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Abstract 
 
Grid computing is a field of research that combines many computers from distant 

locations to form one large computing resource. In order to be able to make use of the full 
potential of such a system there is a need to effectively manage resources on the Grid. 
There are numerous scheduling systems to perform this management for clusters of 
computers and a few scheduling systems for the Grid. These systems try for optimality 
(or close to optimality) with the goals of obtaining good throughput and minimizing job 
completion time.  

 
In this research, we examine issues that we believe have not been tackled in 

schedulers for the Grid. These issues revolve around the problem of coordinating 
resources belonging to separate administrative domains and scheduling in this context. In 
order for grid computing’s vision of virtual organizations to be realized to its fullest 
extent, there is a need to implement and test schedulers that find resources and schedule 
tasks on them in a manner that is transparent to the user. These resources might be on a 
different administrative domain altogether and obtaining either resource or user account 
information on those resources might be difficult. Also, each organization might require 
their own policies and mechanisms to be enforced. Hence having a centralized scheduler 
is not feasible due to the pragmatics of the Grid. 

 
There are two basic aims to this thesis. The first aim is to design and implement a 

framework that takes administrative concerns into consideration during scheduling. The 
aim of the framework is to provide a lightweight, extensible, secure and scalable 
architecture under which multiple scheduling algorithms can be implemented. Second, 
we evaluate two prototypical of scheduling algorithms in the context of this framework. 
Scheduling algorithms are diverse and the applications are varied. Thus no single 
algorithm can obtain a good mapping for every application. We believe that different 
scheduling algorithms will be necessary to schedule different types of applications. In 
order to facilitate development of such algorithms, a framework in which it is easy to 
integrate other scheduling algorithms is necessary. The framework developed in this 
project is designed for such extensibility. 
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Chapter 1.  Introduction 
 

Grid computing has become popular in the past few years as an effective means to 
couple large, heterogeneous sets of resources from multiple organizations by means of 
networks [46]. The Grid provides a computing infrastructure that is capable of running 
parallel applications that are too large to fit on a single cluster or parallel machine. Grid 
computing may prove to be a commercially viable alternative to building larger and 
larger machines for the same reason clusters became viable – the Grid is built on cheap 
off-the-shelf components. Grids are becoming popular mainly due to progress in 
networking technology, since network speeds have been increasing at a faster rate 
compared to processor speed, so that network bandwidth is becoming less and less of a 
bottleneck in the execution of a parallel program. 

 
However, with all the advantages of coupling resources owned by multiple 

institutions, there are many challenges and problems that need to be tackled to make 
effective use of grid resources. Issues like resource management, reservation of resources, 
checkpointing and migration, and runtime algorithm selection are important to allow for 
good utilization of computing resources. Other pragmatic aspects like security of 
resources and privacy of resource structure need to be taken into account as well. Finally, 
the algorithms and infrastructure of the Grid, like the Internet, need to scale to provide for 
effective coupling of a large number of resources. 

1.1 Resource Management for the Grid 
 

Managing grid resources has been a central topic of interest to the grid community for 
many years [51]. In grid environments it is important to be able to find appropriate 
available resources from a large pool of resources. Once these resources have been 
identified, scheduling decisions must be made, i.e., tasks must be assigned to resources. 
This “mapping” problem has been studied by many researchers, and it is especially 
difficult in the dynamic and heterogeneous context of the Grid [50]. Wide-area 
scheduling systems have been studied in grid environments as a means to manage 
resources [2, 37, 38]. These systems are sometimes called resource brokers since they 
help the application to find the resources that the application requires.  

 
There are many scheduling systems available for a single cluster of machines or a set 

of resources owned by a single organization. These scheduling systems have differing 
aims. Some of these systems aim to have high utilization of the machines and high 
throughput for multiple applications, while other systems try to minimize job completion 
time for a single application. Thus, there are many goals that a scheduler might be 
expected to satisfy, some of which cannot be achieved simultaneously. One such set of 
goals that is especially prominent in the Grid, and that cannot be achieved simultaneously, 
is respect for administrative boundaries and optimality of schedules. This research is an 
effort to identify and provide a solution for grid scheduling despite the constraints 
imposed by separate administrative domains. 
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1.2 Aims of Thesis 
 

The research conducted in this project has the following two goals. 
 
1. Development of a scheduling framework 
 

Scheduling of applications on grid environments is difficult due to the scale and 
diversity of the resources. In order for scheduling to be manageable, the user should 
not be burdened with the effort of collecting all the information required to schedule 
programs and then performing the mapping. What is needed is a scheduling 
framework that eases the burden on the user and transparently schedules applications. 
One of the aims of this research is to develop a scheduling framework that allows the 
user to easily use schedulers in meta-computing systems like the Grid. An extensible 
framework is designed so that different scheduling algorithms can work under this 
framework. Also, if grid-scheduling systems are to become popular, they will need to 
take into account the need for different organizations to have complete control of 
their resources, including setting policies for access to resources and sharing of 
information about resources. The framework developed in this project is zone-based. 
Each zone represents an organization with its own scheduler. Each zone’s scheduler 
is free to implement its own scheduling algorithms and enforce its own policies. Thus 
the zone-based scheduling framework handles the pragmatics of the Grid. 

 
2. Evaluate scheduling algorithms in the context of this framework 
 

We evaluate a few scheduling algorithms in the context of our system. This 
provides insights into how the scheduling algorithms work in the context of our 
framework. The purpose of implementing and evaluating scheduling algorithms in 
our framework is not to provide the optimal schedule. Instead, we provide an 
implementation of a few scheduling algorithms in our framework and evaluate 
techniques that might allow further development of these scheduling algorithms. 
 

1.3 Taxonomy of Grid Schedulers 
 

Grid schedulers can be classified based on different criteria. A list of criteria used to 
classify schedulers is as follows: 

 
• Scheduling Methodology or Algorithm: Heuristic vs. Exhaustive 

 
Since optimal scheduling is an NP hard problem, except for trivial cases, most 
existing scheduling algorithms use heuristics to perform task mapping. 

 
• Manner of Scheduling: Centralized vs. Distributed 

 
Scheduling frameworks can be classified as being centralized or distributed. In 
centralized schedulers, the application’s performance model and resource model 
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are gathered at a single place and the mapping is performed at that location. In a 
distributed scheduler, there are many cooperative scheduling entities that 
collectively do the mapping in a peer-to-peer or a hierarchical manner. 

 
• Static, Dynamic or Adaptive: 
 

Static schedulers use a predefined analytic model of the machines and networks, 
and then perform scheduling based on this model. Static schedulers do not take 
into account the effects of currently executing applications and the currently 
available processing power and bandwidth to an application. Dynamic schedulers 
take these variable factors about the resources into account while scheduling. 
Adaptive schedulers change the schedules or placement of tasks if after 
assignment of tasks, it is found that the conditions present on the resources have 
changed. Rescheduling systems that checkpoint currently executing tasks and 
reassign them to other resources are an example of such adaptive schedulers. 

 
• Generality of Scheduling Mechanism: 
 

Schedulers can be specific for each application or can be generically used to 
schedule any application. Thus on one side we have application specific 
schedulers that are designed for a single application taking into account problem 
specific parameters. On the other hand we have generic schedulers that would 
work for any application. A hybrid between these two classes of schedulers can 
also be defined. A hybrid scheduler can schedule any application but allows 
performance information specific to the application to be provided.  

 
The zone-based scheduler developed in this project can be categorized as a heuristic, 

distributed, dynamic and hybrid scheduler. 
 

1.4 Organization 
 

The rest of this thesis is organized as follows. Chapter 2 gives an overview of related 
work in the area. Based on the two goals of this research it provides information about 
scheduling frameworks and about scheduling algorithms and techniques. It also provides 
an introduction to the tools used to build the zone based scheduling (ZBS) framework. 
Chapter 3 describes the design and implementation of the ZBS framework. Chapter 4 
describes different scheduling algorithms evaluated in the context of the framework. 
Chapter 5 provides the results obtained from the evaluation of the scheduling algorithms 
described in Chapter 4. Chapter 6 concludes with a summary of contributions and 
directions for future research in the area. 
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Chapter 2. Survey of Related Literature 
 

The zone-based scheduler designed and implemented in this thesis uses several 
existing tools and technologies. This chapter gives an introduction to the various software 
components used in the scheduling system, including resource information gathering 
frameworks, application performance monitoring tools and web service frameworks. 
Also, the zone based scheduling system follows a different architecture compared to 
existing systems. A description of some of the previous efforts to schedule an application 
in grid environments is provided. The most significant generic grid application scheduler, 
the GrADS scheduler [2], is described. Different formulations of the scheduling problem 
are explored and algorithms to solve these scheduling problems are examined. 

2.1 Execution Environments 
 
The zone-based scheduler designed and implemented in this project is targeted for 

parallel applications. More specifically, it is assumed that the parallel application uses the 
same code base with different potions of data assigned to each process, i.e., it follows a 
single program multiple data (SPMD) style of program execution. All processes in the 
parallel program use message passing between the processes as a means of 
communicating information. Although our design does not require any particular grid or 
message passing middleware, our implementation is based on the following de facto 
standards for running message passing SPMD programs on the grid. 

 
Globus toolkit [9] provides an infrastructure to execute programs on the grid. The 

Globus toolkit is based on open standards and provides resource management, 
information management and data management functions. Globus is used to provide the 
job startup mechanisms for the parallel program. Globus also takes care of the security 
issues of starting up jobs on remote resources by means of authenticating with the remote 
host using the digital certificate provided by the user. 

 
MPICH-G2 [8], the implementation of the MPI message passing standard for use 

with the Globus toolkit, is used as the library that does communication between the 
processes. MPICH-G2 makes communication libraries effective on multiple architectures. 
Point-to-point communication and collective communication operations are efficiently 
supported in MPICH-G2. 

2.2 Resource Information Gathering Frameworks 
 

In order to be able to make informed decisions about which machines to place 
processes on, the current load at the compute nodes is required. In addition, since the 
target applications are parallel programs, the latency and bandwidth between these nodes 
is also of interest to the scheduler. The infrastructure used to obtain this information is 
described as follows. 
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MDS (Meta-computing Directory Service) [10] provides an interface by which 
information about resources can be published by the resource and queried by the user. 
For example, clients can query the MDS to receive information about processor load, 
processor architecture, memory available, file system information and network interfaces. 
The MDS is a part of the Globus toolkit and is an implementation of the LDAP 
specification. The LDAP data model represents information as a set of objects organized 
in a hierarchical namespace. This namespace is called the directory information tree (DIT) 
with each entry in it being uniquely identified in the X.500 representation [16].  

 
NWS (Network Weather Service) [11] is a network monitoring and forecasting 

software. NWS runs sensors on each machine. These sensors monitor the CPU load and 
network latency/bandwidth and generate forecasts for those parameters for the near future. 
The information provided by NWS is reported to the MDS service by means of an 
information provider that is part of MDS ( the information provider is called nwsip).  

 
The zone-based scheduler is the consumer of the information stored in MDS. It does 

so by contacting an LDAP server and querying for a portion of the directory information 
tree. Access to MDS programmatically is made possible by means of the COGkit [17] 
API, which provides a library that allows for easy querying. The zone-based scheduler 
makes decisions as to where to schedule processes based on processor and network 
properties forecast by NWS for the duration of the application’s expected execution. 

2.3 Grid Schedulers 
 

Scheduling applications on the grid requires both frameworks to handle the 
complexities of a heterogeneous environment and algorithms that actually perform the 
mapping of tasks to resources. This section examines existing architectures and 
frameworks to perform grid scheduling. The next section provides details of algorithms 
used to perform scheduling. The zone-based scheduler provides an alternative design for 
a scheduling framework, and one of the goals of this research is to evaluate scheduling 
algorithms described in the next section as they perform in the context of this framework. 

 
Current grid schedulers can be classified under three categories. In the first category 

there are schedulers that exist for individual applications. In this type of scheduler, the 
scheduler is an agent acting on behalf of the user or application. This type of scheduler is 
very application specific; and there is one of these scheduling agents for every instance of 
every application to be run. An example of a scheduler in this category is the AppLeS [3, 
18, 53] scheduler. In the second category there are the meta-schedulers that take many 
applications and try to resolve the contention effects between applications. An example 
of a scheduler in this category is the GrADS meta-scheduler [5]. In the third category of 
schedulers, there are schedulers at each resource, where a resource can be anything from 
a single SMP or cluster to an enterprise-wide grid. Schedulers in this third class are 
similar to meta-schedulers but are less sophisticated from the application’s point of view 
in that they have no information of the performance model of the application. Examples 
of such schedulers include PBS [31], Load Sharing Facility (LSF) [41], Load Leveler [48] 
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and MAUI [32]. In this section efforts to develop schedulers and meta-schedulers for grid 
computing environments are described. 

 
Existing efforts to develop schedulers have focused on a centralized approach in that 

the scheduling decision takes place at a single place. In the case of the application 
specific scheduler and the GrADS scheduler the decision is made per application and in 
the case of the resource level schedulers the decision is made per resource. Thus, when 
scheduling, complete information about both the application and resources is gathered at 
that one place where the scheduling decision is being made. One of the goals of our 
research is to remove this reliance on a single scheduling point, so that scheduling can be 
scaled up to larger and larger grids. 
 

The AppLeS project [3, 18, 53] maps tasks to resources and evaluates the mapping 
based on how such a mapping will affect the application. The schedulers developed by 
the AppLeS group are specific to each application. Thus when an application is written, 
the parameters in the application that affect its performance are quantified and a very 
specific scheduler written for that application. The components of the AppLeS project 
include a resource selector which filters resources, a planner which generates a schedule, 
a performance estimator which predicts the performance of the application based on 
performance parameters extracted from the application, and an actuator which 
implements the best schedule. 

 
The AppLeS scheduler, while found to be effective, requires a substantial effort from 

the application developer due to the need to implement a performance model for every 
new application [42]. To improve this situation, the GrADS project [4, 6] is developing a 
modular scheduler [2] that allows plugging of components into an overall scheduling 
framework. Essentially, it provides a module to specify the problem parameters and a 
mapper module. These modules are given to the framework, and the framework handles 
the scheduling based on the user specified criteria. The framework is extensible in that to 
allow a new application to use this scheduler all that would be required is to write these 
modules and the framework would take care of actually implementing the rules specified 
by the user and evaluating the performance based on the criteria specified. The 
motivation was to reduce the time to develop a scheduler for an application as compared 
to the AppLeS scheduler. The GrADS scheduler however is centralized and makes 
scheduling decisions for the entire set of resources.  

 
The GrADS project is also developing a meta-scheduler [5] that tries to mediate the 

requirements of multiple applications by evaluating the performance gain to the entire 
system if long running jobs are stopped to allow for jobs with shorter lifetimes to execute. 
The main component of this system is a contract negotiator that acts as a queue manager 
and mediates access to resources by multiple applications. The meta-scheduler has a 
database that maintains the state of running applications and a permission service that 
checks if an application submitted will be allowed to execute. The zone-based scheduler 
described in this thesis presumes that the load at the resources is representative of the 
other processes executing on those systems and hence does not take into account 
scheduling of multiple applications to balance their requirements. Also, meta-schedulers 
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like the GrADS meta-scheduler [5] try to balance requirements of multiple applications 
by stopping and restarting jobs. In the zone based scheduler, such operations of stopping 
and restarting applications should not be allowed as the applications could be running on 
a remote zone and such operations cannot be performed. 

 
The Legion system has a modular scheduler framework [7]. The scheduler in this 

system is basically an interface provided by Legion that needs to be implemented. Legion 
implements certain basic ‘default’ schedulers that are naïve; but the system itself is 
extensible in that an administrator or user can implement more complex scheduling 
mechanisms, via the provided interface. 

 
The Condor project [36] is a system that harnesses idle computers. An application’s 

requirements are specified by means of a ClassAd. ClassAds is a language that was 
designed to allow applications to find the resources that they require. There is a 
matchmaker component that performs scheduling in terms of matching resources to 
application requests. The Condor system seeks to maximize throughput of the entire 
system. The scheduler developed in this project seeks to improve the performance of a 
single application. 

 
The Nimrod-G resource broker [37] uses an economic model for resource 

management and scheduling. Users can specify different requirements such as deadline, 
budget and optimization strategy. Nimrod-G dynamically trades with resource owner 
agents to select appropriate resources. The zone-based scheduler developed in this project 
does not take monetary issues into consideration, but such a facility could be provided by 
means of formation of virtual organizations that could impose economic constraints on 
use of resources. 

 
In [52], Weissman et al. describe a federated model for scheduling in wide area 

systems. This system offers multiple levels of scheduling. Each level has a scheduling 
manager, which can interact with local schedulers present at the sites. However this 
method of scheduling takes advantage of information about the application provided by 
the user to a large extent. Also, contact information of site managers needs to be 
manually configured. In the ZBS framework, the information about the application is 
obtained from prior runs and schedulers controlling an organization’s resources are 
automatically discovered. 

 
One of the aims of this research is to explore scheduling across multiple 

administrative domains. In our project we use a scheduling mechanism that can be 
generically used for all applications, but which does take into account some application 
specific characteristics. The important point is that this application-specific information is 
relatively easy to acquire, that it can be improved with multiple runs, and that it reflects 
the realities of the grid-computing context. Thus, new applications can quickly be run on 
the grid efficiently. While it is generally accepted that application specific schedulers are 
likely to outperform a generic scheduler, we use our framework as a starting point from 
which distributed scheduling algorithms could be devised. The aim of this project is not 
to compete with application specific schedulers, but rather to provide acceptable 
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schedules in the presence of administrative domains. Application specific algorithms 
could be used in future development of the scheduler as it involves just a new component 
to be introduced into the back end of the scheduler. 

 

2.4 Scheduling Techniques and Methods 
 

Scheduling algorithms used in grid applications range from the very simple to the 
very complex in terms of work performed to identify a mapping of tasks to resources. 
Since optimal scheduling of processes to resources is an NP hard problem except for 
trivial cases (and scheduling in the grid computing environment is not a trivial problem), 
almost all of these algorithms involve heuristics. Exhaustive search of the search space is 
possible only in cases where the number of resources and the number of processes to be 
mapped are small. This section provides a sample of typical algorithms used in 
scheduling processes. The zone-based scheduler developed in this research uses a few of 
these algorithms.  

 
The literature available on the general topic of scheduling is enormous. Furthermore, 

there are many subtly different formulations of the scheduling problem. The most 
common formulation is that of a dependency graph. There are abundant scheduling 
strategies for scheduling dependency graphs [34, 35]. These papers take a set of nodes 
representing tasks and a set of directed edges between them representing precedence 
relationships between the various tasks. This dependency graph is then scheduled on 
processors in such a way as to minimize the critical path of the entire set of tasks. One of 
the main problems faced in this formulation of the problem is in finding the dependency 
graph of the program. Compiler driven methods by which this might be made possible 
without actually running the program have been considered in the POEMS project [33]. 
Another problem with this method of scheduling is that the task graph is enormous since 
every task dependency (where a task is a region of computation between two 
communication operations) needs to be taken into account. Thus, some form of 
condensing of the dependency graph is required. 

 
Another formulation of the scheduling problem is that of representing the tasks in the 

form of an interaction graph. In this type of graph, the nodes represent processes and the 
edges represent intensity of interaction between those processes. For the rest of this thesis, 
this will be the problem formulation that will be used. 

 
One way of performing the mapping of tasks to processors is to use a round robin 

strategy. For example, MPICH [43] uses a round-robin strategy to assign processes to 
processors. A ‘machine file’ is specified when the program is run. The processes are 
assigned to the processors listed in this file in a round robin fashion. MPICH-G2, the 
Globus enabled version of MPICH, uses this file to generate a mapping in the resource 
specification language (RSL) [19] format. In MPICH-G2 the user can also directly 
control the assignment of processes to processors by means of directly specifying the 
RSL file. These approaches to mapping processes to processors require the user to know 
the structure of the application and the resources in order to obtain a good mapping of 
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tasks to resources. There are also other schedulers that choose random processors to place 
tasks on. Random strategies and variants of random strategies were used as a simplistic 
model in the Legion system [7] to compare their more advanced system. 

 
The methods described in the previous paragraph do not take into account the 

differences in compute requirements at each task and the communication requirements 
between tasks. Better mappings are possible if this structure of the program is taken into 
account. The rest of this section describe efforts to include these factors into scheduling 
algorithms. 

 
Clustering algorithms. Most scheduling algorithms described in this section have a 

preprocessing step in which they cluster the application interaction graph. An interaction 
graph is an abstraction of the application in which the nodes represent the processes (in 
our case MPI processes) and the edges represent communication operations between MPI 
processes. When clustering algorithms are applied to this graph, groups of processes that 
are closely coupled are identified (close coupling is determined by edge weights). This 
facilitates effective mapping of these clusters of the application onto resources with 
differences in the network latencies and bandwidths. We first look at some of these 
clustering algorithms and then describe the scheduling algorithms that make use of them. 

 
There have been many heuristic clustering algorithms to partition graphs [30, 29, 20, 

21]. Most of these algorithms were originally designed to partition VLSI circuits. Based 
on the number of clusters produced, the algorithms can be classified as either two-way 
partitioning algorithms or multi-way partitioning algorithms. The clustering algorithm 
may result in clusters that are of equal size or unequal sizes. Clustering algorithms can 
also be classified as being constructive (start with n clusters and hierarchically merge the 
closest clusters) or destructive (start with one cluster and hierarchically decompose the 
clusters).  

 
Kernighan and Lin [30] proposed a solution that forms the basis of most iterative 

clustering algorithms. Kernighan’s algorithm generates a two-way partition using a set of 
moves that lead to a better cluster solution after each iteration. This produces two clusters 
of approximately equal size. 

 
Other clustering methods use annealing, which is a greedy approach. Sanchis [29] 

proposed a technique of selecting random seeds, with the remaining nodes annealed to 
the seeds based on a ‘closeness’ function between the different nodes. This method 
results in multiple clusters each of which is within a small range of sizes. 

 
The algorithms described in the previous paragraphs make assumptions about either 

the size of the cluster or the number of clusters. Yeh et al. [20, 21] developed a clustering 
algorithm that makes no such assumptions. The algorithm is based on a clustering metric 
derived from the random graph model. The algorithm works by repeatedly injecting flows 
(a flow is a transmission of some data between nodes) between random nodes into the 
graph and disconnecting edges that saturate as a result of this flow. At the point when the 
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graph becomes disconnected, a partition of the graph is obtained. This method effectively 
finds both the correct position and size of the clusters in the graph. 

 
Heuristic Scheduling Algorithms. Orduna et al. [12, 13] have worked on the 

problem of incorporating communication requirements into scheduling decisions. They 
proposed a solution primarily for parallel tasks that have a high communication 
requirement and in which the communication forms a system bottleneck. In their 
algorithm, the set of mappings obtained by means of heuristic search methods (Tabu 
search) is evaluated based on a quality function. The quality function used is a clustering 
coefficient that evaluates the ratio of inter-cluster to intra-cluster communication costs. 
Their method is to be used in conjunction with a scheduling algorithm that takes only 
computation into account. The idea is to switch algorithms based on whether the task is a 
compute intensive or a communication intensive task, i.e., their algorithm is to be used 
for communication intensive tasks. 

 
Taura and Chien’s [22] algorithm takes into consideration the effects of both 

computation and communication of tasks simultaneously. Hence the same algorithm 
works for both compute intensive and communication intensive tasks and is better than 
taking each of those factors into consideration in isolation. The algorithm is aimed at 
providing better throughput for systems of pipelined processes. The algorithm goes 
through a preprocessing stage in which tasks are clustered to identify a set of tightly 
coupled processes. The clustering algorithm developed by Yeh et al. is used for this 
purpose. A tree of clusters is obtained by recursively applying the clustering algorithm. 
The tasks are ordered by performing a depth first search (DFS) on this tree. This DFS 
makes closely related tasks closer in the ordering obtained by this search. These tasks are 
then heuristically mapped, one by one, onto the set of processors, taking into account 
current bottlenecks and anticipated load on the machines and networks that have not yet 
been assigned any tasks. In addition, an “improve” step in their algorithm improved the 
final mapping by means of identifying bottlenecks in the graph. We used this algorithm 
and adapted it for our purposes by making it hierarchical (see Section 4.4.2). 

 
Both Orduna’s and Taura’s work assume that a single parallel program communicates 

frequently and forms a single cluster. Their work aims to schedule many of these parallel 
programs on a set of resources where there is little interaction between parallel programs 
that form a data processing pipeline. However, within a single parallel program itself 
there are often processes that are closely coupled in terms of communication. This type of 
parallel program (i.e., one with different levels of communication requirements between 
the processes) is the target domain for the scheduler developed in our project. 
 

2.5 Application Performance Monitoring Tools 
 

The zone-based scheduler developed in this project obtains information about an 
application based on the previous runs of that application. This information about the 
application is used in subsequent runs to improve scheduling decisions. In order to be 
able to obtain this runtime information, there is a need to have sensors added to the 
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application. There are two aspects to obtaining runtime performance information. The 
first aspect is the infrastructure required to collect all the runtime information required 
and to provide it to the user or system. The second aspect is determining what runtime 
data needs to be collected at each process in the parallel program. Several tools available 
to monitor and report information about the applications are described as follows.  

 
MPI’s Profiling Interface. MPICH offers a profiling wrapper to all MPI function 

calls. The profiling wrapper is implemented by means of weak aliasing the MPI function 
calls so that the profiled version of the function call gets called before the actual MPI 
function performing the communication.  In order to collect application specific data this 
wrapper code needs to be modified, and any additional work that needs to be performed 
when this MPI function call is invoked is put in the wrapper function. Each of the MPI 
processes writes its profiling information to a local file. All these local files from all MPI 
processes are coalesced at the end of program execution by means of an All_Reduce 
operation taking place on the profiled data. This All_Reduce operation collects all the 
profiled information to the process with rank 0 which in turn writes the information to a 
consolidated file. 

 
PAPI. PAPI, or performance API [23], provides a means by which a program can 

obtain low-level information about execution details. The program can make calls to the 
PAPI functions to return information such as number of instructions executed, execution 
time, number of cache misses, etc.  Parallel programs use the information gathered by 
this tool to collect statistics related to the program’s performance. The programmer then 
uses these statistics to identify bottlenecks in the program and rectify them. PAPI is used 
in a different manner in the research described in this thesis. We use PAPI to obtain 
computation requirements of the application, which will be used in scheduling decisions 
(see Section 4.2.1). 

 
SvPablo. SvPablo [24] is a tool that provides access to low-level information (similar 

to PAPI) as well as combining the information at the end of the program’s execution. 
SvPablo uses the compiler to instrument the application automatically to compute 
performance metrics. This has the advantage that the programmer does not need to 
change the source code to incorporate function calls like in PAPI. SvPablo offers binding 
in multiple languages and has a standard format for profiling messages called SDDF (self 
describing data format).  

 
AutoPilot. The AutoPilot system [15] is an adaptive steering system that allows 

adapting the execution of the current run of program rather than providing information 
after the program has finished execution. The autopilot system works by introducing 
distributed lightweight performance sensors that capture quantitative application and 
system performance data. Since the information is being gathered and used at run-time, 
the amount of information collected is not a complete trace, but some synthesized metric 
[14] that will be useful in steering the process. 

 
In order for a scheduler to make effective scheduling decisions, a model of the 

application’s performance is required. The application performance model needs to be 
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obtained in some way – either provided by the user (e.g., in AppLeS the user provides the 
performance model) or extracted by the compiler (e.g., in the POEMS and the GrADS 
project the compiler automatically obtains this information) or obtained from previous 
runs of the application. The third method requires sensors at the various processes, 
collating infrastructure to coalesce the information for one application, and a storage 
facility to store this information so that it can be provided to the scheduler on the next run 
of the application. In our scheduler design, we use the third method of obtaining 
information about the application and hence we need to use application performance 
monitoring tools such as those described in this section. 

 

2.6 Web Service Frameworks 
 

Web service frameworks have become popular as a means to provide functionality 
that is easily extendible and in which it is easy to interface various software components. 
Such frameworks reduce the effort for the programmer to integrate various software and 
are based on vendor-neutral standards that are implementation, language and operating 
system independent. Such a framework is necessary to implement the zone-based 
scheduler described in this project due to the following reasons. Firstly, the zone-based 
scheduler is distributed and there is a need to transparently find and interface with other 
peer schedulers. Secondly, the zone-based scheduler was designed to interact with other 
grid services. Examples of such services are run time algorithm selection systems and 
rescheduling systems. There is a need for all these systems to interact transparently with 
each other, which is facilitated by the web service philosophy. The main web service 
technologies that are used in the implementation of the zone-based scheduler are 
described as follows.  

 
UDDI. UDDI (Universal Discovery, Description and Integration protocol) [25] is 

used to access registries that store information about services. UDDI registries store 
information about web services available and registered with the UDDI directory. The 
zone schedulers from different zones (described in Section 3.1) register with this UDDI 
registry. Also the zone-based scheduler interacts with other grid middleware if they are 
offered as web services and are registered with the UDDI registry. UDDI stores 3 classes 
of information about a service. 

 
1. White pages, which contain information about the organization to which the 

service belongs, and contact information of that organization. 
2. Yellow Pages, which allow search for all web services that fall under a 

particular class of applications. Thus the zone-based scheduler could search 
the UDDI registry for all services that perform scheduling of grid applications. 

3. Green Pages, which provide the technical specification and interfaces to the 
web service as a WSDL (Web Service Description Language) file. Using this 
file, software can verify if it can interface to another piece of software by 
means of the APIs it provides. 
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Web Server Technologies. Apache Tomcat [26] was used as an application 
container that provides the zone scheduler web service. Tomcat is a web server that can 
be contacted by means of the HTTP protocol on port 8080. The tomcat server not only 
provides access to web pages but also has active elements in the form of server side 
programs. Any service, like the scheduler service, that is to be provided is a program that 
is stored in tomcat. 

 
Apache Axis toolkit [27] is a SOAP (Simple Object Access Protocol) [28] generation 

engine. Essentially the application (in this case, the zone-based scheduler) is written and 
then tools provided by the Axis toolkit are used to automatically generate wrappers for 
this code to allow for seamless integration with other software. The wrappers to the client 
and server codes are similar to stubs and skeletons generated for technologies like COM 
and CORBA. The main advantage of the wrappers generated here is that they are in XML 
format and hence make integration very easy. These wrappers handle the conversion of 
input and output parameters of the web service to a vendor-neutral format (i.e., XML). 
The toolkit then communicates all information pertaining to interaction of this web 
service with other software components by means of SOAP messages which are both 
operating system and language independent. Programs (e.g., Java2WSDL) are also 
available in the Axis toolkit to automatically extract WDSL information given a Java 
program.  

 
GPDK. GPDK (Grid Portal Development Kit) [44] is a toolkit that provides a set of 

reusable components for accessing various grid services. It provides interfaces to allow 
remote program submission, file staging, and querying of information services. It 
facilitates easy access to grid services by a lightweight client in the form of a web 
browser. The browser contacts a web server, which has JSP pages and servlets to 
interface to grid services. The zone-based scheduler developed in this research could be 
integrated into portals like GPDK. In order to facilitate this integration, the thin scheduler 
client provided needs to be modified to a ‘HTML form’ and a wrapper to the scheduler 
code needs to be written in the form of JSP or servlets. 
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Chapter 3. Scheduler Design and Implementation 
 

Zone based scheduling is a new method of scheduling based on organization domains. 
To clarify the presentation, a set of important terms is defined in Section 3.1. The grid 
has taken on different meanings to different people. Section 3.2 describes the type of 
problems being addressed here and the niche area for this kind of scheduling 
methodology. Finally, the design and implementation of the scheduling framework is 
described in Sections 3.3 – 3.5. 

3.1 Terminology and Definitions 
 
Zone: A zone comprises a set of machines and interconnection networks that is owned by 
or controlled by a single entity. Since a single entity controls all resources within a zone, 
the resource allocation policies and mechanisms for these resources can be made at a 
single point within this domain. 
 
Scheduler: The term scheduler is used in this thesis to represent the framework or the 
overall architecture in which specific scheduling algorithms may be implemented. This is 
differentiated from instances of the actual scheduling algorithms themselves (e.g., 
described in Chapter 4). In particular, when referring to the scheduling framework 
developed in this research we use the term Zone Based Scheduler (ZBS). 
 
Scheduling Algorithm: A scheduling algorithm is a particular algorithm that makes the 
scheduling decisions within or across zones. This might be some algorithm described in 
Chapter 4 to perform scheduling or some other mechanism or algorithm defined by the 
administrator of a particular resource. 
 
Zone Scheduler: A zone scheduler is a server that users contact to make requests to 
schedule applications. Each organizational domain (zone) has a zone scheduler. This 
scheduler reflects the resource allocation policies and scheduling algorithms that are 
suited to that organization’s requirements. The zone scheduler offers a web service 
interface to other zones. A zone scheduler could be unique to a particular zone’s 
requirements or it could simply be a wrapper to existing schedulers like PBS/MAUI [31, 
32]. 
 
Home Scheduler: A home scheduler is the scheduler on the zone where a user submits 
an application. The Uniform Resource Identifier (URI) of that client’s home scheduler is 
the default location a client contacts to make a scheduling request. Thus, home scheduler 
is the term used to refer to the zone scheduler corresponding to a particular user’s 
organization. 
 
SPMD Program or Application: An SPMD (single program, multiple data) program is 
a parallel program consisting of interacting processes. There is a single code base for all 
the processes, but the control path that each process takes may be different. A typical 
motivating application used in this research is an SPMD program that solves a system of 



  

  15

linear equations using ScaLAPACK, which uses MPI internally to perform message 
passing. 
 
Task or Process: This corresponds to one single control flow in a parallel program that 
may have many control flows. More specifically, it corresponds to an MPI process with a 
particular rank or identity. The term task is used synonymously with process. 
 

3.2 Scope and Relationship to Current Systems 
 

The GGF document “Ten Actions when SuperScheduling” [1] describes the various 
stages involved in scheduling an application. The ten steps identified in that document are 
authorization filtering, application requirement definition, minimal requirement filtering, 
information gathering, system selection, advance reservation, job submission, task 
preparation, task monitoring, and job completion. The system described in this thesis 
performs the equivalent of the first five of these steps, though not necessarily in that order 
(due to the nature of the distributed scheduler). The scope of the ZBS system starts at the 
point when a request to schedule an application arrives and ends when the scheduler 
provides a mapping of processes to processors. The output of the scheduler is an RSL file 
[19]. The RSL file is given to Globus, which handles job submission, job monitoring and 
input/output file staging.  

 
The target applications for the zone-based scheduler are SPMD programs that are run 

multiple times. Examples of such applications are parameter sweep experiments where 
the application needs to be run for ranges of multiple parameters. This allows the 
performance information from prior runs of the application to be used in making 
scheduling decisions for the next run of the same application. An implicit assumption 
made here, which is typical of the target applications, is that the communication and 
computation requirements of the application do not vary significantly from run to run. 
Also, the zone-based scheduler has been designed with a multilevel or clustered 
communication structure in mind. This means that the processes of an application can be 
split into subsets of processes. Each subset communicates intensively within its cluster 
but there is relatively little interaction between clusters.  

 
The zone-based scheduler developed in this project schedules applications for 

execution immediately. While the proposed architecture allows for schedulers to assign 
processes to resources at a later time, the current implementation does not handle this 
case. The problem of co-allocating resources at a future time is not addressed in this 
research. Thus the current implementation works for timeshared machines and for 
machines with batch schedulers that can run jobs immediately, i.e., the batch scheduler 
has free resources at the moment the scheduling is to be performed. 

 
Reservation of resources for the duration of the application’s execution time helps to 

guarantee the performance of the application. While this is a desirable feature, not many 
existing systems guarantee quality of service based on resource reservation. We use NWS 
to forecast the processor and network characteristics for the duration of the run. This 
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forecast is used in all scheduling decisions. If the performance of a resource is predictable 
(e.g., a workstation classroom known to be busy from 9 am to 5 pm only) such a strategy 
works well. However on resources that have unpredictable fluctuations in load such a 
forecast is not very accurate. The ZBS approach works well for systems with predictable 
workload characteristics, or for systems with unpredictable workloads having reservation. 

 
Since the ZBS framework is not designed for systems whose applications are 

scheduled to run in the future, we do not address the issue of locking of resources to 
prevent race conditions. If applications need to be scheduled on batch systems to be 
executed in the future, there is a need for advance reservation on those resources. For the 
simpler case where all applications are scheduled to execute immediately, the race 
condition is not as pronounced. 
 

Our scheduling methodology is adaptive in the sense that the scheduler takes into 
account load on the machines and networks at the time of scheduling. However, once a 
schedule is obtained, the schedule is not modified to reflect changing grid conditions—
the scheduler is not adaptive in this respect. 

 
The zone-based scheduler has been designed to be as transparent to the application and 
the user as possible. Currently, a command line script (mpirun) is executed to run MPI 
based programs. A client GUI has been implemented (in Java Swing) to allow the user to 
specify the files containing the input program and the performance information from 
prior runs. The client tool then performs everything from contacting the user’s home 
scheduler to executing the script that runs the MPI based program 

3.3 Design Constraints and Criteria 
 

Each organization has a scheduler called the zone scheduler. This scheduler is 
responsible for making the scheduling decision for all resources in that zone. This kind of 
a design is important to allow each zone to maintain control of all resources in its own 
domain. The resource allocation policies and scheduling mechanisms are incorporated in 
the scheduler for that zone. 
 

The ZBS architecture was designed to solve a set of problems that are related to the 
pragmatic aspects of the grid. Many of these issues arise due to the organizational nature 
of the grid and the ways they are addressed are described as follows. 

 
Scalability of Information Gathering. In order to be able to make scheduling 

decisions, some infrastructure is required to obtain and maintain up-to-date information 
about the state of the resources. Grid monitoring systems like MDS allow for obtaining 
this information. MDS uses a push model to give information about load at various 
machines and networks periodically. To improve the scalability of the solution, MDS has 
used mechanisms like caching of entries. In the zone-based approach, a pull method of 
obtaining resource information is used. A pull model is acceptable due to the web service 
discovery of peer zones, due to the nature of the application and due to the type of users. 
The applications being targeted here are expected to take large amounts of time to 
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execute with requests to run an application coming at relatively infrequent intervals. This 
implies that a pull model of obtaining information about the state of the resources is more 
suited to this domain. 

 
Scalability of Scheduling Algorithms. Scheduling algorithms take as input the set of 

tasks of an application and map them to a set of machines. For non-trivial scheduling 
algorithms (trivial scheduling strategies include random and round-robin strategies), the 
complexity of these algorithms is proportional to both the number of resources and 
number of tasks. The ZBS framework uses a divide and conquer approach by splitting the 
set of tasks based on communication intensity and splitting the set of resources based on 
organizational boundaries. Thus the number of tasks and the number of resources for 
each scheduling decision is small which reduces the overall running time of the 
scheduling algorithm and increases scalability. Also, scheduling decisions can now be 
made in parallel at many sites. Both these factors reduce scheduling time and hence 
reduce the possibility of applications interfering with one another in a distributed 
environment due to race conditions. 

 
User Accounts. Grid users are required to have user accounts on machines where 

their program runs. Schedulers filter out the machines on which the user does not have an 
account from the resource set during the scheduling process. Thus the scheduler needs 
some mechanism of answering the question—Does the user whose application is being 
scheduled have an account on machine X? MDS [39] does not store user account 
information in its directory. MDS does not store this information as it represents a 
security hole if such information can be queried. The main reason for this problem is due 
to the nature of MDS, i.e., it can be queried by anyone without restrictions. However, 
there have been recent improvements to MDS to allow for authenticated querying of 
MDS information, which might allow storing account information for the users. 

 
Currently existing schedulers, like the GrADS scheduler, circumvent this problem by 

having the user provide a machine list to the scheduler. These machines are the only 
machines on which the user has an account. Thus, the user performs filtering explicitly. 
However, providing the machine list places additional burden on the user and does not 
facilitate the easy formation of dynamic virtual organizations. 

 
The need for user account information at the resources is obviated in the zone-based 

scheduling framework. Since each zone makes scheduling decisions for the domain it 
controls, information about which user has an account on which machines is known to 
that zone’s scheduler. User account information can be maintained at the zone scheduler 
since the zone scheduler is trusted by the organization. The user account information 
need no longer be queried by anyone, but only by the scheduler in the organization. 

 
Control. One of the major aspects of scheduling is the location where the policy 

decisions will be made. Traditionally there have been two locations of control. The first 
location is with the user. At this location of control, when a user needs to schedule an 
application he invokes a scheduling agent that either knows about the state of resources 
on which the user can run the application or goes about obtaining this information. 
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Scheduling agents have been very common in the past and they permit very fine-grained 
task allocation since they have a detailed knowledge of the application’s structure [3, 18]. 
The other location of control is at the resource itself. This is typical of batch scheduling 
systems that try to obtain best performance for many applications, thereby increasing 
throughput [5]. The ZBS framework proposed in this research offers an intermediary 
between the two typical locations of control. In the zone-based framework, each 
organization’s resources have a scheduler that acts as a policy enforcer for scheduling 
resources in that domain. In addition, the home scheduler has the user agent incorporated 
in it to manage the application’s overall requirements and to coordinate the schedules 
arriving from different zones. 
 

Transparency. The intrusiveness of a scheduler on the user is one metric to 
determine the usefulness of the scheduler. Many schedulers require a performance model 
of the application [3, 18, 4, 6]. This performance model contains problem parameters that 
directly affect the running time of the application. However, the user needs to perform 
additional work to specify this performance model. Other schedulers use compile-time 
techniques to extract this information, which reduces the burden on the programmer. The 
scheduler designed in this project is transparent to the user and the execution model of 
the application is obtained from runtime techniques described in Section 4.2.1. 

 
Platform and Software Independence. Language and operating system 

independence provided by the web service framework is an advantage of using the ZBS 
framework; in this way each organization can follow its own policies, algorithms, 
language and operating system. The only component necessary for two organizations to 
combine their resources is for an agreement to be reached to collaborate. In essence, the 
formation of virtual organizations must ideally involve only administrative issues. Using 
the web service framework, such an ideal of collaborating services between organizations 
can be realized. 
 

3.4 Stages in Application Scheduling 
 

This section presents an overview of the sequence of steps by which a process gets 
scheduled on resources using the zone-based design. We present the stages an application 
proceeds through to get from the user submitting a request to getting the program run and 
recording performance information. Further details regarding these steps are given in 
subsequent sections. 

 
The various phases to executing an application are the registration phase, the 

scheduling phase and the job execution phase. These phases are described below. The 
registration phase takes place once at startup of the scheduler and periodically thereafter 
with a low frequency as the number of zones is not expected to change frequently. The 
scheduling phase and the job execution phase happens every time a user requests an 
application to be scheduled. 
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Figure 3.1. Timeline diagram of the scheduling process 

 
 
Phase 1: Registration 
 

• Search for peer schedulers 
 
When the scheduler in a particular organization comes online, it contacts a global 

registry to determine if there are any similar peer schedulers. The aim of this step is to 
facilitate the discovery of organizations that are willing to contribute resources to the grid. 
From the global registry, a list of other zones or organizations is identified and technical 
information as to how to interface with them is obtained. 

 
• Register with peer schedulers 
 
Once peer schedulers have been identified, the next step is for the home scheduler to 

contact and register with them. The remote scheduler might decide to accept or reject the 
registration. If the remote scheduler accepts, then the remote scheduler in effect agrees to 
schedule processes of users belonging to that organization. This phase is necessary to 
allow for a controlled formation of virtual organizations. Performing this step allows each 
organization to explicitly specify which other organizations can schedule processes on its 
resources. The registration can be unidirectional or bi-directional. In the unidirectional 
case organization A can permit organization B’s processes to be scheduled on its 
resources whereas organization B need not allow organization A’s processes to run on its 
machines. 
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Phase 2: Scheduling 
 

• User requests to schedule an application 
 
In this step, the user has a program to be run. The user uses the client GUI tool to 

provide performance information obtained from previous runs (of the same program) to 
the home scheduler. This happens by invoking the ScheduleApplication call (shown in 
Figure 3.1) from the client to the home scheduler. The details of obtaining performance 
information are described in Section 4.2.1. After these inputs are obtained, the client 
contacts the home scheduler web service interface and transfers the performance 
information.  
 

• Obtain resource structure for the user 
 
When the user sends the information about the application to his home scheduler he 

also sends his proxy certificate. Essentially the home scheduler now can authenticate this 
user to all other peer schedulers using the single sign on facility. This is the step at which 
authorization filtering occurs. Schedulers can now reduce the set of resources about 
which information needs to be provided to only those resources on which the user has an 
account. Thus, processor and network load information returned to the home scheduler 
are only about those resources on which this particular user has an account. 
 

• Cluster application based on prior runs 
 
Clustering aims to identify tightly connected components of a graph. The aim of 

clustering in the context of scheduling is to be able to identify subsets (or “clusters”) of 
processes that communicate a lot among themselves.  The clustering operation is based 
on the application’s communication patterns from previous runs, and results in a certain 
number of clusters that is not fixed ahead of time. Thus, the tasks of an application are 
split into clusters, with processes in each cluster interacting heavily and relatively 
infrequently with processes in other clusters. 
 

• Schedule using information about process clusters 
 

Once the clusters have been identified, the next step involves scheduling each of these 
groups of tasks. If necessary, separate clusters will be scheduled on separate zones. This 
happens by the home scheduler sending out requests to its peer schedulers to schedule 
one or more clusters (ScheduleCluster in Figure 3.1). Each zone is responsible for 
making its own scheduling decision. The peer schedulers return a mapping to the home 
scheduler, which consolidates the results into one large mapping for the entire application. 
Thus, there are two components to making scheduling decisions, one is assigning process 
clusters to zones and the second is assigning processes within a cluster to machines in a 
particular zone. The precise mechanisms of scheduling are described in detail and 
evaluated in Chapter 4. 
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Phase 3: Job Execution 
 

• Run the program on the selected set of machines 
 

Once the mapping is complete, it is returned to the user. The application is then run 
on the set of resources identified in the mapping by means of job startup mechanisms 
provided in Globus. This is achieved by means of an extra step at the client side to submit 
a job using mpirun (user interaction 2 in Figure 3.1). This could also be automatically 
performed at the point when the user makes a request to schedule the application (user 
interaction 1 in Figure 3.1). 
 

• Obtain and use performance information 
 
The application is linked with sensors that provide information about the structure of 

the application. These sensors are present in MPI, which we have augmented to provide 
additional information for our purposes. Thus the user does not have to modify or insert 
any additional statements in the code to obtain this performance information. This allows 
the scheduler to be as transparent as possible to the user. A more detailed explanation of 
how the performance information is obtained is given in Chapter 4. This performance 
information is stored and the user provides it to the scheduler when the same program is 
executed the next time. 

3.5 Web Service Architecture and Implementation 
 

In this section the architecture and the software components used to implement the 
ZBS system are described. The architecture is a hybrid of client-server and peer-to-peer 
architectures. The user interacts in a client-server manner with a home scheduler. The 
schedulers in different organizations interact with each other in a peer-to-peer manner. 
Integrating both these paradigms is made possible by means of the web service 
infrastructure. 

 
There are two software components that need to be implemented to use the zone-

based framework. The two components are the client and the server. The implementation 
of these components and design decisions related to implementation are explained in the 
next few sections. 

3.5.1 Client Implementation 
 

The implementation of the zone-based scheduler has striven to be thin-client based 
with most of the complex logic and software present on the server in a zone. This design 
choice was made to keep the client side as platform independent as possible. A prototype 
was implemented in Java. However the client can be implemented in any language since 
the scheduler in a zone is a web service. The client contacts this server by invoking one 
of the scheduler’s functions.  
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When the client side contacts the home scheduler, the client provides the executable 
name and the performance model of the application. In the prototype implementation, the 
performance model of the application is extracted from a simple ASCII log file obtained 
from the profiling interface of MPICH. The profiling interface in MPICH has been 
augmented to record collective communication operations as point-to-point operations 
(collective operations take place as point-to-point operations internally in MPI). This 
allows the scheduler to determine which processes interact frequently. If collective 
communication operations were not recorded in this manner, it would be difficult to 
characterize multiple collective operations properly. 
 
 

 
 
 
 
 
 
 

Figure 3.2. Sample augmented ASCII log file 
 
Figure 3.2 shows a sample log file that has been augmented with additional 

information for the purposes of the zone-based scheduler. The second column represents 
the type of the event that took place in the execution of the program (-101 represents a 
send event, -102 represents a receive event, 1 is any general event that can be recorded by 
the profiling interface—in Figure 3.2 it is used to represent the size of a compute block 
recorded by PAPI). The other fields of interest in the log file for a send or a receive event 
are the source, destination and size of the message. The last entry in line 3 represents the 
execution time that the process took between successive communication operations. 

 
The log file can be extremely large for long running programs. Hence when the client 

contacts the home scheduler, the client needs to provide only the model of the application 
(explained in Section 4.2.1); it is not necessary to provide the entire file. Thus the 
processing of the ASCII log file takes place on the client side and the only information 
that is transmitted to the server side are the computation requirements at the various 
processes and the communication requirements between processes. 

 
In more advanced versions of the scheduler, more sophisticated performance models 

of the application could be provided. Different scheduling algorithms could be used at the 
server side for any given representation of the performance model of the application. The 
intricacies of the scheduling algorithm used at the server side are transparent to the client. 
Hence, the user does not need to make any changes to either his code or his mode of 
interaction with the scheduler when there is a change to the scheduling mechanism at the 
server.  

 

L.No MsgType     TimeStamp Src Dest  Bytes
1 -101 0 0 4 0 1093114 S 0 D 4 SZ 200 
2 -101 0 0 1 0 1093150 S 0 D 1 SZ 200 
3 1 0 0 0 0 1093220 PAPI 0 52723    
4 -101 0 0 4 0 1093250 S 0 D 4 SZ 200 
5 -101 0 0 1 0 1093289 S 0 D 1 SZ 200 
6 -102 0 0 0 0 1722303 R 1 D 0  720 
7 -102 0 0 0 0 1722344 R 2 D 0  720 



  

  23

 

3.5.2 Server Implementation 
 

Scheduler implementations run within a web server container. The web server runs on 
the HTTP port and hence can be operated through firewalls. This implies that a user of 
the scheduler can be located outside the organization and can still make requests to 
schedule an application. The web server used for this project is the Tomcat web server. 
 

The server is designed to allow organizations to easily discover other organizations 
that are willing to collaborate by sharing their resources. When the server starts up, it 
contacts a UDDI registry to search for other organizations, which have a similar peer 
scheduler controlling the resources in another administrative domain. 

 
An organization that desires to collaborate on the grid implements a scheduling 

algorithm corresponding to its own scheduling policies. Web services are based on XML 
standards and hence allow for interoperability between software written in different 
languages. Thus the scheduling algorithm can be implemented in any language and 
operating system.  

 
The scheduler implementation is compiled and the executable class files obtained are 

archived into a java archive (jar file). The java archive is deployed using the AdminClient 
tool available in the Axis toolkit [27]. This deployed web service can be accessed either 
by a client as developed in this project or by means of an HTML form in a web browser. 

 
The implementation of the scheduler can be differentiated from the interfaces it offers. 

The implementation of the scheduler can vary significantly even though a uniform 
interface is offered to other entities. The only restriction on this transparency is that the 
application representation must be fixed ahead of time. We describe how we represent the 
application in the scheduling algorithms implemented in this project in Section 4.1. The 
interfaces offered by the server are as follows. There are three methods that can be 
accessed by other software. 

 
• Register 

This method is invoked when virtual organizations are looking for 
collaborations and resources on which to execute their parallel programs. This 
allows for secure sharing of resources in that the schedulers can be mutually 
authenticated. If the collaboration is taking place for the first time, then temporary 
accounts could be made on the resources available. This is possible by means of a 
dynamic account creation mechanism and is a current area of research in GGF 
[40].  
 

• ScheduleApplication 
The client invokes this method to provide the application and the performance 

model of the application to the home scheduler. This method starts the process of 
clustering of the tasks of the application and the search for resource load 
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information on all the resources on which that user has an account. It then 
schedules on the set of resources by contacting the peer schedulers. 
 

• ScheduleCluster 
The peer scheduler invokes this method to schedule a group of processes on 

the set of resources owned by the scheduler at which the method is invoked. This 
method uses the performance model of the group of processes and the scheduling 
algorithms and policies of the organization it represents to perform the mapping 
of tasks to resources. 
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Chapter 4. Scheduling Algorithms 
 

While the framework described in Chapter 3 is extensible and many different 
scheduling mechanisms can be incorporated, we have evaluated the framework with a 
small set of scheduling heuristics. Section 4.1 introduces a formulation of the scheduling 
problem that is used in scheduling strategies evaluated in this project. Section 4.2 
provides an explanation of how the application model and the resource model are 
obtained. Sections 4.3 and 4.4 describe two scheduling heuristics. Finally, Section 4.5 
makes a qualitative comparison of the different scheduling mechanisms. 

4.1 Problem Formulation 
 
The formulation of the scheduling problem used in the scheduling algorithms 

implemented in this research is that of the resource-task graph. This is the same 
formulation used by Taura et al. [22]. In this formulation of the scheduling problem there 
are two inputs to the scheduler – the resource graph and the task graph. The scheduler is 
responsible for mapping the nodes of the task graph to the nodes of the resource graph. 
 

Resource Graph: A resource graph is a graph weighted on the nodes as well as the 
edges. A node corresponds to a single machine or processor and an edge corresponds to 
the interconnection link between two machines. The weight on the node corresponds to 
the CPU speed available to a process that is started on that machine and the weight on the 
edge is extracted from network parameters between those two machines (the network 
parameters used and how they are extracted are described in Section 4.2.2). 
 

Task Graph: A task graph is a graph weighted on the nodes as well as the edges. A 
node corresponds to a single process and an edge between two nodes represents the 
interaction between the two processes. The weight on the node corresponds to how 
computationally intensive that process is and the weight on the edge corresponds to the 
amount of communication between those two processes. This graph could also be called 
the interaction graph and represents a model of the application. 

 
An important point to note about both the task and the resource graph is that the 

weights on the nodes and edges can be obtained in many different ways. Also, only the 
relative weights among the nodes or among the edges are of importance to the algorithms 
evaluated in this chapter. As an instance, we could use CPU speed (metric 1) or RAM 
size (metric 2) as the weight of a node in the resource graph as they are both 
representative metrics of how quickly the program executes. If both of these metrics yield 
the same weights for each node in the resource graph, the scheduling algorithm will 
perform the mapping in exactly the same manner if either metric is used. Thus, the 
precise metric used is not as important as the relative weights between the nodes. In 
future versions of the scheduler, better and more accurate ways of obtaining the weights 
could be designed (like some weighted average between CPU speed and RAM size). 
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4.2 Obtaining Scheduler Inputs 
 

The task graph is obtained from the application and the resource graph is obtained 
from the sensors present on the machines. These represent models of the application and 
resources respectively. First, we look at the lifecycle of an application run on grid 
environments and then we look at obtaining the application and resource models. 

 
The lifecycle of an application running on grid environments is as shown in Figure 

4.1. The application model is given as input to the scheduler. This corresponds to the 
computation-communication structure of the application. How this information is 
extracted from the application is described in Section 4.2.1. Using the application’s 
information and the information about the current load at the various machines and 
networks, i.e., the resource model (described in Section 4.2.2), the scheduling algorithm 
makes an assignment of tasks to machines. This mapping is provided to job startup 
mechanisms present in execution environments like Globus. The job startup mechanisms 
present in Globus take care of co-allocation of the various resources. Once the 
application’s execution is completed, the performance of how well the application ran on 
the given set of resources is obtained. This performance information could be used by the 
zone-based scheduler the next time the same application is to be scheduled. 

 

 
Figure 4.1. Lifecycle of an application. 

 

4.2.1 Application Model 
 

In order to schedule an application the scheduling algorithm needs a structural model 
of the execution of the application. This structural model aids the scheduler in the 
placement of tasks. There are three ways to obtain this information, which are described 
as follows. 
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1. User Supplied 
The user might supply the information about the structure of the application to 

the scheduler. This is the method used in AppLeS and GrADS schedulers. This 
information is in the form of the user specifying what problem parameters affect 
the application and how the execution of the application changes as a result of 
these parameters. Thus the scheduler would be able to use these analytic models 
of the application to predict compute intensive and communication intensive tasks 
and accordingly place the tasks. The disadvantage with this method is that it 
places additional burden on the user. 

 
2. Compiler Extracted 

The POEMS [33] project and the GrADS project have a compiler to extract 
the structural model of an application. The POEMS representation of the 
application is useful for both simulation and analytic models. The difficulty with 
this approach is that runtime conditions cannot be predicted. Thus, dynamically 
determined loop control variables and variables controlling conditional statements 
cannot be obtained in this approach. Also, the amount and destination of 
communication could be determined by runtime conditions, and hence cannot be 
predicted. 
 

3. Runtime System Extracted 
Another method by which the structure of an application can be obtained is by 

means of executing the application and obtaining information from the execution. 
This is the method we use in the zone-based scheduler and is explained in detail 
in the next few paragraphs. 

 
There are two basic criteria for using this method for extracting the structural 

model of the application. Firstly, this information can only be used if future 
executions of the application have a similar structure to prior executions of the 
application. This is typically the case for parameter sweep experiments for 
example. Secondly, the information gathered must be carefully chosen so that 
idiosyncrasies of the current environment do not skew the structural model of the 
application. Basically this involves removing or reducing noise from the 
information gathered at runtime.  

 
For the purposes of the zone-based scheduler we used basic metrics that are 

not likely to be influenced by the environment. However, these metrics might be 
simplistic and there might be need to obtain better metrics in the future. Based on 
the problem formulation described in Section 4.1, there are two classes of 
information to be obtained about the application’s structure – the weight of an 
edge and the weight of a node. The weight of a node is defined as a task’s 
compute requirement. We used the average time of computation between two 
successive communication operations as an estimate of the compute requirements 
for a given node. The weight of an edge connecting two tasks should reflect how 
tightly coupled those two tasks are, and hence how important it is to put those two 
processes close to each other. We used the number of bytes communicated 
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between the pair of processes as a measure of this coupling. This is preferred over 
using methods like MPI communicators to determine the tight coupling between 
processes. An MPI communicator is a set of processes over which collective 
communication operations take place. Thus if processes belong to the same 
communicator they could be construed as having a tighter coupling. However, 
since the amount of communication within different communicators might vary 
and there might be processes that are a part of multiple communicators, such a 
method is ineffective.  

 
In order to be able to obtain information about the application at runtime, 

there must be sensors inserted into the application, which record information 
about the application’s execution. As explained in the last paragraph, two pieces 
of information are recorded by the sensors – the average time spent in 
computation between communication steps and the number of bytes 
communicated between a pair of processes. How each of these pieces of 
information is obtained is explained in the next few paragraphs. 

 
Computation. In order to measure this metric, it was necessary to measure 

only the time spent doing useful work in the current process, e.g., ignoring system 
or wait time. Thus using MPI’s profiling interface was not possible since it uses 
wall clock time. If there are multiple processes on a particular multitasking 
machine (a likely scenario in grid environments), then wall clock time of a 
particular process is not an indication of how compute intensive that process is. In 
order to get the compute time of only the application under consideration, 
Performance API (PAPI) calls were inserted into MPI functions. Currently, these 
calls write the difference in time between the last MPI call and the current MPI 
call into the log file. If these differences are large we assume a more compute 
intensive task. Since PAPI only records the execution time for the current process, 
other processes executing on the same machine will not affect the metric.  

 
PAPI could be used to obtain more sophisticated factors about the structure of 

the application. PAPI allows for recording fine-grained information about the 
application like number of instructions executed, number of cache misses etc. 
Such information could be used in a future version of the scheduler to make more 
accurate predictions about an application’s structure. This flexibility offered by 
PAPI led to its use in this project rather than using functions that return system 
time. 

 
Communication. MPI communication operations are of two types – 

collective communication and point-to-point communication. Collective 
communications in MPICH-G2 are implemented as a set of point-to-point 
operations. Thus all communication can be broken up into process-to-process 
communication. The augmented MPI’s profiling interface provided this 
information along with the rank of the source and destination of the 
communication and the number of bytes transmitted. This served as a basis for 
determining the edge weights on the task graph.  
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4.2.2 Resource Model 
 

The second input that a scheduler needs to perform its tasks is a model of the 
structure of the resources. We used a simple model of the resources; but, as in the case of 
the application model, it can be extended to take more complex issues into consideration.  

 
In the resource graph, the weight on a node corresponds to CPU speed and the weight 

on an edge corresponds to the reciprocal of the end-to-end delay connecting the 
processors (end-to-end delay is determined by latency and bandwidth of the links 
connecting the processors). Note that in the experiments described in Chapter 5, both the 
node weights and edge weights in the resource graph are normalized with respect to the 
largest node or edge weight respectively, and the edge weight is scaled up by a constant 
factor. The reason this is acceptable is because only the relative weights are important 
and both normalization and scaling does not affect the relative weights. 

 
The resource model is obtained by using MDS and NWS. NWS makes forecasts 

about load and hence can be used to predict load at processors and networks for the 
duration of a program’s execution. 

 

4.3 Clustering Heuristics 
 
A summary of various clustering heuristics is given in Section 2.4. In this section we 

explain the algorithm used in this project to cluster tasks. This clustering algorithm was 
originally designed by Yeh et al. [20, 21], and was later modified by Taura et al. [22], for 
scheduling purposes (described in the next section). 

 
The input to the clustering algorithm is the task graph. Recall that the task graph has 

weights on the nodes as well as the edges. Edge weights in the task graph correspond to 
the amount of communication between processes. These edge weights are of importance 
to the clustering algorithm. The clustering algorithm, called shortest path clustering 
(Figure 4.2), has two steps—Saturate Network and Select Cut. 

 
Saturate Network. In the task graph, the capacity of an edge is the weight on that 

edge. Thus, the amount of communication between processes in the task graph represents 
the capacity of the edges. The algorithm repeatedly selects two nodes randomly and 
injects a small flow of data along the edges in shortest path between those two nodes. 
Thus each edge during the algorithm’s execution has a capacity and a flow. The flow 
between the two selected nodes increases (as more and more small flows of data are 
injected between randomly selected nodes) until the flow along at least one edge exceeds 
its capacity (the edge is said to saturate). 

 
Select Cut. The saturated edges represent the points in the graph at which cuts can be 

introduced to partition the graph. The cuts are made in the graph by removing edges that 
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belong to the set of saturated edges using a cluster ratio metric. The cluster ratio metric 
(defined in [20]) is used as a measure by which inter-cluster communication is minimized. 
The minimum value for the cluster ratio metric implies that the best clusters are obtained. 
This makes cuts through the components of the graph that do not have a lot of 
communication. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.2. Shortest Path Clustering 

 
The clustering algorithm developed by Yeh et al. has a lower time complexity as 

compared to other clustering algorithms [20]. Also, this algorithm does not have any 
restrictions on the size or number of clusters. This is a very important requirement of an 
algorithm to be useful in clustering a task graph, since otherwise it might result in 
unnatural partitioning of the graph.  

 
Given the task graph defining the application model, the home scheduler uses the 

algorithm just described to identify clusters. Once these clusters of tasks have been 
identified, the home scheduler assigns them to various zones.  

4.4 Scheduling Heuristics 
 
A summary of various scheduling heuristics is given in Section 2.4. In this section 

two scheduling heuristics are described in detail. The first heuristic is extracted from the 
work of Taura et al. and is described in Section 4.4.1. Section 4.4.2 describes how the 
algorithm designed by Taura is used in the context of the zone-based scheduling 
framework, and suggests modifications that help with some of the limitations of the 
original algorithm. 

4.4.1 Taura’s Algorithm 
 

The algorithm developed by Taura et al. has three steps. 
Cluster the task graph. Taura et al. uses the clustering algorithm developed by Yeh 

et al. One modification done to the original clustering algorithm developed by Yeh et al. 
is that the clustering is done recursively. The idea is to split the task graph into coarse 
clusters and then split those clusters into sub-clusters till each cluster is a singleton 
element. Then a depth first traversal of this tree of clusters (and recording the leaves of 
the tree) obtained from recursive clustering is performed to obtain an ordering of tasks. 
When this traversal is performed tasks that are closely coupled end up closer to each 

// Circuit N; Flow increment is F; Distance Coefficient A 
Algorithm ShortestPathClustering(N, F, A) 
{ 
 do 
 { 
  randomly pick two nodes s and t. 
  Find shortest path between s and t. 
  Inject a flow between s and t. 
  Remove edges where the flow exceeds its capacity. 

}while(clustering is not done) 
 

   } 
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other in the ordering than tasks that are not closely coupled. This ordering of tasks is 
important due to the way the next step (the Map Tasks step) of the algorithm works. 

 
Map Tasks. This step takes the processors in the resource graph and in sequence 

takes one processor and maps a set of tasks to it before moving on to the next processor. 
Since closely related tasks are closer in the ordering obtained from the traversal, it is very 
likely that processes that communicate frequently will be mapped to the same processor. 
The metric used to determine how to perform this mapping is the occupancy of the graph. 
The occupancy of a graph is defined as follows. 

 
Occupancy of a node is defined as the sum of the compute requirements of all tasks 

assigned to a processor divided by the processor weight. 
 
Occupancy of an edge is defined as the sum of all the flows going over that edge 

divided by the link capacity of that edge. 
 
Occupancy of the graph is defined as the maximum occupancy over all links and 

nodes. 
 
How many tasks to map to the processor under consideration is determined based on 

three criteria. 
 
1. Current Occupancy 

At some intermediate step in the execution of the algorithm, there is a set of 
mapped tasks and a set of unmapped tasks. The current occupancy of the graph 
corresponds to the occupancy of the graph calculated based on only the tasks that 
have already been mapped. This metric ensures that the current processor or links 
between the current processor and already examined processors are not overloaded. 

 
2. Hypothetical Computational Occupancy 

How many tasks to map onto the current processor depends on what compute 
power is available on the remaining processors and the compute requirement of tasks 
that are yet to be mapped. The number of tasks that are assigned to the current 
processor should be correlated with its relative weight in the entire pool of processors. 
This metric seeks to ensure load balance among all processors. 

 
3. Hypothetical Outgoing/Incoming Communication Occupancy 

The number of processes mapped to the current processor also depends on the 
communication capacity between the current processor and the remaining processors. 
This in effect does not allow a bottleneck to develop in the communication links 
adjacent to the current processor.  
 
First, the maximum of the three occupancies are calculated given that n remaining 

tasks are mapped onto the current processor. A list of such values is obtained for different 
values of n. Then the minimum of the values in the list is computed. The minimum value 
corresponds to the number of tasks that are mapped onto the current processor (see Figure 
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4.3). Intuitively, the best number of tasks to map to the current processor corresponds to 
the number of tasks that does not overburden the current processor or its communication 
links and also balances the remaining workload yet to be assigned to the set of remaining 
resources. 

 
Improve Mapping. This step improves the occupancy of the graph by isolating the 

bottleneck node or edge (the node or edge with the highest occupancy) and removing 
some tasks from those nodes and re-mapping them. Tasks are selected for re-mapping in 
such a way that the existing proximity of clusters is maintained. When the re-mapping 
strategy fails to make any further improvement in the occupancy of the graph, the 
algorithm terminates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. Taura’s heuristic (GLOBAL) 

4.4.2 Hierarchical Algorithm 
 

We describe a new hierarchical, or divide-and-conquer, mapping strategy. There are 
two levels at which scheduling is performed in this approach. 

 
1. At the granularity of clusters of tasks 

This level of scheduling takes place at the home scheduler when it decides on 
which zone to execute a cluster of tasks. In this step, a cluster of tasks is mapped onto 
the set of zones that are available.  

 
The compute requirements of the tasks in the cluster are aggregated and this 

represents the compute requirement of that cluster of tasks. Similarly the compute 
capabilities of the processors in a zone are aggregated and this represents the compute 
capability of the zone. Communication requirement in the task graph is similarly 
aggregated for every communication that takes place between tasks in different 

Algorithm Schedule() 
{ 
 Order tasks based on recursive clustering. 
 Mapping m = map_tasks(); 
 do 

{ 
 improve(m); 
}while(new_occupancy < old_occupancy) 

} 
 
Procedure map_tasks() 
{ 
 For every processor 
 { 
  Find minimum over all mappings possible of the metric: 

Max(Occupancy, Hypothetical Computation Occupancy, 
Hypothetical Communication Occupancy); 
 
If mapping n of the remaining tasks returns the best 
value for the metric 
Next n tasks are mapped to the current processor; 

} 
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clusters and communication capacity between zones is the communication delay that 
is present between zones. 

 
2. At the granularity of a single task 

This level of scheduling takes place at the peer schedulers when they decide the 
mapping of each task in a cluster to processors in the zone. In this step, each process 
within a cluster is mapped to individual processors. 
 
At each of these two levels any scheduling heuristic can be used. In the current 

implementation, we use Taura’s algorithm at both levels. In the first level, a node in the 
aggregated task graph represents a cluster of tasks and a node in the aggregated resource 
graph represents a zone. In the second level, a node in the task graph represents a single 
process and a node in the resource graph represents a single processor. 

 
The intuition behind this hierarchical algorithm is to first perform a coarse-grained 

mapping of task clusters and then refine the assignment within the boundaries of an 
administrative domain. At each level in the hierarchy different mapping strategies can be 
used. Some of these mapping strategies are evaluated in Chapter 5. Figure 4.4 shows the 
pseudocode that is executed at the home scheduler when the application is to be 
scheduled. The home scheduler determines the level-1-heuristic used and the peer zone 
scheduler, on which a cluster of tasks gets scheduled, determines the level-2-heuristic 
used. 
 

Since each cluster of tasks does not require substantial communication with other 
clusters, the coarse grained mapping is acceptable at the first level of granularity. Also, 
this results in a more scalable scheduling algorithm.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.4. Hierarchical heuristic (HIER) 

 
One of the problems present in Taura’s heuristic is that the processors are ordered in 

some sequence and the assignment of tasks takes place from the first processor to the last 
processor. The sequence in which the processors are ordered can make a large difference 

Algorithm ScheduleApplication()
{ 
 // This step gives the set C of clusters = {c1, c2,…,ck} 
 C = ClusterApplication(); 
 
 MapTasks(C, Z, Level-1-Heuristic); 
 
 For every cluster ci mapped to a remote zone Zj 
 { 

 ScheduleCluster(ci, Zj);  
} 
 
For every cluster cj mapped to the present zone 
{ 
 MapTasks(cj, Zlocal, Level-2-Heuristic); 
} 

} 
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in the performance of this scheduling heuristic. This problem arises when a large network 
distance separates consecutively numbered processors in the distributed system. The 
tasks in the ordered list of tasks have the property that if they are closer together on the 
list, then they communicate more intensively than if they are further away in the list. 
However, when a zone boundary is crossed, the first task placed on the new processor 
and the last task placed on the previous processor are separated by a large “network” 
distance. There is no easy way to solve this problem since there are n! ways of ordering 
the list of processors. The hierarchical mapping strategy mitigates the effect of this 
problem since every mapping that takes place in this strategy does so at the same level of 
network distance. Thus at the granularity of clusters of tasks this distance is the WAN 
network distance and at the granularity of individual tasks, this distance is at the LAN 
network distance. Thus in this method of mapping processes, the effect of crossing a 
processor cluster boundary is not very pronounced. However, this effect might still be 
present if within an organization itself, there are heterogeneous sets of resources. In this 
case, the strategy could be extended to more than two levels of hierarchy. 

 
The hierarchical scheduling algorithm fits into the ZBS framework as follows. The 

user contacts the home scheduler with the application and the application model. The 
home scheduler clusters the application. This results in clusters of tasks. Now each 
cluster of tasks is given different zones by applying the level 1 heuristic. The tasks within 
each cluster are then scheduled within these zones. This is achieved by means of 
contacting the zone scheduler and making a request by invoking the method 
ScheduleCluster to schedule a group of processes of the application. Each zone scheduler 
then applies its own level 2 scheduling heuristic and returns the mapping of processes in 
its zone back to the home scheduler. 

4.5 Comparison of Various Scheduling Approaches 
 

Our approach to scheduling has various merits and demerits. In this section, we 
compare the different methods of scheduling qualitatively. In Chapter 5, we quantify 
some of these metrics based on experiments. 
 
Merits.  
 
• With the hierarchical strategy, multiple levels of scheduling of the program allows for 

aggregation of resource information at each level of scheduling. This in turn increases 
the scalability of the scheduling algorithm. 

 
• The problem formulation is generic and different parameters can be used to generate 

the weights of the task and resource graph. Thus the method in which these numbers 
are obtained could be changed without affecting the scheduling mechanisms. 

 
• The scheduling process does not require the intervention of the user due to its 

lightweight nature. Thus the entire process of scheduling is transparent to the user, 
which is a necessity for large systems like the Grid. 
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• The hierarchical scheduling algorithm is coarse-grained and hence the complexity of 
scheduling is less compared to dependency graph scheduling. Also, scheduling using 
dependency graphs is not feasible in the presence of administrative domains. The 
difficulty arises in splitting the dependency graph among domains—each node in the 
graph represents a block of code within a process and does not represent the entire 
process. Thus the graph cannot be split and administrative domains can no longer 
make their own scheduling decisions. 

 
Demerits.  
 
• In order to obtain the task graph, the application processes are characterized based on 

computation and communication. The actual graph of the application is a time variant 
graph in which the weights of the nodes (processes) and edges (communication 
between processes) change over time. In our approach to scheduling, the task graph is 
obtained by aggregating the application graph over the entire execution time of the 
application. Thus the scheduling is expected to result in comparatively worse 
schedules as compared to dependency graph scheduling.  

 
• Since aggregation is performed to give zone schedulers a coarse-grained idea of how 

to map to a particular zone, this aggregation might lead to loss of information. 
Aggregation of information about resources within a zone is bad when the resources 
inside a zone are extremely heterogeneous and hence the aggregate is the result of 
computing the first moment over a set of resources with high variance in capabilities. 
If the aggregate value is not representative of the zone, then bad mappings might 
result. 
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Chapter 5. Evaluation and Results 
 

Chapters 3 and 4 provided a description of the ZBS framework and how the 
information required for scheduling is obtained. Chapter 4 also discussed Taura’s 
scheduling algorithm and how we adapted it for use in the zone based framework. This 
chapter examines two issues. First, we evaluate the efficacy of using the zone based 
framework as compared to a centralized scheduling strategy. This is used to demonstrate 
the fact that not only is hierarchical scheduling practical from the point separate of 
administrative domains, but also that a hierarchical approach can often produce better 
mappings than centralized solutions. Secondly, this chapter describes experiments 
designed to evaluate how good the representation of the task and resource structure is for 
scheduling purposes and how changes could be incorporated in the representation to 
improve the mappings obtained. One point that has been stressed in this thesis is that the 
formulation that we use (the resource-task graph) can be obtained in many different ways. 
We used a simple method to obtain resource and task graphs, but we demonstrate in this 
chapter that making even simple changes to take into account more factors leads to better 
mappings. This is important for future development of the scheduler and demonstrates 
that such a representation, while both simple and easily obtained, can in fact be made 
very realistic by taking more factors into account. 

 
The experimental results obtained from three sets of experiments are described in this 

chapter. Section 5.1 provides the basis of comparison of scheduling algorithms and also 
describes the algorithms that are compared. Section 5.2 introduces the class of 
applications that motivate our approach to scheduling and describes the performance of 
one specific application. It also describes a synthetic test suite that was designed for these 
experiments. Section 5.3 describes the simulation environment. Sections 5.4 and 5.5 
describe the results obtained from the simulation study. 

5.1 Introduction 
 

The main aim of scheduling is to reduce the time from which an application is given 
to the system to the time at which results of the application are obtained. There are three 
components to this turnaround time of the application. Each of these three aspects of the 
scheduling of parallel programs on the Grid was compared. Each aspect was evaluated on 
a different set of experiments due to the difficulty in correlating these three areas. The 
methods used to evaluate each of these facets of a scheduler are described in Sections 
5.4–5.5. The three aspects to minimizing job completion time are: 

 
1. Information Gathering Overhead. In order to perform scheduling in an application-

aware and resource-aware manner, information about the application and resource has 
to be collected. Different strategies for obtaining this information have different 
overheads. This information-gathering overhead is evaluated in Section 5.5.1.  

 
2. Scheduling Overhead. Given information about the set of tasks and a set of 

resources, the scheduler makes a decision about which tasks to place on which 
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resources. The time required for scheduling depends on the sophistication of the 
scheduling algorithm and on the size of the set of tasks and resources. Scheduling 
overhead is evaluated in Section 5.5.2. 

 
3. Running Time and Related Metrics. Once the mapping of tasks to resources has 

been performed, the application needs to be run on the resources identified based on 
the mapping performed. The qualities of schedules obtained from various scheduling 
algorithms and for different applications and resource structures are evaluated based 
on running time in Section 5.4. 
 
Different scheduling algorithms were compared on the three aspects mentioned above. 

The two methods of scheduling being compared are described in Chapter 4. They are: 
 
• Global Mapping (GLOBAL) 
 

In this method there is a single global scheduler that has complete information 
about all the resources and all the tasks. The global scheduler uses Taura’s 
algorithm to perform the mapping. 
 

• Hierarchical Mapping (HIER) 
 

In our experiments, we apply Taura’s algorithm at both levels of granularity (at 
the granularity of a single task and at the granularity of a cluster of tasks). Note 
that this is one specific instance of a hierarchical scheduling algorithm; any 
algorithm could be used at each level. 

 

5.2 Evaluation Test Suite 
 

The evaluation test suite consisted of two sets of applications. The first application is 
a test kernel that resembles a large parallel SPMD application. The second application is 
a parallel program that generates communication between random pairs of processes, 
with a structure superimposed on this random communication. The characteristics of 
these programs are described in this section. 

5.2.1 TRANSPORT Kernel 
 

The ZBS scheduling framework has been designed to efficiently support a certain 
type of application, namely, applications whose task graphs have highly connected sub 
graphs. The application TRANSPORT is our main motivating application falling under 
this general class of applications. TRANSPORT is an MPI based application used to 
calculate the conductance properties of various molecules in various orientations. The 
main property of interest to us is the computation-communication structure of this 
application that makes it suitable for a distributed scheduling framework. It is a master-
slave application in which the master allocates computations corresponding to different 
“energy levels” to the different slaves. The slaves perform their work and return the result 
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to the master. Each slave is not one single entity but actually a team of processes 
interacting with each other to solve sets of linear systems of equations. The linear 
systems of equations are solved in parallel by means of parallel solvers such as 
ScaLAPACK [49]. Each team of processes that are involved in solving a linear system of 
equations in parallel communicates a great deal among themselves. However, there is not 
much interaction between such teams.  

 
TRANSPORT is a parallel application having large computation, communication and 

memory requirements. In order to be able to test an application like TRANSPORT and 
applications with a similar structure on machines with limited processing power and 
memory, a synthetic test suite kernel that resembles TRANSPORT in its characteristics 
was designed and implemented. This test suite has smaller memory requirements and 
running time as compared to TRANSPORT but is otherwise very similar in its 
computation-communication structure. In addition, this synthetic test kernel allows us to 
vary the application’s execution in a controlled manner, as compared to the variance in 
TRANSPORT which is based on numerous problem parameters that are not easily 
manipulated to simulate different application characteristics. 

 
The test kernel resembles the master-slave team structure of TRANSPORT by means 

of a parameter file as follows (see the example in Figure 5.1). NO_OF_TEAMS 
represents the number of parallel solvers that are involved and 
NO_OF_PROCS_PER_TEAM represents the number of processes within a single team. 
There are parameters that specify how many bytes are communicated within a single 
team and between teams for every communication operation (BYTES_INTRA_TEAM 
and BYTES_INTER_TEAM). The MPI operation performed between the master and 
slave team leader (MPI_Bcast in Figure 5.1) and the MPI operation within a slave team 
(MPI_Allgather in Figure 5.1) can also be varied. The NO_OF_INTERNAL_CYCLES 
represents the number of within-team communication operations taking place for every 
single external operation performed. TIME_TO_COMPUTE represents, in terms of the 
number of noop instructions, the computation time between communication operations. 

 

 
Figure 5.1. Typical parameter file used in the test kernel. 

 
The communication structure of the test kernel can be varied by means of the 

parametric information stored in the parameter file. The underlying structure of the 
parameter file is very similar to the communication structure of TRANSPORT. Table 5.1 
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compares the number of bytes of communication between the TRANSPORT application 
(left) with the synthetic application (right). Both these matrices represent 5 processes (1 
master and 2 teams of slaves each having 2 processes). TRANSPORT’s communication 
matrix has processes (1,3) and (2,4) being the slave teams whereas in the synthetic 
application (1,2) and (3,4) are the slave teams (note the large values in these cells). 

 
 0 1 2 3 4 
0 0 28322    28322    26376   26688 
1 18208    0        212      72e+6    378 
2 18126    212      0        496      73e+6 
3 16448    62e+6    312      0        212 
4 16762    192      61e+6    212      0  

 0 1 2 3 4 
0 0       6156     396      5760     236      
1 236   0        400000   236      0        
2 236   400000  0        396      0        
3 0       236      236      0        400000  
4 236   0        0        400000   0         

Table 5.1. TRANSPORT communication structure (left) and synthetic application 
communication structure (right). 

 

5.2.2 Randomly Communicating Program 
 
 In order to simulate applications with more diverse communication patterns than 
TRANSPORT, another set of MPI based parallel programs was written. Each process in 
these SPMD programs computes for some time and then randomly communicates with 
another process. In order to introduce clusters into the communication structure of the 
program, the user inputs the number of clusters to be present in the application. Using the 
random() function, each process in the application is assigned to a particular cluster. 
Once the set of clusters is identified, the communication is determined so that there is 
much more communication between processes in the same cluster than communication 
between processes in different clusters. Transmitting only every ith message between 
processes in different clusters and every message between processes in the same cluster 
accomplishes the desired pattern of communication. 
 
These random communication programs allow us to simulate multiple levels of 
communication intensity, as compared to the TRANSPORT kernel, which has only two 
very distinct levels of communication intensity. It also allows us to vary the message 
frequency and size, and to vary the amount of computation between communication 
events. The goal is to generalize the results obtained from the TRANSPORT kernel to  
more generic applications that perform a sequence of computations and communications. 

5.3 Simulation Environment 
 

This section describes how the experimental results presented in Section 5.4 were 
obtained. The set of applications described in the previous section were run on the 
Anantham parallel cluster. The Anantham cluster consists of 200 AMD Athlon 1Ghz 
processors, each with 1 Gb of memory, and interconnected by a 2.56 GB/s Myrinet 
network. A set of log files is obtained as a result of running these programs – one log file 
from each process. These log files have entries recorded as described below.  
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There are two points where logging information is written: 
 
1. The parallel application invokes TCP’s read, readv, write and writev function 

calls present in the glibc library to send or receive data. A set of wrapper routines 
that mimick these calls’ function signatures was created. These wrapper routines 
are linked with the parallel application. Whenever the TCP routines are called, 
these wrappers intercept these calls before the actual TCP routines are called. 
These wrapper routines log into a file timestamps whenever a read from or write 
to a network buffer occurs. 

 
2. Additional code was written in MPICH’s functions (more precisely, MPI_Send, 

MPI_Recv, MPI_Isend, MPI_Irecv and MPI_Waitall functions) to record the 
timestamps at which these functions are invoked. The MPICH p4 device was used 
as the MPI implementation on which experiments were carried out. 

 
The instrumented MPICH functions produce one log file for every process of the 

parallel program. Each process writes to a log file that is uniquely identified by its 
processor name. This log file provides the execution trace of the parallel program when 
running on a processor cluster. This execution trace is processed and fed into a simulator 
(the dlsim simulator was modified to use these log files). The processing of the log files 
of the various processes involved matching up the send from one process to a receive on 
its counterpart process and finding out the time difference in their timestamps. The clocks 
on Anantham are synchronized by means of NTP (Network Time Protocol). This log file 
processing step gives the time to send each message for the Anantham cluster. We are 
able to simulate the communication operation for networks with different network 
parameters by scaling these message times appropriately. 

 
The end-to-end delay between processors is given to the simulator. Based on the 

execution trace of the parallel application, the application is simulated to run over a 
network with different end-to-end delays and different processor speeds. The 
computation part of a parallel program is the time between two successive calls to 
MPI_Recv or any variant of MPI_Wait. This is an acceptable way to model the blocking 
behavior of parallel programs since all collective communications are reduced to point-
to-point operations inside MPICH. The blocking time at a particular process is the 
difference between the time that program called MPI_Recv or any variant of MPI_Wait 
and the time the actual data arrived. If a network with longer delays is simulated, the 
process will block for a longer period of time thereby increasing execution time. 

5.4 Evaluation of Scheduling Heuristics 
 
This section seeks to answer the following questions: 
 
• Does the distributed scheduler, having aggregated and hence incomplete 

information about resource structure, produce competitive schedules as compared 
to a global scheduler that has complete information about resource structure? 
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• What is the best size for clusters in the task graph when the home scheduler splits 
the application into clusters? 

• How does frequency of messages affect the schedule obtained? 
 

 
The experimental results obtained are shown in this section. The results are obtained 

from executing the applications described in Section 5.2.  

5.4.1 Comparison of Global and Hierarchical Scheduling Policies 
 

Figure 5.2. A simple resource and task graph. 
 

We first compare the schedules obtained by the GLOBAL and HIER algorithms on a 
simple example. The comparison is based on the running time of the TRANSPORT 
kernel application with the task graph shown in Figure 5.2 (right), and run on the two 
zone resource graph shown in Figure 5.2 (left). In this experiment, the nodes in both the 
task graph and the resource graph are equally weighted. Thus, only communication is the 
determining factor in the task assignment. Also, the zones are homogeneous in that they 
have the same interconnection speed (500 in Figure 5.2) and same processor speed (1 in 
Figure 5.2). The mappings obtained from the two scheduling algorithms are evaluated 
using the simulator with the parameter file shown in Figure 5.1.  

 
The mappings obtained from the different mapping strategies are given in Table 5.2. The 
first number in the order pair represents the processor and the second number represents 
the process mapped onto that processor. 
 

GLOBAL {(0,0),(1,1),(2,2),(3,3),(4,4),(5,-)} 
HIER {(0,0),(1,1),(2,2),(3,-),(4,3),(5,4)} 

Table 5.2. Mappings obtained from GLOBAL and HIER. 
 
 

Resource Graph Task Graph 
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Figure 5.3. Running Time of TRANSPORT Kernel. 

 
Figure 5.3 compares the performance of schedules obtained from the GLOBAL and 

HIER mapping strategies. The x-axis varies with the ratio of 
NO_OF_INTERNAL_CYCLES to the NO_OF_EXTERNAL_CYCLES. As can be seen 
from the results, the running time obtained from the hierarchical mapping strategy is 
better compared to the global strategy since the problem of processor cluster boundaries 
being crossed during the mapping process is mitigated (this problem is described in 
Section 4.4.2). As the ratio of internal to external communication increases the 
application mapped by GLOBAL performs progressively worse than the mapping from 
HIER. 
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Figure 5.4. Advantage of HIER over GLOBAL for all possible resource graph orderings. 
 

Since the ordering of resources in the resource graph is an important consideration in 
Taura’s algorithm, we wanted to check that we had not unfairly biased the GLOBAL 
strategy. In order to do this we took all possible (6!) orderings of the resource graph and 
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compared the number of times HIER beat GLOBAL and by how much. This was for the 
case when the ratio of inter to intra cluster communication is 100, where the total 
execution time was approximately 60 seconds. From Figure 5.4 we notice that there are 
380 cases in where HIER is better, and 332 cases when the performance is essentially the 
same. This advantage of HIER over GLOBAL will be more pronounced when the 
difference in network distance (end-to-end latency) between zones is larger. The results 
suggest that the HIER scheduling strategy consistently obtains a close to optimal 
mapping, while the GLOBAL strategy has a substantial risk of choosing a clearly sub-
optimal mapping. 

 

5.4.2 Effect Of Message Size and Frequency 
 
Our approach to application modeling aggregates communication (by summation) 

and computation (by averaging) over all communication and compute steps. While this 
provides a simplistic model of the parallel application, one that can be easily scheduled in 
an efficient and distributed manner, it also results in a loss of information that might be 
vital to the performance of the scheduler. 

 
In the original representation of the application, we used total amount of 

communication between each pair of processes to determine coupling of processes. 
Recall that a communication matrix can be used to represent the edges between tasks in 
the task graph; a communication matrix is an adjacency matrix weighted by amount of 
communication. If two entries in the communication matrix have the same values, they 
are considered to be coupled with the same intensity during the formation of clusters. 
However, one intuition that is verified by means of the experiment described in this 
section is that even if aggregate values in the communication matrix are the same, the 
process pair that has a greater number of messages exchanged should be considered more 
tightly coupled. The intuition is that more (smaller) messages implies more 
synchronization points between that pair of processes, and hence tighter coupling. 

 
The randomly communicating program was used in this experiment to verify the 

advantage of incorporating number of messages into the application model. There were 
three clusters of tasks, identified by C0, C1 and C2, with each cluster having two tasks. 
Communication between C0 and C1 consists of many smaller messages, whereas 
communication between C0 and C2 consists of a few large messages. In the experiment, 
C0 sent 10 messages to C1 of size 100 bytes for every 1000 byte message sent by C0 to 
C2. Thus processes in C0 and C1 communicate 10 times more frequently than processes 
in C0 and C2. However, the messages between processes in C0 and C1 are 10 times 
smaller that messages between processes in C0 and C2. Thus the aggregate 
communication between processes in C0-C1 and C0-C2 are equal. 

 
The skewing of communication is done as follows. The source and destination 

process pairs are generated randomly. This pair of source and destination processes is 
represented in one line in a  “communication pattern file”. The pattern file contains many 
such lines of randomly generated source and destination process pairs. The parallel 
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program reads each line in this file and if the source and destination are within the same 
cluster, a message is sent every time such a line is read from the file. If i is the number on 
x-axis in Figure 5.5, then this implies that every ith line read from the communication 
pattern file results in a message sent between processes in clusters C0 and C1 and every 
i*10th line read results in a message sent between processes in clusters C0 and C2. For 
instance, the first point on the x-axis corresponds to: “if source is in C0 and destination is 
in C1 then every 10th time a short message is sent and if source is in C0 and destination is 
in C2 then every 100th time a long message is sent”. 

 
The resource graph for this experiment had three zones. Each zone had four 

processors each of equal processor speed. The end-to-end latency between zones was 
four times slower than the end-to-end latency within a single zone.  

 
A comparison was performed in which scheduling is performed taking the number of 

messages into account and not taking number of messages into account. The number of 
messages was taken into account by weighting the cells in the communication matrix that 
have higher number of messages by a larger amount. For this experiment, we multiplied 
the cells in the communication matrix between C0 and C1 by 2 and the cells in the 
communication matrix between C0 and C2 by 1.  
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Figure 5.5. Comparison of scheduling strategies taking message frequency into account. 

 
Taking the number of messages into account the schedule obtained was found to be 

better than not taking them into account while clustering the application. Also the 
difference becomes more apparent in applications that are communication intensive. This 
is observed by the increase in the difference in the two sets of plots as the intensity of 
communication increases along the x-axis in Figure 5.5, i.e., as the relative amount of 
inter-cluster communication increases. 
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5.4.3 Effect of Cluster Size 
 

Recall that clustering is done in the experiments described here using the algorithm 
designed by Yeh et al. This algorithm works by injecting flows into the task graph till the 
clusters are formed. The mapping algorithm designed by Taura et al. applies this 
algorithm recursively. One of the issues when performing clustering at the home 
scheduler is to determine at what granularity the clusters should be to allow for effective 
mapping to the various zones. This is an issue that is specific to the HIER strategy and 
does not arise in the GLOBAL strategy. In the GLOBAL strategy, the clustering is 
performed recursively till singleton elements are obtained. However, in the HIER 
strategy, the clustering should stop at some level of clustering before singleton elements 
are obtained. This is required to have the benefits of the divide and conquer strategy 
present in HIER, since now the clusters of tasks can be mapped onto zones, and the larger 
the clusters the less the possibility of zone crossover and the faster the scheduling is 
performed. 

 
TRANSPORT has a well-defined two level hierarchy in intensity of communication 

operations. Thus splitting a team across wide area networks is not good and is easily 
identified by the clustering algorithm. However, there may be parallel programs in which 
the change in communication intensity is more gradual and in which three or more levels 
in communication intensity are present. The different levels of clustering are identified by 
means of the tree of clusters in Taura’s algorithm (refer to Section 4.4.1). When 
performing the mapping at the granularity of zones, the clusters at a certain level must be 
chosen to correspond to the nodes in the aggregated task graph. Thus a method to 
determine at which level clustering should be stopped is required. Stopping the clustering 
at a very high level might result in very coarse clusters whose computation may not be 
handled by the zones on which they are scheduled. On the other hand, making these 
clusters very fine might result in large communication across zones and hence large wide 
area traffic. 

 
Consider a resource graph with two zones. The 1st zone has 6 processors and the 2nd 

zone has four processors. All the processors are equally weighted and the end-to-end 
latency between zones is four times slower than end-to-end latency within a zone.  

 
 0 1 2 3 4 5 6 7 
0 0 140556   3596     3520     1484     1408     1408     1408 
1 134844   0        3520     3772     1408     1484     1408     1408 
2 3596     3520     0        144044   1408     1408     1660     1408 
3 3344     3596     132220   0        1408     1584     1408     1484 
4 1692     1408     1408     1584     0        145804   3596     3520 
5 1408     1484     1584     1408     134012   0        3520     3596   
6 1408     1408     1484     1408     3596     3696     0        133836 
7 1584     1584     1584     1484     3520     3596     136300   0      

Table 5.3. Communication matrix for the synthetic application. 
 
Three levels of communication hierarchy were simulated by means of a parallel 

program that randomly sent and received messages between pairs of processes. There 
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were 8 processes, with the communication matrix shown in Table 5.3 (recall that the 
communication matrix is an adjacency matrix weighted by amount of communication).  

 
From the communication matrix given above, we notice that there are three different 

intensities of communication. Thus the cluster levels are: 
 
Leve1 1: (0,1,2,3,4,5,6,7) 
Level  2: (0,1,2,3) (4,5,6,7) 
Level  3: (0,1) (2,3) (4,5) (6,7) 

 
If processes are related at a higher level they have a greater intensity of 

communication. Thus processes 0 and 1, which are related at level 3, communicate a lot 
more as compared to 0 and 2, which are only related at level 2. The skewing of 
communication is performed in a similar manner to the previous experiment. The source 
and destination processes are generated randomly and written to a “communication 
pattern file”. If processes are related at level 3, then every message is sent; if processes 
are related at level 1, every 100th message is sent. The number on the x-axis of Figure 5.6 
represents the difference in intensity of communication between level 2 and level 3. Thus 
the points on the x-axis represent that for processes related at level 2, every 20th, 10th, 5th 
and 2nd messages is sent, respectively. In other words, intensity of communication at level 
2 increases from left to right in the figure. 

 
The decision to be made is at what level to stop the clustering algorithm. In this 

simple example, we can either stop with coarse-grained clusters at level 2 or more fine-
grained clusters at level 3. Figure 5.6 shows that fine-grained clusters are better when the 
difference in communication intensity between levels 2 and 3 is large. As communication 
at level 2 increases, splitting the clusters into fine clusters makes it more likely that 
processes in the same cluster in level 2 will be split over wide area networks, which 
makes coarse-grained clusters better. This can be seen by the reduction in performance of 
using fine-grained clustering with increasing communication along the x-axis. 
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Figure 5.6. Effect of cluster size on performance 
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The tradeoff between node occupancy and edge occupancy determines at which level 

to stop the clustering. In this paragraph, a node refers to a zone and edge refers to the link 
between two zones.  If coarse clusters are obtained, the node occupancies of some of the 
zones will be large, since they will not be able to handle such a great computational 
requirement. If fine clusters are obtained, the edge occupancies of some of the links will 
be large due to splitting clusters across zones. Thus nodes become the bottleneck with 
coarse clusters and edges become the bottleneck with fine clusters. One heuristic that 
could be used is to proceed to the next level of clustering only if the performance 
degradation due to increased edge occupancy does not offset the improvement in node 
occupancy.  
 

5.5 Evaluation of Overheads 
 

This section seeks to answer the following questions: 
 
• What is the overhead involved in getting information about load of processors and 

networks transmitted from the location where it is monitored (i.e., the resources) 
to the location where it is used (i.e., the scheduler) for the different methods of 
scheduling? 

• What is the trend in scheduling time as the number of processes and processors 
increases for different methods of scheduling? 

 

5.5.1 Information Gathering Overhead 
 
The loads on processors and networks change based on the number and type of 

applications currently running. The current and forecasted load play a major role in 
determining where the application should be scheduled. This information has to be 
transmitted from the sensors running on the machines to the place where scheduling takes 
place. In this section, we compare the quantity of resource information transmitted for the 
centralized (GLOBAL) and distributed (HIER) scheduling strategies. 

 
In order to compare the amount of information transferred for different methods of 

scheduling, it is necessary to determine certain criteria on the basis of which a 
comparison can be made. Information collected to make a single scheduling decision for 
a single application forms this basis of comparison. Information gathering systems like 
MDS and NWS populate information periodically into their repositories. This periodicity 
of information gathering is not taken into consideration. However, periodicity only 
increases the difference in the amount of information transmitted between GLOBAL and 
HIER scheduling strategies. 

 
In the global scheduling strategy (GLOBAL), the number of units of information 

going over WAN links for scheduling on z zones with Pi processors in the ith zone is 
calculated as follows. Each zone has information about network load from every 
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processor in the current zone to every processor in other zones. Thus the amount of 
information stored at each zone is proportional to, 

 
 

 
This information is transmitted to the central location at which scheduling takes place. 

Thus each of the (z-1) zones transmits this information and the information about the load 
of processors in its zone. Thus the total amount of information transmitted between zones 
is 

 

 
 
In the distributed scheduling strategy (HIER), the number of units of information 

going over WAN links for scheduling on z zones with Pi processors in the ith zone is 
 
(z) (z-1)  
 
This is obtained since each zone provides one unit of information to every other zone. 

This one unit of information is representative of the resources in that zone. This might be 
more than a single unit of information if more advanced information is to be provided, 
such as variance. In the current implementation of the scheduler we do not use variance 
and hence the above equation results. Also, the number of units of information 
propagated will not be proportional to the number of processors in the zone and hence 
will be a constant multiplicative factor that does not affect its asymptotic order. 

 
The amount of information transmitted over wide area networks for GLOBAL is 

bounded by O(z2*Pmax
2) (where Pmax is the number of processors in the largest zone) 

whereas in the HIER scheduling the amount of information is bounded by O(z2).  Thus as 
the number of processors within a single zone increases, the hierarchical strategy wins by 
larger and larger amounts.  

5.5.2 Scheduling Overhead 
 

One of the advantages of a divide and conquer approach to scheduling, as described 
in this research, is that the time required to make scheduling decisions is reduced. The 
experiment described in this section quantifies the scheduling time for different 
scheduling strategies. Task and resource graphs were given as input to the different 
scheduling mechanisms. To simulate large graphs, random task and resource graphs were 
generated with differing number of clusters and different graph sizes. The schedulers 
were run on a 2 processor SMP with combined processor speed of 2 Ghz.  

 
The running time of the two algorithms was measured and plotted as shown in Figure 

5.7. Ignoring communication and queuing delays in transmitting the application profile to 
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the remote schedulers, the hierarchical scheduling strategy is compared with the global 
scheduling strategy. The x-axis of this figure represents the total number of tasks (T) 
multiplied by the total number of processors (P) for which the scheduling decision is 
made and the y-axis represents how long the scheduling took to perform. As can be seen 
from the figure, the hierarchical (HIER) mapping strategy takes much less time to 
compared to the global (GLOBAL) mapping strategy. 
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Figure 5.7. Scheduling time for GLOBAL and HIER scheduling strategies. 

 

5.6 Evaluation Summary 
 
The GLOBAL and HIER scheduling strategies have been compared on the basis of 

the mappings they give for the TRANSPORT kernel. As the ratio of the inter-cluster to 
intra-cluster communication intensity increases, we see that the HIER strategy is more 
likely to perform better than the GLOBAL strategy. This effect is due to the greater 
negative impact of separating highly communicating processes over wide-area links. 

 
The adequacy of representing the application by means of average compute time 

between communication operations and number of bytes of communication is evaluated. 
From the experiments, it is seen that while a simple mechanism of representing the 
application is often sufficient, incorporating additional elements like variance in 
computation steps and message frequency into the representation allows for a better 
mapping of tasks. This suggests possibilities for further investigation of better metrics to 
determine compute and communication intensity of processes. 

 
The GLOBAL and HIER strategies have also been compared on the basis of the 

overhead in using each of those strategies. The amount of information to be collected 
about resource structure for HIER is predicted to be significantly less than the amount of 
information collected in GLOBAL. Also, due to the divide and conquer nature of HIER, 
it is shown to perform scheduling in less time compared to the GLOBAL strategy. 
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Chapter 6. Conclusions and Future Work  

6.1 Conclusions 
 

We have designed and implemented a zone-based scheduling framework as a means 
to provide site autonomy for different organizations while at the same time providing 
acceptable schedules to applications. The scheduling framework developed is lightweight 
and extensible. The framework addresses security problems of having to provide user 
account information to the scheduler, and the aggregation of resource information 
obviates the need for complete internal information about an organization’s resources to 
be transmitted to a scheduler outside the organization. The decentralized scheduling 
algorithm used in this research offers a divide and conquer solution to the scheduling 
problem. This makes both the scheduling and the information gathering services scalable.  

 
We have also used a simple method of representing applications and evaluated 

scheduling algorithms using this representation. While this is a lightweight approach to 
scheduling, the application and resource models used by the scheduler are simplistic. The 
reason for using simple metrics is that the environment on which the application is 
executed should not influence these metrics. It is important to make use of those factors 
that are constant and unlikely to provide misleading information about the application’s 
structure. We use basic metrics like the average number of cycles between 
communication operations and number of bytes of communication.  

6.2 Contributions 
 

A Cross-Organization Collaborative Framework. The main contribution of this 
thesis is in the identification and implementation of a scheduling framework under which 
policies of distinct administrative domains can be enforced. In the ZBS framework each 
organization can collaborate with others while at the same time maintain full control of 
its resources. Thus, administrators in an organization can enforce policies (some of which 
might be temporary) on usage of resources while scheduling. Also, newer scheduling 
mechanisms can be incorporated into a scheduler in a manner that is transparent to the 
user. 

 
Dynamic Virtual Organizations. A method to facilitate easy formation of virtual 

organizations using UDDI registries to discover organizations and their resources has 
been demonstrated. Once these organizations have discovered each other, a means by 
which they can effectively collaborate has been demonstrated. 

 
Comparison of Scheduler Implementations in the Framework. Scheduling 

algorithms implemented in this framework show acceptable performance and result in an 
improvement over the base algorithm (Taura’s algorithm). Also, certain interesting issues 
that occur with the hierarchical scheduling strategy and possibilities of better application 
representation methods are examined. 
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Information Gathering about the Application. The author has also had to make 
modifications to the way information about the application is obtained in MPI’s profiling 
interface. When an application runs in a grid environment, it is difficult to apply 
information obtained from one run to the next run. Simple application specific metrics 
independent of the resources on which the application runs have been identified and 
modifications to the execution environment (MPICH) have been performed to be able to 
obtain this information. 
 

6.3 Future Work 
 

Interaction with Other Grid Middleware. One interesting possibility for the ZBS 
framework is to consider its interaction with other grid middleware, such as runtime 
algorithm selection systems. A combination of these two systems appears to be beneficial 
and has been explored by Bora et al. [45]. 

 
In Figure 6.1, we see the typical development cycle of high-end computational 

programs. In order to improve performance of a particular code, the code is run, 
performance data is obtained and analyzed. Then the code is rewritten to improve 
performance, either by using a different algorithm, or by changing parameter values or by 
choosing a different set of machines. In an effort to take the burden of trying different 
combinations of algorithms, parameters and machines off the application scientist, there 
is a need for middleware that will automate the process. We believe this middleware 
should include a runtime algorithm selection system and a zone-based scheduler. Thus, in 
Figure 6.1 (bottom), choosing a solver from a set of libraries and tuning the associated 
parameters, is done by the runtime algorithm selection system. However, this changes the 
sequence of operations performed to improve the performance of the application. The 
scheduler can no longer make intelligent decisions about which resources to select for the 
application as this information is encapsulated in the runtime algorithm selection system. 
Thus there is a need for these two components to interact with each other.  
 

 
Figure 6.1. Performance improvement cycle for an application: without algorithm 

selection (top), with algorithm selection (bottom) 
 
A promising interaction scenario is as follows. The scheduler queries the runtime 

algorithm selection system to obtain information about what type of resources are best for 
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the particular application. Using this information the search space of the scheduler will be 
reduced to only those machines that can provide good performance for that application. A 
typical interaction is depicted below. From prior runs of an application, the runtime 
algorithm selection system finds out performance information that is stored in a table 
such as this: 

 
 Machine Characteristics Algorithm 

Selected 
Performance Data 

Class 1 {Pentium II, cache size 1, 
memory size 1} 

A1 Time 1 

Class 2 {Alpha, cache size 2, 
memory size 2} 

A2 Time 2 

Table 6.1. Records exchanged between runtime algorithm selection system and zone-
based scheduler 

 
The two rows shown above represent the performance data of an application. This 

table is sorted by performance. Thus, the application when run on Pentium II machines 
with cache size 1, memory size 1 and algorithm A1, performs better as compared to the 
second combination (Class 2) of machine type and algorithm. (For now, we assume “best 
performance” means lowest execution time.)  Although the scheduler is not interested in 
the algorithm selected, the characteristics of the machines on which the application 
performed well is of importance to it. In the above example, the application will perform 
better if it is scheduled to run on “Class 1” machines. Thus the scheduler will attempt to 
choose machines with those characteristics when assigning tasks to processors. 
 

 

Figure 6.2. Relative performance penalty of using GMRES restart value 20 instead of the 
optimal value, as a function of problem size and number of processors.  Matrix 

generated from finite difference discretization of test PDE problem 15 from [47]. 
 

As a simple example of the benefits of combining ZBS with runtime algorithm 
selection, consider the relatively simple algorithm-selection problem of choosing the 
parameter k (the size of the Krylov subspace) for a parallel restarted GMRES algorithm.   
The value of k can have a significant effect on the performance of the algorithm; and 
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more importantly, the optimal choice for k depends in subtle ways on the problem, the 
amount of memory available, the CPU speed, and the interconnection network.  In 
practice, most users simply set k to a constant value and proceed.  However, the data in 
Figure 6.2 shows that even for a modestly large problem, a better choice for k can 
improve running time by 40% or more.  Per-processor memory availability is an 
important determinant in choosing the value for k since a larger value of k requires more 
memory. The result of the interaction that takes place between the runtime algorithm 
selection system and the zone-based scheduler is that the scheduler assigns a higher 
weight to processors that have larger memory available and hence permit a higher value 
of k. This will allow better performance for applications involving the GMRES algorithm. 
 
Coexistence with Other Grid Schedulers. In this project we have evaluated a small set 
of scheduling algorithms. However, there is a large base of schedulers already present 
that control clusters of processors. Integration and evaluation of such resource level 
schedulers within zones should be evaluated in the context of the zone based framework.  
 
Scheduling Multiple Applications. The scheduling algorithms implemented and 
evaluated in this project try to obtain a good mapping for an application given the current 
state of resources. However, in grid settings, it would be expected that there are multiple 
competing applications. While the zone-based framework is generic and mechanisms to 
deal with race conditions could be evaluated for such systems, this was beyond the scope 
of the project. 
 
Trust Model. When a scheduler makes a request to register with another scheduler, the 
answer returned is boolean, i.e., the other scheduler answers yes or no based on whether 
it trusts users in that organization. While this provides a straightforward implementation, 
there might be a need for a better way to develop trust between organizations. A model of 
degree of trust between organizations could be developed in such a way that as 
organizations interact more with each other their level of trust in the other increases. 
 
Application Representation and Performance Models. In the scheduling algorithms 
evaluated in this project, we used the resource-task graph formulation of the scheduling 
problem. Feasibility and efficiency of other representations of the application needs to be 
evaluated in the context of the ZBS framework. Also for long running programs, the log 
files obtained will be large. This way of obtaining information about the application in 
the ZBS framework can be improved by modifying MPICH code to record only the 
summarized information in the log file, i.e., the average computation requirements of a 
process and bytes of communication between processes. 
 
Further Automation of Scheduling Process. In the current implementation, the user 
requests for the application to be scheduled. The home scheduler returns the mapping to 
the user. The user then runs the application (refer to Figure 3.1). The step in which the 
home scheduler returns the mapping to the user and the user runs the program using this 
mapping (optional user interaction 2 in Figure 3.1) can be combined with the previous 
interaction to schedule the program (user interaction 1 in Figure 3.1). Also, in an effort to 
further reduce the burden on the user, the performance information collected after the 
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execution of the program could be stored in a database maintained at the home scheduler. 
This would automatically be used in the next run of the program. 
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