Maj-Lis A. Voss

Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF ARTS
in
Economics

APPROVED:

$\frac{\text { Alan. Freida }}{\text { Alan N. Freiden }}$

May 1990
Blacksburg, Virginia

$$
1990
$$

$$
\begin{aligned}
& V_{6} 77 \\
& c .2
\end{aligned}
$$

$$
\text { c. } 2
$$

THE TERM STRUCTURE OF INTEREST RATES:
U.S. GOVERNMENT BONDS, 1955-1989
by
Maj-Lis A. Voss
Committee Chairman: David I. Meiselman Economics
(ABSTRACT)

The behavior of the term structure of interest rates in government bonds parallels that of the behavior in high-grade corporate bonds. Previous studies have demonstrated that there are synchronous changes in different maturities in highgrade corporate bonds. Results of statistical tests and measurements of the term structure in U.S. Treasury obligations are compared with previous studies to confirm that the behavior of the yield curve, from the mid-1950's until the 1970's, is consistent with previous norms that there are synchronous changes in all maturities but that there has been an increase in the relative sensitivity of changes in longer term rates since the 1970's per unit change in the short term rates. Generally, all maturities move in the same direction with intermediate and long term rates more synchronous than shorter term rates. Changes in rates are highly correlated across all maturities, but intermediate and short term
rates are somewhat more highly correlated with each other than with long term rates. Also, there is a general tendency for relative volatility to vary inversely with maturity. However, there was an increase in the relative volatility of longer term rates in the 1970's and 1980's. The results are generally consistent with Meiselman's earlier findings for high grade corporate bonds between 1900 and 1954, except for the more recent increase in the volatility of long term U.S. Treasury bonds.

ACKNOWLEDGEMENTS

I would like to extend my appreciation to the thesis committee, Dr. Meiselman, Dr. Mackay, and Dr. Freiden for their comments and suggestions during the preparation of this thesis, and I would especially like to thank Dr. Meiselman for suggesting the topic for my thesis.

My gratitude goes to my family, my sons Daniel and Stefan for their understanding, and most of all to my husband Clifford for his patience and support.

TABLE OF CONTENTS

Page
ABSTRACT ii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES vi
Chapter I - INTRODUCTION 1
A. Background
B. Definitions
Chapter II - DATA 7
A. Description
B. Overview of Analyses
Chapter III - ANALYSIS 12
Chapter IV - CONCLUSION 39
BIBLIOGRAPHY 42
VITA 43

LIST OF TABLES

Page

1. NUMBER OF OBSERVATIONS OF A GIVEN MATURITY 11
2. SYNCHRONIZATION OF INTEREST RATE CHANGES, positive matches, 1955-1989 16
3. SYNCHRONIZATION OF INTEREST RATE CHANGES, positive matches, in per cent, 1955-1989 17
4. SYNCHRONIZATION OF INTEREST RATE CHANGES, negative matches, 1955-1989 18
5. SYNCHRONIZATION OF INTEREST RATE CHANGES, negative matches, in per cent, 1955-1989 19
6. SYNCHRONIZATION OF INTEREST RATE CHANGES, no-change matches, 1955-1989 20
7. SYNCHRONIZATION OF INTEREST RATE CHANGES, diagonal sums of matching signs, 1955-1989 21
8. SYNCHRONIZATION OF INTEREST RATE CHANGES, diagonal sums of matching signs, in per cent, 1955-1989 22
9. NON-SYNCHRONOUS MOVEMENT IN INTEREST RATES, 1955-1989 23
10. NON-SYNCHRONOUS MOVEMENT IN INTEREST RATES, in per cent, 1955-1989 24
11. SYNCHRONIZATION IN INTEREST RATE CHANGES, monthly figures converted to years, all maturities, 1955-1989 25
12. SYNCHRONIZATION OF INTEREST RATE CHANGES, monthly figures converted to years, in per cent, all maturities, 1955-1989 26
13. SYNCHRONIZATION OF INTEREST RATE CHANGES, monthly figures converted to years, selected maturities, 1955-1989 27
14. SYNCHRONIZATION OF INTEREST RATE CHANGES, monthly figures converted to years, in percent, selected maturities, 1955-1989 28
15. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1955-1989 29
16. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, YEAR-END DATA, 1955-1989 30
17. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1960-1969 31
18. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1970-1979 32
19. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF GIVEN MATURITIES, 1980-1989 33
20. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1982-1989 34
21. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF GIVEN MATURITIES, 1955-1972 35
22. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1973-1989 36
23. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1977-1989 37
24. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1977-1989 38
25. RELATIONSHIP BETWEEN CHANGES IN LONG-TERM INTEREST RATES OF SELECTED MATURITIES AND CHANGES IN ONE-YEAR INTEREST RATES, MONTHLY FIGURES, 1955-1989 41

I. INTRODUCTION

A. Background

The term structure of interest rates is of great practical importance for a general understanding of the dynamics in financial markets. The information incorporated in the term structure is the basis for decisions made by individuals and financial institutions regarding saving, investment, and other elements of inter-temporal choice and capital valuation.

In The Term Structure of Interest Rates (1962), David Meiselman analyzed the yield curve derived from David Durand's "Basic Yields of Corporate Bonds". Changes in the slope of the yield curve were examined, and statistical tests were carried out. Meiselman found that the movements of interest rates of all maturities were dependably synchronous, with the magnitude of change inversely and functionally related to maturity. The shorter the term to maturity the greater the relative change in rates, and vice versa. Thus, the yield curve could be described in terms of a family of rates in which changes in each member or maturity is dependably related
to changes in each other. ${ }^{1}$
This paper describes an analysis in which Meiselman's approach is applied to a different body of data and a different time period, specifically government bond data from 1955 to 1989. The results are compared with those in Meiselman's study. The purpose of this paper is to examine changes in the yield curve, to test whether changes in different maturities are synchronous, and to measure relative magnitudes of change to test whether there is a regular pattern of change by maturity classification. An effort is made to determine whether the behavior of the term structure of interest rates in government bond data display the same characteristics as the 1900-1954 corporate bond data. Further, this study will examine whether differences in behavior, should they exist, are systematic or random occurrences.

The corporate bond yield series developed by Durand and used in Meiselman's study was assumed to have a negligable (but not zero) default risk. Selected corporate interest rate data were interpolated and fitted by hand, and the resulting curve was a smoothed yield curve. The yield curve in this paper is derived by the Board of Governors of the Federal

1 David Meiselman, The Term Structure of Interest Rates
(Englewood Cliffs, 1962), p.22.

Reserve System. The data are published regularly in the Federal Reserve Bulletin and in Federal Reserve statistical releases. Default risk is essentially non-existent. Calculations and curve-fitting are carried out with the use of sophisticated computer programs.

B. Definitions

Term Structure
The term structure of interest rates is defined as the relationship between yield and maturity for securities that are alike in all aspects except the length of time to maturity. ${ }^{2}$ The term structure at any given date is determined by bond prices quoted on that day. There is some consensus that the prices and yields of these securities are determined by the market's expectations, as well as by the amount of risk aversion of market participants. ${ }^{3}$

Bonds
A bond is a debt obligation of the issuer. When the bond is mature, the issuer pays accumulated interest and principal

2 Robert J. Shiller and Huston J. McCulloch, "The Term Structure of Interest Rates" (Washington, 1987), p.11.

3 Tim S. Campbell, Money and Capital Markets (Glenview,1988), p.53.
to the bondholder. At time t of a bond maturing at time T, the purchaser pays price $p(t, T)$ and is entitled to receive payments corresponding to the t_{i} that are greater than t, so long as the purchaser continues to hold the bond. Two kinds of payment sequences are common: 1. Discount bonds consist of a single payment, the principal, paid at maturity. 2 . Coupon bonds promise a payment at regular time intervals of a certain amount, plus a payment of the last coupon and the principal at the maturity date. This study considers both coupon bonds and discount bonds. The discount bonds have, however, been converted to coupon equivalent bonds in this study. ${ }^{4}$

The Yield Curve
The relationship between yield and maturity at time t to term m is given by $r(t, t+m)$. A plot of this function is known as a yield curve. A yield curve is commonly plotted with maturity along the x-axis, and yield along the y-axis. A "normal" yield curve is a positive one, where the long term rates are higher than the short term rates, and the rates are systematically higher as term to maturity increases. When short term rates are higher than long term rates, the result

4 Marcia Stigum, Money Market Calculations (Homewood, 1981), p. 32 .
is a downward or negatively sloped yield curve. A humped curve indicates that intermediate rates are higher than either long term or short term rates.

A conventional interpretation of the movements in the term structure, and the slope of the yield curve, is that market expectations cause changes in interest rates by directing investors' decisions. From 1900 to the mid-1920's, the yield curve generally had a negative slope. ${ }^{5}$ By the late 1920's the yield curve had a positive slope and although the curve shifted up and down, it generally remained positively sloped until the 1970's.

In the 1970's a more varied pattern emerged. In August 1974, for example, the yield curve exhibited a negative slope, but a positive one in May 1975. In early 1980's the yield curve was negatively sloped, where short term rates were higher than long term rates. ${ }^{6}$ In June 1989 the yield curve was nearly horizontal.

If changes in specific maturities are synchronous, changes in the slopes of the yield curve is a function of the relative changes in volatility. When rates were historically low, the yield curve was positively sloped because short rates

5 Meiselman, p. 42.
6 Frederick T. Furlong, "Weekly Letter" (San Francisco, 1989), p. 2 .
fell more than long rates, driving short rates below long rates. When rates are historically high, the yield curve had a negative slope for a mirror image based on the same mechanism. We shall see that there was a shift in behavior in the 1970's that resulted from a change in the volatility of long term rates and intermediate rates, relative to short term rates.

II. DATA

A. Description

This study examines U.S. Treasury obligations of eleven different maturities. The observation period ranges from 12 years to 34 years, beginning on or after January 1955, and ending on or before June 1989. The monthly data are monthly averages of daily figures (Board of Governors of The Federal Reserve System, Domestic Financial Statistics; Interest Rates, Money and Capital Markets). The shortest maturity included in the study is 3 months, and the longest maturity is 30 years (Table I). There is a difference in the number of observations for bonds of different maturities resulting from the different dates that specific maturities were first measured and counted. The 12 month bond, for example was first included in February 1960, and the 2 year bond yield was first included beginning only in June 1976, thus resulting in a difference of 197 observations, or an equivalent number of months.

Meiselman's data set consists of high-grade corporate bond data, where observations had been taken once a year between 1900 and 1954. Tax effects were not considered, and default risk was essentially neglected. Because the present sample consists of monthly observations, there is more noise
in this study than in Meiselman's sample of yearly figures.

B. Overview of Analyses

All data was entered into Lotus 1-2-3 (Lotus Development Corporation, Release 2.01). This software was used to carry out all calculations, counts, and regressions. First differences were determined for each maturity by calculating first difference changes in yield (per cent) per month.

Sign Test
Changes in the interest rate of maturity A and maturity B are compared via sign tests. A change is recorded as "+" when it is positive, " -" when it is negative, and " 0 " when it is zero. These signs are compared monthly for all combinations of two maturities, and matches are counted. The results are arranged into matrices of matching sign counts. Each cell in a matrix consists of the count, in absolute numbers and in per cent, of total monthly pairs checked of positive, negative- or zero-change matches.

Synchronization
To find whether the term structure exhibits synchronous movement, i.e. where two or more rates move in the same
direction, the sums of the diagonal entries are examined. These sums show how often rates move together, i.e. in the same direction. The synchronization among individual maturities is also compared for times when the majority of rates increase, decrease, or remain unchanged.

Regression-Correlation
In order to obtain a sample size which is relatively uniform across the maturities considered, seven out of eleven maturities are initially included in a regression-correlation analysis. While the 12 month, 2 year, 7 year and 30 year maturities are omitted because of the small number of observations relative to the other seven maturities, a separate regression analysis is carried out on all eleven maturities. In order to examine movements in the term structure during different time periods, regression is run for the whole time period under study, 1955-1989, and for several sub-periods, in order to closely examine whether significant changes in term structure took place during any of the subperiods. In addition, in order to directly compare these results with Meiselman's, correlation-regression analysis of year-end data is carried out using December figures from each year included in the sample.

The linear regression-correlation analysis is fit to data consisting of all monthly pairs of changes in first differences for each combination of two maturities. It results in regression coefficients relating changes in interest rate between all combinations of two maturities, a correlation coefficient for each combination of two maturity changes, and an intercept value for each pairing. The regression equation is

$$
\begin{equation*}
\left(C_{B}\right)_{m}=R_{B A}\left(C_{A}\right)_{m}+c \tag{1}
\end{equation*}
$$

where $\left(C_{A}\right)_{m}=$ change in first difference of interest rate for maturity A at month m
$c=$ constant term
$R_{B A}=$ regression coefficient of B on A

Table 1. NUMBER OF OBSERVATIONS OF A GIVEN MATURITY.

Maturity	Number of observations
3 Mo	415
6 Mo	362
12 Mo	350
1 Yr	415
2 Yr	153
3 Yr	415
5 Yr	415
7 Yr	236
10 Yr	415
20 Yr	382

III. Analysis

Sign Tests
Results of sign tests for all maturities over the period 1955-1989 are given in Tables 2, 3, 4, 5, and 6. An examination of the synchronization of signs clearly indicates that simultaneous change among the various maturities take place. Simultaneous positive changes dominate the pattern where the intermediate maturities move together more frequently than the shortest and the longest ones, and no change in sign occurs with the lowest frequency. In his sample, Meiselman found that rates tend to move together both at the short end and the long end.

Synchronization
Diagonal sums of matrices containing counts of simultaneous positive, negative, or no-change signs are indicative of yield curve behavior. A comparison of results for all maturities over the period 1955-1989 confirms the theory that rates tend to move in a regular and synchronized manner (Tables 7, 8, 9, and 10). Again, the intermediate rates tend to move together more frequently than the shorter and longer rates. Synchronized movement among the 1 year, 2 year, 3 year, 5 year, and 7 year rates is apparent more than

90 \% of the available paired monthly observations. Lower percentage of synchronization is found when matching a short maturity with a long one, such as a 3 month maturity and 20 year maturity, which move together only 57% of the time. When the majority of rates increase, the intermediate rates, (1 year, 3 years, and 5 years) tend to increase more often than the other rates. The same behavior can be found when the majority of rates decrease (Tables 11, 12, 13, and 14).

Regression-Correlation: Seven Selected Maturities, 1955-1989 Regression-correlation analysis carried out on the seven maturities on the whole period shows high and positive correlation between the changes in the first differences in the given maturities. Correlation and regression coefficients are shown in Table 15. Regression always produces an intercept which is essentially zero. The correlation coefficient ranges between . 98 (3 year and 5 year maturities), and . 59 (6 months and 20 years). A separate correlationregression analysis carried out for year-end data shows an almost identical pattern to that for the period 1955-1989 (Table 16).

Regression-Correlation: Seven Selected Maturities, Subperiods Sometimes changes occurring in otherwise regular behavior can be detected when subperiods are examined. In the 1960's only the intermediate maturities show high correlation, and the values of the regression coefficients are lower than for the whole period between 1955-1989 (Table 17). Greater variability in the term structure appears in the early 1970's. Intermediate rates, such as the 3 year, and 5 year rates, remain highly correlated whereas the other maturities exhibit an irregular pattern compared with the regularity over the whole observation period (Table 18). Between the years 19801989 correlation coefficients are high and a regularity in pattern returns. The maturities in the period 1980-1989 show correlation and regression coefficients having higher values than during the other sub-periods or the whole period under study (Table 19 and Table 20).

Separate regression-correlation analyses are carried out on the periods 1955-1972 and 1973-1989 (Table 21 and Table 22). Intermediate rates produce high correlation and regression coefficients between the years 1955-1972, as was the case during some parts of the sub-periods of 1960-1969 and 1970-1979.

Regression-Correlation: All Maturities, 1977-1989
Correlation-regression analysis on all maturities between the years 1977-1989 produces a pattern similar to the subperiods 1970-1979 and 1980-1989. The values of the correlation and regression coefficients are high during this period (Table 23 and Table 24).

Table 2. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989. Monthly figures, classified by maturity.

The data represent the simultaneous positive matches for various maturities.

Table 3. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989. Monthly figures, in per cent, classified by maturity.

The data represent (in \% of total positive signs) the simultaneous positive matches for the various maturities.

The data represent the simultaneous negative matches for various maturities.

Table 5. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989. Monthly figures, in per cent, classified by maturity.

The data represent (in \% of total negative signs) the simultaneous negative matches for various maturities.

Table 6. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989. Monthly figures, classified by maturity.

The data represent simultaneous no-change matches for various maturities.

The data represent the diagonal sums of matrices containing the number of simultaneous positive, negative and no-change matches for various maturities.

Table 8. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989. Monthly figures, in per cent, classified by maturity.

The data represent (in \%) the diagonal sums of matrices containing the number of positive, negative, and nochange matches for the various maturities.

Table 9. NON-SYNCHRONOUS MOVEMENT IN INTEREST RATES, 1955-1989. Monthly figures, classified by maturity.

Maturity A

The data represent the number of times signs move in opposite directions.

Table 10. NON-SYNCHRONOUS MOVEMENT IN INTEREST RATES, 1955-1989. Monthly figures, in per cent, classified by maturity.

The data represent (in \%) the movement of signs in opposite directions.

Table 11. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989 Monthly figures converted to years, classified by maturity.
a. When Majority of Rates Increased (18 years)
$\begin{array}{llllllllllll}\text { Years to Maturity } & 3 \mathrm{mo} & 6 & 12 & 1 \mathrm{yr} & 2 & 3 & 5 & 7 & 10 & 20 & 30\end{array}$

| Number of Times
 Rate | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| Increased | 13 | 13 | 13 | 15 | 6 | 16 | 15 | 9 | 15 | 13 | 5 | 133 |
| Unchanged | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Sum |
| Decreased | 3 | 2 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 1 | 0 | 14 |

b. When Majority of Rates Decreased (15 years)

Years to Maturity	3 mo	6	12	1 yr	2	3	5	7	10	20	30

Number of Times
Rate
Sum

Table 12. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989 Monthly figures converted to years, classified by maturity. Rates are expressed in per cent.
a. When Majority of Rates Increased (18 years)

Years to Maturity $\begin{array}{lllllllllll} & 3 \mathrm{mo} & 6 & 12 & 1 y r & 2 & 3 & 5 & 7 & 10 & 20\end{array} \quad 30$

| Change in Rate
 in \%
 Increased | 72 | 87 | 87 | 73 | 100 | 89 | 84 | 90 | 84 | 81 | 83 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unchanged | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Decreased | 16 | 13 | 6 | 11 | 0 | 5 | 5 | 10 | 11 | 6 | 0 |

b. When Majority of Rates Decreased (15 years)

Years to Maturity 3mo $\begin{array}{lllllllllll}6 & 12 & 1 y r & 2 & 3 & 5 & 7 & 10 & 20 & 30\end{array}$

Change in Rate in \% Increased	16	6	0	6	0	0	0	0	6	6	0
Unchanged	0	0	0	0	0	0	0	0	0	0	0
Decreased	61	80	80	78	99	78	78	90	72	75	83

Table 13. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989 Monthly figures converted to years, classified by maturity.
a. When Majority of Rates Increased (18 years)

Years to Maturity	3 mo	6	1 yr	3	5	10	20
Number of Times Rate							
Increased	10	11	15	16	16	16	16
Unchanged	1	0	0	0	0	0	0
Decreased	7	1	2	0	0	1	1

b. When Majority of Rates Decreased (15 years)
$\begin{array}{llllllll}\text { Years to Maturity } 3 m o & 6 & 1 y r & 3 & 5 & 10 & 20\end{array}$

Number of Times Rate								
Increased	7	2	1	0	0	0	0	Sum
Unchanged	0	0	0	0	0	0	0	0
Decreased	7	12	14	14	14	13	13	87

Table 14. SYNCHRONIZATION OF INTEREST RATE CHANGES, 1955-1989 Monthly figures converted to years, classified by maturity. Rates are expressed in per cent.
a. When Majority of Rates Increased (18 years)
$\begin{array}{llllllll}\text { Years to Maturity } & 3 \mathrm{mo} & 6 & 1 \mathrm{yr} & 3 & 5 & 10 & 20\end{array}$

Change in Rate in \% Increased	56	61	83	89	89	89	89
Unchanged	1	0	0	0	0	0	0
Decreased	39	1	1	0	0	1	1

b. When Majority of Rates Decreased (15 years)

| Years to Maturity 3mo | 6 | $1 y r$ | 3 | 5 | 10 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Change in Rate in \%							
Increased	47	13	1	0	0	0	0
Unchanged	0	0	0	0	0	0	0
Decreased	47	80	93	93	93	87	87

Table 15. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1955-1989. Changes are based on monthly figures.
a. Correlation Coefficient

b. Regression Coefficient

Table 16. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, YEAR-END DATA, 1955-1989. Changes are based on monthly figures.
a. Correlation Coefficient

Maturity A

b. Regression Coefficient

Table 17. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1960-1969. Changes are based on monthly figures.
a. Correlation Coefficient

Maturity A

b. Regression Coefficient

Table 18. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1970-1979. Changes are based on monthly figures.

b. Regression Coefficient

Table 19. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1980-1989. Changes are based on monthly figures.
a. Correlation Coefficient

b. Regression Coefficient

Table 20. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1982-1989. Changes are based on monthly figures.
a. Correlation Coefficient

b. Regression Coefficient

Table 21. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1955-1972. Changes are based on monthly figures.
a. Correlation Coefficient

b. Regression Coefficient

$3 \quad 6$| Maturity A |
| :---: |
| 1 |${ }_{3} \quad 5 \quad 10 \quad 20$

Table 22. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1973-1989. Changes are based on monthly figures.
a. Correlation Coefficient

b. Regression Coefficient

Table 23. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1977-1989. Changes are based on monthly figures.
a. Correlation Coefficient

Table 24. RELATIONS OF FIRST DIFFERENCES OF INTEREST RATES OF ALTERNATIVE MATURITIES, 1977-1989. Changes are based on monthly figures.
b. Regression Coefficient

IV. CONCLUSION

A comparison with Meiselman's study of the term structure of interest rates in corporate bond yields, and government bond yields in this paper, confirms that the term structures behave in a similar manner. Examination of the movements in the yield curve over the entire period of study shows that the rates move together in a synchronized, and relatively regular manner. The intermediate rates in the government bond yields tend to exhibit the highest degree of synchronization.

The correlation analysis for the whole period of study conform, with some exceptions, to those of Meiselman. The inverse relationship between correlation and term to maturity holds, except that the intermediate rates in this sample also produce the highest correlation coefficients. Examination of sub-periods demonstrates that greater volatility than over the entire period, appears in the 1970's and continues into the 1980's with higher values of correlation and regression coefficients.

The change in the behavior of the yield-curve from regularity into volatility may be due to the large movements in market interest rates during that time period. Short term rates, which historically had been more volatile than long term rates, became relatively less volatile, and more movement
took place in the long term rates as well as in the intermediate rates.

An examination of the regression coefficients in Table 25 demonstrates that an inverse relationship exists between volatility and time to maturity, with systematically greater volatility the longer the maturity. Each maturity is a scalar of another, and the changes in one are in proportion to the changes in the other.

The greater variability in the term structure of government bond yields may be due to the fact that this sample contains monthly figures in contrast to Meiselman's study where yearly figures were recorded. The general pattern of movement in the term structure of interest rates of government bond yields tends, however, to parallel that of corporate bond yields where rates move together in a synchronized manner and a dependable relationship is evident between relative changes and maturity.

Table 25.
a. RELATIONSHIP BETWEEN CHANGES IN LONG-TERM INTEREST RATES OF SELECTED MATURITIES AND CHANGES IN ONE-YEAR INTEREST RATES, MONTHLY FIGURES, 1955-1989

Time to Maturity	a	b	Correlation Coefficient
3 mo	.00	.82	.90
6 mo	.01	.62	.82
3 yrs	.00	.76	.95
5 yrs	.00	.64	.91
10 yrs	.01	.49	.81
20 yrs	.01	.40	.79

b. RELATIONSBETWEEN CHANGES IN LONG-TERM DEFAULT-FREE INTEREST RATES OF SELECTED MATURITIES AND UNANTICIPATED CHANGES IN DEFAULT-FREE ONE-YEAR INTEREST RATES, ANNUAL FIGURES, 1901-1954 (Meiselman, 1962).

Years to Maturity	a	b	Correlation Coefficient
5	.05	.48	.87
10	.04	.36	.84
15	.03	.30	.84
20	.03	.26	.83
25	.03	.26	.83
30	.03	.25	.82

Source:
Meiselman, David., The Term Structure of Interest Rates, Prentice Hall, Englewood Cliffs, N.J. 1962.

BIBLIOGRAPHY

Board of Governors, Federal Reserve System, Domestic Financial Statistics, 1955-1989. Washington, D.C.

Campbell, Tim S, Money and Capital Markets, Scott, Foresman and Company, Glenview, Illinois 1988.

Chambers, D., Carleton, W., and Waldman, D., "A New Approach to Estimation of the Term Structure of Interest Rates", Journal of Financial and Quantitative Analysis, Vol. 19, no. 3, September 1984.

Culbertson, J.M., "The Term Structure of Interest Rates", Quarterly Journal of Economics, 71, 1957.

Furlong, Frederick, T., Weekly Letter, Federal Reserve Bank of San Francisco, March 1989.

Lotus Development Corporation, Lotus 1-2-3, Release 2.01, Cambridge, Massachusetts, 1986.

Meiselman, David,The Term Structure of Interest Rates, Prentice-Hall, Englewood Cliffs, N.J. 1962.

Modigliani, F., and Sutch, R., "Innovations in Interest Rate Policy", American Economic Review, Vol. 56, May 1966.

Shiller, Robert J., and McCulloch, Huston J., "The Term Structure of Interest Rates", NBER Working Paper Series, No. 2341 , 1987.

Stigum, Marcia, "Money Market Calculations", Dow Jones-Irwin, Homewood, Illinois, 1981.

Walsh, Carl, E., Weekly Letter, Federal Reserve Bank of San Francisco, April 1989.

VITA

Maj-Lis A. Voss, born on April 1, 1950, has previously attended Stockholm University in Stockholm, Sweden, and George Mason University in Fairfax, Virginia, where she studied Urban Planning and Geography. She received a B.A. in Geography in 1986. Her interest in Economic Development brought her to the United Nations Development Programme in Washington, D.C. where she served as an Intern. During her graduate studies in Economics at Virginia Tech, Ms. Vas was a Graduate Assistant in the Economics Department.
Mantis A. Voso

