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An Experimentally-validated Agent-based Model to Study the Emergent Behavior of Bacterial 

Communities 

Eric Leaman 

Academic Abstract 

Swimming bacteria are ubiquitous in aqueous environments ranging from oceans to fluidic 

environments within a living host. Furthermore, engineered bacteria are being increasingly utilized 

for a host of applications including environmental bioremediation, biosensing, and for the 

treatment of diseases. Often driven by chemotaxis (i.e. biased migration in response to gradients 

of chemical effectors) and quorum sensing (i.e. number density dependent regulation of gene 

expression), bacterial population dynamics and emergent behavior play a key role in regulating 

their own life and their impact on their immediate environment. Computational models that 

accurately and robustly describe bacterial population behavior and response to environmental 

stimuli are crucial to both understanding the dynamics of microbial communities and efficiently 

utilizing engineered microbes in practice. Many existing computational frameworks are finely-

detailed at the cellular level, leading to extended computational time requirements, or are strictly 

population scale models, which do not permit population heterogeneities or spatiotemporal 

variability in the environment. To bridge this gap, we have created and experimentally validated a 

scalable, computationally-efficient, agent-based model of bacterial chemotaxis and quorum 

sensing (QS) which robustly simulates the stochastic behavior of each cell across a wide range of 

bacterial population sizes. We quantitatively and accurately capture emergent behavior in both 

isogenic QS populations and the altered QS response in a mixed QS and quorum quenching (QQ) 

microbial community. Finally, we show that the model can be used to predictively design synthetic 

genetic components towards programmed microbial behavior.  
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An Experimentally-validated Agent-based Model to Study the Emergent Behavior of Bacterial 

Communities 

Eric Leaman 

General Audience Abstract  

Bacteria are an integral part of life and possess a host of characteristics that make them a powerful 

tool with which to confront many modern day problems. Using genetic engineering and the 

burgeoning field of synthetic biology, these single-celled organisms can be manipulated to perform 

many useful tasks such as detecting oil spills or other environmental pollutants, producing 

pharmaceuticals such as insulin, and even invading and killing cancer cells. Accurate 

computational simulations of microbial behavior will aid in the efficient design of such synthetic 

bacteria-based systems and reduce dependency on the current time-intensive “guess and check” 

paradigm. Towards this goal, we have built a comprehensive computer simulation of bacterial 

swimming behavior, response to chemo-effector concentration gradients called chemotaxis, a form 

of microbial communication called quorum sensing (QS), and a form of communication disruption 

called quorum quenching (QQ). Not only do we demonstrate an unprecedented level of accuracy 

in predicting experimental results, but we also couple the simulation with synthetic biology to 

precisely tune bacteria QS behavior, neither of which have previously been reported in literature. 

The overarching outcome of this thesis is a tool that could be used to improve the design process 

of useful bacteria-based systems in diverse areas of biotechnology.  
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Chapter I: Introduction1 

1.1 Motivation  

Bacteria play a central role in a wide range of disciplines from microbiology to medicine to 

engineering. For instance, bacteria are crucial for directed bioremediation efforts, where motility 

and chemotaxis may be exploited to cause preferential localization at the source of a toxic 

compound [1]–[3]. From a biomedical standpoint, microbial population dynamics can be critical 

both for the development of novel therapeutics and in the study of pathogenesis, such as in the 

development of tumor-targeting bacteria to combat cancer or in the quorum sensing-mediated 

onset of cholera [4]–[6]. Bacteria can also be employed as biosensors to detect pollutants such as 

heavy metals and organic compounds or can even be used for drug screening [7]–[10]. Moreover, 

in their natural environments, bacteria live in heterogeneous, spatially-structured communities, 

underpinning their survival and behavior through many complex interactions that are often 

irreproducible in the laboratory [11], [12]. Likewise, the engineering of synthetic microbial 

consortia has demonstrated immense benefit over single-species systems for performing complex 

functions [13].  With the advent of synthetic biology, applications such as these are being advanced 

at an accelerating pace. As complexity increases, systems-level models are essential for both 

understanding and effectively designing complex systems [14]. The ability to both accurately and 

efficiently model population dynamics will greatly aid in our exploitation of the ways in which 

bacteria move, invade, synthesize, and metabolize. To date, a number of models for chemotaxis, 

physical interactions, gene expression, and microbial communication have been developed, but a 

comprehensive, experimentally-verified, and computationally-inexpensive simulation of these 

                                                 
1 Portions of this chapter are from an accepted manuscript entitled “Nanoscale Bacteria-Enabled Autonomous Drug 

Delivery System (NanoBEADS) for Cancer Therapy” by Suh, S., Leaman, E. and Behkam, B., which will comprise 

a chapter in Encyclopedia of Medical Robotics in the volume “Micro and Nano Robotics.” SS and EL conducted the 

experiments, and SS, EL, and BB wrote the manuscript.  
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elements has not been reported. Through rigorous experimentation and validation, this need was 

addressed by making appropriate simplifying assumptions to produce a computationally 

inexpensive but robust agent-based, biologically-accurate computational model of emergent 

behavior in a bacterial population.  

1.2 Background 

Bacteria are prokaryotic organisms that are among the simplest of forms of life, but nevertheless 

exhibit complex behavior that stems from a form of molecular cognition, representing constant 

monitoring and response to their physical environment [15]. They possess a variety of molecular 

tools for sensing a wide variety of stimuli from damaged DNA to mechanical forces to 

biomolecular signals and even maintaining an adaptive immune system [15]–[17]. They can exist 

in many morphologies and phenotypes, each best suited for the cells’ native environment [18]. 

Many species possess some form of motility (i.e. the ability to translocate) and have the ability to 

preferentially localize in favorable locations via a taxis mechanism (e.g. chemotaxis in response 

to the gradient of a chemo-effector). Moreover, many are known to express multiple types of 

extracellular signals, which are used for both inter- and intra-species communication known as 

quorum sensing (QS) [19]. The physiology of prokaryotes is thus an engaging topic (see [20]).  

The goal for this thesis was to develop an experimentally-validated model that captures the 

relevant physical phenomena involved in regulating emergent behavior in motile and chemotactic 

populations of flagellated bacteria in a computationally-efficient framework. Specifically, we 

focused on accurately predicting the amount of time required for genes controlled by a quorum 

sensing system to be expressed in a dynamic population and how the number density and spatial 

distribution of population, presence of non-quorum sensing and/or quorum quenching bacteria 

affect the activation time. The model’s capabilities include the simulation of bacterial motility and 
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chemotaxis, cell-cell interactions, mass transport, and bacterial growth, all of which must be 

considered for accurate predictions. Further, a model for enzyme-based quorum quenching (QQ) 

was also developed, allowing us to use the computational framework to simulate interacting QQ 

and QS populations in a microbial community. A brief review of the biology relevant to this 

research is presented in the sections that follow.  

1.2.1 Bacterial Motility 

Motile bacteria can actively translocate through space via several mechanisms. Specifically, four 

modes of active motility have been well-characterized to date: swimming, swarming, gliding, and 

twitching [21]. Twitching motility, a form of gliding, involves small polar appendages on the cell 

body called type IV pili [18], [21]. By extending and retracting the 6 nm-diameter fibrillar protein 

complexes, bacteria are able to move across a moist surface on the order of tenths of microns per 

second [18], [21]. Recent work has suggested that the pili even allow the bacteria to “walk 

upright,” and, in the case of Pseudomonas aeruginosa, slingshot themselves from one location to 

another [22], [23]. In addition to twitching, bacteria can also perform gliding motility without pili, 

moving up to 10 μm/s [21]. While a detailed understanding of the propulsion mechanism in gliding 

motility is still lacking, recent experiments using Myxococcus xanthus have shown that the rotation 

of an intracellular helical structure creates forces between the cell membrane and a solid surface 

[24], [25].  

 The remaining forms of active motility, swimming and swarming, both involve the use of 

helical flagella to propel the cells [18]. Both of these modes are employed by the model Gram-

negative genera Escherichia coli and Salmonella enterica, but are used by many other types of 

bacteria as well. The flagellum is a rigid, polymorphic structure typically 5 μm to 10 μm in length 

and 20 nm in diameter [20]. It is driven by a supramolecular rotary motor embedded in the cell 
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membrane that is powered by a proton (H+) gradient, capable of rotating at 300 Hz and generating 

a torque output on the order of 1200 pN∙nm [20], [26]. The flagellar filament is connected to the 

motor via a flexible coupling called the hook, which, in function, is not unlike a universal joint 

employed in mechanical systems [27]. The motor, shown in Figure 1.1, is comprised of a number 

of protein subunits. Together, MotA and MotB span the cytoplasmic membrane and function as a 

stator and as force-generating units, which are able to dynamically adapt to changes in load [28], 

[29]. The major features of the rotor are the MS-ring and C-ring, while the P-ring and L-ring are 

thought to act as bushings for the rod, a central filament which translates rotational motion  from 

the rotor to the hook [18], [28].  

 

E. coli bacteria are peritrichously flagellated, expressing 4-7 flagella anchored to motors 

distributed randomly over the cell membrane when in their planktonic (i.e. free-swimming) state 

 

 
Figure 1.1: The Flagellar Motor. The major proteins and components that make up the motor and the flagellum 

are shown schematically on the left, and the image on the right shows a rotationally-averaged transmission 

electron micrograph of the motor. Reproduced from [28] with permission. 
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[28]. While swimming is likely the most familiar form of flagellar motility, swarming cells also 

rely on flagella to provide a propulsive force. When in a swarming phenotype, the cells elongate 

from 2-4 μm to up to 20 μm in length and become hyperflagellated, expressing 2-3-fold more 

flagella than a planktonic cell [30], [31]. With the right water content and substrate stiffness, E. 

coli and Salmonella Typhimurium are able to use this mode of motility to move across a surface 

using the lipid-polysaccharide component of the outer membrane as a wetting agent [32]. In 

contrast to swimming motility, swarming cells likely do not use chemotaxis to bias their movement 

but require a nutrient-rich environment throughout the surface on which they move [32].  

Due to their small size, swimming bacteria experience significant viscous effects 

(Reynolds number on the order of 10−4) and their dynamics are dominated by viscous rather than 

inertial forces [33]. At such scales, the reciprocal-styles of movement that are intuitive in the 

inertial-dominated macroscopic world are ineffective, leading to the so-called scallop theorem 

[33]. To move, a scallop slowly opens its shell and then ejects a stream of water by quickly closing 

it again, leading to a transient force that propels the animal [33]. If a bacterium were to try such a 

strategy, it would simply oscillate in place; no net displacement could be achieved.   

Contrary to swimming organisms at a larger scale, flagellated bacteria take advantage of 

viscous forces for propulsion. E. coli and Salmonella swim in a series of nearly-straight runs during 

which all of the flagella synchronously rotate in the counterclockwise direction and come together 

to form a coherent bundle [28]. This way, as the rotating helix propagates the waveform of the 

flagella, the viscous drag forces acting on the parts of the filament that are at oriented at an angle 

with respect to the long axis of the bundle create a force in the direction opposite to wave 

propagation [34]. This is possible because the magnitude of the viscous drag on a thin rod moving 

in the normal direction with respect to its axis being greater than that of the drag when it moves 
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lengthwise [35]. Interrupting the runs are periods of tumbling caused by a reversal in the direction 

of rotation of the motors from counterclockwise to clockwise. When this occurs, the normally left-

handed helices begin to morph into right-handed helices, starting from the hook and moving 

outwards [20]. In consequence, the unbalanced forces on the flagella act in concert with rotational 

diffusion to reorient the cell in a pseudo-random direction [20], [36]. Figures 1.2a and 1.2b show 

a peritrichously flagellated bacterium in a run phase and a tumble phase, respectively. On average, 

E. coli swim at a constant speed of 21 μm/s for 1.00 s and tumble for 0.14 s [27]. 

 

1.2.2 Chemotaxis in E. coli 

Bacterial chemotaxis is the result of an intracellular signaling cascade that ends in a perturbed 

probability of tumble, leading to a bias in the net movement of a cell. In essence, chemotaxis 

describes the sensing of and response to a gradient in the concentration of a variety of chemicals 

 

Figure 1.2: Bacterial Swimming. Schematics show a rod-shaped flagellated bacterium (e.g. E. coli) in a run phase 

(a) and a tumble phase (b). The rotation of the flagellar bundle creates a net force that propels that bacterium 

forward. Upon reversal of the motors, the bundle breaks apart and the bacteria are reoriented. Reproduced from 

[145] with permission. 
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(or chemoeffectors). For instance, the amino acids L-aspartic acid and serine are well-characterized 

chemoattractants for E. coli. Examples of chemorepellents include alcohols such as ethanol or 

hydrophobic amino acids (e.g. L-leucine) [37].  

 

Figure 1.3: The Chemotaxis Pathway in E. coli. Chemoreceptors phosphorylate CheA at a rate determined by 

rate of chemoeffector binding and level of methylation. Changes in the rate of phosphorylation of CheY and 

CheB lead to changes in tumble frequency and the rate of receptor demethylation, respectively. CheZ works to 

“reset” CheY by removing phosphate groups. 
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The chemotaxis signaling cascade shown in Figure 1.3, begins with a transmembrane 

receptor anchored with its effector-binding domain in the periplasm. These receptors make up the 

methyl-accepting protein (MCP) class [18]. There are four known MCPs in E. coli: Tsr for a taxis 

response to serine and repellents, Tar for a taxis response to aspartate and repellents, Trg for taxis 

to ribose, glucose, and galactose, and Tap for taxis towards dipeptides [18]. When a 

chemoattractant freely diffuses through the outer membrane and binds with its chemoreceptor, it 

sets off a chain of events beginning with a modulation in the rate of autophosphorylation of the 

histidine kinase CheA, mediated by interactions between the chemoreceptor and a coupling factor, 

CheW [18], [27]. When CheA is phosphorylated, it in turn activates CheY, which then diffuses 

through the cytoplasm and causes the motor to reverse direction and rotate clockwise upon binding 

with the switch complex FliM [18], [27]. Higher concentrations of activated (phosphorylated) 

CheY therefore increase the frequency of tumble events. CheB, a methyl esterase with the function 

of removing methyl groups from the chemoreceptor, is also activated by phosphorylated CheA 

[18], [27]. CheR meanwhile adds methyl groups to the chemoreceptor at a steady rate [18]. The 

level of methylation acts as a sort of molecular memory by controlling the activity of the 

chemoreceptor relative to the rate of chemoeffector binding. In fact, bacteria exhibit perfect 

adaptation to chemoattractant signals based on this mechanism, which has been argued to function 

as a robust integral feedback control system [38].  

The end result of the signaling cascade is a reduced tumble frequency when swimming up 

gradients of a chemoattractant or an increased frequency of tumble when swimming up repellent 

gradients [39]. Overall, this leads to a biased Brownian motion in the favorable direction.  
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1.2.3 Bacterial Quorum Sensing 

Quorum sensing (QS) is the regulation of genes based on the local population density and has been 

shown to regulate a large number of functions in bacteria, including biofilm formation, virulence, 

antibiotic production, among many others [40]. This is accomplished by the secretion and detection 

of compounds called autoinducers (AIs), which diffuse throughout the extracellular environment 

[19]. Genetic processes are regulated according to the concentration of AI detected. While the 

amount of AI can effectively act as a measure of the cell number density in the vicinity, it has been 

proposed that bacteria may actually use this information to determine the mass transfer properties 

of their local environment in a process termed diffusion sensing [41]. Others have unified the two 

theories under the umbrella term “efficiency sensing,” referencing the fact that both group and 

individual benefits may be incurred when certain genes are expressed only in large populations 

where the loss of extracellular material is limited [42]. For simplicity and based on its prevalent 

use in recent literature, the term quorum sensing will be used throughout this thesis. 

 Several types of QS systems and signals have been discovered. In Gram-negative bacteria 

(e.g. E. coli), AIs are acyl-homoserine lactones (AHLs) or similar small molecules that can diffuse 

freely through the cell membrane [43]. In contrast, Gram-positive bacteria (e.g. Bacillus) secrete 

oligopeptides for QS [43]. AHLs are often part of a feed-forward loop, in which the enzyme that 

encodes an AI is upregulated, in addition to other genes, in response to the detection of that AI 

[43]. Many bacteria express multiple types of AIs. The proteins that receive AHL signals (LuxR 

and its homologues) often have a high specificity for their ligands [19]. In contrast, the gene for 

the enzyme that produces another type of signal, AI-2, has been detected in over 500 bacterial 

genomes [43], [44]. This signal is thought to facilitate interspecies communication. Interestingly, 
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one study even identified a potential interaction between QS in E. coli and the human hormone 

epinephrine, potentially indicating QS extends even to communication with mammalian cells [45].  

 QS circuits are commonly employed for practical applications using synthetic biology. 

Traditionally, the model circuit has been the luxIR system of Vibrio fischeri, which is natively used 

as a part of a symbiotic relationship with the Hawaiian Bobtail Squid [19]. This relationship is 

maintained when the bacteria colonize  the light organ on the underside of the animal and produce 

light (bioluminescence) at high number densities, helping the animal hunt effectively at night [19]. 

In return for this service, the bacteria are well-nourished inside the squid. By regulating 

bioluminescence via QS, valuable energy is not wasted by producing light when it is not needed 

[19].  

The regulatory genetic circuit of V. fischeri, shown in Figure 1.4, is robust and simple, 

making it ideal for use in recombinant hosts. The transcriptional regulator LuxR is produced at a 

relatively high basal rate and becomes activated upon binding with AHL [19]. Dimers of LuxR-

 

Figure 1.4: The luxIR Circuit of Vibrio fischeri. (a) A schematic of the circuit as implemented in this thesis, in 

which luxCDBEG have been replaced with gfp. Activated LuxR, produced at a high basal rate, promotes the 

transcription of genes downstream of the luxI promoter (PluxI).  (b)  A growing colony of QS E. coli harboring 

the circuit express green fluorescent protein (GFP) at high number densities.    
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AHL then bind to the luxI promoter, upregulating transcription of the lux operon containing luxI 

and the genes luxCDBEG, which together  encode the luciferase, a light-producing enzyme [19]. 

This AHL-controlled production of luxI mRNA ultimately leads to the feed-forward behavior of 

the circuit.  

 

The ease of bacterial genetic modification makes QS systems readily amenable to synthetic 

modification, allowing population-level programming of bacteria. The applications of synthetic 

QS-based genetic systems have been demonstrated extensively in literature [46]–[55]. Notably, 

You et al. [46] demonstrated regulated cell death as a function of population size, and [48] showed 

that QS could be used to induce the invasion of cancer cells. Danino et al.  [50] paired a QS circuit 

with another encoding a quorum quenching enzyme to create a biological clock with tunable 

frequency. Most recently, Cao et al. [55] used the circuit in E. coli as a tool to demonstrate 

collective space-sensing for a multicellular system responding to both a diffusible signal and 

nutrient availability, which may explain how scale invariance is achieved during mammalian organ 

development.  

 



12 

 

1.3 Classifications of Models and a Review of the State-of-the-art 

There are several primary approaches for modeling bacterial behavior. We categorized these 

models as being one of three types: Keller-Segel-like, agent-based at the population-scale and, and 

agent-based at the single-cell scale. Figure 1.5 shows the approximate computational time and 

physical domain scales of these modeling approaches. In this section, the formulation of and the 

advantages and disadvantages of these models are reviewed, and a brief review of the state-of-art 

in modeling bacterial behavior is presented.  

 

 

Figure 1.5: The Relevant Physical Scale vs. Computational Time (expense) Scale for Microbial Modeling 

Approaches 
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1.3.1 The Keller-Segel Model 

Since Adler’s 1966 report of traveling bands of E. coli up a chemoattractant concentration gradient 

[56], there has been considerable effort to track, quantify, and model the dynamics of motile 

microorganisms. Experimentally, the motile behavior of individual bacteria in response to 

chemical stimuli was elucidated in the early 1970s [36] [57]. A plethora of experimental studies 

regarding motility and chemotaxis have been published since, most of which are fundamentally 

based on the collective behavior of individual cells. In contrast, many models have been at the 

population-scale in a homogenous environment. Perhaps the best-known and most widely used 

population-scale model is the Keller-Segel model, which assumes that a population of chemotactic 

bacteria behaves mathematically according to an advection-diffusion process. The population is 

represented as a concentration, with the diffusive term representing the random movements due to 

motile behavior and the advective term capturing biased migration due to chemical gradients [58]. 

Though used extensively to model populations of bacteria, this model was derived from 

observations of population-scale transport and thus cannot be used to predict the behavior of 

individual cells [58], [59]. Over time, the model was refined to include physiological cellular 

processes. Notably, Segel [60] derived theoretical expressions to describe the time rate of change 

of the number of bound chemoreceptors and used them to determine the sensitivity of a bacterium’s 

migratory response to a chemical gradient.  Alt [61] later generalized the model and extended its 

applicability to two and three dimensions. However, it was not until 1989 when Rivero et al. [62] 

utilized an empirical relation describing a bacterium’s tumbling probability as a function of chemo-

effector binding that the equations could truly be used to represent the collective behavior of 

individual cells [63].  
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 The primary advantage of Keller-Segel-like models is that, in general, they are relatively 

easy to construct and solve, and they often require fewer parameters than an agent-based model 

[12]. This type of model has been described as a “demonstration” model, or one which is not 

particularly well-suited for simulations of specific populations but rather can elucidate “general 

principles” [12], [64]. While this characterization could be attractive depending on the model 

purpose, it also highlights the main disadvantage of using a Keller-Segel-like model. That is, 

populations are homogeneous, and emergent behavior is built into the governing equations [12]. 

In contrast, emergent behavior in an agent-based model arises do to the collective behavior of 

individuals, which could produce a more realistic simulation [12]. Hellweger et al. [12] make the 

interesting observation that as Keller-Segel-like models (or strictly population-level models) are 

made more complex, by adding various population classes for example, they become more like an 

agent-based model.  

1.3.2 Agent-based Modeling 

Enhanced computing power in the recent decades has made agent-based models, which describe 

the behavior of each individual cell, feasible. In general, this type of model is advantageous in 

situations where heterogeneities occur between cells, but holds the disadvantage of being more 

complex to build and solve than a Keller-Segel-like model [12]. Notable agent-based models at 

the single-cell scale, incorporating chemotaxis, chemical species transport, and hydrodynamic 

interactions, include one developed by Dillon et al. [65], which simulates the swimming dynamics 

of individual bacteria in detail, including flagellar rotation. More recently, another such model was 

developed by Hopkins and Fauci [66] which treated bacteria as point sources of gravity in a fluid 

field. The authors were able to simplify their simulation to two-dimensions to improve 

computational speed and showed that a Rayleigh-Taylor instability occurs due to cell accumulation 
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and consumption of a diffusing nutrient, thus affecting the movement of the cells [66]. Such a 

phenomenon could not have been studied in silico without the single-cell scale model. 

Nevertheless, these models are greatly detailed at the micro- and nanoscales, but extension to larger 

domains is prohibitive due to significant increase of computational time.  

 Exemplary studies using the more common class of agent-based model, one in which the 

expensive physics external to the cell are not calculated in detail, include the pioneering work of 

Kreft et al [67], [68], who created BacSim to simulate colony growth and biofilm formation and 

dynamics at the individual-cell level. Gregory et al. [69] presented a framework to model bacterial 

evolution using simple virtual objects (e.g. cells, proteins, etc.) based on a learning classifier 

system to allow for adaptability. Such a program allowed for studies that would have been long 

and/or difficult experimentally to be conducted quickly.  A number of agent-based models that 

include the intracellular chemotactic signaling network have been published, including Bray et 

al.’s [70] detailed program that demonstrated how subtle details of chemotaxis may not be seen in 

experimental studies. Specifically, they found that cooperative interactions were needed between 

neighboring chemoreceptors in order to match published data on swimming behavior in various 

gradients. Another study resulted in the creation of RapidCell, a program that the researchers used 

to show how bacterial chemotaxis depends on the rate of adaption and shape of the chemical 

gradient [71]. Shortly thereafter, Kalinin et al. [72] demonstrated that using a simple logarithmic 

relation for the sensing of chemoattractants, first observed by Brown and Berg in 1974 [73], could 

be used in an agent-based model to reproduce experimental results. In recognition of the important 

role diverse species play in close interactions, a number of agent-based models have been 

employed to study biofilms. For instance, Poplawski et al. employed CompuCell3D, a program 

designed to study morphogenesis without regard to a particular species, to elucidate growth and 
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pattern formation in a biofilm [74]. In an effort to standardize the approach to modeling biofilms 

and accelerate progress, iDynoMiCS was presented in 2011, which implemented four major 

improvements over existing models, including the modeling of a biofilm pressure field, secretion 

of the extracellular polymeric substance (EPS) that makes up the biofilm matrix, the ability to 

simulate both heterogeneous and homogenous systems, and a consideration of the cells’ 

metabolism in simulated growth rate [75]. Other notable studies include those conducted in 

Haseloff’s group [76], [77] to show spatial patterns in a biofilm using an agent-based formulation. 

In a more behaviorally-comprehensive approach, Wei et al. [78] created a model capturing 

intracellular chemotaxis signaling and QS in a 3D diffusive environment, using it to demonstrate 

a hypothetical synthetic microbial network. They used their model to demonstrate how the state of 

genetic logic gates could be controlled by QS during taxis towards a point source. More recently, 

part of the same group studied the effects of QS in a diverse biofilm containing a fraction of agents 

that were resistant to compounds that inhibit the QS signal [79]. The authors then demonstrated 

how QS inhibition can affect the spatial structure of communities of QS bacteria, cheaters (non-

QS bacteria that benefit from the QS activation of other bacteria in the community), and QS 

bacteria resistance to inhibition. Most notably, their results suggest that the most effective strategy 

to combat QS-mediated virulence in biofilms would involve a combination of EPS-targeting drugs 

and QS inhibiters. However, their results have not yet been experimentally verified.  

1.4 Objectives and Organization of the Thesis 

In order to make accurate predictions of the time required for QS-regulated behavior in dynamic 

populations of bacteria, we have developed a computational model capable of simulating bacterial 

motility, chemotaxis, physical interactions, growth, mass transport, and competition in a mixed 

QQ-QS community. All aspects of the model were experimentally verified by engineering custom 
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plasmids for E. coli and performing experiments in a well-controlled microfluidic environment.  

To our knowledge, no model exists which is able to accurately predict the time required for a QS-

controlled genetic switch to be turned on in a spatiotemporally-dependent manner. Moreover, we 

have extensively validated the model’s predictions of both chemotaxis and QS activation times, 

which is absent or minimal in most previously published modeling work. The model presented 

herein holds great utility for rationally designing QS networks for a wide range of applications 

where time and space are significant to success, including drug delivery, biosensing, and 

bioremediation, among others. The remainder of the thesis is organized according to the following: 

Chapter 2: This chapter describes the development of the computational model. Specifically, all 

governing equations are derived and given in their final form. Their descriptions and incorporation 

into the computational framework are logically organized, beginning with the model of bacterial 

motility. Next, a mathematical descriptions of chemotaxis, QS, QQ, and growth are presented. The 

numerical approach to solving the model is discussed, followed by a description of the novel 

methods used to account for cell-cell interactions and the QS initial condition. The logical 

processes flow of the model is summarized, and finally, the effects of time step and mesh size are 

characterized.  

Chapter 3: The third chapter details all experimental methods and the results of both experiments 

and simulations. The design and fabrication of the microfluidic device used for all experiments is 

described, as are the assumptions made in order to model the flow-free environment created inside. 

Next, experimental validations of virtually all aspects of the model are presented. First, the 

chemotaxis model alone was fit to the experimental data comprising linear chemoattractant 

gradients spanning three orders of magnitude. Next, the results of experiments to quantify the 

effects of advection on mass transport inside the device are presented along with detailed 
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descriptions of data analysis. Validation and fitting of the QS model based on experiments with 

QS bacteria alone in the presence of a chemoattractant gradient is detailed. The fitted model is then 

used to make predictions for several alternative QS scenarios, including in the absence of a 

chemoattractant gradient, in a microbial community with QQ bacteria, and in populations 

harboring rationally-tuned genetic circuits. In each case, experimental results are presented 

alongside simulation data.  

Chapter 4: The concluding chapter outlines the original contributions of this work to the field of 

biological systems modeling, limitations of the model are discussed, and predictions are made 

regarding QS in several hypothetical cases. A set of pilot experiments and their results 

demonstrating biomedical application of rationally designed QS bacteria are described. Finally, 

future work stemming from this thesis is outlined.  
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Chapter II: Computational Framework and Agent-based Modeling 

There are several features that are fundamental to building an accurate model of bacterial migration 

and communication. These include a simulation of the random walk that characterizes basic 

flagellar motility, the proper adjustment of this motility model to account for biased migration in 

the presence of chemical gradients, and the solution to a set differential equations describing the 

production, sensing, degradation, and transport of chemical signals. The following sections 

describe the development of each of these features, which were implemented in the computational 

model as modules capable of functioning independently of one another. Specifically, the model is 

capable of simulating motility, chemotaxis, QS, growth, mass transport, and accounts for physical 

cell-cell interactions. Additionally, a model of QQ was developed and included in order to simulate 

distinct, competing populations in a microbial community. 

2.1 Modeling Basic Bacterial Motility: Run-and-tumble in the Absence of a Chemo-effector 

Flagellated bacteria such as E. coli and S. Typhimurium migrate according to a random walk in a 

so-called “run-and-tumble” fashion when in their planktonic state (i.e. freely-swimming). A run is 

a nearly-linear translocation in space during which the flagellar filaments form a coherent helical 

bundle with which a cell propels itself forward at a constant rate. The run phase is interspersed 

with periods of tumbling, during which the bacterium is reoriented due to Brownian motion. The 

probability 𝑃(𝜏) of such an event occurring increases with time during the run phase according to 

a Poisson process, 

𝑃(𝜏) = ∫𝜆𝑖𝑒
−𝜆𝑖𝑡𝑑𝑡

𝜏

0

, 2.1 

here 𝜆𝑖
−1 is the mean run or tumble duration, and 𝜏 is the duration or the particular event [80]. The 

actual frequency of tumble occurrences depends on a signaling cascade stemming from the 
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temporal binding and dissociation of external chemical signals, discussed in Section 1.2.2. Thus, 

in the absence of such signals, a large collection of run times resembles an exponential distribution 

[27]. For a typical E. coli bacterium, the average run duration is about 1 s, while the average tumble 

duration is about 0.1 s, also distributed exponentially [27].  

The stochastic nature of cell motility was captured in the model by randomly sampling 

phase durations from an exponential distribution. At the start of a simulation, a predetermined 

number of agents (representing bacteria) were initially placed at random locations inside the 

computational domain. Each agent was initially assigned either a run timer or a tumble timer. 

Specifically, the value of each was chosen by solving Equation 2.1 for 𝜏 and setting 𝑃(𝜏) equal to 

a number between 0 and 1, randomly and uniformly chosen using the L'Ecuyer Algorithm with 

Bays-Durham shuffle [81]. Noting that the distributions of 1 − 𝑃 and 𝑃 are equivalent, 

𝜏 = −𝜆𝑖
−1 ln(𝑃). 2.2 

Each agent in the run phase moved linearly through continuous space in steps of 𝑉bΔ𝑡, where 𝑉b 

is the speed of the agent and Δ𝑡 is the time step. The average speed of an E. coli cell is about 

21 μm/s, while its  diffusion coefficient is on the order of 0.2 μm2/s [27], [82]. Over the length of 

a 1 s run, the deviation from a straight path can be estimated as 〈𝑥2〉 = √2𝐷𝑡 ≈ 0.6 μm. Lateral 

movement due to diffusion was thus considered negligible. Cells in the tumble phase were held 

stationary in space for the duration of their timer. Whenever the timer of an agent expired, that 

individual switched phase and was assigned a new timer during the next time step.  

In addition to run and tumble durations, accurate modeling of changes in direction from 

one run to the next is critical for recapitulation of experimental results. This change in direction 

was defined as the tumble angle 𝜃T (see Figure 2.2) and was also modeled as a stochastic process. 

It was noted that a log-normal distribution produces a qualitatively good match of experimental 
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data published in studies of bacterial motility and tracking (namely [36], [83]) and is also known 

to be common in natural processes [84]. A log-normal distribution of tumble angles was created 

by first calculating a uniformly distributed coefficient using the Box-Muller transformation, 

𝑟 = √−2ln(𝑥1) cos(2𝜋𝑥2), 2.3 

where 𝑥1 and 𝑥2 are random, uniformly distributed numbers between 0 and 1 [81]. A tumble angle 

with a mean of 𝜃T,𝜇 and standard deviation of 𝜃T,𝜎 following a log-normal distribution was then 

calculated as 

𝜃T = exp(𝐵𝑟 + 𝐴) 2.4 

where 

𝐴 = ln(
𝜃T,𝜇
2

√𝜃T,𝜎
2 +𝜃T,𝜇

2
) and 𝐵 = √ln (1 +

𝜃T,𝜎
2

𝜃T,𝜇
2 ). 2.5 
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The natural logarithm of the resulting selection of 𝜃T values is normally distributed, that is 

ln(𝜃T) ~𝒩(𝜃T,𝜇, 𝜃T,𝜎
2 ). Figure 2.1 shows the relative distribution of 𝜃T from a 9-minute simulation 

of 50 agents and a published experimental distribution [36].  

 

 

Figure 2.1: Plots of Log-normally Distributed 𝜃 Values Sampled During a 9-minute Simulation (left) and the 

Experimental Data Recorded by Berg and Brown [36] (right) 
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Figure 2.2 shows how phase changes occur for agents in the simulation. An agent runs at 

a speed of |𝑉b| oriented with an orientation defined with respect to the 𝑦-axis. When the run timer 

reaches zero, a tumble angle is sampled and added to the agent’s previous bearing while the agent 

is held stationary in space for its tumble duration. Once this tumble timer expires, the agent moves 

forward at the same previous swimming speed but in a new direction.  

 

Figure 2.2: Agent Movement and Phase Change in Simulations  
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2.2 Modeling Bacterial Chemotaxis  

Chemotaxis is a critical process that helps bacteria localize in chemically-favorable environments. 

During chemotaxis, the mean run duration 𝜆R
−1 is perturbed by the binding and dissociating of 

chemical signals to a bacterium’s chemoreceptors. These signals are typically chemical 

compounds that the bacterium is either attracted to or repelled by (i.e. chemoattractants and 

chemorepellents, respectively). A molecular memory mechanism allows the cell to detect 

concentration gradients. When moving towards the source of a chemoattractant, L-aspartate for 

instance, the tumbling frequency is reduced, thereby extending the length of the run up the 

chemical gradient. In analogous fashion, the detection of a toxin, such as hydrogen peroxide, in 

increasing concentration raises the probability of a tumble event. In this way, bacterial motility 

can be biased in a favorable direction.  

Brown and Berg [36], [73] observed that the natural logarithm of the mean run durations 

of E.coli varied linearly as a function of the temporal derivative of the number of bound 

chemoreceptors. Rivero et al. [62] later suggested that bacteria are indifferent to temporal 

concentration changes versus those that are due to the cells’ movement through spatial gradients. 

The run duration therefore depends on both the temporal and spatial derivative of chemo-effector 

concentrations. This rate of change is represented by the material derivative,  

𝐷𝐶±

𝐷𝑡
=
𝜕𝐶

𝜕𝑡
± �⃗� b ∙ ∇𝐶, 2.6 

where 𝐶 is the number of bound receptors [62]. The mean run time can then be modeled as [62], 

[63] 

𝜏(𝐱, 𝑡) = 𝜏0 exp (𝜎
𝐷𝐶±

𝐷𝑡
), 2.7 
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where 𝐱 = 𝑥, 𝑦, 𝑧, 𝜏0 is the average run duration in a chemically isotropic environment, and 𝜎 is 

the chemotactic sensitivity. Rivero et. al. [62] maintained the assumption by Berg and Brown [73] 

of Michaelis-Menten-like receptor-ligand binding kinetics, 

𝐶(𝑠) =
𝐶T𝑠

𝐾d + 𝑠
 2.8 

where 𝐶T is the total number of chemoreceptors for a bacterium, 𝑠 = 𝑠(𝐱, 𝑡) is the local 

chemoeffector concentration, and 𝐾d is the dissociation constant for the binding of a chemoeffector 

to a receptor. The mean run time can be determined from Equation 2.7 as  

𝜏±(𝑥) = 𝜏0 exp [𝜎
𝐶𝑇𝐾𝑑

(𝐾𝑑 + 𝑠)2
 (
𝜕𝑠

𝜕𝑡
± �⃗� 𝑏 ∙ 𝛻𝑠)]. 2.9 

For bacteria swimming up a chemoattractant gradient (increasing concentration) 𝜏 = 𝜏+, while 

𝜏 = 𝜏− for movement away from the chemoattractant source (decreasing concentration). This 

behavior is reversed in chemorepellent gradients, such that 𝜏+ and 𝜏− always indicated movement 

in a favorable or unfavorable direction, respectively.  

 Chemotactic behavior was implemented in the model by defining a chemical concentration 

field in continuous space using either COMSOL simulation results (see Section 3.1.1) or an 

analytical solution for diffusion in space and time (see Section 4.1). The mean run time was 

calculated for each agent based upon the change in concentration between successive runs. 

Equation 2.2 was then used to calculate a stochastic run duration, taking 𝜆R
−1 = 𝜏±. Figure 2.3 

shows the trajectories of three individual agents over a 100 s simulation period. No chemoeffector 

gradient was modeled for the case shown in the Figure 2.3a, while a chemoattractant diffusing 

from the center of the field was used for the case shown in Figure 2.3b.  
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2.3 Modeling Quorum Sensing  

Many species of bacteria utilize QS as a mechanism for intercellular communication via the 

secretion of small signaling molecules, whereby it is generally assumed that the local population 

density is inferred from the sensed concentration of the signal [41], [85]. The luxIR system of 

Vibrio fischeri is a model QS system and is often employed in synthetic genetic constructs to 

program bacterial behavior [40], [46]–[52], [86], [87]. This simple and robust genetic machinery 

was therefore chosen for this thesis and used to control the expression of green fluorescent protein 

(GFP), (Figure 1.4). In this system, an acyl-homoserine lactone (AHL) signaling compound (3-

oxohexanoyl-homoerine lactone) is produced by the AHL synthase LuxI, which is expressed at a 

low, constitutive rate in the absence of AHL. As the concentration of AHL increases, its rate of 

binding with the transcriptional regulator LuxR, which is produced at a high constitutive rate, 

increases. The LuxR-AHL complex binds to the luxI promoter region of the DNA and sharply 

 

Figure 2.3: Simulated Random-walk Motility and Chemotaxis. The trajectories of 3 agents (each represented by a 

differently-colored trace) during a 100 s simulation period in the (a) absence and (b) presence of a chemoattractant 

source. Circular and square markers denote the starting and ending positions of each trace, respectively. Figure (b) 

was generated using the analytical solution derived by Futrelle and Berg [136] for the diffusion of a 

chemoattractant from a capillary tube. 
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upregulates the transcription of luxI thus creating a positive feedback loop with AHL. This process 

can be captured using a Hill function,  

𝐴t = 𝐴1 + 𝐴2
𝑄𝐻

𝑄𝐻 + 𝑄0
𝐻, 2.10 

where 𝐴1 and 𝐴2 are the constitutive and upregulated rates of AHL generation, respectively, 𝑄 =

𝑄(𝐱, 𝑡) is the local concentration of AHL, 𝑄0 is the concentration at which production is considered 

to be “upregulated,” and 𝐻 is the Hill constant [88], [89]. Figure 2.4 shows the characteristic 

switch-like behavior of a Hill function with respect to the Hill coefficient.  

In nature, QS is known to regulate the expression of a variety of genes in bacteria, but can 

be utilized in practice for the production of pharmaceuticals or therapeutic proteins, for instance. 

The function of the QS circuit can be studied using a fluorescent protein as a visual reporter. To 

this end, the gene for GFPmut3b, an engineered derivative of wild-type GFP for improved 

fluorescent properties, was placed downstream of the luxI promoter in experimental studies [90]. 

 
 

Figure 2.4: Plot of a Hill Function for 𝐻 = 1, 𝐻 = 2.5, and 𝐻 = 5 
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In order to accurately compare modeled and experimental results, the kinetics of immature protein 

(𝐺i) translation and maturation into its fluorescent conformation 𝐺m were modeled, following the 

approach of Leveau and Lindow [91], as the coupled system of ordinary differential equations 

(ODEs),  

𝑑𝐺i
𝑑𝑡

= 𝑘tr
𝑄𝐻

𝑄𝐻 + 𝑄0
𝐻 − 𝑘𝐺m𝐺i − 𝜇𝐺i − 𝑘deg

𝐺i
𝐺i + 𝐺m + 𝐾m

 2.11 

and 

𝑑𝐺m
𝑑𝑡

= 𝑘𝐺m𝐺i − 𝜇𝐺m − 𝑘deg
𝐺m

𝐺i + 𝐺m + 𝐾m
, 2.12 

where 𝑘tr is the maximum rate of production of 𝐺i, 𝑘𝐺m  is the rate of GFP maturation, 𝜇 is time-

dependent growth rate (representing dilution due to cell division), 𝑘deg is the maximum rate of 

protease-mediated protein degradation, 𝐾m is the concentration of GFP (assumed equivalent for 

both 𝐺i and 𝐺m) at which the rate of degradation is half its maximum rate, and 𝑘𝐺m  is the rate of 

maturation of 𝐺i into 𝐺m.   

 The main goal of the model developed in this thesis was to predict the QS “activation” 

time, which was based upon the expression of GFP. Since gfpmut3b was promoted by the luxI 

promoter, the rate of GFP expression was assumed to be negligible in the absence of AHL. 

Therefore, it was also assumed that the metabolic load of GFP production had no effect on AHL 

synthesis prior to activation. This allowed Equations 2.11 and 2.12 to be solved independent of the 

main simulation using the odeint solver of the scipy.integrate module, part of the open-

source scientific computing library SciPy (version 0.18.0).   

 In nature, AHL freely diffuses through the cell membrane [92]. Its transport through the 

environment and degradation over time is governed by 



29 

 

𝜕𝑄

𝜕𝑡
= ∇ ∙ (𝐷AHL∇𝑄) − ∇ ∙ (�⃗� 𝑄) − 𝑅d𝑄 2.13 

where 𝐷AHL is the diffusivity of AHL, �⃗�  is the local fluid velocity field, and 𝑅d is the relative rate 

of AHL degradation. Numerically solving Equation 2.13 is a computationally-intensive task, 

primarily due to the need to solve for the flow field �⃗� . One of the desired features of the model 

developed in this work was scalability and a relatively low computational expense. Therefore, the 

relative importance of advection to diffusion was analyzed in order to determine its importance as 

a mechanism of AHL transport. Over the average length of a bacterium run 𝐿c (assuming 𝜏~1 s, 

𝑉b~20 μm/s, and 𝐷AHL = 490 μm2/s), the Péclet Number Pe =
𝐿c𝑉b

𝐷AHL
 is on the order of 1, suggesting 

that the advection of AHL could be significant relative to diffusion. However, this would represent 

an “overestimated scenario” for advection, since the flow field around a swimming bacteria decays 

with the square of distance from the center of the cell [93]. Nevertheless, the contribution of 

advection to the transport of micron-sized particles (approximately 1 μm to 10 μm) in bacterial 

suspensions, even at relatively dilute populations, has been well documented [94]–[99]. In order 

to determine whether or not swimming bacteria affect the transport of small molecules such as 

AHL (molecular weight, MW of 213 Da), a series of microfluidic experiments were performed in 

which the effective diffusivity of fluorescein (MW of 332 Da) was measured in the presence of 

highly motile E. coli at concentrations ranging from 5×108 CFU/ml to 1×1010 CFU/ml (detailed in 

Section 3.3.1). In all cases, the measured diffusivity was not significantly different than the 

diffusivity in the absence of bacteria, thus it was assumed that the advection term ∇ ∙ (�⃗� 𝑄) could 

be neglected. In this two-dimensional model, Equation 2.13 simplifies to  

𝜕𝑄

𝜕𝑡
= 𝐷AHL (

𝜕2𝑄

𝜕𝑥2
+
𝜕2𝑄

𝜕𝑦2
) − 𝑅d𝑄. 2.14 
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2.4 Modeling Quorum Quenching  

In nature, some bacteria are capable of quorum quenching (QQ) by degrading the autoinducers 

(AIs) of other microbes. One mechanism for QQ is the hydrolyzing activity of an AHL inactivation 

enzyme, AiiA [100]. This enzyme has been discovered in a number of Bacillus species and is 

commonly employed as a tool for programmed behavior in synthetic constructs [101]. In addition 

to simulating AHL-producing agents, the capability to model a distinct population of QQ agents 

was also included in the model. The only difference between these agents and QS agents was that 

instead of generating AHL molecules, they removed local AHL at a rate determined from: 

𝑄− = 𝑘cat𝐴
𝑄

𝐾𝐴 + 𝑄
, 2.15 

where 𝑘cat is the specific activity of the enzyme, 𝐴 is the concentration of AiiA, and 𝐾𝐴 is the 

concentration of 𝑄 at which the rate of degradation is half of its maximum value. AiiA is not 

secreted but remains within the cell at all times. The production, accumulation, and degradation of 

AiiA inside each QQ agent was modeled as 

𝑑𝐴

𝑑𝑡
= 𝑘𝐴 − 𝜇𝐴 − 𝑘𝐴,deg𝐴, 2.16 

where 𝑘𝐴 is the constitutive rate of AiiA expression, 𝜇 is the growth rate, and 𝑘𝐴,deg is the relative 

rate of AiiA degradation.  

2.5 Modeling Bacterial Growth in an Agent-based Model 

Another critical component of a population-scale model of bacteria is the inclusion of a growth 

model to facilitate the multiplication of agents over time. In this model, growth was included by 

defining a function  𝑃∗(𝑡) = 𝑃(𝑡)/𝑃0 giving the population size relative to the initial population 

at any point in time. Thus, for bacteria growing a constant rate with doubling time 𝜏g, 𝑃
∗(𝑡) =

2𝑡/𝜏g . This formulation was chosen to simplify experimental validation, as it was found that the 
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relative population size increased linearly with time (meaning that doubling time increased 

significantly over the course of experiments). At each time step and for each agent, the decision 

whether the agent should divide or not was made by calculating the probability of division per 

agent, 

𝑝dbl =
Δ𝑡Δ𝑃

Δ𝑡g𝑃(𝑡)
=
Δ𝑡𝑃0[𝑃

∗(𝑡) − 𝑃∗(𝑡 − Δ𝑡g)]

Δ𝑡g𝑃(𝑡)
, 2.16 

where Δ𝑡 is the simulation time step, and Δ𝑡g is the time required for the population to increase by 

one agent according to 𝑃(𝑡).  

 In experiments, growth is usually measured at the population level. An important note to 

make is that differences between the population scale and individual scale must be reconciled when 

comparing experimental data to an agent-based model. In the context of growth, assigning 

individual agents a doubling time from experimental measurements will result in error if the 

doubling time is not constant over time. That is, population-level measurements provide the 

population-average doubling time (as a function of time), as opposed to the doubling time of only 

the agents that divided. To demonstrate this, consider the case of a doubling time defined by 

𝜏dbl(𝑡) = 𝛼𝑡 + 𝜏dbl,0. At 𝑡 = 0, each agent will be assigned an initial doubling time from 0 to 

𝜏dbl,0 (to account for heterogeneity in the cell cycle). No agent in the population will take longer 

than 𝜏dbl,0 to replicate from the simulation start, though the doubling time for the population 

changes continuously over the interval 𝑡 ∈ [0, 𝜏dbl,0]. The population average doubling time 

integrated over this interval therefore cannot be greater than 𝜏dbl,0, inevitably resulting in error for 

𝛼 > 0. This problem will continue to propagate throughout the simulation as new doubling times 

are set according to 𝜏dbl(𝑡). For the case of increasing 𝜏dbl(𝑡), the simulated population will grow 
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too rapidly, while it will grow too slowly if 𝜏dbl(𝑡) is decreasing in time. This result is 

demonstrated in Figure 2.5.  

 

2.6 Numerical Model and Functional Process Flow 

The following sections describe the numerical techniques used to solve governing differential 

equations and the process flow for determining the behavior of each agent. Finally, the effects of 

mesh size and time step on simulation results are analyzed.   

2.6.1 Numerical Computation Scheme 

The partial differential equation (PDE) in Equation 2.14 was solved using the alternating 

difference implicit (ADI) technique [102]. This technique holds particular advantage over more 

 

Figure 2.5: Plot of Relative Population Size vs Time for non-constant Doubling Times: Agent Growth Determined 

by Doubling Time or Doubling Probability. Discrete doubling times were sampled and used to set “division timers” 

for simulations with increasing or decreasing agent doubling times, while the continuous probability-based method 

described above was used for the simulation of a linearly increasing population.  
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traditional methods such a Crank-Nicolson scheme for a PDE that is unsteady in time and involves 

multidimensional space, because it allows the finite difference equations to reduce to tridiagonal 

matrices that can be solved using Thomas’ algorithm [102]. This is achieved by using a two-step 

process to solve for values of 𝑄(𝑡 + Δ𝑡) by separating the spatial derivatives and implicitly solving 

only one direction at a time over a half-time step. Mathematical details are given by Anderson 

[102]. Figure 2.6 shows conceptually how the ADI method is implemented. For stability of this 

method, the time step must satisfy Δ𝑡 ≤ (Δ𝑠)2/2𝐷AHL, where Δ𝑠 = Δ𝑥 = Δ𝑦. In practice, a 

smaller time step was used in order to provide a closer approximation of continuous AHL 

contribution as the agents moved through space.  
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The code and numerical model were verified by comparing the result of simulated one-

dimensional, semi-infinite diffusion to the analytical solution. That is,  

 

Figure 2.6: Steps for Numerically Solving Equation 2.14 using the ADI Method (figure adapted from [102]). First, 

the 𝑥-direction is swept at 𝑡 = 𝑡𝑛 to calculate the values of 𝐾, which are used to solve a tridiagonal matrix system 

giving the concentrations at 𝑡𝑛+1/2. Next, the 𝑦-direction is swept at 𝑡𝑛+1/2 to calculate 𝐿, which is finally used to 

solve for concentrations at 𝑡𝑛+1.  
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𝐶∗(𝑥, 𝑡) = erfc (
𝑥

2√𝐷𝑡
) 2.17 

where 𝐶∗ is the concentration field normalized to a non-depleting source with concentration 𝐶0, 𝑥 

is distance from the source, and 𝐷 is the diffusion coefficient. Figure 2.7a shows a comparison of 

the simulated and analytical results for 𝐶0 located at 𝑥 = 350 μm. The code was analogously 

validated in the vertical (𝑦-) direction by placing 𝐶0 at 𝑦 = 350 μm (Figure 2.7b).  The diffusivity 

𝐷 was 10 μm2/s in both cases.  

  

2.6.2 A Computationally-efficient Method to Account for Cell-cell Interactions  

In continuous space, checking for collisions between agents becomes a computationally expensive 

process as the area around each agent (which is modeled as an infinitesimal point in space) within 

a finite distance must be checked at each time step to see if any other agent is within its excluded 

volume. In order to maintain a relatively short time requirement for solving the model, a discretized 

approach was developed that still allows agents to move in continuous space. This was 

accomplished by assuming that an average minimum distance exists between cell centers, termed 

 

Figure 2.7: Diffusion Simulation Validation in the 𝑥- (a) and 𝑦-directions (b). Data points indicate simulation 

results and the smooth line indicates analytical results. The colors of correspond to the time values specified in the 

legend. The inset in each subplot shows a contour plot of the simulated concentration field after 60 min.  
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the interaction distance. This distance was used to define the internodal spacing, Δ𝑠c in an 

“interactions mesh” on which approximate agent locations were recorded. This technique helped 

to maintain computational efficiency by allowing the number of agents closest to each node to be 

recorded in one efficient loop at each time step. If necessary, positions were then adjusted 

accordingly at the following time step. Specifically, if the node nearest to agent 𝑖 at 𝑡𝑛, or if any 

one of the four nodes neighboring this node, was occupied at time 𝑡𝑛−1, then that agent was 

“snapped” to the nearest node that was unoccupied at 𝑡𝑛−1. Additionally, agents that were moved 

due a collision event were rotated in a random direction by a mean of 83.6° (sampled from a 

uniform distribution) according to experimental measurements of bacterial angle change before 

and after a cell-cell collision (𝑛 = 90). This process is shown graphically in Figure 2.8. It was 

assumed that, for a small enough time step Δ𝑡, inherent errors in this method were negligible. 

Errors in space were also assumed negligible in the overall emergent behavior of the population 

 

Figure 2.8: Efficient Modelling of Cell-cell Collision Events. At time 𝑡𝑛−1, agents located in continuous space are 

counted on the discrete interactions mesh at the nodes indicated (left). In the following time step, agents whose 

positions were recorded adjacent to or overlapping with other agents were relocated and reoriented instantaneously 

(right). Note that the two agents near the right-hand side border in both subfigures were not disturbed since they 

were more than Δ𝑠c from one another as determined by the distance between their nearest nodes (Δ𝑥c = Δ𝑦c =
Δ𝑠c).  
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and should well-approximate bacterial aggregation and space exclusion due to physical size alone. 

In simulations, the mesh spacing was set to 2 μm, approximately half the measured length of 

bacteria corresponding to the scenario being modeled. From a physical standpoint, this treatment 

is equivalent to modeling the agents as spheres with radii equal to half their body length.   

Figure 2.9 shows the effects of different internodal spacing values for a non-reproducing 

population of 500 chemotactic agents. The plot on the left demonstrates how population density is 

affected and limited depending on the distance between agents for interactions to occur. To reduce 

noise due to the stochastic movement of agents, the final 10 minutes of data from a 60-minute 

simulation was averaged to produce the curves shown. The plot on the right-hand side of Figure 2.9 

shows the random walk of 50 agents over a 1000-second simulation with a mesh spacing of 

100 μm. This large spacing value was chosen to show the emergent structure of the mesh due to 

the frequent repositioning of agents as they interacted.  

2.6.3 Model Information and Process Flow 

A simulation begun by constructing a list of agents and randomly assigning a run or tumble phase. 

During each time step, the list of agents is iterated one by one to allow each to interact with its 

 

Figure 2.9: 10-minute Average of Population Density as a Function of 𝑥-location (left) and the Emergent Structure 

of a Coarse Interactions Mesh as Demonstrated by Trajectories of 50 Agents over a 1000 s (right)  
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environment. A chart showing the main flow of information and processes is shown in Figure 2.10. 

If the simulation involved QS, then each agent released a number AHL molecules into the nearest 

four concentration field nodes according to the rate calculated from Equation 2.10, 𝑁QS(𝑥, 𝑦) =

𝐴t(x, y)Δ𝑡. The specific number that was input into each node was interpolated linearly, as were 

concentration values sensed by the agents. If the current agent represented a QQ bacterium, then a 

fraction of the local AHL is removed based on the result of Equation 2.15, 𝑁QS
− (𝑥, 𝑦) =

𝑄−(𝑥, 𝑦)Δ𝑡. Next, motility functions were called, causing the agent to take a step in space 

according to �⃗� bΔ𝑡 or to remain stationary if it was in the tumble phase. In either case, running or 

tumbling, the timer for that respective phase was compared to the time step to determine if it was 

time for the agent to change phase. That is, if Δ𝑡 ≥ 𝜏remain then new timers were set and the 

bacterium started the next time step in the opposite phase. With each iteration within the list of 

agents, the procedure described in Section 2.6.2 was performed to adjust positions based on 

physical interactions. At the end of the time step, the mesh was updated with counts of agents at 

each node.  
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Figure 2.10: Chart of Model Process Flow 
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2.6.4 Investigation of the Effects of Mesh Size and Time Step on Model Predictions 

A critical parameter of any numerical model is proper selection of both time step and mesh size 

(or mesh spacing) such that further reduction or refinement does not significantly impact the results 

of interest. To test for this, the impact of the time step selection was first evaluated with respect to 

agent chemotaxis behavior. The results were quantified using the CMC (chemotaxis migration 

coefficient) metric, which is a measure bacteria distribution in response to a chemoeffector and is 

defined as 

CMC =
2∑𝑥𝑁(𝑥)

𝑤∑𝑁(𝑥)
, 2.18 

where 𝑁(𝑥) is the number of agents located at location 𝑥 and 𝑤 is the width of the domain. 

Figure 2.11 shows the CMC as a function of time for a 700×700 μm2 domain at three different time 

steps. Note that each trace oscillates about the same mean CMC value, indicating that the time step 

selection has little impact on the agent localization.  

 

 

Figure 2.11: The Effect of Time Step on Simulated Chemotaxis for an Optimized Chemical Gradient (left) and a 

Non-optimal Chemical Gradient (right)  
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 Since the primary metric associated with QS studies was the activation time, this was used 

as a metric to investigate the effects of mesh size and time step on emergent behavior. The QS 

activation time was defined as the time when a detectable threshold concentration of mature GFP 

(assumed to be on the order of 100 nM) had accumulated inside cells (averaged over the population 

in the first 50 μm of the domain). It was found that mesh size had a significant impact on this result 

if a small steady population size (50 agents) was used. The results of a mesh refinement study are 

shown in Figure 2.12a. In contrast, the mesh size had little effect on simulations when an 

experimentally-measured growth rate was used. This was likely due to AHL concentrations being 

forced to be more homogenous for coarser meshes versus finer meshes. In simulations with larger 

numbers of agents (i.e. a growing population), concentrations are relatively homogeneous 

regardless of mesh size, meaning that using a coarser mesh produces little change in activation 

time. Figure 2.12b shows mean activation time versus mesh size for the case that with the greatest 

experimental activation time (270 min; detailed experimental results are in Section 3.4.3). The 

physical domain size was 2100×2100 μm2. Note that a large difference was observed between the 

two coarsest meshes (50×50 nodes and 100×100 nodes), but differences were relatively small 

 

Figure 2.12: The Effect of Mesh Size on Activation Time for (a) a Static Population of 50 Agents and (b) the 

“weakest” experimentally-tested QS construct with a growth rate defined by 𝑃∗(𝑡) = 0.073𝑡 + 1 
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thereafter. Since the relative change between a 100×100 mesh and 600×600 mesh was less than 

5%, all simulations were run using this mesh size.   
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Chapter III: Experimental Validation of the Model 

In order to ensure that the model accurately recapitulates chemotaxis as a function of 

chemoattractant gradient and emergent QS behavior for a variety of initial conditions, degrees of 

localization, a community with QQ bacteria, and variance in AHL generation rates, a series of 

microfluidic experiments were performed to validate model results. First, chemotaxis assays were 

performed for gradients of L-aspartic acid spanning three order of magnitude. Optimizing the 

kinetic parameters resulted in modeled chemotaxis migration coefficients (CMCs) within about 

8% of experimental measurements. The model was then used to predict QS activation times in a 

series of experiments with various starting conditions in order to determine AHL generation 

parameters. The utility of the model as a design tool was demonstrated by predicting activation for 

greatly decreased generation rates, which was implemented in practice by designing synthetic 

ribosomal binding sites (RBSs) to scale rates of protein translation. Finally, the model was used to 

show the importance of spatial distribution in emergent behavior, including in a microbial 

community with QQ bacteria.  

3.1 Microfluidic Platform Utilized for Chemotaxis and QS Experiments 

A microfluidic platform previously developed in our lab [103] to study bacterial responses to 

chemical gradients was used to perform chemotaxis assays and QS/QQ experiments. This device 

has several advantages, including ease of fabrication, low cost, spatiotemporal invariance in the 

chemo-effector gradient [104], and ease of modeling the environment created inside.  

3.1.1 Microfluidic Device Design 

The microfluidic device used for experiments was previously developed by Traore and Behkam 

[103], who described the fabrication and design of the device in detail. In short, the device, shown 

schematically in Figure 3.1a, utilizes a polyethylene glycol diacrylate (PEG-DA)-based gel to 
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separate three parallel, fluid-filled channels. The device is sealed by a glass slide on the bottom 

and by a slab of polydimethylsiloxane (PDMS) on the top, sandwiched between two pieces of 

Plexiglass and clamped together using four bolts (Figure 3.1b and 3.2b). By establishing flow of a 

buffer solution through one of the outside channels and chemo-effector solution in the opposite 

outside channel, a constant-concentration boundary condition is imposed on the inner PEG-DA 

walls that border the flow. At steady state, a quasi-linear chemical gradient is established across 

the width of the center channel. For experiments, a bacterial suspension was flowed into the center 

channel, and the inlet and outlet were sealed to prevent flow, which would have disrupted the 

gradient. 

 

3.1.2 Device Fabrication 

Microfluidic devices were fabricated following the protocol in [103]. First, a new 4×1 in2 glass 

microscope slide was cleaned by rinsing with acetone, followed by deionized (DI) water and 

 

Figure 3.1: Microfluidic Device used for Experiments. (a) A schematic of the device design, layout, and function, and (b) 

a photograph of a fully-assembled device  
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isopropyl alcohol (IPA). The slide was then air dried, and liquid PDMS (10:1 base-to-curing agent; 

Dow Corning, Auburn, MI) was spin-coated onto the top surface for 30 s at 800 RPM resulting in 

an approximate 100 μm-thick PDMS film. After curing for 4 hr at 70° C, a rectangular piece of 

the film was cut out of the center, and the glass surface was re-cleaned using IPA, acetone, and DI 

water, concluding with a final IPA rinse. The slide was air-dried and cleaned in air plasma for 40 s 

(200 mTorr, 18 W) to remove organic surface contaminants. The surface of the cleaned substrate 

was functionalized at room temperature by adding a monolayer of 3-(trichlorosilyl) propyl 

methacrylate (TPM; Sigma-Aldrich, St. Louis, MO) using a 1% solution in mineral oil to promote 

bonding with PEG-DA gel. After hard-baking the TPM at 95° C for 30 min, a large droplet of 

liquid PEG-DA (Sigma-Aldrich) solution supplemented with 0.5% (w/v) Irgacure 2959 (Sigma-

Aldrich) photoinitiator was placed on the treated glass inside the rectangular cutout. The desired 

channel height was achieved by placing a coverslip on top of the PDMS-coated slide, causing the 

PEG-DA to fill the rectangular enclosure created by the PDMS-cutout region. A photomask 

printed with the desired pattern was placed on top of the coverslip, and the PEG-DA was cross-

linked to form a gel by exposing to broadband ultraviolet (UV) light (320-500 nm; ~340 mJ/cm2). 

Patterned slides were soaked in 70% ethanol for at least 8 hr followed by PBS for ~20 min prior 

to being used for assembly to remove excess photoiniator. Figure 3.2 shows the patterning and 

assembly process.   

3.1.3 Microfluidic Device Modeling  

In order to determine the concentrations required to establish the desired steady state chemical 

gradients in the device, as well as to determine the time required to reach steady state, simulations 

were performed using the COMSOL Multiphysics finite element-based software package 

(COMSOL Inc., Burlington, MA). Figure 3.3a shows the normalized concentration of L-aspartic 
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acid, the chemoattractant used for chemotaxis model validation, at steady state. The diffusivity 

was assumed to be equivalent to that of fluorescein since the two compounds have similar 

molecular weights (133 Da and 232 Da, respectively). The diffusivity of fluorescein was taken to 

be 2.7×10-6 cm2/s and 1.8×10-6 cm2/s in PBS (phosphate buffered saline) and 700 Da PEG-DA 

(same MW used in all experiments), respectively [103]. In the COMSOL simulation, these values 

were employed locally according to regions of gel or liquid-only. Quasi-steady state chemical 

gradients were established after approximately 45 minutes. Figure 3.3b shows several 

concentration profiles between the side channel walls plotted at various points in time.  

For all QS experiments, casamino acids, rather than L-aspartic acid, was used as a 

chemoattractant unless otherwise noted. Similar COMSOL simulations were performed to 

determine the flow channel concentrations required to produce the optimum gradient for E. coli 

chemotaxis (5×10-4 g/ml/mm) based on diffusivities in PBS and PEG-DA (700 Da) of 

8.0×10-6 cm2/s and 1.5×10-6 cm2/s, respectively [105].   

 

Figure 3.2: Fabrication of Microfluidic Device. (a) The hydrogel pattern was made by depositing a small amount 

of liquid PEG-DA onto a bare glass cutout framed by PDMS and sealing with a coverslip prior to UV exposure. 

(b) The device was then assembled by sandwiching the patterned slide and a PDMS slab sealing layer between 

Plexiglass. 
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3.2 Experimental Validation of the Chemotaxis Model 

The chemotaxis model was validated independent of the QS model by measuring the steady state 

CPC and CMC of a population of highly-motile E. coli MG1655 in a PEG-DA microfluidic device 

with 500 μm-wide channels and walls (spacing between each channel) at various L-aspartic acid 

gradients. These results were then used to determine optimal values of the product 𝜎𝐶T and the 

dissociation constant 𝐾D that gave the least amount of error between modeled and measured values. 

Given the accuracy of the model, the experimentally-determined motility parameters, and the 

biological-relevance of the fitted parameters, this model could be used to predict chemotaxis 

responses in a variety of hypothetical settings.  

3.2.1 Microfluidic Experiments and Data Analysis 

Much of the data for chemotaxis model validation was derived from experiments performed 

previously in our lab by Sahari et al. [106]. Nevertheless, all experiments were performed 

according to the same protocol and all previously recorded images were re-processed and re-

measured for chemotaxis metrics.  

 

Figure 3.3: COMSOL Simulations of L-aspartic Acid Diffusion in PEG-DA Device. (a) normalized concentration 

at steady state and (b) normalized concentration profile at various points in time between the source and sink 

(chemoattractant and buffer, respectively) channels  

 



48 

 

Chemotaxis experiments were performed using E. coli MG1655 that were isolated for 

increase motility and expressing the plasmid pHC60 for constitutive GFP expression [107], [108]. 

Bacteria were grown for experiments by diluting overnight cultures 100× and shaking at 32° C and 

150 RPM in tryptone broth (1% tryptone, 0.5-1% NaCl) supplemented with 10-15 μg/ml 

oxytetracycline until an OD600 of 0.5 was reached. The bacteria were then resusended in motility 

buffer (0.01 M potassium phosphate, 0.067 M sodium chloride, 10-4 M ethylenediaminetetraacetic 

acid, 0.01 M glucose, and 0.002% (v/v) Tween-20, pH=7.0) and diluted to an OD600 of either 0.05 

or 0.10 before introduction into the microfluidic device. Prior to the start of an experiment, a linear 

gradient of L-aspartic acid was established by flowing the chemoattractant solution and motility 

buffer alone through the outer channels of the device for at least 45 min. This allowed the same 

linear gradient to be re-established quickly after flowing bacteria into the center channel. 

Experiments were performed at room temperature.  

Measurements of cell size and swimming speed were made on dilute suspensions of the 

bacteria inside the microfluidic device and used as the corresponding parameters in simulations. 

The mean cell length and diameter were found to be 2.55±0.61 μm and 0.85±0.16 μm, respectively 

(N=50). The mean swimming speed, which was measured using the “Manual Tracking” plugin for 

ImageJ (National Institutes of Health, Bethesda, MD), was found to be 51.7±7.2 μm/s (N=51).  

This speed was used as the constant agent swimming speed |�⃗� b| in the motility model.  

Fluorescence images of steady-state bacterial distributions were recorded and analyzed 

using a custom image processing routine developed in ImageJ. Images (recorded across the 

channel width) were first cropped to remove the PEG-DA walls where a few cells inevitably 

became lodged during experiments (Figure 3.4a). The images were then corrected for background 

fluorescence using the “Subtract Background” tool with a rolling ball radius of 50 px [109]. Images 
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were smoothed by averaging pixel intensities over localized 3×3 px2 bins in one to several 

iterations depending on the amount of noise in the original image (determined by comparing the 

results and raw images manually). Edges of individual cells were detected using a Sobel edge 

detector, and images were then made binary by local Bernsen thresholding using a 15 px radius  

[110]. The result was a binary image with minimal noise or clumps of coalesced cells (inverted 

image shown in Figure 3.4b). Finally, these images were segmented using the “Analyze Particles” 

tool of ImageJ, which counts discrete objects by detecting edges and attempting to trace the border 

of the object (Figure 3.4c). By first detecting edges and then locally thresholding the image, the 

routine robustly and consistently segmented individual cells in various experiments and for 

differing cell densities.  

  

 

 
Figure 3.4: Image Processing for Measuring Chemotaxis Metrics. (a) original micrograph, (b) the inverted, binary 

image produced following background correction, smoothing, edge detection, and Bernsen thresholding of (a), (c) 

the final segmented image showing discrete objects counted as cells, (d) a plot of the number of bacteria vs location 

on the horizontal axis (dimension along the width of the microfluidic channel)  
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 The locations of segmented cells were used to calculate the CPC and CMC metrics for 

comparison to simulation results. The CPC and CMC are defined as 

CPC =
𝑁RHS − 𝑁LHS
𝑁RHS + 𝑁LHS

 3.1 

and  

CMC =
2∑𝑥𝑁(𝑥)

𝑤∑𝑁(𝑥)
, 3.2 

where 𝑁RHS and 𝑁LHS is the number of bacteria in the right-hand half and left-hand half of the 

channel, respectively, 𝑁(𝑥) is the local number of bacteria along the channel width (𝑥 = 0 at the 

center), and 𝑤 is the total width of the channel.  

3.2.2 Determination of Kinetic Parameters and Model Validation  

The kinetic parameters 𝜎𝐶T and 𝐾d in Equation 2.9 were determined using a differential evolution 

algorithm (differential_evolution of the scipy.optimize module) to stochastically 

search for values that minimized the sum of the squared error between the model and measured 

results [111]. Bounds for the optimization scheme were determined by estimating biologically-

realistic ranges for the parameters. It was assumed that the product 𝜎𝐶T for E. coli responding to 

L-aspartic acid was near the value of 75 s determined by Ford and Lauffenburger [63] for gradients 

of serine. The E. coli Tar receptor has been suggested to exist in both active and inactive 

conformations, which have lower and higher 𝐾D values, respectively [70]. Published estimates of 

the apparent value vary by approximately an order of magnitude, with many estimates falling near 

3-6 μM [70], [71], [112], [113]. 

 Simulations were performed using a 500×500 μm2 domain with 100 agents initiated at 

random locations. Since the channel of the microfluidic device was long (~6 mm), periodic 

boundary conditions were used for agents moving across the 𝑦-limits of the domain. Channel walls 
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were modeled as hard stops employed at the 𝑥-limits. That is, an agent moving past one of these 

limits was stopped and held stationary until a tumble event caused it to be reoriented away from 

the boundary. This was assumed to recapitulate the experimental response as obstacles have been 

observed to cause cells to “idle” during the run phase [114], [115].  The chemoattractant 

concentration profile was employed as a continuous linear function of 𝑥 according to steady-state 

COMSOL results. For an individual simulation, CPCs and CMCs were determined by taking an 

average over the final 10 min of simulated data. Final model results are reported as the average ± 

standard deviation of these values over 10 simulations.  

 Figure 3.5 shows the results of the optimized chemotaxis simulations as well as the 

experimental measurements. The best value of 𝜎𝐶T was determined to be 47 s, and the optimized 

𝐾D was found to be 18.0 μM. It was assumed that these numbers represent biologically realistic 

parameters given their agreement with published results. One possible explanation for finding a 

somewhat  high 𝐾D value is that the bacteria used in experiments were derived from a highly-

motile subpopulation isolated according to the methods described in [108]. Since isolation of these 

 

Figure 3.5: Simulated and Experimental Chemotaxis Response as Measured by (a) CPC and (b) CMC 
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cells depends on their ability to outperform the bulk population with respect to chemotactic 

migration, it is reasonable to assume that they may possess a larger fraction of active Tar receptors.  

 After optimizing the kinetic parameters, the model correctly predicted steady state CPCs 

and CMCs for L-aspartic acid gradients spanning three orders of magnitude within about 11% and 

8.2%, respectively, on average (end points at 0 M/mm and 1.7×10-3 M/mm not included in error 

calculation). Most error in CMC is due to data at the peak response, however. This can be attributed 

to the fact that bacteria localized along edge of the microfluidic channel cannot be accurately 

counted and are excluded from experimental analysis. This is not a limitation in simulation, thus 

the simulated CMC values at gradients giving a strong response better capture experimental results 

than Figure 3.5 indicates. Excluding this data point, the mean relative error in CMC is 4.6% 

Table 3.1 summarizes the parameters used in the model for chemotaxis validation.  

Table 3.1: Parameters used in Simulations for Chemotaxis Model Validation 

Parameter Variable Value Source 

Average run duration in absence of chemo-effector gradient 𝜏0 0.6 s [83] 

Average tumble duration 𝜏T 0.16 s [83] 

Chemotactic Sensitivity 𝜎𝐶T 47 s Estimated 

Dissociation constant for L-aspartic acid binding with the Tar receptor 𝐾d 18 μM Estimated 

Magnitude of the bacterial velocity vector (cell swimming speed) |�⃗� b| 51.7±7.2 μm/s Measured 

Mean change in bearing between successive run phases 𝜃T,μ 42° [83] 

Standard deviation in bearing change between run phases 𝜃T,σ 36° [36] 

Time step Δ𝑡 0.1 s N/A 

 

3.3 Experimental Validation of QS Model 

QS behavior in bacteria can often be characterized as a switch-like change in gene expression in 

response to a threshold concentration of AI being surpassed in the local environment [19], [116]–
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[118]. Given that that there currently is no precise method by which to measure transient AHL 

concentrations during experiments, this trait was utilized to define a QS activation time as the 

metric by which to compare simulations to experiments. To this end, a variety of experiments were 

performed in order to validate model assumptions, determine parameters for the model, and to test 

whether or not the model could be used to predict the activation time for variant QS constructs and 

in heterogeneous cell populations.  

3.3.1 Measurement of the Effective Diffusivity of a Small Solute in Dense Populations of Motile 

Bacteria  

As alluded to in Section 2.3, a series of experiments were performed in order to validate the 

assumption that diffusion dominates advection in the transport of AHL in motile cell suspensions. 

Experiments were modeled after those by Kim and Breuer [95], who measured the effective 

diffusion of a macromolecular substance (77 kDa Dextran labeled with FITC) in suspensions of 

E. coli up to approximately 2×109 CFU/ml in density. This was accomplished by measuring 

fluorescence intensity profiles and comparing the result to an analytical solution. While these 

 

Figure 3.6: Schematic of the Microfluidic Device Used to Measure Effective Diffusivity in the Presence of Motile 

Bacteria 
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researchers found that diffusivity was enhanced by up to 8-fold, the basal diffusion coefficient of 

the substance is three orders of magnitude smaller than that which was assumed for AHL. Pure 

fluorescein was therefore used in our experiments, as it is a small molecular substance with a 

similar diffusivity in water as AHL. Figure 3.6 shows the microfluidic device used for these 

experiments.  

 

 Microfluidic devices were fabricated according to standard soft lithography techniques. 

Briefly, SU-8 2025 (MicroChem, Westborough, MA) was spin coated onto a silicon wafer for a 

film thickness of 85 μm and patterned with a photomask, followed by treatment with 

trichloro(1H,1H,2H,2H-perfluorooctyl) silane (Sigma-Aldrich) to render the surface hydrophobic. 

Microfluidic channels were molded in PDMS by casting over the SU-8 template. The devices were 

completed by bonding the PDMS to glass slides. 

 The design of the microfluidic device shown in Figure 3.6 takes advantage of the fact that 

its geometry dictates a laminar flow regime over a large range of flow rates. This feature precludes 

mixing of the two inlet streams by advection. Transport of a chemical species in the channel is 

therefore governed by 

𝜕𝐶

𝜕𝑡
= 𝐷eff (

𝜕2𝐶

𝜕𝑥2
+
𝜕2𝐶

𝜕𝑦2
) − 𝑢

𝜕𝐶

𝜕𝑥
 3.3 

where 𝐶 is the concentration of the solute, 𝐷eff is the effective diffusion coefficient, and 𝑢 is the 

streamwise velocity. For sufficiently high flow rates, diffusion in the 𝑥-direction can be neglected 

as advection is primary mechanism of streamwise transport. Coupling this assumption with steady 

flow, Equation 3.3 reduces to 

𝜕𝐶

𝜕𝑥
=
𝐷eff
𝑢

𝜕2𝐶

𝜕𝑦2
 3.4 

which has the general solution 
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𝐶(𝑥, 𝑦) = 𝐴 + 𝐵 erf

(

 
𝑦

2√𝐷eff
𝑥
𝑢)

 , 3.5 

where 𝐴 and 𝐵 are constants. At 𝑥 = 0, the normalized concentration in the device is given by  

𝐶(0, 𝑦) = {
0for − ℎ/2 ≤ 𝑦 < 0
1for0 < 𝑦 ≤ ℎ/2

 

indicating that 0 = 𝐴 − 𝐵 and 1 = 𝐴 + 𝐵 must be satisfied. Noting that the normalized 

concentration at 𝐶(𝑥, 0) = 1/2 for all 𝑥, 𝐴 = 𝐵 = 1/2. 

Since fluorescence intensity is linearly proportional to fluorophore concentration, 

Equation 3.5 can be used to find 𝐷eff given a measured intensity profile at a location 𝑥 for a known 

velocity 𝑢 [119]. Following Kim and Breuer’s approach [95], fitting the gradient of the theoretical 

concentration profile to the gradient of normalized fluorescence measurements rather than fitting 

Equation 3.5 directly provided better sensitivity to 𝑥-location and resulted in less variability 

between results. That is, 

𝜕𝐶

𝜕𝑦
= −

1

2√𝜋𝐷eff
𝑥
𝑢

exp(−
𝑦2

4𝐷eff
𝑥
𝑢

). 3.6 

 Experiments were carried out by flowing a 100 μM fluorescein solution in chemotaxis 

buffer (CB; 1× PBS, 0.1 mM EDTA, 0.01 mM L-methionine, and 10 mM DL-lactate [120]) or CB 

alone at equal rates into each of the inlet ports. For each scenario tested, approximately equal 

concentrations of E. coli were suspended in each of the solutions. For each set of experiments, 

flow rates (𝑄) of 0.5 μl/min, 1 μl/min, and 2 μl/min were established using a syringe pump (PHD 

Ultra, Harvard Apparatus, Holliston, MA). The velocity 𝑢 was taken as the mean velocity in the 

channel, 𝑢 = 𝑄/𝐴c where 𝐴c is the channel cross-section normal to the flow. Each time the flow 

rate was changed, steady state was allowed to establish for a short period of time (~2 min) before 
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recording images at known locations along the length of the channel. A set of baseline images was 

also recorded by flowing a 100 μM fluorescein solution through both of the device inlets.  

For these experiments, E. coli MG1655 harboring a plasmid with only BBa_K546000 (the 

luxIR components of the QS circuit) were cultured overnight at 37° C and 100 RPM in lysogeny 

broth (LB; 1% tryptone, 0.5% yeast extracts, 1% NaCl) supplemented with 35 μg/ml 

chloramphenicol and diluted 100× to start fresh cultures. The bacteria were harvested at an OD600 

of 1.0 and concentrated approximately 1×, 2×, 10×, and 20× in CB and a solution of fluorescein 

in CB. 

 Data analysis was performed using a custom image processing routine written in Python. 

All images were output using the same set of parameters as high-quality TIFF files (0.323 μm/px). 

Each image was then normalized to its respective baseline image to remove intrinsic biases in the 

photodetector, excitation source, etc. Measurements of the fluorescence intensity were made by 

integrating the data over approximately 33 μm-wide bins (10 per image) stretching between the 

channel side walls. It was assumed that the small variation in 𝑥 within each bin was negligible. 

The gradient of each profile was calculate using second-order accurate central differences, and the 

optimal value of 𝐷eff was calculated from a least-squares fit of Equation 3.6 (in practice, this was 

implemented by calculating the gradient of Equation 3.5 in a manner identical to that used for 

experimental data). It was observed during data acquisition that small perturbations in the pressure 

of each stream occurred transiently, causing the interface between the two streams to shift in 𝑦 

slightly. To correct for this, an optimum offset was also calculated such that 𝑦0 = 𝑦 − 𝑦offset 

where 𝑦0 is defined as the location of the peak of the absolute value of the gradient. It was assumed 

that these disruptions in steady flow averaged out over experiments. Figure 3.7 shows examples 

of data processing and the fitting of an optimized theoretical gradient.  
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The resulting measurements of 𝐷eff are shown in Figure 3.8. Each final result was taken as 

the mean of optimized values of 𝐷eff  across all bins and imaging locations between 0.48 mm and 

16.22 mm (N=20 images) downstream of the Y-junction. No significant differences between any 

of the five cases were found, even for extremely dense suspensions of approximately 1010 CFU/ml. 

Moreover, no trend was observed with respect to bacterial density, validating the assumption that 

advection may be neglected in the model of AHL transport. The mean of approximately 250 μm2/s 

is consistent with values reported in literature for aqueous solutions of fluorescein [121], [122] 

(although it should be noted that larger values have also been reported [123]).  

 

 

Figure 3.7: Image Processing and Data Analysis for Diffusivity Measurements. (a) An example heat map showing 

fluorescence intensity at a location centered 0.48 mm downstream of the Y-channel junction and the bins used to 

calculate 10 discrete values of 𝐷eff (red indicates 1, blue indicates 0), (b) the normalized fluorescence intensity 

profiles in each bin shown in (a), and (c) the absolute value of the intensity gradient for the 5th bin shown in (a) (gray) 

and the best fit of the theoretical gradient (black) 

 

 
 

Figure 3.8: Results of Diffusivity Measurement Experiments. (a) 0.5 μl/min, (b) 1.0 μl/min, and (c) 2.0 μl/min. 

Error bars show ± standard deviation. 
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3.3.2 Experimental Methods for QS Validation  

In order to validate the model for QS activation time, the microfluidic device described in 

Section 3.1.3 (except with 700 μm-wide channels and spacing between channels) was used to 

create a locally dense bacterial population via chemotaxis. This made an excellent setting to study 

emergent behavior that could be relevant in practical applications, such as bacterial biosensors 

chemotactically migrating to a source of an environmental toxin or the localized production of 

therapeutic drugs inside a tumor  [1], [87]. Casamino acids (CA) was used as a chemoattractant 

for QS experiments rather than a simple amino acid, as it provided for greater localization and a 

more robust response. As in chemotaxis experiments, the chemoattractant and buffer solution were 

flowed through the two side channels of the microfluidic device for at least 45 min to allow quasi-

steady conditions to be established before introducing bacteria. It was found that the bacteria were 

unable to become QS-activated without a nutrient source during experiments, thus the 

chemoattractant solution was prepared by mixing 1 part LB with 9 parts CB. The solution was 

supplemented with 0.41% casamino acids, the concentration that results in the optimal gradient of 

5×10-4 g/ml/mm for a chemotaxis response [105].  

A QS plasmid encoding GFP expression as an indicator of QS activity was constructed 

from BioBrick parts (iGEM Foundation, Cambridge, MA) and used to transform motile isolates 

of E. coli MG1655. The plasmid was assembled with BBa_K546000 (encoding constitutive and 

feedback-controlled LuxR and LuxI expression, respectively) ligated upstream with BBa_R0062 

and BBa_I763020 (luxI promoter and LVA-tagged gfpmut3b, respectively) in pSB1K3, a high-

copy number standard plasmid backbone encoding resistance to kanamycin [124]. The full part is 

registered in the iGEM catalog as BBa_J0329000. Note that the LVA tag on GFP serves as a 

degradation marker for the protein, decreasing its in vivo half-life from greater than 1 day to 40 
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minutes or less [125]. This was essential for both accurate quantification of the QS activation time 

and for repeatable experiments, as the bacteria are inevitably QS-activated when initially grown 

on agar plates. The rapid degradation of intracellular GFP upon the removal of AHL allowed for 

the majority of the population to be non-fluorescent at the start of an experiment. 

The bacteria culture method was found to be critical for experiment repeatability. For all 

experiments, the bacteria were streaked onto a cold (4° C), 1.5% LB agar plate from a -80° C stock. 

The plate was incubated for 10 hr at 37° C and promptly used to inoculate liquid cultures or placed 

at 4° C for later use (but not kept for more than 1 day). For each experiment, a single colony was 

used to inoculate 10 ml of LB and shaken at 100 RPM and 37° C until the OD600 reached 0.05 

(about 3.5 hr). At that time, the culture was harvested by centrifugation at 1.7×g for 5 min and re-

suspended (concentrating up to approximately 4×) in 1:9 LB-to-CB. Because the time to QS 

activation was relatively short, the final OD600 of the sample was not measured until after 

introducing cells into the microfluidic device, thus resulting in slight variations in the starting 

concentration. Precise OD measurements were made by taking an average of 6 readings in an 

Agilent Cary 60 spectrophotometer (Agilent Technologies, Santa Clara, CA).  After gently flowing 

the bacteria into the center channel of the device via a syringe, the inlet and outlet tubes were 

clamped to prevent flow. Experiments were performed at 37° C.  

All data acquisition was performed using a Zeiss AxioObserver.Z1 inverted microscope 

equipped with a 40× objective and an MRm high-sensitivity camera (Carl Zeiss AG, Oberkochen, 

Germany). Images were recorded at a 2.5 min sampling interval in six locations along the length 

of the center channel.  

In order to accurately model the spatial dependency of the QS activation time, the CPC and 

CMC in QS experiments were measured and used to determine kinetic parameters for the 
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chemotaxis model with casamino acids. CPCs and CMCs were determined from fluorescence 

images recorded shortly after the bacteria became fluorescent, and it was assumed that the 

chemotaxis response was steady throughout the experiments. Casamino acids is a mixture of a 

large number of amino acids, the average molar weight of casamino acids has been estimated to 

be about 250 Da [103]. Given the optimum mass concentration gradient of 5×10-4 g/ml/mm, its 

equivalent molar concentration gradient was estimated to be 2.0×10-3 M/mm. The mean CPC and 

CMC values measured were 0.88±0.03 and 0.78±0.02, respectively. These values were used to fit 

the model for optimal values of 𝜎𝐶T and 𝐾D as previously described, which were determined to be 

590 s and 597 μM, respectively. These parameters resulted in a mean simulated CPC of 0.97 and 

mean simulated CMC of 0.78 (𝜃𝜇 = 68°). 

The experimental QS activation time was defined in an effort to quantify the time when 

the rapid onset of QS-controlled gene expression began at the population-scale. To this end, a time 

lapse series of fluorescence images were cropped to include only a 50 μm-wide region at the 

chemoattractant source wall where bacteria were densely aggregated. Likewise, simulated 

activation times were determined by measuring the average AHL concentration in a 50 μm bin at 

the simulated chemoattractant source and using the information to solve the pair of ODEs 

describing GFP production and maturation (Equations 2.11 and 2.12).  The average fluorescence 

intensity in experiments was measured by integrating over each cropped image. The data was then 

averaged over 4-6 imaging positions and normalized to the maximum average intensity, resulting 

in a single mean fluorescence curve as a function of time. The data was then analyzed to find the 

point when fluorescence became approximately linear in time (after increasing from the baseline). 

This point was identified by measuring the change in the slope 𝑚𝑖 of a line fit through every three 

consecutive data points, 𝑥𝑖 , 𝑥𝑖+1, and 𝑥𝑖+2. The QS activation time was defined as the point in time 
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𝑡𝑖 when the change in slope, 𝑚𝑖 −𝑚𝑖−2, first peaked (above a threshold of 0.005 min-1). In 

simulations, the solution to the GFP model was assumed to be proportional to the average 

fluorescence response of the population binned in experiments. The simulated activation time was 

determined by setting an absolute concentration threshold representing the assumed average 

concentration inside each cell in the binned region. Thus, this method of comparison between 

simulation and experiment depends on several key assumptions: 

1. The response inside the 50 μm bin could be regarded as homogeneous 

2. A quasi-linear increase in mean fluorescence over time indicated that the majority 

of the population inside the bin had become fluorescent (and thus fluorescence in 

each cell was increasing quasi-linearly) 

3. The experimental analysis approach developed allows quantitation of QS activation 

time in a manner that is independent of cell concentration. Thus, this approach can 

be used to compare results across experiments regardless of the number of cells in 

each bin 

4. The average concentration of GFP in each cell at the activation time was the same 

across experiments  

Assumptions 3 and 4 are of critical importance for comparing modeled results to experimental 

results. The rationale for Assumption 4 was based on the fact that GFP must mature inside a cell 

before becoming fluorescent. Based on the switch-like behavior of the QS circuit (and of the Hill 

function governing AHL production in Equation 2.10), it is reasonable to assume that the mature 

GFP concentration is increasing quasi-linearly near its maximum rate by the time enough 

accumulates in a cell to be detected by the sensor in the camera. Together with Assumptions 1 and 

2, activation time served as a robust metric to compare simulations to experiments.  
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 Assumption 3 was requisite in order to decouple the perceived effects of having variable 

numbers of fluorophores (fluorescent bacteria) between experiments from the actual onset of 

emergent behavior. This stipulation was the motivation for using a pseudo-derivative-based 

definition, as opposed to defining a simple threshold fluorescence in experiments.  

Figure 3.9a shows representative normalized mean fluorescence curves vs. time for 

different starting concentrations (OD600 values shown), and Figure 3.9b shows the corresponding 

curves of change in slope values, with the activation times indicated by the arrows. Fluorescence 

and bright-field micrographs recorded at the corresponding times are shown in Figure 3.9c-e. Note 

that most of the bacteria inside a bin at the activation time were faintly fluorescent, as desired to 

determine the timeline for emergent behavior.  
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 For a strong QS circuit with a low cell density activation threshold, such as the one 

employed in the validation experiments, the initial conditions relating to the feedback control of 

the circuit may not be zero, even after heavily diluting a population of cells. It was observed that 

a fraction of the cells introduced into the microfluidic device were initially fluorescent, and that 

this fraction correlated to an extent with activation time (i.e. the trend in activation time with 

respect to starting numbers was inconsistent if the fraction of fluorescent cells was significantly 

different between experiments). It was hypothesized that if these cells were producing enough GFP 

to be detected in fluorescence images, they were also producing LuxI above its baseline rate. We 

assumed the effect of this could captured in the model by defining a simple metric,  

 

Figure 3.9: Determination of Experimental QS Activation Time. (a) A representative plot of normalized 

fluorescence intensity vs time, (b) the plot of change in slope through every three fluorescence data points 

corresponding to (a), (c-e) fluorescence (left) and bright-field (right) micrographs at the activation times 

determined in (b). The arrows on the two plots indicate activation times. Note that the images shown represent the 

50 μm-wide bin in which average fluoresce data was measured.  
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𝑄IC = 𝛼𝛽 3.7 

where 𝑄IC is an initial concentration of AHL inside each simulated agent, 𝛼 is a scaling parameter, 

and 𝛽 is the number of fluorescent cells at 𝑡 = 0 detectable at each imaging location normalized 

to the initial OD600. Figure 3.10 shows representative composite bright-field and fluorescent 

micrographs of an experiment with a relatively high (a) and relatively low (b) initial condition, as 

well as a plot showing both experimental activation times and the value of 𝛽 versus the 

corresponding number of agents simulated (based on a unit micron thickness assumption). Note 

that a second-order polynomial can be well-fit to the four data points of similar, high 𝛽 values. All 

data above this line has a 𝛽 of 222 or less, while the four intersecting points had values of 275 or 

greater. This demonstrates the great impact that the initial condition has on results, particularly in 

the cases of the longest activation time at 47.5 min or for the largest corresponding initial number 

of agents of 66. In the former case, the activation time was delayed by 12.5 minutes when 

compared to the far left-most value at 𝑥 = 8 agents, although 50% more bacteria were present at 

the start. In the latter example, it took 5 min longer for activation to occur in the experiments 

corresponding to 66 agents versus 62 agents. Although the difference in the initial number of 

bacteria was only 6% in this case, the value of 𝛽 was more than 6-fold greater in the 62 agent case. 

 Simulations of each experiment were run such that the physical environment of the 

microfluidic device were best captured. Based on the diameter of an E. coli bacterium being on 

the order of 1 μm (bacteria harboring QS circuit were measured to have a diameter of 1.22 μm), it 

was assumed that the bacteria in the 𝑧-dimenion of the microfluidic channel were homogenously 

distributed and that the simulation accurately represented a unit-micron-thick section parallel to 

the glass surface. The number of agents used in a simulation was calculated based on this 

assumption, 𝑁agents = 𝐶cell ∗ 𝑤ℎ𝑡, where 𝐶cell is the measured concentration of bacteria 
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introduced into the device, 𝑤 is the width of the channel, ℎ is the height (𝑦-dimension) of the 

simulation domain, and 𝑡 ≅ 1 μm is the assumed thickness of the simulation. The simulated 

domain for agent movement was 700×700 μm2 based on the actual channel width, but AHL 

transport (Equation 2.14) was solved over the additional space between channels, 𝑤s (700 μm in 

all QS experiments), in 𝑥 on either side to account for AHL draining into the flow channels. The 

boundary conditions were defined as 

𝜕𝑄

𝜕𝑦
|
𝑦=ℎ

=
𝜕𝑄

𝜕𝑦
|
𝑦=0

= 0,  

𝐷gel
𝜕𝑄

𝜕𝑥
|
𝑥=−𝑤s

= 𝑢𝑄(−𝑤s),  

and 

−𝐷gel
𝜕𝑄

𝜕𝑥
|
𝑥=𝑤+𝑤s

= 𝑢𝑄(𝑤 + 𝑤s),  

where 𝐷gel is the diffusivity of AHL in the PEG-DA gel, and 𝑢 is the average velocity of flow in 

the side channels. These conditions represent no-flux through the 𝑦 boundaries since only a small 

portion of the length of the channel was simulated and the loss of AHL to flow in the side channels 

through the 𝑥 boundaries. AHL diffusivity in the gel, 𝐷gel, was assumed to be 72% of the value in 

water based on the known diffusivity of fluorescein in the gel relative to PBS [103].  
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The parameters 𝐴1, 𝐴2, 𝑄0, and 𝛼 were determined in a manner similar to that of 

chemotaxis model optimization, as described in Section 3.2.1. A differential evolution global 

optimization scheme was bounded by rates of AHL synthesis that were physiologically feasible. 

The parameters for modeling GFP were separately optimized using a least squares fitting routine 

to find optimal values of 𝑘tr, 𝑘𝐺m , 𝑘deg, and 𝐾m after a number of simulation were run to cover a 

large parameter space. This process was repeated in a series of iterations, wherein the optimal GFP 

parameters determined for each set of differential evolution solutions were incorporated into the 

next differential evolution search. This improved the efficiency of finding the best solution since 

the differential evolution algorithm stochastically determined new parameter guesses based on the 

error in the solution from previous guesses. The final set of optimized parameters are shown in 

Table 3.2. Note that many of the parameters used in the final model were taken either directly from 

literature or remain near estimates reported in literature after optimization. For example, the 

maximal rate of ClpXP-mediated degradation of LVA-tagged GFPmut3b was estimated from the 

reported specific activity rate of 0.94 min-1 and the average enzyme concentration of 100-150 nM, 

giving a 𝑘deg of 1.96 nM/s [126], [127]. Since the actual rates are condition-dependent, the 

 

Figure 3.10: Activation Time Depends in Part on Initial Conditions. (a) Composite bright-field and fluorescence 

micrographs showing bacteria in the microchannel at 𝑡 = 0 with 𝛽 = 313 (a) and 𝛽 = 47 (b), and (c) a scatter plot 

of experimental activation times and 𝛽 values vs. the number agents corresponding to the initial OD600 for a unit-

micron thickness assumption. Arrows on (a) and (b) mark fluorescent cells. The black dashed line in (c) represents a 

2nd order polynomial fit of the four intersecting data points with similar 𝛽 values.  
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difference found in the optimal solution (1.37 nM/s) was considered feasible. The value that are 

not based as closely to values from literature were considered to be more strongly dependent on 

specific genetic construct, strain, environmental conditions, etc.  

Table 3.2: Optimal QS Parameters  

Parameter Variable Value Source 

Basal AHL generation rate 𝐴1 3.07 molecules/s Estimated 

Upregulated AHL generation rate 𝐴2 222.3 molecules/s Estimated 

Hill coefficient 𝐻 2.5 [88], [89] 

Scaling parameter for initial conditions 𝛼 1.33×10-3 nM Estimated 

AHL Upregulation Threshold 𝑄0 1.86 nM* [128], [129] 

Rate of GFP translation 𝑘tr 4.53×10-1 molecules/s Estimated 

Rate or GFP maturation 𝑘𝐺m 2.79×10-3 s-1* [130] 

Maximum rate of GFP degradation 𝑘deg 1.37 nM/s* [126], [127] 

Half-maximal concentration for GFP degradation 𝐾m 1620 nM* [126] 

Diffusion coefficient for AHL in PBS 𝐷AHL 490 μm2/s [131] 

Diffusion coefficient for AHL in 700 Da PEG-DA 𝐷′AHL 353 μm2/s Estimated 

Rate of AHL degradation 𝑅d 10.8% hr-1 [132] 

 

Figure 3.11 shows representative spatiotemporal results from experiments and simulations 

(a-c) and the mean QS activation times for all nine simulation cases and experiments (d). Each set 

of three experiments was performed in succession on a single day (each in a new microfluidic 

device) with all bacteria originating from separate colonies on the same agar plate. Experiment 

sets were separated by several days. In each set, a low (initial OD600 of ~0.05 or 12 agents), 

medium (OD600 of ~0.10 or 25 agents), and high (OD600 of ~0.20 or 49 agents) initial concentration 

of bacteria was used. Simulation results are presented as the mean of 10 runs using 0.01 s time 

step plus or minus the standard deviation. Experimental QS activation times represent a single 

*Values that were guessed based on literature and changed by relatively small amounts to optimize the solution 
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determination from each experiment, with an assumed uncertainty of the sampling interval 

(2.5 min). Each number of agents simulated corresponds to the number of bacteria introduced into 

the microfluidic device in a unit-micron thick 700×700 μm2 domain in 𝑥 and 𝑦. The average error 

in simulated activation times relative to experimental results was 6.6%.  

 

 

Figure 3.11: Experimental Validation of the QS Model. Nine experiments were performed at low, medium, and 

high starting concentrations, which were simulated accordingly. (a) Heat maps showing the spatiotemporal 

evolution of fluorescence (normalized to maximum in highest concentration case) for representative experiments, 

(b) simulated AHL profile across the channel after 44 minutes for the cases shown in (a), (c) simulated intracellular 

GFP (showing mean ± S.D.) and mean AHL concentration (dashed lines) vs. time in the 50 μm bin and cases 

shown in (b), and (d) all results from validation experiments and corresponding simulations. Error bars represent 

sampling interval for experiments or the standard deviation over 10 simulations.  
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3.4 Engineering a QS Response: Model Utility for Application-driven Design  

Experimentally validating the model with a single genetic construct and defined chemotactic 

response provided a way to find parameters for the particular QS circuit implemented, given a set 

of assumptions and measurements of population dynamics (i.e. growth rate, chemotactic response, 

etc.). However, the model only holds true utility if it can be used to engineer and predict an 

emergent response in a complex environment and for a wide range of circuit sensitivities. In this 

section, the results of Section 3.3.2 are used to predict QS activation in the absence of chemical 

gradient, for variant circuits with tuned LuxI translation rates, and in a microbial community.  

3.4.1 QS Response in the Absence of a Chemical Gradient  

In order to test both the sensitivity of the QS circuit to population topology and the model’s ability 

to capture density-dependent changes in activation time, experiments were performed without the 

chemoeffector gradient that was used for the earlier model validation. We hypothesized that QS 

activation would be delayed in this case due to the lack of chemotactic migration and presence of 

a locally dense population. These experiments were performed in the exact manner used for 

 

Figure 3.12: QS Activation in a Homogeneous Distribution of Bacteria. (a) Fluorescence images of the three 

experimental cases at activation and (b) experimental and simulated QS activation times in the absence of a 

chemical gradient. Also shown are simulated activation times if a 2.0×10-3 M/mm gradient of casamino acids is used 

to invoke a chemotaxis response and the relative differences between the predicted activation times  
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validation experiments, except the chemoattractant solution (0.41% casamino acids in 1:9 LB:CB) 

was flowed through both side channels instead of using CB alone as a buffer in one. This resulted 

in a pseudo-homogeneous distribution of cells until activation occurred. As in validation 

experiments, high, medium, and low starting density cases were tested (two of each). The results 

are presented in Figure 3.12, along with corresponding modeled activation times.  

 

Using the initial condition measured at the start of each experiment, the model was also employed 

to predict activation times if a chemical gradient had been applied. As expected, the QS activation 

time was delayed relative to these predictions. Note that, while the absolute differences are only 

on the order of several minutes, the relative differences in activation were predicted to be up to 

about 20% on average for the cases tested (ranging from 16% to 24%). Coupling this with the 

relatively small error in modeled results without a gradient (11.8% on average; 6.8% excluding 

the 62 agent case) demonstrates the ability of the model to capture changes due to spatial 

distribution.  

It should be noted that the bacteria began chemotaxing towards both PEG-DA walls near 

the activation time in the experiments described above. This was likely due to the generation of 

chemical gradients with heightened nutrient consumption as QS genes were upregulated, 

exacerbated by population growth. It was assumed that this did not significantly impact QS 

behavior since most chemotaxis took place after activation.  

3.4.2 QS Response in a Community of QS and QQ Bacteria 

In nature, microbes exist in heterogeneous communities that interact in a variety of ways often not 

captured in laboratory experiments. While some interactions are mutually beneficial and may 

indeed be requisite for survival, many interactions involve competition for space and resources. In 

practice, an engineered QS system must face such competitions and overcome them in order to 
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fulfill its purpose. The ability to model a community therefore is very important. Towards this end, 

we engineered E. coli MG1655 with a simple circuit encoding constitutive expression of the 

autoinducer inactivation enzyme AiiA, which hydrolyzes AHLs to serve as a QQ strain [100], 

[133].  

 The plasmid was constructed according to standard methods in the high-copy pSB1T3 

backbone [124]. The strong synthetic promoter BBa_J23100 and RBS BBa_B0034 were ligated 

upstream of BBa_C0160, the gene encoding AiiA (non-degradation tagged). The terminator 

BBa_B0015 was placed at the end of the part, which is registered in the iGEM catalog as 

BBa_J329050. Motile isolates of E. coli MG1655 were transformed with the resulting plasmid.  

 Experiments were performed in the three-channel microfluidic device described earlier. 

For each experiment, QS bacteria were cultured and harvested as previously described, while 

AiiA-expressing strain was cultured by diluting a stationary-phase culture to 0.1-0.2% in 10 ml of 

LB supplemented with 15 μg/ml oxytetracycline. The QQ bacteria were harvested at an OD600 

between 0.26 and 0.59. Since the cultures were seeded with a relatively small number of cells 

(starting of OD600 of approximately 0.001) and since the range of harvesting densities is well within 

the limits of exponential growth, it was assumed that the amount of AiiA inside each cell and the 

expression rates were constant between experiments.  

 A series of experiments were performed at various ratios of QQ-to-QS bacteria in order to 

determine how the presence of the quenching strain affected the activation time of the QS strain. 

Each was performed in a manner similar to that of the validation experiments, with the only 

difference being that the two strains were mixed prior to being flowed into the center channel of 

the microfluidic device. The starting OD600 for the QS strain was kept constant at approximately 

0.05 across experiments. Following the experiments, the AiiA model described in Section 2.4 was 
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fit to the results in order to find the best constitutive AiiA production rate 𝑘𝐴 and the initial 

concentration of AiiA inside each cell 𝐴init in the same way that the QS model was fit to the 

validation experiments. Figure 3.13 shows the experimental and simulated results of the eight 

experiments performed, including the activation times in the presence of the QQ strain, the IC of 

the QS strain, and the predicted activation time if no QQ cells were present.  

 

 

Figure 3.13: Experimental and Simulation Results for Mixed QQ and QS Bacterial Communities. Error bars on 

simulation results indicate the standard deviation (n=33 for results w/ AiiA; n=10 for results w/o AiiA). Note 

that the QS initial condition for the 2.2:1, the 2.6:1, and the 3.0:1 cases were adjusted by raising and lowering 

their ICs by their respective standard deviations (shown by red cross marks). The text “No Gradient” above a set 

of results indicates that chemoattractant solution was flowed through both side channels of the microfluidic 

device.  
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The results shown in Figure 3.13 show good agreement between simulations and 

experiment for experiments in the microbial community. However, it is important to note the 

sensitivity of the results to the QS IC. For instance, the QQ cells in the 3.1:1 case did not appear 

to have an effect on activation time of QS bacteria with an IC of almost 350 au. In contrast, a large 

delay was observed in the 3.0:1 case, where the QS IC was only around 100 au. The presence of a 

chemical gradient facilitating chemotaxis-based localization may have also been a significant 

factor, as a delay was observed in the 2.6:1 case, although the QS IC was relatively high. Also, a 

significantly greater relative delay occurred when no gradient was used for a ratio of about 3:1 

(compare 3.0:1 and 3.2:1 cases). The parameters used in the AiiA model, including enzymatic 

parameters derived from literature and the protein dynamic parameters fit to experimental data are 

shown in Table 3.2.  

Table 3.2: Parameters Used in the AiiA Model 

Parameter Variable Value Source 

Michaelis-Menten Constant 𝐾𝐴 1.0 mM* [133] 

Catalytic Constant  𝑘cat 22.68 s-1 [133] 

AiiA Degradation 𝑘𝐴,deg 0.1% hr-1  

Constitutive Rate of AiiA Production 𝑘𝐴 105.7 molecules/s  

Initial Concentration of AiiA 𝐴init 125 μM  

 

 

The IC parameter, which is measured by averaging the number of initially-fluorescent cells 

in four imaging locations and dividing the value by the initial OD600, in general had a relatively 

large amount of standard deviation (about 50% average for the 8 experiments). While using its 

average value alone gave a relatively good model fit for experiments with QS bacteria only, errors 

may have been exacerbated in community experiments. It is thought that the primary reason for 

*Values that were guessed based on literature and changed by small amounts to optimize the 
solution 
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this is that, relative to the activation time, the community experiments took a significantly larger 

amount of time to prepare prior to the start of imaging. That is, it was estimated that there was 

approximately an additional 4-5 minutes between the time the bacteria were harvested from a 

culture flask and the time that imaging began. This reasoning may explain the general 

overestimation of the activation time for the results presented in Figure 3.13. Additionally, the 

average relative standard deviation of the IC in the nine QS validation experiments was much 

lower (approximately 20%). This can be attributed to the fact that a low concentration of QS 

bacteria was used in each of the quenching experiments, whereas the OD600 in the earlier set of 

experiments was greater than 0.05 in 6 of the 9 cases.  Because of this, the QS ICs for the 2.2:1, 

2.6:1, and 3.0:1 cases were adjusted by their respective standard deviations in order to provide a 

better model fit (indicated by red markers in Figure 3.13). 

 Figure 3.14 shows the characteristic behavior of the AiiA model, which is a direct result of 

the values of the fit initial concentration and production rate. Interestingly, it was found that the 

initial concentration is relatively high but decreases over time due to growth. This result makes 

intuitive sense because the bacteria are removed from an exponential-phase culture, wherein 

recombinant protein production should be highest, and kept at room temperature for close to 

10 minutes before being inserted into the microfluidic device. This postulate is also consistent with 

the observation that growth rate was observed to be very high early in experiments but slows over 

time (evidenced by the linear increase in relative population size).  
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 Figure 3.15 shows representative micrographs from quenching experiments and 

corresponding simulations. Note that the two populations appear homogeneously mixed within the 

biased distributions due to chemotaxis.  

 

An additional observation of simulation results is the relatively large standard deviation in 

the 3.0:1 and 3.2:1 cases. This was found to be caused by the stochastic population dynamics of 

 

 

Figure 3.14: AiiA Protein Dynamics and Enzymatic Degradation of AHL. (a) The average concentration of AiiA 

inside the population of agents as a function of time and (b) the average rate of AHL degradation by AiiA in the 

50 μm binned region versus time. The inset in (b) shows the average concentration of AHL in the binned region.  

 

 

Figure 3.15: Representative Images of QS-QQ Experiments and Simulations. (a) Superimposed bright-field and 

fluorescence micrographs after QS activation for a case with no chemoattractant concentration gradient (top) and 

with a gradient (bottom) and (b) corresponding simulations (QS agents are represented by black points and QQ 

agents by red ones).  
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the two strains. Specifically, the model captured pseudo-random fitness advantages of one strain 

over the other as variations in the mean activation time. Figure 3.16 shows plots of the relative 

population size for each of the two populations (QQ and QS) for the 3.0:1 case and the 

corresponding activation times for 6 independent simulations. Both are modeled with same 

average growth rate, but actual division events are chosen stochastically. It can be noted that 

divergence between the relative size of the two populations typically occurs after ~40 min. This is 

thought to be the reason for low standard deviations in shorter simulations. Additionally, it should 

be noted that there was less variability in the QQ fitness than in the QS fitness. This is likely due 

to QQ population being ~3 times larger in these cases, meaning that random fluctuations in growth 

rate are damped out over the population.  
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Figure 3.16: Population Dynamics in 6 Simulations of the 3.0:1 Scenario for QS and QQ Strains. The text on each 

plot indicates the activation time for that simulation. 
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Note from Figure 3.16 that the simulations that predicted an activation time closest to the 

experimental result were those in which the fitness was most similar between the two strains. This 

was also true in the 3.2:1 case, in which the standard deviation was also high. Figure 3.17 shows 

the relative population sizes versus time for one of the most accurate individual results (simulated 

activation time of 107 min compared to an experimental result of 112.5 min), wherein two strains 

exhibited a similar trend in growth.  

 

3.4.3 Designing and Modeling QS Constructs with Altered Sensitivity 

The QS circuit employed for the experiments detailed in Sections 3.2 and 3.3.1 is extremely 

sensitive to AHL (i.e. it is switched into its up-regulated state at low threshold population densities) 

and may not be appropriate for downstream applications. For engineering purposes, such as 

 

Figure 3.17: Relative Population Size versus Time for a Simulation of the 3.2:1 Case (simulated activation time 

of 107 min; experimental activation time of 112.5 min) 
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building biosensing strains, environmental toxin remediation systems, or for biomedical function, 

it is critical that the construct be tunable. The model presented herein should therefore be capable 

of robust predictions of QS activation given a set of tuned parameters. This ability was tested by 

using the freely-available RBS Calculator (v2.0, https://salislab.net/software/) to design synthetic 

ribosomal binding sites (RBSs) to be placed upstream of luxI in order to modulate its rate of 

translation [134], [135]. In bacteria, the RBS functions is in part to initiate protein translation based 

on molecular interactions with the 16S rRNA [134]. This translation initiation rate (TIR) is a major 

factor in determining the amount of a particular protein that is expressed and can be tuned using 

thermodynamic models [134].  

 Towards the future application of making rational system design decisions based on model 

predictions, two synthetic RBSs with TIRs of 24 au and 99 au (arbitrary units) were designed and 

registered in the iGEM catalog as BBa_J329999 and BBa_J329998, respectively. These design 

TIRs were chosen in order to produce circuits that are significantly less sensitive to cell density 

than the one utilized for validation experiments, which uses an RBS with a predicted TIR of 

1262 au (BBa_B0034) to initiate LuxI translation. Primers containing the sequences were 

synthesized (Integrated DNA Technologies, Coralville, IA) and used to perform substitutions in 

BioBrick part BBa_K546000 via site-directed mutagenesis (Thermo Fisher Scientific, Waltham, 

MA), replacing the existing RBS BBa_B0034. The resulting parts were ligated upstream of 

BBa_I763020 and inserted into the high-copy plasmid backbone pSB1T3. Additionally, a second 

variant of each construct was made by adding an additional copy of the LuxI expression sequence 

(BBa_R0062, BBa_J329999 or BBa_J329998, BBa_C0061, BBa_B0015) to the part and inserting 

it into the backbone pSB1C3. Thus, two variant constructs expressing a single copy or double 

copies of luxI (denoted sluxI and dluxI, respectively) were made with each RBS. Note that all three 

https://salislab.net/software/
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plasmid backbones used in experiments contain the same origin of replication (pMB1) and are 

similar in copy number.  

 Microfluidic experiments with the alternative constructs were performed according to the 

experimental procedures previously described (with a chemoattractant gradient). For the 99 au 

RBS, the activation times were 205 min and 270 min for the sluxI and dluxI constructs, respectively 

(starting OD600 of 0.10). The 24 au, dluxI construct was activated in 255 min at an initial OD600 of 

0.15. 

Since the rate of protein expression scales linearly with TIR, it was assumed that the model 

could be adjusted to account for alternative RBSs by scaling 𝐴1 and 𝐴2 (basal and upregulated 

rates of AHL production, respectively) accordingly. That is, a scaling factor was defined as 𝜂RBS =

𝑅RBS/𝑅B0034 where 𝑅RBS is the TIR of the alternative RBS and 𝑅B0034 = 1262 au is the TIR of 

the RBS used in the plasmid constructs for QS validation experiments and model fitting. To 

account for the additional copy of the luxI gene in the dluxI constructs, the basal generation term 

𝐴1 was multiplied by the number of copies of luxI in the construct, 𝑛𝑙𝑢𝑥𝐼 (𝑛𝑙𝑢𝑥𝐼 = 1 or 2). This 

method of accounting for the changes in gene expression behavior was based on the premise that 

the Hill term (second term) of Equation 2.10 represents the dynamic (switch-like) behavior of the 

circuit, which fundamentally does not change with the number of gene copies. This is because the 

maximum rate of new LuxI production (and AHL production) is limited by translation (i.e. the 

probability of ribosome association, which is indicated by the TIR value). In contrast, the basal 

generation rate stems from low, unsaturated LuxI production. This production is nevertheless 

reduced relative to constitutive production in the reference construct (BBa_B0034 RBS), but can 

be assumed proportional to the number of gene copies. The scaled rate of AHL production is then 
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𝐴t = 𝑛𝑙𝑢𝑥𝐼𝜂RBS𝐴1 + 𝜂RBS𝐴2
𝑄𝐻

𝑄𝐻 + 𝑄0
𝐻. 3.8 

 The results of experiments and corresponding simulations are shown in Figure 3.18. Using 

the nominal TIRs for scaling resulted in relatively low error between simulated and experimental 

activation times considering the factor of 2.3 uncertainty in TIR predictions. Moreover, TIRs did 

not require large adjustment to provide optimal fits of the data (24 au increased by 60% to 38 au 

and 99 au reduced by 10% to 89 au). While more designs should be considered, these results show 

that the model can be combined with thermodynamic predictions of translation to provide a design 

tool for synthetic biology.  

 

  

 

Figure 3.18: Application of the Model as a Genetic Design Tool for Synthetic Biology. (a) The RBS Calculator-

predicted RBS TIR values, and the optimized values found to produce accurate activation time predictions, and (b) 

experimental and simulated activation times using the RBS Calculator-predicted TIR values for scaling 𝐴1 and 𝐴2. 

Results for the two dluxI constructs represent the mean ± standard deviation for two independent experiments. The 

99 au, sluxI results represents a single experiment.  
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Chapter IV Discussion of Results and Future Work 

Given relative RBS strength, growth rate, and initial bacterial numbers, and chemo-effector 

concentration gradient information, the model developed in this work can provide an estimate of 

the amount of time required for a genetic “switch” to be flipped in a QS population, leading to a 

high rate of expression of proteins of interest. This capability could be of great benefit to a number 

of bacteria-based technologies, including toxin remediation, biosensing, and disease treatment or 

prevention. It also provides an insightful and computationally efficient approach to study of 

microbial communities in variety of settings including the human microbiome.   In this concluding 

chapter, we discuss some of the insights gained through work that will prove beneficial in future 

genetic circuit design and highlight some of the future work planned towards model refinement 

and utilization.  

4.1 Discussion 

The model developed in this thesis is unique in its scalability and computational efficiency 

as an agent-based model. This was made possible through a number of simplifying assumptions 

that were justified based on the population-scale metrics of interest such as CMC and QS activation 

time. Specifically, the assumptions that a bacterial population can be modeled in two-dimensions 

as a unit micron-thick slab and that complex flow fields (i.e. advection) may be neglected when 

solving chemical species transport provides the greatest reduction in computational time relative 

to a non-simplified model. The first assumption should be a good approximation of population-

averaged behavior given that the simulation represents a relatively thick domain, such as the 

100 μm-thick microfluidic channel in which experiments were performed. Direct experimental 

evidence was presented in support of the latter assumption. The model was also simplified with 

respect to intracellular signaling and protein dynamics. This was considered a particularly good 
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choice for chemotaxis modeling, as bacterial run time have been demonstrated to be well-

approximated as a logarithmic function of chemoattractant-receptor binding [72], [73]. The QS 

circuit dynamics were represented using a single Hill function, which can be considered a lumped 

model capturing AHL-controlled transcription of luxI, translation to the LuxI protein, and AHL 

synthesis by mature LuxI. While this too improves computation time, a noteworthy consequence 

is the inability to simulate noisy circuit dynamics and stochastic AHL production on an individual 

basis. With respect to physical cell-cell interactions, accounting for volume exclusion and cell 

reorientation during collision events should well-approximate relatively dense populations of 

(1 agent/mm2 is a simulation translates to 106 cell/ml in experiment), where such events occur 

regularly. 

 Despite the model’s simplicity, its ability to give accurate, quantitative insight was 

evidenced by its fit to chemotactic behavior for L-aspartic acid concentration gradients spanning 

three orders of magnitude and QS-based GFP expression for nine experiments of different starting 

cell densities and initial conditions. Further, using the fit parameters and making appropriate 

assumptions to scale rates of AHL production resulted in well-predicted QS activation times for 

three relatively much weaker synthetic constructs. Such scalability provides confidence in 

extrapolating predictions, while the model’s efficiency could make it a valuable design tool 

capable of optimizing a large number of tunable variables in a short amount of time. The agent-

based framework is easily adaptable to future models where individual genetic circuits are 

simulated to better estimate heterogeneities in a population.  

To demonstrate how the model may be used in bacteria-based system design, the QS 

activation time was predicted as a function of both RBS strength and growth rate. In practice, RBSs 

of a desired strength can be deterministically designed using the thermodynamic model described 
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in [135], while growth rate, chemotaxis, and potentially quorum quenching will primarily be a 

function of the environment in which the bacteria-based system will be utilized. The simulations 

were run using the same geometry, boundary conditions, and chemical gradient as in simulations 

of microfluidic experiments, and each contained an initial population of 25 agents. The results are 

shown in Figure 4.1.  

Note the robustness of the QS activation time predicted in Figure 4.1. The time required for 

activation is less than 100 min for RBSs TIRs greater than about 0.6 relative to BioBrick part 

BBa_B0034 (1262 au) for any growth rate greater than 0.02 min-1. Moreover, 93% of the entire 

 

Figure 4.1: Activation Time as a Function of Normalized Population Growth Rate (𝑑𝑃∗/𝑑𝑡) and RBS Strength 

Relative to BBa_B0034 
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parameter space shown gave an activation time of less than 500 min. Only very weak RBSs (TIR 

less than 0.16) results in activation times that were greater than 900 min.  

 Towards the rational and application-driven design of bacteria-based systems, a scenario 

with two small point-like sources of chemoattractant located at 𝑥1 = 900 μm, 𝑦1 = 900 μm and 

𝑥2 = 1200 μm and 𝑦2 = 1200 μm in a 2400×2400 μm2 domain was considered with zero-

concentration boundary conditions. The diffusion of the chemical from the sources was 

 

Figure 4.2: The Effects of Growth Rate (a) and Up-regulation Threshold 𝑄0 (b) on Activation Time. Also shown are 

AHL concentrations and bacterial distributions at activation for representative simulations using 𝑄0 = 1.7 nM 

(approximate fit value from experiments) using the (c) 1262 au RBS and the (d) 99 au RBS with double copies of 

luxI. The locations of the chemoattractant sources in (c) and (d) are indicated by the star symbols. Note that the full 

domain size in (c) and (d) is 2400×2400 μm2
, but only a subset is shown. 
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approximated using the analytical solution developed by Futrelle and Berg [136] for a finite 

amount of a chemical diffusing from the end of a capillary tube. Such a scenario could represent 

bacteria colonizing a small piece of semi-solid matter in the environment or a piece of tissue in the 

human body where AHL would be drained by surrounding fluid flow and chemical gradients 

attracting bacteria are transient. Simulations were performed to elucidate the effects of growth rate 

and up-regulation threshold 𝑄0 on the QS behavior, showing in Figures 4.2a and 4.2b, respectively.  

It is interesting to note how constructs of different RBS strengths are affected differently 

by changes in growth rate or upregulation threshold.  For a relatively strong RBS (1262 au), the 

activation time was not strongly impacted for the wide range of normalized population growth 

rates between about 0.05 min-1 and 0.1 min-1 (Figure 4.2a). The activation time for this RBS was 

strongly affected at near-zero growth rates, asymptotically approaching infinity as 𝑑𝑃∗/𝑑𝑡 → 0. 

In contrast, the weaker construct was sensitive to growth rate throughout the range of values tested. 

In theory, any 𝑑𝑃∗/𝑑𝑡 > 0 would eventually become activated, though simulations were cut off 

after 1000 min. For a single growth rate of 0.07 min-1, the slope of activation time versus RBS 

strength was much steeper when agents with the weaker RBS were used, compared to those with 

a stronger one (Figure 4.2b). Changing the threshold in practice could be accomplished by altering 

the transcriptional activation characteristics of LuxR-AHL by altering the strength of the luxI 

promoter, engineering synthetic promoters, or by changing the specificity of LuxR for AHL [137]–

[140]. The linear trend demonstrated here could be exploited for system design by engineering a 

synthetic promoter and estimating 𝑄0 from a simple sensitivity assay using exogenous AHL. 

Combined with the appropriate RBS choice from simulation results, the activation time of the 

system could be tuned with relatively low uncertainty.  
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 Also interesting to note are the differences in AHL concentrations at the time when 

activation occurred between the agents with a strong 1262 au RBS (55 min) and those with the 

much weaker construct utilizing a 99 au RBS with two copies of luxI (408 min). Despite the greater 

number of agents in the latter case, the AHL concentrations at activation were much higher in the 

case of a stronger RBS. The dynamics of mature GFP expression was the limiting factor in this 

case; AHL accumulated so quickly in the environment when the stronger RBS was used that the 

agents did not become activated until well after the up-regulation threshold of AHL had been 

surpassed. This also demonstrates that the robustness of QS activation shown in Figure 4.1.  

 Examples of the applications of bacteria using QS-based genetic circuits are prevalent 

throughout literature, including recent examples of bacteria-based therapeutic systems for cancer 

treatment. Notably Swofford et al. [87] engineered attenuated Salmonella Typhimurium 

VNP20010 with a plasmid to promote the expression of α-hemolysin from Staphylococcus aureus 

to help destroy cancer tissue only upon colonization at a high density. The working principle of 

the system was centered on the strain’s preference for tumor tissue over healthy tissue, thereby 

precluding colonization outside of tumors. In another recent study, Din et al. [141] engineered a 

“synchronized lysis circuit,” in which a bacteriophage protein causing bacterial cell lysis was 

expressed upon QS activation. Additionally, the authors incorporated the gene for a Haemolysin 

E, a protein that can lyse tumor cells, into the circuit. Upon activation, the bacteria therefore 

released the cytotoxic protein into their immediate environment due to the disintegration of their 

own cell wall. This bacterial suicide also resulted in a form of negative feedback for the QS circuit, 

since a relatively small number of bacteria survived the emergent event. Those remaining then 

began to proliferate and the cycle repeated. Studies such as these are exciting demonstrations of 

the possible applications of QS and bacteria in emerging biotechnologies. In principle, any gene 
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that can be expressed by a bacterium could be placed under the control of a QS promoter so that a 

protein of interest is expressed under the correct conditions.   

 To investigate QS-based drug delivery in solid tumors, a series of pilot experiments were 

performed using HCT-116 multicellular tumor spheroids (an in vitro tumor model), and 

Salmonella Typhimurium VNP20009 engineered to constitutively express a red fluorescence 

protein (RFP) in addition to the same 99 au RBS QS circuit utilized elsewhere in this thesis. 

Figure 4.3 shows representative composite bright-field, red, and green fluorescence images of a 

tumor slice. Areas of red indicate the presence of bacteria, while green indicates QS activation. 

GFP was detected in the densely colonized regions. Such a result is promising, since QS activation 

and production of a drug or cytotoxin outside of the tumor would cause damage to healthy tissue 

in vivo. The model could be used in the future to predict optimal QS parameters that would 

preclude QS activation outside of the tumor (where the population density is lower).  

4.2 Future Work 

The model developed in this thesis demonstrated that emergent behavior in a QS bacterial 

population, which is fundamentally based on complex, non-linear dynamics, can be accurately 

predicted in an efficient computational framework based on justified simplifying assumptions. 

 

Figure 4.3: HCT-116 Tumor Spheroid Colonized with QS Salmonella Typhimurium VNP20009 Expressing GFP as 

an Indicator of QS Activation while Constitutivelty Exprssing RFP. This sample was fixed after 12 hr of 

incubation.  
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Nevertheless, much work lies ahead to extend the capabilities of the model to capture behavior in 

more complex environments and in order to capture intracellular processes at greater resolution 

(i.e. individual gene regulation, transcription, and translation). Specifically, the model will be used 

towards the design of optimized bacteria-based tumor treatment strategies. 

 Currently, the model can only truly be used to model fluidic environments, such as the 

microfluidic channel in which experiments were performed. Future work will involve 

implementation of growth, migration, and colonization in tissue, such as the tumor spheroids 

pictured in Figure 4.3. This work will involve great modifications to the model, as normal run-

and-tumble behavior no longer takes place and bacteria, in part, use cell invasion mechanisms to 

translocate in tissue. It should be noted however that the existence (or lack) of bacterial chemotaxis 

(which implies swimming motility) in tissue is disputed in literature [142]–[144]. The extension 

of the model to include emergent behavior in tissue will be hugely beneficial in designing bacteria-

based cancer therapy systems.  

 Additionally, the model will be refined by replacing the Hill function describing AHL 

production with a set of delay differential equations (DDEs) to model mRNA transcription and 

protein translation, accumulation, function, and degradation. This will make the model more robust 

and applicable to variant and more complex genetic circuits. For instance, multiple QS circuits, 

each utilizing a unique signal, could be employed to control the timing and rate of expression of 

multiple proteins of interest. Substrate utilization and kinetics will also be modeled, which will 

prove very important for simulating growth and protein expression in the tumor microenvironment. 

The model may also be extended to three dimensions, which could be particularly useful for 

modeling bacterial colonization of tissue. However, while these additions will greatly expand the 

model’s capabilities, computational expense will inevitably increase. For instance, a three-
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dimensional model will have a factor of 𝑛 more nodes than its corresponding two-dimensional 

simulation (where 𝑛 is the number of nodes along any edge of the mesh), which will increase both 

the number of computations required at each time step as well as the memory requirements. 

Tradeoffs between resolution (both spatial accuracy and accuracy at the single-cell level) and 

computational time will be assessed and implemented according to the needs of specific problems 

in order to minimize computational requirements.   
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