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(ABSTRACT)

The effect of structural optimization on control of stiffened

laminated composite structures is considered. The structural

optimization considered here, is the maximization of structural

frequencies of the structure subject to maximum weight and frequency

separation constraints and an upper bound on weight. The number of

plies with a given orientation and the stiffener areas form the two sets

of design variables. As the number of plies is restricted to integer

values, the optimization problem considered belongs to the class of

nonlinear mixed integer problems (NMIP). Several efficiency measures

are proposed to reduce the computational cost for solution of the

optimization problem. Savings in computer time due to each of the

measures is discussed. The control problem is solved using the

independent modal space control technique. This technique greatly

simplifies the evaluation of the sensitivity of the performance index

with respect to the individual frequencies.



The effect of different optlmization schemes on the control

performance ls considered. To reduce the probability, that conclusions

drawn from numerical results, are purely coincidental, a large number of
‘

cases has been studied. It has been concluded that sufflcientw

improvement in control performance can be achieved through structural

optimizatlon.
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CHAPTER 1

INTRODUCTION

Structural optimization and control have been important research

topics in the last two decades. Increased space applications have made

such studies imperative, while the advent of fast computers has made

these efforts feasible.

The objectives considered in structural optimization are usually

a) Minimization of structural mass

b) Minimization of maximum structural deflection or its

appropriate norm, or

c) Maximization of fundamental frequency (or buckling load).

A combination of constraints on the stresses, deflections, frequency

ratios, overall weight, member sizes etc. may be additionally imposed.

In structural control one of the aims is to damp out the motion

resulting from some arbitrary excitation of the structure. Various

sources of excitation are possible including electrical machinery, space

maneuvers such as docking, etc. The motion resulting from this

arbitrary excitation needs to be dampened, and this can be done in

several ways.

In active control, the position and velocities of the structure at

various points are measured and suitable control forces then applied.

The designer selects a performance index and the control forces are

applied in such a way that the performance index is minimized. The

performance index, as the name suggests is a measure of how efficiently

the controlling device performs its task.

1
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Generally, in solving the control problem one does not modify the

structure to be controlled. This is a somewhat restrictive

requirement. In this work the possibility of redesigning the structure

before controlling it is explored. Intuitively this appears to be a

better approach to the overall problem. Simultaneous structural

optimization and control as has been proposed by some investigators

(Refs. [1-7]) may even be better. In these simultaneous structural

design and control problems, a composite functional stemming from a

weighted combination of structural weight and the usual quadratic

performance index from optimal control theory are minimized. However,

the questions about selection of appropriate weighting matrices in

arriving at the composite functional are still unresolved.

Because of these aforementioned difficulties, in the present

approach, a performance index is selected, and a control law that

minimizes this performance index is determined for a given set of

initial conditions, using the optimal control theory. The structure is

then optimized and the minimum of the same performance index with

identical initial conditions is determined, again using the optimal

control theory. The minima obtained in the two cases are compared to

see if any improvement is achieved. Specifically, the ratio of the

minimum performance index of the unoptimized structure to that of the

optimized structure is taken to be the measure of improvement achieved

as a result of optimization.

Two optimization objectives are considered. In the first case, the

fundamental frequency of the structure is maximized subject to frequency
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separation constraints. In the second case the sum of the squares of

the difference between the structural frequencies and of certain

predefined target frequencies is minimized. In both cases, an upper

limit on the structural mass is imposed. Maximization of fundamental

frequency of a structure subject to constraint on maximum mass leads to

configurations that exhibit frequency coalescence. Imposing frequency

separation constraints avoids this problem, as the frequencies are kept

apart during the optimization process.

The quadratic performance index of the control theory is a function

of the initial conditions and certain scaling parameters, that are

specified by the designer. The effects of different scaling parameters

and initial conditions on the improvement in the performance index

obtained by optimization are considered.

For the purposes of illustration a stiffened laminated composite

panel is selected. The number of plies with a given orientation is one

set of design parameters while the stiffener areas form the second set

of design parameters. The number of plies can take on only integral

values while the stiffener areas can take any continuous values. The

combined set of design parameters has therefore integer and continuous

design parameters. The structural optimization problem considered

therefore belongs to the class of non linear mixed integer programming

(NMIP). In structural design, when design parameters that can assume

only integral or discrete values are encountered, the easiest procedure

is to solve the problem treating these variables as continuous and then

rounding them off to the nearest integer. This procedure though simple



to implement can lead to designs that are not only suboptimal but also

infeasible. On the other hand Integer Programming algorithms are rather

time consuming and need several continuous optimization problems to be

solved. Measures to accelerate the continuous sub-problem optimizations

are therefore essential.

Chapter 2 presents a brief literature survey of relevant topics.

Chapter 3 discusses the structural optimization, and control methods

used in this study. Details needed to calculate derivatives of

frequencies with respect to the design variables are also discussed.

Numerical results are given in Chapter 4.

Appendix A discusses the Dakin's algorithm used to solve the

integer programming problem. This algorithm needs the solution of a

number of continuous programming problems. These continuous programming

problems are solved using the Variable Metric Method for Constrained

Optimization (VMCON). This algorithm is discussed in Appendix B.

To compute the performance index for an optimized and an

unoptimized structure IMSC (Independent Modal Space Control) is used,

because of its computational advantages and robustness. Computational

details of this technique are given in Appendix C.

To compute the vibration frequencies of the structure, FEM

discretization is employed. The laminated plate is modelled using

isoparametric plate bending elements, while the stiffeners are modelled

using frame elements. Appendix D provides the relevant element mass and

stiffness matrices.
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The methods used to compute eigenvalues and eigenvectors are

presented in Appendix E.

It is hoped that the Appendices will save the reader the trouble of

wading through unnecessary details, and also provide quick reference

material when needed.



CHAPTER 2

1
LITERATURE SURVEY

'

2.1 Simultaneous Structural Optimization and Control

The conventional approach to structural design and·control is

essentially uncoupled. That is, a nominal structural design is

established, and then the control system design is undertaken for a

specified structural model. In recent years, this situation is steadily

changing. A brief review of this emerging trend follows.

Hale and Lisowski [1,2] have considered the problem for simple

structures. The feedback gains are calculated using optimal control

which necessitate the solution of the Riccati equation. The main

difficulty encountered in the formulation of Hale's algorithm is the

relatively high order of the resulting non-linear two-point boundary

value problem, which must be solved at each state of the iterative

redesign procedure.

Messac and Turner [3] consider the problem of simultaneously

optimizing the structural and control design. Finite element method is

used to discretize the continuous system into a finite system of order

n. Modal summation is used to represent the system and only p modes out

of the original n modes are retained, where p is much less than n. The

control forces applied are assumed to be a function of all the p modes,

and the corresponding linear quadratic optimal control problem requires

the solution of a coupled, non-linear matrix Ricatti equation of order

2p in the steady state case. A numerical example is considered for the

6
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case of an axial rod, discretized using 20 extensional finite elements,

resulting in 21 degrees of freedom.

Khot, Venkayya and Eastep [4], [5] show that by designing a

structure based on an optimality criterion approach the dynamic

characteristics of a closed-loop system of a large space structure (LSS)

can be improved. The optimality criterion used in this study seeks to

minimize static displacements associated with the line of sight (LOS)

error. The optimal control problem is then formulated in the physical

space (as opposed to the modal space). The associated coupled non-

linear matrix Ricatti equation is of order 2n, in the steady state case,

n being the order of the finite element model used to discretize the

original continuous system. A truss structure having twelve degrees of

freedom is considered. The dynamic properties of the optimized and the

unoptimized structure are compared, showing that the optimized structure

has an improved performance.

Junkins, Bodden and Turner [6], [7] derive expressions for

eigenvalues of the closed loop system with respect to the design

variables which include structural parameters, sensor/actuator locations

and control gains. Two variations of a basic approach are considered.

Firstly, the case of direct linear output feedback control law is

addressed. Secondly, the case of a steady state quadratic regulator

control law is considered. For both cases an eigenvalue

placement/optimization approach is used to solve approximately a

sequence of minimum design modification problems. Numerical results are
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presented for the Draper RPL Configuration [6], discretized using the

assumed modes method.

In [9], Salama, Hamidi, and Demsetz have considered a different

approach to the vibration regulation problem. They seek to minimize the

sum of a mass penalty term and a quadratic cost functional subject to

both state variable inequality constraints and structural parameter

constraints.

Hale [10] considers an ellipsoidal set—theoretic approach to the

inegrated structural/control synthesis for vibration regulation of

flexible structures. The synthesis attempts to maximize the allowable

magnitude of an unknown but bounded disturbance to the structure while

explicitly satisfying specific input and output constraints. Both

structural parameters and control gains are variable during a search for

the maximum allowable disturbance.

Haftka, Martinovic and Hallauer [11,12] describe a procedure for

checking whether small changes in a structure have a potential for

significant enhnacements of its optimized vibration control system. The

control system is optimized for maximum performance for the original

structural configuration, and then reoptimized to take full advantage of

the structural modifications. Analytic predictions are validated

experimentally.

Lamberson and Young [13] use a lattice plate finite element based

on a continuum model for a large plate—like lattice space structure to

examine the effect of variation of several structural parameters on the
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natural frequencies, mode shapes and the resulting control system

performance, while the total mass of the structure is held constant.

2.2 Structural Optimization

2.2.1 Optimization with Integer Variables

Cutting plane methods are probably the first systematic techniques

available for the solution of the integer (linear) problems. The early

works of Dantzig, Fulkerson and Johnson [14] directed the attention of

researchers to the importance of solving linear integer programming

problems. Markovitz and Manne [15] considered the more general case of

discrete variables. Dantzig [16] was the first to propose the cutting

plane method for linear integer problems. However, there is no

guarantee that his method would converge to the integer solution in a

finite number of steps. The first cutting plane method, that guaranteed

an integer solution in a finite number of steps was by Gomory [17].

Although this algorithm converged in a finite number of steps, it ran

into difficulties caused by machine roundoff. A new algorithm was

developed by Gomory [18] to overcome, precisely, the above problem.

Gomory [19] extended the above methods to cover mixed integer

problems. Glover [20] introduced a new type of cutting plane method

known as the bound escalation method. Subsequently, Young [21], Balas

[22] and Glover [23] developed what is known as the "convexity" cut

method.

The above cutting plane methods are all of the dual type; that is,

instead of solving the original problem (the primal problem) a new

(dual) problem is generated using suitable transformations. Solving
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this new (dual) problem provides a solution to the original (primal)

problem. This method is resorted to, when the dual problem lends itself

to a more efficient solution as compared to the original problem.

Drawback of this method lies in the fact that the solution to the

problem is not available until the algorithm converges. This is a major

disadvantage if calculations are stopped prematurely. A primal

algorithm was first introduced by Ben-Israel and Charnes [24], however,

the first finite (a problem that converges in a finite number of steps)

primal algorithm was developed by Young [25]. Improvements on these

algorithms were given by Young [26] and Glover [27].

The cutting plane methods, both primal and dual are only applicable

to linear (pure or mixed) integer problems as they are inherently based

on linearity assumptions. In contrast, the branch and bound algorithms

are not based on any such linearity assumptions. However, when

required, linearity of the problem can be easily exploited in the branch

and bound formulations.

The underlying theory for the branch and bound algorithm was first

presented by Bertier and Roy [28]. Balas [29] repeated their theory in

a simpler form. Later Mitten [30] generalized and extended Bala‘s

work. The first known branch and bound algorithm was developed by Land

and Doig [31] as an application to the mixed and pure integer problem.

The branch and bound algorithm as proposed by Land and Doig is highly

impractical for computer implementation as it requires a large amount of

computer memory. Secondly, the problem assumes linearity, in its

formulation. Dakin [32] modified the Land and Doig algorithm to
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facilitate computer implementation, and also to make it applicable to
‘ non-linear mixed integer programming problems.

Gupta [33], Gupta and Ravindran [34] use numerical results to show
~

that Dakin's algorithm is well suited to solve relatively large,

nonlinear mixed integer programming problems. As stated in Chapter 1

the present study uses this algorithm for the solution of the nonlinear,

mixed integer structural optimization problem.

2.2.2 Structural Optimization with Integer variables

Many variables entering into engineering design problems, are

restricted to assume only discrete values. Examples of such variables

are numbers of items, such as the number of stiffeners on a plate, the

number of transverse bulkheads on a ship, the number of bars in a truss

etc. In recent years a number of researchers in the field of strucutral

optimization have turned their attention to the problem wherein some or

all of the design variables may assume only integral or discrete values

[35-40].

Schmit and Fleury [35] use approximation concepts and dual methods

to solve structural synthesis problems involving a mix of discrete and

continuous type sizing type of design variables. The basic mathematical

programming statement of the structural synthesis problem is converted

into a sequence of explicit approximate primal problems of separable

form. These problems are solved by constructing continuous explicit

dual functions, which are maximized subject to simple nonnegativity

constraints. There is no guarantee however that the dual methods will

yield the optimum solution to the discrete problem due to the fact that
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it is not convex. However, results presented in [35] are encouraging.

Imai [36] uses the above concepts to the problem of material selection.

Hua [37] uses an implicit enumeration scheme for finding the

minimum weight design of a structure with discrete member sizes. A

simplifying assumption is made, namely that, if reducing the size of a

member causes an originally feasible solution to become infeasible,

further reducing the size will not make the structure feasible. No

basis for this assumption is stated. Johnson [38] uses a branch and

bound algorithm to find the minimum weight design of a rigid—plastic

structure with discrete sizes. Linking of elements is done to reduce

the number of design variables. The objective function and the

constraints are lienar functions of the design variables, making it

possible to use linear programming techniques to obtain the solution to

the continuous problem. Linearity assumptions are used to formulate

branching and bounding rules to force the design variables to discrete

values.

Gisvold and Moe [39] use a penalty method approach to minimize the

weight of a structure with two discrete variables. The objective

function that is to be minimized is augmented by a term that is positive

everywhere and vanishes at the discrete points.

Templeman and Yates [40] use a segmental method for the discrete

design of a minimum weight structure. The problem of finding the

discrete sizes of the cross-sectional areas is converted to one of

finding the continuous lengths of element segments each having one of

the possible discrete cross—sectional areas. The resulting continuous
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optimization problem is solved using linear programming, and its weight

is taken to be the lower bound on the structural weight obtainable with

discrete sizes. Use is made of the linearity of the problem considered

to force discrete design variables to assume discrete values.

2.2.3 Structural Optimization with Continuous variables

Mathematical programming was first applied to structural

optimization problems by Prager [41] and Livesley [42]. Schmit's work

[43] on structural synthesis and his subsequent efforts laid a firm

foundation to modern numerical structural optimization. Moses [44]

developed the technique of sequential linear programming (SLP).

Structural optimization developed along two differing lines, namely,

mathematical programming and optimality criteria methods. From the

beginning mathematical programming algorithms (MPA) relied on rigourous

mathematical procedures but consumed a lot of computer resources while

optimality criteria methods (OCM) were intuitive in nature but had the

advantage of converging very fast. Venkayya and his collaborators [45]

started the development of optimality criteria approaches along with

Prager [46], and Taylor [47]. Kicher [48] compares the two methods,

while the work of Fleury and Sander [49] and Fleury and Schmit [50]

shows the relationships between the two methods.

Several techniques were developed to reduce the computational

time. Some were of a general nature while others were to be used for

specific applications. Schmit [51] proposed approximation concepts

while Haftka and Yates [52,53] developed fast reanalysis algorithms for

flutter calculations.
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Over the years a number of Mathematical Programming algorithms have

been successfully used in structural optimization. The following is a

brief overview of some of these algorithms. O

Rosen's gradient projection method is based on projecting the

search into the subspace tangent to the active constraints [54]. The

basic assumption of the gradient projection technique is that the search

is carried out in the subspace defined by the active constraints. The

solution therefore proceeds along the constraint boundaries. The

gradient projection method has been generalized by Rosen [55] to

nonlinear constraints. The method is based on the linearization of the

constraints at the solution point. The main difficulty caused by the

nonlinearity of the constraints is that the solution typically moves

away from the constraint boundaries. Some restoration moves are

therefore necessary to move back to the curved constraint boundaries.

The feasible directions method [56] has the opposite philosophy to

that of the gradient projection method. Instead of following the

constraint boundaries, the solution procedure tries to stay away from

them while at the same time trying to minimize the objective function.

The method of feasible directions has been programmed in packages such

as CONMIN [57] and ADS-1 [58] which are widely used for structural

optimization.

Penalty methods replace the constrained optimization problem by an

unconstrained one. The exterior penalty method applies penalties for

violation of the constraints [59]. The main disadvantage with these

methods is that the penalty is defined only in the infeasible domain.
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The intermediate designs are infeasible, and if the solution is stopped

prematurely the design may be useless as it is infeasible.

The interior penalty methods on the other hand keep the design in

the feasible domain, however, they require an initial design that is

feasible. The common form of the interior penalty function is the

reciprocal of the constraint value. It can be easily seen that as the

constraint boundary is reached the penalty term becomes infinitely

large.- If the initial design is in the feasible domain than the penalty

term will keep it away from the constraint boundary. However, if the

design point is in the infeasible domain, the contribution from the

inverse penalty term will be negative, which is quite meaningless. The

inverse penalty function, used in the interior penalty formulation is

therefore applicable only as long as the design remains in the feasible

region. In several structural optimization problems, obtaining a

feasible design may be a difficult task. For these reasons there has

been an increasing use of extended interior penalty functions. These

penalty functions combine the inverse interior penalty function in most

of the feasible domain with an exterior continuation. The contribution

from the penalty terms for constraint violation is thus kept positive.

The exterior continuation can be linear [60], however, the resulting

function that needs to be minimized has first derivative discontinuity.

Haftka and Starnes [61] avoid this difficulty by using a quadratic

continuation, in which up to second derivative continuity exists.

Second derivative continuity makes it possible to use the Newton's

method for the resulting unconstrained minimization. In their work the
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second derivatives needed for the Newton's method have been calculated

approximately, using first derivative information and the fact that at

the constraint boundaries the resulting augmented function has large

curvatures. A cubic and variable order extended penalty function has

also been proposed [62]. Another combination of interior and exterior

penalty functions occurs when an exterior function is used for equality

constraints and an interior one for inequality constraints [63]. The

Fortran code NENSUMT [64] developed by Miura and Schmit is based on an

extended interior penalty function and Newton's method with approximate

second derivatives.

Multiplier methods combine the use of Lagrange multipliers with

that of penalty functions. when only Lagrange multipliers are employed

the optimum is a stationary point rather than a minimum of the

Lagrangian function. when only penalty functions are employed a minimum

is obtained but ill—conditioning is also present. By combining the two

techniques an unconstrained problem is obtained where the function to be

minimized does not suffer from ill-conditioning [65].

The addition of penalty terms of the Lagrangian function by

multiplier method convert the optimum from a stationary value of the

Lagrangian function to a minimum of the augmented Lagrangian. Projected

Lagrangian methods [66] achieve the same result employing a different

technique. They are based on a theorem which states that the optimum is

a minimum of the Lagrangian function in the subspace of vectors

orthogonal to the active constraint gradients. Projected Lagrangian

methods employ a quadratic approximation to the Lagrangian in this

_ ä
ä
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subspace. The direction seeking algorithm requires the solution of a

quadratic programming problem (quadratic objective function, linear

constraints). The VMCON algorithm (see Appendix B) used in this work is

based on the projected Lagrangian method.

For linear problems the solution to the original constrained

optimization problem may be obtained by solving the so called dual

problem, in which the Lagrange multipliers are the unknowns. The primal

space methods treat the original design variables as unknowns so that

efficiency is easily influenced by the number of design variables. The

dual space methods, on the other hand, seek for the optimum Lagrange

multipliers for selected potentially critical constraints so that the

efficiency depends on the number of the potentially critical

constraints. Since there are relatively few critical constraints at an

optimum, the problem size in the dual space generally tends to be

smaller than the primal space dimension. There are several ways of

generalizing the linear dual formulation to nonlinear problems. In

applications to structural optimizations, the most successful has been

one due to Falk [65] as specialized to separable problems by Fleury

[67]. The dual formulation produces an optimum to the original problem

only when the problem in convex. Secondly, the dual problem is

computationally cheaper to solve only in the case of separable problems

[59]. The dual method can be used in conjunction with certain

approximation conepts and has been used successfully in developing the

ACCESS-3 computer program by Schmit and co-workers [68].
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Closely related to the dual methods are the optimality criteria

methods [45]. The optimality criteria methods consist of two

complimentary components. The first is the stipulation of the

optimality criterion. 0ne can choose rigorous mathematical criteria,

such as the Kuhn-Tucker conditions or an intuitive one such as the

stipulation that the strain energy density in the structure be uniform

[49]. The second component is the algorithm which is used to resize the

structure in the expectation that it will lead to the satisfaction of

the optimality criteria. Again, one may use a rigorous mathematical

method to achieve the satisfaction of the optimality criteria or one may

devise an ad hoc procedure which may or may not work. Some of the

intuitive optimality criteria methods used include the Fully Stressed

Design [68,69] and the uniform stran energy [45]. The optimality

criteria methods have been used quite successfully in the design of

composite structures with stress and displacement constraints [70] as

well as for structures with specified eigenvalue distribution [71].

Several researchers developed techniques suited to specific

problems. Nshanian et al. [72] consider the problem of minimizing the

stresses in a laminated plate while Hirano [73] and Nshanian et al. [74]

consider the problem of maximizing the buckling load (or the fundamental

frequency). Khot et al. [70] study the minimum weight design of a

laminated plate subject to stress and displacement constraints. In all

these studies, the ply thickness is taken to be a variable, that may

assume any continuous value.
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2.3 Structural Control

In aerospace applications control theories [75-80] were

successfully used, at first, to control the motion and the resulting

trajectory of space vehicles. An example is the control of Saturn V

booster-vehicle motions during the launch phase, where the booster-

vehicle is subjected to random wind-loads [81,82]. Later, Bender,

Karnopp, Sevin etc. [83,84,85] applied different control methods to

suppress structural vibrations.

Theoretical studies of structural control follow two different

approaches. The independent modal space control (IMSC) method [86] and

the coupled control method [77]. Meirovitch [87] compares various

control techniques for large flexible systems. Structural control

literature reflects the many practical design difficulties encountered

in implementation. For example Van Landingham et al. [88] and

Meirovitch et al. [89] consider the problem of the number of actuators

to be used and their placement.

The modal control methods mentioned above can be used for linear

structures for which an eigenvalue problem can be solved to obtain the

structural frequencies. Kamat [90] uses an extension of the method

suggested by Narendra and Tripathy [91] to study the optimal control of

a beam in nonlinear response. This method involves the direct

minimization of the performance index using mathematical programming

techniques.

The number of experimental studies in structural control is

surprisingly small. References [92]—[97] represent some of the

[
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significant experimental work in control. All of these rferences,

however, report significant practical difficulties encountered in

attempts to implement control strategies. Hallauer et al. [98] report

some of the first successful attempts using direct velocity feedback

control (DVFC), where experimental results are compared with theoreitcal

predictions. Meirovitch et al. [99] report the results of using

_ nonlinear natural control in conjunction with IMSC to suppress beam

vibrations.



CHAPTER 3

STRUCTURAL OPTIMIZATION AND CONTROL-THEDRETICAL BASIS

3.1 Structural Optimization

A structural optimization problem can be stated as follows

Minimize f(x), x = (x1,xz,...,xn) (3.1.1)

Subject to hi(x) = 0 i = 1,2,...,nE
(3.1.2)

gi(x) 2 0 j = 1,2,...,ng I

The vector x will be referred to as the design variable vector.

For structural optimization problem, it normally represents some

characteristics of structural elements such as cross-sectional

diameters, area etc. If f, hi and gi are all linear functions of the

design variable x the problem is a linear programming problem (LP). If

any of the f, hi or gi are non—linear functions of x, a nonlinear

programming problem (NLP) results. If all the design variables are such

that they can assume any real values within specified bounds then one

has the classical continuous variable optimization problem. In several

structural design problems, however, some or all of the design variables

may assume only integer or discrete values. Such problems can be

formulated as non—linear mixed integer programming problems (MIP). For

example the number of blades on a compressor or a turbine, number of

plies in a composite laminate or the number of control actuators to be

used on a structure are all examples of design parameters that can take

only integer values. Market availability and standardization also

forces engineers to look at parameters that may assume certain

21
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"discrete" values. These values though discrete are not necessarily

integers. The mixed discrete optimization problem is therefore a more

general problem than the mixed integer programming (MIP) problem.

However it is possible to convert a discrete optimization problem into

an MIP problem quite easily, as follows.

Suppose a variable zj is allowed to take on only one of several

l values, say vl, vz, vN. This is equivalent to setting

zj = xlvl + xzvz + ... + xNvN (3.1.3)
with

xl + x2 + ... + xN = 1 (3.1.4)
and

xj = 0 or 1 (j = 1, ..., N) (3.1.5)

It is feasible to solve an MIP problem in an approximate way by

relaxing the integrality constraints on the integer variables and then

rounding them off to the nearest integer value. This procedure although

simple to implement has a shortcoming. This is due to the fact that the

solution obtained by rounding off may be not only sub—optimal but also

infeasible. Also the task of obtaining an integer feasible solution may

be a nontrivial one. l
Integer programming techniques are generally categorized into two

broad types: (1) search methods and (2) cutting plane methods. The

first type is motivated by the fact that the integer solution space can

be regarded as consisting of a finite number of points. In its simplest

form, search methods seek the enumeration of "all" such points. This

would be equivalent to a simple exhaustive enumeration. However, what
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makes search methods more promising than simple exhaustive enumeration,

is that the techniques have been developed to enumerate only a portion

of all candidate solutions while automatically discarding the remaining

points because they are either infeasible or inferior to points which

are retained. The efficiency ofthe resulting search algorithms depends

on the power of such techniques that discard the nonpromising solution

points.

Search methods primarily include implicit enumeration techniques

and branch-and-bound techniques. The first type is mostly suited for

the "2ero—one" problem, wherein the integer design variables may take on

values of either zero or one. Even though, every discrete or integer

problem can be converted into a zero—one problem as shown in Eqs.

(3.1.3) through (3.1.5) it is clear that such a conversion increases the

dimensionality of the problem, several fold, in most cases where the

problem is not originally a zero—one problem. Hence, implicit

ennumeration techniques are not Suited for discrete or integer problems

which are not of the zero—one type as posed.

Cutting methods are developed primarily for the solution of (mixed

or pure) integer linear programming problem. These methods are

motivated by the fact that the simplex solution to a linear program must

occur at an extreme point. The idea then is to add specially developed

secondary constraints that are violated by the current noninteger

solution but never by any feasible (integer) point. The successive

application of such a procedure should eventually result in a new

solution space with its optimum extreme point properly satisfying the
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integrality condition. The name "cutting" methods is suggested by the

fact that the secondary constraints "cut“ off infeasible parts of the

continuous solution space.
—

The cutting plane methods, at present are adapted specifically to

linear integer problems and cannot be used for nonlinear integer
u

problems.

The branch and bound methods can be used to solve linear or non-

linear integer problems. The branch and bound procedure does not deal

directly with the integer problem. Rather, it considers a continuous

problem obtained by relaxing the integer restrictions on the

variables. Thus the solution space of the integer problem is only a

subset of the continuous space. The prime reason for dealing with the

continuous problem is that it is simpler to manipulate such a problem.

Furthermore, one can draw upon the tremendous advances in the theory of

continuous optimization methods.

If the optimal continuous solution is integral, then it is also

optimum for the integer problem. Otherwise, the branch and bound

technique is applied by implementing two basic operations.

(a) Branching: This partitions the continuous solution space into

subspaces (subproblems), which are also continuous. The purpose of

partitioning is to eliminate parts of the continuous space that are not

feasible for the integer problem. This is achieved by imposing

(mutually exclusive) constraints that are necessary conditions for

producing integer solutions, but in a way that no feasible integer point

is eliminated. In other words, the resulting collection ofsubproblems
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completely defines every feasible integer point of the original

problem. Because of the nature of the partitioning operation, it is

_ called branching.

(b) Bounding: Assuming the original problem is of the minimization

type, the optimal objective value for each subproblem objective value

for each subproblem created by branching sets a lower bound on the

objective value associated with any of its integer feasible values.

This bound is essential for "ranking" the optimum solution of the

subsets, and hence in locating the optimum integer solution.

Dakin‘s algorithm used in this work is essentially an extension of

the branch and bound algorithm proposed by Land and Doig [31,32] for the

solution oflinear—programming problems in which some of the design

variables are required to be integers. The Land and Uoig algorithm is

unsuitable for general nonlinear mixed integer programming problems on

two counts. Firstly, it employs a tree structure that requires

excessive computer storage [100], and secondly the branching rules are

tied to the assumption of linearty [101].

Dakin‘s modification (see Ref. [32l) of the Land-Doig algorithm

makes the branching rule independent of the linearity condition. The

algorithm starts by finding a solution to the continuous problem wherein

the integrality requirments are relaxed. If this solution is integral,

then it is the optimal solution to the given discrete problem. If the

solution is nonintegral then at least one integer variable, say xk, is

nonintegral, and takes the value, say bk which can be divided into

integral and fractional parts [bl and f respectively as
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bk = [bl + f (3.1.6)

where [bl is integral and 0 < f < 1. If xk has to take an integer value

then either one of the following two conditions must be satisfed.
I

xk s [b] (3.1.7)

or

xk 2 [bl + 1 (3.1.8)

Constraint conditions expressed by Eqs. 3.1.7, 3.1.8 clearly have

nothing to do with linearity, and as such can be used to solve nonlinear '

mixed integer programming problems. Details of the Dakin's algorithm

can be found in Appendix A.

3.2 Application to a Vibrating Stiffened Composite Plate

In the active control of large space structures built—up from fiber

reinforced composite materials it will be necessary to avoid undesirable

control coupling effects due to closely spaced frequencies. This will

require the placement of a lower limit on one or more of the natural

frequencies of vibration or a specification of an appropriate separation

of the lower frequencies. It is with this objective in mind that the

problem is addressed.

Two optimization objectives are considered. In the first case, the

fundamental frequency of the structure is maximized with separation

constraints on other frequencies. In the second case the sum of the

squares of the differences between the structural frequencies and of

certain predefined target frequencies is minimized. In both cases the

design is subject to

1. Upper bound on structural weight
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and

2. A specific frequency separation

(i.e., the ratio ofthe second, third, fourth frequencies to the first

frequency is required to exceed a certain prescribed ratio, r, r > 1).

The laminate is assumed to be of a symmetric construction. The number

of plies of a specified orientation and the areas of the stiffeners are

the integer and continuous design variables respectively. Each ply is

assumed to be of uniform thickness tl. Below the mid plane the

construction is such so as to give a symmetric lay out. As an example,

the following laminate construction (starting from the first layer up to

the mid plane) is assumed.

nl plies at 90°

nz plies at 75°

n3 plies at 60°

n4 plies at 45°

ns plies at 30°

nö plies at 15°

n7 plies at 0°.

nl, nz, n3,...,n7 form the 7 integer variables of the problem. Finite
element discretization is then used to determine the structural mass and

stiffness matrices and an eigenvalue problem is solved to get the

eigenvalues and the eigenvectors.

The simply supported laminated plate of Fig. 1 is divided into 16,

8-noded, shear deformable, isoparametric, penalty plate bending elements

[102]. Figure 1 shows the complete stiffened composite plate, with
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stiffeners placed symmetrically about the laminate mid—plane. Each of

the six stiffeners is divided into 8 frame elements. The 48 frame

elements are divided into 8 groups through linking. within each group

all the elements have the same area Ai. Figure 2 shows the elements

corresponding to a given continuous design variable (area) Ai. This

grouping (linking) of elements was chosen on the basis of symmetry

considerations. i
without linking of the element areas, there would have been 48

continuous design variables, corresponding to each frame element area,

thereby greatly increasing the size of the optimization problem. This

would have resulted in a prohibitive increase in computational time.

For each frame element the area Ak is assumed to be related to its

moment of inertia Ik by the relation

rk = a(Ak)"

where

¤ = (g)
o

and n = 3 for the problem.

Because of the global nature of the frequency constraints involved

and the absence of local constraints such as stress constraints it

suffices to use cross-sectional area and moment of inertia design

variables.

3.2.1 One Optimization Scheme

with these preliminaries the optimization problem for the plate of

Figure 1 can be stated mathematically in a non—dimensional form as
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. *1 2Max1m1ze (Y-) (3.2.1.1)
o

Subject to (§ä§l)2 2 ri , 1 = 1,2,...,7 (3.2.1.2)

zni = 12 (3.2.1.3)

zaimi s 2 (3.2.1.4)

0 s ni s 6 (3.2.1.5)

0.0 < ai s 1.0 (3.2.1.6)

nl,n2,...,n7 are 1ntegers
mi = 1 for 1 = 1,2,4,5

(3.2.1.7)
ml = 0.5 for 1 = 3,4,7,8

where xi 1s the 1th frequency (expressed 1n rad/sec) of the structure

shown 1n F1g. 1 and fo 1s the frequency of the 1n1t1al des1gn. ri > 1

are prescr1bed rat1os, ni 1s the number of pl1es hav1ng

or1entat1on ai, Ai
1s the d1mens1onal area and

ai = (gl)

1s the nond1mens1onal1zed area of the 1th st1ffener (see F1g. 2) w1th Ao

be1ng a g1ven reference area.

3.2.2 A Second 0gt1m1zat1on Scheme

The opt1m1zat1on problem descr1bed by Eq. (3.2.1.1) through

(3.2.1.7) 1s but one way of opt1m1z1ng the structure. To study the

1mpact of d1fferent opt1m1zat1on schemes on structural control

performance a second opt1m1zat1on scheme was 1mplemented. It can be
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stated mathematically as follows

7 ki 2Minimize z_ (——
- 1) (3.2.2.1)

l=1 Bi

Ai + 1 _
Subject to (—-I--) 2 ri i — 1,2,...,7 (3.2.2.2)

o

zni = 12 (3.2.2.3)

zaimi s 2 (3.2.2.4)

0 s ni s 6 (3.2.2.5)

0.0 < ai < 1.0 (3.2.2.6)

nl,n2,n3,...,n7 are integers

mi =1fori = 1,2,4,5
(3.2.2.7)

mi = 0.5 for i = 3,4,7,8

where Bi > xi are prescribed numbers.

3.2.3 Derivatives of Vibration Freguencies with Respect to Design
variables

Efficient optimization codes such as VMCDN (see Appendix B) using

mathematical programming require the derivatives of the objective

function and the constraints. For the problem considered, the objective

function and the constraints are in terms of frequencies. In this

section, details of calculating the derivatives of frequencies with

respect to the design variables are presented.

The simplest and most straightforward way to compute the

derivatives is by using finite differences. Specifically, if one uses

the forward difference scheme,
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axi xi(x. + h) — xi(x )

ä
= (3.2.3.].)

The main disadvantage of the finite difference scheme is that it

requires the solution of an eigenvalue problem once for each design

variable. This is a computationally expensive process. Secondly, to

get a reasonable value for the computed derivative, the eigenvalue

problems need to be solved to a very high degree of accuracy.

Calculation of frequency derivatives using analytical formulae is

computationally cheaper and does not require the solution of any

additional eigenvalue problems other than to compute the frequencies and

eigenvectors.

Derivative of the ith frequency xi with respect to the jth design

variable xj is given by the relation (see Ref. 59)

gig = uiéä - xi äwi (3.2.3.2)

where U1_= ith eigenvector

K = stiffness matrix

M = mass matrix

In this work, the number of plies with a given orientation and the

stiffener areas are the two sets of design variables. Calculation of
n

%§— with respect to each of these two sets of design variables is

pregented next.

The global matrices K, M are assembled from the element matrices.

To differentiate K, M it is sufficient therefore to assemble the

matrices obtained by differentiating the element stiffness matrices.
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This, in turn requires the differentiation of matrices A, D defined by

Eq. (D.1.6). For convenience, consider a six ply laminate as shown in

Fig. 4. We have

21 = -(n1 + nz + n3)t
22 = —(n2 + n3)t
23 = -n3t (3.2.3.3)

Z4 = O

where t denotes individual ply thickness.

For a symmetric laminate

A — 2i6l( ‘2 _?
2 2 2 A- _ 22 - 21) + Q (23 - 22) + Q (24 - 23)} ( . . . )

n =§ {ö1(Z? - Z?) + U2(Z? - Z?) + ö3(Z? - Z?)} (3.2.3.5)

AL, (3 2 3 6)

an _ 1 2822 2321 -2 2823 2822+°-2

2 **24 2 "2+ Q (Z4 - Z3 (3.2.3.7)

and
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E E E2 Eanl anz an3 an4

8.22anl anz an3 an4
—— = (3.2.3.8)

anl anz an3 an4

EA E E Eanl anz an3 . an4

-1 -1 -1 -1

O -1 -1 -1
= t (3.2.3.9)

O O -1 -1

0 0 0 -1

To calculate ää, it is sufficient to replace p, I by %§,·%§. (See

Eq. (0.1.3) for definition of p, I). For the six-ply, symmetric

laminate, mentioned above

p - 2{(Z2 - 24)..111 + (Z3 - 22).12) + (Z4 - Z3)„18)} (3.2.3.10)

az az az az az az2L = ZHJ - J>¤(l8 + (J — J)¤(21 + (J - J)¤(8)} (3.2.3.11)

I = ä {(2; - + (zg -
z§)p(2) + (zä — z§)p(3)} (3.2.3.12)

21 _ 2822 2821 (1) 2822 282 (2)g · 21*2 · 21 agb * *2 anj · 22 agb

2 824 2 822 (2)+ Z4 — Z3 } (3.2.3.13)
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p(1), p(2), ..., ¤(n) are the layer densities. gé; is given by relation

._ (3.4.9).
J

3.3 Structural Control

One of the objectives of structural control is to suppress

undesirable motion resulting from some unavoidable excitation such as

onboard machinery or docking maneuvers. In active control the motion of

the structure is sensed and suitable forces are applied to reduce and l
ultimately eliminate the undesirable motion. In optimal control, the

forces are applied such that a preselected performance index is

minimized. In order to be able to accomplish this a model capable of

accurately determining the dynamics of the structure is essential. It

is assumed here, that the continuous structure governed by a partial

differential equation model is approximated by a finite set of ordinary

differential equations, using finite element discretization.

For a discretized structure, the optimal control problem can be

stated as follows

. . . 1 T tf1 TMinimize J = v (tf)Hv(tf) + ft [v (t)Q(t)v(t) + c(t)]dt

° (3.3.1)

Subject to the state equations

v(t) = A(t)v(t) + B(t)F(t) (3.3.2)

H and O are real symmetric positive semi-definite matrices, the initial

time to and the final time tf are specified, v(t) is the state vector
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describing the position and velocity of the structure at time t, and

F(t) is the control effort.

c(t) is the control cost that can be expressed as
Q

c(t) = FT(t)R(t)F(t) (3.3.3)

where R is a positive definite matrix.

Solution of the control problem posed by Eq. (3.3.1) through

(3.3.3) can be shown to be (see Ref. [77])

F(t) = —R'l(t)BT(t)G(t)x(t) (3.3.4)

where G(t) satisfies the following Ricatti equation

6(t) + Q(t) - G(t)B(t)R'l(t)BT(t)G(t) + G(t)A(t) + AT(t)G(t) = 0

(3.3.5)

with the final time condition

G(tf) = H (3.3.6)

For a structure discretized using the finite element method, the

equations of motion with no damping can be written as

Mu(t) + Ku(t) = F(t) (3.3.7)
(nxn)(nxl) (nxn)(nxl) (nxl)

where u = deflection vector, M, K are the consistent mass and stiffness

matrices respectively of order n. F is the vector of nodal forces.

Equation (3.3.7) can be written in the form of Eq. (3.3.2) by

defining the state vector v to be of the form

ü
v=

{ } (3.3.8)
U.

and
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A = [A11 A12]
A21 A22 3

with

All = -M'1k
A12 = A21 = [O] = zero matrix of order n

Z22 = In = unit matrix of order n (3.5.9)

If 0 is chosen as

Q = [011 012] (3.5.10)
021 022

with Qll = M = mass matrix

022 = K = stiffness matrix

Qlz = 021 = O = zero matrix of order n (3.5.11)

then the term 1/2 vT0v in Eqs. 3.5.1 represents the sum of the strain

energy and the kinetic energy of the structure.

For large order systems, such as considered in this work, the

solution of the matrix Ricatti Eq. (3.5.5) is not feasible, due to

difficulties encountered in numerical computations [87].

An alternate method, Independent Modal Space Control (IMSC)

described in Ref. [86] is more suitable for large order systems. In

this method, the control forces are specified in the modal space instead

of the actual physical space. Also by suitably choosing the modal

control forces, each mode of vibration is controlled independently of

the other modes. The performance index in this case is chosen to be of
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the form

. J = E J (3.3.12)
1=1 "

where p is the number of modes controlled and Jr is the performance

index associated with the rth mode, and is defined as

tr
er = fo (af gf + „§„§ + Rr zär)dt (3.3.13)

where

Er
l nr = (3.3.14)

ur being the frequency (rad/sec) of the rth mode. The modal coordinates

gr (r = 1,2,...,p) are related to the displacement vector u, by the

relation

u = X; (3.3.15)

where X is the modal matrix, having as its columns the eigenvectors,

obtained by the solution of the eigenvalue problem

xx = 62Mx (3.3.16)
ar, nr satisfy the constraint equations

§r(t) + wä;r(t) = zCr(t) (3.3.17)

ar(’¤ = 0) = +:r(0)
ér(’¤ = 0) = ¤r(0)¤>r

Minimization of Jr in Eq. (3.5.12) with the differential constraint

given by Eq. (3.3.17) leads to a 2x2 matrix Ricatti equation that can be



38

solved analytically (see Appendix C) for tf = ¤. The parameter Rr > 0

in Eq. (3.3.13) is prescribed by the designer, and represents the

penalty imposed on the control effort. A higher value of Rr will result

in a smaller control force in the modal space, and vice versa.

An important aspect of IMSC is the fact that the modal control

forces are independent of the actuator locations. The placement of

actuators is thus a separate design step, and has been dealt with in the

literature [89] quite extensively due to the fact that the magnitude of

the actuator forces is strongly dependent on the actuator locations.

The method suggested in Ref. [103] is used to compute the actuator

forces needed to control the lowest p modes, p << n. If F denotes the

nodal force vector and Fp denotes the associated control vector, one can
write

F = UFD (3.3.18)

in which U = a full rank n x p matrix with entries equal to either zero

or one. The control vector Fp can be shown to be (see Ref. [103])

Fp = 6'1zc (3.3.19)
where

6 = xgu (3.3.20)
xp being a nxp matrix having as its columns p lowest eigenvectors of the

system described by Eq. (3.3.16). zc = Modal Control Vector (see

Appendix C, Eq. C.l.7).



CHAPTER 4

- IMPLEMENTATION DETAILS AND NUMERICAL RESULTS

This chapter discusses measures undertaken to ensure an efficient

implementation of the nonlinear mixed integer programming algorithm for

the solution of the structural optimization problem. This is followed

by a discussion of the impact of structural optimization on control of

the stiffened laminated composite plate.

4.1 Implementation of Structural Optimization Algorithm

Dakin's algorithm is used to ensure that the integer design

variables do take integral values. The continuous subproblems are

solved using the code VMCDN. Derivatives of frequencies needed for

efficient solution of these subproblems are calculated using the

analytic method described in Section 3.2.3. The continuous subproblems

are defined by relations (3.2.1.1)—(3.2.1.7) or (3.2.2.1)-(3.2.2.7) with

some additional constraints corresponding to eqs. (3.1.7), (3.1.8).

These additional constraints are incorporated by modifying relation

(3.2.2.5) or the corresponding relation (3.2.3.5) to

(NMIN) 6 ni s (NMAX) (4.1.1)

The constraints resulting from the branching step, Eqs. (3.1.7) and

(3.1.8) can be incorporated by suitably modifying the (NMIN) or (NMAX)

vectors (the lower and upper bounds on the integer variables). During

the process of successive branching if the lower and upper bounds, for

the ith integer design variable coincide, then the corresponding

variable is forced to take an integer value, say k i.e., xi = k. For

39
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the subproblem for which this happens, xi is set to k and removed from

the design space. For each variable taking on a specific integer value,

the number of design variables is thus reduced by one, and the number of

constraints described by Eq. (4.1.1.), by two. This reduces the sub-

problem size and hence the overall solution time considerably.

Table 1 provides the nodal coordinates and boundary conditions for

the mesh used in the FEM discretization. Nodes are arranged in groups,

and only the lst, 2nd and the last node belonging to a group are

listed. The coordinates of nodes not listed can be found by linear

extrapolation of the coordinates of the first and second node in each

group. The boundary conditions of the nodes not listed are identical to

the boundary conditions of the 2nd node. For example in the 2nd group,

only nodes l0, 11, and 14 are listed. Boundary conditions of nodes 12,

13 are identical to the boundary condition of node 11, while their

coordinates can be found by linear extrapolation of coordinates of nodes

10 and 11. Table 2 provides the elastic constants of the material used

for plate and frame element calculations. These properties are typical

for plies made of graphite/epoxy [104]. Table 3 defines the initial

design and its structural frequencies. The structural frequencies of

the initial design are used to prescribe "reasonable" frequency

separation constraints for the various optimization schemes. Table 4

provides a summary of the different optimization schemes considered.

For the sake of convenience each of these schemes is given a specific

name, to help in referring to them. 0PTla and 0PTlb seek to maximize

the fundamental frequency of the structure, subject to frequency
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separation constraints defined in Table 5. Optimization schemes 0PT2a

through 0PT2d seek to drive the structural frequencies to prescribed

target frequencies. It was found that great care should be exercised in

the selection of the target frequencies since any arbitrary choice was

found to lead to numerical difficulties during optimization. The

present choice of target frequencies was found to be reasonable.

Schemes 0PT2a through OPT2c differ only in that in each of these schemes

the target frequencies are different. For all optimization schemes,

except 0PT1a, the bounds on the design variables and the frequency

separation constraints are identical, and are defined in Table 6.

Frequency separation constraints for 0PT1a are defined in Table 5.

Tables 7 and 8 provide the definition and solution of the structural

optimization scheme 0PT1a, OPT1b, respectively, as applied to the

stiffened composite plate of Fig. 1.

4.2 Measures to Accelerate Sub-Problem Optimization

Depending on the number of integer design variables and their

bounds it is necessary to solve a large number of structural

optimization subproblems. A number of steps are taken to make the

solution of the subproblems computationally efficient. Some of these

steps involve using data computed during previous sub—optimizations.

The steps involved may be listed as follows.

4.2.1 Removal of all Integer variables, for which the Upper and Lower
Bounds Coincide, from the Design Variable Space

The problem considered has 8 continuous design variables (the

stiffener areas) and 7 integer variables, leading to a total of l5
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design variables, for the subproblems. If 6 of the integer design

variables take on fixed values and are removed from the design space

then the subproblem has just 9 design variables. Also the number of
.

constraints are reduced by l2 (2 for each design variable). A careful

examination of Table 9 shows that considerable savings in computation

time occurs when this procedure is adopted. The derivatives of the

objective function and the constraints with respect to the design

variables that have been removed need not be computed, and this involves

savings in CPU time.

4.2.2 Storing of Certain Element Data to Avoid Regeated Integrations
During the Assembly of Mass and Stiffness Matrices

As the geometry of the structural model does not change certain

integration results computed during initial assembly of the structure

can be stored for later use. This reduces the time to assemble the

plate stiffness and mass matrices by a ratio of about six. It should be

noted that the assembly of the stiffness and mass matrices needs to be

performed once each time the frequencies are calculated. Also during

the computation of derivatives one needs to perform the assembly for

each design variable with respect to which the derivative is required.

4.2.3 Using Inverse Iteration Algorithms in Conjunction with Shifting
and Derivative Data to Comgute Reguired Freguencies Faster

It is possible to avoid computation of unneccessary intermediate

frequencies. Dne can use inverse iteration to get the first

frequency. If more than one frequency is needed the most commonly

adopted practice is to use either of the following two schemes.
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a) The first involves using subspace iteration in conjunction with

Jacobi's method (see Appendix E). Suppose the lst, 3rd and 8th

·* frequencies are required. Then using the above method one would have to

iterate with approximately 16 vectors, which would imply use of Jacobi

iteration on a 16 by 16 matrix. This is rather time consuming. Also

one is forced to work with all 16 eigenvectors even though only three

are needed.

b) The second scheme involves using matrix deflation to get the

higher frequencies. Matrix deflation however destroys the skyline

structure of the mass and stiffness matrices. This would greatly

increase the storage_requirements. Furthermore, it is necessary to

compute each eigen pair to a very high degree of accuracy, to prevent

severe roundoff errors.

In this study none of the above two methods are used, instead, the

following more efficient measure is adopted. when eigenvalues are

needed for the very first time, they are calculated using the method of

subspace iteration in conjunction with Jacobi diagonalization. For

subsequent calculations the eigenvalue derivative information can be

used since it permits the use of a Taylor series expansion to predict

the approximate values of the new eigenvalues at the new design point.

These approximate eigenvalues are then used to shift the stiffness

matrix. Inverse iteration on this shifted matrix yields the required

eigenvalues. This method preserves the skyline structure of the

mass/stiffness matrices. Also one can calculate any isolated
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eigenvalues without having to compute all the unnecessary intermediate

eigenvalues.

1 Computation of the lst, 3rd and 8th frequencies using this method

is about 12 times faster as compared to the method described in (a)

above. Secondly, in the case when all 8 eigenvalues are needed at a new

design point, this method is on an average 3 times faster to the method

described in (a) above.

This method however can be used only when a good estimate of the

eigenvalues is available. This is the case during the optimization

process, since eigenvalues and their derivatives with respect to the

design variables are known, thereby permitting the use of a Taylor

series expansion to estimate the eigenvalues at the new design point.

4.2.4 Constraint Deletion

During the subproblem solution only those frequency constraints

that are likely to be violated are retained. To determine which

constraints are likely to be violated, the constraints are first non-

dimensionalized.

Typically the constraint equation can be written as

gi - 1 > 0
where i refers to the ith constraint. A suitable set of numbers gci are

then chosen such that if

gvlzgci
the ith constraint is deleted for every i for which the relationship

holds. gci needs to be chosen very carefully. If it is chosen too

large, then too many constraints are retained in the active set. On the



45

other hand if gc, is chosen too small, too many constraints will be

deleted and the solution may wander into the infeasible region. It is

helpful to group the constraints into different groups (i.e., frequency

constraints, constraints due to bounds on the design variables, etc.)

and then specify a different constraint deletion criterion for each

group. Computational experience shows that good results can be obtained

by specifying gc, arbitrarily to be a low value such as 0.2, and then

limiting the number of constraints deleted from each group to a small

number. This ensures that we delete some constraints for each

subproblem and also reduces the probability of the solution wandering

into the infeasible region. Using the above procedure it was found that

with two frequency constraints deleted the CPU time needed for the sub-

problem optimization is reduced by twenty five percent.

4.2.5 Using the Hessian Calculated in the Previous Subproblem as an
Initial Estimate to the Current Hessian

The VMCON algorithm uses the identity matrix as an initial

approximate estimate to Hessian matrix of the Lagrange function defined

by Eq. (3.1.3). The solution time for the subproblem depends on how

close the initial estimate for the Hessian is to the actual Hessian at

the optimal point. Intuitively it seems reasonable that the Hessian

matrix of the previous optimization subproblem would be a better

estimate than starting out with the identity matrix as an initial

approximation to the Hessian matrix of the current subproblem. It is

found that this indeed is the case. The saving of CPU time is about 50

percent, for the problem considered. Percentage saving in CPU time =
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100x(TI - TH)/TH, where TI = 354 seconds is the CPU time on a VAX 11/780

for subprob1em so1ution when identity matrix is used as the initia1

approximation, and TH = 236 seconds on the same machine for subprob1em

so1ution when Hessian at the end of the previous subprob1em so1ution is

used as an initia1 approximation to the Hessian matrix of the current

subprobiem.

As the number of design variab1es changes from one subprob1em to

the next, on1y those e1ements of the Hessian matrix corresponding to

design variab1es in the current prob1em that were a1so present in the

previous subprob1em are retained for the purposes of approximation. For

those new design variab1es which enter the design space the e1ements of

the Hessian matrix are assumed to be

A(i,j) = 1 if i = j ·
(4.2.5.1)

A(i,j) = 0 otherwise

4.3 Imgiementation of Structura1 Contro1 Ca1cu1ations

To study the effect of structura1 optimization on structura1

contro1, IMSC is used to ca1cu1ate the performance index, moda1 contro1

forces, actuator forces, etc., for the unoptimized and optimized

structures. Each of the above quantities depend on the structural

frequencies, the initia1 conditions and the pena1ty parameters Rr (see

Appendix C). The initia1 conditions can be specified either in the

moda1 space directiy, or a1ternate1y, they can be specified in the

physica1 space (in terms of nodai disp1acements and veiocities) and then
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transformed to the modal space. Since the intent here is to compare the

performance of an unoptimized structure with that of an optimized

structure, the initial conditions are specified in terms of a loading

(or external disturbance) that is the same for the unoptimized and

optimized structure. In other words, deflections that would be produced

by the same load are taken to be the initial conditions, in each case.

It should be noted that the same nodal load vector, F, will produce

different deflections (both in the modal and physical space) in the

unoptimized and optimized structure. Prescribing the initial conditions

in this fashion ensures that the performance of the structure when

subjected to identical "external" loads is compared. In aerospace

applications this is indeed a meaningful comparison. However, in

earthquake type problems, it would be more meaningful perhaps to specify

the initial conditions directly in terms of given deflections, for

comparison purposes. If F be the given nodal load vector, applied

statically, the initial modal displacement gr corresponding to the rth

mode is given by

x;F
Cr = (4.3.2)

where xr, xr are the rth eigenvalue and corresponding eigenvector,

respectively.

Table 12 defines the three nodal load vectors, identified as Load

1, Load 2, and Load 3, used to simulate certain initial conditions.

Load 1 and Load 2 excite the first and second modes of the structure,
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respectively, while Load 3 excites the second and fourth modes,

predominantly.

4.4 Discussion of Results ·

The procedure outlined in this study along with the proposed

efficiency measures is a viable and cost effective method for

optimization of stiffened laminated composite plates. Table 9 provides

the CPU time spent for each of the 22 subproblems, which were required

* for complete convergence to the final solution (OPTlb). The results of

Table 9 show that the efficiency measures adopted, drastically reduce

the solution time for the subproblem optimization, making integer

programming a viable alternative in structural optimization. By adding

up the entries in Table 9 it is seen that the CPU time required to

obtain an integer feasible optimal solution is roughly four times that

of determining the first continuous solution. It is important to note

that without the efficiency measures discussed before, the CPU time

requirements would have been at least twenty times those of the

continuous solution.

Table 5 emphasizes the need for integer programming as opposed to

obtaining an approximate solution by rounding off of a single continuous

optimization problem. In all the cases considered in Table 5, the

rounded off solution is infeasible, as indicated by the negative values

of gl, gz, 93. The quantities 91, gz, 93 are the values of the

normalized inequality constraints, required to be positive to ensure

prescribed frequency separation. The continuous solution and the

optimal solution are always feasible, as indicated by Table 5.
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Intuition seems to indicate that as the number of plies is

· increased the effect of a single ply on the overall behavior of the

plate should reduce. In other words as the number of plies is increased

an absence or the presence of any one ply would not effect the plate

behavior significantly. If this is true then the effect of rounding off

would reduce as the number of plies is increased. An examination of

Table 5 seems to indicate that this is indeed true for the designs

considered. For a total of l2 plies the rounded off design experiences

a maximum constraint violation of 8%. when the number of plies is

increased to 18 and Z4, the corresponding constraint violation reduces

to 6% and 1% respectively. This suggests that there is not much to be

gained by employing the costly nonlinear mixed integer programming

technique to obtain the optimum solutions in the case of thick laminates

with a large number of plies. Rounded off designs that can be obtained

cheaply would be good enough.

Table 10 lists the final design vectors that were obtained as

solutions to the structural optimiztion problems defined in Table 4.

Table 11 provides the 8 lowest frequencies for each of the optimized

structures listed in Table 10. Each of the frequencies is given as a

ratio corresponding to the fundamental frequency of the initial design

listed in Table 3. Table 11 indicates that of the various optimization

schemes considered, scheme 0PT1b leads to the largest increase in all

the eight frequencies. It also indicates that the structural

frequencies can be increased by specifying higher target frequencies.

For example the target frequencies for 0PT2c are higher than those for
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OPT2b which are in turn higher than those of 0PT2a. As a result, the

structural frequencies for 0PT2c are higher than those for OPT2b which

are in turn higher to those of 0PT2a. The target frequencies for 0PT2d

were specified such that only the first and third frequencies would be

increased while the 2nd frequency was held fixed. Table 11 that the

second frequency of the optimized structure 0PT2d is the same as that of

the unoptimized structure, while the first and third frequencies have

increased.

To consider the impact of structural optimization on structural

control the performance indices of the unoptimized structure to that of

the optimized structure were compared. To get an estimate of the

maximum modal control force and actuator forces the norm of these

quantities at t=0 is compared. For the purpose of definition the norm

of an n dimensional vector X is taken to be

Norm of x = (XTX)l/2
in this work. The performance index is an integrated measure of the

controller performance. Norm of the modal control forces and the

actuator forces, as defined above would give an estimate of the force

and hence the size requirements. The ratios of the above quantities,

namely the performance index and the modal and actuator forces, for the

unoptimized structure to that of the optimized structure are taken to be

a measure of the improvement achieved through structural optimization.

Values greater than unity for these ratios indicate improvement while

values smaller than unity indicate a deterioration in control

performance.
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Calculation of all the above quantities requires a knowleldge of

the initial modal displacements. Tables 13a, 13b and 13c list the

initial modal displacements calculated using Eq. (4.2.2) for Load 1,

Load 2 and Load 3, respctively, for structures defined in Table 10.

Table 14, lists the values of the performance index calculated using

Eqs. (3.3.12) for the unoptimized and the optimized structures listed in

Table 10. The initial conditions used are those listed in Tables 13a,

13b and 13c for various values of the penalty parameter R. The same

penalty parameter is used for all the modes._ The first 8 modes are used

in the calculation of the performance index. Table 15 gives the ratios

of the performance indices of the unoptimized structure and the

optimized structures, listed in Table 14. Table 16 gives the norm of

the modal control forces for the unoptimized structure and the various

optimized structures. The modal control forces are calculated using

Eqs. (C.2.3-C.2.8) of Appendix C. Table 17 shows the ratios of the

modal control forces for the unoptimized structure and the various

optimized structures. The actuator forces depend on the placement of

the actuators and Table 18 shows the actuator forces for two possible

sets of actuator locations. Table 19 provides the ratios of the norms

of the actuator forces for the unoptimized structure to the

corresponding norms of the optimized structure for each of the two cases

considered in Table 18.

Figure 6 shows a plot of the performance index of the first mode as

a function of the first frequency. In IMSC the overall performance

index J, given by Eq. (C.2.1) is minimized by minimizing each modal
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performance index Jr independently. This indicates that to reduce the

value of J, given by Eq. (C.2.1), it is necessary to increase each

structural frequency. Increase in structural frequencies is achieved

through structural optimization.

Inspection of Table 15 indicates that the ratios of the performance

indices J of the unoptimized structure to that of the optimized

structure are independent of the penalty parameter R. However, the

ratios are a function of the initial conditions and the structural

frequencies. The gain in control performance, as measured by the ratio

of the performance index of the unoptimized structure to that of the

optimized structure, increases as the structural frequencies are

increased. From Table 11 it is seen that the optimization scheme OPT1b

has the largest increase in all the seven frequencies considered. An

examination of Table 15 indicates, that this optimization scheme (0PT1b)

does indeed experience the maximum gain in control performance.

Initial conditions, also determine the gains achieved in control

performance. In Table 15, Load 1 corresponds to initial conditions

whereby the lowest structural vibration mode is excited, whereas Load 2

and Load 3 correspond to initial conditions wherein higher modes are

excited. This fact can be ascertained by comparing corresponding

columns of Tables 13a, 13b, and 13c. Further inspection of Table 15,

indicates that the gain in control performance, due to structural

optimization, is the largest for Load 1 and smallest for Load 3, for all

the structures 0PT1b, 0PT2a, 0PT2b and 0PT2c. This is due to the fact, _

that for all these optimized structures the lower frequencies experience
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a larger percentage increase as compared to the higher frequencies. For

· example, in the optimization scheme 0PT1b (see Table 11) the fundamental

frequency increases by 225%, while the seventh frequency increases by

only 60%. As a result, for these structures (0PT1b, 0PT2a, 0PT2b,

0PT2c) the gain in the control performance due to optimization, for

vibration suppression is more for low frequency disturbances and less

for high frequency disturbances.

To investigate the above point further, the target frequencies for

the optimization scheme 0PT2d were specified such that the first and

third frequencies would be significantly increased while holding the

second frequency fixed (see Tables 6,11). An examination of Table 15

(0PT2d) indicates that the gain in control performance for initial

conditions as specified by Load 2, where the second frequency is excited

predominantly, is less than those for Load 1 and Load 3.

Tables 16 and 17 show similar results for the norms of the modal

control forces. Table 17 indicates that the ratio of the norms of the

modal control forces of the unoptimized structure to that of the

optimized structure are independent of the penalty parameter R, for the

cases considered. An increase in the structural frequencies leads to a

corresponding decrease in the norm of the modal control force. In fact

if the ratios of the norms of the modal control vector of the

unoptimized structure to that of the optimized structure are taken to be

a measure of improvement in control performance due to optimization,

then Table 17 indicates that similar conclusions to those drawn above

from Table 15, for the performance index can also be arrived at for the
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modal control vector. However, there is a difference for the case

OPT2d, wherein the norm of the modal control force corresponding to the

initial conditions Load 2 does not reduce as a result of optimization.

For initial conditions corresponding to Load 1 and Load 3 there is,

however, a definite reduction in the norm of the modal control forces.

One can therefore say that there is no gain in control performance

corresponding to initial conditions Load 2 due to optimization. It

should be noted that in the scheme 0PT2d the second frequency is held

fixed, while frequencies 1 and 3 are increased.

In the IMSC implementation of optimal control, the synthesis of the
Q

actuator forces from the modal control forces is a separate design

step. Table 18 shows how the actuator forces can be different for a

given modal control vector, depending on the actuator locations.

Inspection of Table 19 indicates that substantial reduction in actuator

forces can be achieved through structural optimization. However, unlike

the results of Table 15 and Table 17, the ratios depend on the penalty

parameter R.



CHAPTER 5

CONCLUSION
._

It is shown that integer programming is a viable alternative to

structural optimization as opposed to the conventional practice of

rounding off, when some of the design variables are restricted to

integer values. Rounding off of the continuous solution leads to

infeasible designs in some cases. As the number of plies is increased

the effect of the presence or absence of any singly ply is reduced,

thereby reducing the effect of round off. For example when the total

number of plies is twelve the maximum constraint violation for the

rounded off solution is 8%. when the number of plies is increased to 18

and 24, the corresponding constraint violation reduces to 6% and 1%

respectively. This suggests that there is not much to be gained by

employing the costly nonlinear mixed integer programming technique to

obtain the optimum solutions in the case of thick laminates with a large

number of plies. Rounded off designs that can be obtained cheaply would

be good enough.

Several subproblem optimizations are necessary to obtain an integer

feasible optimal solution. A number of measures need to be taken to

reduce the CPU time required. Some of these measures include deletion

of integer design variables from the subproblem design space, storing of

integration results needed to assemble element mass and stiffness

matrices, fast recalculation of structural frequencies, constraint

deletion and use of previous Hessian matrix as an initial guess. Each

ofthese measures lead to an acceleration of the subproblem optimization

55
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and reduce the CPU time requirements. These measures were found to be

both effective and necessary, to solve the integer programming problem

in a reasonable amount of time.
—

It has been shown that sufficient improvement in control

performance can be achieved through structural optimization. The ratios

of the performance index, the norm of the modal control vectors and the

norm of the actuator forces of the unoptimized structure to that of the

optimized structure have each been considered, for various values of the

penalty parameter as well as different initial conditions. In each

case, the control performance of the optimized structure, as measured by

the above ratios, has been found to be superior to that of the

unoptimized structure. It was also observed that the above menticned

ratios for the performance index and the modal control forces are

independent of the penalty parameter R, for the cases considered. The

ratios of the actuator forces, however, were found to be a function of

the penalty parameter R.

The initial conditions were found to determine the amount of

improvement due to optimization, in the control performance, as measured

by the above ratios. when the first and the third frequencies were

increased and the second frequency kept fixed, it was found that if the

initial conditions specified were such that the second mode was excited

than the improvement in control performance was marginal. For the same

structure, when the initial conditions were such that modes other than

the second were excited, there was a substantial improvement in the

control performance.
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An increase in structural frequencies correspond to an increase in

· structurl stiffness. To attain an improvement in control performance it

is therefore necessary to increase the stiffness of the structure that -

is to be controlled. This work shows the precise nature of the increase

in stiffness that one must seek in order to improve the control

performance. Any arbitrary increase in structural stiffness does not

necessarily improve the control performance as shown above.

Improvements in control performance can be achieved only through

increases in structural stiffness that are commensurate with the

specified initial conditions of the problem.



REFERENCES

1. Hale, A. L., Lisowski, R. J., and Dahl, N. E., "Optimizing Both
the Structure and the Control of Maneuvering Flexible Spacecraft,"_
presented as Paper No. 83-377, at the AAS/AIAA Astrodynamics
Specialist Conference, Lake Placid, NY, August 22-25, 1983.

2. Hale, A. L., and Lisowski, R. J., "Optimal Simultaneous Structural
and Control Design of Maneuvering Flexible Spacecraft," presented
at the Fourth VPI&SU/AIAA Symposium on Dynamics & Control of Large
Space Structures, Blacksburg, VA, June 6-8, 1983.

”
3. Messac, A., and Turner, J., "Dual Structural Control Optimization

of Large Space Structures," NASA Symposium on Recent Experiences
in Multidisciplinary Analysis and Optimization.

4. Khot, N. S, Venkayya, V. B., and Eastep, F. E., "Structural Modi-
fications to Reduce the LOS Error in Large Space Structures," (84-
0997-CP) AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics &
Materials Conference, Palm Springs, CA, May 14-16, 1984.

5. Khot, N. S., Venkayya, V. B., and Eastep, F. E., "Structural Modi-
fication of Large Flexible Structures to Improve Controllability,"
(84-1906) Proceedings of the AIAA Guidance & Control Conference,
Seattle, NA, August 1984.

6. Bodden, D. S., and Junkins, J. L., "Eigenvalue Optimization
Algorithms for Structural/Controller Design Iterations," presented
in the 1984 American Control Conference, June 6-8, 1984, San
Diego, CA.

7. Junkins, J. L., Bodden, D. S., and Turner, J. D., "A Unified
Approach to Structure and Control System Design Iterations," pre-
sented to the Fourth International Conference on Applied Numerical
Modelling, Tainan, Taiwan, Dec. 27-29, 1984.

8. Chun, H. M., "Optimal Distributed Control of a Flexible Spacecraft
During a Large Angle Rotational Maneuver," MIT MS Thesis, June
1982, Cambridge, MA.

9. Salama, M., Hamidi, M., and Demsetz, L., "Optimization of Con-
trolled Structures," presented at the Jet Propulsion Norkshop on
Identification & Control of Flexible Space Structures, San Diego,
CA, June 4-6, 1984.

10. Hale, A. L., "Integrated Structural/Control Synthesis via Set-
Theoretical Methods," Proceedings of the AIAA/ASME/ASCE/AHS 26th
Struct., Struct. Dyn., & Matl. Conf., Part 2, Orlando, FL, April
15-17, 1985, pp. 636-641.

58



59

11. Haftka, R. T., Martinovic, Z. N., and Hallauer, N. L., Jr., "Sen-
sitivity of Optimized Control Systems to Minor Structural Modifi-
cations," 26th Struct., Struct. Dyn., & Matl. Conf., Part 2,
Orlando, FL, April 15-17, 1985, pp. 642-650. y

12. Haftka, R. T., Martinovic, Z. N., and Hallauer, N. L., Jr.,
"Enhanced Vibration Controllability by Minor Structural Modifica-
tion," AIAA Paper No. 84-1036-CP, presented at the AIAA Dynamics
Specialist Conference, Palm Springs, CA, May 1984.

13. Lamberson, S. E., and Yang, T. Y., "Optimization Using Lattice
Plate Finite Elements for Feedback Control of Space Structures,"
26th Struct., Struct. Dyn., & Matl. Conf., Part 2, Orlando, FL,
April 15-17, 1985, pp. 642-650.

14. Dantzig, G. B., Fulkerson, 0. R., and Johnson, S. M., "Solution of
Large Scale Travelling Salesman Problem," Oper. Res. 2, 393-410
(1954).

15. Markovitz, H. M., and Manne, A. S., "On the Solution of Discrete
Programming Problems," 1957, Econometrica 25, 84-110.

16. Dantzig, G. B., "Notes on Solving Linear Problems in Integers,"
1959, Nav. Res. Logist, Quarterly, 75-76.

17. Gomory, R. E., "Outline of an Algorithm for Integer Solutions to
Linear Problems," 1958, Bull. Amer. Math. Soc. 64, 275-278.

18. Gomory, R. E., “All Integer Programming Algorithm," 1960, RC-189,
IBM, Yorktown Heights, NY.

19. Gomory, R. E., “An Algorithm for the Mixed Integer Problem," 1960,
RM-2597, RAND Corp., Santa Monica, CA.

20. Glover, F., "A Bound Escalation Method for the Solution of Integer
Linear Programs," 1965, Cah. Cent. Etud. Rech. Operationelle 6,
131-168.

21. Young, R. D. (1971), "Hypercylindrically Deduced Cuts in 0-1
Integer Programming," 1971, Oper. Res. 19, 1393-1405.

22. Balas, E., "Intersection Cuts — A New Type of Cutting Planes
Method for Integer Programming," 1971, Oper. Res. 19, 19-39.

23. Glover, F., "Convexity Cut and Cut Search," 1971, Oper. Res. 21,
123-134.

24. Ben-Israel, A. and Charnes, A., "On Some Problems in Diophantine
Programming," 1962, Cah. Cent. Etud. Rech. Operationelle 4, 215-
280.



60

25. Young, R. D., "A Primal (all integer) Integer Programming
Algorithm," 1965, J. Res. Nat. Bur. Stand. Sect. B, 69, 213-250.

26. Young, R. D., "A Simplified Primal (all integer) Inter Programming
Algorithm," 1968, Oper. Res. 16, 750-782.

27. Glover, F., "A New Foundation for a Simplified Primal Integer Pro-
gramming Algorithm," 1968, Oper. Res. 16, 727-740.

28. Bertier, P., and Roy, B., "Une Procedure de Resolution pour une
Classe de Problemes Pouvant avoir un Charactere Combinatoire,"
1965, Intl. Comput. Cent. Bull. 4, 19-28 (Transl. by N. S. Jewell,
ORC Rep. 67-34, Univ. of Calif., Berkeley).

29. Balas, E., "A Note on the Branch and Bound Principle," 1968, Oper.
Res. 16, 442-445; errata Oper. Res. 16, 886.

30. Mitten, L. G., "Branch and Bound Methods: General Formulations
and Properties," 1970, Oper. Res. 18, 24-34.

31. Land, A. H., and Doig, A. G., "An Automatic Method for Solving
Oiscrete Programming Problems," 1960, Econometrica 28, 497-520.

32. Dakin, R. J.,
“A

Tree Search Algorithm for Mixed Integer Program-
ming Problems," Computer Journal, Vol. 8, No. 3, 1965, pp. 250-
255.

33. Gupta, O. K., "Branch and Bound Experiments in Nonlinear Integer
Programming," Ph.O. Thesis, Purdue Univ., 1980.

34. Gupta, 0., and Ravindran, A., "Nonlinear Integer Programming and
Oiscrete Optimization," ASME Transactions, Journal of Mechanisms,
Transmissions, & Automation in Design, Vol. 105, No. 2, June 1983.

35. Schmit, L. A., and Fleury, C., "Discrete-continuous Variable
Structural Synthesis Using Dual Methods," AIAA J., Vol. 18, No.
12, Dec. 1980.

36. Imai, K., "Structural Optimization by Material Selection," Infor-
mation Processing Center, Kajima Corp., Dec. 1979.

37. Hua, H. M., "0ptimization for Structures of Oiscrete-Size Ele-
ments," Computers & Structures, Vol. 17, No. 3, pp. 327-333, 1983.

38. Johnson, R. C., "Rigid—Plastic Minimum Neight Plane Frame Design
Using Hot Rolled Shapes," Proceedings of the Intl. Symposium on
Optimum Structural Design, Tucson, AZ, Oct. 1981.



61

39. Gisvold, K. M., "A Method for Nonlinear Mixed-Integer Programming
and Its Application to Design Problems," presented at the Vibra-
tions & International Design Automation Conference, Toronto,
Canada, Sept. 8-10, 1971, ASME. .

40. Templeman, A. B., and Yates, D. F., "A Segmented Method for the
Discrete Optimum Design of Structures," Engineering Optimization,
1983, Vol. 6, pp. 145-155, Gordon & Breach Science Publishers,
Inc.

41. Greenberg, H. J., and Prager, N., "On Limit Design of Beams and
Frames," Technical Report, Brown Univ., Office of Naval Research,
Contract N70nr—35806, Oct. 1949.

42. Livesley, R. K., "The Automatic Design of Structural Frames,"
Quart. J. Mech. Appl. Math., 9, Part 3 (1956).

43. Schmit, L. A., "Structural Design by Systematic Synthesis," Proc.
of 2nd National Conf. on Electronic Computation, ASCE, 1960, pp.
105-132.

44. Moses, F., "Optimum Standard Design Using Mathematical Program-
ming," J. of the Structural Div., ASCE, Vol. 90, No. ST6, Dec.
1964, pp. 89-104.

45. Venkayya, V., "Design of Optimum Structures," Computers & Struc-
tures, 1, No. 1/2, 265-309 (1971).

46. Prager, N., and Marcal, P., "Optimality Criteria in Structural
Design," AFFDL-TR-70-166, May 1971.

47. Taylor, J., "0ptimal Design of Structural Systems" An Energy
Formulation," AIAA J., 7, pp. 1404-1406 (1969).

48. Kicher, T. P., "Optimum Design Versus Fully Stressed," Proc. ASCE
Journal of Struct. Div., Vol. 92, No. ST6, 1966.

49. Fleury, C., and Sander, G., "Relationships Between Optimality Cri-
teria and Mathematical Programming in Structural Optimization,"
Proc. Symp. Applications for Computer Meth. in Engrg. (Ed. C. .
Nellford, Jr.), Univ. of Southern California, 507-520 (1977).

50. Fleury, C., and Schmit, L. A., "Prime and Dual Methods in Struc-
tural Optimization," Journal of the Structural Division, ASCE,
Vol. 106, No. ST5, Proc. Paper 15431, May 1980, pp. 1117-1133.

51. Schmit, L. A., and Farshi, B., "Some Approximation Concepts for
Structural Synthesis," AIAA Paper No. 73-341, AIAA/ASME/SAE 14th
Structures, Structural Dynamics & Materials Conference, williams-
burg, VA, March 1973.



62

52. Haftka, R. T., and Yates, E. C., Jr., "Dn Repetitive Flutter Cal-
culations in Structural Design," AIAA 12 Aerospace Sciences Meet-
ing, washington, D.C., January 1974, Paper No. 74-141.

53. Haftka, R. T., and Yates, E. C., Jr., "Repetitive Flutter Calcula-
tions in Structural Design," Journal of Aircraft, Vol. 13, pp.
454-461, 1976.

54. Rosen, J. B., "The Gradient Projection Method of Linear Program-
ming Part 1: Linear Constraints," SIAM J. 8, 181-217, 1960.

55. Rosen, J. B., "The Gradient Projection Method of Linear Program-
ming Part 1: Nonlinear Constraints," SIAM J. 9, 541-532, 1961.

56. Zoutendijk, G., "Methods of Feasible Directions," Elsevier,
Amsterdam, 1960.

57. Vanderplaats, G. N., "CONMIN - A Fortran Program for Constrained
Function Minimization: User's Manual," NASA TM X—62282, 1973.

58. Vanderplaats, G. N., Sugimoto, H., and Sprague, C. M., "ADS-1: A
New General Purpose Optimization Program," AIAA Paper No. 83-0831,
presented at the AIAA/ASME/ASCE/AHS 24th Structures, Structural
Dynamics & Materials Conf., Lake Tahoe, CA, May 1983.

59. Haftka, R. T., and Kamat, M. P., "Elements of Structural Optimiza-
tion," Martinus Nojhoff Publishers, 1985.

60. Kavlie, D., and Moe, J., "Automated Design of Frame Structures,"
ASCE J. Struc. Div., 33-62, 1971.

61. Haftka, R. T., and Starnes, J. H., Jr., "Applications of a Quad-
ratic Extended Penalty Function to Structural Optimization," AIAA
J. 14, 718-724, 1976.

62. Prasad, B., "A Class of Generalized Variable Penalty Methods for
Nonlinear Programming," J. Optimization Theory & Applications 35,
159-182, 1981.

63. Fiacco, A. V., and McCormick, G. P., "Nonlinear Programming:
Sequential Unconstrained Minimization Techniques," wiley, NY,
1969.

64. Miura, H., and Schmit, L. A., Jr., "NEwSUMT - A Fortran Program
for Inequality Constrained Function Minimization - User‘s Guide,"
NASA CR-159070, June 1979.

65. Falk, J. E., "Lagrange Multipliers and Nonlinear Programming," J.
Math. Anal. Appl. 19, 141-159, 1967.



63

66. Powell, M. J. D., "A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations," in Proc. of the 1977 Dundee Conf. on
Numerical Analysis, Lecture Note in Mathematics, Springer-Verlag,
1978.

67. Fleury, C., "Structural weight Optimization by Dual Methods of
Convex Programming," Intl. J. Num. Meth. Engrg., 14, 1761-1783,
1979.

68. Fleury, C., and Schmit, L. A., "ACCESS 3-APPROXIMATION Concepts
Code for Efficient Structural Synthesis — User's Guide," NASA CR-

&159260, Sept. 1980.

69. Cilley, F. H., "The Exact Design of Statically Determinate Frame-
works, and Exposition of Its Possibility, But Futility," Trans.
ASCE 43, 353-407, 1900.

70. Khot, N. S., Venkayya, V. B., and Berke, L., "Optimum Design of
Composite Structures with Stress and Displacement Constraints,"
AIAA Journal, Vol. 14, Feb. 1976, pp. 131-137.

71. Khot, N. S., "Optimal Design of a Structure for System Stability
for a Specified Eigenvalue Distribution," Proceedings, Inter-
national Symposium on Optimum Structural Design, Tucson, AZ, pp.
1-3, Oct. 1981.

72. Nshanian, Y. S., and Pappas, M., "0ptimal Design of Laminated Com-
posite Plates," NJIT Report NV-16, Dec. 1981.

73. Hirano, Y., "Optimal Design of Laminated Plates Under Axial Com-
pression," AIAA Journal, Vol. 17, Sept. 1979, pp. 1017-1018.

74. Nshanian, Y. S., and Pappas, M., "0ptimal Laminated Composite
Shells for Buckling and Vibration," AIAA Journal, Vol. 21, March
1983, pp. 430-437.

75. Bryson, A. E., and Ho, Y. C., "Applied Control Theory," Blaisdel
Publishing Co., waltham, MA, 1969.

76. Florentin, J. J., "0ptimal Control of Continuous-Time Markow
Stochastic Systems,“ Journal of Electro. Contr., IEEE, Vol. 10,
pp. 473-488.

77. Kalman, R. E., and Bucy, R. S., "New Results in Linear Filtering
and Prediction Theory," Journal of Basic Engineering, Trans-
actions, American Society of Mechanical Engineering, Vol. 83,
1961.



64

78. Tse, E., "On the Optimal Control of Stochastic Linear Systems,"
IEEE Transactions on Automatic Control, Vol. AC-16, No. 6, 1971,
pp. 776-785.

79. wonhan, w. M., "On the Separation Theorem of Stochastic Control,"
Society for Industrial & Applied Mathematics Journal for Control,
Vol. 6, No. 2, 1968, pp. 313-326.

80. Blackburn, T. R., and Vaughan, D. T., "Application of Linear Opti-
mal Control Filtering Theory to the Saturn V Launch Vehicle," IEEE
Transactions on Automatic Control, Dec. 1971, pp. 799-806.

81. Luh, J. Y. S., and Lukas, M. P., "Suboptimal Closed-Loop Con-‘
troller Design for Minimum Probability of Inequality Constraints‘
Violation," IEEE Transactions on Automatic Control, Oct. 1969, pp.
449-457.

82. Swaim, R. L., "Control System Synthesis for a Launch Vehicle with
Severe Mode Interaction," IEEE Transactions on Automatic Control,
Vol. AC-16, No. 6, 1971, pp. 776-785.

83. Bender, E. K., "Optimum Linear Preview Control with Application to
Vehicle Suspension," Journal of Basic Engineering, Transactions,
ASME, Vol. 90, No. 2, 1968, pp. 213-221.

84. Karnopp, D. C., "Applications of Random Process Theory to the
‘

Design & Testing of Ground Vehicles," Transportation Research,
Vol. 2, 1968, pp. 269-278.

85. Sevin, E., and Pilkey, w. D., "Optimum Shock and Vibration Isola-
tion," SVM-6, The Shock & Vibration Information, U.S. Dept. of
Defense, washington, D.C., 1971.

86. Meirovitch, L., and Oz, H., "Active Control of Structures by Modal
Synthesis," Structural Control, H. H. E. Leipholz (ed.), North
Holland Publishing Co. & SM Publications @ IUTAM, 1980.

87. Meirovitch, L., Baruh, H., and Oz, H., "A Comparison of Control
Techniques for Large Flexible Systems," AIAA Journal of Guidance,
Control & Dynamics, Vol. 6, Nov. 4, July-Aug. 1983, pp. 302-310.

88. VanLandingham, H. F., Caglayan, A. K., and Floyd, J. B., "Approxi-
mation Techniques for Optimal Modal Control of Flexible Systems,"
Proceedings of the 3rd VPI&SU/AIAA Symposium held in Blacksburg,
VA, June 15-17, 1981.

89. Baruh, H., and Meirovitch, L., "On the Placement in the Control of
Distributed-Parameter Systems," Proceedings of the AIAA Dynamics
Specialist Conference, AIAA, New York, 1981, pp. 611-620.



65

90. Kamat, M. P., "Active Control of Structures in Nonlinear
Response," Optimization Issues in the Design & Control of Large
Space Structures, Ed. M. P. Kamat, Proceedings of the ASCE Denver
Convention, April 1985, pp. 46-59. p

91. Tripathy, S. S., "0ptimization Using Conjugate Gradient Methods,"
IEEE Transactions on Automatic Control, April 1970, pp. 268-270.

92. Herrick, D. C., Canavin, J. R., and Strunce, R. R., "An Experi-
mental Investigation of Modern Control," AIAA Paper 79-0199, 17th
AIAA Aerospace Sciences Meeting, New Orleans, Jan. 15-17, 1979.

93. Roorda, J., "Experiments in Feedback Control of Structures," H. H.‘
E. Leipholz, ed., Structural Control Proc. of the IUTAM Symposium
on Structural Control held at the Univ. of Waterloo, Ontario,
Canada, pp. 629-661, June 4-7, 1979, North Holland Publications,
1980.

94. Stroud, R. C., Hamma, G. A., Smith, S., and Lyons, M. G.,
"Developments Toward Active Control of Space Structure," SAE Paper
801234, SAE Aerospace Meeting, Los Angeles, Oct. 13-16, 1980.

95. Rockwell, T. H., and Lawther, J. M., "Theoretical and Experimental
Dampers," Journal of the Acoustical Society of America, 36(8),
1507-1515, 1964.

96. Knyazev, A. S., and Tartakovskii, B. D., "Vibrational Frequency
Characteristics of Bars Constrained by Electromechanical Feed-
back," Soviet Physics-Acoustics, 12(1), 36-41, 1966.

97. Swigert, C. J., and Forward, R. L., "Electronic Damping of Ortho-
gonal Bending Modes in a Cylindrical Mast - Theory and Experi-
ment," Journal of Spacecraft & Rockets, 18(1), 5-17, 1981.

98. Hallauer, W. L., Skidmore, G. R., and Mesquita, L. C., "Experi-
mental Theoretical Study of Active Vibration Control," Ist Inter-
national Modal Analysis Conference, Nov. 8-10, 1982, Orlando, FL.

99. Meirovitch, L., Baruh, H., Montgomery, R. C., and Williams, J. P.,
"Nonlinear Natural Control of an Experimental Beam," AIAA J. of
Guidance, Control & Dynamics, Vol. 7, No. 4, July-August 1984, pp.
437-442.

100. Little, J. D. C., Murthy, K. G., Sweeney, 0. W., and Karel, C.,
"An Algorithm for the Travelling Salesman Problem," Oper. Res. 11,
pp. 979-989, 1960.

101. Hamdy, A. T., "Integer Programming," 1975, Academic Press, p. 171.



66

102. Reddy, J. N., "Simple Finite Elements with Relaxed Continuity for
Nonlinear Analysis of Plates," Proc. 3rd Intl. Conf. in Australia
on Finite Element Methods, Univ. of New South Wales, Syndey, July
2-6, 1979. .

103. Meirovitch, L., and Silverberg, L. M., "Control of Structures Sub-
jected to Seismic Excitation," Journal of Engng. Mech., Vol. 109,
No. 2, April 1983, pp. 604-618.

104. Reddy, J. N., "An Introduction to the Finite Element Method,"
McGraw Hill Book Co., 1984.

105. Biggs, M. C., "Constrained Minimization Using Recursive Ouadratic‘
Programming; Some Alternative Problem Formulations" in Towards
Global Optimization, eds. L. C. W. Dixon and G. P. Szego, North
Holland Publishing Co. (Amsterdam).

106. Fletcher, R., "An Ideal Penalty Function for Constrained Optimiza-
tion," J. Inst. Maths. Applics., 1975, Vol. 15, pp. 319-342.

107. Han, S. P., "Superlinearly Convergent Variable Metric Algorithms
for General Nonlinear Programming Problems," Mathematical Program-
ming, Vol. 11, pp. 263-282.

108. Reissner, E., "On Transverse Bending of Plates, Including the
Effect of Transverse Shear Deformations," Intl. J. Sol. Struc. 11,
pp. 569-573, 1975.

109. Mindlin, R. D., "Influence of Rotary Inertia and Shear on Flexural
Motions of Isoptropic, Elastic Plates," J. Applied Mechanics 18,
pp. 31-38, 1951.

110. Stavsky, Y., "On the Theory of Symmetrically Heterogeneous Plates
Having the Same Thickness Variation of the Elastic Moduli" in
Topics in Appl. Mech. (eds. D. Abir, F. Ollendorf and M. Reiner),
American Elsevier, NY, 1965.

111. Yang, P. C., Norris, C. H., and Stavsky, Y., "Elastic Wave Propa-
gation in Heterogeneous Plates," Intl. J. of Solids & Structures,
Vol. 2, pp. 665-684, October 1966.

112. Sun, C. T., and Whitney, J. M., "Theories for the Dynamic Response
of Laminated Plates," AIAA J., 11, 178-183 (1973).

113. Srinivas, S., and Rao, A. K., "Bending, Vibration, and Buckling of
Simply Supported Thick Orthothropic Rectangular Plates and Lamin-
ates," Intl. J. Sol. Struc., 6, pp. 1463-1481, 1970.



67
P

114. Reddy, J. N., “Comparison of Closed Form and Finite—Element Solu-
tions for Bending and Free Vibrations of Layered Composite Rectan—
gular Plates," Rep. OU—AMNE~79-20, School of Aerospace, Mechani-
cal, & Nuclear Engineering, Univ. of Oklahoma, Norman, OK.

115. Whitney, J. M., "The Effect of Transverse Shear Deformation on the
Bending of Laminated Plates," J. Comp. Materials 3, pp. 534-547,
1969. ‘

116. Bathe, K. J., "Finite Element Procedures in Engineering Analysis,"
Prentice Hall, Inc., Englewood Cliffs, NJ.



Appendix A

A.1 Outline of the Branch and Bound Algorithm

The procedure adopted for solving the nonlinear mixed integer

programming (NMIP) problem is an extension of the procedure suggested by

Dakin [32]. This procedure is applicable to both linear as well as non-

linear mixed integer programming problems. The procedure consists of a

systematic search of continuous solutions in which certain variables are

successively forced to take on integral values; the logical structure of

the set of solutions is that of a tree. The algorithm starts by finding

a solution to the continuous problem wherein the integrality

requirements are relaxed. If this solution is integral, then it is the

optimal solution to the given discrete problem. If the solution is

nonintegral then at least one integer variable, say xk, is nonintegral,

and takes the value, say bk which can be divided into integral and

fractional parts [bl and f respectively as

bk = [bl + f (A.1.1)

where [bl is integral and 0 < f < 1. If xk has to take an integer value

then either one of the following two conditions must be satisfied.

xk s [bl or (A.l.2)

xk 2 [bl +1 (A.1.3)

This leads to two subproblems each satisfying one of the above

conditions.

Subproblem (1):
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Minimize f(x), x = (x1,x2,...,xn)t (A.1.4)

Subject to hi(x) = 0 i = 1,2,...,ne

gj(x) 2 0 j = 1,2,...,hg

xk s [bl

Subproblem (2):

Minimize f(x), x = (x1,x2,...,xn)t (A.1.5)

Subject to h1(x) = 0 i = 1,2,...,ne

gj(x) 2 0 j = 1,2,...,ng

xk 2[bl + 1

In the subproblems, the integrality requirement on the design variables

has been removed. Furtheremore, the two subproblems have removed the

space [bl < xk < [bl + 1 from the feasile region as this space is not

allowable for an integral solution. It should also be noted that none

of the integer feasible solutions have been eliminated. Each of these

subproblems is then solved again as a continuous problem and the

information regarding the optimal solution is stored at a corresponding

node. A node stores the optimal solution and the corresponding value of

the objective function, and also the lower and upper bounds on the

design variables.

The foregoing procedure of branching and solving a sequence of

continuos problems is continued until a feasible integer solution to one

of the continuous problems is found. This integer feasible solution

becomes an upper bound on the objective function. At this point, all

nodes that have a value of the objective function higher than the upper
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bound are eliminated from further consideration, and the corresponding

nodes are said to be fathomed.

The procedure of branching and fathoming is repeated for each of

the unfathomed nodes. when a feasible integer solution is found, and

the value of the objective function is less than the upper bound to

date, it becomes the new upper bound on the objective function. A node

is fathomed (i.e. no further consideration is required) in any one of

the following cases.

1 The continuous solution is a feasible integer solution.

2. The continuous solution is infeasible.

3. The optimal value (of the continuous problem) is higher than the

current upper bound.

The search for the optimal solution terminates when all nodes are

fathomed. The current best integer solution gives the optimal solution

to the given discrete optimization problem. The work of Gupta and

Ravindran [33], [34} formed the basis for the development of a code for

the NMIP problem of this study.



Appendix B

8.1 Outline of the VMCON Algonithm for the Solution of the Continuous

Subproblems

The VMCON algorithm described here is based amongst others on the

work of Powell [66], Biggs [105], Fletcher [106] and Han [107].

This algorithm calculates the least value of a real valued function

subject to equality and inequality constraints by using a variable

metric method for constrained optimization. Consider the problem

Minimize f(x); x = (x1,x2,...,xn)t (8.1.1)

subject to hi(x) = 0 i = 1,2,...,nE

gj(x) 2 0 j = 1,2,...,ng (8.1.2)

Assume that at the ith iteration the design point is xi and a

search direction S is sought. This search direction S is found from the

solution of the following quadratic programming problem:

Minimize the quadratic approximation of f along S

0(x) = 6(X) (8.1.3)
subject to the linearized constraints

hj(xi) + STvhj(xi) = 0 5 = 1,2,...,Re
gk(xl) + sTngk(x‘) 2 0 k = 1,2,...,ng (8.1.4)

where G(x]) is the gradient of the objective function f, Ai are the

Lagrange multipliers. The matrix A in Eq. (8.1.3) is a positive

definite approximation to the Hessian of the Lagrangian function.

Initiallly it is set to the identity matrix and suitably updated during

each iteration to ensure its symmetry and positive definiteness.

Keeping the matrix A positive definite not only helps the quadratic
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programming calculation that provides S, but it also ensures that the

given method is invariant under linear transformations of the ·

variables. This makes the method insensitive to scaling of the

variables and the constraint functions.

It may happen that the linearized version of the constraints in

(8.1.4) are inconsistent, even though the original constraints given by

Eq. (8.1.2) are consistent. To avoid this difficulty, an extra

variable, 5 is introduced into the quadratic programming calculation and

the constraints (8.1.4) are replaced by the conditions

hj(x1)5 + STvhj(xi) = 0 5 = 1,2,...,ne

i T i _
gk(x )5k + S vgk(x ) 2 0 k - 1,2,...,ng (8.1.5)

where 5k has the value

€k=1 • gk>0

€k=€• gkso

It should be noted that if 5k = 1, the corresponding constraint

remains unmodified. Thus only those constraints that are not satisfied

at the starting point of the iteration are modified. The constant 5 is

made as large as possible subject to the condition 0 s 5 s 1. Any

freedom that remains in S is used to minimize the quadratic objective

function (8.1.3).

The matrix A is updated using the BFGS (Broyden-Fletcher—Goldforb—

Shanno) update.
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A A A A A mai (A A A,
new (AX)TAAX (Ax)TAx

where

_ 1+1 iAX — x - x (8.1.7)

VL (8.1.8)

where 1 is the Lagrangian function and VX1 denotes the gradient of the

Lagrangian with respect to x. To guarantee the positive-definiteness of

A, VL is modified if

T TAX VL < 0.2(Ax) AAx and repiaced by

VL' = 6VL + (1 - 6)AAx (8.1.9)

where

0 6(Ax)TAAx6 = T' T (8.1.10)
(Ax) AAx - (Ax) VL

The solution of the quadratic programming yie1ds S and Ne

then have the new iterate given by

xi+1 = xi + ¤S (8.1.11)

where a is found by minimizing the function

w(a) = f(a) + zaj|hj(x)| + zaj|min[O,gj(x)]| (8.1.12)

aj = |Aj| for the 1st iteration



74

_ 1 1-1 1+1and p — max [IA I, 0.5(p + IA. I)] (8.1.13)J J J J J

for subsequent iterations with the superscript 1 denoting the ith

iteration. _

The summation in (8.1.12) is carried over all the equality

constraints hj (j = 1,2,...,ne) and all the inequality constraints gk (k

= 1,2,...,ng) I

It is to be noted that w(a) as defined in (8.1.12) has a first

derivative discontinuity. Hence one cannot minimize w(a) by algorithms

that rely on the continuity of first derivative.

The procedure adopted for choosing a is as follows. A

sequence ak (k = 0.1,2,...) is built such that ao = 1. A quadratic

approximation to w, say wk is made defined by the equations

wk(¤) = MO)

¤•»k(0) = =v'<0)

wk(¤k_l) = w(¤k_1) (8.1.14)

ak is then chosen to be the greater of 0.1(ak_l) and the value

of a that minimizes wk(a).
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For each term in the sequence the foiiowing condition is tested.

w(ak) s w(0) + 0.1 ako'(0) (8.1.15)

The step Tength ¤ is set to ak as soon as this inequaiity is

satisfied.



Appendix C

INDEPENDENT MODAL SPACE CONTROL

C.l Eguations of Motion and Modal Oecomposition for Flexible Structures

In this Appendix, a concise statement of the Independent Modal

Space Control (IMSC) method described in Refs. [86]-[89] is given.

Optimal control of a continuous system via IMSC is accomplished by

first approximating the partial differential equation model describing

the structure, by a finite set of ordinary differential equations which

take the form

Mu(t) + Ku(t) = F(t) (C.1.1)

where M,K are the mass and stiffness matrices of the finite element

assemblage,

u(t) = vector of displacements

F(t) = vector of nodal forces.

The eigenvalue problem associated with the above equation has the

form

afnxr = Kxr (6.1.2)
The eigenvectors are normalized to satisfy

XEMX. = ws,
x;Kxr = uäsrs r,s = l,Z,...n (C.l.3)

wherein ars is the Kronecker delta.
The eigenvectors can be arranged in the nxn modal matrix

X =[x1x2 xn] (C.l.4)

so that Eqs. (C.l.3) can be written in the compact form
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xTMx = rn; XTKX = A (6.1.5)
in which In = a unit matrix of order n; and A = the diagonal matrix of

eigenvalues.

Using the linear transformation

u(t) = Xg(t) (6.1.6)

and using Eqs. (6.1.5), Eq. (6.1.1) becomes

Ä + AE = ZC _ (6.1.7)

where

zc = xTF (6.1.8)
is the nodal control vector.

Equation (6.1.7) represents a set of n modal equations of the form

er + bier = Zcr r = 1,2,...,n (6.1.9)
In Independent Modal Space Control (IMSC), Zcn depends on gr and ir

alone

(6.1.10)

Equations (6.1.9) are n decoupled set of equations. It follows

that each mode can be controlled independently of the other modes.

6.2. Linear Optimal Control

In the IMSC technique the performance index that is to be minimized

is taken in the form

2
.1 = gl .1r (6.2.1)

where 2 = number of modes controlled
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Jr = Performance Index Associated with the rth mode, and it is

defined by

1 tf 2 2 2 2Jr = ä fo (mrgr + gr + RrZcr)dt (C.2.2)

r = 1,2,...,2

tf = final time

Rr = A parameter to be chosen by the designer. It represents the

penalty imposed on the control effort Zcr.

The term (ogg? + éz) in Eq. (C.2.2) represents the (strain energy +

Kinetic Energy) associated with the rth mode.

According to Eq. (C.1.10), Zcr depends only on gr and ir. Hence,

each performance index Jr can be minimized independently of any other

modal performance index. For the rth mode, therefore, the optional

control problem reduces to the problem of minimizing Jr subject to the

constraint conditions (C.1.9).

For the case when tf
-

¤ the control force is given by (see Ref.

[771)

2 -1ZCr(t) = ur(wr -‘/ or + Rr )

_ (C.2.3)
- [2wr_(-wr +v.n?_ + + R-.111/2 §r(t)
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Substituting Zcr from Eq. (C.2.3) into Eq. (C.2.2) one gets

"’2 “
2 2-

_§ ”Jr · 2ér

where nr = E; _ (C.2.5)

and

2 2K 2K K K_ 12 _ 12 22 _ 22
wr r wr r wr r

_ 1_ 2 2 2 3/2 _ 2 2 _ 1/2K11 ' 1 2 + w R
1“rRr + Rrl 2Rrwr Rr1

wr T T

————————-1/2
· _ 2 2 2 2

K22 - [Rr — ZwrRr + 2wrRr/wrRr + Rr)

_ 2 2
K12 = K21 Rr (C°2°7)

Solution of the closed loop modal equations for the controlled

modes gives

_ —alt _ ge {alcosot + ßlsin6t2

= Ärwr
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6 = (“d)r

Gl = €r(0) F

— NF
0 0Bl — (ggg; (Er( )%r + ¤r( )]

°2 = nr(0)

_ 1B2T

Zwr

- 2 fg; 1/2(wd)r “ (wr ‘
“rF21 “

4 ]

_ -1
fzl - -Rr K22 (C.2,9)
Substituting from Eq. (C.2.8) into Eq. (C.2.5), (C.2.4) and

integrating one obtains

wi
Jr Gllz) (C.2.10)

with
_ 2 2F ‘ J11°1 * wzzwz F J12°1°2 _
_ 2 2F ‘ Jllßl * wzzwz * J12BlB2

G = 2J11o1lBl + 2J22c12B2 + „]12(¤.1B2 + 11281)

1 °1
I11 wa1 4aä + 62
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Appendix D

. DISCRETIZATION AND FINITE ELEMENT MODELING

D.1 Shear Deformable Plate Bending Element

Recent developments in the analysis of orthotropic laminated plates

indicate that the thickness effect on the behavior of such plates is

more pronounced than in isotropic plates [108]. The classical thin

plate theory assumes that normals to the midsurface before deformation

remain straight and normal to the midsurface after deformation, implying

that transverse shear deformation effects are zero. As a result, the

free vibration frequencies, for example, calculated using the thin plate

theory are higher than those obtained by the Mindlin plate theory [109].

A number of shear deformable theories for laminates have been

proposed to date. The first such theory for laminates isotropic plates

is due to Stavsky [110]. The theory has been generalized to laminated

anisotropic plates by Yang, Norris and Stavsky [111]. It has been shown

by Sun and Whitney [112] and Srinivas and Rao [113] that the Yang-

Norris—Stavsky (YNS) theory is adequate for predicting the overall

behavior such as transverse deflections and natural frequencies (first

few modes) of laminated anisotropic plates. The plate bending element

developed here is based on the work by Reddy, Whitney, and Bert

[104,114,115l.

Laminated Plate Theory of Yang—Norris-Stavsky (YNS)

Consider a plate of constant thickness h composed of a finite-

number, n, of thin anisotropic layers oriented at angles

82
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61, 62, ..., 6N. The origin of the co—ordinate system is located within

the middle plane (x—y) with the 2-axis being normal to the mid—plane.

The material of each layer is assumed to possess a plane of elastic

symmetry parallel to the x-y plane.

The YNS theory is based on the following assumed displacement

field:

¤ = ¤0(¤.y.t) + z wX(x.y.t)
v = vO(¤.y.t) + z wy(x.y.t)
w = w(x,y,t) (0.1.1)

where u, v and w are the displacement components in the x, y and 2

directions, respectively, uo and vo are the in-plane (stretching)

displacements of the middle plane, and px and py are the shear

rotations.

For a symmetric laminate, the equations of motion associated with

the YNS theory are

^0 60 2
@+....2.:pg_Pax ay at2

BMI 6M6 62wX

2BM BM 6 w
l+l-Q-:]....1BX 6y y 3t2

where
h/2

· 2(p. 11 = 1 (1. z 1 ¤(m) dz (D-1.3)
-h/2
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h/2
(Ox, (vxz, vyz)

dzh/2
M , = , ,(M1,

2
M6)

_[--h/2
(ox oy rxy) Z d2

p(m) being the material density of layer m, and P = P(x,y) is the

transversely distributed load. Combining the plate compatibility and

constitutive equations one obtains

- HOx - A44 (ax + Mx)

- HOy - A55 (ay + vy)

SWX SW
= ... ..1M1 011 ax + 052 ay (0.1.5)

SWX SW
=

JM2 D12 ax + D22 ay

SWX SW
= .... ..1M6 D66 (ay T ax 1

The material components Aij, Dij are given by

h/2. <·¤> 2 — -.(Aij, Dij) (1,2 )d2 1,3 1,2,6 (0.1.6)

_ _k/2

J G J J _k/2 J

(1,3)**,5 ¤=6-1, ß=6-.1
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The stiffness coefficients Qgg) depend on the material properties and

orientation of the mthlayer. The parameters ki are the shear correction

factors.
T

The strain energy and the kinetic energy associated with equations

(0.1.2) and (0.1.5) are given by

V = V1 + V2 (0.1.7)

- 1 Bw 2 331 EU1
2

T · 2 111 at] + ( at) ]}d><d1 (Ü·l·8)

where

abx 2 abx abx abx 2 abx ab ab
U1 U11( ax) +2D16 ax ay+ U66( ay) T ax (U12 ayT2U16 ax)

ab ab ab ab ab ab 2
..1 ..1 ..1 ..1 ..1 ..1T ay (U12 ax T ZU26 ay] T UU66 ay ay T U66 ( ax) (UW

(0.1.9)

- 1 m 21 11U2 ‘ 2 T9((^s6(aX T UX] T A45(ay T UyU](aX T UX)

aw aw aw+ [/1,,51;,; + bx) + ^4,,(,y + bylllay + 1·y)}d><dy <¤•l-10)

0.2 Penalty Formulation of the Eguations

The assumption of the classical thin plate theory that the normals

to the midsurface before deformation remain straight and normal to the

midsurface after deformation implies that

bx = —
ä and by = —

ä
(0.2.1)

If bx and by from Eq. (0.2.1) are substituted into Eq. (0.1.9), one

gets the strain energy U = U1 associated with the classical thin plate
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theory. In that case U1 involves the second-order derivatives of the

transverse deflection, and the associated (conventional) finite element

formulation results in complicated elements (with many degrees-of-

freedom).

To avoid this difficulty, Eq. (0.2.1) is not satisfied explicitly

but a penalty method is employed to ensure its approximate satisfaction.

The problem of finding the solution to the thin plate equations can

be viewed as one of minimizing the total potential energy nl = U1 + V1

where U1 is the strain energy given by Eq. (0.1.9) in terms of w, and V

is the potential of applied loads. Alternatively, the problem can also

be viewed as one of finding w,wX,wy subject to the constraint conditions

in (0.2.1). The constraints are incorporated by the penalty function

method. when the penalty function method is used, the modified

functional is given by

Np = U1 + Up + V (0.2.3)

where the penalty function Up is chosen to be

Up fgleäiä

(0.2.4)

where 61 anad 62 are the penalty parameters. In the limit

as 61,62 + ¤, the constraints are exactly satisfied.
From the Euler-Lagrange equations of the functional Np it follows

that
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_ 2 aw awQ. - ala + M + wlw + 1,)
- il! . 2 E! ‘ 'Qyeä

6162 eg (0.2.5)

This correspondence implies that For very large values of ei, the

equations govern the thin plate thoery, and for values of ei given in

(0.2.5) the equations coincide with the YNS theory.

0.3 Plate Bending Finite Element Model

The present Finite element model is based on using Dp(w,bX.by) of

Eq. (0.2.3) and T of Eq. (0.1.8). For each elemente oe, the same kind

of interpolation for all of the variables is assumed
{

e _ e e"0 ‘
E "1"1

¤ - " ¤ De D D Dwx0 —
2 Üxi i ( ° ' }
1

|’1
e _ e e

wy0 -
Ä wyiNi

where n = nodes per element.

N? are the element interpolation functions, and w?, bgi, bj? are

the nodal values of wg, bio and bio, respectively. Substituting (0.3.1)

into the first variation of D§(w,bX,by), and collecting the coefficients

of the variations awi, sbxi, abyi one obtains

[M°}{A°} + (•<"‘1{D"‘} = {FE) (0.3.2)
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where

{we}
{Aa} = {0;} (0.3.3)

6{wy}

¤lS°°l
(M1 = 11s°°1 (0.3.4)

[K11) [K12] [K13}
11<1 = 11821* 11<221 11<221 (0.3.5)

and

ll - **1 Ü **1 ÜK11 · *%**66 *12 22 + ^44 E 62*****
12 _ **1 „K11 ‘ IQEASS 'SY *1 dxdy

13 _ **1
*15 ‘ IQE A44 'SY *1 dxdy

22 - **1 Ü Ü Ü
- Ina BX

+
ay ay

+
A55 wiwj] dxdy

23 - Ü Ü Ü ÜK11 _ fQe(D12 BX By + 066 BY ay] dxdy
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33_K
15 ‘

Ina (D66 'SI ax + D22 ‘S§ ay * A44 Diwj) dxdy

oo _ .Sij -
füe

0303 dxdy (0.3.6)

0. 4 Constitutive Eguations for Orthotropic Plies

For an orthotropic material, the compliance matrix components in

terms of the engineering constants are

2 -2 -2 0 0 OEl E2 E3
-2 2 -2 0 0 0E1 E2 E3

\J \) 0 0 ¤
[S]= l 2 3

0 0 0 El- 0 0
23

10 0 0 0 E- 0
31

0 0 0 0 0 El- (0.4.1)
12

El, E2, E3 are the Young's moduli in 1,2, and 3 directions,

respectively:

0.. = the Poisson's ratio for transverse strain
1J in the j-direction when stressed in the

i-th direction and G23,G31,G12 are the
shear moduli in the 2-3, 3-1 and 1-2 planes,
respectively.
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The stresses and strains in the principal co-ordinate system are

related by the relation

{6} = [s1{6} (0.4.2)

where

T-{€} ‘ (€19€2)€39
Y23•Yl3•Yl2)

cr o 1 1 1 (044)1’ 2’ 3’ 23’
l3’“l2 ° °

In this work, normal stress 63 = 0. The principal stress strain

relations reduce to

*1 $11 $12 0 *1
2 -6 - S12 S22 0 o2 (0.4.5)

*12 0 0 $66 *12

S Ü 1{$23}
""

23} (0.4.6)
*12 0 $66 *12

The inverse relation can be written as

*1 011 012 0 *1
oz = Q12 Q22 0 62 (0.4.7)

*12 0 0 066 *12
Q 044*12
0 066 *12
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where

Qu ._?L..
2Sl1S22 ‘ S12

Q = - ....äll.....
12 2S S — S11 2212Q

.;11...
22 2 2 ‘Sl1S22 ‘ S12

1O = ———-
66 $66

The stresses in the two co-ordinate systems are related by

°1 °x
nz =[T] ny (0.4.10)
T12 Txy

T m -n T

{
23} =

lä
YZ} (0.4.11)

T13 n m Txy

where

m2 nz 2mn
[i]= nz nz -2mn (0.4.12)

-mh mn ITIZ -
H2

with m = cos 6, n = sin 6, 6 being the angle between the principal

material directions and the x-y co-ordinate system.
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After algebraic manipulation, the constitutive equations in the x—y

co-ordinate system are

°x 011 012 016 Ex

Txy 016 026 066 Yxy

T O Ü Y
{ YZ; = 40 45]% VZ} (0.4.14)
Txz 045 066 Yxz

where

011 012 016 _1 011 012 0
1

012 022 026 = {Tl 012 022 0 [T1' (0.4.15)
016 026 066 0 0 066

and

044 645 0 0 022 0 0 ‘"
(6 4 161

Ü45 Ü55 -n m O G13 n m
O •

D.5 Isoparametric Elements and Numerical Integration

The plate is modelled using 8-noded isoparametric plate bending

elements. Fig. 3 shows one such typical element. For each element, the

displacements are interpolated using the relations

FI
w
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n
wy gii

wyiNi

-’
n

x = x(;, n) =
iél

xiNi

ny = y(a„¤) = gl yiNi (D-5-1)

where n is the number of nodes per element, Ni are the element

interpolation functions and wi, wxi, wyi are nodal values of w, bx, by
respectively, xi, yi are the x and y co—ordinates, respectively, of the

element nodes. It should be noted that the same functions that are used

to interpolate displacements are also used to transform each element in

the mesh to a master element. The master element is bounded by the

lines g = 1 1 and n = 1 1, as shown in Fig. 3.

The reason for the transformation is the ease with which

integrations can be performed over the master element, which has a

square shape. The original element could be non—rectangular and curved

sided in general, and as such presents formidable problems for

integrations, necessary to compute the elements of the mass and

stiffness matrices. Numerical integration using Gauss quadrature is

used for this purpose. For the master element shown in Fig. 3, the

interpolation funcions can be shown to be
h

Ni(;,n) = %(1 + ;;i)(1 + n¤i)(;;i + nni — 1) i = 1,2,3,4

N-(a 11) = L (1 — ;2)(1 + nn.) , 1: 5,71 1 2 1
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N ( — 1 1 2 1 1 - 6 61

V]where(gi, ni) are the intrinsic co-ordinates of the ith mode.

Suppose it is required to evaiuate the term

aN. aN. 6N. 6N. Ü .1 .;.1Kia fQe( ax ax + ay ay) dxdy (0.5.3)

It can be shown [104] that this term can be transformed to

1 1 6N. aN. 6N. aN.

-
..1...1 ..1 ..1ax ax + ay ay) der Jdgdn (0.5.4)

3Ni 6Ni
where —a; and —ay are given by

ax ax ax SE 1 SE
= _ = [J|' (0.5.5)Ü 15 EL Ü Ü

ay ay ay Sn an

[J] being the Jacobian of transformation.

The integrand in Eq. (0.5.4) is thus a function of the intrinsic

coordinates e and n. Thus, numericaT integration based on Gauss-

Legender quadrature yieTds

1 1
Ki. = [ [ F(;,n) dgdn (0.5.6)J -1 -1

N N
- gl J;1 F(ZI,ZJ)wIwJ (0.5.7)
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where N is the number of Gaussian points, ZI re the intrinsic co-

ordinates of the Gauss points, and NI are the corresponding weights.

E
0.7 Frame Element

The stiffners are modelled using frame elements. A space frame

element is a straight bar of uniform cross section which is capable of

resisting axial forces, bending moments about two principal axes in the

plane of its cross section and twisting moment about its centroidal

axis. The corresponding degrees of freedom are shown in Fig. 5. The

axial displacements qI and q7 depend only on the axial forces, and the

torsional displacements qa and qlo depend only on the torsional

moments. If the xy and xz planes coincide with the principal planes of

the cross section, the bending displacements and forces in the two

planes can be considered to be independent of each other.

Thus the displacements can be separated into four groups (axial,

„ torsional, bending in the xy palne, bending in the xz plane) each of

which can be considered independently of the others. Let u(x), 6(x) be

the axial, torsional displacements and v(x), w(x) be the displacements

due to bending in the xy and xz plane respectively. The assumed

displacements are of the form

u(x) = al + azx (0.7.1)

6(x) = a3 + aax (0.7.2)

v(x) = a5 + aöx + a7x2 + a8x3 (0.7.3)

w(x) = ag + alox + allxz + al2x3 (0.7.4)
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Let L,A,J denote the length, the cross-sectional area and the polar
1 moment of inertia of the frame element. Also let Iyy and Izz denote the

area moment of Inertia about the z and y axis and E and G denote the

Young‘s modulus and shear modulus respectively. Then, the stiffness and

mass matrices corresponding to the assumed displacements in (0.7.1) -

(0.7.4) can be derived to be

Q1 Q2
1 -1 q

Axial Stiffness Matrix [Ka(€)] = Ag 1 (0.7.5)
2 X 2 °1 1 Q2

Q1 Q2
1 1

(E) 2 6 Q1
Axial Mass Matrix [Ma ] = 6AL (0.7.6)

‘ 6 2 Q2

Q4 Q10
1 -1 q

Torsional Stiffness Matrix [Kt(°)] =
gg 4 (0.7.7)

2x2 ‘1 1 q10
Q4 q1O
1 1

(B) § 6 Q4
Torsional Mass Matrix [M(t) ] = 6JL (0.7.8)

1 1
2X2 6 2 q1O

Stiffness matrix for bending in the xy plane
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Q2 Q6 Q6 ql2
12 6L -12 6L qz

[K(e)] _ Elzz 6L 412 -6L 212 qö D 7 Dxy
_ 3‘ ( ° ° )

1 -12 -6L 12 -61 q8
2 26L 2L -61 4L qlz

Mass matrix for bending in the x — y plane

Q2 Q6 Q6 q12

13 ll 9 13ML 76 ·ML Q2

AL i ;2( _i
(e) _ 210 105 420 140 Q6

[MXY]-pAL

9 13 13 llM ML ‘ML Q8
2 213 1 ll 1·ML ·M ·ML M Qiz

(0.7.10)

Stiffness matrix for bending in the x - z plane
Q2 Q6 Q9 Q11

12 6L -12 6L q3
EI 2 2(xij)1 = -—§¥ QL QL ‘QL 2L Q6 (0.7.11)

1 -12 -6L 12 -6L qg
6L 212 -6L 412 qll

Mass matrix for bending in the x - 2 plane
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Q3 Q6 Q9 qll
° 12 - Ai L A ä

35 210 70 420 Q3

- M L L2
- A2 L - ;E

LM(e)L _ AL 210 TE 420 140 Q6
xz °

° A - L L E 11 L70 420 35 2E Q9

1; _ i .11 L Ai
420 140 210 105 qll

(0.7.12)

The complete element stiffness matrix with q1,q2...qL2 degrees of

freedom is assembled from the submatrices given by relations (0.7.5),

(0.7.7), (0.7.9) and (0.7.11). Similarly the element mass matrix is

assembled from the submatrices given in relations (0.7.6), (0.7.8),

(0.7.10), (0.7.12).



Apgendix E

E.1 Calculation of Eigenvalue S
”

Structural Frequencies are claculated by solving the generalized

Eigenvalue Problem

Kx = xMx (E.1.1)

where K and M are, respectively, the stiFFness matrix and mass matrix of

the Finite element assemblage. The eigenvalues xi and the eigenvectors

xi are the free vibration Frequencies (rad/sec) squared, wi, and corres-

ponding modeshapes respectively.

E.2. Skyline Storage for K and M matrices:

To exploit the symmetry and sparsity oF the K and M matrices,

skyline storage scheme is employed. For symmetric matrix, only the

upper (or lower) triangular part of the matrix need be stored. For the

matrices K, M the skyline (column heights, hi, i = 1,2,...,n) is deter-

mined by the connectivity of the Finite element assemblage. For consis-

tent K, M matrices, corresponding skylines are identical.

The skyline storage scheme is eFFicient in terms of memory require-

ments (by not storing the zero elements) and also requires less computa—

tions during matrix operations by eliminating operations on elements

that have values equal to zero.

E.3 Matrix Decomposition:

Often it is necessary to solve the set of equations, For the

unknown x

99
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where K is the stiffness matrix and R is a given vector.

In static analysis x is the vector of unknown displacements while R

is the known vector of applied loads. The reason for discussing the

solution of Eq. (E.3.1), here, is that it occurs quite frequently during

the solution of eigenvalue problems.

As K is symmetric, it can be decomposed into upper and lower tri-

angular matrices, using Cholesky method.

k - •.¤LT (6.3.2)

where L = Lower Triangular matrix with all
diagonal elements equal to unity

LT = Transpose of L

D = Diagonal Matrix

Solution of Eq. (E.3.l) is performed using forward and backward

substitution as follows.

Solve for the unknown Z using forward substitution in the equation

(L0)Z = R (E.3.3)

‘
Backward substitution is then used to solve for x, using the rela-

tion

LTx = 2 (E.3.4)
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In computer implementation only L and D need to be stored. An

important property of the decomposition shown in Eq. (E.3.2) is that LT

has the same skyline as the matrix K. Thus the sparsity of K is pre-

served. Also as all the diagonal elements of LT are equal to unity,

these need not be stored, instead, the elements of D in Eq. (E.3.2) can

be stored in corresponding locations.

The solution of Eq. (E.3.1) can thus be carried out conveniently

using Cholesky decomposition and the skyline storage scheme discussed in
S

Section E.2. Computationally this is an efficient method as it mini-

mizes memory requirements and also the computation time by elimination

of operations with matrix elements that have a value equal to zero.

E.4 Inverse Iteration

The technique of inverse iteration is very effectively used to

calculate an eigenvector, and at the same time the corresponding eigen-

value while exploring the sparsity and symmetry of the K and M matrices.

In the following the basic equations used in inverse iteration are

presented. Let xl, xl be the lowest eigenvalue and corresponding eigen-

vector satisfying the generalized eigenvalue problem of Eq. (E.1.1).

Let yl,y2,y3,...yi be the eigenvector approximations obtained after

the 1st,2nd,3rd,...1th iteration. Then as 1 + ¤, yi - xl.

Starting with an eigenvector yl, evaluate for 1 = 1,2,...

Gm = Myi = zi (E.4.1)

im = Mym (E.4.2)
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.1 -
¤ = ggg- (6.4.2)

. y1+1Z1+1

1+1 1+1
where, provided that yl xl ¢ 0, yl+l + Mxl and p - xl, as 1 + ¤.

If the scaling in (E.4.4) is not included in the iteration, the

elements of the iteration vectors grow (or decrease) in each step and

the iteration vectors do not converge to X1 but to a multiple of it.

The above scaling (Eq. (E.4.4) ensures that the iteration vector

tends to a fixed length, such that uyl+lu = uMxln as 1 -
¤

A computationally cheaper scaling is to normalize a given element

of the eigenvector to have a value of unity. 0ne can choose any element

i for this purpose, provided, that

xl(i) z 0 (E.4.5)

where xl is the required eigenvector. Numerical considerations indicate

that i should be chosen such that xl(i) is the largest (absolute) ele-

ment of xl. At the beginning of the iteration process, however, xl is

not known, so it is not possible to know the largest element of xl.

Instead, i is chosen such that y2(i) is the largest element of y2. (y2

is the vector obtained at the end of the 1st iteration). Chosing i in

this fashion has been found to be quite efficient in practice.

The method can be summarized as follows.
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Starting with an eigenvector yl, evaluate for 2 = 1,2,...

6,+, = My, _ (6.4.6)

°2+1

1y,+l = ,;:1 (6.4.6)

Provided that YIXI ¢ 0,

¤,+l • Al (E.4.10)

GS Q. ·> ¤

Twhere a = y,+,My,+1 (E.4.11)

i is chosen such that y2(i) = Largest (absolute) element of y2.

Steps (E.4.7), (E.4.8) need less computations than corresponding

steps (E.4.3, (E.4.4). The set of equations given by Eq. (E.4.1) or Eq.

(E.4.6) are solved quite efficiently using the method described in

section E.3, where symmetry and sparsity are fully exploited. The

method described by relations (E.4.1 - E.4.4) is safer to use, when a

good starting iteration vector is not available. when a good starting

iteration vector is available, it is cheaper to use the method described

by the relations (E.4.6 - E.4.l1).
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E.5 Shifting

An important procedure that is extensively used in the solution of

eigenvalues and'eigenvectors is shifting. The purpose of shifting is to

accelerate the calculations of the required eigenvalues.

Consider the generalized eigenvalue problem

kv = „Mv (£.6.1)

where

k- k - BM (E.5.2)

K,M are the stiffness and mass matrices respectively.

The eigenvalues and eigenvectors of the eigenvalue problem in

(E.5.1) can be shown to be

u = X - B ([.5.3)

Y = x (E.5.4)

where x, x are the eigenvalues and eigenvectors of the eigenvalue pro-

blem

Kx = xMx (E.5.5)

It can be shown [116] that by using shifting in conjunction with

inverse iteration one can choose a shift near enough to the specific

eigenvalue of interest to make the inverse iteration converge to the

required eigenpair instead of the first eigenpair.
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E.6 Generalized Jacobi Method:

In conjunction with the inverse iteration method discussed in E.3.

this method is useful to compute the first few eigenpairs of large.order

systems. Specifically, it computes all the eigenvalues and eigenvectors

of small order systems quite efficiently. The basic property employed

by this method is

xTKx = A (6.6.1)

XTMX - 1 (6.6.2)

The basic scheme is to reduce K and M into diagonal form using

successive pre-and post multiplication by matrices P; and P2

respectively, where 2 = 1,2,... . where the matrices P2 are selected to

bring K and M closer to diagonal form. (See Ref. ?)

E.7. Subspace Iteration:

The Jacobi Transformation method discussed in section E.6 computes

all the eigenvalues and eigenvectors of the system Kx = xMx. For Large

order systems, however, this method is prohibitively expensive. In this

work, only the first few eigenvalues and eigenvectors are of interest,

so in the interest of computational efficiency, one needs to use a

method capable of computing the first few eigenpairs cheaply.

The inverse iteration method presented in section E.4 can be effec-

tively used for large order systems, however, it computes only the first

or lowest eigenvalue and corresponding eigenvector. The basic inverse

iteration technique converges to xl and xl, but this method can be
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employed with shifting to calculate other eigenvalues and corresponding

eigenvectors. (See Section E.5).

Assume that a specific eigenpair, say (xl, xl) has been calculated

using inverse iteration and another pair needs to be computed. To

ensure that one does not converge again to (x2,x£), it is required to

deflate either the matrices or the iteration vectors.

Matrix deflation, however, destroys the sparsity of the mass and

stiffness matrices M and K. For large order systems this is a disadvan-

tage. Secondly, the eigenvectors have to be computed to a very high

precision to avoid the accumulation of errors introduced in the defla-

tion process.

Instead of matrix deflation, one can deflate the iteration vector

in order to converge to an eigenpair other than (xl, xl). If the itera-

tion vector is orthogonalized to the eigenvectors already calculated,

the possibility that the iteration converges to any one of them is

eliminated, instead, convergence occurs to another eigenvector.

A particular vector orthogonalization procedure that is employed

extensively is the Gram-Schmidt method [116]. However, the Gram-Schmidt

method requires that each eigenpair be calculated to a high degree of

precsion, and also, the iteration vector needs to be orthogonalized in

each iteration. '

The subspace iteration method avoids the difficulties encountered

with the matrix deflation technique and the Gram—Schmidt method.

The basic objective in the subspace iteration method is to solve

for the lowest p eigenvalues and corresponding eigenvectors satisfying
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Kx = MxA (E.7.1)

where A = diag(xi) and x = [x1,x2,...,xp] Ä

In addition to the relation (E.7.1), the eigenvectors also satisfy

the orthogonality conditions

xT1<x = A ; xTMx = 1 (EJ.2)

where I is a unit matrix of order p because x stores only p eigen-

vectors.

The essential idea of the subspace iteration method uses the fact

that the eigenvectors in (E.7.1) form an M-orthonormal basis of the p-

dimensional least-dominant subspace of the operators K and M, which is

denoted here as Em. In the solution the iteration with p linearly

independent vectors can therefore be regarded as an iteration with a

subspace. The starting iteration vectors span E1 and iteration con-

· tinues until, to sufficient accuracy, Em is spanned. The fact that

iteration is performed with a subjspace has some consequences. The

total number of required iterations depends on how "close" E1 is to Em,

and not on how close each iteration vector is to an eigenvector. It is

much easier to establish a p-dimensional starting subspace which is

close to Em than to find p vectors that each are close to the required

eigenvectors. Also, because iteration is performed with a subspace,

convergence of the subspace is all that is required and not of indiv-

idual iteration vectors to eigenvectors. In other words, if the itera-
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tion vectors are linear combinations of the required eigenvectors, the

solution algorithm converges in a single step.

Consider the simultaneous vector inverse iteration on p vectors.

Let xl store the p starting iteration vectors, which span the starting

subspace El. Simultaneous inverse iteration on the p vectors can be

written

KYl+1 = MYE (E.7.3)

It is necessary to keep the p eigenvectors comprising Y1, mutually

orthogonal, otherwise all the eigenvectors will converge to the first

eigenvector xl. To achieve this, the following procedure is adopted.

For 1 = 1,2,..., iterate from El to El+l

KYl+l = MY! (E.7.4)

Find the projections of the operators K and M onto E2+l

k =YT KV (676)1+1 1+1 1+1 ' °

M +vT MY (676)1+1 1+1 1+1 ‘ ’

Solve for the eigensystem of the projected operatoars

K1+1Q1+1 = M1+1Q1+1^1+1 (E'7’7)

Find an improved approximation to the eigenvectors:

Y1+1 = Y1+1Q1+1 (E‘7'8)
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Then, provided that the vectors in Y1 are not orthogonal to one of

the required eigenvectors, A£+1
— A and Y1+1 + X as k — ¤

In the subspace iteration, it is implied that the iteration vectors

are ordered in an appropriate way i.e. the iteration vectors converging

to Xl,X2,••• are stored as the first, second,... collumns of Yk+l•

The eigenproblem in (E.7.7) can be solved quite efficiently using

the Jacobi method described in section E.7. This is so because the

eigenproblem in E.7.7 is of order p, which is small.

The set of equations in Eq. E.7.4 is solved by the Cholesky Decom-

position of the stiffness matrix K followed by a forward and backward

substitution. (See section E.3). The symmetry and sparsity of the mass

and stiffness matrices is thus exploited in the solution.

E.8 Starting Iteration Vectors

The first step in the subspace iteration method is the selection of

the starting iteration vectors Y1. If starting vectors that span the

least dominant subspace are used, the subspace iteration will converge

in one step.

The following choice of starting iteration vectors has been found

by experience to be effective. The first eigenvector is simply the

diagonal of the mass matrix M, to ensure that all mass degrees of free-

dom are excited. The other eigenvectors are unit vectors with entries

of +1 at the coordinates with the smallest ratios kii/m11.
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TABLE 1

Nodal Co-ordinates and Boundary Condition Codes for the FEM Mesh.

Node Boundary Condition Code = 0 Free Nodai
Number = 1 Fixed Coordinate

N wx wy x y
1 1 1 1 0 0.0
2 1 1 0 5.0 0.0
9 1 1 1 40.0 0.0

10 1 0 1 0.0 5.0
11 0 0 0 10.0 5.0
14 1 0 1 40.0 5.0
15 1 0 1 0.0 10.0
16 0 0 0 5.0 10.0
23 1 0 1 40.0 10.0
24 1 0 1 0.0 15.0
25 0 0 0 10.0 15.0
28 1 0 l 40.0 15.0
29 1 0 1 0.0 20.0
30 0 0 0 5.0 20.0
37 1 0 1 40.0 20.0
38 1 0 1 0.0 25.0
39 0 0 0 10.0 25.0
42 1 0 1 40.0 25.0
43 1 0 1 0.0 30.0
44 0 0 0 5.0 30.0
51 1 0 1 40.0 30.0
52 1 0 1 0.0 35.0
53 0 0 0 10.0 35.0
56 1 0 1 40.0 35.0
57 1 1 1 0.0 40.0
58 1 1 0 5.0 40.0
65 1 1 1 40.0 40.0
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TABLE 2

Material Properties for Laminate and Stiffeners

Material used: Graphite Epoxy

E G G G%=4o , äÄ=0.6 , §=0.s , ¥=0.6
2 2 2 2

plz = pl3 = 0.25

2 _ 2 _kl — kz — 5/6

¤ = 0.001 (Mass per unit volume)
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TABLE 3

Details of the Initial Design and its Frequencies

Integer Continuous Structural
variables variables Eigenvalues

A .. · oi'I niAi1

2 0.5 1.0

2 2 0.5 3.57

3 2 0.5 9.97

4 2 0.5 10.38

5 2 0.5 16.60

6 1 0.5 22.03

7 1 0.5 32.48

8 0.5 43.61
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TABLE 4

l Definition of Different Structural Optimization Schemes

Case Case Definition of Parameter
Number Name Objective Frequency Definition

Function Constraints
1.

l.a 0PT1a Maximize 11 —lil > r.

Ai
1.b OPTlb Maximize 11 —-— > r.

2.a OPT2a Minimize x(11—61)2 ;l— > r1 61=1O^O1 i+1

2 li
2.b OPT2b Minimize z(11-61) ig; > r1 61=1.11O1+l

2 c 0PT2c Minimize z(1 -6 )2 ii- > r 6 =1 21' i i 101 i i ' 01+1

2 d 0PT2d Minimize z(1 -6 )2 Xi
6 = 21°· i i 101 i i Oi

T : 2

82 ’
*02
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TABLE 5

Three Frequency Separation Constraints for
Optimization Problem of Table 7 (OPT1a)

1 *2 1 *2 *4s=—(—)-1 ¤=—(·—l-1 ¤=—-1-5
1 rl 11 2 rz 12 3 13

* 0.33 0.0 0.00
zni = 12 ** 0.42 -0.08 -0.036

*** 0.30 0.00 0.00

* 0.015 0.0 0.00
zni = 18 ** -0.017 0.09 -0.06

*** 0.00 0.00 0.00

* 0.00 0.00 0.00
znl = 24 ** -0.01 0.019 -0.01

*** 0.00 0.00 0.00

* First Continuous Solution,
** Rounded Off Solution

*** Optimal Solution
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' TABLE 6

Definition of Frequency Separation Constraints and Target Frequencies

Frequency Separation Initia1 Target Frequencies 6.
Constraint Definition Frequencies DPT2a 0PT2b DPT2c DPT2d

for xi

(0PT1b, 0PT2a, 0PT2b,
0PT2c, 0PT2d)

*1-—— > 1.0 1.0 3.57 3.93 4.29 2.0
x01

*2—-— > 3.0 3.57 9.97 10.97 11.96 3.57
x01

*2Y- > 10.0 9.97 10.38 11.42 12.46 19.94
01

*4——— > 11.0 10.38 16.60 18.26 19.92x01

*6Y- > 18.0 16.60 22.02 24.23 26.43
01

*6Y- > 24.0 22.02 32.48 35.73 38.98
01

*7Y- > 35.0 32.48 43.61 47.97 52.33
01

x{3- > 47.0 43.61
01
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TABLE 7

Optimization Results with Three Frequency
Separation Constraints Defined in Table 5 (OPT1a)

Design zni = 12 zni = 18 zni = 24
variables

nl 4.17 4 4 5.83 6 6 4.62 5 6

nz 0.00 0 0 2.91 3 2 4.29 4 3

n3 0.01 0 1 0.22 0 1 2.54 3 3

n4 0.35 0 0 0.26 0 0 3.29 3 2

nö 0.92 1 0 0.00 0 0 2.51 3 3

nö 2.75 3 1 4.28 4 4 3.8 4 6

~ ny 3.78 4 6 4.49 4 5 2.89 3 1

al 0.60 0.60 0.59 0.00 0.00 0.00 0.00 0.00 0.00

a2 0.10 0.10 0.10 0.07 0.07 0.26 0.00 0.00 0.00

a3 0.60 0.60 0.57 0.00 0.00 0.00 0.00 0.00 0.00

a4 0.10 0.10 0.10 0.00 0.00 0.19 0.00 0.00 0.35

as 0.10 0.10 0.10 0.00 0.00 0.00 0.95 0.95 1.00

aö 0.60 0.60 0.52 0.00 0.00 0.00 0.00 0.00 0.00

ay 0.40 0.40 0.58 0.00 0.09 0.00 0.00 0.00 0.00

a8 0.10 0.10 0.10 1.00 1.00 0.85 1.00 1.00 0.97

ääi 1.281 1.234 1.237 0.911 0.814 0.90 1.088 1.086 1.090-

* First Continuous Solution,
** Rounded Off Solution

*** Optimal Solution
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TABLE 8

Optimization Results for Case 0PT1b with Seven Frequency
Separation Constraints Defined in Tables 6,7

Initial First Rounded Optimal
Design Continuous Off Design

Design Design

nl 2 2.38 2 2

nz 2 0.716 1 1

n3 2 0.571 1 1

n4 2 1.024 1 1

n5 2 1.847 2 2

nö 1 2.002 2 1

ny 1 3.460 3 4

al 0.5 0.0 0.0 0.0

az 0.5 0.0 0.0 0.0

a3 0.5 0.0 0.0 0.0

da 0.5 0.0 0.0 0.0

a5 0.5 1.0 1.0 1.0

a6 0.5 1.0 1.0 1.0

ay 0.5 1.0 1.0 1.0

a8 0.5 1.0 1.0 1.0

*1Y- 1.0 3.250 3.23 3.240
01

Number of
Frequency 7 NONE NONE NONE
Constraints
Violated
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TABLE 9

Iteration Time History for Optimization Problem 0PT1b of Table 6

Subproblem Number CPU % CPU Integer
Number of Design Time Time Feasible

variables in
Seconds T X 100

o

l 15 558-TO l00 No
2 15 81 14 No
3 15 82 14 No
4 14 76 13 No

5 14 75 13 No
6 13 73 13 No
7 12 67 12 No
8 11 61 10 No
9 11 61 10 No

10 10 56 10 Yes
11 15 81 14 No
12 15 82 14 No
13 15 81 14 No
14 15 81 14 No
15 15 81 14 No
16 15 81 14 No
17 15 81 14 No
18 15 80 14 No
19 15 80 14 No

20 14 125 22 No
21 13 25 4 Yes
22 14 50 9 No
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_ TABLE 10

Summary of Structural Optimization Results

Initial Final Design Vector
Design
Vector 0PT1b OPT2a OPT2b OPT2c 0PT2d

nl 2 2 2 2 2 4

nz 2 1 2 2 2 4

ng 2 1 2 2 2 0
n4 2 1 1 1 1 0

ns 2 2 3 3 1 0

nö 1 1 1 1 1 0

n7 1 4 1 1 3 4

al 0.5 0.0 0.016 0.0 0.0 0

az 0.5 0.0 0.024 0.0 0.0 1.0

a3 0.5 0.0 0.096 0.046 0.0 0.0

a4 0.5 0.0 0.329 0.404 0.019 0.0

a5 0.5 1.0 0.976 1.000 1.00 1.0

a6 0.5 1.0 3.594 1.000 1.00 0.0

ay 0.5 1.0 0.992 1.000 1.00 0.137

a8 0.5 1.0 0.278 0.505 0.981 1.0

§l— 1.0 3.25 2.69 2.92 3.18 2.16
01
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TABLE 11 V

Structural Frequencies for Optimized Structures

Initial Structural Frequencies for the
Design 0PT1b 0PT2a 0PT2b 0PT2c 0PT2d

*1— E- 1.0 3.25 2.69 2.92 3.18 2.16
01

*2X- 3.57 11.26 7.86 8.93 10.13 3.58
01

*2
Y- 9.97 13.46 12.00 12.32 13.99 15.46

01

*4Y- 10.38 24.69 18.06 20.36 23.98 16.6
01

*6X- 16.60 32.82 23.07 24.15 26.72 18.9
01

*6X- 22.03 43.68 37.58 41.75 42.24 29.0
01

*7X- 32.48 52.24 47.15 47.96 47.96 46.2
01

*2Y- 43.61 61.0 47.47 50.12 55.31 50.0
O1
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TABLE 12

Loads Used to S1mu1ate Init1a1 Disturbance

_
Node Degree of Magnitude of Load App1ied

Number Freedom Load 1 Load 2 Load 3

17 23 1.0 -2.0 -1.0

19 29 2.0 -1.0 -2.0

21 35 1.0 1.0 -2.0

31 57 1.0 -2.0 1.0

33 63 2.0 0.0 0.0

35 69 1.0 2.0 -1.0

45 91 1.0 -1.0 2.0

47 97 2.0 1.0 2.0

49 103 1.0 2.0 1.0
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TABLE 13.a

Modal Displacements Due to Applied Load 1 Defined in Table 12

Mode Initial Modal Displacements for
E Number Structure 0PT1b 0PT2a 0PT2b 0PT2c 0PT2d

1 57.41 17.60 21.47 19.64 17.95 29.5

2 .144 -0.0 0.0 0.003 -0.006 -0.03

3 .524 -0.0 0.007 -0.007 -0.006 -2.31

4 .026 - .101 -0.188 0.232 -0.04 - .11

5 -.523 .254 -0.123 -0.085 0.304 0.30

6 0.003 .175 .001 0.0 0.008 - .12

7 0.003 0.0 -0.007 0.162 0.168 .01

8 0.226 0.0 0.165 0.001 0.00 0.00
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TABLE 13.b

Modal Displacements Due to Applied Load 2 Defined in Table 12

Mode Initial Modal Displacements for
Number Structure 0PT1b 0PT2a 0PT2b 0PT2c 0PT2d

1 .413 0.028 0.025 0.013 0.025 - .18

2 -14.7 5.37 -6.20 -5.68 5.88 -13.9

3 .138 -0.112 -3.03 2.75 0.763 .16

4 - 3.23 0.008 -0.016 -0.008 0.008 - 0.05

5 - 0.010 0.001 0.004 -0.002 0.0 — 0.3

6 0.392 0.0 0.284 0.185 0.054 0.5

7 0.097 0.05 -0.08 0.0 -0.003 — 0.03

8 0.0 -0.009 -0.004 -0.004 -0.023 0.0
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TABLE 13.c

Modal Displacements Due to Applied Load 3 Defined in Table 12

Mode Initial Modal Displacements for
Number Structure 0PT1 0PT2a OPT2b 0PT2c 0PT2d

1 -0.179 0.020 0.02 0.02 0.02 0.47

2 8.44 0.311 4.40 3.63 -0.851 1.81

3 .133 4.59 -4.17 4.19 4.35 0.74

4 -5.17 0.0 -0.010 0.006 0.0 -4.08

5 -0.014 0.0 -0.006 -0.003 0.0 -1.36

6 0.088 0.001 0.244 0.165 0.044 -0.03

7 -0.124 -0.027 0.0 -0.001 0.001 - .29

8 0.0 0.101 -0.001 0.006 0.020 0.0
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TABLE 14

Performance Indices for Unoptimized and Optimized Structures

R=O.l R=l.0 R=lO.

Initia1 Load 1 833 1953 6586
Structure Load 2 169 410 1239

Load 3 95 233 7046

Load 1 78 183 619
0PT1b Load 2 19 47 142

Load 3 16 40 121

Load 1 116 273 920
OPT2a Load 2 30 73 223

Load 3 26 63 190

Load 1 97 228 771
0PT2b Load 2 25 62 189

Load 3 22 53 161

Load 1 81 191 644
0PT2c Load 2 22 54 163

Load 3 16 39 117

Load 1 227 533 1792
OPT2d Load 2 88 212 661

Load 3 27 67 203
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TABLE 15

Ratios of Performance Index of the Unoptimized Structure
to that of the Optimized Structure

R=O.l R=]..O R=10.

Load 1 10.6 10.6 10.6
0PT1b Load 2 8.6 8.6 8.6

Load 3 5.7 5.7 5.8

Load 1 7.1 7.1 7.1
0PT2a Load 2 5.5 5.5 5.5

Load 3 3.6 3.6 3.6

Load 1 8.5 8.5 8.5
OPT2b Load 2 6.5 6.5 6.5

Load 3 4.3 4.3 4.3

Load 1 10.2 10.2 10.2
OPT2c Load 2 7.5 7.6 7.6

Load 3 5.8 5.9 5.9

Load 1 3.6 3.6 3.6
OPT2d Load 2 1.9 1.9 1.8

Load 3 3.4 3.4 3.4
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TABLE 16

Norm of the Modal Control Forces for
Unoptimized and Optimized Structures

R=0.1 R=l.O R=].O.

Initial Load 1 133 23 2.8
Structure Load 2 26 3.6 0.39

Load 3 16 2.2 0.23

Load 1 40.8 7.29 0.859
OPT1b Load 2 9.71 1.35 0.143

Load 3 7.94 1.06 0.112

Load 1 49.7 8.89 1.04
0PT2a Load 2 l2.7 1.81 0.193

Load 3 10.9 1.51 0.161

Load 1 45.5 8.13 0.959
0PT2b Load 2 11.6 1.63 0.174

Load 3 9.8 1.36 0.144

Load 1 41.6 7.43 0.876
0PT2c Load 2 10.9 1.54 0.164

Load 3 7.5 1.01 0.106

Load 1 68 12 1.4
0PT2d Load 2 28 4.3 0.47

Load 3 7.3 0.96 0.10
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TABLE 17

Ratio of Norms of the Modal Control Forces for the
Unoptimized and Optimized Structure

R=O.l R=l.O R=].O.

Load 1 3.2 3.2 3.2
OPT1b Load 2 2.7 2.7 2.7

Load 3 2.1 2.0 2.0

Load 1 2.6 2.6 2.6
OPT2a Load 2 2.0 2.0 2.0

Load 3 1.5 1.4 1.4

Load 1 2.9 2.9 2.9
0PT2b Load 2 2.3 2.2 2.2

Load 3 1.6 1.6 1.6

Load 1 3.1 3.1 3.1
OPT2c Load 2 2.4 2.3 2.3

Load 3 2.1 2.2 2.1

Load 1 1.9 1.9 1.9
OPT2d Load 2 0.94 0.8 0.8

Load 3 2.2 2.3 2.3
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TABLE 18

Effect of Actuator Locations on Actuator Forces for a Given

l Modal Control Vector (OPT2a, R = 1, Load 3)

Case 1 Case 2
Modal Actuator Actuator Actuator Actuator
Control Locations Forces Locations Forces
Forces (Node (Node

Number) Number)

-0.0087 16 0.761 17 -1.807

-1.194 17 -0.971 22 -0.373

0.9386 18 0.144 33 -0.294

-0.0019 22 0.831 34 0.128

0.0010 31 -0.128 40 1.134

0.0321 33 0.714 41 0.415

+0.0 36 0.889 46 -0.618

Norm = 1.88 Norm = 2.31
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TABLE 19

Ratio of Actuator Force Norms of the Unoptimized Structure
to that of the Optimized Structure (OPT2a) for Cases 1

and 2 Listed in Tab1e 18

R=O.]. R=]..O R=].O

Load 1 1.86 3.28 1.56
Case 1 Load 2 1.06 2.66 0.40

Load 3 0.36 1.31 0.12

Load 1 3.33 2.03 3.10
Case 2 Load 2 2.14 1.51 3.14

Load 3 2.28 2.16 0.62
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Figure 3. Eight Noded Isoparametric Plate Bending Element
with 3 degrees of freedom per node (w, ¢•x,¢y)

w Transverse Displacement
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