stress itself, appears in the RANS equation. Although difficult to prove rigorously,
we postulate that even Reynolds stress fields that have different divergences can map to
very similar velocity fields. One can loosely think of the velocity field as being driven by a
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projection of the Reynolds stress on a low-dimensional manifold. The specific form of the
projection depends on the physics of individual flow. Taking the flow in a square duct for
example, it has been demonstrated by analytical derivations [50, 47, 18] that the secondary
flow is primarily generated by the normal stress imbalance field 7, — 7.., or more precisely,
its cross spatial derivative %;Z(Tyy — T,.). The imbalance scalar can be obtained from the
Reynolds stress tensor through linear mapping described by a rank deficient matrix. Since
only velocity observation data are used in the Bayesian inference in this work, one can only
reasonably expect to infer the projection (i.e., the imbalance), but not the full Reynolds
stress field. This can be partly explained by the fact that the projection has a lower dimen-
sion, but more importantly, the projection is an observable variable from a control-theoretic
perspective. This has been demonstrated in Fig. 2.15] The mapping between Reynolds
stresses and velocity as describe by the RANS equations are extremely complex due to the
their nonlinearity. This complexity and its implications to the current framework will be
further investigated.

Another limitation of the current framework lies in the iterative ensemble method used for the
uncertainty quantification, which is a computationally affordable method for approximate
Bayesian inference. The posterior distribution obtained with this method may deviate from
the true distribution. This compromise is made in this work in consideration of the high
computational costs of RANS models (e.g., hours to days for realistic flow simulations), which
makes more accurate sampling methods such as those based on the Markov Chain Monte-
Carlo method prohibitively expensive. The accuracy of the ensemble-based method will
be assessed in future work by comparing current results with those obtained with MCMC,
possibly by utilizing recently developed dimension-reduction methods (e.g., active subspace
methods [51], likelihood informed dimension-reduction [52]) and sampling techniques (e.g.,
delayed rejection adaptive metropolis [53]), or by building surrogate models to facilitate the
MCMC sampling.

2.5.4 What If There Are No Observation Data Available?

In light of the limitations of the framework as described above, two legitimate follow-up
questions can be raised. That is, given that the full Reynolds stress discrepancy field cannot
be inferred accurately from the velocity observations, (1) what would the value of the frame-
work be in engineering practice and (2) how can this framework can be used in scenarios
with no observation data.

Regarding the first question, sparse observation data are often available for engineering sys-
tems that are in operation. For example, real-time monitoring sensors are often installed
in wind farms, nuclear power plants, and many other important facilities and devices. For
these cases, the current framework can provide a powerful method for combining informa-
tion from the numerical models (often greatly simplified due to stringent positive lead-time
requirement in predictions), observation data, and physical prior knowledge.
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In scenarios where there are no observation data available as posed in the second question,
the current framework can be used in two ways. First, with the absence of observation
data the inference procedure essentially degenerates to forward uncertainty propagation,
i.e., propagating the uncertainties in the form of physical prior knowledge on Reynolds
stresses to uncertainties in Qols (e.g., velocity, wall shear stresses, and reattachment point).
This is somewhat similar to but more comprehensive than the framework of Iaccarino and co-
workers [14], [15] [16, 17, 18], since the prior in our work covers an uncertainty space rather than
only a few limit states. Second, when observation data are available in a geometrically similar
case but perhaps at a lower Reynolds number (e.g., the downscaled model in a laboratory
experiment), the model uncertainties can first be quantified and reduced with the data
available on the scaled model. After the calibration, the posterior Reynolds stress uncertainty
distribution is extrapolated to the case of concern (e.g., the flow in a geometrically similar
prototype at a higher Reynolds number) to make predictions. Dow and Wang [19] used a
similar calibration—prediction procedure to predict flows in channels of different geometries by
using Gaussian processes describing the eddy viscosity discrepancy. Similar ideas have been
suggested and advocated by Duraisamy et al. [23] 24]. In all cases the calibration—prediction
procedure relies upon a crucial assumption that the calibration case and the prediction case
share physically similar characteristics, despite the differences in specific flow conditions (e.g.,
Reynolds number or geometry). The feasibility of the calibration—prediction method based
on the current framework has been preliminarily explored by Wu et al. [54], which showed
promising results when the calibrated Reynolds stress discrepancies are used to predict flows
in the same geometry but at a Reynolds number one order of magnitude higher. Prediction
of flows in a different geometry, on the other hand, has achieved less successes. However,
extreme caution must be exercised and expert opinions must be consulted when using such an
extrapolation method as presented in [54], since even a slight change of Reynolds number can
lead to significant changes of flow characteristics. Ultimately, the use of this assumption has
to be the judgment of the user, which is clearly undesirable. An improved, more intelligent
framework should be sought for. It seems that modern machine learning methods have the
potential of alleviating users of such burdens, which is a topic of current research [23].

2.6 Conclusion

In this work we propose an open-box, physics-informed, Bayesian framework for quantifying
and reducing model-form uncertainties in RANS simulations. Uncertainties are introduced
directly to the Reynolds stresses and are represented with compact parameterization ac-
counting for empirical prior knowledge and physical constraints (e.g., realizability, smooth-
ness, and symmetry). An iterative ensemble Kalman method is used to incorporate the prior
knowledge with available observation data in a Bayesian framework and propagate the un-
certainties to posterior distributions of the Reynolds stresses and other Qols. Two test cases,
the flow over periodic hills and the flow in a square duct, have been used to demonstrate the
feasibility and to evaluate the performance of the proposed framework. Simulation results
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suggest that even with sparse observations, the obtained posterior mean velocities have sig-
nificantly better agreement with the benchmark data compared to the baseline results. The
methodology provides a general framework for combining information from physical prior
knowledge, observation data, and low-fidelity numerical models (including RANS models
and beyond) that are frequently used in engineering practice.

A notable limitation is that the full Reynolds stress field inferred from this method is not
accurate. This is attributed to the high dimension of the Reynolds stress uncertainty space,
the sparseness of the velocity observation data, and the nonlinear, possibly even non-unique,
mapping between the Reynolds stresses and velocities as described by the RANS equations.
However, we argue that the inferred Reynolds stresses are still valuable despite this lim-
itation, and that they can be extrapolated to cases with similar physical characteristics.
Another limitation of the current framework lies in the iterative ensemble method used for
the uncertainty quantification, which is computationally less intensive but less accurate than
exact Bayesian inference based on Markov Chain Monte-Carlo sampling. The impact of the
approximate Bayesian inference method will be investigated in future studies.
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Appendix

2.A Mapping from Barycentric Coordinates to Natu-
ral Coordinates

Following the work of laccarino et al., we introduce uncertainties (also referred to as pertur-
bations) to the Reynolds stresses by perturbing its magnitude (the turbulent kinetic energy
k) and the shape (the eigenvalues A\; and A\, of the anisotropy tensor) as shown in Eq. (6.2)).
The eigenvalues can be linearly transformed to the Barycentric coordinate (Cp,Cy,C3) as
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follows 28, [17]:

Cl = )\1 — )\2 (27&)
Cg = 3)\3 +1 (270)

where C7, (5, and (5 indicate the portion of areas of the three sub-triangles in the Barycen-
tric triangle, and thus they sum to 1. Placing the triangle in a Cartesian coordinate
x? = (y°, "), the location of any point within the triangle is a convex combination of those
of the three vertices, i.e.,
x" = x4 .C) +x5,0y + x5.C5 (2.8)
b

where x4, x5, and x4, are the coordinates of the three vertices of the triangle (see Fig. .
The superscript b is used to distinguish it from the coordinate system for the fluid flow
problems.

While Emory|[17] perturbed the Reynolds stress towards the three limiting states (the ver-
tices of the triangle), we need to parameterize and explore the entire triangle. To facilitate
parameterization with minimum artificial capping of Reynolds stresses falling outside the
realizable range, we further transform the Cartesian coordinate (z°, °) to the natural coor-
dinate (£, n) by using the standard finite element shape functions:

2’ =x(&n) = ZNi(ﬁ,n)xi’ (2.9a)
Y =y(&n) = ZNZ-(& )y, (2.9b)

where (2%, y?) are the coordinates of four vertices, and Ny, Ny, N3, and Ny are shape functions
defined as

Mg - =900
Nafe, ) = U=
R
N, = LS00

The mapping from the natural coordinate (£,7) to the physical coordinate (z°,4°) as shown
in Eq. is routinely used in finite element methods. However, the inverse mapping, i.e.,
computing the natural coordinate (£,7) for a given physical coordinate (z°, ), is nontrivial
and uncommon due to the difficulty of solving the bilinear equation system Eq. . In
this work we use the analytical results from [55] to obtain this mapping.



J.-X. Wang Chapter 2. 53

In summary, the Reynolds stresses field 7""*

tion are mapped to the physical interpretable variables kmens grans g
sequence:

computed from the baseline RANS simula-
rams via the following

7 B350 B (16,6 BB a0, gy oD, g

rans rans

where unperturbed quantities vi***, vi* and v;*’ dependent variables \3 and Cj5, and
superscript rans are omitted for simplicity of notation. Equations describing the mappings
are indicated above the corresponding arrow. Equation indicates eigen-decomposition
and reconstruction. After the sequence of mapping, uncertainties are introduced into these
transformed quantities by modeling the truth of k, £,  as random fields with their respective
baseline results as priors (see Eq. ) They are subsequently used to obtain Reynolds
stresses via the inverse of mapping sequence as above:

k,&m) By (2, 40) 28D (o ) B g a ) B2 1

2.B Iterative Ensemble Kalman Method for Inverse
Modeling

The algorithm of the iterative ensemble Kalman method for inverse modeling is summarized
below. See [34] for details.

rans

Given velocity prediction from the baseline RANS simulation u and observations with

error covariance matrix R, the following steps are performed:

1. (Sampling step) Generate initial ensemble {x;}}_, of size N, where the augmented
system state is:

X, = [urans
J

7""]]’
2. (Prediction step)

(a) Propagate the state from current state n to the next iteration level n+ 1 with the
forward model tauFoam, indicated as F,

)A(g-n—i_l) _ f[XEn)]

This step involves reconstructing Reynolds stress fields for each sample and com-
puting the velocities from the RANS equations.
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(b) Estimate the mean X and covariance P of the ensemble as:

1 N
o(n+l) __ § : ~ (n+1)

J=1

N
n (n+1)
pn+1) N : Z ) +

7j=1
3. (Analysis step)
(a) Compute the Kalman gain matrix as:

K(n+1) _ P(n+1)HT(HP(n+1)HT + R)—l
(b) Update each sample in the predicted ensemble as follows:

n+1 A~ (n+1
R g ey — )

The vector y represents observation and H is the observation matrix, which maps state
space to the observation space.

4. Repeat the prediction and analysis steps until the ensemble is statistically converged.
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Abstract

Simulations based on Reynolds-Averaged Navier-Stokes (RANS) models have been used to
support high-consequence decisions related to turbulent flows. Apart from the determinis-
tic model predictions, the decision makers are often equally concerned about the prediction
confidence. Among the uncertainties in RANS simulations, the model-form uncertainty is an
important or even a dominant source. Therefore, quantifying and reducing the model-form
uncertainties in RANS simulations are of critical importance to make risk-informed deci-
sions. Researchers in statistics communities have made efforts on this issue by considering
numerical models as black boxes. However, this physics-neutral approach is not a most effi-
cient use of data, and is not practical for most engineering problems. Recently, we proposed
an open-box, Bayesian framework for quantifying and reducing model-form uncertainties in
RANS simulations based on observation data and physics-prior knowledge. It can incorpo-
rate the information from the vast body of existing empirical knowledge with mathematical
rigor, which enables a more efficient usage of data. In this work, we examine the merits
of incorporating various types of prior knowledge in the uncertainties quantification and re-
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duction in RANS simulations. The result demonstrates that informative physics-based prior
plays an important role in improving the reduction of model-form uncertainties, particularly
when the observation data are limited. Moreover, it suggests that the proposed Bayesian
framework is an effective way to incorporate empirical knowledge from various sources of
turbulence modeling.

3.1 Introduction

In recent years, Computational Fluid Dynamics (CFD) models based on Reynolds-Averaged
Navier—Stokes (RANS) equations have been used to support high-consequence decisions re-
lated to turbulent flows. For example, RANS simulations have been used to support the
development of the emergency evacuation plans in scenarios of pollutant releases in cities [I].
In the nuclear energy industry, government regulators and plant operators have explored the
feasibility of using RANS models to model the thermo-hydraulic systems in nuclear power
plants to support safety assessments and licensing [2], 3]. In these contexts, quantifying and
reducing uncertainties in the RANS simulations is of critical importance for the stake-holders
to make risk-informed decisions.

Although the uncertainties in RANS simulations may also occur due to uncertain inputs
and parameters, meshes, and numerical methods, the uncertainties that are attributed to
the inadequacy and intrinsic assumptions in the physical model of turbulence, referred to
as model-form uncertainties, are most challenging to quantify in RANS simulations. Oliver
et al. [4] was the first to propose a “composite model theory” in the context of RANS
modeling, where the model-form uncertainties are localized to the Reynolds stress tensors.
Dow and Wang [5] introduced uncertainties in the turbulent eddy viscosity to estimate
the structural uncertainties in the k—w model [6]. On the other hand, Iaccarino and co-
workers [7,,[8, 9], [T0, T1] introduced uncertainties directly to the Reynolds stress, and estimated
the RANS modeling uncertainties by perturbing the predicted Reynolds stress in a physically
realizable range.

Recently, Xiao et al. [I2] proposed a Bayesian framework for quantifying and reducing uncer-
tainties in RANS simulations by incorporating velocity observation data and physics-based
prior knowledge. A key element in this framework is the inference of Reynolds stress dis-
crepancy field from sparse velocity observations. Therefore, it can be considered a Bayesian
calibration framework. This is in contrast to Oliver et al. [4] and laccarino and co-workers [7],
who focused solely on the forward propagation of uncertainties in Reynolds stresses to veloc-
ity and other Quantities of Interests (Qols). On the other hand, the physics-neutral Bayesian
framework of Kennedy and O’Hagan [I3] treats numerical models as black boxes and does not
allow straightforward representation of the prior knowledge [14]. In addition, the available
data are usually too sparse in engineering application to drive such physics-neutral approach,
which poses a practical hurdle for its acceptance in engineering communities. Compared to
the Bayesian model calibration framework of Kennedy and O’Hagan, a notable feature of
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the method of Xiao et al. [12] is that it incorporates physics-based prior knowledge, which
can effectively augment the information provided by the limited amount of data. Sources
of prior knowledge range from constraints that can be expressed with mathematical rigor
(e.g., physical realizability of Reynolds stress tensor) to imprecise, subjective beliefs that are
not amenable to mathematical representation (e.g., empirical knowledge accumulated in the
turbulence modeling from decades of applications of RANS simulations).

The target application scenario of the framework proposed in [12] is the prediction of com-
plex turbulent flows with a limited amount of observation data. The framework enables
predictions with quantified uncertainties by combining numerical model simulations and ob-
servation data (e.g., real-time measurements from sensors in a nuclear power plant or data
from air quality monitoring stations in a city). As in other Bayesian inference frameworks,
the posterior distributions of the predicted Qols depend on both prior information and data.
Since the amount of data is limited in the application scenario, the effects of prior knowledge
are expected to be particularly important. The objective of this work is to examine the role
of incorporating prior knowledge in quantifying and reducing uncertainties in RANS simula-
tions. Meanwhile, we will demonstrate that physics-based prior knowledge can be expressed
and incorporated properly within the proposed framework [12].

In the context of RANS modeling, following types of prior knowledge are considered:

1. the assumption that Reynolds stress is the dominant source of uncertainty in RANS
equations,

2. physical realizability constraints on Reynolds stress tensors,
3. the symmetry (if any) of the flow of concern,

4. smooth spatial distribution of the Reynolds stresses,

5. overall understanding on the coherent structures of the flow,

6. subjective belief on the discrepancies of predicted Reynolds stress tensors (or more
precisely their projections, including the magnitude, shape, and orientation) in different
flow regions.

Items 1-2 are strict constraints resulting from the assumption of the modeling and the physi-
cal realizability, which can be guaranteed straightforwardly in the uncertainty quantification
framework [7]. In contrast, items 3-6 involve analysts’ physical understanding and subjective
judgment of the flow. The strict constraints are built into the framework of Xiao et al.[12],
while proper means are provided for the analyst to specify subjective priors of various pre-
cisions. In this study, we show that the inference uncertainties (in Reynolds stresses and
other Qols) are significantly reduced by using realistic, informative priors compared to using
non-informative priors. We also show that using more informative priors can lead to similar
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inference uncertainty reduction compared to that obtained by incorporating additional ob-
servation data. Both comparisons demonstrate that the empirical knowledge accumulated
in the turbulence modeling community can be effectively used for quantifying and reducing
RANS model uncertainties. Although the importance of prior knowledge is demonstrated
specifically in the context of RANS modeling of turbulent flows, it is expected that the
conclusions can be extended to other complex physical systems as well.

The remaining of the paper is organized as follows. In Section 2 the framework introduced in
[12] is summarized with emphasis on the utilization and representation of prior knowledge.
Numerical simulations based on the flow in a channel with periodic constrictions are pre-
sented in Section 3 to highlight the importance of informative prior knowledge. In Section 4
we further discuss the mapping of Reynolds stress and mean velocities to show the success
and limitation of the framework. Finally, Section 5 concludes the paper.

3.2 Uncertainty Quantification Framework and Repre-
sentation of Prior Knowledge

Table 3.1: Representation of physics-based prior knowledge in the open-box uncertainty
quantification and reduction framework for RANS modeling proposed in [12]

Representation in the frame- | Demonstrated

Prior knowledge work [12] in cases

. . li f 1
Reynolds stress is a dominant uncer- modeling of Reynolds stress as a

L tainty source in RANS equations random field (built into frame- | -
work)
parameterization of physical
9 physical realizability of Reynolds | variables, e.g., magnitude and |

stresses shape of Reynolds stresses (built
into framework)

3 | symmetry of the flow use of Symme‘tric. basis functions |
In parameterization

Reynolds stresses have smooth spa- | use of smooth basis functions in

4 tial distribution parameterization 81/82
proper choice of spatially vary-
. . : ing variance fields o(x) and
5 relative discrepancies of Reynolds length scale field I(x) in con- | DI

stresses in different regions . :
structing of a non-stationary

Gaussian kernel

proper design of observation lo-

cations (experimental design) b2

6 | overall knowledge of the flow
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The framework for quantifying and reducing model-form uncertainties in RANS simulations
as proposed by Xiao et al. [I2] is summarized below, emphasizing the prior knowledge in
RANS simulations and their representation in the framework. The prior knowledge that is
incorporated in the framework is presented in Table [3.1]

It is a consensus in the turbulence modeling community that discrepancy in the modeled
Reynolds stress field is the main source of model-form uncertainties in the RANS equa-
tions [15]. Consequently, uncertainties are injected to the Reynolds stress field by perturb-
ing the RANS-modeled Reynolds stress (see Prior 1 in Table . More precisely, the true
Reynolds stress 7(x) is modeled as a random field with the spatial coordinate x as index
and the RANS-predicted Reynolds stress 77%"*(x) as prior mean. The Reynolds stress at
any location is a symmetric tensor. Note that an arbitrary perturbation can lead to a tensor
that does not correspond to any physically possible states. Therefore, perturbations are
introduced within the realizable states of Reynolds stress based on the physical meaningful
projections of the Reynolds stress tensor and not on its individual components. This is to
ensure that all realizations of the random field 7(x) are physically possible (see Prior 2 in
Table . Specifically, the Reynolds stress tensor is transformed to physically interpretable
variables as follows:

1 1

where k is the turbulent kinetic energy, which indicates the magnitude of 7; I is the second
order identity tensor; a is the anisotropy tensor; V = [vi, vy, v3] and A = diag[A;, A9, A3
with A\; + Ay + A3 = 0 are the orthonormal eigenvectors and eigenvalues of a, respectively,
indicating the shape and orientation of 7. The eigenvalues A\;, Ao, and A3 are mapped to
a Barycentric coordinate (C7, Cy, C3) with C; 4+ Cy + C3 = 1. Consequently, all physically
realizable states are enclosed in the Barycentric triangle shown in Fig. [6.1p. To facilitate the
parameterization, the Barycentric coordinate is further transformed to the natural coordinate
(&,7m), with the triangle mapped to a square as shown in Fig. . Finally, uncertainties
are introduced to the mapped quantities k, &, and n by adding discrepancy terms to the
corresponding RANS predictions, i.e.,

log k(x) = log k"™ (x) + 6*(x) (3.2a)
Ex) = &(x) + 6 (x) (3.2b)
n(x) = 7" (x) +6"(x) (3.2¢)

Uncertainties are not introduced into the orientation (vy, ve, v3) of the Reynolds stress. This
is because the perturbations of angles may result in a reconstructed Reynolds stress that has
the momentum flux from the low momentum cell to the high momentum cell, which has the
similar effect as a reverse diffusion term. This effect may lead to unphysical solutions.

The smooth spatial distribution of the Reynolds stress is another constraint. The smoothness
is guaranteed by constructing the Reynolds stress discrepancy fields 6%, §¢, and 6" (denoted as
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Figure 3.1: Mapping between the Barycentric coordinate to the natural coordinate, trans-
forming the Barycentric triangle enclosing all physically realizable states [16, [10] to a square
via standard finite element shape functions. Corresponding edges in the two coordinates are
indicated with matching colors.

d generically below) with smooth basis functions (see Priors 3 and 4 in Table. Specifically,
the prior distributions of the discrepancies are chosen as non-stationary zero-mean Gaussian
random fields GP(0, K) (also known as Gaussian processes), where

/12
K(x,x") = o(x)o(x) exp <—|Xl—zx|) (3.3)
is the kernel indicating the covariance at two locations x and x’. The variance o(x) can be
specified as a spatially varying field (see the contour in Fig. for example) to reflect the
prior knowledge on relative discrepancies of modeled Reynolds stress in different flow regions
(see Prior 5 in Table . The correlation length scale | can be specified based on the local
turbulence length scale, but is taken as a constant in this work for simplicity.

The basis set is chosen as the eigenfunctions of the kernel K computed from the Fredholm
integral [17]. This choice of basis function leads to the Karhunen-Loeve (KL) expansion of
the random field. That is, the discrepancy fields ¢ can be represented as follows [12]:

8(x,0) = D wilo ¢i(x), (3.4)

where ¢;(x) are deterministic spatial basis functions, and the coefficients w; (denoting wy;,
We,i, wy,;) are random variables depending on the realization outcome of §. The prior dis-
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tributions for these coefficients are independent standard Gaussian ones. In practice the
infinite series is truncated to m terms, with m depending on the smoothness of the kernel K.

With the decomposition above, the Reynolds stress field is modeled as the random fields with
RANS modeled Reynolds stress as prior mean and the discrepancies parameterized by the co-
efficients wy,;, we i, wy,; with = 1,2,--- ,m. The uncertainty distributions of the coefficients
are then inferred by using an iterative ensemble Kalman method, which is an approximate
Bayesian inference method widely used for data assimilation in geoscience communities [I8].
In this method the prior distribution of Reynolds stresses (as parameterized by the coeffi-
cients) is first represented by samples drawn from the prior distribution. The collection of
samples, referred to as prior ensemble, is propagated to velocities by using a forward RANS
solver tauFoam, which computes velocities from a given Reynolds stress field. This forward
RANS solver is developed based on a conventional steady-state RANS solver in OpenFOAM
by replacing the turbulence modeling component (i.e., solution of the transport equations for
turbulence quantities) with a supplied Reynolds stress field. With the predicted ensemble
of the forward RANS solver, the Kalman filtering procedure is used to incorporate velocity
observation data to the prediction, yielding a corrected ensemble. The procedure is repeated
until statistical convergence is achieved. The converged posterior ensemble is a sample-based
representation of the uncertainty distribution of the Reynolds stresses and other quantities
of interests given the observation data. For the scenarios as mentioned above, the amount
of data used in the inference procedure is limited. Therefore, proper arrangement of obser-
vation locations (i.e., experimental design) is important. The prior knowledge on the overall
feature of the flow can be incorporated as a guidance to conduct the experimental design,
which leads to a more effective use of data. (see Prior 6 in Table [3.1).

3.3 Numerical Simulations

3.3.1 Problem Setup

The flow over periodic hills at Reynolds number Re, = 2800 is studied to demonstrate the
merits of incorporating physics-based prior knowledge in quantifying and reducing the model-
form uncertainties in RANS simulations. Direct numerical simulation (DNS) data [19] are
adopted as the benchmark for comparison. The computational domain is shown in Fig. [5.2]
where all dimensions are normalized with the crest height H. The Reynolds number Re, is
based on the height H and bulk velocity U, at the crest.

In addition to the DNS benchmark data, synthetic benchmark data are also utilized in this
study, which is created from the RANS model with a specified Reynolds stresses perturbation.
The reason of using synthetic truth is that we can control the dimensions of the uncertainty
space and thus are able to explore its effects upon the result. Moreover, the coefficients vector
w is known from the synthetic truth, which can be used to verify the proposed inversion
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Figure 3.2: Domain shape for the flow in the channel with periodic hills. The z-, y- and
z-coordinates are aligned with the streamwise, wall-normal, and spanwise directions, respec-
tively. All dimensions are normalized by H with L,/H =9 and L,/H = 3.036. The contour
shows the variance field o(x), where darker color represents larger variance.

scheme. To generate the synthetic truth, we use the standard RANS simulation outputs as
baseline and perturb the Reynolds stress field with specified 6%, 67, and 6*. For simplicity, we
only perturb the n with §” constructed from two KL modes with coefficients w,, = [&;,.1, @y.2],
where @, ; = 1.5, W, = 1.0, and * denotes synthetic truth. Notice that the fundamental
difference between the synthetic truth and DNS benchmark is whether the uncertainty space
spanned by the prior ensemble covers the true Reynolds stresses. For synthetic truth, the
prior can cover the truth since we know where it resides. However, the uncertainty space
does not necessarily cover the true Reynolds stresses that generate DNS velocity benchmark.
This is because the orientations of the Reynolds stresses are not perturbed and that the KL
modes are truncated.

The observation data are obtained by sparsely observing the velocity fields of the truth. In-
dependent and identically distributed Gaussian random noises with standard deviation o
are added to represent the observation errors. The observations generated from synthetic
truth are referred to as “synthetic observation”, while those observed from DNS data are
denoted as “DNS observation”. In the following, four cases are studied to investigate the
effects of incorporating the prior knowledge into the framework. In Sec. two cases S1
and S2 are studied, where synthetic observation data are adopted to explore the effects of
prior knowledge on the dimension of uncertainty space. We span a less informative search-
ing space (i.e., prior uncertainty space with a high dimension) in case S1, while we span
a more informative searching space (i.e., prior uncertainty space with a low dimension) in
case S2. Note that the prior uncertainty spaces cover the synthetic truth in both cases. In
Sec. two cases D1 and D2 with DNS observations are studied to investigate the merits
of physics-based prior of the variance field o(x) (see Prior 5 in Table[3.1]). The cases D1 and
D2 are performed with the same parameters and setup except for different variance fields.
In case D2, the empirical knowledge on the o(x) fields, shown in Fig. , are incorporated
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into the framework, which is in contrast to a uniform o(x) field in the case D1. In addi-
tion, two scenarios of case D2 with different arrangements of the observation locations are
investigated to demonstrate the merits of physics-based knowledge on experimental design
in Sec. (also see Prior 6 in Table . The mesh and computational parameters used
in the uncertainty quantification and reduction procedure are summarized in Table[3.2] The
uncertainties in Reynolds stress anisotropy (£ and 7) and amplitude (k) are all considered
in cases D1 and D2. The correlation length scale [ is chosen based on the length scale of
the flow, which can be determined from the physical understanding of the flow. In synthetic
cases, the length scale [ is larger to achieve a lower dimensional uncertainty searching space.
For each case, a prior ensemble of 60 samples is employed.

Table 3.2: Mesh and computational parameters used in the flow over periodic hills.

cases S1 S2 D1 \ D2
fields with uncertainty En k| o En, k
number of modes 18 2 48
correlation length scale 1/ H® 5 1
number of observations 16 18
variance field o(x) Non-informative (o(x) = constant) ‘ Informative®
oops Of Observation noises 10% of truth
RANS mesh (n, x n,) 50 x 30
number of samples N 60

(a) see Eq.[5.4] the length scale is normalized by hill crest heigth H.
(b) o(x) as shown in Fig.

3.3.2 Prior Knowledge on Dimensionality of Uncertainty Space

Under most circumstances, the exact dimension of the uncertainty space where the truth
resides is unknown. In order to cover the truth, we commonly span the uncertainty space
with a higher dimension. In case S1, the inversion is conducted in the uncertainties space
expanded in both the shape and amplitude of 7 (i.e., £, and k) with six KL modes for
each field. Therefore, the uncertainty space has a higher dimension (18 modes) than that
of the exact space where the synthetic truth resides (2 modes). The prior ensemble of
Reynolds stress perturbed in this uncertainty space is obtained, whose component 7, is
shown in Fig. [3.3p. It can be seen that the sample mean of 7,, nearly coincides with the
baseline results, and the region of ensemble covers the truth. This evidence indicates that
the ensemble is sufficient to represent the prior distribution. It also can be seen that the
prior sample mean is biased compared with the truth. By performing the model evaluations
based on the samples of the prior Reynolds stresses, the prior velocity ensemble is obtained.
Figure presents the prior ensemble of velocities U,, which is scattered due to the large
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uncertainties in prior 7 ensemble.

samples —-- sample mean —- baseline — synthetic truth

z/H, 3Osz/Ub2 +z/H

(a) Prior Reynolds stress ensemble
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(b) Posterior Reynolds stress ensemble

Figure 3.3: The Prior and posterior ensembles of 7,,, profiles of case S1, in which the synthetic
truth is used and the searching space is larger than the uncertainty space where the truth
resides. The ensemble profiles are shown at eight locations x/H =1, --- |8, compared with
synthetic truth and baseline results. In panel (b), the samples and sample mean overlap
with the synthetic truth in most of the locations.

Synthetic observations of velocities at 16 locations along the line of z/H = 2 (shown in
Fig. are used for inference. Figure shows the posterior 7,, ensemble. We can
see that its scattering is significantly reduced and all samples converge to the synthetic
truth. However, some uncertainties still exist in the posterior Reynolds stress 7,, and are
slightly larger in the regions further away from the observed locations. This indicates that
the corrections on the prior ensemble become less effective, because when the observed and
unobserved locations have a larger distance, the spatial correlations between the two are
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weak.

samples —-=- sample mean —- baseline

— synthetic truth X X observations

y/H

(a) Prior velocities ensemble

y/H

z/H; 2U,/U,+z/H

(b) Posterior velocities ensemble

Figure 3.4: The Prior and posterior ensembles of velocity profiles of case S1. The locations
where velocities are observed are indicated with x. The ensemble profiles are shown at eight
locations z/H =1, --- ,8, compared with synthetic truth and baseline results. In panel (b),
all the posterior samples are collapsed to the synthetic truth, and the corresponding lines
are overlapped.

Figure |3.4b shows the posterior velocity U, profiles, which collapse to the truth. Although
uncertainties still exist in the posterior Reynolds stresses (e.g., at x/H = 8 in Fig. , the
velocities obtained based on these Reynolds stress samples are less scattered. The reason is
likely to be that the mapping from Reynolds stress to velocity is not unique, and different
Reynolds stress fields may map to the similar velocity fields. This issue will be further

discussed in Sec. [3.4]

The uncertainty reduction process in the proposed framework is the inversion of the modes
coefficients w for the Reynolds stresses discrepancy 7. Since the posterior velocity has a
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(a) Ensemble of w for the 15 mode of §" (b) Ensemble of w for the 2" mode of 47

Figure 3.5: Convergence histories of unknown parameters w, ; and w;, 2, which are the coef-
ficients for the 1%t and 2"¢ modes of §", respectively, for case S1. The true coefficients for
this synthetic case are indicated by the dashed lines.

good agreement with its truth, it is anticipated that the posterior of w should also converge
to the truth. This anticipation can be verified in the synthetic cases S1 and S2 where the
true values of coefficients (w,; = 1.5 and w, ; = 1.0) are known. The convergence history of
coeflicients ensembles (w;, 1 and wy, 2) is presented in Fig. . It shows that most samples in
the w,; and w, o ensembles are initially scattered from —2 to 2, due to the fact that they
are drawn from the standard normal distribution N'(0,1). The initial mean values of wy
and wy, o are both zero, which are biased compared to their respective truths. Nonetheless,
the ensemble mean values converge to the truths within only a few iterations, and the
scattering of the samples are slightly reduced for both coefficients. The convergence of the
inferred coefficients results in the successful correction of the velocity field with reduced
uncertainties. By comparing Figs. and [3.5b, we find that the converged wy, ensemble
has a slightly larger variance than that of the w,; ensemble, which means that the posterior
uncertainty of w, , is slightly larger. This is because the KL modes used to construct the
random fields are not equally weighted. The higher modes are less important than the lower
modes. Therefore, the coefficients for the higher modes are less sensitive to observations in
the inversion process.

In case S1, uncertainties still exist in the posterior coefficients of K. modes and thus in the
posterior Reynolds stresses ensembles. This is because the prior ensemble is sampled in an
uncertainty space with a higher dimension than that the truth resides in. This situation
is typical in practical scenarios, since the truth is unknown for most non-trivial problems.
Therefore, the inversion is started from a larger searching space to ensure the coverage of
the truth. However, if the dimension of uncertainty space can be reduced based on prior
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Figure 3.6: Convergence histories of unknown parameters w,; and w,o for case S2. The
searching space in this synthetic case is smaller than that of case S1. The synthetic truths
are indicated by the dashed lines.
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Figure 3.7: The posterior ensembles of 7, profiles of case S2, in which the synthetic truth is
used and the searching space is the same as the uncertainty space where truth resides. The
ensemble profiles are shown at eight locations z/H = 1, --- 8, compared with synthetic
truth and baseline results. The prior ensemble is the same as that of case S1 and is omitted
for simplicity. All of the samples are collapsed to the truth, and thus the corresponding lines
of samples and sample mean overlap with the synthetic truth.
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knowledge, the uncertainties of the inversion results can be further reduced. We demon-
strate this statement with case S2, in which the inversion is performed in a low-dimensional
uncertainty space where the synthetic truth resides. In order to search this low-dimensional
space, the prior ensemble is generated in the space spanned by two KL modes of the 7(x)
field. All other computational parameters are the same as those in case S1. Figure [3.6[shows
the convergence of the coefficients for the first and second modes of 1. The coefficients w, ;
and w, o ensembles almost exactly converge to the synthetic truths, which is in contrast to
Fig.[3.5 In addition, comparison of Fig. [3.7 and Fig. shows that the uncertainties in the
posterior Reynolds stress component 7, are reduced. The posterior uncertainties are larger
in the case where the searching space has higher dimension, especially in the regions far
away from the observed location, e.g., along the line at z/H = 8. With the same amount of
observation data, the inference uncertainties are reduced by narrowing down the dimension
of searching space. The reason is that higher dimensional uncertainty space means more
degrees of freedom that need to be inferred, which may lead to an ill-posed problem and
pose a challenge for the inversion.

3.3.3 Prior Knowledge on Variance Field o(x)

The spatial field of the perturbation variance o(x) for &, n and k reflects analyst’s prior
belief on the uncertainty range at each location. If the knowledge on it is not available a
priori, we can choose a non-informative prior with a uniform variance field o(x). However,
for most flow problems, we usually have some empirical knowledge. For example, in the case
of flow over periodic hills, there are some regions where RANS models are known to give
poor predictions, e.g., regions with recirculation, non-parallel free-shear flow, and the strong
mean flow curvature. The variance field o(x) shown in Fig. is designed to reflect this
empirical knowledge. It can be seen that in the free-shear layer and recirculation zone, larger
perturbations of Reynolds stresses are allowed, while the baseline RANS Reynolds stresses
in other regions are assumed to be relatively reliable.

The prior of velocity profiles obtained based on non-informative and informative variance
fields are shown in Figs. and [3.8b, respectively. It can be seen that the velocity samples
are appreciably scattered in the entire domain if uniform o(x) is employed. Such a large
scattering is attributed to the lack of physical prior knowledge. In contrast, the scattering
of the prior velocity profiles is constrained by incorporating the physical knowledge on the
variance field. This is shown in Fig. [3.8pb. Therefore, the prior with uniform o(x) field has
an uncertainty space with spatially equal variance, while the uncertainties are reduced in
the regions where RANS predictions are more accurate based on the informative o(x) field.
The merits of incorporating empirical knowledge can be clearly demonstrated by comparing
the posterior velocity profiles of cases D1 and D2, which are shown in Figs. and [3.9pb,
respectively. Compared to the prior velocity profiles, both posterior results are improved
since all of the velocities samples converge to the DNS benchmark, and their scattering is
largely reduced. This indicates that the proposed framework improves the model predictions
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samples —:= sample mean —- baseline

— DNS (Breuer et al. 2009) X X observations

y/H

xz/H; 2U,/U,+z/H

(a) U, with non-informative o(x)

y/H

z/H; 2U,/U,+z/H
(b) U, with informative o(x)

Figure 3.8: The prior ensembles of velocity U, profiles of case D1 and case D2, in which the
observations are from DNS benchmark. (a) The variance field o(x) of case D1 is spatially
uniform (o(x) = 0.7), (b) The variance field o(x) of case D2 is informative (o, = 0.2,
Omaz = 0.7). The ensemble profiles are shown at eight locations x/H = 1, --- |8, compared
with the baseline results and DNS benchmark. The locations where velocities are observed
are indicated with x.
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samples —-=- sample mean —- baseline
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xz/H; 2U,/U,+z/H

(a) Uy with non-informative o(x)

z/H; 2U,/U,+z/H
(b) U, with informative o(x)

Figure 3.9: The posterior ensembles of velocity U, profiles of case D1 and case D2, in which
the observations are from DNS benchmark. (a) The variance field o(x) of case D1 is spatially
uniform (o(x) = 0.7), (b) The variance field o(x) of case D2 is informative (0, = 0.2,
Omaz = 0.7). The ensemble profiles are shown at eight locations x/H =1, --- |8, compared
with the baseline results and DNS benchmark. The locations where velocities are observed
are indicated with x.
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(especially in the recirculation regions) even with a non-informative variance field, i.e., a
constant o(x). However, in Fig. , the scattering of posterior velocity samples obtained
with the uniform o(x) field is still larger than that with informative o(x) field in case S2
(shown in Fig. ) Especially near the top of the domain, the uncertainty in velocity
ensemble is even larger and the sample mean velocity is slightly distorted compared to the
truth and is unphysical. The reason is that the o(x) field introduces relatively large pertur-
bation in this region, where no observation is available nearby to constrain the uncertainties
in the posterior ensemble. In contrast, the results obtained with an informative prior shown
in Fig. has a much better agreement with the truth in the region near the upper wall. It
shows that the posterior distribution can be improved by adopting an informative variance
field with prior knowledge, as it reduces unnecessary perturbations.

Figures and show the posteriors of the other two Qols, wall shear stress 7,
and reattachment point xusqen, for cases D1 and D2, respectively. We can see that both
Tw and Tgiqen Obtained from baseline RANS simulation deviate from the DNS benchmark
significantly. The RANS predicted recirculation region is much smaller than the truth.
The posterior means of reattachment point xgu..n 0of both cases D1 and D2 have better
agreements with the truth. However, the posterior distribution of x4, obtained with the
non-informative o(x) is overconfident with a bias, which can be clearly seen in the comparison
of probability density functions (PDF) as shown in Fig. . The Z44tqcn distribution barely
covers the truth and the mean is biased. Specifically, it can be seen in Fig. that 7, is
overcorrected from x/H = 2.5 to x/H = 4 and undercorrected from x/H = 4.5tox/H = 7.5.
Significant improvement is achieved when an informative o(x) is adopted, which is shown
in Figs. and [3.10d. We can see that in most part of the region (between z/H = 1
and 8), the posterior ensemble has a better agreement with the benchmark. Moreover, the
posterior PDF is wider than that of case D2 and well covers the truth, indicating that the
overconfidence existed in Fig. is reduced. All of these results demonstrate the merits
of incorporating empirical knowledge into the o(x) field. It is noted that in the vicinity of
the hill crest (i.e., near x/H = 0.5 and x/H = 8.5), the posterior ensembles of both cases
show less improvement. This is because the flow in the region with rapid spatial variations
has a relative small length scale and thus a weak correlation with the flow in other regions.
Consequently, the corrections are not effective due to the weak correlations between this
region and the regions with observations.

3.3.4 Prior Knowledge on Experimental Design

In addition to the amount of observation data, the arrangement of observed locations is also
a crucial factor, as it affects the inversion results of model discrepancy and corresponding
corrections to the predicted flow field. Since the model discrepancies vary location by lo-
cation, the observed information is weighted. Designing the layout of the measuring points
to achieve a more effective use of observation data is referred to as “experimental design”.
In this section we will demonstrate that prior knowledge will also improve the experimen-
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Figure 3.10: The posterior wall shear stress and reattachment point obtained with uniform,
non-informative o field (case D1) and from informative o field (case D2). The change of wall
shear stress from negative to positive indicates the end of the recirculation zone. (a) Wall
shear stress of case D1; (b) Wall shear stress of case D2; (c¢) Reattachment point of case D1;

(d) Reattachment point of case D2.
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tal design for quantifying and reducing the model-form uncertainties. Two principles for
experimental design should be mentioned in the proposed framework. First, the observa-
tions should be placed in the regions where the RANS predictions are relatively unreliable
(e.g., the recirculation area). Second, more observations should be allocated to the regions
where the length scale of flow is small. This is because the inference and correction of model
discrepancies in the unobserved regions are based on their correlations with the observed
locations. To demonstrate the effects of prior knowledge in the experimental design, another
scenario of case D2 with a different arrangement of observations is investigated. Instead of
placing the observations with informative prior based on two principles mentioned above, we
uniformly arrange the same number of observations used in the case D2 in the entire flow
field, which are shown in Fig. |3.11h.

samples —-- sample mean —- baseline

— DNS (Breuer et al. 2009) X X observations

z/H; 2U,/U,+z/H

(a) U, with non-informative experimental design

(b) U, with informative experimental design

Figure 3.11: The posterior velocity U, profiles of case D2. (a) The observations are uniformly
arranged across the domain; (b) The observations are arranged based on the prior knowledge
of the flow. The total numbers of observations in (a) and (b) are the same.

The posterior velocity profiles of case D2 with non-informative and informative experimental
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designs are compared in Figs. [3.11p and [3.11p, respectively. Figure shows that the bias
in the recirculation zone is only partially corrected with a uniform layout of observations.
The reverse flow near the wall (y/H < 0.5) is still poorly predicted, since no observation
is available in the nearby region. Moreover, overcorrection can be seen in the downstream
(x/H > 5), where the baseline RANS prediction is relatively accurate. The reason is that
the length scale of flow in the near wall region is small, while no observation is placed in
the windward side of hills (z/H = 7 to 8). Consequently, the spatial correlation is not
strong enough to correct the profiles and constrain the uncertainties by incorporating the
information from the observations.

3.4 Discussion

3.4.1 Effect of Observation Data Versus Effect of Empirical Prior
Knowledge

In Bayesian frameworks, uncertainties in the posterior distribution can be reduced by incor-
porating observation data. This statement can be confirmed by exploring another scenario
of case S1 in which the velocities at additional 16 points at x/H = 7 are observed. Fig-
ure shows the inferred posterior ensemble of Reynolds stress component 7., with more
observation data. By comparing Figs. and [3.12] we can see that the scattering of the
samples is significantly reduced with more observation data, especially near the regions where
the additional observation points are introduced. Therefore, incorporating more observation
data improves the inferred quantities (i.e., Reynolds stress) and reduces the corresponding
uncertainties.

However, for most engineering problems the amount of data is limited and is insufficient to
drive a physics-neutral, data-based statistical frameworks proposed in the statistical com-
munity. On the other hand, empirical knowledge is available for many practical applications
thanks to the accumulated experiences in the engineering community. We claim that an
important advantage of the proposed framework is to provide a rigorous Bayesian approach
incorporating various sources of empirical knowledge. The incorporated empirical knowl-
edge complements the inadequate observation data and thus further reduces the model-form
uncertainties in RANS simulations.

3.4.2 Non-Uniqueness of Mapping from Inferred Quantities to
Observed Quantities

An essential component of the proposed model-form uncertainty quantification and reduction
framework is the inversion of discrepancies in the Reynolds stress tensor. However, the
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Figure 3.12: The posterior ensembles of 7., profiles of case S1 with more velocity observations
(32 compared to 16 in the original case S1). The ensemble profiles are shown at eight locations
x/H =1, --- 8, compared with synthetic truth and baseline results. All of the samples are
collapsed to the truth, and thus the corresponding lines of samples and sample mean overlap
with the synthetic truth.

inferred quantities (i.e., discrepancy in the Reynolds stress field) do not uniquely map to
the corresponding observed quantities (i.e., velocities). This is due to the ill-possedness of
the problem. That is, the mapping from velocity field to Reynolds stress field has multiple
solutions. Such ill-possedness is common in many inversion problems [20].

The non-unique mapping can be demonstrated by the case S1. As shown in Fig. [3.4] the
posterior velocity profiles converge to the truth and the uncertainties (i.e., scattering of ve-
locity samples) are nearly eliminated based on the synthetic observation data. However, the
inferred ensemble of modes coefficients for Reynolds stress discrepancy are still scattered
(shown in Fig. 3.5). This evidence implies that the Reynolds stress fields are still scat-
tered, even though the corresponding velocity fields are almost the same. The scattering of
Reynolds stress fields also can be seen clearly in posterior ensemble of 7,,, shown in Fig.|3.13|
The scattering range of posterior 7., ensemble is large in the entire domain, which indicates
the velocities are not sensitive to 7., in this problem. Nonetheless, based on the concept
of “goal-oriented uncertainty quantification” [21], the merits of proposed framework can be
justified depending on the quantities of interest (Qol). If Qol is the velocity field or wall
shear stress, the predicted results are significantly improved through the framework. On the
other hand, if the Reynolds stress is the Qol, more prior knowledge or observation data are
needed to constrain the problem of ill-posedness. It has been shown in case S1 that the true
Reynolds stress can also be inferred exactly, so long as sufficient data and prior knowledge
are given.
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Figure 3.13: The posterior ensembles of 7., profiles of case S1. The ensemble profiles are
shown at eight locations ©/H = 1, --- 8 of case S1, compared with synthetic truth and
baseline results.

3.5 Conclusion

In this paper, we discussed the merits of incorporating various prior knowledge into the pro-
posed Bayesian framework for model-form uncertainty quantification and reduction in RANS
simulations. The prior knowledge considered in the framework includes the smoothness and
realizability of Reynolds stress tensor field, overall understanding on the coherent structures
of the flow, and the empirical experiences of RANS modeling. We examined the merits of
incorporating the prior knowledge on the dimension of uncertainty space, spatial field of vari-
ance and experimental design by using four test cases. The simulation results demonstrate
that the posterior Qol predictions can be significantly improved by incorporating physical
prior knowledge into the Bayesian inference. Incorporating the prior information enables a
more efficient usage of limited observation data. Meanwhile, the study also suggests that
the proposed framework provides a relatively rigorous way to express and incorporate the
existing empirical knowledge on RANS modeling. Based on the proposed framework, the
empirical knowledge accumulated in decades of engineering practices can be used to improve
the quantification and reduction of model-form uncertainties in RANS simulations.
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Abstract

With the ever-increasing use of Reynolds-Averaged Navier—Stokes (RANS) simulations in
mission-critical applications, the quantification of model-form uncertainty in RANS models
has attracted attention in the turbulence modeling community. Recently, a physics-based
nonparametric approach for quantifying model-form uncertainty in RANS simulations has
been proposed, where Reynolds stresses are projected to physically meaningful dimensions
and perturbations are introduced only in the physically realizable limits (Xiao et al., 2016.
Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier—Stokes sim-
ulations: A data-driven, physics-informed Bayesian approach. Journal of Computational
Physics. 324, pp. 115-136 ). However, a challenge associated with this approach is to as-
sess the amount of information introduced in the prior distribution and to avoid imposing
unwarranted constraints. In this work we propose a random matrix approach for quanti-
fying model-form uncertainties in RANS simulations with the realizability of the Reynolds
stress guaranteed, which is achieved by construction from the Cholesky factorization of the
normalized Reynolds stress tensor. Furthermore, the maximum entropy principle is used to
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identify the probability distribution that satisfies the constraints from available information
but without introducing artificial constraints. We demonstrate that the proposed approach
is able to ensure the realizability of the Reynolds stress, albeit in a different manner from
the physics-based approach. Monte Carlo sampling of the obtained probability distribu-
tion is achieved by using polynomial chaos expansion to map independent Gaussian random
fields to the Reynolds stress random field with the marginal distributions and correlation
structures as specified. Numerical simulations on a typical flow with separation have shown
physically reasonable results, which verify the proposed approach. Therefore, the proposed
method is a promising alternative to the physics-based approach for model-form uncertainty
quantification of RANS simulations. The method explored in this work is general and can
be extended to other complex physical systems in applied mechanics and engineering.

Notations

We summarize the convention of notations below because of the large number of symbols
used in this paper. The general conventions are as follows:

1. Upper case letters with brackets (e.g., [R]) indicate matrices or tensors; lower case
letters with arrows (e.g., ¥) indicate vectors; undecorated letters in either upper or
lower cases indicate scalars. An exception is the spatial coordinate, which is denoted
as x for simplicity but is in fact a 3 x 1 vector. Tensors (matrices) and vectors are
also indicated with index notations, e.g., I;; and v; with 4,57 = 1,2, 3. In this paper,
1 and j are used with tensor indices while o and ( are used as general indexes, e.g.,
for the modes of Kahunen—Loeve expansion or for the terms in the polynomial chaos
expansion.

2. Bold letters (e.g., [R]) indicate random variables (including scalars, vectors, and ma-
trices), the non-bold letters (e.g., [R]) indicate the corresponding realizations, and
underlined letters (e.g., [R]) indicate the mean.

3. Symbols M, M, and M1° indicate the sets of symmetric, symmetric positive definite,
and symmetric positive semi-definite matrices, respectively, of dimension d x d with
the following relation: M} C M1% C M.

This work deals with Reynolds stresses, which are rank two tensors. Therefore, it is implied
throughout the paper that all random or deterministic matrices have sizes 3 x 3 with real
entries unless noted otherwise.
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4.1 Introduction

Numerical models based on Reynolds-Averaged Navier-Stokes (RANS) equations are the
dominant tool for the prediction of turbulent flows in industrial and natural processes. For
many flows the predictions from RANS simulations have large uncertainties, which are mostly
attributed to the phenomenological closure models for the Reynolds stresses [22, [I]. Previous
efforts in quantifying and reducing model uncertainties in RANS simulation have mostly fol-
lowed parametric approaches, e.g., by perturbing, tuning, or inferring the model parameters
in these closure models [2]. Recently, researchers in the turbulence modeling community have
recognized the limitations of the parametric approach and started exploring nonparametric
approaches where uncertainties are directly injected into the Reynolds stresses [1, [3, 4. 5] [6].

In their pioneering work, Taccarino and co-workers [3, [4] projected the Reynolds stress onto
the six physically meaningful dimensions (its magnitude, shape, and orientation) and per-
turbed the Reynolds stresses towards the limiting states in the physically realizable range.
Xiao et al. [6] utilized the six physical dimensions as the basis to parameterize the Reynolds
stress uncertainty space, and the physical-based parameterization is further used for system-
atic exploration of the space and for Bayesian inferences to incorporate observation data.
However, although the physics-based parameterization allows for a full representation of the
uncertainty space, two limitations need to be addressed. First, the realizability constraints
on Reynolds stresses provide guidance only on the shape of the Reynolds stress (in the form
of the classical Lumley triangle [7] or the recently proposed Barycentric triangle [8]). In
comparison, much weaker constraints can be imposed on the magnitude and the orientation,
except for the constraint that the magnitude (i.e., turbulent kinetic energy) must be posi-
tive. For this reason and partly due to stability considerations, previous works on injecting
uncertainty to the physical projections of the Reynolds stress have focused on the shape and
magnitude [3] 6, 5], and they did not introduce uncertainties to the orientations. Second, in
the context of Bayesian inference of Reynolds stress uncertainties as pursued by Xiao and
co-workers [6, [9] T0], it is not straightforward to specify a prior distribution on the physical
variables. Xiao et al. [6] specified Gaussian priors for the Reynolds stress discrepancy in
terms of the tensor shape parameters and the logarithmic of the magnitude. In principle the
same prior can be specified for the orientation angles. However, it is not clear how much
information is introduced into the prior with this choice of probability distributions (i.e.,
log-normal distribution for the magnitude and standard normal for others). Moreover, in
lack of physical insight, it is not clear how large the variance for each physical variable should
be compared to each other. Although the prior plays a minor role in the Ensemble Kalman
filtering based inference with a moderate amount of data as studied in Xiao et al. [6], it can
be of critical importance for pure uncertainty propagation as pursued by laccarino and co-
workers [3], 4], 5] and for Bayesian inferences with small amounts of data. In particular, it is
critical that no artificial constraints are introduced with overly confident prior distributions.

The entropy measure of information has been proposed more than half a century ago [11].
Since then, the maximum entropy principle has been extensively used as the guideline to
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specify prior probability distributions for Bayesian inferences [12]. The principle states that
out of all possible distributions that satisfy the constraints from available information, the
probability distribution that has the maximum entropy is a good prior distribution. Since
entropy is a measure of randomness, the maximum entropy distribution is the most non-
committal and most random in the dimensions in which no information is available. Conse-
quently, it introduces the least amount of information in addition to the specified constraints.
While the maximum entropy principle has been used extensively in many disciplines such
as communications [I3] and image processing [14], the use of maximum entropy principle in
conjunction with random matrix theory for quantifying model-form uncertainties in physi-
cal systems is only a recent development. Soize [I5] was the first to derive the maximum
entropy probability distribution of a symmetric positive definite random matrix with a speci-
fied mean field. Applications to structural vibration problems were demonstrated, where the
mass, stiffness, and damping matrices of the real system were described as random matrices
with the corresponding matrices in the reduced model as their means. In these applications,
the dimension d of the matrices corresponds to the degrees of freedom in the finite element
discretization of the structural system, and thus d is usually very large (e.g., of the order
of O(10%) or more; refer to the numerical example in [16]). The framework was further ex-
tended to nonlinear structural dynamics problems and to other applications (e.g., composite
materials [I7], porous media[I§]) and to problems with more complicated constraints, (e.g.,
on the variance of eigenvalues [19] [18], as well lower and upper bounds on the matrices [17]).
See refs. |16} 20] for comprehensive reviews of the recent development. When the framework
was used in the constitutive modeling of composite materials or to describe the permeability
tensor of porous media, the random matrices have a dimension of 3 x 3.

Since Reynolds stresses are symmetric positive definite tensors, it seems natural to use
random matrix approach to describe the Reynolds stresses for the quantification of RANS
modeling uncertainties. However, the authors are not aware of any existing work in the
literature that applied the random matrix theory in quantifying model-form uncertainties
in RANS simulations. While many of the theories developed by Soize and co-workers can
be applied here straightforwardly, an important characteristic of the RANS modeling appli-
cation is that the Reynolds stresses are described by a field of 3 x 3 random matrices with
spatial correlations. In contrast, the matrices in previously investigated applications either
involve only a few individual large matrices (e.g., the mass, stiffness, and damping matrices
in structural dynamics applications [I5] ) or a large number of random matrices without
spatial correlation structure (e.g., the effective constitutive matrices in the meso-scale mod-
eling of composite materials [I7]). A notable exception is the recent work of Guilleminot
et al. [18], where the permeability tensor is modeled as a random matrix field with a specified
correlation structure. Note that most of the theories in the framework of Soize [I5] [16] 20]
were developed for random matrices of arbitrary yet finite dimensions, and thus they should
be equally applicable for all the above-mentioned applications, where the dimension d ranges
from 3 to O(10°). In this work we do not utilize the results pertaining to the asymptotic
behaviors of the theories for d — co.
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In the present contribution, we use an approach based on the random matrix theory and
the maximum entropy principle to quantify model-form uncertainties in RANS modeling.
The objectives of this work are two-fold. First, the proposed framework for quantifying
model form uncertainties in RANS simulations provides an alternative to the physics-based
approach investigated by laccarino and co-workers [3, 4, [5] and Xiao and co-workers [6], [10].
The advantages and disadvantages of both approaches can thus be contrasted and compared
(see Wang et al. [2I]). Despite the better mathematical rigorousness in seeking maximum
entropy distribution for the random matrix in the current approach, it is possible that the
physics-based approach may still be preferred by RANS simulations practitioners for both
uncertainty quantification and Bayesian inferences. This is because of its convenience in
incorporating physical prior knowledge [9]. As such, another objective and motivation for
this work is to provide basis for gauging the departure of the priors used in the physics-
based approach from the maximum entropy condition. By comparing the prior distributions
of the obtained Reynolds stress from both approaches, the current framework can reveal the
amount of information introduced in the physics-based prior distribution, and thus provide
guidance for the choice of priors in the physics-based approach. Detailed results from such
a comparison are presented in a companion paper [21].

The rest of the paper is organized as follows. Section 2 introduces the realizability of Reynolds
stresses in details and argues that the current framework of modeling Reynolds stress as
positive semidefinite tensors can guarantee realizability in the same way as in the previously
proposed physics-based approaches [6]. Section 3 introduces the random matrix framework
for model-form uncertainty in RANS simulation and discusses its implementations. Section 4
uses the flow over periodic hills as an example application to demonstrate the performance of
the proposed method. The probability measure of the obtained distribution on the limiting
states is discussed in Section 5. Finally, Section 6 concludes the paper.

4.2 Realizability of Reynolds Stresses: Physical vs. Math-
ematical Perspectives

4.2.1 The Origin and History of Realizability Constraints

The Navier—Stokes equations for incompressible flows with constant density can be written
as follows:

8vi 0 (U[Uj) 1 ap 822}1'
S VA 4.1
ot * Ox; p ox; * V@a:jaxj (4.1a)
5’2}1
= 4.1
and e 0 (4.1b)

where v; and p are instantaneous velocity and pressure, respectively; ¢ and x; are time and
space coordinates, respectively; v is the kinematic viscosity; p is the fluid density. Solving the
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Navier—Stokes equations with proper numerical methods and mesh resolution as is done in
Direct Numerical Simulations (DNS) would yield the flow field v;(x,t) and p(z,t) at any time
and location. However, this is prohibitively expensive computationally due to the wide range
of spatial and temporal scales, particularly for practical turbulent flows. Therefore, the mean
flow field is solved in place of the instantaneous field. For that purpose, the instantaneous
velocity can be considered a random variable, whose mean is obtained by using Reynolds
ensemble averaging. As such, we use a bold symbol v; to indicate the instantaneous velocity
hereafter.

First, the instantaneous velocity v; is decomposed into the mean quantity v, and its fluctu-
ation v;. That is, v; = v, + v}, and the pressure is also decomposed to mean pressure p and
pressure fluctuation p’. Substituting the decompositions into the Navier Stokes equation
and taking the mean lead to the RANS equations [22]:

;0 (vv;))  10p Pu, OV

=— - - 4.2
ot oz, p Ox; * V@x]@xj oz, (422)
v,
d —= 4.2b
an . 0 (4.2b)

where the covariance (v;v}) of the velocity fluctuations is referred to as (the negative of)
Reynolds stress and is denoted as ?;; for simplicity, but the covariance nature of this term
has profound implications. Specifically, a Reynolds stress tensor must be symmetric positive
semi-definite, i.e., R; € Mj? where Mj" is the set of symmetric positive semidefinite
matrices. In fact, the Reynolds stresses are mostly positive definite (i.e., all eigenvalues are
positive), i.e., R;; € M7, and zero eigenvalues occur only in extreme cases, e.g., on the
wall boundaries or in turbulence-free regions, where velocity fluctuations for one or more
components are zero. For practical purposes it is not essential to distinguish between M3
and M7° when quantifying model form uncertainties in RANS simulations.

For a tensor to be a valid Reynolds stress tensor, or equivalently, to be physically realizable,
there must exist a velocity that has this covariance. The physical realizability of Reynolds
stresses and the associated second-order closure models were a topic of intensive research
in the early years of turbulence model development. Early works of Schumann [23], Lum-
ley [24], and Pope [25], among others, have led to a class of realizable second-order closure
models [26]. Since these models solve an evolution equation for the Reynolds stresses, these
models guarantee the realizability by imposing certain constraints on the rate of change [R]
of the Reynolds stress, i.e., the constraint that its principle stress components (e.g., eigenval-
ues) do not further decrease when at zero [25]. The well-known Lumley triangle [7] provided
a map for all realizable turbulence by projecting the Reynolds stress to a plane. Specifically,

the following decomposition is performed on the Reynolds stress:

7] =26 (1+ 141) =26 (G111 + (BT (4.9

where £ is the turbulent kinetic energy which indicates the magnitude of [R]; [I] is the second
order identity tensor; [A] is the anisotropy tensor; [E]| = [€], €3, €3] and [A] = diag[A1, A2, A3]
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where A + Ay + A3 = 0 are the orthonormal eigenvectors and the corresponding eigenvalues
of [A], respectively, indicating the shape and orientation of [R]. The Lumley triangle is thus
defined on a plane with the second and third invariants (IT and IIT) of the anisotropy tensor
as coordinates. The invariants are IT = (tr[A])? — tr([A]?) and III = det[A], where tr(-) and
det(-) denote trace and determinant, respectively.

4.2.2 Realizability in Physics-Based Model-Form Uncertainty Quan-
tification

The past two decades have not seen significant literature on the realizability of turbulence
models, partly because the research on RANS model development has been stagnant alto-
gether. However, recently the pioneering research of Iaccarino and co-workers [3] 4], 30] on the
quantification of model form uncertainties in RANS simulations has revived the interests on
Reynolds stresses realizability. Specifically, they performed the decomposition as shown in
Eq. and mapped the eigenvalues i, Ao, and A3 to Barycentric coordinates (C1,C5,C3)
as follows:

Cl = 5\1 - 5\2 (44&)
03 == 35\3 +1. (440)

As illustrated in Fig. , the Barycentric coordinates (C, Cy, C3) of a point indicate por-
tion of areas of the three sub-triangles formed by the point and the edge labeled as C, Cj,
and (3, respectively, in the Barycentric triangle. For example, the ratio between the shaded
sub-triangle and the entire triangle is C'3. A point located on the top vertex corresponds
to C3 = 1 while a point located on the bottom edge (labeled C3 in Fig. [6.1p) has C3 =
0. Therefore, each coordinate ranges from 0 to 1, and they sum to 1 for any point, i.e.,
C1+ Cy+ C5 = 1. The three edges labeled C}, Cy and C5 are opposite to the vertices repre-
senting one-component, two-component, and three-component limits of realizable turbulence
states. The Barycentric coordinates have clear physical interpretation in that they indicate
the componentality (i.e., dimensionality) of the turbulence. For example, the upper corner in
Fig. [6.1h, which corresponds to C5 = 1 or equivalently a Barycentric coordinate of (0,0,1),
indicates isotropic, fully three-dimensional turbulence. Detailed physical interpretation of
the vertices and edges are shown in Fig.[6.Th. The Barycentric triangle is similar to the Lum-
ley triangle in that it also encloses all realizable turbulence states. Emory et al. [3] estimated
the uncertainties in RANS simulations by perturbing the Reynolds stress towards the three
limiting states, i.e., the vertices of the Barycentric triangle. This is illustrated in Fig.
as squares. Based on their work, Xiao et al. [6] further mapped the Barycentric coordinates
to natural coordinates, on which the equilateral triangle is mapped to a unit square. They
parameterized the uncertainty space on the natural coordinates and systematically explored
the uncertainty space. The samples as obtained in Xiao et al. [6] are illustrated in Fig. [6.1p,
which are in contrast to the three perturbed states of Emory et al. [3].
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3-Comp (3-component isotropic)

Perturbed states Baseline RANS

in Xiao et al.

Perturbed states
in Emory et al.

2-Comp 2-component limit 1-Comp
(2-component (det([R] = 0) (1-component)
axi-symmetric)

(a) (b)

Figure 4.1: (a) Barycentric triangle as a way of delineating realizable turbulence, its defini-
tion and physical interpretation. Elements in the set M;O of positive semidefinite matrices
maps to the interior and edges of the triangle, while the set M;O \ M} of singular matrices
maps (whose element have zero determinants) maps to the bottom edge. (b) Model-form
uncertainty quantification through perturbation of Reynolds stresses within the physically
realizabile limit enclosed by the Barycentric triangle. The different schemes of Emory et
al. [3] and Xiao et al. [6] are shown.
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While both Emory et al. [3] and Xiao et al. [0] injected uncertainties only to the magnitude
and shape of the Reynolds stress tensor, it is theoretically possible to perturb the orientation
as well. This work is not directly concerned with the physics-based approach for uncertainty
quantification, but the physics-based parameterization will facilitate interpretations of the
samples obtained with the random matrix approach. To this end, a parameterization scheme
for the eigenvectors E = [€}, €, €3] is needed. The three mutually orthogonal, unit-length
vectors can be considered a rigid body and thus its orientation has three degrees of freedom,
although they have nine elements in total. We use the Euler angle with the z-z’-z" convention
to describe the orientation of the Reynolds stress anisotropy tensor following the method in
rigid body dynamics [31]. That is, if a local coordinate system z—y—z spanned by the three
eigenvectors of [R]| was initially aligned with the global coordinate system (X-Y-Z), the
current configuration could be obtained by the following three consecutive intrinsic rotations
about the axes of the local coordinate system: (1) a rotation about the z axis by angle ¢,
(2) a rotation about the x axis by 9, and (3) another rotation about its z axis by ¢3. Note
that the local coordinate axes may change orientations after each rotation.

In summary, the Reynolds stress can be represented with six independent variables with
clear physical interpretations. The turbulent kinetic energy k represents its magnitude; the
Barycentric coordinates C, Cy, C3, of which only two are independent, indicate its shape;
the Euler angles ¢1, o and 3 represent its orientation. Realizability can be guaranteed
by injecting uncertainties in these physical variables, a fact that has been exploited in the
physics-based approach for RANS model-form uncertainty quantification investigated in ear-
lier works.

4.2.3 Mathematical and Physical Interpretations of Realizability

The physics-based approach based on Barycentric triangle as explored by Emory et al.[3] and
Xiao et al. [0] certainly has clear advantages. However, it is not the only way to guarantee
realizability. Here we claim that an alternative method to guarantee the Reynolds stress
realizability in the context of RANS model-form uncertainty quantification is to model [R]
as a random matrix defined on the set Mi7° of positive semidefinite matrices. In other words,
we can directly draw [R] from the set M3°, and all obtained samples are guaranteed to be
realizable Reynolds stresses. To support this claim, we utilize a theorem on the equivalence
between the set of positive semidefinite matrices and the set of co-variance matrices (see e.g.,
[32]).

Theorem 1. A covariance matriz [R] must be positive semidefinite; conversely, every sym-
metric positive semi-definite matriz [R] is a covariance matriz.

The proof for the first part is straightforward and is thus omitted. The proof for the second
part is of critical importance to the theme of our work, and thus it is reproduced below.
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Proof. We construct a vector v = [R]Y/2b with [R]!/? being the symmetric square root of
[R], and b has a covariance of identity matrix, i.e., Cov{b, b} = [I]. It can be seen that

Cov{R"*b, R"/*b} = [R]"/* Cov{b, b} [R]"/* = [R). (4.5)

Therefore, for any positive semidefinite matrix [R], there is a real-valued velocity vector v
whose covariance is [R]. This completes the proof. O]

Recalling the definition and origin of the Reynolds stress realizability described in Sec-
tion [4.2.1] it can be seen that the matrix [R] is also a realizable Reynolds stress. Therefore,
it is concluded that the mathematical constraint that [R] must belong to the set MZ° can
equally guarantee the realizability of the obtained Reynolds stresses, albeit in a different
manner from the physics-based approach. The latter utilized the constraint that the pro-
jection of Reynolds stresses must reside in the Barycentric triangle to ensure the Reynolds
stress realizability.

We conclude this section with the following three equivalent statements on the realizability
constraints of the Reynolds stresses:

1. a Reynolds stress must reside within or on the edge of the Lumley triangle or Barycen-
tric triangle after the corresponding transformations [g];

2. a Reynolds stress tensor must be positive semidefinite; and

3. a Reynolds stress tensor must be the covariance matrix of a real-valued vector, i.e., a
velocity vector.

The equivalence between realizability and the invariants mapping within Lumley triangle
was established by Lumley and Neuman [7] and stated in ref. [22] (pp. 394); the equivalence
between the positive semidefinite requirement on the Reynolds stress and the realizability
conditions was proved by Schumann [23]. The relation among three statements above is a
pivotal element for anchoring the present contribution to the existing literature of turbulence
modeling [23,[7, [3]. However, note that the proposed random matrix approach for quantifying
RANS model-form uncertainty is fundamentally different from the physics-based approach
developed in ref. [6]. The most important difference lies in the fact that in the physics-based
approach the user specifies the probability distribution on the physical variables, while in the
random matrix approach the maximum entropy principle provides the basis for computing
the distribution of the matrices.
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4.3 Random Matrix Approach and Its Implementation

4.3.1 Probability Model for Reynolds Stress Tensors

Based on the discussions above on the nature of Reynolds stresses, we build a probabilistic
model for the Reynolds stress tensors. The development below mostly follows the works of
Soize, Ghanem, and co-workers [e.g., [15], [I7].

Using M to denote the set of all symmetric matrices, the measure of matrix [R] € M is
given as [16]:
d[R] = 2%~V H dR;; (4.6)
1<i<j<d
where [] indicates product, R;; are individual elements of matrix [R]|, and dR;; is the
Lebesgue measure on the set R of real numbers. Since Reynolds stresses are rank two
tensors, d = 3 is implied.

The objective is to define a probability measure pg; : MIO — RT on the symmetric matrices
set that maps a symmetric, positive semidefinite, second-order random matrix [R] to a
positive number. While such a measure is not unique, in this work we seek a Probability
Density Function (PDF) that has the maximum entropy. Specifically, if P,4 is the set of all
PDF's mapping from M;O to R*, then the maximum entropy principle states that the most
non-committal PDF is the one such that (1) all available constraints are satisfied, and (2)
no any other artificial constraints are introduced [I8]. That is,

Py = arg max 5(p) (4.7)

where the entropy S(p) of the PDF p is defined as [15]:
S(p) =~ | _ p(F)Wp(R)AIR] (1)

where In denotes the natural logarithm.
In the context of RANS-based turbulence modeling, the following constraints should be
satisfied by the PDF of Reynolds stress tensors:

1. All realizations [R] of the Reynolds stress [R] must be physically realizable. This
constraint is automatically satisfied by defining [R] on the set M[}*, i.e., [R] € M}°.

2. Normalization condition for the PDF"

| patipdin =1 (4.9

d

which is self-evident.
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3. We assume that a best estimation [R] of the true Reynolds stress [R] is available at
any location in the field. The estimation can be obtained in advance by performing
a baseline RANS simulation or by incorporating observation data and incorporating
prior corrections to the baseline RANS-predicted Reynolds stresses. Without further
information, it is reasonable to take the estimation [R] so-obtained as the mean of the
true Reynolds stress [R], with the latter being modeled as a random variable. This
constraint is expressed as:

E{[R]} = [R]. (4.10)

The theories on the maximum distribution of random matrices developed in the earlier works
of Soize and co-workers focused primarily on positive definite matrices, but the Reynolds
stress tensors of concern in the present application are positive semidefinite only. Although
we have claimed that the difference has no practical consequences, we shall still carefully
reconcile the differences before utilizing the theories of Soize [I5]. In order to obtain a
maximum entropy distribution for a positive definite matrix that satisfies the normalization
and mean constraints similar to those outlined above, Soize [I5] took a two-step approach.
Specifically, he first obtained the PDF for a normalized, positive definite random matrix [G]
whose mean is the identity matrix [/], i.e., E{[G]} = [I]. The probability distribution for
[G] must also satisfy the maximum entropy condition and the normalization condition in
Eq. above. Once such a matrix [G] is obtained, a matrix that satisfies the condition
E{[R]} = [R] can be constructed as follows:

[R] = [Lz]"[G][Lg), (4.11)

where [Lg| is an upper triangular matrix with non-negative diagonal entries obtained from
the following factorization of the specified mean [R], i.e.,

[E] = [LR]T[LR}' (4-12)

In the present development, we consider the following two scenarios: (1) When [R] € M}
is positive definite, the decomposition above is the well-known Cholesky factorization, and
the decomposition is unique. Its numerical implementations are available in many standard
numerical toolboxes (e.g., Matlab and the numpy library of Python). (2) When [R] €
MF?\ M is in the subset of singular positive semidefinite matrices, where \ indicates set
subtraction, it can be proved that the decomposition in the form above still exits with
L having non-negative diagonal entries, although the decomposition is no longer unique.
Moreover, Cholesky factorization routines for such matrices are still numerically stable if
complete pivoting is performed [33]. In practice, we can make it slightly positive definite by
adding a small element to the diagonal entries and thus still use the conventional Cholesky
factorization routines.

With the reconciliation above, hereafter we only need to focus on probability distribution of
the normalized positive definite matrix [G] and can thus directly use the results in the earlier
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works of [16]. By using the classical optimization techniques based on Lagrange multipliers,
the probability density function of the random matrix [G] is obtained as follows [16]:

p1G]) = 1 (G]) X Ci x detfG] (d + 1)(1 = )/ (28%) x exp (=G icl) - (4.13)

where ILM:( [G]) is an indicator function, i.e., it is one if [G] € M} and zero otherwise. The
positive constant Cy is:

—d(d— d+1\d(d+1)(26%) 7"
o, = B ER) (4.14)
1= T (57 +52)

where I'(z) is gamma function defined by I'(z) = fooo t*~te~tdt. The dispersion parameter &
indicates the uncertainty in the random matrix and is defined as:

= | getie - 1] (4.15)

where || || is Frobenius norm, i.e., |G||r = /tr([G]T][G]). It can be seen that ¢ is analogous
to the variance of a scalar random variable normalized by its mean. It has been shown [15]

that
d+1
0<d<y/—— 4.16
d+5’ (4.16)
which reduces to 0 < § < \/5/ 2 for d = 3. This constraint is related to the positive
definiteness of matrix [G].

The individual elements in the random matrix [G] are correlated and the same can thus be
said of the random matrix [R]. This correlation needs to be accounted for when generating
Monte Carlo samples, which can be achieved in a similar manner as in sampling from random
processes (e.g., Gaussian processes). The sampling method is detailed below.

4.3.2 Monte Carlo Sampling of Reynolds Stresses at One Point

Soize [15] outlined a Monte Carlo method to sample the probability distribution for random
matrix [R] for a given dispersion parameter § and mean [R]. To proceed with the sampling,
the random matrix with identity mean is first represented by its Chelosky factorization:

[G] = [L]"[L], (4.17)

where random matrix [L] are upper triangular matrices with independent elements. In the
procedure, each element L;; in matrix [L] is sampled independently with the algorithms
below (see Section 5.1 in ref. [34]):
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1. The off-diagonal elements L;; with ¢ < j are obtained from
L = 04 wij, (4.18)

in which o4 = 0 x (d + 1)7Y2, and wy; (i.e., Wiz, Wiz, and wy3) are independent
Gaussian random variables with zero mean and unit variance.

2. The diagonal elements are generated as follows:
L; =o04v2u; with ¢ =1,2,3 (4.19)

where u; is a positive valued gamma random variable with the following probability

density function:

wa Tl exp(—u)
(g% +47)

That is, the i*" diagonal term u; conforms to gamma distribution with shape parameter

k= (d+1)/(20%) + (1 —4)/2 and scale parameter 1.

p(u) = g+ (u) (4.20)

3. After obtaining the elements as above, a realization [L] of the random matrix [L] can be
assembled. Subsequently, realizations [G] and [R] for matrices [G] and [R], respectively,
can be obtained from [G] = [L]*[L] and [R] = [Lz|T[G][Lj] as in Egs. (5.8) and (5.6).

4.3.3 Random Matrix Field Model for Reynolds Stresses

The probability model and the Monte Carlo sampling algorithm described in Sections
and above is concerned with the Reynolds stress tensor at a single point. An important
challenge in the present application is to represent and model the correlation of Reynolds
stress at different spatial locations. This feature distinguishes the present contribution from
previous applications of random matrix in composite materials models [17] and structural
dynamics [20].

In this work we assume that the off-diagonal terms and the square roots of the diagonal terms
have the same spatial correlation structures. Gaussian kernel is among the most common
choice in the literature, but other kernels such as periodic (e.g., sinusoidal) kernels [I§] or
exponential kernels [35] have been used as well. The choice of kernel is reflected in the
smoothness of the realizations of the random tensor field L. With the Gaussian kernel used
in this work, the correlation between two random variables at two spatial locations x and z’
can be written as:

L) L)y = DL o [LEZIE) i) e
pL{L?i(a:),L?i($’)}ECoviiéiﬁ;zf;x/)}—exp[ - _lfw v, €9 (4.21b)
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where €) is the spatial domain of the flow field. Note that repeated indices do not imply
2

summation. o7;(z) and o(z) are the variances of the marginal distributions for the off-
diagonal elements L;;(x) and the square of the diagonal elements LZ (z), respectively. That
is, var{L;;(x)} = oZ(x) and var{LZ(z)} = oZ(z), the expression of which will be given in
Eqgs. and , respectively. pp is the correlation kernel, | - | is the Euclidean norm
of vectors, and [ is the correlation length scale of the stochastic process. We emphasize that
the correlations above are between the same element at different locations x and z’, and that
the random variables L1, Los, L3z, Lis, Lis, and Log, which are different elements of the

matrix [L|, are independent of each other as pointed out above.

With the correlation model defined in Eq. for the elements of matrix [L], the random
variables used to generate L;; in Egs. and can be generalized to random fields.
First, it is straightforward to generalize the Gaussian random variable w;; to a Gaussian
random field (also referred to as Gaussian process),

Lij(z) = oq(x)w;;(x), (4.22)
where L;;(z) and w;;(z) are random fields indexed by the spatial coordinate x, and
og(z) = 6(x) (d+1)~1/2 (4.23)

is a spatially varying field specifying the standard deviation of the marginal distribution
of L;j(x) at location x. Simple algebra shows that if we choose w;;(z) ~ GP(0, K) as the
Gaussian process with covariance kernel K (z,2') = exp [—(|z — 2/|?)/I?] as in Eq. (#.21)),
then

_ 0%(z)
Cd+ 1

The Gaussian processes w;;(x) can be expressed by using the Karhunen-Loeve (KL) expan-
sion, which can be written as follows when truncated to Nkp, terms:

0ii(x) = oa(z) = or equivalently o2 (x) (4.24)

ij

Nk

wii(2) = > vV bale) wa (4.25)

where w,, ~ N(0,1) with o = 1, -+ , Nk, being the standard Gaussian random variables; A,
and ¢, (x) are the eigenvalue and the corresponding eigenfunction for the o mode obtained
by solving the Fredholm integral equation [36]:

/Q ol 2')o(a') da’ = Ap(x) (4.26)

where €2 is the spatial domain of the flow as defined above.

Remarks on using nonstationary and anisotropic kernels to reflect the structure of the flow
field. Non-stationarity and anisotropy in the Gaussian process w(x) can be achieved by using
spatially varying and/or anisotropic length scale [(z), which depends on the characteristics
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of the mean flow. For example, for a nonstationary Gaussian process, the length scale [ in
Eq. can be written as [ = /l(x)l(z") following ref. [37]. As such, the physical structure
of the flow field is encoded in the Karhunen—Loeve basis functions. It is also desirable to
specify different variances o;;(z) at different locations. For example, in regions with flow
separation and pressure gradient, the Boussinesq assumptions are violated and thus most
RANS models have poor performances. Consequently, the variance o;;(z) should be larger in
these regions, which can be achieved by specifying the dispersion parameter §(z) to depend
on the location .

The sampling algorithm for the random variables of the diagonal terms in Eq. (5.11)) can be
similarly generalized to random fields as follows:

Lii(x) = o4(x)/2u;(x), (4.27)

where o4(z) is defined the same as above. Recall the facts that u;(x) has a gamma distribu-
tion with shape parameter k = (d+1)/(26?) 4+ (1 —1)/2 and that Var{u,;} = k. Substituting
Eq. (4.23) into Eq. (4.27) and using the two facts above, after some algebra one can show
that

262 26

o7 = Var{LZ} = 40 Var{u;} = T + )

ox (1—iq) for i=1,2,3,  (4.28)

where d = 3, and the spatial dependence of all other variables are omitted for notational
brevity. However, since u;(x) are random fields with gamma marginal distributions, they
are not straightforward to synthesize. Although the KL expansion above can still be used to
represent the random field u;(x), the corresponding coefficients obtained from the expansion
are neither independent nor Gaussian. To overcome this difficulty, we follow the procedure
in ref. [35] and express the gamma random variables u; at any location z with polynomial
chaos expansion:

u(e) = 3 Us(a)s(wia)) (4.20)
5=0

= Uy + Uyw(z) + Us(w?(x) — 1) + Us(w?(x) — 3w(x))
+ Uy(w(z) — 6w?(2) +3) +---

where N, is the order of polynomial expansion; for a given x, Wg(w(z)) are the Hermite
polynomials in standard Gaussian random variable w(x), with the first four terms explicitly
written as above; Ug are the coefficients for the ™ polynomial, for which the spatial index x
has been omitted for brevity. The coefficients can be obtained from orthogonality conditions
with respect to the Gaussian measure [38]:

- (ulg) 1 <
Us = = | B R alw) plw)de (4:30)

o0
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where <\Il%> is the variance of the 3™ order polynomial of standard Gaussian random variable;
F,.(w) and p, (w) are the Cumulative Distribution Function (CDF) and PDF, respectively,
of the standard Gaussian variable; F,, and F;! are the CDF and its inverse, respectively, of
random variable u. As indicated previously, Eq. is evaluated for each x with w(x)
being a standard Gaussian variable.

Sakamoto and Ghanem [35] derived the relation between spatial correlation of the non-
Gaussian field u(x), i.e., p,{u(z), u(z’)} and the correlation p,{w(z), w(z')} of the Gaussian
random field w(x) used in its polynomial chaos representation. This is achieved by substi-
tuting Eq. into the definition of covariance. They further showed that the following
approximation yields very good accuracy:

pu{u(z), u(z)} ~ pu{w(z), w(z)}, (4.31)

which indeed has been verified in our work by using the generated samples. This approxima-
tion is what we shall use in the present work. Therefore, given the correlation structure of
field u;, an approximation of the kernel p,{w(z), w(z’)} is obtained, which can be used in
the KL expansion to find the eigenmodes and further synthesize the Gaussian random fields
w;;. Finally, the non-Gaussian random field u;(x) can be obtained by reconstructing from

the polynomial chaos based on Eq. (4.29) at each location z € Q.

4.3.4 Monte Carlo Sampling of Reynolds Stress Fields

Based on the development above, the algorithm of Monte Carlo sampling of Reynolds stress
field can be performed as follows:

1. Draw independent samples w, from the standard Gaussian distribution N(0, 1) with
o = 17 7NKL-

2. Use the KL expansion in Eq. (4.25) to reconstruct a Gaussian random field w(x) with
Ao and ¢, (z) obtained from solving Eq. (4.26).

3. Repeat steps 1-2 above six times to obtain six independent realizations of Gaussian
random fields wya(x), wiz(x), woz(x), wii(x), woe(x), and waz(x). The first three will
be used to synthesize the off-diagonal elements Li5(x), Li3(z), and Las(x), respectively,
and the last three for the diagonal elements Li;(z), Loo(x), and Lss(x), respectively.

Remark on the choice of KL modes for the representation of the siz Gaussian random
fields. In this work the same KL modes ¢, and eigenvalues A\, are used for generating all
six realizations w(z) of Gaussian random fields above. This is a modeling choice made
for simplicity and also for the lack of prior knowledge that can be straightforwardly
represented in the current framework. However, in cases where it is desirable to use a
different number Ni, of modes or even a different kernel K (z, ") for each field, it can
be achieved in a straightforward manner as well.
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4. Synthesize off-diagonal elements based on Eq. (4.22)).

5. Reconstruct the random fields u;(x), uy(x), and uz(x) based on the polynomial chaos
expansion in Eq. (4.29) and further obtain the fields Ly (), Los (), and Lss(z) based

on Eq. (4.27).

4.3.5 Considerations in Numerical Implementation

For clarity we outline the complete algorithm of sampling of Reynolds stress fields and the
propagation to velocities and other Quantities of Interest (Qols) in [{.A] Remarks are made
below on computational considerations in implementing the proposed algorithm.

In the expansions described in Sections [4.3.2] and [4.3.3, the Cholesky factorization of the
Reynolds stress, the polynomial chaos expansion of the marginal distribution of the gamma
random variable u;, and the KL expansion of the Gaussian random field all need to be
performed on a mesh. Theoretically, they all can be performed on the RANS simulation
mesh. However, this choice would lead to unnecessarily high computational costs. The RANS
mesh is designed to resolve the flow field features. Usually it is refined in the near-wall region
to resolve the boundary layer. On the other hand, the mesh for the KL expansion only needs
to resolve the length scale of the correlation, i.e., the field [(x). Finally, the mesh used for the
polynomial chaos expansion needs to resolve the variation of the dispersion parameter 6(x)
field. If the dispersion is constant throughout the domain, one polynomial chaos expansion
is sufficient. Therefore, the three expansions and the corresponding reconstructions below
are performed on separate meshes, which are referred to as RANS mesh, PCE mesh, and KL
mesh, respectively. Interpolations are needed when performing operations on fields based on
different meshes. For example, in Eq. where the gamma field is reconstructed from
the coefficients Ug(z) and the Hermite polynomials in the Gaussian random field w(x), the
coefficients are based on the PCE mesh while the Gaussian random field is based on the
KL mesh. An interpolation of the coefficients Ug(z) from the PCE mesh to the KL mesh
is thus needed. The obtained gamma fields u;, the diagonal terms L;;(z), and the matrix
G(z) are thus based on the KL mesh as well. Similarly, therefore, when the Reynolds stress
is reconstructed from [R] = [Ly]T[G][Lg], the matrix [G] is first interpolated from the KL
mesh to the RANS mesh, so that the obtained Reynolds stress realization [R] can be used
in the RANS simulation.

An intrinsic assumption of the framework is that the Reynolds stress provided by the baseline
model is the best estimate and thus must be realizable. In cases where the baseline Reynolds
stresses are non-realizable, one needs to first bring them to the realizable domain (e.g.,
by bringing the points outside the Barycentric triangle to the closest point on the edge).
However, the choice of such a correction scheme is not unique, and any such scheme is
inevitably ad hoc.
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4.4 Numerical Results

In this section we use the flow over periodic hills at Reynolds number Re = 2800 to demon-
strate the proposed model-form uncertainty quantification scheme for RANS simulations.
The computational domain is shown in Fig. 5.2 where all dimensions are normalized with
the crest height H. The Reynolds number Re is based on the crest height A and bulk
velocity U, at the crest. Periodic boundary conditions are applied at the boundaries in the
streamwise (x) direction while non-slip boundary conditions are imposed at the walls. The
spanwise direction is not considered since the mean flow is two-dimensional. Benchmark data
from direct numerical simulations are used to compare with the sampled Reynolds stresses
and the velocities obtained by propagating the Reynolds stresses through the RANS solver.

Ly

A
\]

general flow direction free shear layer

circulation zone

X
z

Figure 4.2: Domain shape for the flow in the channel with periodic hills. The z-, y- and
z-coordinates are aligned with the streamwise, wall-normal, and spanwise directions, respec-
tively. All dimensions are normalized by H with L,/H = 9 and L,/H = 3.036. The contour
shows the dispersion parameter 6(x), where darker color denotes larger variance. Two typical
points A and B are annotated in the figure.

4.4.1 Cases Setup

The dispersion parameter is a critical free parameter in the uncertainty quantification scheme.
The specification of § is constrained by requirement 0 < § < v/2/2 obtained from Eq.
and guided by the subjective belief of the user on the uncertainty in the Reynolds stresses,
i.e., larger ¢ indicates larger uncertainties. We investigate three cases with different choices
of dispersion parameters: (1) a small dispersion parameter § = 0.2, (2) a large dispersion
parameter § = 0.6, and (3) a spatially varying §(z) field as specified by the color (or grey
scale) contour shown Fig. . A spatially varying §(z) allows the user to encode empirical
knowledge about the turbulence model and/or the flow of concern into the prior distribution
of Reynolds stresses. For example, in the flow over periodic hills studied here, the underlying
Boussinesq assumption is violated in the regions with recirculation, non-parallel free-shear,
or strong mean flow curvature (see annotations in Fig. . Consequently, these regions
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are particularly problematic for eddy viscosity models (including the k- model used in this
work). Hence, relatively large dispersion parameters are specified in these regions compared
to other regions to reflect the lack of confidence on the model. This is similar to the practice
of specifying spatially varying variance fields when injecting uncertainties to the physics-
based quantities (magnitude and shape of the Reynolds stress) in Xiao et al. [6]. On the
other hand, it is also possible to use maximum likelihood estimation to obtain a dispersion
parameter §(z) field if some measurement data of Reynolds stresses are available, but this
approach is not explored in the present work.

For Cases 1 and 2 with constant dispersion parameters in the domain, the marginal dis-
tribution of random matrix [G] is the same at all locations. Therefore, the polynomial
chaos expansion needs to be performed only once. That is, the expansion coefficients Up
in Eq. is spatially uniform. Hence, a PCE mesh is not needed. For Case 3 with
a spatially varying 0(z), a coarse PCE mesh of 15 x 10 cells is used. In all three cases,
the marginal distribution of the diagonal terms are only weakly non-Gaussian, and thus a
third order polynomial expansion is found to be sufficient. In the KL expansion, we used 30
modes, allowing 90% of the variance to be captured. Since the RANS mesh is rather small
with only 3000 cells, the KL expansion is performed on the same mesh. In the correlation
kernel we used an anisotropic yet spatially uniform length scale (I,/H =2 and [,/H = 1) to
reflect the anisotropy of the flow. They are chosen based on the approximate length scale of
the mean flow. The effects of using spatially varying correlation length scales are similar to
those of using non-stationary dispersion parameter field. We use 1000 samples to adequately
represent the prior distribution of the Reynolds stresses. To limit the computational cost of
the RANS simulations, only 100 of the 1000 samples are randomly selected to propagate to
the velocities. The computational parameters discussed above are summarized in Table [5.1]

Table 4.1: Mesh and computational parameters used in the flow over periodic hills.

Parameters Case 1 | Case 2 Case 3
dispersion parameter () 0.2 0.6 0.16-0.65®
nature of d(x) uniform | uniform | nonuniform
PCE mesh - - 15 x 10
order of polynomial expansion (N,) 3
KL mesh 50 x 30
RANS mesh 50 x 30
number of KL modes Nk, 30
correlation length scales(® l.,/JH=2,1,/H=1
number of Reynolds stress samples 1000
number of velocity propagation samples 100

(a) Spatial contour of §(z) is shown in Fig.
(b) See Eq. (125)
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4.4.2 Results and Interpretations

As discussed above, 1000 samples of Reynolds stress random field [R](z) are drawn by
using the algorithm described in Section [£.3.4 An additional challenge is the visualization,
validation, and interpretation of the sampled Reynolds stress fields, because in general it is
not straightforward to interpret the state of the turbulence from their individual components.
To facilitate physical interpretation, in all three cases we map the sampled Reynolds stresses
to the six independent physical dimensions with the scheme described in Section [4.2.2} i.e.,
the magnitude k of Reynolds stress tensor, its shape (expressed in Barycentric coordinates
(4, Cy, and C3), and the Euler angles (@1, @2, and 3) of its eigenvectors. The scattering of
the samples in the Barycentric triangle can be obtained from their Barycentric coordinates,
and the probability density functions for all the quantities can be estimated from the samples
with a given kernel.

The samples obtained in Case 1 (with § = 0.2) and Case 2 (with § = 0.6) are first analyzed
by visualizing the scatter plots in the Barycentric triangle, the associated probability density
contours, and the marginal distributions of the physical variables (e.g., Cs, k, and ¢3) for
two typical points: (1) point A located at /H = 2.0 and y/H = 0.5 and (2) point B located
at /H = 2.0 and y/H = 0.01. Point A is a generic point in the recirculation region, and
point B is a near-wall point with two-dimensional turbulence representing limiting states.
The locations of the two points in the domain are indicated in Fig. and in the insets of

Figs. and [5.5]

The scatter plots for the Reynolds stress samples at point A are shown in Figs. and
for Cases 1 and 2, respectively. Since this is a generic point, the Reynolds stress state
predicted in the baseline simulation is projected to the interior of the Barycentric triangle.
While the true state given by the DNS simulation is also located in the interior of the
triangle, it is to the upper right of the baseline results. Note that the points located on the
edges and vertices correspond to limiting states as illustrated in Fig. [6.Th. In both cases the
samples are scattered around the baseline state, suggesting that perturbations introduced in
the set M;O about the baseline are still scattered around the corresponding baseline results
in the Barycentric triangle. However, the two cases exhibit two notable differences. First,
the scattering in Case 2 is much larger than that in Case 1, which is a direct consequence
of the larger dispersion parameter (§ = 0.6) compared to that in Case 1 (6 = 0.2). Second,
the sample mean deviates significantly from the baseline in Case 2 while they agree quite
well in Case 1. This is an interesting observation. Recall that the probability distribution in
Eq. is derived under the constraint E{[R]} = [R] given in Eq. (4.10), which implies that
the mean of the sample Reynolds stresses should be the baseline prediction assuming the
number of samples is large enough. We have verified that the constraint is indeed satisfied
and that the sampling error is negligible with the chosen sample number 1000. Therefore, we
can see that the mean is not preserved during the projection from the Reynolds stress space
to the Barycentric coordinates. However, note that the mapping from the Reynolds stress to
the Barycentric coordinates is linear [8] as can be seen from Egs. and (6.3). Hence, it
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can be inferred that the deviation of the sample mean from the baseline on the Barycentric
map is entirely due to the realizability constraint, i.e., the capping of the samples that fall
outside the realizability range. The constraint manifests itself as the edge boundaries of the
Barycentric triangle. When the perturbation is small relative to the distance of the baseline
state to the boundaries, as is the situation in Case 1, the perturbation does not “feel” the
constraints. Consequently, the sample mean and the baseline result are approximately the
same. In contrast, when the perturbation is large compared to the distance between the
baseline and one of the boundaries, the constraint comes into play, leading to appreciable
deviations between the sample mean and the baseline. This is better illustrated with the
probability density contours in Figs. 5.3k and for Cases 1 and 2, respectively. The
contours in Fig. are approximately elliptic, showing little influence from the boundaries.
On the other hand, the contours in Figs. [5.3d clearly follow the three edges at the boundary
and displays a triangular shape overall. Since no samples fall outside the Barycentric triangle
as can be seen from the scatter plots in both cases, the observation also verified the claim that
the random matrix based approach proposed in this work is capable of ensuring Reynolds
stress realizability.

To further examine the probability distribution of the Reynolds stress samples, in Fig. |4.4] we
present the discrepancies AC3, Aps, Alnk between the sampled and the baseline Reynolds
stress for point A. Perturbations on the other physical quantities (e.g., the other Barycentric
coordinates AC) and ACy) have similar characteristics to AC3 presented here and thus are
omitted for brevity. Similarly, perturbations Ay, and Ay, for the Euler angles ¢, and ¢5 are
omitted as well. Xiao et al. [6] introduced uncertainties to the predicted Reynolds stresses
by modeling the discrepancies in shape and magnitude of the Reynolds stress as Gaussian
random fields. It is illustrative to compare the discrepancies above (which are obtained from
samples directly drawn in MIO) to the corresponding Gaussian distributions having the
same mean and variance as those of the samples. The comparison is performed in Fig. |4.4]
where the PDF's of the Gaussian distributions obtained in this way are presented along with
those estimated from samples. It can be seen that in Case 1 the distributions for all three
discrepancy quantities AC3, Ags, Alnk are rather close to the corresponding Gaussian
distributions. In contrast, the corresponding distributions in Case 2 deviate significantly
from the Gaussian distributions. It is also noted that the sample mean (denoted in vertical
dashed lines; same hereafter) of AC5 deviate slightly from zero in Case 1 but significantly
from zero in Case 2, which is consistent with the earlier observations from Figs. and[5.3p.
However, the sample means for Ays and Aln k are zero for both Case 1 and Case 2, despite
the fact that the sample distribution are non-Gaussian for Case 2. This can be explained
by the fact that there are no physical constraints on Ink or ¢ (except for the range [—m, 7]
specified in the definition). This is in contrast to C3, which is bounded in [0, 1]. Notably,
Figs. and seem to suggest that k (which is the turbulent kinetic energy defined as
£ tr([R])) approximately follows a log-normal distribution. This could be related to the term
with exponential of — tr[G] in Eq. (4.13). Soize [I5] also gave the joint distribution of the
random eigenvalues of [R] (see Eq. (64) therein), which theoretically can be marginalized
to yield the analytical distribution of k. The analytical expression is, however, extremely
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(a) Sample scatter plot, Case 1 (b) Sample scatter plot, Case 2
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(c) Probability density contour, Case 1 (d) Probability density contour, Case 2

Figure 4.3: Scatter plots (panels a and b) and probability density contours (panels ¢ and
d) of the Reynolds stress samples projected to the Barycentric coordinates for point A

(x/H = 2.0,y/H = 0.5) located in the recirculation region. Case 1 (6 = 0.2) and Case 2
(0 = 0.6) are compared.
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complicated and is not pursued in the present work.

It is also of interest to see the probability distribution of the Reynolds stress at a near-wall
location with limiting-state turbulence. Therefore, similar to Figs. and [4.4] the scatter
plots and distribution of physical variable are presented in Figs. and respectively,
for point B located very close to the bottom wall (at z/H = 2.0 and y/H = 0.01). The true
Reynolds stress at this point is two dimensional, and thus it is located right on the bottom
edge of the Barycentric triangle (C3 = 0) as indicated in Figs. and [5.5pb. Recall that
('3 indicates the degree of isotropy (three-dimensionality) of the turbulence. Hence, C3 = 0
indicates that the turbulence is far from isotropic (in fact, it is two-dimensional), which is
because the blocking of the wall suppressed almost all fluctuations in wall-normal direction.
A standard eddy viscosity model, on the contrary, would predict a nearly isotropic turbulence
state with C3 = 1, located near the top vertex of the Barycentric triangle (indicated as
dark/red filled circles). The scatter plots corresponding to Cases 1 and 2 are shown in
Figs. 5.5 and [5.5b, and the corresponding probability density contours are presented in
Figs. and [5.5d. It can be seen that the sample distributions are influenced by the
constraints in both cases, since the baseline state is located right next to the boundaries.
Moreover, the difference between the sample mean and the baseline are large in both cases,
which is also attributed to the constraints as discussed above. The distributions of ACj,
Ayps, and Alnk are presented in Fig. For both Cases 1 and 2, the sample distributions
of AC5 and A3 deviate significantly from Gaussian, while the distribution of & is still quite
close to log-normal.

The analysis above focused on the marginal distributions of the Reynolds stresses at two
representative locations with a generic and a limiting turbulence state. Since the Reynolds
stress is modeled as a random matrix field, we present the turbulent shear stress R;s and
the turbulent kinetic energy k in Figs. and [4.8] respectively. These two quantities are
the most relevant for the flow over period hills investigated here. The samples at eight
streamwise locations z/H = 1,2,--- 8 along with the benchmark (DNS) and the baseline
results. The geometry of the physical domain is also plotted to facilitate visualization. The
sample mean profiles coincide with the baselines in most regions for all cases, and thus they
are omitted to avoid cluttering. This is in contrast to the deviation of the sample means
from the baseline results in the Barycentric triangle as observed in Figs. and for the
same cases.

It can be seen that the turbulent shear stress Ris in the baseline and benchmark (DNS)
results agree quite well with each other in the upper channel (y/H = 2 to 3) but deviate
dramatically in the free-shear and recirculation regions. In the case with a small dispersion
parameter 6 = 0.2, Fig. [£.7h shows that the uncertainty range as represented by the Ris
samples is not able to cover the DNS results in regions where large discrepancies exist between
the baseline and benchmark. This indicates that the prior may be overly confident, which
may lead to difficulties in Bayesian inferences. With a large dispersion parameter § = 0.6
in Case 2, the scattering range of Ris increases and mostly covers the benchmark in the
entire domain (Fig. |4.7p). However, the complex spatial pattern in the recirculation zone
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Figure 4.4: Distributions of the perturbations (AC3, Ags, and Alnk ) in the physical
variables for point A (x/H = 2.0,y/H = 0.5) located in the recirculation region. The
distributions for Case 1 (§ = 0.2) and Case 2 (6 = 0.6) are compared.
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Figure 4.5: Scatter plots (panels a and b) and probability density contours (panels ¢ and
d) of the Reynolds stress samples projected to the Barycentric coordinates for point B

(x/H = 2.0,y/H = 0.01) located in the recirculation region. Case 1 (§ = 0.2) and Case 2
(0 = 0.6) are compared.
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Figure 4.6: Probability density functions (PDF) of the perturbations (ACs5, Aps, and Aln k
) in the physical variables for point B (z/H = 2.0,y/H = 0.01) located in the near-wall
region. The PDFs for Case 1 (§ = 0.2) and Case 2 (6 = 0.6) are compared.
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Figure 4.7: Comparison of sampled Reynolds stress component R;s for Case 1 and Case 2.
The profiles are shown at eight streamwise locations z/H =1, --- ,8, compared to the base-
line results and the benchmark (DNS) results obtained by direct numerical simulations [39].
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Figure 4.8: Comparison of sampled turbulence kinetic energy k profiles for Case 1 and Case
2. The profiles are shown at eight streamwise locations x/H = 1, ---,8, compared to
the baseline results and the benchmark (DNS) results obtained by direct numerical simula-

tions [39].
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may not be fully captured by the ensemble, which is due to the large spatial variations of
length scales. This is because the correlation structure and corresponding hyperparameters
are still modeling choice in the proposed approach. Therefore, there is no guarantee that the
ensemble would fully cover the truth. Moreover, since the dispersion parameter is spatially
uniform, it also has large scattering in the upper channel, where in fact the discrepancies
between baseline and DNS results are rather small. Similar patterns are also observed in the
turbulent kinetic energy k profiles, which are shown in Figs. and for Cases 1 and 2,
respectively. However, a notable difference is that the range of samples is not able to cover
the DNS results even in Case 2 with a large discrepancy parameter. This is because the
turbulent kinetic energy k is significantly underestimated in the baseline turbulence model,
which is a known deficiency of the k—< turbulence model when applied to this flow. The
deficiency stems from the fact that the shear stresses and consequently the modeled turbulent
kinetic energy production are weaker than the physical counterparts [40].

In light of the comparison between the samples and the benchmark above, it can be seen that
using a spatial uniform dispersion parameter  leads to scattering larger than necessary in the
upper channel, but with insufficient scattering in regions that are indeed problematic for the
baseline model (e.g., the free shear and recirculation regions). It is known from experiences
in turbulence modeling that standard turbulence models have difficulties in these regions.
Therefore, using a nonuniform, informative dispersion field d(x) as shown in Fig. can
be justified as presented in Section above. The samples of Ri5 and k are presented
in Fig. 4.9 In both cases the scattering of the samples are larger in the free-shear and
recirculation regions and are smaller in the upper channel, which is more consistent with the
actual discrepancies between the baseline and the DNS results. A minor exception is that
the turbulent kinetic energy near the upper wall is underpredicted by the baseline model but
this is not reflected in the sample scatter. This is attributed to the fact that this feature is
not reflected in the prior knowledge in the dispersion parameter §(z) field.

Overall speaking, all sample profiles of the Reynolds stress component R;5 and the turbulent
kinetic energy k shown in Figs. 4.7H4.9) are physically reasonable. These samples are qual-
itatively similar to those obtained with the physics-based approach by directly perturbing
the physical variables Cy, Cy, and In k around the baseline results [6].

Remarks on the near-wall asymptotic behavior of sampled Reynolds stresses. It can be seen
from Figs. 4.7H4.9| that the sampled turbulent shear stress R;5 and turbulent kinetic energy
k all approach zero towards the wall. In fact, other components of [R] (not shown here) also
exhibit similar and physically correct asymptotic behaviors. The correct “zero-approaching”
behavior of the sampled Reynolds stresses is inherited from the baseline Reynolds stress [R].
Recalling the decomposition R = [L][L”], the Reynolds stress is constructed as follows:

[R] = [L][G][L"]. (4.32)

As the wall is approached, [R] — [0] and thus [L] — [0], where [0] denotes rank two tensors
with all zero elements. Consequently, although a realization [G] of normalized random matrix
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samples —-= sample mean —- baseline —— DNS (Breuer et al. 2009)
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Figure 4.9: The sampled turbulent shear stress R;5 and turbulent kinetic energy k profiles for
Case 3. The ensemble profiles are shown at eight streamwise locations ©/H = 1,--- |8, com-
pared to the baseline results and the benchmark (DNS) results obtained by direct numerical
simulations [39)].
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[G] can have large values near the wall, the Reynolds stress [R] reconstructed from Eq. (4.32))
would still approach zero asymptotically towards the wall.

Ultimately it is the velocity fields and the associated auxiliary quantities (e.g., wall shear
stress, reattachment point, and pressure drop across the channel) that are of interest in tur-
bulent flow simulations. Therefore, the sampled Reynolds stress are propagated to velocities
by using the RANS solver tauFoam [6], and the reattachment points are obtained by post-
processing the velocity fields. The velocity profiles obtained for the three cases with different
dispersion parameters are presented and compared in Fig. [5.12] Similar to the profiles of
R15 and k, the velocity sample also show a small scattering in Case 1 (6 = 0.2) and a larger
scattering in Case 2 (6 = 0.6). The advantage of using an informative §(x) field can also be
observed in this figure. Compared to the uniformly small scattering in Case 1 (panel a) and
uniformly large scattering in Case 2 (panel c), the velocity scattering in Case 3 (panel ¢) is
small in the upper channel and large in the free shear and recirculation regions, adequate to
cover the benchmark (DNS) results in both regions. Finally, we note that in all three cases
the velocity scattering in the lower part, particularly in the recirculation region, of the chan-
nel is larger, even though the Reynolds stress scattering is spatially uniform in Cases 1 and
2. This observation suggests that the velocity in the recirculation region is more sensitive to
the Reynolds stresses, an important physical insight that is provided by the RANS solver.
Similar analyses have been performed on other quantities of interest including the bottom
wall shear stress and the reattachment point. Qualitatively similar observations are made as
those presented above for the velocities, and thus the figures for the other Qols are omitted
here.

4.5 Discussions

4.5.1 Modeling Choices in Proposed Framework

A major motivation of using a random matrix approach with maximum entropy distribution
is to minimize the amount of unwarranted information introduced into the prior. In the
physics-based approach, the maximum entropy distributions can be defined on the physics-
based components (magnitude, shape, and orientation) of the Reynolds stress tensor. In
fact, this is exactly what was adopted in ref. [6] — they defined normal distributions (or log-
normal for the magnitude) as priors for these physics-based variables. Normal distributions
indeed have the maximum entropy with a given mean and variance [41]. However, a notable
advantage of the current approach is that the maximum entropy distribution is defined for
the tensor, and not for individual components. In the latter approach, it is not clear how
large the variance of each component should be relative to each other. From this perspective,
the current approach is more rigorous than the physics-based approach in that it introduces
less unwarranted information.
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Figure 4.10: Comparison of propagated velocity profile samples for Cases 1, 2, and 3. The
profiles are shown at eight streamwise locations x/H = 1,--- 8, compared to the baseline
results and the benchmark (DNS) results obtained by direct numerical simulations [39].
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Admittedly, the current approach only ensures maximum entropy for the Reynolds stresses
at each point. It would be desirable to generalize our work to defining maximum entropy
distribution for random tensor fields, but the authors are not aware of any such rigorous
measures. Consequently, for the lack of better alternatives we used Gaussian processes with
squared exponential kernels to construct the random tensor field. This is an ad hoc mod-
eling choice made according to the state-of-the-art practice in the literature [I§]. However,
we emphasize that the implied smoothness of the random field by the chosen kernel, the
specified correlation length scale of the kernel, and the nonstationary nature of the kernel
may all introduce artificial information. The role played by the spatial correlation structure
is particularly significant since it is the divergence of the Reynolds stress that appears in the
RANS momentum equation. Therefore, it requires some physical understanding of the flow
characteristics and prior knowledge of the RANS model performance.

4.5.2 Limitation of Uncertainty Space Exploration

laccarino et al. [4 [5] only computed three representative samples, each obtained by perturb-
ing the baseline RANS predicted Reynolds stress toward the three limiting states and in a
specified spatial pattern. They pointed out that the true Reynolds stresses are not necessar-
ily convex combinations of the three limiting states, and thus the true uncertainty can fall
outside the uncertainty range as indicated by the three perturbations. The same can be said
of the velocities. As such, they referred to their approach as “uncertainty estimation” rather
than “uncertainty quantification”. In comparison, the current approach explores a much
larger part of the uncertainty space by sampling from a functional space of spatial pattern
as spanned by the specified modes ¢,. However, it is still not an exhaustive exploration of
the uncertainty space of the Reynolds stresses, which can be very large and challenging to
explore comprehensively, if possible at all. Moreover, note that no data are used to provide
independent information on the model-form uncertainty of in the RANS simulation, and thus
one should not expect the proposed framework alone can reduce model-form uncertainty.

In fact, even producing an uncertainty range to cover the truth is not the main objective
of the current framework or that of laccarino et al. [4, [5]. If this was the objective, then
one can simply perturb the Reynolds stress field as large as possible without even the need
to account for any physical constraints. However, it would lead to overly large uncertainty
ranges that are of little practical value. Rather, by perturbing the Reynolds stresses carefully
respecting as many physical constraints as possible, the current approach aims to yield
uncertainty estimates of the velocity field and other Qols that show physical insights, e.g.,
on the sensitivity of velocities in the recirculation region to Reynolds stress perturbations
as discussed in Section 4.2. On the other hand, hypothetically if a better turbulence model
was used, which produces a baseline Reynolds stress field that is closer to the benchmark,
then the same perturbation used here would have been able to cover the truth. However,
this would be an issue outside the scope of the proposed algorithm, and one usually does
not know the predictive skill of the turbulence model on the case of concern a priori.
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4.5.3 Accessibility of Limiting States When Sampling Reynolds
Stress

Whether the obtained maximum entropy distribution of Reynolds stress [R]| should have
zero measure on the two-component (and one-component) limiting states is an issue open
for discussion. We explain below the implications based on the choices made in the pro-
posed framework. Although practically we did not encounter this difficulty in this study,
the discussion below adds to the theoretical completeness. The probability distribution for
the normalized random matrix [G] as given in Eq. has zero measure on the subset
M?\ M} of singular positive semidefinite matrices, since det([G]) = 0 in this set and thus
Piel([GDl g emtour; = 0. However, a valid distribution for semi-definite matrices could have
non-zero measure in the set of singular matrices. One can draw an analogy to the exponen-
tial distribution, for instance, in the scalar case. If the specified mean [R] of [R] is singular,
i.e., det([R]) = 0, then det([Lg]) = 0. Consequently, any realization [R] constructed from
Eq. (5.6), [R] = [Lx]"[G][Lg], is also singular since the distributive nature of determinants
leads to det([R]) = 0. The set MJ° \ M of singular Reynolds stresses maps to the two-
component limit edge (C3 = 0) of the Barycentric triangle. This mapping can be explained
by the fact that all matrices in this set have at least one eigenvalue that is zero (as they have
zero determinants), which corresponds to two-component turbulence. This correspondence is
indicated in Fig. [6.Th. The physical interpretation of the mathematical consequences above
can be summarized as follows:

e When the specified Reynolds stress mean [R] corresponds to a turbulence state in a two-
component limit, the samples of perturbed Reynolds stresses also have two-component
states;

e When the specified mean corresponds to a generic three-component state, the samples
can become infinitely close to a two-component limit but has zero probability of falling
on the limit.

4.6 Conclusion

In this work we propose a random matrix approach to guarantee Reynolds stress realiz-
ability for quantifying model-form uncertainty in RANS simulation. In this approach, the
Reynolds stress field is described with a probabilistic model of a random field of positive
semidefinite matrices with specified mean and correlation structure. The marginal proba-
bility distribution of the Reynolds stress at any particular location satisfies the maximum
entropy principle. By imposing maximum entropy on the distribution of the Reynolds stress
tensors, the current framework aims to provide an objective approach for specifying priors
(e.g., in the context of Bayesian inferences for uncertainty quantification). It can also be
used for estimating uncertainties in RANS simulations in the absence of observation data. To
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sample such a random matrix field, Gaussian random fields with specified covariance kernel
are first generated and then are mapped to the field of positive semidefinite matrices based on
polynomial chaos expansion and reconstruction. Numerical simulations have been performed
with the proposed approach by sampling the Reynolds stress and propagating through the
RANS solver to obtain velocities. The simulation results showed that generated Reynolds
stress fields not only have the specified statistics, but also are physically reasonable. The
mathematically rigorous approach based on random matrix and maximum entropy principle
is a promising alternative to the previously proposed physics-based approach for quantifying
model-form uncertainty in RANS simulations. Moreover, it can be used to gauge the en-
tropy of the prior distributions specified in the physics-based approach and thus to measure
the information introduced therein. Detailed comparison between the two approaches are
presented in a separate work [21].
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4.A Summary of the Algorithm of the Proposed Method

Given the mean Reynolds stress field [R](z) along with the correlation function structure of
the random matrix field [L](x) as specified in Eq. (4.21)), the following procedure is performed:

1. Expansion of given marginal distributions and covariances kernels:

1.1. Perform the Cholesky factorization of the mean Reynolds stresses [R] at each cell
according to Eq. (5.7), which yields field Ly(x) of upper triangular matrices.

1.2. Perform KL expansion for the kernel function by solving the Fredholm equa-
tion (4.26)) to obtain eigenmodes v/Ay ¢o ().

This is performed by first discretizing the integration with Gaussian quadrature
and then solving the obtained discrete eigenvalue problem. This KL expansion
procedure is implemented in many standard uncertainty quantification toolboxes.
In the current work we adopted UQTk [42], which is developed at Sandia National
Laboratories.

1.3. For off-diagonal terms only, perform polynomial expansion of the marginal PDF as
described in Eq. at each cell. Coefficients Ug are obtained from Eq. ,
where 8 = 1,--- ,N,, and N, is the number of polynomials retained in the ex-
pansion.

2. Sampling and reconstruction of random matrix fields for Reynolds stresses:

2.1. For each element L;; of the random matrix field [L], independently draw Nki,
sample from the standard Gaussian distribution w;;, where « = 1,-- -, Nky, e.g.,
with random sampling or Latin hypercube sampling method [43].

2.2. Synthesize realizations of the off-diagonal terms based on KL expansion:
NkL
wij(2) = Z VAo o) ws with i< j
a=1

Lij(z) = oqw;;(x)

2.3. Synthesize the realizations of the diagonal terms based on KL and PCE expan-
sions:

ZU,B 2)Ws(wii(x))

where the Gaussian random field sample w;;(x) obtained in the previous step is
used.

2.4. Synthesize the diagonal terms of matrix [L] from L;;(z) = 04/u;, wherei = 1,2, 3.
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2.5. Reconstruct [G] from [G] = [L]7[L] and then reconstruct the random matrix [R]
from [R] = [Lz]" [G][Lg]-

3. Propagation the Reynolds stress field through the RANS solver to obtain velocities
and other Qols:

3.1 Use the obtained sampled Reynolds stress to velocity and other Qols by solving
the RANS equation.

3.2 Post-process the obtained velocity and Qol samples to obtain statistical moments.
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Abstract

Numerical models based on Reynolds-Averaged Navier-Stokes (RANS) equations are widely
used in engineering turbulence modeling. However, the RANS predictions have large model-
form uncertainties for many complex flows, e.g., those with non-parallel shear layers or
strong mean flow curvature. Quantification of these large uncertainties originating from the
modeled Reynolds stresses has attracted attention in the turbulence modeling community:.
Recently, a physics-based Bayesian framework for quantifying model-form uncertainties has
been proposed with successful applications to several flows. Nonetheless, how to specify
proper priors without introducing unwarranted, artificial information remains challenging to
the current form of the physics-based approach. Another recently proposed method based on
random matrix theory provides the prior distributions with maximum entropy, which is an
alternative for model-form uncertainty quantification in RANS simulations. This method has
better mathematical rigorousness and provides the most non-committal prior distributions
without introducing artificial constraints. On the other hand, the physics-based approach
has the advantages of being more flexible to incorporate available physical insights. In this
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work, we compare and discuss the advantages and disadvantages of the two approaches on
model-form uncertainty quantification. In addition, we utilize the random matrix theoretic
approach to assess and possibly improve the specification of priors used in the physics-based
approach. The comparison is conducted through a test case using a canonical flow, the flow
past periodic hills. The numerical results show that, to achieve maximum entropy in the prior
of Reynolds stresses, the perturbations of shape parameters in Barycentric coordinates are
normally distributed. Moreover, the perturbations of the turbulence kinetic energy should
conform to log-normal distributions. Finally, the result sheds light on how large the variance
of each physical variable should be compared with each other to achieve the approximate
maximum entropy prior. The conclusion can be used as a guidance for specifying proper
priors in the physics-based, Bayesian uncertainty quantification framework.

5.1 Introduction

Despite the increasing availability of computational resources in the past decades, high-
fidelity simulations (e.g., large eddy simulation, direct numerical simulation) are still not
affordable for most practical problems. Numerical models based on Reynolds-Averaged
Navier-Stokes (RANS) equations are still the dominant tools for the prediction of turbulent
flows in industrial and natural processes. However, for many practical flows, e.g., those
with strong adverse pressure gradient, non-parallel shear layers, or strong mean flow cur-
vature, the predictions of RANS models have large uncertainties. The uncertainties are
mostly attributed to the phenomenological closure models for the Reynolds stresses [1I, 2].
Previous efforts in quantifying and reducing model-form uncertainties in RANS simulations
have mostly followed parametric approaches, e.g., by perturbing, tuning, or inferring the
parameters of the closure models of the Reynolds stress [3, [4, [5].

Recently, the turbulence modeling community has recognized the limitations of the para-
metric approaches and started investigating non-parametric approaches where uncertainties
are directly injected into the Reynolds stresses [2, [0l [7, [8, O, 10]. In their pioneering work,
Taccarino et al. [6, 8, O] proposed a physics-based approach, where the Reynolds stress is
projected onto six physically meaningful dimensions (its shape, magnitude, and orientation).
They further perturbed the Reynolds stresses towards the limiting states in the physically
realizable range, based on which the RANS prediction uncertainties are estimated. Build-
ing on the work of laccarino et al. [0, 8 O], Xiao et al. [I0] modeled the Reynolds stress
discrepancy as a zero-mean random field and used a physical-based parameterization to
systematically explore the uncertainty space. They further used Bayesian inferences to in-
corporate observation data to reduce the model-form uncertainty in RANS simulation. While
the physics-based method has achieved significant successes, the method in its current form
has two major limitations. First, uncertainties are only injected to the shape and magnitude
of the Reynolds stresses but not to the orientations, and thus they do not fully explore the
uncertainty space. Second, it is challenging to specify prior distributions over these physical
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variables without introducing artificial constraints. The priors are critical for uncertainty
propagation and Bayesian inference, particularly when the amount of data is limited [I1].
Xiao et al. [I0] specified Gaussian distribution for the perturbations of shape parameters in
natural coordinates and log-normal distribution for the turbulence kinetic energy discrep-
ancy. The perturbations in all physical parameters share the same variance field. However,
it is not clear if or how much artificial constraints are introduced into the prior with this
choice. Moreover, without sufficient physical insight, it is not clear how large the variance
of perturbation for each physical variable should be relative to each other.

In information theory, Shannon entropy is an important measure of the information con-
tained in each probability distribution. The distribution best representing the current state
is the one with the largest information entropy, which is known as principle of maximum
entropy [12]. This principle has been used as a guideline to specify prior distributions in
Bayesian framework [I3]. Although this theory has been extensively used in information
processing problems such as communications and image processing, the application in con-
junction with random matrix theory applied to physical systems is only a recent development,
which was first proposed and developed by Soize et al. [14] [I5]. Built on the theories devel-
oped by Soize et al., Xiao et al. [16] proposed a random matrix theoretic (RMT) approach
with maximum entropy principle to quantify model-form uncertainties in RANS simulations.
The RMT approach is an alternative to the physics-based approach in quantifying model-
form uncertainties in RANS simulations. In this approach, the realizability of perturbed
Reynolds stresses is guaranteed automatically in a mathematical way, since the uncertain-
ties are directly injected within the set Mjo of positive semidefinite matrices. In addition,
the RMT approach can provide objective priors for Bayesian inferences that satisfy the given
constraints without introducing artificial information.

While the RMT approach has better mathematical rigorousness and provides a proper prior
of the Reynolds stress tensors with maximum entropy, it has its own limitations. In partic-
ular, since the perturbations are directly introduced to the Reynolds stress itself, it is not
straightforward to incorporate physical insights that are available for specific flows into the
RMT approach. For example, for the flow in a channel with square cross section, the dis-
crepancies of RANS-predicted Reynolds stress mainly come from the shape of the Reynolds
stress tensor, while the predicted turbulence kinetic energy is rather accurate [I7]. In this
case, the perturbation variances of shape parameters should be specified much larger than
that of the turbulence kinetic energy. Nonetheless, this piece of information is difficult to
incorporate into the RMT approach. In comparison, the physics-based approach is more
flexible and thus may be preferred in engineering applications for both uncertainty quantifi-
cation and Bayesian inferences. The objective of this work is twofold. First, we compare the
physics-based approach and RMT approach on model-form uncertainty quantification and
propagation. The advantages and disadvantages of both approaches are discussed. Second,
we use the results from the RMT approach to assess the artificial constraints introduced in
the physics-based approach and possibly improve the specification of physics-based priors
under the context of Bayesian inference. To this end, the Reynolds stress samples with
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maximum entropy distribution obtained in the RMT approach are first projected onto the
physically meaningful dimensions. Then, the distributions in the six physical dimensions
are used to compare with the priors specified in the physics-based approach. The perturbed
Reynolds stresses from both approaches are propagated to the quantities of interest (Qols),
e.g., velocity field and wall shear stress, and the differences of these propagated Qols are
investigated. The comparisons can provide useful insights on the model-from uncertainty
quantification in RANS modeling. Moreover, they also sheds light on the specification of
appropriate prior for each physical variable when no further physical knowledge is available.

This work is the first attempt to fully explore the uncertainty space in physics-based ap-
proach. The orientations of Reynolds stresses are perturbed, and their impacts on the
propagated Qols are investigated. Note that in this work we only focus on uncertainty prop-
agation (i.e., prior). The assessment of posterior from Bayesian inference is not included.
This is because the inversion schemes currently used for reducing RANS model-form un-
certainties are approximate Bayesian approaches, e.g., iterative ensemble Kalman filtering
in [10, [I1], which are not sensitive to the prior and cannot provide a posterior uncertainty
estimation with a comparable accuracy to that obtained from the exact Bayesian sampling
scheme [I§]. This compromise is under the consideration of high computational costs of
RANS model evaluations, which make exact Bayesian approach (i.e., Markov Chain Monte
Carlo (MCMC) sampling scheme) prohibitively expensive. Obtaining an accurate posterior
is still an ongoing work, which can be possibly achieved by utilizing recently developed di-
mension reduction methods (e.g., active subspace methods [19]) and fast sampling scheme
(e.g., parallel MCMC [20] and delayed rejection adaptive metropolis [21]).

The rest of the paper is organized as follows. Section introduces the physics-based and
RMT approaches for RANS model-form uncertainty quantification. Section uses the flow
over periodic hills as an example to perform the comparison between the two approaches.
The results are then presented and discussed. Finally, Section concludes the paper.

5.2 Comparison of Physics-Based Approach and RMT
Approach

This work examines and compares two approaches, the physics-based approach and the
random matrix theoretic approach, for quantifying RANS model-form uncertainties. We
first briefly introduce the general background of RANS-based turbulence modeling and the
common assumptions of the two approaches before presenting the technical details of the
two approaches.

Reynolds-averaged Navier—Stokes equations describe the mean quantities (e.g., velocity and
pressure) of the turbulent flows. They are obtained by performing time- or ensemble-
averaging on the Navier—Stokes equations, which describes the instantaneous flow quantities.
The averaging process leads to a covariance term of the instantaneous velocities, which is
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referred to as Reynolds stresses and needs model closure in RANS simulations. It is the
consensus of the turbulence modeling community that the modeling of the Reynolds stresses
accounts for majority of the model-form uncertainty in RANS simulations [I]. In the physics
based approach proposed by laccarino et al.[6l, []] and further extended by Xiao et al. [10] [11],
perturbations are directly injected to the RANS-predicted Reynolds stresses. Specifically,
the physically meaningful projections of the Reynolds stress, i.e., its shape, magnitude, and
orientation are jointly perturbed around their respective mean values obtained in the RANS
simulation, and the perturbations are then propagated through RANS solvers to the Quan-
tities of Interests (Qol, e.g., velocities). The obtained ensemble is then used to assess the
uncertainties in the RANS predictions. The specific form of perturbation for each variable
is a modeling choice made by the user. The scheme ensures realizability (positive semi-
definiteness) of the Reynolds stresses. Similar to the physics-based approach, zero-mean
perturbations are also injected to the RANS-predicted Reynolds stresses in the RMT ap-
proach with realizability guaranteed. In contrast to the physics-based approach, however,
in the RMT approach the true Reynolds stress is modeled as random matrices, for which
a maximum entropy probabilistic distribution is constructed under the constraint that the
mean is the RANS-predicted value. The maximum entropy distribution is then sampled to
be obtain the perturbed Reynolds stress fields.

In summary, both the physics-based and the RMT approaches introduce zero-mean pertur-
bations to the RANS predicted Reynolds stresses, which are then propagated to the Qols to
assess RANS prediction uncertainties. They differ in how the perturbations are introduced.
The RMT approach introduces perturbations directly in the Reynolds stress tensor and the
perturbations conform to a maximum entropy distribution, while the physics-based approach
introduces perturbations to the physically meaningful projections of the Reynolds stresses.
The details of the two schemes are presented below.

5.2.1 Physics-Based Approach

Here, we briefly summarize the physics-based model-form uncertainty quantification frame-
work proposed by Xiao et al. [I0] and its extension to account for uncertainties in tensor
orientation. In the framework, the true Reynolds stress [R(z)] is modeled as a random ten-
sorial field with the RANS-predicted Reynolds stress [R(z)]™*"* as prior mean, in which z
denotes the spatial coordinate. To inject uncertainties into the physically meaningful projec-
tions of Reynolds stress tensor, the following eigen-decomposition is performed for its each
realization at any given location z:
1

7] =2k (3101 + 141) = 2k (300 + LETAT T 65.1)

where £ is the turbulent kinetic energy indicating the magnitude of [R]; [I] is the second order
identity tensor; [A] is the anisotropy tensor; [E] = [€], €3, €3] and [A] = diag[A;, Ao, A3] ,where
A1+ Ay + A3 = 0, are the orthonormal eigenvectors and the corresponding eigenvalues of [A],
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respectively, indicating the orientation and shape of [R]. In order to physically interpret the
shape of the Reynolds stress and easily impose the realizability constraint, the eigenvalues
A1, Ao, and A3 are mapped to the Barycentric coordinates (C, Cy, C3) with C; +Co+C3 = 1.
The Barycentric coordinates are defined as,

Ol == 5\1 — 5\2 (52&)
Cy =2(hy — A3) (5.2b)
Cg = 3:\3 +1. (52C)

As shown in Fig. , the Barycentric coordinates (Cy, Cy, C3) of a point indicate the por-
tion of areas of three sub-triangles formed by the point and with edge labeled as C'1, C2, and
(3, in the Barycentric triangle. For example, the ratio of areas of the sub-triangle labeled
with C'3 to the entire triangle is C3. A point located on the top vertex corresponds to C3 = 1
while a point located on the bottom edge has C's = 0. The Barycentric coordinates have clear
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Figure 5.1: Mapping between the Barycentric coordinate to the natural coordinate, trans-
forming the Barycentric triangle enclosing all physically realizable states [22] 8] to a square
through standard finite element shape functions. Details of the mapping can be found in
the appendix of ref. [I0]. Corresponding edges in the two coordinates are indicated with

matching colors.

physical interpretation, i.e., the dimensionality of the turbulence. All the edges and vertices
indicate limiting states of turbulence, which are shown in Fig[6.1a. The projections of all
Reynolds stresses should fall inside the Barycentric triangle to ensure the realizability. To
facilitate parameterization, the Barycentric coordinates are further transformed to the natu-
ral coordinates (£, n) with the triangle mapped to the square, as shown in Fig. . Details
of the mapping can be found in ref. [I0]. Although the tensor orientation ([E] = [€}, €, €3])
has not been perturbed in ref. [I0], it can be done with an appropriate parameterization
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scheme, which is implemented in this work. The Euler angle with z-2’-z" convention [23] is
used to parameterize the orientation of the Reynolds stress tensor. That is, first, the local
coordinate system z-y-z of eigenvectors of [R] initially aligned with the global coordinate
system X-Y-Z rotates about the 2z axis by angle ;. Then, it rotates about the x axis by
angle (o, and finally rotates about its new z axis by angle 5.

The Reynolds stress tensor field is transformed into six physically meaningful components
denoted as &, 1, k, 1, v, and w3, which are all scalar fields. After the mapping, uncertainties
are introduced to these quantities by adding discrepancy terms to the corresponding RANS
predictions, i.e.,

Ea) = &(x) + A&(w) (5.3a)
n(x) = 7" (x) + An(z) (5.3b)
log k(z) = log k™" () + Alog k(z) (5.3¢)
o) = &M (2) + Api(z), i=1,2,3 (5.3d)

where A¢(z) and An(z) are discrepancies of the Reynolds stress shape parameters £ and 7,
respectively; Alogk(zx) is the log-discrepancy of the turbulent kinetic energy; Ay;(z) (i =
1,2,3) are the discrepancies of three Euler angles. To model the prior of these discrepancy
fields with spatial smoothness, we assume that each discrepancy field is normally distributed
at any location z and use a Gaussian kernel K (x, z’) to describe the correlation between any
two different locations x and /. That is,

K N / |x_x/’2 h / E 54
(x,2") = o(x)o(2") exp T where z, 2" € ¥, (5.4)

where ¥ is the spatial domain of the flow field. The variance o(x) is a spatially varying field
representing the magnitude of injected uncertainties. The correlation length [ also varies
spatially based on the local length scale of the mean flow. It can be seen from Eq.
that the discrepancy fields for shape parameters (£, ) and Euler angles (¢;) are Gaussian
random fields, and the discrepancy field for magnitude parameter k is a log-normal random
field. To reduce dimensions of the random fields, Karhunen—Loeve expansions of the random
fields are adopted with chosen basis that are eigenfunctions of the kernel [24]. That is, the
discrepancies can be represented as follows:

= Zwa ba(), (5.5)

where the coefficients w, (denoting w$, w, w* wf for discrepancy fields A&, An, Alogk
and Ag;, respectively) are independent standard Gaussian random variables. In practice,
the infinite series are truncated to Ny, terms with Ny depending on the smoothness of the
kernel K. Therefore, the discrepancy fields in Reynolds stress are parameterized by the
coefficients w$, W, w¥ w? with o = 1,2,---, Ni;. These Reynolds stress discrepancies are

then propagated to the Qol (e.g., velocity) as the model-form uncertainties.
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In summary, the uncertainties are injected into the six physically meaningful dimensions
of Reynolds stress separately in the physics-based approach. For each dimension, the un-
certainties are represented by the Gaussian random fields to ensure the smoothness of the
Reynolds stress perturbations (for incompressible flow). The perturbed Reynolds stresses
are reconstructed with these six random fields, which are then propagated to the Qol as the
quantified model-form uncertainties. Detailed algorithm of the physics-based approach is

presented in [5.A]

5.2.2 Random Matrix Theoretic Approach with Maximum En-
tropy Principle

Since Reynolds stresses belong to the set I\\/JIZ{O of symmetric positive definite tensors, where
d = 3, it is natural to describe them directly as random matrices in set Mjo. In the
following, we summarize the uncertainty quantification approach based on random matrix
theory and maximum entropy principle proposed by Xiao et al. [I6]. In this framework,
a probabilistic model in matrix set is built to satisfy all the constraints in the context of
turbulence modeling. Based on the principle of maximum entropy, the target probability
measure pg] : M} +— R* is the most non-committal probability density function (PDF)
satisfying all available constraints (e.g., realizability) but without introducing any other
unwarranted constraints, where R* is the set of positive real number.

A two-step approach is used to find such maximum entropy distribution for random Reynolds
stress tensors. First, the PDF for a normalized, positive definite random matrix [G] is
obtained, whose mean is the identity matrix, i.e., E{[G]} = [I]. The distribution of [G]
should have the maximum entropy. Second, the distribution of Reynolds stress tensor [R] is
obtained with its mean [R] and normalized random matrix [G] as follows:

[R] = [Lg]"[G][Lg], (5.6)

where [Lg| is an upper triangular matrix with non-negative diagonal entries obtained from
the following factorization of the specified mean [R], i.e.,

[E] = [LR]T [LR} : (5-7)

It is assumed that the RANS predicted Reynolds stress [R]"" is the best estimate of [R].
Therefore, to determine the maximum entropy distribution of [R], one only needs to focus
on the normalized random matrix [G]. It is first represented by its Cholesky factorization:

[G] = [L)"[L], (5.8)

where [L] are upper triangle matrices with six independent elements. To achieve the matrix
entropy, the distributions for each element L;; can be specified following the procedures in
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Ref. [16]. Note that each of the six elements of [L] is a random scalar field independent of
each other. The off-diagonal element fields L;;(z) with ¢ < j are obtained from

Lij(x) = oa(z) wij(2), (5.9)

in which w;;(x) (i.e., wia(x), wis(z), and woz(z)) represents an independent Gaussian ran-
dom field with zero mean and unit variance. The uncertainty magnitude field oy4(z) is half
of the dispersion parameter filed d(x), which indicates the uncertainty of the random matrix

and is defined as )

5(a) = | SEAICI) ~ 1133 (5.10)

where || - ||F is Frobenius norm, e.g., |G||r = /tr([G]T[G]). It can be seen that §(z) is
analogous to the variance field o(x) of a scalar random field shown in the physics-based
approach. It has been shown in [I4] that 0 < §(z) < v/2/2 for d = 3. For the three diagonal
element fields, each one of them is generated as follows:

Li(z) = 04(x)\/2u;(z) with i=1,2,3, (5.11)

where u;(x) is a positive valued gamma random field. It is worth noting that due to the
choice of positive diagonal elements of the Cholesky factor [L] of Reynolds stress [R], its
realizability can be guaranteed in the RMT approach.

Since Reynolds stresses are correlated at different spatial locations, one needs to model the
correlation structures in the six fields of elements. It is assumed here that both the off-
diagonal and the square root of diagonal terms have the same spatial correlation structures
with Gaussian kernel. The three independent Gaussian random fields for the off-diagonal
terms can be generated by using Monte Carlo sampling. Similar to that in the physics-based
approach, the Karhunen—Loeve expansions are used here for reducing the dimension. To
express the non-Gaussian random fields used to obtain the diagonal terms (see Eq. ,
the Gamma random variable u; at any spatial location z is expanded by polynomial chaos
expansion with Gaussian random variables [25] (see[5.B]).Finally, the constructed distribution
of Reynolds stresses can be propagated by RANS equation to the Qol to quantify the model-
form uncertainties.

In summary, the uncertainties are directly injected into the Reynolds stress tensors in the
set M;O of positive definite matrices in the RMT approach. The principle of maximum en-
tropy is applied to avoid introducing artificial constraints. The perturbed Reynolds stresses
are then propagated to the Qol as the quantified model-form uncertainties. Detailed algo-

rithm of the RMT approach can be found in
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5.3 Numerical Results

5.3.1 Cases Setup

A canonical flow, the flow in a channel with periodic hills at Re = 2800, is studied to compare
the prior distributions of Reynolds stresses perturbed by the physics-based approach and the
random matrix theoretic (RMT) approach. The computational domain is shown in Fig. [5.2]
Periodic boundary conditions are imposed in the streamwise (z-) direction and non-slip
boundary conditions are applied at the walls.

L,

general flow direction free shear layer

circulation zone

Figure 5.2: Domain shape for the flow in the channel with periodic hills. The x-, y- and
z-coordinates are aligned with the streamwise, wall-normal, and spanwise directions, respec-
tively. All dimensions are normalized by H with L,/H =9 and L,/H = 3.036. Two typical
locations A (z/H = 2.0,y/H = 0.5) and B (x/H = 2.0,y/H = 0.01) are marked in the
figure.

In the physics-based approach the variance fields o(x) for generating random perturbation
fields Aé(x), An(z), Alogk(x), and Ag;(z) (i = 1,2, 3) represent the magnitude of injected
uncertainties. In the RMT approach the dispersion parameter d(x) determines the variance
of perturbations directly in the set M7 of positive definite matrices. To ensure that the
distributions of perturbed Reynolds stresses from the two approaches are comparable, the
amount of perturbation needs to be consistent with each other. Therefore, we estimate the
dispersion parameter field d(x) based on the samples of Reynolds stresses obtained in the
physics-based approach with the given variance o(z). Although the physics-based approach
is more flexible to specify different variances for the six discrepancy fields, it is difficult to
determine how large the variance of each variable should be relative to each other. To be
consistent with Xiao et al. [10], the Gaussian random fields for A&, An, Alogk, and Ay;
(i = 1,2,3) share the same variance field o(z). Since the aim of this work is to compare
the two approaches, we choose a constant variance field to avoid the complexity caused
by spatial variations of the perturbation variances. We investigate two groups of cases
with different magnitudes of perturbation. For cases Phyl and RM1, a relatively small
constant variance field o = 0.2 is used in the physics-based approach, and the corresponding
dispersion parameter field d(x) is estimated in the RMT approach. For cases Phy2 and RM2,
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a larger constant variance field o = 0.6 is applied. Note that the perturbation of TKE is in
logarithmic scale, so it is a relative value of the baseline result. That is, the constant variances
o = 0.2 and ¢ = 0.6 indicate €*? and €”F times of the baseline TKE. For the perturbations
on orientations, the variances ¢ = 0.2 and ¢ = 0.6 are in radian, which correspond to
12° and 34° in degree, respectively. For all cases, 30 modes are used in Karhunen-Loeve
expansion to capture more than 90% of the variance of the Gaussian random field. To
reflect the anisotropy of the flow, an anisotropic yet spatially uniform length scale (I,/H = 2
and [,/H = 1) is used in the correlation kernel. The value of the length scale is chosen
according to the approximate length scale of the flow, which can be obtained either from
physical understanding of the flow or from RANS model estimation. To adequately represent
the prior distribution of Reynolds stresses, 10,000 samples are drawn. Among them, only
500 samples are randomly selected to propagate to the Qols (e.g., velocity and wall shear
stress) via the RANS solver, taking into consideration of the high computational cost of
RANS model evaluation. The direct numerical simulation (DNS) results of this flow [26] are
used as the benchmark reference for comparison only. The computational parameters are
summarized in Table 5.1l

Table 5.1: Mesh and computational parameters used in the flow over periodic hills.

Parameters Phy 1 RM 1 Phy 2 RM 2
variance/dispersion(® 0=0.2 | see note (a) 0=0.6 | see note (a)
Karhunen—Loeve mesh 50 x 30

RANS mesh 50 x 30
number of modes Nk, 30

correlation length scales® l.,/JH=21,/H=1
number of samples 10,000
number of propagated samples 500

(a) the dispersion parameter field (x) is estimated with the corresponding variance
field o(z) of the companion physics-based case.

(b) see Eq. p.4]

5.3.2 Numerical Results

Two groups of comparisons between the physics-based approach and the RMT approach are
conducted with the samples drawn by the Monte Carlo method. In each case, the samples of
Reynolds stress field [R(z)] are obtained by using both the physics-based algorithm described
in Section and the RMT approach in Section [5.2.2] To facilitate the comparison and
gain physical insights, all the sampled Reynolds stresses are mapped to their physical dimen-
sions, i.e., shape parameter (in Barycentric coordinates C, Cy, C3 and natural coordinates
&, n), magnitude k, and the Euler angles (1, o, and ¢3). Moreover, the decomposition into



J.-X. Wang Chapter 5. 131

physical components also allows visualization of the distribution of random tensor fields. The
marginal distributions of all components are investigated at two typical points: (1) point A
located at ©/H = 2.0 and y/H = 0.5 and (2) point B located at /H = 2.0 and y/H = 0.01,
indicated in Fig.[5.2] Point A is a generic point in the recirculation region, and point B is a
near-wall point with two-dimensional turbulence representing limiting states.

We first investigate the distributions of shape parameters of the Reynolds stress tensors
in Barycentric coordinates, which have clear physical interpretations (see Fig. [6.1)). The
perturbed Reynolds stresses at the generic point A are sampled and projected onto the
Barycentric triangle. The scatter plots of these samples for all cases are shown in Fig. [5.3]
We can see that the baseline RANS-predicted Reynolds stress at this generic point is located
in the interior of the triangle, while the benchmark result is located to the upper right of the
baseline result. For all cases considered here, all samples fall inside the Barycentric triangle,
demonstrating that the realizability is guaranteed in both approaches. The scatterings of
samples in Figs. and[5.3p are comparable, and this is also the case for Figs. and[5.3,
indicating that the dispersion parameters 0 estimated with the corresponding variances o
are acceptable. The samples are still scattered around the baseline state, especially when the
perturbation variance is small (¢ = 0.2). It shows that the sample mean overlaps with the
baseline state in Fig. . When the variance increases (o = 0.6), the mean value slightly
deviates from the baseline state (comparing Figs. and ) This deviation is markedly
amplified in the RMT approach (Fig. [5.3d), suggesting that although the mean of perturbed
Reynolds stresses is assumed to be the baseline result in the RMT approach, the mean is not
preserved during the projection to the Barycentric coordinates. As the perturbation becomes
large, the constraint of realizability leads to this significant deviation. Another notable
difference between the results of two approaches lies in the shape of sample scattering. The
scattering in case Phy1 is more elliptical-like with a large amount of samples spreading along
the plain strain line (Fig. |5.3n), while in case RM1 the samples are scattered more circularly
(Fig. [5.3b). When the perturbation is large (¢ = 0.6), we can see that in both cases Phy?2
and RM2 the scatterings of samples show significant influence from the boundaries. In the
results of the physics-based approach, a number of samples fall on the edges of the triangle,
and a large number of samples are clustered near the top vertex (Fig. [5.3c). In contrast, in
the RMT approach the samples are dispersed within the triangle without such clustering,
and the frequency of occurrences decreases near the edges (Fig. |5.3d).

Detailed comparison can be conducted by examining the marginal distributions of shape
parameters in Barycentric coordinates C7, Cs, and C. In Fig. we present the probability
density function (PDF) of C; for cases Phyl and RM1 and cases Phy2 and RM2. Since Cy
and C5 are correlated and have the similar characteristics as C, thus are omited for brevity.
When the variance o is 0.2, the distributions obtained in both approaches are Gaussian, and
the sample means are close to the baseline result. As the variance o increases to 0.6, both
distributions deviate from Gaussian. In the physics-based approach the mode of samples (at
peak of PDF) moves towards C; = 0 and the sample mean increases slightly compared to
the baseline results. This is caused by the scheme used to impose the realizability constraint
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Figure 5.3: Scatter plots of the Reynolds stress samples projected to the Barycentric coor-
dinates for point A (z/H = 2.0,y/H = 0.5) located in the recirculation region. Panels (a)
and (b) compare the two approaches with small perturbation (¢ = 0.2), while panels (c) and
(d) show the comparison with large perturbation (¢ = 0.6). The baseline RANS result is
plotted as a red dot. The benchmark state (DNS results from Breuer et al. [26]) is plotted
as a blue square, which is located to the upper right of the baseline result.
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Figure 5.4: Probability distributions of the perturbed Barycentric coordinate C; for point
A (x/H =2.0,y/H = 0.5) located in the recirculation region. The results from the physics-
based approach and the RMT approach are compared in the same plot. Panels (a) and
(b) show the comparison at perturbation variances of o = 0.2 (cases Phyl and RM1) and
o = 0.6 (cases Phy2 and RM2), respectively.

in the physics-based approach, where the samples falling outside the triangle are capped
to the boundaries of natural coordinates (the four edges shown in Fig. [6.1p). Moreover,
the samples spreading within the upper area of the natural coordinate square are squeezed
in Barycentric triangle because of the mapping between the two coordinates. However, in
the RMT approach the realizability of the Reynolds stress tensor [R] is guaranteed mathe-
matically and no additional constraints are imposed due to the coordinates mapping. More
precisely, the positive semi-definiteness of the normalized random matrix [G] is guaranteed
by constructing from its Cholesky factor [L] (see Eq. [5.8). As a result, the distribution of
(1 is close to Gamma distribution with the sample mean increased compared to the baseline
result. Based on the observations and discussions above, we find that some artificial con-
straints are introduced into the physics-based prior because of two issues of perturbing the
shape parameters: (1) mapping between natural and Barycentric coordinates; (2) capping
unrealizable samples. Therefore, it is better to specify Gaussian distributed perturbations
of shape parameters in Barycentric coordinate to achieve maximum entropy for a generic
location away from the wall.

It is also interesting to study the a point located close to the wall. Similarly, the comparisons
of scatter plots of Reynolds stress samples at point B are presented in Fig. [5.5] It shows
that the benchmark truth is located on the bottom edge of the triangle, indicating the two-
component limiting state. This is because the velocity fluctuations in wall-normal direction
are suppressed by the blocking of bottom wall of the channel. In contrast, RANS-predicted
Reynolds stress is close to the three-component isotropic state, located near the top vertex
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Figure 5.5: Scatter plots of the Reynolds stress samples projected to the Barycentric coor-
dinates for point B (x/H = 2.0,y/H = 0.01) located in the recirculation region. Panels (a)
and (b) compare the two approaches with small perturbation (¢ = 0.2), while panels (c)
and (d) show the comparison with large perturbation (o = 0.6). The benchmark state (DNS
results from Breuer et al. [26]) is plotted as a blue square, which is located on the bottom
edge of the triangle, indicating two-component turbulence.
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of the triangle. For the point B at the near wall location, the sample scatterings in all
four cases are markedly affected by the boundaries of the triangle, and the sample means
move downwards. This is due to the fact that the distances from the baseline state to
the boundaries are relatively small compared to the perturbations, and thus the perturbed
states are significantly affected by these constraints. However, the influences caused by the
constraints imposed in the two approaches are different. In the case with a small variance o =
0.2 (case Phyl, Fig. |5.5h), the samples are largely clustered near the top vertex and the
scattering is squeezed artificially in the physics-based approach. Although enough samples
are drawn, very few of them fall in the areas near the two side edges. In contrast, the
samples in the RMT approach are dispersed within the entire upper area of the triangle and
better explored the spanned uncertainty space (case RM1, Fig. |5.5b). When the variance is
large (o0 = 0.6, case Phy2, Fig. [5.5c), the capping scheme used to ensure realizability in the
physics-based approach has a more pronounced effect on the obtained sample distribution.
Specifically, about one half of the samples are capped to the edges or the vertices of the
Barycentric triangle, leading to deteriorated sample effectiveness. It is worth noticing that
the comparison is fair to both approaches, since the prior information is the same, i.e.,
all Reynolds stresses are realizable and the RANS predicted Reynolds stress is the best
estimate of the mean. However, the ways of injecting uncertainties into Reynolds stresses
are different between the two approaches, which lead to different sample scattering in the
Barycentric coordinate.

The differences of perturbations in shape parameters between the two approaches are dis-
cussed above for two typical points A and B of the channel. In order to quantitatively
explore the spatial variation of the difference between the two approaches, we calculate
the Kullback-Leibler divergence of the distribution obtained by the physics-based approach
from the distribution obtained by the RMT approach. The Kullback-Leibler divergence (also
known as relative entropy) of ¢ from p is a measure of the difference between two probability
densities p and ¢, which is defined as [27]

Drcs(plla) = [ pl0) 10825 a0 (5.12)

where 19 denotes the parameter, and I is the parameter space. The Kullback-Leibler diver-
gence is analogous to a “distance” between two distributions, but it is not a distance measure
since it does not preserve the symmetry in p and ¢. More intuitively, the Kullback-Leibler
divergence of ¢ from p can be interpreted as the measure of the information gained from
the distribution p to distribution ¢q. The Kullback-Leibler divergence is calculated to reflect
the additional information introduced in the physics-based approach based on the maxi-
mum entropy distribution obtained with the RMT approach. Figure [5.6] shows the spatial
profiles of Kullback-Leibler divergence for the shape parameter C';. The profiles are shown
at eight streamwise locations, z/H = 1,---,8, and the dashed black lines are plotted to
indicate the axis of Dk = 0. The geometry of the physical domain is also plotted to facil-
itate visualization. To clearly show the characteristics of the profiles, a larger scale factor
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of 0.9 is used in Fig. [5.6p, while a smaller scale factor of 0.3 is used in Fig. [5.6b. When
the variance is small (o = 0.2), the Kullback-Leibler divergence is also small over the entire
domain (Fig. [5.6p), suggesting that the distributions of shape parameters obtained from
the physics-based approach are similar to those obtained from the RMT approach. When
we increase the perturbation variance (¢ = 0.6), the Kullback-Leibler divergence becomes
larger over the entire domain (Fig. [5.6b), indicating that the additional, artificial constraints
introduced in the physics-based approach are significant with large perturbation. Moreover,
both Figs. and show that the Kullback-Leibler divergences for the locations near
the wall are slightly larger than those at generic locations. As has been discussed above, the
baseline RANS-predicted Reynolds stress near the wall is close to three-component isotropic
limiting state. This results in the fact that the perturbation is large compared to the distance
from baseline state to the boundary of the triangle, and thus more artificial information is
introduced in the physics-based approach at the near-wall regions. It is noted that the Dy,
is also large at y/H = 2.5, which is because the baseline state is closer to the top vertex of
triangle at y/H = 2.5. All these observations are consistent with the discussion above for
the two typical points A and B.

The analysis above suggests that imposing Gaussian perturbation directly in Barycentric
coordinates (as oppose to the natural coordinates) leads to a distribution closer to maxi-
mum entropy. However, the perturbations were imposed in natural coordinates by Xiao et
al. [L0] due to practical considerations. Since the Barycentric coordinates C, Cy, and Cs
are correlated, and the triangle boundary edges pose difficulties on the capping scheme, the
natural coordinates £ and 7 are preferred for implementation purposes. In order to determine
proper perturbations in £ and 7 to obtain prior with maximum entropy in the physics-based
approach, we also need to map the Barycentric coordinates to the natural coordinates in the
RMT approach. With the samples of natural coordinates ¢ and 7, their joint density can be
estimated with Gaussian kernels. Figures and show the comparison of joint PDF
contours obtained by the two approaches with variances ¢ = 0.2 and o = 0.6, respectively.
Moreover, the comparisons of marginal distributions of ¢ and 7 are also plotted in Fig. [5.8]
When the perturbation is small (¢ = 0.2), the contours in both cases Phyl and RMI1 are
elliptical, indicating the joint distributions are approximately Gaussian (Fig. [5.8a). How-
ever, a notable difference between the results of the two approaches lies on the shapes of the
contours. The elliptical contour in the RMT approach is anisotropic with larger variance for
& but smaller for n. In the physics-based approach the contour is circular due to the artificial
choice of the same perturbation variance for both & and n. Therefore, to achieve the prior
with approximate maximum entropy, the perturbation in £ should be larger than that in n
for this flow of concern. More details can be found in their marginal distributions (Figs. |5.8h
and [5.8c). For both approaches with small perturbation (o = 0.2) in Reynolds stress, the
marginal distributions for £ and n are Gaussian. With the RMT approach, the perturbation
variance of £ is approximately twice as large as that with the physics-based approach, while
the perturbation of 7 is slightly smaller than that with the physics-based approach. How-
ever, when the perturbation is large (¢ = 0.6), the joint distribution of £ and 7 obtained
by both approaches are no longer Gaussian, and the density contours are influenced by the
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Figure 5.6: Kullback-Leibler divergence profiles with (a) ¢ = 0.2 and (b) ¢ = 0.6. The
profiles are shown at eight streamwise locations x/H = 1,---,8, and the reference lines,
Dk = 04 x/H, are also plotted. Note that in panel (a), since the scale of Dk is quite
smaller than that of panel (b), a larger scale factor of 0.9 is used in (a), while a smaller scale
factor of 0.3 is used in (b).
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Figure 5.7: Comparisons of probability density contours of natural coordinates (£ and 7)
obtained from the physics-based approach and the RMT approach at point A (x/H =
2.0,y/H = 0.01. Panel (a) and (b) are with the perturbations ¢ = 0.2, and o = 0.6,
respectively.)

boundaries (Fig. [5.7b). Especially in case Phy2 the shape of the contour clearly follows the
rectangular edges. Unlike the physics-based approach, the shape of the contour obtained
with the RMT approach is less affected by the boundaries. Detailed comparisons are shown
by the corresponding marginal distributions. All the distributions are distorted compared
to the Gaussian PDF (Gaussian density with the sample mean and variance). The distor-
tions in the physics-based approach are due to the fact that large number of unrealizable
samples are capped onto the edges. However, in the RMT approach the sample means of
¢ and n significantly deviate from the baseline results. The mean of £ moves towards the
middle point (£ = 0) of £ range, while the mean of n moves towards approximate one third
(n = —0.4) of the n range [—1, 1]. This sample mean point ({£ = 0.0, n = —0.4) is close to the
centroid of the triangle when mapped back to the Barycentric coordinates. Moreover, the
distributions are approximately bounded Gaussian that satisfy the realizability constraint
mathematically. The deviation of sample mean from the baseline when the perturbation is
large can be interpreted intuitively. Since the large perturbation of Reynolds stress implies
less confidence on the baseline prediction, it is reasonable to adjust the sample mean to the
centroid of triangle to have a better sample scattering over the entire triangle. This means,
under this circumstance, we can directly perform the perturbations based on the centroid
of the triangle instead of the baseline state. The results shown in Figs. [5.7h, 5.8k, and
suggest that, for a generic point away from the wall, imposing small perturbations on ¢ and
1 with Gaussian distributions lead to Reynolds stresses that are very close to the maximum
entropy distribution. This observation lends partial support to the choice of prior distri-
butions made in [I0]. However, to achieve the maximum entropy prior, the perturbation
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Figure 5.8: Distributions of the perturbed natural coordinates ¢ and n for point A
(x/H = 2.0,y/H = 0.5) located in recirculation region. The results from the physics-based
approach and the RMT approach are compared in the same plot. Panels (a) and (b) show
the comparison of ¢ at perturbation variances of ¢ = 0.2 and ¢ = 0.6, respectively. Panels
(c) and (d) show the comparison of 1 at perturbation variances of ¢ = 0.2 and o = 0.6,
respectively.
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variance of £ should be approximately twice as large as that of . When the perturbation of
Reynolds stress is large, to achieve maximum entropy we should first shift the baseline ¢ and
1 to the centroid of the Barycentric triangle, and then perturb the shifted baseline results
with bounded Gaussian distribution.

In addition to the shape of Reynolds stress, its magnitude i.e., the turbulence kinetic energy
(TKE), is also difficult to predict in RANS models. In the physics-based approach, the
perturbations in turbulence kinetic energy are specified to be log-normally distributed. To
evaluate if this specification is justified, we compared the TKE perturbations in logarith-
mic scale Alogk obtained from the two approaches. The marginal distributions of Alog k
with different perturbation levels (¢ = 0.2 and ¢ = 0.6) at points A and B are presented
in Fig. [5.90 In both the physics-based and RMT approaches, the perturbations in TKE
obey the log-normal distribution, since all the PDFs of Alogk shown in Fig. are close
to the Gaussian distributions. This conclusion is also true for the cases with larger per-
turbations (cases Phy2 and RM2, ¢ = 0.6) as well. Therefore, introducing a log-normally
distributed prior for TKE discrepancies leads to a distribution of Reynolds stresses that is
close to the one with maximum entropy. This lends support to the choice of prior in the
physics-based approach [I0]. Another interesting observation in Fig. is that the spreading
of Alogk samples with the RMT approach is slightly smaller than that with physics-based
approach. As mentioned above, in the physics-based approach the same variance field o(z)
is shared by the perturbations of six variables (£, 1, k, @1, @2, p3) due to the lack of prior
knowledge. However, this assumption is another constraint imposed in the physics-based
approach. Based on the comparisons in Fig. we find that to achieve the maximum en-
tropy, the perturbation variance for each parameter should be different. It suggests that a
relatively smaller variance (approximate 50% of that for shape parameter) is proper for the
perturbation of TKE in logarithmic scale for this flow of concern.

In order to fill the gap in the previous studies on physics-based approach [10, 8, @] which
did not fully explore the uncertainty space of Reynolds stress and make a fair comparison
with the RMT approach, the orientations are perturbed with parameterization of Euler
angles in this work. However, if or how large the orientation should be perturbed are
model choices in the physics-based approach. Without further physical information, it is
difficult to determine the variance of angle perturbations. To examine this issue, the marginal
distributions of angle discrepancies obtained from both approaches are compared. Fig.
shows the comparison of PDF of Ay; with different perturbation magnitudes at the points
A and B. The perturbations in ¢s and @3 have similar characteristics as that of ¢;, and
thus they are omitted for brevity. We can see that to achieve the maximum entropy the
orientation of the tensor should also be perturbed. Similarly to the perturbations in TKE,
the sample mean of Ay, is zero for all cases. This indicates that the sample means in tensor
magnitude and orientation are the same as those of baseline RANS prediction, since there
are no physical constraints on TKE and Euler angles (except for the range [—, 7] specified
in the definition). In the physics-based approach, the PDFs are Gaussian for all cases, since
Gaussian random fields are employed to model the discrepancies in angles. For the generic
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Figure 5.9: Distributions of the perturbations (A log k) in turbulence kinetic energy in loga-
rithmical scale. The upper two panels show the results at point A (z/H = 2.0,y/H = 0.5),
while the lower two panels show the results at point B (z/H = 2.0,y/H = 0.01). The results
from physics-based approach and random matrix theoretic approach are compared in the
same plot. The sample mean of the physics-based approach overlaps with that of the RMT
approach (denoted as blue (dark) dashed line and pink (grey) dashed line, respectively)
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Figure 5.10: Distributions of the perturbations (Aep;) in orientation. The upper two panels
show the results at point A (z/H = 2.0,y/H = 0.5), while the lower two panels show the
results at point B (z/H = 2.0,y/H = 0.01). The results from Physics-based approach and
random matrix theoretic approach are compared in the same plot. The sample mean of the
physics-based approach overlaps with that of the RMT approach (denoted as blue (dark)
dashed line and pink (grey) dashed line, respectively)
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point A, the distribution of Ay, obtained from the RMT approach is also close to Gaussian
when the perturbation is small (Fig. ) However, the scattering of samples is smaller
than what we specified in the physics-based approach, and most of the perturbations are
within £20 degrees. As the perturbation magnitude is enlarged, the PDF obtained in the
RMT approach is peaked compared to the Gaussian distribution (Fig. ) Consequently,
most samples are with small perturbations (smaller than 30 degrees). However, for the point
B located close to the wall, the variances of Ap; in cases RM1 and RM2 are much larger,
even though the perturbation of tensor is small (Fig. [5.10k). In the RMT approach the
distribution of A is flatter than the corresponding Gaussian distribution, and most of the
perturbations Ay, are larger than 60 degrees. Especially when the dispersion parameter
is large (i.e., 0(z) corresponding to ¢ = 0.6), the PDF of Ayp; significantly deviates from
the Gaussian distribution (Fig. [5.10ld). The observations above imply that, to obtain a
maximum entropy prior, the perturbations variance in orientation should be spatially non-
stationary. For this specific flow, smaller perturbations (with 30 degrees) should be used for a
generic point away from the way, while larger perturbations are appropriate for the near wall
locations. The above suggested perturbation variance for each physical variable is obtained
under the two constraints: realizability of Reynolds stress and RANS predicted Reynolds
stress as the mean. The first constraint is guaranteed mathematically in the RMT approach,
which is independent on the flow case. However, the second constraint determines where the
perturbation is from and the conclusion is therefore flow-dependent. The suggested relative
magnitudes can be used to wall-bounded flows, but cautions should be exercised for other
flows. It is worth noticing that when warranted physical knowledge of the flow are available,
the relative magnitude should be adjusted to incorporate the physical information.

The results shown above focus on the comparisons for the six individual physical variables.
It is also interesting to investigate the differences of perturbations on the tensor components
between the two approaches. Among the six tensor components, turbulent shear stress R,
is the most relevant one to propagated velocities in the flow over periodic hills. Figure |5.11
presents the scatterings of Ry, samples after perturbations specified in the physics-based
and RMT approaches. Only the results with perturbation variance ¢ = 0.6 are shown,
since those with ¢ = 0.2 are qualitatively similar. The sample scattering is indicated by
the 2-0 credible interval, which is estimated from the samples. That is, at each point,
95.45% of the samples fall within the shaded region (red for the physics-based results and
blue for the RMT results). The sample means from the physics-based (red dashed line)
and RMT (blue dashed line) approaches are also plotted to compare with the benchmark
results (black solid line) [26]. The baseline results overlap with the RMT sample mean
profiles and are thus omitted to avoid clustering. Compared to the benchmark results, the
baseline RANS predicted turbulent shear stresses are satisfactory in the upper region of the
channel, but have large discrepancies in the lower region. Especially at the leeward of the
hill and in the recirculation region, the RANS model under-predicts the shear component
| R12|. When the uncertainties are injected into the Reynolds stresses, the 2-0 shaded regions
in both approaches cover the benchmark in most parts of the domain. However, a notable
difference can be observed: the sample mean profiles in physics-based approach deviate from
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Figure 5.11: The 2-0 (95.45%) credible intervals of the perturbed turbulent shear stress
Ry, obtained from physics-based and RMT approaches. The profiles are shown at eight
streamwise location z/H = 1,--- 8. The sample means from Physics-based and RMT
approach are plotted as red and blue dashed lines, respectively. The baseline results overlap
with the RMT sample mean, which are omitted to avoid clustering. The benchmark results
(black solid) obtained by direct numerical simulation [26] are also shown for comparison.

the baseline results, whereas in RMT approach they are well preserved. It can be seen that
the mean of | Ry5| decreases in the physics-based approach, and the credible interval (shaded
region) fails to cover the peaks of benchmark profiles in the free-shear region (at y/H = 1.0)
from z/H = 1.0 to #/H = 6.0. In previous studies on physics-based approach [10, 1], it
has been reported that prior means of perturbed Reynolds stresses and propagated velocities
are very close to the baseline results. The “inconsistence” observed here results from the
angle perturbation. Previous studies [10, 1], 8, @], perturbed only the tensor’s shape and
magnitude. In this work, however, the tensor orientations are also perturbed simultaneously.
Although in both physics-based and RMT approaches the perturbations are performed with
the baseline RANS results being the mean, in physics-based approach they are conducted
for physical components individually instead of directly perturbing the tensor as in the
RMT approach. Since the shape parameters (eigenvalue) and Euler angles (eigenvector) are
perturbed simultaneously yet independently, the mean of reconstructed tensor samples may
not be the same as the baseline Reynolds stress, though the mean of each physical variable
is still preserved.

Finally, the perturbed Reynolds stress samples are propagated to the velocity through the
RANS equation tauFOAM [I0], and the comparison of sample means of velocity profiles
obtained in the two approaches is shown in Fig. Similarly, the 2-o credible intervals from
both approaches are plotted. We can see that the shaded regions in both approaches basically
cover the benchmark velocity profiles. The sample mean profiles in the RMT approach
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Figure 5.12: Comparison of propagated velocity profiles and corresponding 2-o credible
intervals for physics-based (blue shaded) and RMT (red shaded) approaches. The profiles are
shown at eight streamwise locations at x/H = 1,--- |8, compared to the benchmark results
(black solid) obtained by direct numerical simulation [26]. The baseline results overlap with
the RMT sample mean, which are omitted to avoid clustering.

overlap with the baseline results, indicating a linearity of the mapping from Reynolds stresses
to the velocity. In the physics-based approach, the sample mean profiles deviate from the
baseline results, and the credible interval region is also slightly shifted. It is interesting to see
that the deviated sample mean in physics-based approach becomes closer to the benchmark
results in the recirculation region, while it is worse than the baseline in the upper channel
region. However, such “improvement” of recirculation prediction is a coincidence, since the
information of benchmark results has not been incorporated.

5.4 Discussion

5.4.1 Effect of Relative Perturbation Variance of Each Physical
Variable

A notable difference between the physics-based and RMT approaches lies on how to inject
uncertainties into RANS modeled Reynolds stresses [R]|™"*. In the physics-based approach,
the uncertainties are injected into each physically meaningful variable of [R]"*"* while in
the RMT approach the uncertainties are directly injected into Reynolds stresses as random
matrices. Therefore, the relative perturbation variance of each of the six physical variables
compared to each other is fixed beforehand in the RMT approach, while flexibility is still
preserved in the physics-based approach. With the same perturbation variance of tensor, it
is interesting to investigate whether different combinations of variances in physical variables
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have markable impacts on the propagated Qol. Here we consider an extreme case: only the
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0.00
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Figure 5.13: 2-0 credible intervals of propagated wall shear stress profiles from physics-based
(red shaded) and RMT (blue shaded) approaches. the benchmark results obtained by direct
numerical simulation [26] are plotted for comparison. The baseline results overlap with the
both physic-based and RMT sample means, which are omitted to avoid clustering.

shape of anisotropy is perturbed in the physics-based approach with variance o(x) = 0.6,
while no perturbations are performed on other variables (magnitude and orientations). To
achieve the same perturbation variance of tensor, the dispersion parameter §(x) is estimated
for the RMT approach. In this case, although the variances of the Reynolds stress ten-
sors are similar, the scatterings of each tensor component are slightly different between the
two approaches. For the turbulent normal stress component Ri;, the scattering is slightly
larger in the RMT approach. In contrast, for the turbulent shear stress component Rjs,
the scattering is larger in the physics-based approach where only the shape of anisotropy is
perturbed. After propagation of these perturbed Reynolds stresses via RANS equations, the
scatterings of Qol samples are markedly different. The bottom wall shear stresses, one of the
propagated Qols, obtained by post-processing the velocity fields are presented in Fig. [5.13]
The 2-0 credible regions are also plotted for comparison. It can be clearly seen that even
though the perturbation variances of tensors are similar, the 2-0 shaded region of bottom
wall shear stresses by only perturbing the anisotropy is markedly larger than that using the
RMT approach, and it better covers the benchmark results. This indicates that the wall
shear stress is more sensitive to the shape of anisotropy than other variables for this specific
flow. Qualitatively similar observations are obtained for the propagated velocities, the re-
sults of which are thus omitted. It is worth noticing that this observation is low-dependent.
Therefore, with more physical information and better understanding of the flows of inter-
est, the physics-based approach is advantageous due to its flexibility on specifying different
relative magnitude of variances for physical variables.
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5.4.2 Modeling Choices in the Pysics-Based and RMT Approaches

The results shown in Section. suggest that, when the RANS predictions are relatively re-
liable with small perturbations needed, using normally distributed perturbations for each of
the six physical variables is a good choice to obtain the Reynolds stress prior that is close to
the one with maximum entropy. This observation can be related to the case of a scalar ran-
dom variable. With the constraints of a specified mean and variance, the maximum entropy
distribution of a scalar random variable is a Gaussian distribution [28]. That is, by choosing
Gaussian distributions for the discrepancies of Reynolds stresses in the physics-based ap-
proach, the maximum entropy distribution is achieved for each individual physical variable
(magnitude, shape, orientation). The variance of each variable is, however, chosen by the
user and is thus a modeling choice. In contrast, in the RMT approach the maximum entropy
is achieved for the distribution of the Reynolds tensor. Consequently, the relative magnitude
of the variance for each variable is implied based on the maximum entropy principle and
is not a modeling choice of the user. However, it is worth pointing out that, although we
use the results of the RMT approach as the golden standard to assess artificial constraints
introduced in the physics-based approach, the correlation structure and the corresponding
Karhunen-Loeve modes used to represent the random field are still modeling choices, which
also may introduce artificial constraints. In summary, one can consider that in the RMT ap-
proach, maximum entropy is achieved for the pointwise distribution of the Reynolds stresses
at each location x, but not necessarily for the random field [R(x)]. In the physics-based ap-
proach, maximum entropy is achieved for the pointwise distribution for individual physical
variables (k, &, n etc.) but not necessarily for the Reynolds stress tensor [R] or the field
[R(x)].

It is also worth noting that the maximum entropy distribution in the RMT approach is
obtained under two assumed constraints, i.e., (1) all Reynolds stresses are realizable and (2)
the RANS predicted Reynolds stress is the best estimation of Reynolds stress mean. How-
ever, if other warranted physical information is incorporated, the current form of Reynolds
stress distribution in the RMT approach may not have the maximum entropy. It is pos-
sible to adapt the maximum entropy distribution to the new constraints. For example,
Ghanem et al. [I5] have developed the maximum entropy distribution for the bounded ran-
dom matrix. Nonetheless, to rigorously derive the maximum entropy distribution under
the new constraints is nontrivial, and it is easier to incorporate the physical information in
the physics-based approach. Since the physical knowledge is generally weak and vague in
the context of quantifying model-form uncertainties in RANS modeling, the suggestions of
prior specification given in Section are still useful to achieve an approximate maximum
entropy distribution even if some available physical information is incorporated. Moreover,
if the artificial constraints in current form of the physics-based approach is predominantly
large, the merits of incorporating physical information will be overwhelmed. Therefore, the
comparison results shown in Section can be used to “calibrate” the physics-based ap-
proach. However, caution still should be exercised to apply the current conclusion when
strong physical constraints are incorporated.
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5.5 Conclusion

Quantification of the uncertainties originating from the modeled Reynolds stresses is crucial
when the RANS simulations are applied in the decision-making process. One of the chal-
lenges in current form of the physics-based model-form uncertainty quantification framework
is to specify proper priors for the physical variables (shape, magnitude, and orientation). It
is difficult to determine if or how much additional information is introduced into the priors
specified in the physics-based approach. To evaluate the priors and gain insights on proper
specification of the priors, the random matrix theoretic approach with the maximum en-
tropy principle is used in this work. By comparing the distributions of shape, magnitude,
and orientation variables obtained from the two approaches, we identified several factors
which may introduce artificial constraints in the physic-based approach. Moreover, the com-
parisons also provide some useful guidelines of prior specification for these wall-bounded
flows with separations. For the shape parameters, the Gaussian distributed perturbations
in Barycentric coordinate is better to achieve maximum entropy. The mapping between the
Barycentric coordinate to the natural coordinate may introduce some artificial constraints,
especially when the RANS prediction is less reliable (large perturbation needed). For the
turbulence kinetic energy, introducing log-normally distributed perturbations leads to a dis-
tribution of Reynolds stresses that is close to the one with the maximum entropy. This
observation lends support to the choice of prior in [10]. For orientation, it suggests that
the uncertainties should also be injected with a non-stationary variance field to achieve the
maximum entropy distribution of tensors. For the specific flow in this study, the perturba-
tions of Euler angles should be small for a generic location away from the wall, while large
for the near wall locations. Simultaneously perturbing shape and orientation of anisotropy
in the physics-based approach cannot preserve the mean of tensors as the baseline result.
Finally, we discussed the relative magnitude of variance for each physical variable and its
impact on the propagated quantities. Useful suggestions on specifying relative magnitudes
of variances among the physical variables are provided. The observations and conclusion are
meaningful to quantify the model-form uncertainties in RANS modeling and can be used as
a guidance for the objective prior specification in the physics-based, Bayesian uncertainty
reduction framework.
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5.A

Summary of Algorithms of The Physics-Based Ap-
proach

1. Decomposition to physically meaningful dimension and expansion of given marginal
distributions

1.1.

1.2.
1.3.

Perform the baseline RANS simulation to obtain the baseline (mean) Reynolds
stress [R].

Perform the transformation [R] —s (€775, fjrans  Jrans grans - grans PEIme).

Nt
a=1>

Compute Karhunen-Loeve expansion to obtain basis set {¢, () where Ny

is the number of modes retained.

2. Sampling and reconstruction of physical variable fields for Reynolds stresses:

2.1.

2.2.

2.3.

Sample six independent coefficient, vectors {ws}j_, for the six discrepancy fields
(i.e., A, An, Alogk, Apy, Aps, and Aps ), where N is the sample size.

Reconstruct the six discrepancy fields with the six independent coefficient sam-
ples {ws}i_, and Karhunen-Loeve modes. Note that the variance field o(z) is
the same for the six random fields.

Obtained samples of Reynolds stress field [R] via mapping (£, 1, k, ¢1, ©2, ©3) —
]

3. Propagation the Reynolds stress to Qols via RANS equations

3.1 Use the obtained sampled Reynolds stress to velocity and other Qols by solving

the RANS equations.

3.2 Post-process the obtained velocity and Qol samples to obtain statistical moments.

5.B

Summary of Algorithms of The RMT Approach

Given the mean Reynolds stress field [R(x)] (e.g., from RANS-predicted results) along with
the correlation function structure of the random upper triangle matrix field [L](z), the

following

procedure is performed:

1. Expansion of given marginal distributions and covariances kernels:

1.1.

1.2.

Perform the Cholesky factorization of the mean Reynolds stresses [R] at each cell
as [R] = [Ly|"[Ly], which yields field Ly(z) of upper triangular matrices.

Perform Karhunen—Loeve expansion for the kernel function by solving the Fred-
holm equation to obtain eigenmodes.
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1.3.

For diagonal terms of matrix [L], perform polynomial expansion (PCE) of the
Gamma marginal PDF at each cell. PCE Coefficients Ug are obtained from

<1_1\Ifg> . 1 1 w y s
(w3) <\1/g>/QFu [Fu(w)] Wg(w) pu(w)dw, (5.13)

Ug =

where (\Il%) is the variance of i*" order polynomial of standard Gaussian random
variable w; F,(w) and p,, are the cumulative distribution function (CDF) and
PDF, respectively, of w;  is the sample space of w; F, and F;! are the CDF
and its inverse, respectively, of random variable u. The index 3 is from 1 to N,
and N, is the number of polynomials retained in the expansion.

2. Sampling and reconstruction of random matrix fields for Reynolds stresses:

2.1.

2.2.

2.3.

2.4.

2.5.

For each element L;; of the random matrix field [L], independently draw Ny
sample from the standard Gaussian distribution w;;, where o = 1,---, Ny, e.g.,
with random sampling or Latin hypercube sampling method.

Synthesize realizations of the off-diagonal terms based on Karhunen—Loeve ex-
pansion:

w;j(x) = Z Go(T) wo with i< j

a=1

Lij(z) = oawi;(x)

Synthesize the realizations of the diagonal terms based on Karhunen-Loeve and
PCE expansions:

ZU,B z)Wg(wii(z))

where the Gaussian random field sample w;;(x) obtained in the previous step is
used.

Synthesize the diagonal terms of matrix [L] from Ly (z) = 04v/2u;, where i =
1,2,3.

Reconstruct random normalized matrix [G] from [G] = [L]”[L] and then recon-
struct the Reynolds stress tensor [R] from [R] = [Lz]T[G][Ly].

3. Propagation the Reynolds stress field through the RANS solver to obtain velocities
and other Qols:

3.1 Use the obtained sampled Reynolds stress to velocity and other Qols by solving

the RANS equations.

3.2 Post-process the obtained velocity and Qol samples to obtain statistical moments.
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Abstract

Turbulence modeling is a critical component in numerical simulations of industrial flows
based on Reynolds-averaged Navier-Stokes (RANS) equations. However, after decades of
efforts in the turbulence modeling community, universally applicable RANS models with
predictive capabilities are still lacking. Large discrepancies in the RANS-modeled Reynolds
stresses are the main source that limits the predictive accuracy of RANS models. Identifying
these discrepancies is of significance to possibly improve the RANS modeling. In this work,
we propose a data-driven, physics-informed machine learning approach for reconstructing
discrepancies in RANS modeled Reynolds stresses. The discrepancies are formulated as
functions of the mean flow features. By using a modern machine learning technique based
on random forests, the discrepancy functions are trained by existing DNS databases and then
used to predict Reynolds stress discrepancies in different flows where data are not available.
The proposed method is evaluated by two classes of flows: (1) fully developed turbulent flows
in a square duct at various Reynolds numbers and (2) flows with massive separations. In
separated flows, two training flow scenarios of increasing difficulties are considered: (1) the
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flow in the same periodic hills geometry yet at a lower Reynolds number, and (2) the flow in
a different hill geometry with a similar recirculation zone. Excellent predictive performances
were observed in both scenarios, demonstrating the merits of the proposed method.

6.1 Introduction

6.1.1 RANS Models as Workhorse Tool in Industrial CFD

Computational fluid dynamics (CFD) simulations have been widely used in aerospace, me-
chanical, and chemical industries to support engineering design, analysis, and optimization.
Two decades ago when Large Eddy Simulations (LES) started gaining popularity with the
increasing availability of computational resources, it was widely expected that LES would
gradually displace and eventually replace Reynolds-Averaged Navier-Stokes (RANS) equa-
tions in industrial Computational Fluid Dynamics (CFD) work-flows for decades to come.
In the past two decades, however, while LES-based methods (including resolved LES, wall-
modeled LES, and hybrid LES/RANS methods) did gain widespread applications, and the
earlier hope certainly did not diminish, the predicted time when these methods would replace
RANS has been significantly delayed. This observation is particularly relevant in light of the
recent discussions on the ending of the “Moore’s Law era” with transistor sizes approach-
ing their theoretical lower limit [I, 2]. RANS solvers, particularly those based on standard
eddy viscosity models (e.g., k— [3], k—w [4, 5], S-A [6], and k-w—SST [7], are still and will
remain the dominant tool for industrial CFD in the near future. This is likely to be true
even in mission critical applications such as aircraft design. Interestingly, even the advanced
RANS models such as Reynolds stress transport models [§] and Explicit Algebraic Reynolds
stress models [9] have not seen much development in the past few decades. These advanced
models are computationally more expensive and less robust compared to the standard eddy
viscosity RANS models. As such, it is still practically important to further develop the
standard RANS models for industrial CFD applications. However, improving the predictive
capabilities of these models is critical yet technically challenging.

6.1.2 Progress and Challenges in Data-Driven Turbulence Mod-
eling

While traditional development of turbulence models has focused on incorporating more
physics to improve predictive capabilities, an alternative approach is to utilize data. In
the past few years, a number of data-driven approaches have been proposed. Researchers
have investigated the use of both offline data (i.e., existing DNS data for flows different from
that to be predicted [10, 11}, 12]) and online data (streamed monitoring data from the flow
to be predicted [13, 14, 15]). Dow and Wang [10] used Direct Numerical Simulation (DNS)
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data from a plane channel flow to infer the full-field discrepancy in the turbulent viscosity v
modeled by the k—w model. To predict flows in channels with wavy boundaries, they modeled
the (log-)discrepancies of v; in the new flows as Gaussian random fields, with the discrep-
ancy field inferred above as mean. Duraisamy and co-workers [I1], [16] introduced a full-field
multiplicative discrepancy term S into the production term of the transport equations of
turbulent quantities (e.g., 74 in the SA model and w in the k—w models). They used DNS
data to calibrate and infer uncertainties in the § term. It is expected that the inferred dis-
crepancy field can provide valuable insights to the development of turbulence model and can
be used to improve RANS predictions in similar flows. Xiao et al. [I3] used sparse velocity
measurements (online data) to infer the full-field discrepancies A7, in the RANS-predicted
Reynolds stress tensors, or more precisely the physical projections thereof (turbulent kinetic
energy, anisotropy, and orientations). Throughout this paper it is understood that 7, in-
dicates the physical projections and not the individual components of the Reynolds stress
tensor. Good performance was demonstrated on several canonical flows including flow past
periodic hills, flow in a square duct [13], and flow past a wing-body junction [17].

All three approaches [10] 111, [13] discussed above can be considered starting points toward the
same destination: the capability of predictive turbulence modeling by using standard RANS
models in conjunction with offline data. To this end, the respective discrepancies terms
(Aloguy, B, and AT,) are expected to be extrapolated to similar yet different flows. These
contributions are all relatively recent and much of the research is still on-going. Duraisamy et
al. |16}, [I8] performed a priori studies to show the potential universality of their discrepancy
term [ among a class of similar flows, but their performances in a posteriori tests, i.e., using
the calibrated discrepancy in one flow to predict another flow, have yet to be demonstrated.
Dow and Wang [10] extrapolated the logarithmic discrepancies A log v, calibrated in the plane
channel flow to flows in channel with slightly wavy walls, where velocity predictions were
made. Similarly, further pursuing the approach of Xiao et al. [I3], Wu et al. [19] showed that
the Reynolds stress discrepancy calibrated with sparse velocity data can be extrapolated
to flows at Reynolds number more than an order of magnitude higher than that in the
calibration case. The extrapolated discrepancy has lead to markedly improved predictions
of velocities and other Quantities of Interest (Qols), showing the potential of the approach
in enabling data-driven predictive turbulence modeling. However, an intrinsic limitation in
the approach of Wu et al. [19] is that they inferred the functions féz) : X — AT, or simply
denoted as A7, (x), in the space of physical coordinates x. Therefore, strictly speaking
they only demonstrated that the discrepancy Ar, can be extrapolated to flows in the same
geometry at the same location. Consequently, their attempts of extrapolation to the flow
in a different geometry (e.g., from a square duct to a rectangular duct) encountered less
success. The approach of Dow and Wang [I0] would share the same limitation since they
built Gaussian random fields indexed by the physical coordinates x.
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6.1.3 Motivation of the Proposed Approach

A natural extension that overcomes the key limitation in the calibration—prediction approach
of Wu et al. [19] is to build such functions in a space of well-chosen features q instead of
physical coordinates x. Despite its limitations, a key factor in the success of the original
approach is that the Reynolds stress discrepancies are formulated on its projections such as
the anisotropy parameters (¢ and 7) and orientation (g;) of the Reynolds stresses and not
directly on the individual components. These projections are normalized quantities [19]. We
shall retain this merits in the current approach and thus use data to construct functions
A7,(q) instead of A7,(x). This extension would allow the calibrated discrepancies to be
extrapolated to a much wide range of flows. In other words, the discrepancies of the RANS-
predicted Reynolds stresses can be quantitatively explained by the mean flow physics. Hence,
these discrepancies are likely to be universal quantities that can be extrapolated from one flow
to another, at least among different flows sharing the same characteristics (e.g., separation).
As such, discrepancies in Reynolds stress projections are suitable targets to build functions
for.

With the function targets identified, two challenges remain: (1) to identify a set of mean
flow features based on which the discrepancies functions A7, (q) can be constructed and (2)
to choose a suitable method for constructing such functions. Duraisamy and co-workers [I§]
identified several features and used neural network to construct functions for the multiplica-
tive discrepancy term. Ling and Templeton [12] provided a richer and much more complete
set of features in their pioneering work, and they evaluated several machine learning algo-
rithms to predict point-based binary confidence indicators of RANS models [I2]. Ling et
al. [20] further used machine learning techniques to predict the Reynolds stress anisotropy
in jet-in-cross flows. Based on the success demonstrated by Ling and co-workers [12), 20], we
will use machine learning to construct the functions A7, (q) in the current work. Specifically,
we will examine a class of supervised machine learning techniques, where the objective of the
learning is to build a statistical model from data and to make predictions on a response based
on one or more inputs [21]. This is in contrast to unsupervised learning, where no response
is used in the training or prediction, and the objective is to understand the relationship
and structure of the input data. Unsupervised learning will be explored as an alternative
approach in future works.

6.1.4 Objective, Scope, and Vision of This Work

The objective of this contribution is to present an approach to predict Reynolds stress
modeling discrepancies in new flows by utilizing data from flows with similar characteristics
as the prediction flow. This is achieved by training regression functions of Reynolds stress
discrepancies with the DNS database from the training flows.

In light of the consensus in the turbulence modeling community that the Reynolds stresses
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are the main source of model-form uncertainty in RANS simulations [22] B, 23], the current
work aims to improve the RANS modeled Reynolds stresses. In multi-physics applications
the Qols might well be the Reynolds stresses and /or quantities that directly depend thereon.
In these applications the current work is significant by itself in that it would enable the
use of standard RANS models in conjunction with an offline database to provide accurate
Reynolds stress predictions. Moreover, the improvement of Reynolds stresses enabled by the
proposed method is an important step towards a data-driven turbulence modeling framework.
However, the Reynolds stresses corrected by the constructed discrepancy function from DNS
databases cannot necessarily guarantee to obtain improved mean flow fields. There are
a number of challenges associated with propagating the improvement of Reynold stresses
through RANS equation to the mean velocity field, which will be addressed in future works.

The rest of this paper is organized as follows. Section 2 introduces the components of the
predictive framework, including the choice of regression inputs and responses as well as
the machine learning technique used to build the regression function. Section 3 shows the
numerical results to demonstrate the merits of the proposed method. Further interpretation
of the feature importance and its implications to turbulence model development are discussed
in Section 4. Finally, Section 5 concludes the paper.

6.2 Methodology

6.2.1 Problem Statement

The overarching goal of the current and companion works is a physics-informed machine
learning (PIML) framework for predictive turbulence modeling. Here, “physics-informed” is
to emphasize the attempt of accounting for the physical domain knowledge in every stage
of machine learning. The problem targeted by the PIML framework can be formulated as
follows: given high-fidelity data (e.g., Reynolds stresses from DNS or resolved LES) from a set
{T}X, of N training flows, the framework shall allow for using standard RANS turbulence
models to predict a new flow P for which data are not available. The flows 7; for which
high-fidelity simulation data are available are referred to as training flows, and the flow
P to be predicted is referred to as test flow. The lack of data in test flows is typical in
industrial CFD simulations performed to support design and optimization. Furthermore, we
assume that the training flows and the test flow have similar complexities and are dominated
by the same characteristics such as separation or shock-boundary layer interaction. This
scenario is common in the engineering design process, where the test flow is closely related
to the training flows. Ultimately, the envisioned machine learning framework will be used in
scenarios where the training flows consist of a wide range of elementary and complex flows
with various characteristics and the test flow has a subset or all of them. However, the latter
scenario is much more challenging and is outside the scope of the current study. Considering
the proposed method is a completely new paradigm, we decide to take small steps by starting
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from the closely related flows and to achieve the overarching goal gradually.

6.2.2 Summary of Proposed Approach

In the proposed approach we utilize training data to construct functions of the discrepan-
cies (compared to the DNS data) in the RANS-predicted Reynolds stresses and use these
functions to predict Reynolds stresses in new flows. The procedure is summarized as follows:

1. Perform baseline RANS simulations on both the training flows and the test flow.

2. Compute the feature vector field q(x), e.g., pressure gradient and streamline curvature,
based on the RANS-predicted mean flow fields for all flows.

3. Compute the discrepancies field A7, (x) in the RANS modeled Reynolds stresses for
the training flows based on the high-fidelity data.

4. Construct regression functions f, : q — Ar, for the discrepancies based on the training
data prepared in Step 3.

5. Compute the Reynolds stress discrepancies for the test flow by querying the regres-
sion functions. The Reynolds stresses can subsequently be obtained by correcting the
baseline RANS predictions with the evaluated discrepancies.

In machine learning terminology the discrepancies AT, here are referred to as responses or
targets, the feature vector q as input, and the mappings f, : q — A7, as regression functions.
A regression function f, maps the input feature vector q to the response At,, and the term
“function” shall be interpreted in a broad sense here. That is, depending on the regression
technique used, it can be either deterministic (e.g., for linear regression) or random (e.g.,
Gaussian process) [21, 25], and it may not even have an explicit form. In the case of random
forests regression used in this work [26], the mapping does not have an explicit expression
but is determined based on a number of decision trees.

In the procedure described above, after the baseline RANS simulations in Step 1, the input
feature fields are computed in Step 2, the training data are prepared in Step 3, and the
regression functions are constructed in Step 4. Finally, the regression functions are evaluated
to make predictions in Step 5. It is worth noting that in each stage domain knowledge is
incorporated, e.g., physical reasoning for identification of input features and consideration of
realizability constraints of Reynolds stress in learning-prediction process. Each component is
discussed in detail below. The choice of features and responses are presented in Sections|6.2.3
and respectively, and the machine learning algorithm chosen to build the regression
function is introduced in Section [6.2.5]
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6.2.3 Choice of Mean Flow Features as Regression Input

As has been pointed out in Section mean flow features are better suited as input of
the regression function than physical coordinates as they allow the constructed functions to
predict flows in different geometries. Ling and Templeton [12] proposed a rich set of twelve
features based on clear physical reasoning. The set of features used in the present study
mostly follow their work, except that we excluded the feature “vortex stretching” (input 8
in Table II of ref. [12]). This feature is present only in three-dimensional flows, but the test
cases presented here are two-dimensional flow. We excluded two additional features related
to linear and nonlinear eddy viscosities (features 6 and 12 in ref. [12]). These quantities
were specifically chosen for evaluating qualitative confidence indicators of RANS predictions
and, in our opinion, are not suitable input for regression functions of Reynolds discrepancies.
Finally, experiences in the turbulence modeling communities suggest that mean streamline
curvature has important influences on the predictive performance of RANS models [27].
Therefore, curvature is included as an additional feature. The complete list of the mean flow
features chosen as regression inputs in this work is summarized in Table [6.1]

In choosing the mean flow features as regression inputs, we have observed a few principles
in general. First, the input and thus the obtained regression functions should be Galilean-
invariant. Quantities that satisfy this requirement include all scalars and the invariants
(e.g., norms) of vectors and tensors. An interesting example is the pressure gradient along
streamline (see feature g4 in Table . While neither velocity Uy nor pressure gradient
dP/dxy (both being vectors) is Galilean-invariant by itself and thus is not a suitable input,
their inner product U, k% is. Second, since the truth of the mean flow fields in the test flows
are not available, an input should solely utilize information of the mean flow field produced
by the RANS simulations [I2]. Therefore, all of the adopted features are based on RANS-
predicted pressure P, velocity U, turbulent kinetic energy k, and distance d to the nearest
wall. Finally, to facilitate implementation and avoid ambiguity, only local quantities (i.e.,
cell- or point-based quantities in CFD solvers) of the flow field are used in the formulation
of features, with the distance d to nearest wall being a notable exception. This principle is
similar to that in choosing variables for developing turbulence models [27].

The interpretation of most feature variables are evident from the brief descriptions given
in the table, but a few need further discussions. First, feature ¢; (Q-criterion) is based on
the positive second invariant () of the mean velocity gradient VU, which represents excess
rotation rate relative to strain rate [28]. For incompressible flows, it can be computed as
Q = 3(||2]I> — [IS||?), where © and S are rotation rate and strain rate tensors, respectively;

19| = +/tr(QQ7) and ||S|| = \/tr(SST), with superscript 7" indicating tensor transpose and
tr indicating trace. The Q-criterion is widely used in CFD simulations as a post-processing
tool to identify vortex structures for the visualization of flow structures [29]. Second, the wall
distance based Reynolds number Rey = v/kd/v in g3 is an indicator to distinguish boundary
layers from shear flows. This is an important feature because RANS models behave very
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differently in the two types of flows. This quantity is frequently used in wall functions
for turbulence models. Third, feature ¢; defines the deviation from orthogonality between
the velocity and its gradient [30], which indicates the deviation of the flow from parallel
shear flows (e.g., plane channel flows). Since most RANS models are calibrated to yield
good performance on parallel shear flows, this deviation is usually correlated well with large
discrepancies in RANS predictions. However, since it only accounts for misalignment angle
and not the velocity magnitude, in regions with near-zero velocities this quantity becomes
the angle formed by two zero-length vectors and is thus mostly noise. Finally, we remark that
most of the features in Table including the Q-criterion and wall-distance based Reynolds
number are familiar to CFD practitioners.

Most of the features presented in Table are formulated as ratios of two quantities of the
same dimension, either explicitly (¢i, g5, g6, gs, qo) or implicitly (g2 and ¢3). Hence, they
are non-dimensional by construction. Features ¢4 and ¢; involve inner product of vectors
or tensors, and thus they are normalized by the magnitude of the constituent vectors or
tensors. Finally, feature gip (streamline curvature) is normalized by 1/L., where L. is the
characteristics length scale of the mean flow, chosen to be the hill height H (see Fig. in
the numerical examples.

We followed the procedure of Ling and Templeton [I2] to normalize the features. Except for
feature g3, each element gz in the input vector q is normalized as:

ds
qs = A where B = 1,2,4, cee ,10, (61)
|4l + lgj]

where the summation on repeated indices is not implied, gg are raw values of the features,
and ¢j are the corresponding normalization factors. This normalization scheme limits the
numerical range of the inputs within [—1, 1] and thus facilitates the regression. The normal-
ization is not needed for feature g3 (wall distance based Reynolds number) since it is already
in a non-dimensional form and in a limited range [0, 2].

It can be seen that the choices of features and normalization factors heavily rely on physical
understanding of the problem (turbulence modeling). That is, in the present data-driven
modeling framework, the data are utilized only after physical reasoning from the modeler
has been applied. This task can be a burden in certain applications. It is worth noting
that the recent work of Ling et al. [31] aimed to relieve the modeler from such burdens by
using a basis of invariants of tensors relevant in the specific application (e.g., strain rate
S in turbulence modeling). Their work has the potential to systematically construct the
input features based on raw physical variables and thus makes data-driven modeling even
“smarter”.
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Table 6.1: Non-dimensional flow features used as input in the regression. The normalized
feature gs is obtained by normalizing the corresponding raw features value gg with normal-
ization factor g5 according to qs = qs/(|4s| + |qj|) except for 3 = 3. Repeated indices imply
summation for indices ¢, j, k, and [ but not for . Notations are as follows: U, is mean
velocity, k is turbulent kinetic energy (TKE), « is fluctuation velocity, p is fluid density, ¢ is
the turbulence dissipation rate, S is the strain rate tensor, {2 is the rotation rate tensor, v is
fluid viscosity, d is distance to wall, I" is unit tangential velocity vector, D denotes material

derivative, and L. is the characteristic length scale of the mean flow. || -

matrix and vector norms, respectively.

| and | - | indicate

feature . . normalization factor
description raw feature (gg) By
(%’) (Q,g)
ratio of excess rotation rate 9 9 9
& to strain rate (Q-criterion) 217 = 1IS1F) ISl
G2 turbulence intensity k %UiUi
wall-distance based : \/_ d . (a)
4 Reynolds number i 500 not applicable
0 pressure gradl‘ent along U, 8_P oP OP oA
streamline 0xy axj Ox;
ratio of turbulent time 1 1
qs scale to mean strain time - —
scale € ISl
ratio of pressure normal dP OP 1 oU?
96 stresses to shear stresses \/&Ei or; 27 0z,
non-orthogonality between
i velocity and its UU; gU \/ U, U, ZU U ZU’“
gradient [30] i i
ratio of convection to dk
s production of TKE Ui dzx; |u Sl
ratio of total to normal
o Reynolds stresses Hu H K
‘%‘ where 1
q10 streamline curvature I'=U/|U|, I
Ds = |U|Dt ¢

Note: (a) Normalization is not necessary as the Reynolds number is non-dimensional.
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6.2.4 Representation of Reynolds Stress Discrepancies as Responses

In Section the Reynolds stress discrepancies A7 have been identified as the responses
for the regression functions. The response quantities should also be based on Galilean in-
variant quantities due to the same consideration as in the feature choice. As such, individual
components of the Reynolds stresses or the discrepancies based thereon are not suitable,
but those based on their eigenvalues or invariants are preferred. In turbulence modeling,
the Lumley triangle has been widely used for the analysis of turbulence states related to
realizability [32]. Tt is formulated based on the second and third invariants (I7 and I17)
of the anisotropy tensor. Recently, Banerjee et al. [33] proposed an improved formulation
in which the eigenvalues of the anisotropy tensor are mapped to Barycentric coordinates as
opposed to the variants I1 and 1] as in the Lumley triangle. An important advantage of
their formulation is that the mapping to Barycentric coordinates is linear, which is in con-
trast to the nonlinear mapping to invariants /1 and I11. Therefore, Barycentric coordinate
provides a non-distorted visual representation of anisotropy and is easier to impose realiz-
ability constraints. The formulation of discrepancy starts with the eigen-decomposition of
the Reynolds stress anisotropy tensor A:

1 1
T =2k <§1 + A) =2k (51 + VAVT) (6.2)

where £ is the turbulent kinetic energy, which indicates the magnitude of 7; I is the second
order identity tensor; V = [vy, vy, v3] and A = diag[A\;, A2, A3] with A; + Ay + A3 = 0 are
the orthonormal eigenvectors and eigenvalues of A, respectively, indicating its shape and
orientation.

In the Barycentric triangle, the eigenvalues \;, Ay, and A3 are mapped to the Barycentric
coordinates (C1, Cy, C3) as follows:

Cl = )\1 — )\2 (63&)
Cy = 2(Ns — \g) (6.3b)
Cg = 3/\3 +1 (63C)

with C; + Cy + C3 = 1. As shown in Fig. the Barycentric coordinates of a point
indicate the portion of areas of three sub-triangles formed by the point and with edges of
Barycentric triangle. For example, a point located on the top vertex corresponds to C5 = 1
while a point located on the bottom edge has C3 = 0. Similar to the Lumley triangle, all
realizable turbulences are enclosed in the Barycentric triangle (or on its edges) and have
positive Barycentric coordinates C, Cs, and C3. The Barycentric triangle has been used by
Emory et al. [34] as a mechanism to impose realizability of Reynolds stresses in estimating
uncertainties in RANS simulations.

Placing the triangle in a Cartesian coordinate system & = (£, n), the location of any point
within the triangle is a convex combination of those of the three vertices, i.e.,

5 - élccl + 52,;02 + 53CC3 (6-4)
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where £, &,., and &, denote coordinates of the three vertices of the triangle. An advantage
of representing the anisotropy of Reynolds stress in the Barycentric coordinates is that it has
a clear physical interpretation, i.e., the dimensionality of the turbulence state [35]. Typically,
the standard-RANS-predicted Reynolds stress at a near wall location is located close to the
isotropic, three-component state (vertex 3C-I) in the Barycentric triangle, while the truth
is near the two-component limiting states (bottom edge). Moreover, the spatial variations
from the near-wall region to the shear flow region are indicated as arrows in Fig. [6.1] Tt is
clear that the trend of spatial variation predicted by a standard RANS model is opposite to
that of the truth.

The three mutually orthogonal, unit-length eigenvectors vy, vo, and v3 indicate the orienta-
tion of the anisotropy tensor. They can be considered a rigid body and thus its orientation
has three degrees of freedom, although they have nine elements in total. We use the Euler
angle with the z—2'-z" convention to parameterize the orientation following the convention
in rigid body dynamics [36]. That is, if a local coordinate system z—y—z spanned by the
three eigenvectors of V was initially aligned with the global coordinate system (X-Y-Z2),
the current configuration could be obtained by the following three consecutive intrinsic rota-
tions about the axes of the local coordinate system: (1) a rotation about the z axis by angle
©1, (2) a rotation about the x axis by ¢s, and (3) another rotation about its z axis by 3.
The local coordinate axes usually change orientations after each rotation.

3C-l (3-component isotropic)

Standard RANS

Tj—»g Truth

\Outer layer

1
1
1
1
1

AA /
A Avall
2C-1 2-component 1c
(2-component P (1-component)

axisymmetric)

Figure 6.1: The Barycentric triangle that encloses all physically realizable states of Reynolds
stress [33, B5]. The position within the Barycentric triangle represents the anisotropy state
of the Reynolds stress. Typical mapped locations of near wall turbulence states are indicated
with prediction from standard RANS models near the isotropic state (vertex 3C-I) and the
turth near the bottom edge (2C-I). The typical RANS-predicted trends of spatial variation
from the wall to shear flow and the corresponding truth are indicated with arrows.

In summary, the Reynolds stress tensor is projected to six physically interpretable, Galilean
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invariant quantities representing the magnitude (k), shape (£, 1), and orientation (1, ¥a,
©3). They are collectively denoted as 7,. The truths of these quantities can be written as
baseline RANS predictions corrected by the corresponding discrepancy terms, i.e.,

logy k = log, k™" + Alogy k (6.5a)
= ™AL (6.5b)

n= 0" +An (6.5¢)
©i= @ "+ Ay, for 1=1,2,3. (6.5d)

The discrepancies (Alog, k, AL, An, Apy, Aps, Aps, denoted as Ar, with a=1,2,--- ,6)
in the six projections of the Reynolds stress tensor are responses of the regression functions.
We utilize data consisting of pairs of (q, A7, ) from training flow(s) to construct the functions
fo 1 q— A7,. It is assumed that the discrepancies in six quantities A7, are independent,
and thus separate functions are built for each of them. This simplification is along the same
lines as that made in previous works [37].

6.2.5 Random Forests for Building Regression Functions

With the input (mean flow features q) and responses (Reynolds stress discrepancies A7)
identified above, a method is needed to construct regression functions from training data
and to make predictions based on these functions. Supervised machine learning consists
of a wide variety of such methods including K-nearest neighbors [38], linear regression and
its variants (e.g., Lasso) [39], Gaussian processes [25], tree-based methods (decision trees,
random forests, bagging) [20], neural networks [40], and support vector machine [41], among
others. A major consideration in choosing the regression method is the high dimensional-
ity of the feature space, which is typically ten or higher in our application. The curse of
dimensionality makes such methods as K-nearest neighbors, linear regression, and Gaussian
processes not suitable. Secondary considerations, which we believe are also important for
turbulence modeling applications, are the capability to provide predictions with quantified
uncertainties as well as physical insights (e.g., on the importance of each of the features
and their interactions). After evaluating a number of existing machine learning techniques
in light of these criteria, we identified random forests [26] as the optimal approach for our
purposes, which is an ensemble learning technique based on decision trees.

In simple decision tree learning, a tree-like model is built to predict the response variable
by learning simple if-then-else decision rules from the training data. Decision trees have the
advantage of being easy to interpret (e.g., via visualization) and implement. They are also
computationally cheap. However, they tend to overfit the data and lack robustness. That
is, a small change in the training data can result in large changes in the built model and its
predictions. Random forests learning is an ensemble learning technique proposed by Ho [42]
and Briemann [43| 26] that overcomes these shortcomings of simple decision trees. Since
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these techniques are generally not familiar to readers in the fluid dynamics community, here
we use an illustrative example in the context of turbulence modeling to explain the algorithm.

A simple decision tree model is illustrated in Fig. [6.2l For clarity we consider an input
with only two features: pressure gradient dp/ds (normalized and projected to the streamline
tangential) and wall distance based Reynolds number Re; = C’}/ 4d\/E/ v, as defined in
Table It can be also interpreted as wall distance in viscous unit. The response is the
discrepancy An of the vertical coordinate in the Barycentric triangle of the RANS-predicted
Reynolds stress (see Fig. [6.1). During the training process, the feature space is successively
divided into a number of boxes (leafs) based on the training data (shown as points in the
dp/ds—Rey plane in Fig. [6.2a). In the simplest decision tree model used for regression,
the feature space is stratified with the objective of minimizing the total in-leaf variances
of the responses at each step, a strategy that is referred to as greedy algorithm. After
the stratification, a constant prediction model is built on each leaf. When predicting the
response An for a given feature vector q, the constructed tree model in Fig. is traversed
to identify the leaf where q is located, and the mean response on the leaf is taken as the
prediction An(q).

The tree model has a clear physical interpretation in the context of turbulence modeling.
For example, it is well known that a standard isotropic eddy viscosity model has the largest
discrepancy when predicting anisotropy in the viscous sublayer (Rey < 5). This is because
the truth is located on the bottom, corresponding to a combination of one- or two-component
turbulence, while a typical isotropic eddy viscosity model would predict an isotropic state
located on the top vertex (see Fig. |6.1)). In contrast, far away from the wall within the
outer layer (Rey > 50), the RANS-predicted anisotropy is rather satisfactory. Therefore, the
first two branches divide the space to three regions based on the feature Rey: outer layer
(region 1) , viscous sublayer (region 2), and buffer layer (regions 3 and 4). In the buffer
layer the pressure gradient plays a more important role than in the outer and viscous layers.
Larger pressure gradients correspond to larger discrepancies, which can be explained by the
fact that favorable pressure gradients (negative dp/ds values) tend to thicken the viscous
sublayer [44], which leads to larger discrepancies in 1. Therefore, a further division splits
the buffer layer states to two regions in the feature space, i.e., those with strong (region 3)
and mild (region 4) pressure gradients.

A simple regression tree model described above tends to overfit for high dimensional input
space, i.e., yielding models that explain the training data very well but predict poorly for
unseen data. In general the decision trees do not have the same level of predictive accuracy
as other modern regression methods. However, by aggregating a large number of trees (ide-
ally with minimum correlation), the predictive performance can be significantly improved
and, the overfitting can be largely avoided. In random forests an ensemble of trees is built
with bootstrap samples (i.e., sampling with replacement) drawn from the training data [21].
Moreover, when building each tree, it utilizes only a subset of M < N, randomly chosen fea-
tures among the N, features, which reduces the correlation among the trees in the ensemble
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Figure 6.2: Schematic of a simple regression tree in a two-dimensional feature space (pressure
gradient along streamline dp/ds and wall-distance based Reynolds number Re,), showing (a)
the stratification of feature space and (b) the corresponding regression tree built from the
training data. The response is the discrepancy An in the Barycentric triangle of the RANS-
predicted Reynolds stress. When predicting the discrepancy for a given feature vector q, the
tree model in (b) is traversed to identify the leaf, and the mean of the training data is taken
as the prediction An(q).

and thus decreases the bias of the ensemble prediction.

Random forest regression is a modern machine learning method with predictive performance
comparable to other state-of-the-art techniques [39]. In decision tree models the maximum
depth of trees must be limited (e.g., by pruning the branches far from the root) to ensure
a sufficient number of training point (e.g., 5) on each node. In contrast, in random forests,
one can build each tree to its maximum depth by successive splitting the nodes until only
one training data point remains on each leaf. While each individual tree built in this manner
may suffer from overfitting and has large prediction variances, the use of ensemble largely
avoids both problems. Moreover, random forest regression is simple to use with only two
free parameters, i.e., the number NV, ; of trees in the ensemble and the number M of selected
features. In this work we used an ensemble of N,y = 100 trees and the a subset of features
(i.e., M = 6) to build each tree. As a standard practice in statistical modeling, we performed
cross-validations to optimize these parameters and performed sensitivity analysis to ensure
that the predictions are not sensitive to the parameter choices.
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6.3 Numerical Results

Almost all industrial flows involve some characteristics (e.g., strong pressure gradient, stream-
line curvature, and separation) that break the equilibrium assumption of RANS model.
Therefore, we have these challenges in mind when developing the data-driven approach. In
this study, we focus on the cases where training and test flows have similar characteristics.
Specifically, we evaluate the proposed method on two classes of flows: (1) fully developed
turbulent flows in a square duct at various Reynolds numbers and (2) flows with massive
separations. The flow in a square duct at Reynolds number Re = 3500 and the flow in a
channel with periodic hills at Reynolds number Re = 10595 are chosen as the prediction
(test) flows for the respective flow classes. The square duct flow has an in-plane secondary
flow pattern induced by the normal stress imbalance, while the periodic-hill low features
a recirculation bubble, non-parallel shear layer and mean flow curvature. All these charac-
teristics are known to pose challenges for RANS based turbulence models, and thus large
model-form discrepancies exist in the RANS-modeled Reynolds stresses. In the two test
flows, the relative importance of Reynolds stress projections to the mean flow prediction are
different. The Reynolds stress anisotropy plays an important role in obtaining the accurate
secondary mean motion in the duct flow [45]. In contrast, the anisotropy is less important to
predict the mean flow in the periodic-hill case, where the turbulent shear stress component
is more essential to obtain an accurate mean velocity field [46]. Therefore, we use these two
types of flows to highlight the improvements in the different Reynolds stress components
that are important for the predictions of Qols in the respective flow classes. In both cases,
all RANS simulations are performed in an open-source CFD platform, OpenFOAM, using
a built-in incompressible flow solver simpleFoam [47]. Mesh convergence studies have been
performed.

6.3.1 Turbulent Flows In a Square Duct
Case Setup

The fully developed turbulent flow in a square duct is a challenging case for RANS-based
turbulence models, since the secondary mean motion cannot be captured by linear eddy
viscosity models (e.g., k—, k—w), and even the Reynolds stress transport models (RSTM)
cannot predict it well [46]. In this test, we aim to improve the RANS-modeled Reynolds
stresses of the duct flow at Reynold number Re = 3500 by using the proposed PIML ap-
proach. The training data are obtained from DNS simulations [48] of the duct flows in the
same geometry but at lower Reynolds numbers Re = 2200, 2600 and 2900. The DNS data of
the prediction flow (Re = 3500) are reserved for comparison and are not used for training.
The geometry of this flow case is shown in Fig. [6.3] The Reynolds number is based on the
edge length D of the square duct and the bulk velocity U,. All lengths presented below are
normalized by D/2.
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Figure 6.3: Domain shape for the flow in a square duct. The x coordinate represents the
streamwise direction. Secondary flows induced by Reynolds stress imbalance exist in the y—=z
plane. Panel (b) shows that the computational domain covers a quarter of the cross-section
of the physical domain. This is due to the symmetry of the mean flow in both y and =z
directions as shown in panel (c).

The baseline RANS simulations are performed for all training and test flows. The purpose is
twofold: to obtain the mean flow feature fields q(x) as inputs and to obtain the discrepancies
of Reynolds stress by comparing with the DNS data. To enable the comparison, the high-
fidelity data are interpolated onto the mesh of RANS simulation. The Launder-Gibson
RSTM [49] is adopted to perform the baseline simulations, since all the linear eddy viscosity
models are not able to capture the mean flow features of the secondary motions. The y* of
the first cell center is kept less than 1 and thus no wall model is applied. As indicated in
Fig.[6.3, only one quadrant of the physical domain is simulated owing to the symmetry of the
mean flow with respect to the centerlines along y- and z-axes. No-slip boundary condition is
applied on the walls, and symmetry boundary condition is applied on the symmetry planes.

Prediction Results

We first investigate the prediction performance on the Reynolds stress anisotropy tensor,
since its accuracy is important to capture the secondary flow. Figure [6.4] shows PIML-
corrected anisotropy in Barycentric triangle compared with baseline and DNS results. The
comparisons are performed on two representative lines at y/H = 0.25 and 0.75 on the in-
plane cross section (Fig. [6.3b). The two lines are indicated in the insets on the upper left
corner of each panel. The arrows denote the order of sample points plotted in the triangle,
which is from the bottom wall to the outer layer. The general trends of spatial variations of
the DNS Reynolds stress anisotropies are similar on both lines. That is, from the wall to the
outer layer, the Reynolds stress starts from the two-component limiting states (bottom edge
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of the triangle) toward three-component anisotropic states (middle area of the triangle). This
trend is captured by the baseline RSTM to some extent, especially in the regions away from
the wall. However, significant discrepancies still can be observed in the near-wall region.
Very close to the wall, the DNS Reynolds stress is nearly the two-component limiting state.
This is because the velocity fluctuations in the wall-normal direction are suppressed by the
blocking of the bottom wall. Moreover, before approaching three-component anisotropic
states, the DNS-predicted anisotropy first moves toward the one-component state (1C) as
away from the wall. In contrast, the RANS-predicted anisotropy near the wall is closer to

3¢ [,a, DNS

ooo Predicted
Benchmark

oO0o

2C| Cy 1C
(a) y/H =0.25 (b) y/H =0.75

Figure 6.4: Barycentric map of the predicted Reynolds stress anisotropy for the test flow
(Re = 3500), learned from the training flows (Re = 2200, 2600, and 2900) The prediction
results on two streamwise locations at y/H = 0.25 and 0.75 are compared with the corre-
sponding baseline (RSTM) and DNS results in panels (a) and (b), respectively.

the two-component isotropic state (2C-I), and it approaches toward the three-component
anisotropic state directly. Therefore, in the near-wall region there are large discrepancies
between the RANS predicted Reynolds stress anisotropy and the DNS result, particularly
in the horizontal coordinate £. By correcting the baseline RSTM results with the trained
discrepancy function, the predicted anisotropy of Reynolds stress is significantly improved.
For both lines, the predicted anisotropy (circles) agrees well with the DNS results (squares).
Especially on the line y/H = 0.75, the PIML-predicted anisotropy is almost identical to the
DNS data.

Significant improvement of the PIML-predicted anisotropy can be seen from the Barycen-
tric maps shown in Fig. [6.4] Similar improvements have also been demonstrated in the
other physical projections (TKE and orientations) of the PIML-corrected Reynolds stresses.
Therefore, it is expected that the Reynolds stress tensor components should be also improved
over the RSTM baseline. In the six tensor components, two normal stress components 7,
and 7., are among the most important ones to the mean velocity field since the normal stress
imbalance (7, — 7,.) is the driving force of the secondary flow [45]. Figures and
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Figure 6.5: Profiles of normal components (a) 7, and (b) 7., of corrected Reynolds stress
with the discrepancy model. The profiles are shown at four streamwise locations y/H =
0.25,0.5,0.75, and 1. Corresponding DNS and baseline (RSTM) results are also plotted for

comparison.

show the profiles of normal components 7, and 7,. of the Reynolds stress reconstructed
from the PIML-corrected physical projections. Corresponding baseline (RSTM) and DNS
results are also plotted for comparison. Both 7, and 7., are overestimated by the RSTM
over the entire domain. The discrepancy of the RSTM-predicted 7, is large near the wall
and decreases when moving away from the wall. In contrast, 7., is significantly overesti-
mated far from the wall but the discrepancy decreases toward the wall. As a results, the
RSTM-predicted normal stress imbalance is pronouncedly inaccurate, which leads to unre-
liable secondary mean flow motion. As expected, the PIML predictions nearly overlap with
the DNS results for both 7, and 7., and show considerable improvements over the RSTM
baseline. In fact, the improvements are observed in all the tensor components, which are
omitted here for brevity. The results shown above demonstrate excellent performance of the
proposed PIML framework by using RSTM as the baseline.

6.3.2 Turbulent Flows With Massive Separations

Case Setup

The turbulent flow in a channel with periodic hills is another challenging case for RANS
models due to the massive flow separations in leeward of the hill. Here, we examine two
training scenarios with increasing difficulty levels. In the first scenario the training flows
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have the same geometry as the test (prediction) flow but are different in Reynolds numbers.
In the second scenario the training flows differ from the prediction case not only in Reynolds
numbers but also in geometry.

Table 6.2: Database of training flows to predict flow past periodic hills at Re = 10595. The
Reynolds numbers are defined based on the bulk velocity U, at the narrowest cross-section
in the flow and the crest/step height H.

Iraining .ﬂOW Training flow & symbol High fidelity data
scenario
C 4 1 _ DNS by Breuer et
Scenario 1 Periodic hills, Re = 1400 (PH1400) al. [50]
Periodic hills, Re = 5600 (PH5600) DRS Zly ]éro‘?“er ot
Seenario 11 Wavy channel, Re = 360 (WC360) DNS by Maa$ et al. [51]
cenato Curved backward facing step, Re = 13200 LES by Bentaleb et
(CS13200) al. [52]

Four training flows with DNS/LES data to build random forest regressors are summarized in
Table[6.2] In the first scenario two flows PH1400 and PH5600 are used for training, both of
which are flows over periodic hills (same in geometry) at Re = 1400 and Re = 5600 (different
in Reynolds numbers), respectively. For the second scenario, the training data are obtained
from two different flows: one in a channel with a wavy bottom wall at Re = 360 and one
over a curved backward facing step at Re = 13200, indicated as flows WC360 and CS13200,
respectively.

A schematic of the flow geometry and RANS-predicted velocity contour for each case are
presented in Fig. [6.6] The dimensions of each case are normalized with the respective hill
heights H. Although the geometries of the training flows are different, all three flows share a
similar characteristic as the test flow, i.e., separation on the leeward side of the hill or step.
However, the separation bubbles are different in sizes and shapes. The flow over periodic
hills has a stronger separation compared to the other two due to the steeper slope of the hill.
Relatively mild separation can be observed in the flow over the wavy channel. For all cases,
both high-fidelity data and RANS-predicted results are available. The high-fidelity data are
obtained from DNS or resolved LES simulations, which have been reported in literature (see
references in Table. . The DNS data for flows PH1400 and PH5600 are only available on
vertical lines at eight streamwise locations ©/H = 1,2,--- ,8. On the other hand, full-field
high-fidelity results are available for flows WC360 and CS13200, but only the lower part of
the channel is adequately resolved. Since the separated flow is of interest in this study, only
the data in the separation region (i.e., region below y/H = 1.2) are included.

In this test, the performance of the proposed PIML framework is evaluated on standard
RANS models. Specifically, the baseline RANS predictions are obtained by using the two-
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General flow direction

5

4x/H

(a) Periodic hills (Re = 1400 and 5600, results from latter are shown)

(¢) Curved backward facing step (Re = 13200)

Figure 6.6: Computational domain and velocity field of each case in the training flow
database. The velocity contours and streamlines are obtained from the baseline RANS
simulations. The dimensions of each case are normalized with the respective hill heights H.
Note that periodic boundary conditions are applied on the flows in panels (a) and (b) in
steamwise direction, but not for the flow in panel (c).
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equation Launder-Sharma k—e model [3]. The reason for choosing standard turbulence mod-
els here is because of two considerations. First, the standard RANS models are the dominant
tools for industrial CFD applications, while other sophisticated RANS models have been
rarely used. Therefore, it is more significant to improve the widely used standard RANS
models. Second, we understand that improvement of the Reynolds stresses starting from a
standard RANS model is challenging. Nonetheless, this challenging scenario also can better
explore the capability of machine learning approach.

Prediction Results

The functional forms of discrepancies in the six physical projections of Reynolds stress are
learned from the training flows as mentioned in Section [6.3.2] and are used to correct the
RANS-predicted Reynolds stress field of the test flow (PH10595). However, since the base-
line RANS model used in this case is the standard eddy viscosity model, the Reynolds
stress anisotropy cannot be accurately predicted. Therefore, the baseline RANS-predicted
anisotropy is unphysical and is significantly different from the DNS result (see Fig. .
Nonetheless, after the correction by using the discrepancy function learned from the training
flows, the anisotropy of the test flow shows an excellent agreement with the DNS results [53].
The improvements are observed in the both training scenarios I and II, demonstrating that
the discrepancy function even in the standard RANS-predicted anisotropy does exist and
can be learned from the closely related flows based on the mean flow features q. As men-
tioned above, in the periodic-hill flow, the correctness of Reynolds stress anisotropy is of little
consequence to the prediction of the mean velocity, and the correct shear stress component
and magnitude of the Reynolds stress are most important to obtain an accurate mean flow
field. Therefore, the anisotropy prediction results are omitted here, and only the turbulence
kinetic energy (TKE) and shear stress component of the PIML-corrected Reynolds stress are
presented and discussed in detail.

The comparison of the TKE profiles of the baseline, DNS, and PIML-predicted results in
the training scenario I are shown in Fig. [6.7 The TKE predicted by the baseline RANS
model has notable discrepancies compared to the DNS result, particularly in the region with
non-parallel free shear flow (y/H = 0.8 to 1.5). The poor performance of RANS model in
such region is typical in these flows [I3]. The RANS model underestimates the turbulence
intensity along the free shear at y/H = 1, especially near the leeward side of the hill (x/H =1
to 2). In the upper channel (y/H = 1.5 to 2.5), the DNS TKE is slightly smaller than the
baseline RANS prediction. The profiles of TKE corrected by the PIML-predicted discrepancy
Alog, k are significantly improved. The peaks along the streamwise free shear in the DNS
profiles are well captured in the corrected results with the random forest prediction. It can
be seen that the predicted TKE profiles (solid lines) nearly overlap with the DNS results
(dashed lines). This clearly indicates that the TKE discrepancies can be learned from the
data of the training flows.
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Figure 6.7: Magnitude (turbulence kinetic energy) of the corrected Reynolds stress for
the test flow (PH10595) learned from cases with same geometry but at different Reynold
numbers (PH1400 and PH5600). The profiles are shown at eight streamwise locations
x/H = 1,2,--- 8. Corresponding baseline and DNS results are also plotted for compar-
ison. The hill profile is vertically exaggerated by a factor of 1.3.
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Figure 6.8: Predicted turbulence shear stress for the test flow (PH10595) learned from the
flows with the same geometry but at different Reynold numbers (PH1400 and PH5600). The
profiles are shown at eight streamwise locations z/H = 1,2,---,8. Corresponding baseline
and DNS results are also plotted for comparison. The hill profile is vertically exaggerated
by a factor of 1.3.
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It is also of interest to investigate the tensor components 7;; of Reynolds stress, which are
more relevant for predicting velocities and other Qols of the flow fields. For the plane shear
flows, the turbulent shear stress 7., is important to predict the velocity field. Figure
compares the turbulence shear component 7, of predicted Reynolds stress with the DNS.
As expected, significant improvements are observed compared to the baseline results, which
underestimate the peak of 7., on the leeward hill side but overestimate it on the windward
hill side. As shown in Fig. [6.§] the profiles of predicted 7,, agree well with the DNS results.

The results above demonstrate that the discrepancy function of Reynolds stress in its physical
projections (i.e., magnitude, shape, and orientation) trained from the flows at Re = 2800 and
5600 can be used to predict the Reynolds stress field of the flow at Re = 10595. Significant
improvements are observed in the predicted Reynolds stress compared to the baseline RANS
results. Although in this scenario the training and test flows are quite similar (with the
same geometry), and the success of extrapolation has been demonstrated in physical space
by Wu et al. [19], it should not be taken for granted that the accurate prediction is also
guaranteed in feature space. Since the regressions are performed in the ten-dimensional
feature space and there is no direct reference to the physical coordinate, the success is not
trivially expected a priori.

We investigate a more challenging scenario where the training flows have different geometries
from the prediction case. This scenario is also more realistic in the context of using RANS
simulation to support engineering design and analysis. Specifically, the data are more likely
to be available for a few flows with specific Reynolds numbers and geometries, but predic-
tions are needed for the similar flows yet at different Reynolds numbers and with modified
geometries.

| = = Baseline - Predicted == DNS |
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Figure 6.9: Magnitude (turbulence kinetic energy) of the corrected Reynolds stress for the
test flow (PH10595) learned from cases with different geometries and at different Reynold
numbers (WC360 and CS13200). The profiles are shown at eight streamwise locations x/H =
1,2,---,8. Corresponding baseline and DNS results are also plotted for comparison. The
hill profile is vertically exaggerated by a factor of 2.4.
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The comparison of the TKE profiles on eight lines is shown in Fig. [6.9 Note that only the
domain below y/H = 1.2 is investigated due to the lack of reliable high-fidelity training data
in the upper channel region. This inadequacy of data quality can be exacerbated when the
Reynolds stress is decomposed to its physical projections. Moreover, the flow separation is
the phenomenon of concern in this study, and thus we only focus on the recirculation region.
In Fig. the random forest predicted TKE (solid lines) is significantly improved over the
baseline results (dotted lines) and better agrees with the DNS profiles (dash-dotted lines).
The agreement is particularly good in the region from the center of recirculation bubble
(x/H = 2) to the beginning of flow contraction (z/H = 6). Nonetheless, the PIML-predicted
TKE does not show any improvement and even deteriorates compared to the baseline results
near the windward side of the hill (z/H > 7), where the flow starts to be contracted. As
shown in Fig. , the predicted TKE is markedly overestimated at =/H = 8. This is because
the flow features in the contraction region (z/H > 7) are not supported in the training set,
since the contracted flow does not exist in the training flow CS13200 (Fig.[6.6¢) and is much
weaker in the training flow WC360 (Fig. ) due to the mild slope of wavy bottom in this
geometry.
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Figure 6.10: Predicted turbulence shear stress for the test flow (PH10595) learned from the
flows with different geometries and at different Reynold numbers (WC360 and CS13200). The
profiles are shown at eight streamwise locations z/H = 1,2,--- ,8. Corresponding baseline
and DNS results are also plotted for comparison. The hill profile is vertically exaggerated
by a factor of 2.4.

Finally, we compare the predicted turbulent shear stress 7, with the DNS profiles in
Fig. [6.10] Similar to the results of TKE, the PIML-predicted turbulent shear stress 7,
shows notable improvements in the recirculation region. However, deterioration occurs in
the flow contraction region. At x/H = 7 and 8, the magnitudes of turbulent shear stresses
are overestimated with the correction based on the predicted discrepancies. This is consis-
tent with the results observed in physical projections of Reynolds stress. Such a small region
with abnormal Reynolds stress corrections (artificial peaks or bumps) can introduce large
errors to the velocity predictions.
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In general, the physical projections (i.e., magnitude, shape, and orientation) of Reynolds
stress corrected by random forest predicted discrepancies are still significantly improved
with the training flows in different geometries (WC360 and CS13200). The Reynolds stress
is markedly improved in the separated flow region, but not in the contracted flow region.
This is because the features in training flows cannot well support the predicted flow, and thus
more extrapolations are expected. Although the improvement is less significant compared to
that in the scenario I, the random forest predictions in this more realistic scenario are still
satisfactory, demonstrating the merits of the proposed PIML framework.

6.4 Discussion

6.4.1 Feature Importance and Insight for Turbulence Modeling

In addition to the predictive capability of the regression model, it is also important to in-
terpret the functional relation between the mean flow features and the discrepancies of the
RANS modeled Reynolds stresses. For example, it is useful to find the most important fea-
tures to the Reynolds stress discrepancy in each of its physical projection (i.e., magnitude
k, shape &, 7, and orientation ¢;), and how each of these features impacts the regression
response. Identification of such correlation or causal relationship enables modelers to im-
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Figure 6.11: Feature importance of random forests regressors (a) for An and (b) for Alog, k
for scenario I (i.e., training flows in the same geometry, see Table. . The features ¢; (1 = 1
to 10) are denoted by their respective abbreviations. Turb Intensity denotes the turbulence
intensity (feature ¢2), and Re_d is the wall distance based Reynolds number (feature ¢3). For
the full name list of features, see Table .

prove the RANS turbulence models. The random forest regressor used in the proposed
PIML framework can also shed light on this issue by calculating the feature importance,
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which is a measure to evaluate the relative importance of a feature variable for predicting
response variables [26]. The bar plots of the importances of feature vector q with respect
to the discrepancies An and Alog, k are shown in Figs. and [6.11p, respectively. For
discrepancy An in the anisotropy, feature g3 (i.e., wall-distance based Reynolds number Re,)
is the most important one. As discussed in Section[6.2.3, Re, is the wall distance normalized
by the approximate viscous unit. Therefore, the result of feature importance is consistent
with the PIML prediction, which have shown that the discrepancy An is notably dependent
on the distance away from the wall [53]. Figure shows that the most important fea-
ture for predicting discrepancy A log, k of turbulence kinetic energy is feature ¢o, turbulence
intensity.

It is demonstrated that random forest used in the proposed framework can interpret the
relationship between the features and the response to a certain extent, although the feature
importance has its limitation due to bias introduced under certain conditions [54] 55]. In the
machine learning community, improving interpretability of random forest is an active research
topic, e.g., several improvements of the importance measure have been proposed [55, 56, 57].
Moreover, in addition to calculating the feature importance, it is also helpful to examine the
interactions among features, which have important implications for the interpretation of the
regression models. As the base learner in random forest is a decision tree, which can capture
the feature interactions, it is possible to further investigate the interacting relationship among
mean flow variables. Breiman et al. have studied feature interaction in random forest
method [20], but more research is still ongoing. A better understanding of the physics
behind the regression model for Reynolds stress discrepancies has a profound implication
to RANS turbulence modeling. Therefore, to explore the correlation or causal relationship
between the mean flow features and the discrepancies of RANS modeled Reynolds stress is
an important and promising extension of the proposed framework.

6.4.2 Success and Limitation of The Current Framework

The objective of the proposed framework is to improve the baseline RANS-predicted Reynolds
stresses of a flow where high-fidelity (e.g., DNS, LES, experimental) data are not available.
The main novelty lies in using machine learning techniques to find the functional forms of
Reynolds stress discrepancies with respect to mean flow features by learning from the existing
offline database of the closely related flows. Numerical simulation results have demonstrated
the feasibility and merits of the framework. Moreover, the excellent performance of the
PIML predicted Reynolds stress in not only the anisotropy but also in the TKE and turbu-
lent shear stress shows the fact that Reynolds stress discrepancies can be extrapolated even
to complex flows sharing similar characteristics. This finding is noteworthy by itself.

The improvement of the RANS-predicted Reynolds stress is considered a viable and promis-
ing path toward obtaining better predictions of velocities and other quantities of interest.
However, due to a few limitations of the current framework, the improvement of the prop-
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agated velocities from the corrected Reynolds stress field can not be guaranteed. A small
region with abnormal Reynolds stress corrections (e.g., non-smoothness or artificial peaks)
can introduce large errors to the velocity predictions. For example, the small wave-number
variations in Reynolds stresses are visible in Fig. [6.10] These fluctuations, despite being
small in amplitude, can lead to abnormal behaviors in the divergence term and thus in the
predicted velocities. These abnormal predictions of Reynolds stress corrections can be caused
by several factors. First, the features in certain regions of the prediction flow may not be well
supported in the training flows, e.g. the contraction region of periodic-hill low mentioned
in Sec. [6.3.2] Second, the random forest regression used here only provides pointwise esti-
mations but cannot consider the spatial information of the Reynolds stress field. Therefore,
the smoothness of the prediction cannot be guaranteed. Finally, although the input feature
space is constructed based on physical reasoning, it is possible that the input features are
not rich enough, and thus the randomness in the ensemble of the trained decision trees is
significant.

6.5 Conclusion

In this work, we proposed a physics-informed machine learning approach to reconstruct
Reynolds stresses modeling discrepancies by utilizing DNS databases of training flows shar-
ing similar characteristics as the flow to be predicted. For this purpose, we formulated
discrepancy of Reynolds stresses (or more precisely its magnitude and the shape and orien-
tation of the anisotropy) as target functions of mean flow features and used modern machine
learning techniques based on random forest regression to learn the functions. The obtained
functions are then used to predict Reynolds stress discrepancies in new flows. To evaluate
the performance of the proposed approach, the method is tested by two classes of flows:
(1) fully developed turbulent flows in a square duct at various Reynolds numbers and (2)
flows with massive separations. In the separated flows, two training flow scenarios of in-
creasing difficulties are considered: In the less challenging scenario, data from two flows in
the same periodic hill geometry at lower Reynolds numbers (Re = 2800 and 5600) are used
for training. In a more challenging scenario, the training data come from separated flows
in different geometries (wavy channel and curved backward facing step). In all test cases
the corrected Reynolds stresses are significantly improved compared to the baseline RANS
predictions, demonstrating the merits of the proposed approach. In the scenario, where the
training flows and the prediction flow have different geometries, the improvement is not as
drastic as in the the scenario with the same geometry. This is expected since the prediction
involves more extrapolations in the feature space for this more challenging scenario. In other
words, compared to the first scenario where the training and prediction flows have identical
geometry, the prediction flow is less “similar” to the training flows in this scenario. The
extent to which the training and prediction flows are “similar” to each other can be assessed
a priori based on their respective RANS predicted mean flow field, and methods for such
assessment are presented in companion publications [24 [5§].
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As the inaccuracy in modeled Reynolds stresses is the dominant source of model-form uncer-
tainty in RANS simulations, the proposed method for improving RANS-predicted Reynolds
stresses is an important step towards the goal of enabling predictive capabilities of RANS
models. Moreover, the random forests regression technique adopted in this work can provide
physical insights regarding the relative importance of mean flow features that contributed to
the discrepancies in the RANS predicted Reynolds stresses. This information can be used to
assist future model development in that developers can devise models that are aware of and
correctly respond to these flow features. However, a number of challenges need to be tackled
before the improved Reynolds stresses can be used to predict more accurate quantities of
interests that are needed in engineering design (e.g., draft and lift coefficients). This topic
will be investigated in future research.

Acknowledgment

We thank Dr. Julia Ling of Sandia National Laboratories and Dr. Eric G. Paterson of Vir-
ginia Tech for helpful discussions during this work. We also thank the anonymous reviewers
for their comments, which helped improving the quality and clarity of the manuscript.

Bibliography

[1] M. M. Waldrop, The chips are down for moores law, Nature News 530 (7589) (2016)
144.

[2] S. Kumar, Fundamental limits to Moore’s law, arXiv preprint arXiv:1511.05956 (2015).

[3] B. Launder, B. Sharma, Application of the energy-dissipation model of turbulence to
the calculation of flow near a spinning disc, Letters in heat and mass transfer 1 (2)
(1974) 131-137.

[4] D. C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence
models, ATAA journal 26 (11) (1988) 1299-1310.

[5] D. C. Wilcox, et al., Turbulence modeling for CFD, 3rd edition, Vol. 2, DCW industries
La Canada, CA, 2006.

[6] P. R. Spalart, S. R. Allmaras, A one equation turbulence model for aerodynamic flows.,
ATAA journal 94 (1992) 1-22.



J.-X. Wang Chapter 6. 181

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applica-
tions, ATAA journal 32 (8) (1994) 1598-1605.

B. Launder, G. J. Reece, W. Rodi, Progress in the development of a Reynolds-stress
turbulence closure, Journal of fluid mechanics 68 (03) (1975) 537-566.

S. Wallin, A. V. Johansson, An explicit algebraic Reynolds stress model for incompress-
ible and compressible turbulent flows, Journal of Fluid Mechanics 403 (2000) 89-132.

E. Dow, Q. Wang, Quantification of structural uncertainties in the k—w turbulence
model, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference, AIAA, Denver, Colorado, 2011, ATAA Paper, 2011-1762.

E. J. Parish, K. Duraisamy, A paradigm for data-driven predictive modeling using field
inversion and machine learning, Journal of Computational Physics 305 (2016) 758-774.

J. Ling, J. Templeton, Evaluation of machine learning algorithms for prediction of
regions of high Reynolds averaged Navier Stokes uncertainty, Physics of Fluids (1994-
present) 27 (8) (2015) 085103.

H. Xiao, J.-L. Wu, J.-X. Wang, R. Sun, C. Roy, Quantifying and reducing model-form
uncertainties in Reynolds-averaged Navier—Stokes simulations: A data-driven, physics-
informed bayesian approach, Journal of Computational Physics 324 (2016) 115-136.

J.-X. Wang, H. Xiao, Data-driven CFD modeling of turbulent flows through complex
structures, International Journal of Heat and Fluid Flow 62 (B) (2016) 138-149.

G. Iungo, F. Viola, U. Ciri, M. Rotea, S. Leonardi, Data-driven RANS for simulations of
large wind farms, in: Journal of Physics: Conference Series, Vol. 625, IOP Publishing,
2015, p. 012025.

A. P. Singh, K. Duraisamy, Using field inversion to quantify functional errors in turbu-
lence closures, Physics of Fluids 28 (2016) 045110.

J.-L. Wu, J.-X. Wang, H. Xiao, Quantifying model form uncertainty in RANS simulation
of wing—body junction flow, submitted, Available at: arXiv:1605.05962 (2016).

K. Duraisamy, Z. J. Zhang, A. P. Singh, New approaches in turbulence and transition
modeling using data-driven techniques, in: AIAA SciTech, Kissimmee, Florida, Vol.
1284, 2015, p. 2015.

J.-L. Wu, J.-X. Wang, H. Xiao, A Bayesian calibration-prediction method for reducing
model-form uncertainties with application in RANS simulations, Flow, Turbulence and
Combustion 97 (2016) 761-786.

J. Ling, A. Ruiz, G. Lacaze, J. Oefelein, Uncertainty analysis and data-driven model
advances for a jet-in-crossflow, Journal of Turbomachinery 139 (2) (2017) 021008.



J.-X. Wang Chapter 6. 182

[21]

[22]

[23]
[24]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning, Springer,
Berlin, 2001.

T. Oliver, R. Moser, Uncertainty quantification for RANS turbulence model predictions,
in: APS Division of Fluid Dynamics Meeting Abstracts, Vol. 1, 2009.

S. Pope, Turbulent Flows, Cambridge University Press, 2000.

J.-L. Wu, J.-X. Wang, J. Ling, H. Xiao, Physics-informed machine learning for predictive
turbulence modeling: A priori assessment of prediction confidence, submitted, Arxiv
preprint (2016).

C. E. Rasmussen, Gaussian processes for machine learning, MIT Press, 2006.
L. Breiman, Random forests, Machine learning 45 (1) (2001) 5-32.

P. R. Spalart, Strategies for turbulence modelling and simulations, International Journal
of Heat and Fluid Flow 21 (3) (2000) 252-263.

J. C. Hunt, A. A. Wray, P. Moin, Eddies, streams, and convergence zones in turbulent
flows, Tech. Rep. 19890015184, Center of Turbulence Research, Stanford University
(Dec. 1988).

P. Chakraborty, S. Balachandar, R. J. Adrian, On the relationships between local vortex
identification schemes, Journal of Fluid Mechanics 535 (2005) 189-214.

C. Gorle, M. Emory, G. laccarino, RANS modeling of turbulent mixing for a jet in
supersonic cross flow: model evaluation and uncertainty quantification, in: ICHMT
DIGITAL LIBRARY ONLINE, Begel House Inc., 2012.

J. Ling, R. Jones, J. Templeton, Machine learning strategies for systems with invariance
properties, Journal of Computational Physics 318 (2016) 22-35.

J. L. Lumley, G. R. Newman, The return to isotropy of homogeneous turbulence, Journal
of Fluid Mechanics 82 (01) (1977) 161-178.

S. Banerjee, R. Krahl, F. Durst, C. Zenger, Presentation of anisotropy properties of
turbulence, invariants versus eigenvalue approaches, Journal of Turbulence (8) (2007)
N32.

M. Emory, R. Pecnik, G. laccarino, Modeling structural uncertainties in Reynolds-
averaged computations of shock/boundary layer interactions, AIAA paper 479 (2011)
1-16.

M. Emory, G. laccarino, Componentality-based wall-blocking for rans models, in: Pro-
ceedings of the CTR Summer Program, 2014, pp. 193-208.



J.-X. Wang Chapter 6. 183

[36]
[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

H. Goldstein, The Euler angles, Classical Mechanics, (1980) 143-148.

B. Tracey, K. Duraisamy, J. Alonso, Application of supervised learning to quantify
uncertainties in turbulence and combustion modeling, AIAA Paper 259 (2013) 2013.

N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression,
The American Statistician 46 (3) (1992) 175-185.

G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical learning,
Vol. 112, Springer, 2013.

J. A. Anderson, An introduction to neural networks, MIT press, 1995.

N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines and other
kernel-based learning methods, Cambridge university press, 2000.

T. K. Ho, The random subspace method for constructing decision forests, Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on 20 (8) (1998) 832-844.

L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and regression trees,
CRC press, 1984.

W. Jones, B. Launder, The prediction of laminarization with a two-equation model of
turbulence, International journal of heat and mass transfer 15 (2) (1972) 301-314.

P. Bradshaw, Turbulent secondary flows, Annual review of fluid mechanics 19 (1) (1987)
53-74.

F. Billard, Development of a robust elliptic-blending turbulence model for near-wall,
separated and buoyant flows., Ph.D. thesis, School of Mechanical Aerospace and Civil
Engineering, The University of Manchester., Manchester, UK (2011).

H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational
continuum mechanics using object-oriented techniques, Computers in physics 12 (6)
(1998) 620-631.

A. Pinelli, M. Uhlmann, A. Sekimoto, G. Kawahara, Reynolds number dependence of
mean flow structure in square duct turbulence, Journal of fluid mechanics 644 (2010)
107-122.

M. Gibson, B. Launder, Ground effects on pressure fluctuations in the atmospheric
boundary layer, Journal of Fluid Mechanics 86 (03) (1978) 491-511.

M. Breuer, N. Peller, C. Rapp, M. Manhart, Flow over periodic hills-numerical and
experimental study in a wide range of Reynolds numbers, Computers & Fluids 38 (2)
(2009) 433-457.



J.-X. Wang Chapter 6. 184

[51]

[52]

[53]

[54]

C. Maaf}, U. Schumann, Direct numerical simulation of separated turbulent flow over
a wavy boundary, in: Flow Simulation with High-Performance Computers II, Springer,
1996, pp. 227-241.

Y. Bentaleb, S. Lardeau, M. A. Leschziner, Large-eddy simulation of turbulent boundary
layer separation from a rounded step, Journal of Turbulence (13) (2012) N4.

H. Xiao, J.-L. Wu, J.-X. Wang, E. G. Paterson, Physics-informed machine learning for
predictive turbulence modeling: Progress and perspectives, in Proceedings of the 2017
ATAA SciTech, In press (2017).

A. Dobra, J. Gehrke, Bias correction in classification tree construction, in: Proceedings
of the Eighteenth International Conference on Machine Learning, Morgan Kaufmann
Publishers Inc., 2001, pp. 90-97.

C. Strobl, A.-L. Boulesteix, A. Zeileis, T. Hothorn, Bias in random forest variable
importance measures: Illustrations, sources and a solution, BMC bioinformatics 8 (1)

(2007) 1.

M. Sandri, P. Zuccolotto, A bias correction algorithm for the Gini variable importance
measure in classification trees, Journal of Computational and Graphical Statistics 17 (3)
611-628.

A. Altmann, L. Tolosi, O. Sander, T. Lengauer, Permutation importance: a corrected
feature importance measure, Bioinformatics 26 (10) (2010) 1340-1347.

J.-L. Wu, J.-X. Wang, H. Xiao, J. Ling, Visualization of high dimensional turbulence
simulation data using t-sne, in Proceedings of the 2017 AIAA SciTech, In press (2017).



Chapter 7

Conclusion and Future Work

Quantification and reduction of uncertainties originating from the Reynolds stress closures
in RANS simulations are of critical importance to obtaining risk-informed predictions for
mission-critical applications. In this work, two frameworks for estimating model-form un-
certainties in RANS simulations are proposed. One is the physics-based approach, where
uncertainties are injected onto physical projections of Reynolds stress tensor accounting for
empirical prior knowledge and physical constraints (e.g., realizability of Reynolds stress,
smoothness, and symmetry). This approach is a development based on the seminal frame-
work of Taccarino and co-workers [I], 2] but with a full exploration of the uncertainty space
of Reynolds stresses. Instead of only considering the eigenvalue perturbation towards three
limiting states in [I], this work employed Gaussian random fields with compact param-
eterization by Karhunen-Loéve expansions to represent uncertainties in all six physically
meaningful components of the Reynolds stress tensor (i.e., its shape, magnitude, and ori-
entations). On the other hand, a random matrix theoretic (RMT) approach is proposed,
where the Reynolds stress filed is described with a probabilistic model of a random field of
positive semidefinite matrices with a specified mean and correlation structure. The marginal
probability distribution of the Reynolds stress at a particular location satisfies the maxi-
mum entropy principle. Moreover, the realizability constraint of the perturbed Reynolds
stresses is guaranteed mathematically by the construction from the Cholesky factorization
of the normalized Reynolds stress tensor. By imposing maximum entropy on the distri-
bution of the Reynolds stress tensors, the RMT framework aims to provide an approach
for specifying objective priors (e.g., in the context of Bayesian inferences for uncertainty
reduction). To sample such a random matrix field, Gaussian random fields with specified
covariance kernel are first generated and then mapped to the field of positive semidefinite
matrices based on polynomial chaos expansion and reconstruction. For both physics-based
and RMT approaches, numerical simulations have been performed by sampling the perturbed
Reynolds stresses and propagating them through the RANS equations. A canonical flow,
the flow past periodic hills, is tested. The simulation results show that perturbed Reynolds
stress fields not only have the specified statistics, but also are physically reasonable. To
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evaluate the priors and gain insights on proper specification of the priors, a comparison
analysis between the physics-based approach and RMT approach has been conducted. By
comparing the distributions of shape, magnitude, and orientation variables obtained from
the two approaches, we identify several factors which may introduce artificial constraints
in the physic-based approach. Moreover, the comparisons also provide some useful guide-
lines of the prior specification for wall-bounded flows with separations. For eigenvalues of
Reynolds stress anisotropy, the Gaussian distributed perturbations in Barycentric coordinate
are better at achieving maximum entropy. For the turbulence kinetic energy, introducing
log-normally distributed perturbations leads to a distribution of Reynolds stresses that is
close to the one with the maximum entropy. This observation lends support to the choice of
prior in [3]. For orientation, it suggests that the uncertainties should also be injected with a
non-stationary variance field to achieve the maximum entropy distribution. Simultaneously
perturbing shape and orientation of anisotropy in the physics-based approach cannot pre-
serve the mean of tensors as the baseline result. Useful suggestions on specifying relative
magnitudes of variances among the physical variables are provided. The observations and
conclusion are meaningful to quantify the model-form uncertainties in RANS modeling and
can be used as a guidance for the objective prior specification in the physics-based, Bayesian
uncertainty reduction framework.

In this dissertation, the use of available on-line and off-line data has also been leveraged to
reduce the model-form uncertainties and to calibrate model discrepancies in RANS simu-
lations. A physics-based, Bayesian framework is proposed for reducing model uncertainties
and improving the prediction accuracy based on sparse velocity measurement data. An it-
erative ensemble Kalman method is used to incorporate the prior knowledge with available
observation data in a Bayesian framework and to propagate the uncertainties to posterior
distributions of Reynolds stresses and other Qols. Two test cases, the flow over periodic hills
and the flow in a square duct, have been used to demonstrate its feasibility and to evalu-
ate the calibration performance. Simulation results suggest that even with sparse data, the
obtained posterior mean velocities and other Qols significantly better agree with the DNS
results. Moreover, the merits of incorporating various prior knowledge into the proposed
Bayesian framework have been discussed. The role of physical prior knowledge, including
smoothness, realizability, overall understanding of the coherent structures, and the empirical
assessments of the RANS prediction accuracy are examined. The simulation results demon-
strate that incorporating prior information enables a more efficient use of limited amount
of observation data. The proposed Bayesian methodology provides a general framework for
combining information from physical prior knowledge, on-line observation data, and low-
fidelity numerical models that are frequently used in engineering practice. In the scenario
with no on-line observation data, the Bayesian data assimilation framework is not applicable.
In this case, off-line data (data of cases with similar configurations) are usually available.
To leverage the off-line database, a physics-informed, machine learning (PIML) framework
is developed to learn the functional form of model discrepancy in RANS simulations from
the database of related flows. The trained discrepancy function can be used to improve
predictions of the flow where data are not available. For this purpose, the discrepancies of
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Reynolds stresses are formulated as target functions of mean flow features and random forests
are used to learn these functions. To evaluate the prediction performance, two scenarios of
training flows at different Reynolds numbers and with changed geometries are considered.
The Reynolds stresses in both training scenarios are significantly improved over the baseline
RANS predictions. Since the inaccuracy in RANS-modeled Reynolds stresses is the domi-
nant source of model-form uncertainties in RANS simulations, the proposed framework for
improving RANS-simulated Reynolds stresses is an important step towards the predictive
RANS turbulence modeling.

Finally, the computational costs for the proposed frameworks by using on-line data assim-
ilation and off-line machine learning are summarized. By assimilating on-line data, the
iterative ensemble Kalman method is used. Normally, 10?> samples are used and 10 itera-
tions are needed to achieve statistical convergence. Therefore, it involves 10® evaluations
of the forward RANS model. Since each forward simulation is only 10% as expensive as a
baseline RANS simulation, and the total cost is 10? times as that of the baseline. If the
propagation of all samples can be done in parallel with 100 CPU cores, the wall time of
off-line data assimilation is approximately the same as that of the baseline simulation. In
the off-line machine learning approach, the computational costs associated with the machine
learning process (e.g., feature generation, random forest regression, data processing) can be
neglected compared to that of the forward RANS simulations. That is, using off-line data
to improve the Reynolds stresses will not increase the total computational cost.

Model-form uncertainty estimation in RANS simulations and data-driven predictive RANS
modeling are still in the infancy stages. Much future works are still needed. In the following,
a few research directions are listed for future investigation:

1. In the proposed physic-based, data-driven Bayesian framework for estimating and re-
ducing model-form uncertainties in RANS simulations (presented in Chapter 2), there
are two limitations. One limitation is that the full Reynolds stress field inferred, i.e.,
mean of the posterior of the Reynolds stress fields, is not accurate. This is attributed
to many factors, e.g., the high dimension of the Reynolds stress uncertainty space,
the sparseness of the data, and the nonlinear or even non-unique mapping between
Reynolds stresses and velocities as described in RANS equations. Although the in-
ferred Reynolds stress field is not accurate, it can provide the improved quantities
of interests (Qol) such as the velocity field after propagation. However, when the
Reynolds stress field itself is the Qol, more investigations are needed to improve the
inversion scheme. Proper regularization methods might be useful to overcome issues
of the nonlinearity or non-uniqueness by constraining the inversion to be performed
in a low manifold. Another limitation of this framework lies in the iterative ensem-
ble Kalman methods for uncertainty quantification. Although the ensemble Kalman
method is less computational costly compared to the exact Bayesian sampling, its
computed uncertainties are inaccurate and often underestimated. This is because the
ensemble Kalman method is an approximate Bayesian approach, which is developed by
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using the maximum likelihood estimation. The impact of the approximate Bayesian in-
ference method will be investigated by comparing it with the exact Bayesian approach
based on Markov Chain Monte-Carlo (MCMC) sampling in the future study.

. The proposed random matrix theoretic approach for estimating model-form uncertain-
ties in RANS simulations can provide maximum entropy distribution of Reynolds stress
at each point without introducing artificial constraints. Nonetheless, the specifications
of the spatial structure and the magnitude field of perturbations are still the modeling
choices, which highly rely on prior physical knowledge and subjective judgment. These
modeling choices might introduce artificial information. It would be desirable to gen-
eralize the current work to defining maximum entropy distribution for random tensor
fields for future investigation. Moreover, the role of the spatial correlation structure
is particularly crucial since it is the divergence of the Reynolds stress that appears
in the RANS momentum equation. Therefore, how to properly incorporate physical
constraints on spatial correlations is another future research direction. Finally, it is im-
portant to investigate methods for determining the magnitude of perturbations, which
indicates the confidence level on RANS predictions. One possible method is to learn
from available flow databases by using machine learning techniques.

. Although it has been demonstrated that the proposed physics-informed, machine learn-
ing (PIML) framework is a promising way to improve RANS modeling by using the
off-line database, there are a few challenges associated with the propagation, data, and
parameterization of learning targets, which need to be investigated in the future work.
First, to propagate the success in the corrected Reynolds stresses (shown in Chapter 6)
to the Qols is still a challenge. This is because the improvement of the Reynolds stress is
achieved at each point, but the non-smoothness of the Reynolds stress field might exist,
for the fact that random forest regressor provides point-wise estimations. As discussed
above, physical constraints on the spatial structures of Reynolds stress field should be
encoded into the learning process. For example, besides the Reynolds stress tensor, the
divergence of Reynolds stresses can also be augmented as the learning target. Second,
the limited amount of DNS data could be another limitation of the current frame-
work, because the high-fidelity simulations (e.g., DNS) are ultimately limited to flows
in relatively low Reynolds numbers and with simple geometric configurations. How to
conduct the effective learning with a limited amount of data ought to be explored in
the future study. Third, to obtain the confidence of the prediction performance based
on the analysis of training databases is very important. More effective qualitative and
quantitative metrics and approaches should be developed to determine how accurate
the prediction will be with the given extrapolation range. Finally, since the ultimate
goal of offline machine learning framework is to improve the turbulence models, more
rigorous feature importance analysis is required to gain insight to improve the current
models or to develop new turbulence models.
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