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Efficient In-depth I/O tracing and its application for optimizing systems
Sushil Govindnarayan Mantri

(ABSTRACT)

Understanding user and system behavior is most vital for designing efficient systems. Most
systems are designed with certain user workload in mind. However, such workloads evolve
over time, or the underlying hardware assumptions change. Further, most modern systems
are not built or deployed in isolation, they interact with other systems whose behavior might
not be exactly understood. Thus in order to understand the performance of a system, it
must be inspected closely while user workloads are running. Such close inspection must be
done with minimum disturbance to the user workload. Thus tracing or collection of all the
user and system generated events becomes an important approach in gaining comprehensive
insight in user behavior.

As part of this work, we have three major contributions. We designed and implemented
an in-depth block level 1/O tracer, which would collect block level information like sector
number, size of the I/O, actual contents of the /O, along with certain file system information
like filename, and offset in the file, for every 1/O request. Next, to minimize the impact of
the tracing to the running workload, we introduce and implement a sampling mechanism
which traces fewer 1/O requests. We validate that this sampling preserves certain I/O access
patterns. Finally, as one of the application of our tracer, we use it as a crucial component
of a system designed to do VM placements according to user workload.
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Chapter 1

Introduction

1.1 Motivation

Understanding user and system behavior is important for designing efficient systems. Most
systems are designed with certain user workload in mind. However, such workloads evolve
over time, or the underlying hardware assumptions change. Further, most modern systems
are not built or deployed in isolation, they interact with other systems whose behavior might
not be exactly understood. For example, different disk buffering strategies can have different
performance impact on user’s throughput. Also modern systems are complicated, be it due
to a longer software stack, cache layer. A storage system can be specialized by designing to
a special data access pattern; e.g., a storage system for streaming supports different usage
patterns than a document repository. The better the access pattern is understood, the better
the storage system design. Thus in order to understand the performance of a system, it must
be inspected closely, while user workloads are running. Such close inspection must be done
with minimum disturbance to the user workload. Thus tracing or collection of all the user
and system generated events, becomes an important approach in gaining comprehensive
insight in user behavior.

Trends in last couple of decades has shown an exponential increase in computing power of
modern systems [22]. Similarly, there also have been substantial improvements in storage
technologies. In physical hard drive space, whose use is still quite ubiquitous, these im-
provements have been mainly in terms of capacity. However, bandwidth and latency are
still major bottlenecks in physical disks. As CPUs become faster, this gap is projected to
get worse, thus making it a critical problem among research community. As a result, I/O
performance and reducing 1/O cycles have gained a lot of research traction. Consequently,
file system and I/O improvement techniques are being published.

Many file system studies have been done using trace collection [24, 18, 19, 3, 13]. The original
analysis of the 4.2BSD file system [18] motivated many of the design decisions of the log-
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structured file system (LFS) [20]. In early 2000, many trace-based studies were expanded
to include the increasingly dominant desktop systems of pc and mac and new workloads
such as web servers. It is clear from the literature studies of trace-based systems that there
are many interesting and important scenarios to consider when designing a file system, and
that new workloads emerge as new applications and uses for file systems appear. Further,
as the community of computer users has expanded there has been a substantial difference
in the workloads seen by file servers, and that the research community must find ways to
observe and measure workloads. Because of the increasing gap between processor speed
and disk latency, file system performance is mainly dependent on the system disk. Like
other computer systems, file systems provide good performance by optimizing for common
usage patterns. However, these usage patterns vary both over time and across different user
communities, and restudying them becomes important.

Uses Traces can be used to determine dynamic access patterns of file systems such as the
rate of file creation, folder creation, the distribution of read and write operations, file sizes,
file life, movement of the head of the hard disk between different access i.e seek time, the
frequency of each file system operation, etc. The information collected through traces is
useful to determine file system bottlenecks. One of the new uses of traces has been to
generate replayable models. These replayable models are used offline using the traces, and
help in identifying subtle bugs. It can also help identify typical usage patterns that can be
optimized and provide valuable data for improving performance.

Although traces are mainly used for file system performance studies, they can be also be
used for debugging and security. First, file system tracing is useful for debugging other file
systems. A fine-grained tracing facility can allow a file system developer to locate bugs and
points of failure. Second, file system tracing is useful for security and auditing. Monitoring
file system operations can help detect intrusions and assess the damage. Tracing can be
conducted file system wide or based on a suspected user, program, or process. Also, file
system tracing has the potential for use in offline assesment to roll back and replay the
traced operations, or to revert a file system to a state prior to an attack.

Problems Most of the previous studies focused only on studying the characteristics of file
systems[18, 19, 5, 3] and thus a reusable infrastructure for tracing wasn’t developed or well
documented in research literature. Further after such studies were published, the traces wer-
ent always released or were difficult to obtain. Sometime, the traces excluded useful informa-
tion for others conducting new studies; information not included was about the description of
system or workload on which the traces were collected, some file system operations and their
arguments, file paths, etc [2]. Only very few of the studies[11] actually released the contents
of the actual file system operation i.e the data read or written. Such information wasnt the
primary interest for file system studies, and only has recently become important for analyz-
ing and understanding dedup related systems. Some studies which release, particular studies
related to block level traces, the data hash the data using some hashing function. Changing
hash function is not possible. However, there has been very little interest in including both
file and block level information in traces i.e including file offset, file name along the with disk
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offset, and actual io contents. Such information could be useful for a remote storage server
backed disk images. For a file system, such information can be used for on-disk layout.

Traditional storage systems design was mainly influenced by the underlying hardware and
user’s access patterns. However dedup effectiveness depends on data content, its metadata
properties as well as access patterns. Most datasets that have been used to evaluate dedu-
plication systems are either not representative, on in some cases unavailable due to privacy
reasons, preventing easy comparison of competing strategies. Understanding how both con-
tent and metadata evolve is critical to the realistic evaluation of deduplication systems. In
recent years, virtualization is becoming pervasive. Particularly in enterprise environment,
users have only a thin client at their disposal, whereas their desktops are running on virtual
machines on shared hardware with shared storage system. This has further complicated the
data access pattern seen by the storage server.

1.2 Contribution

1) Multi-layered trace - Most of the studies focused on trace collection at a single layer.
File system studies using system calls mostly focus on instrumenting the system call layer
in the kernel. Studies focusing on NFS based tracing focus on the request received and
sent by the File server, and thus lack any information about the underlying block/disk layer
accessess. Pure block level studies collect disk access and (sometimes) iocontents, however
these dont contain any file level information. In this work, we develop a multi-layer tracing
mechanism which collects information from both the file system and the block layer for
any 10 request sent to the disk. Such multi-layer tracing requires carefully implementing
the locks.Both information can be used in designing the complete filesystem i.e both the
in-memory optimization(like prefetching) and on-disk layout of file data and metadata.

2) Configurable low-overhead tracing - Most of the tracing studies dont collect the actual
content due to overhead of collecting it. For IO intensive tasks this data could be big.
We optimize our tracing with the sampling approach where it does on-depth tracing for
fewer requests. We experimentally show that this approach does retain many read-write
characteristics.

3) Extend the tracing - We extend our tracer to be used as a live IO monitoring process.
We, in a joint work, design a system to reduce shared storage accesses by placing vims having
similar workloads. Similarity in workload is based on the comparing the trace data collected
by IO monitor in the VMs.
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1.3 Outline

Next we give a background study done to explore various tracing approaches used in the
literature. We also classify them. In subsequent chapter, we give an overview of a block level
event tracer called blktrace and show how we extended it to provide I/O contents and file
level information. We discuss sampling and show overhead comparison. In the next chapter,
we describe the problem where we use the tracer to help in better placement of VMs for 10
optimization.



Chapter 2

Background

2.1 Study of available traces

Following are some of the background study done to understand tracing techniques:
1) Zhou - Berkley UNIX

Zhou implemented a tracing package for the DEC VAX 11/780 running UNIX 4.2BSD. They
instrumented file operations and other system calls to log both the call and its parameters.
Their traces were collected comprehensively and in a binary format and buffered in the
kernel before flushing to the disk. The package uses a ring of buffers that are written
asynchronously using a user-level daemon. The tracing system also switches between trace
files so that primary storage can be freed by moving the traces to a tape. The overhead of
tracing is reported up to 10 percent. However, it provides little flexibility in which calls to
trace and was verbose and required tedious post-processing. Finally, not all I/O happens
at system call level, e.g memory mapped 1/O; such tracing at the system call level makes it
hard to log those or to trace network-based file systems (NFS)

2) Baker - Distributed File System

Baker et al collected and analyzed the user-level file access patterns and caching behavior of
the Sprite distributed file system. They compared their findings with the 1985 BSD study,
by collecting file system activity served by four file servers over 8 days. They instrumented
the kernel to trace file system calls and periodically transfer the data to a user-level logging
process. Some of the file system operations like read, write, directory reads were not recorded
to limit the performance hit on running processes.

3) Roselli - UNIX and NT

Roselli et al described the collection and analysis of file system level traces for various oper-
ating system, production uses, client and server architecture. HP-UX traces were collected
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by using the auditing subsystem to record file system events. They did a comprehensive
study of modern workloads, focusing on disk I/O aspects of tracing. They observed that
process use memory mapped 1/O more frequently than direct I/O. Windows NT traces were
collected by interposing file system calls using a file system filter driver. One of the problems
is, due to the nature of Windows N'T paging, separating actual file system operations from
the other VM activity is difficult and must be done during post-processing.

2.2 Different tracing approaches

Network based tracing: The idea of collecting traces by snooping on a broadcast network had
emerged almost immediately after the introduction of client server protocols like RPC. NFS
tracing was among the first in this kind, and began to appear after NFS clients were used
in university departments. Advantages :

1. NFS is portable and widely adopted.

2. Does not require modification to neither the client nor the file server.
Disadvantages :

1. Much information about the underlying file system is hidden.
Client-side caching can affect the observed workload.

NF'S calls and responses could be lost or reordered.

Ll

If a VM-image is served by the file-server, it is not easy to detect what file in the vim
image is being accessed.

static tracing: This approach takes snapshot of the file system. It conduct file system studies
by infering traces from examining file system metadata at several instants in time. They
use these snapshots for understanding distributions of file attributes commonly stored in
metadata, such as file size, last access time and modification time, file name and directory
structure. This significantly reduces the complexity of trace collection. It has the benefit of
not affecting the running workload, and isolation of the I/O generated by tracing itself.

kernel based tracing: As the name suggests this involves modifying the kernel to record the
user and system events. One earliest approach that did that was the BSD paper of 1985.
It requires careful implementation as to not affect the running workload. More efficient
frameworks have been developed leveraging this approach.

system call tracing : System-call level traces often miss infor mation about how system call
activity is translated into multiple actions in the lower layers of the OS. This is one of the
easier way to do tracing.
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2.3 Block trace

Linux kernel abstracts hard disk as a block level device, where writes/reads happens as a
block or in a unit large than byte. Block level tracing is a common technique to understand
closer interactions between disk and the block subsystem. It is a low overhead tracing. It
works by trapping the requests in and out of the block susbsytem in linux kernel. On the fly
events are generated as it is integrated with kernel event mechanism and outputs interesting
statistics of measured event. This is particularly desirable for us - can trace contents, closer
to the dedup layer and block device is virtualized. In the next section we will go in more
details regarding its design.



Chapter 3

Design

3.1 Blktrace

‘ User application ‘

User

Kernel

‘ Virtual File System ‘
|

File systems,
e.g ext

[

Page Cache
| 1 |
‘ Block IO Layer : Request Queues ‘
‘ Phyisclal Devices ‘

Figure 3.1: Block layer architecture.

Figure shows different layers that come into play for a IO request. User applications issue
system call to read or write a particular file. For the linux kernel, VFS layer handles these
calls. Advantages of VF'S are it simplifies providing a unified filesystem tree even if there are
multiple active filesystems. Thus VFS layer routes the request to appropriate file system.
However, some request could be sent directly to the block device by mapping the device
as a special file in /dev. Not all requests to the filesystem is sent to the disk. There is a
critical component called page cache or buffer cache which temporally stores the recently
used pages. However, if such request cannot be served by the page cache it is then sent to
the block layer to get the data blocks from the underlying device. Block layer consists of
block device driver, and request queues, and scheduling algorithm. The scheduling of io is
important to hide the latency of modern hard disk drives.
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Blktrace is a block layer 10 tracing mechanism which provides detailed information about
request queue operations to the user space. It is an open-source project primarily developed
by Jens Axboe, from Oracle. It was released in October 2005, and is included in the linux
mainline starting from kernel version 2.6.17. It has been very stable and used in many
studies. A number of statistics was added to it to show various features. It provided a
means to do closer inspection of the order of IO request to the, the time taken for the round
trip, the efficiency of different block queue scheduling techniques. To ease this, a number of
post-processing tools were also developed which output interesting stats and plots to help.
The tool also is also highly configurable with options to tune all the various parameters like
operation type, events to trap, etc. A number of factors we were looking were matched by
this, and hence we extended this tool.

Overview : It has two components. kernel and user space.

Blktrace uses tracepoints mechanism for its kernel side implementation. Tracepoints are
static probe points that are located in strategic points throughout the kernel. ’Probes’
register /unregister with tracepoints via a callback mechanism. The ’probes’ are strictly
typed functions that are passed a unique set of parameters defined by each tracepoint.

From this simple callback mechanism, "probes’ can be used to profile, debug, and understand
kernel behavior. There are a number of tools that provide a framework for using 'probes’.
Tracepoint are exposed via the debugfs interface. Advantage of this mechanishm is that
any particular probe can be activated or deactivated. These probes then write to a relayfs
filesystem, which acts as a ring buffer, with the producer consumer analogy where the user
thread continuosly reads from the buffer. It is efficient as being a per cpu thread and file.

3.2 Modification

One of the motivation for this project is to be able to collect different parameters that could
be used as a hint by IO reduction mechanisms to detect similarity in IO. Thus filename and
offset of a read and write become important. For example based on observing the filename
access pattern of 2 vms, a VM placement manager could place those 2 vims on the same
physical machine. An IO reduction mechanism like Seacache could benefit more from such
placement. A study in the past from NFS also reveals similar finding

Write request coming from page cache or read request coming from the user or prefetching
are translated to certain call from the VFS to the particular file system. We use ext3 for
our purpose. For any write call, we look at the in-memory dentry structure to obtain the
filename for the file. We maintain all necessary locks to ensure that the dentry is not cleaned
from beneath. Similarly we obtain the offset for the write in the file. This offset can later
be combined at the block layer to obtain the actual size of the request. To simplify this we
modify the following path.
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Figure 3.2: Blktrace architecture.

Life of a block request : where all could it be captured, what all does it capture

10
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Algorithm 1 Pseudo Code for blktrace modifications.
Kernel:
For every 10 request received at the file system
if 1O request cannot be completed by page cache then
copy filename, if available, for the request
copy file offset, if available, for the request
submit request to block layer
On request entering the queue
if request == WRITE then
create a blk_io_trace struct, with fs and disk attributes, and IO contents
write the struct on the ring buffer
end if
if request == READ then
create a blk_io_trace struct, with only fs and disk attributes
write the struct on the ring buffer
end if
wait till request is completed by the disk
On request completed by disk
if request == READ then
create a blk_io_trace struct with only io contents
write the struct on the ring buffer
end if
end if

User space:
Read the ring buffer continuosly
For every struct
if request == WRITE then
parse the struct and generate MD5 hash of the IO contents
end if
if request == READ then
parse the struct and note the unique sequence number for this request
wait till another struct with same sequence number is found
merge the two structs, to obtain fs attributes and IO contents
end if

The blk_io_trace struct is written to a ring-buffer, which is exported to the user space as file,
as explained above. The struct has a fixed size part and a variable size. Fields like filename
and IO contents are variable. The user space can detect the actual end of the struct by
looking at the size field in the fixed size part.
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struct blk_io_trace {

u32 magic; /x MAGIC << 8 | wersion x/

u32 sequence; /x event number x/

u64 time; /% in microseconds %/

u64 sector; /% disk offset x/

u32 bytes; /x transfer length x/

u32 action; /* what happened x/

u32 pid; /* who did it x/

u32 device; /x device number x/

u32 cpu; /% on what cpu did it happen x/

ul6 error; /x completion error x/

ul6 pdu_len; /x length of data after this trace x/

// new attributes added

u32 page_offset; /x page offset within the file where this
u8 filename _len; /x length of the name of file x/

u32 iocontent_len; /% length of the io data after this trace x/

// wvariable length filename and iocontent follows

3.3 Sampling

An in-depth tracing requires collecting all the data pertitent to an event. Thus for an 10
request, it incurs the overhead of copying the entire contents of the 10 request. This overhead
might not be amenable to the current workload, particularly if the workload is IO-intensive
i.e issues a lot of I0s. One mechanism we can employ is to trap only certain requests and
collect their details. Thus we compromise completeness of the trace to be able to control the
perfomance hit done by the monitoring. We use a uniform sampling to decide which requests
to trap, the principal advantage is that we are still able to retain the original 10 pattern. We
experimentally show that certain properties like read/write request ratio, read/write data
ratio is retained in the sampled trace.

3.3.1 Detail

We implement uniform sampling by introducing a sequence number. At the start of tracing,
a sampling rate is decided. For every IO request trapped, we increment the sequence number.
However if the sequence is only a certain multiple, we actually copy the request details and
data. Thus for the non-sampled requests the overhead is only of incrementing the sequence
number, which is very low. There are certain nuissance to this: i.e since there are many
request sizes, it is quite possible that the average sampled requests are much bigger than the
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average of whole corpus. For the applications, we wanted to test on this turned out to be
work till a certain sampling rate. For most of the applications, the sampling rate will need
to be tuned so that the actual sampling is done bearing that in mind.

Algorithm 2 Pseudo Code for sampling modifications.
Kernel:
For every 10 request received at the file system
if 10 request cannot be completed by page cache then
copy filename, if available, for the request
copy file offset, if available, for the request
submit request to block layer
On request entering the queue
if request == WRITE and sequence number is 0 modulo sampling rate then
create a blk_io_trace struct, with fs and disk attributes, and IO contents
write the struct on the ring buffer
end if
if request == READ and sequence number is 0 modulo sampling rate then
create a blk_io_trace struct, with only fs and disk attributes
write the struct on the ring buffer
end if
wait till request is completed by the disk
On request completed by disk
if request == READ then
create a blk_io_trace struct with only io contents
write the struct on the ring buffer
end if
end if
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3.3.2 Experiment
To measure the effectiveness of the sampling we compared them against an unsampled data.

We calculated the read to write ratio and read-write size ratio. Our results show that
depending on the sampling rate, we can get very similar numbers between the two.

3.3.3 Evaluation

More details of the experiment setup in in subsequent chapter.
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Figure 3.4: 10 Monitoring Overhead with micro-benchmarks.



Chapter 4

Application

Traces can be used in a variety of ways. It can either be online, or offline. While the
first one is useful for adapting your system based on user workload, the second can help
in detailed analysis, debugging and security. These traces are analyzed, the user pattern
and the system response is understood. If used online, these traces become input to the
system being optimized. One novel way we have used the system is to use as a continuous
monitoring process. The tracer continues to trace the IOs and send them over to a server,
which analyzes the data access pattern. In the next sections, we will provide motivation
for a problem where tracer is a crucial component, and describe our overall approach. We
will provide brief background and short outline of the system, focusing only on the aspects
related to the IO tracing.

4.1 Introduction

In recent years, virtualization has attracted significant attention due to its capability to act
as the core enabling technology for virtual desktop environments (VDE) and cloud comput-
ing. VDE significantly eases lives of both administrators and users; it allows administrators
to manage desktops in a centralized manner, and users access a desktop environment through
thin-clients. The main advantage of VDE is it enables enterprises to drastically lower the
hardware and operational costs. VDE also provides flexibility of dynamic workload manage-
ment and secure remote access to an enterprise desktop environment.

Within the VDE, the storage infrastructure is typically realized using shared storage box,
that offer management features preferred by system administrators [23]. However, the virtual
desktop deployment suffers significant capital costs from this storage. In order to support
the high scalability enabled by virtualization technology, the shared storage must also be
scalable. Moreover, the shared storage should also be able to support peak load such as boot
storms, login storms, virus scan storms. For example, boot and login storms usually happen

15
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at 9 am on weekdays, virus scan storms happen at 3 am [14]. While the average IOps from
light users are usually 8-10 IOps and from heavy end users is 14-20 1Ops, the login process
generates 90-100 IOps per end user on average, which is around 5 times higher than the load
from a heavy end user [9].

Researchers and vendors have observed that there is a lot of duplicate data within VDEs,
since the virtual images usually are created using the same golden images and the virtual
desktops typically install the same set of applications such as anti-virus software and web
browsers. Based on this observation, the I/O reduction techniques including dedup-box [8];
atlantis ILIO [7]; Capo [23]; seacache [14] have been proposed to reduce the duplicated I/O
load from the shared storage system, and hence improve the storage efficiency.

The effectiveness of all the above-mentioned techniques depends on the amount of duplicated
data accessed by VMs running on the same physical hosts. While VMs are usually placed
and managed by a centralized VM manager, suboptimal VM placement can lead to reduced
(or preclude) common data accesses by VMs on the same physical host, and thus results
in less I/O reduction. For example, a naive VM placement algorithm that places virtual
desktops belonging to employees from payroll department and virtual desktops belonging
to employees from software development department indistinguishably reduces opportunity
to detect common accesses and is not a good idea. In contrast, placing virtual desktops of
payroll department on one set of physical hosts separately from those of software development
department offers better reduction in I/0.

To best leverage the 1/O reduction techniques, we propose SMIO, a virtual machine place-
ment technique based on the I/O similarity among VMs. The novelty of SMIO is to detect
I/O similarity among different virtual machines, utilize hierarchical clustering to produce
a new 1/O similarity aware VM placement scheme, and migrate the VMs correspondingly
when benefits of such consolidation outweighs migration cost. We define 1/O similarity as
the ratio of common data block accesses to the total unique data block accesses among all
virtual machines during an epoch. SMIO complements and improves the efficiency of 1/O
reduction techniques and reduces the 1/O load on the shared storage system, which in turn
reduces the cost of the shared storage system while sustaining higher performance.

4.2 Background

4.2.1 I/0O Reduction Techniques

Various I/O reduction techniques have been proposed to reduce the pressure on the shared
storage system in virtualized environment and are complementary to SMI0. Capo [23] lever-
ages the fact that most of VM disk images are the linked clones from a small set of ”golden
images” and uses a bit-map to eliminate duplicate read requests. It also utilizes the host-side
cache to reduce the number of I/O requests to the shared storage system. The VM images
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are cached in each host locally, the redundant reads/writes to the same block from virtual
desktops residing on the same host are served by the host cache instead of the shared storage
system. However, Capo cannot detect duplicate reads outside of golden images or handle
duplicate writes.

Taking the idea a step further, SeaCache [14] integrates host-side cache with storage-side
deduplication. It eliminates not only the I/Os from the same logical block from the same
host, but also the I/Os from the same host to different logical blocks but with the same data
contents. More specifically, if a data block is already stored in the content addressable host
cache, the access to this data content from the same host will not be seen by the shared
storage system.

Clearly, at each host, the more accesses to the same data contents, the bigger savings the
IO reduction techniques like SeaCache can bring. The goal of our work is to maximize the
power of such I/0 reduction techniques by placing the VMs with similar I/Os on the same
physical host.

SeaCache Overview

In this section, we discuss how I/O reduction techniques help improve the scalability and
performance of storage system in virtualized environment and why the efficiency of 1/O
reduction technique depends on the I/O similarities of VM workloads on the same physical
host. We focus on discussing SeaCache [14] which we use as the our underlying I/O reduction
approach.

In this work, we use SeaCache [14] as the underlying I/O reduction approach. SeaCache
proposed efficient data transfer protocol between VMs and storage systems, which is inte-
grated with host side caching and storage side deduplication holistically. SeaCache reduces
the I/O requests sent from VMs to storage system by detecting and removing redundant
content transfers.

The system is composed of a deduplication engine in shared storage system, a content ad-
dressable cache [12] inside the hypervisor at each host side, a content sharing protocol be-
tween the hosts and the storage for 1/O reduction and a cache-tracker in the storage system
which keeps track of the host cache contents.

The content addressable cache maintains a mapping of data blocks and the corresponding
hash value, which enables the hypervisor to detect duplicate reads, and store only one copy
of data in the host hypervisor cache. Using content addressable cache makes the hypervisor

cache much more efficient in that the same physical memory now can save much more data
blocks.

The deduplicated storage system maintains a mapping of each data block and its hash value.
It supports the hash value access of any data blocks stored in the system efficiently. The
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basic protocol of read path first asks for hash value of the data from storage system before the
data is actually read from storage. If there is already one copy of the data in the hypervisor
cache, there is no need to get the data block from the storage server again. Otherwise, the
read is performed the same as traditional read request. For the write path, before the data
is written back to storage system, the hypervisor computes the hash value of the written
data blocks, asks the storage system if it has the blocks stored. If so, there is no need to
send back the actual data. Otherwise, the data blocks are written to the storage system as
in traditional approach.

It is straight forward to see that the more data blocks with the same content accesses by VMs
on the same physical host, the higher I/O reduction ratio will be achieved by a I/O reduction
technique, e.g., SeaCache. This serves as a motivation for SMIO to place virtual machines
with higher I/O workload similarities together and significantly improve the efficiency of I/O
reduction techniques.

4.2.2 Virtual Machine Management in Virtualized Environment

The virtual machines (VM) management in virtualized environment is typically handled by a
centralized VM manager [6]. The VM manager maintains the global information such as VM
resource allocation information, the VM location information. It also periodically receives
the heart beat messages from each hypervisor, which carries information about the CPU,
IO |, network utilization information, etc. Based on such dynamically collected information,
the VM manager computes the new VM placement and migration plan. The VM placement
manager optimizes the VM placement and migration scheme based on certain metrics, such
as energy consumption, CPU consumption, and network traffic while attempting to minimize
the migration overhead and reduce the number of migrations required.

The reason for dynamically adjusting the VM placement scheme is the changing nature of
application workloads. For example, a VM that is inactive at one point might become active,
leading to an overloaded physical host. The VM placement algorithm must be capable of
alleviating the hot spots [26]. Moreover, the I/O access pattern may change overtime. The
set of VMs that have similar /O accesses at one point may become dramatically different
later. If the optimization goal of the VM placement is to maximize 1/O similarities in the
same host, static VM placement scheme can not be employed given the changing workloads.
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Figure 4.1: The overall system architecture.

4.3 System Design

4.3.1 Design Rationale

The goal of SMIO is to efficiently detect I/O similarities among different VMs, cluster the
VMs with similar workloads together and place the clustered VMs on the same physical host.
The system should try to do this only if the migration benefits exceed the migration cost.
The system needs to periodically re-adapt to the workload changes by creating better VM
placements when possible.

A basic approach is to periodically collect 1/O access information from each VM and send
that to a VM placement manager. Access information is collected by installing an I/O
monitoring component on each VM. The monitor computes the hash value of each block
being accessed by the VM using collision resistant hash mapping, such as SHA-1 [1]. It then
regularly sends a list of these collected hash values to a centralized placement manager. The
manager is capable of using this information and adapting to changes in workload properties,
and ensuring that a placement are done on the latest workload.

The manager uses the gathered information to cluster VMs with similar accesses, which can
then be assigned to a physical host together. The centralized approach faces scalalbility issues
with the large number of hash values collected from thousands of VMs in a large cluster.
The network capacity of the centralized manager will easily become the bottleneck, thus
impacting the overall system performance. To address the bottleneck, we design a layered
approach, where individual hosts collect local I/O access information, process it, and only
report a summary to the placement manager. However, the approach still requires a central
manager to collect the global information from all hosts to make proper VM clustering
decisions. We design SMIO to address the above challenges. Specifically, we address the
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following design goals from our system:

e Scalability: the VM placement manager should be able to scale and generate a solution
for thousands of VMs in seconds, and the solution time should grow very slowly if at
all.

e Low bandwidth consumption: the communication between the VM placement manager
and the hosts should be minimal.

e Low overhead: the work performed at hosts and VMs for collection and processing of
the 1/Os should minimally impact the performance of the VMs.

e Adaptablity: the VM placement manager should be able to adapt dynamically and
reconfigure the placement topology to better suit to the detected 1/O workload changes.

4.3.2 Terminology

The overall architecture of SMIQO is shown in Figure 4.1. Here, we introduce the terminology
that we have used.

e Cluster: A cluster is a composite strucutre consisting of one or more VMs. A cluster
can also contain a group of other clusters.

e Cluster size: the number of VMs within the cluster.

e [/O similarity: For any two clusters i, j, during a certain time interval, their 1/O
similarity is defined as the ratio of the number of common unique blocks accessed by
both clusters (c;;) to the number of total unique blocks accessed by both the clusters

(Bij)-

e Data sharing matrix Mpg,: It is defined as

- (a12,512) (Oélmﬂln)

(@(n—1)n> Bin-1)n)

, where n refers to the number of clusters. Mpg, represents in DHT of node k, the
number of common unique blocks accessed by cluster 7,7 and the number of total
unique blocks accessed by both cluster i, j, under a distinct hash value range taken in
charged by host k.
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e Global I/O similarity/ migration cost matrix Mgc: It is defined as
- T2 0 Tm

Y(n—1)n

, where v, = >, i/ Y, Bij—mcost;; /mcost g, mcost is the migration cost of cluster
1, 7, while mcost,,q, is the maximum migration cost within all the cluster pairs. Mgc
indicates the I/O similarity and migration cost between any two clusters (i,7)/. The
higher v two clusters have, the higher overall benefit, namely high 1/0 reduction with
low migration overhead, can be achieved by migrating the two clusters to the same host.

4.3.3 Architecture Overview

The architecture overview of SMIO is shown in Figure 4.1, where it runs on the Xen plat-
form [4]. The targeted environment comprises of a shared storage system for persistent data
storage and hosts organized in racks. The shared storage system eliminates the need to mi-
grate the VM disk image files during migration, and only requires moving the in-memory VM
state. Each host supports a number of VMs and has a DHT node running in the most privi-
leged VM (Dom0). Each VM has an I/O monitor running in its guest OS. The I/O monitor
traps the application I/O accesses at block level, computes the hash values and sends it to
the hosts corresponding DHT node periodically. Each DHT node is responsible for a distinct
hash range. A VM placement manager runs on a dedicated host, which implements most of
the intelligence of SMIO. The Xen hypervisor on every host receives instruction from VM
placement manager for VM placement and migration. The VM placement manager collects
information from DHT nodes in each host and uses hierarchical clustering [25] to generate
a VM placement scheme. Hierarchical clustering is a widely used data analysis tool, which
successively merges similar groups of points to create clusters of similar items. Compared
with k-means [10] or k-medoids [21], hierarchical clustering does not require specification of
the number of clusters k, which is an unknown in our environment.

4.3.4 Hierarchical Clustering in VM Manager

We adopt a bottom-up approach for hierarchical clustering. Each VM starts as a cluster with
only itself as a member, then merges with other VMs (clusters) are performed successively
until the algorithm can no longer find a suitable cluster to merge with based on the defined
clustering criteria. The criteria factors in I/O similarity between the clusters to be merged
and the cost of migrating the associated VMs. This is critical, as while merging clusters with
high I/O similarity are preferred, the resulting migration overhead may negate the benefits.
Such cases may arise for example when the two candidate clusters are far apart in terms of
network distance. Once a suitable clustering plan is determined, a VM migration executor
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Algorithm 3 The hierarchical clustering algorithm used in SMIO.
VM manager:
Epoch current_epoch;
On every t; minutes:
n=0;
while true do
send to all DHT nodes: getDSMatrix(n, current_epoch, null);
Gather all Mpg for all DHT node;
Calculate global data sharing matrix by > Mpg;,;
Calculate M,,;
Sort the v entries decreasingly;
Group the cluster pairs which can fit into a physical host and have highest value of ~;
if new schemes generated == false then
break;
end if
n++;
Broadcast the new scheme to all DHT nodes;
end while
Send the generated plan to VM migration executor.
Start a new epoch by increasing current_epoch by one and send to all DHT nodes;

DHT node:

Hashtable _ht_dht;

Epoch current_epoch;

Onreceive getDSMatrix(n, current_epoch, null) from VM manager:
Send message Mpg to VM manager;

Onreceive the new scheme:

Update the Mpg for new cluster (7, ), delete column j, row j, update column 4, row 4,
based on the definition.

Onreceive start new epoch ¢’ from VM manager:

Clean up the hashtable _ht_dht and the data sharing matrix Mpg;
Current_epoch=¢’;

Onreceive list of block hashes from a I/O monior:

Update the data sharing matrix Mpg;

Merge the list of block hashes into _ht_dht;

I/O monitor:

Hashtable _ht_iotrace;

Sampling 1/O accesses, store it in Hashtable _ht_iotrace;

On every t5 sec, sends calculated block hashes to DHT nodes, cleans up _ht_iotrace;
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generates a migration plan aimed at minimizing the number of migrations, resulting network
traffic, and migration time.

In order to cluster the VMs more effectively, SMIO needs to estimate the benefits gained
and the migration cost incurred by grouping the VMs/clusters with similar I/O workloads.
The benefit is quantified by the current I/O similarity Y, a;;/ >, Bi; of the two clusters
1,j. Calculation of the migration cost needs careful consideration. Under a shared storage
infrastructure that does not require migrating the VM disk image files, the migration cost of
grouping two clusters mainly depends on the allocated memories of clusters and the network
distance between them. Network distance here refers to the hops required to transfer the in-
memory data from one host to another. The larger the allocated memory clusters have and
the longer the distance, the higher network traffic they would incur, thus leading to higher
migration cost. The reason is that a typical live VM migration involves copying the memory
pages from the source host to the destination host across the network. Thus, we estimate
the migration cost of grouping two clusters as the smaller of the allocated memories size
among the two clusters times the network distance between the two clusters. The allocated
memory size of a cluster is the sum of the allocated memory size of its children and the
network distance is the minimum network distance between any child pairs from the two
clusters. To make the two factors comparable, we choose to normalize the migration cost by
the maximum migration cost within each iteration within the hierarchical clustering. The
detailed criteria will be explained later in the section.

Note that it is possible that some of the VMs do not have similarity with other VMs. In this
case, other orthogonal placement algorithms [16, 26] can be used to determine the placement
of these VMs, since 1/O similarity does not have impact for such cases. Similarly, for VMs
that are launched without any prior collected I/O information, such placement algorithms
can be used to do the initial placement until the SMIO VM manager processes and suggests a
[/O similarity-based clustering scheme. The detailed algorithm is illustrated in Algorithm 3.

In SMIO, the VM manager and each DHT node maintain an epoch number current_epoch
as the local variable that is used to synchronize between VM manager and all DHT nodes.
If a DHT node is out of sync, it will be excluded in the current epoch. The DHT node’s
epoch number is then updated to join the next new scheme calculation. At every ¢1 minutes,
the VM manager start a new epoch by increasing the epoch number by 1 and launch a new
round of hierarchical clustering.

Each DHT node maintains a hash table _ht_dht and a data sharing matrix Mpg. The keys
in _ht_dht are block hashes (all falls in the specific range), and the value for each key is a list
of VMs which accessed this block during the current epoch. Note that, the keys in the hash
tables belonging to different DHTs do not have any overlap. It receives list of hash values
from I/O monitors periodically.

At the end of each epoch, the VM manager launches the hierarchical clustering algorithm
to generate a new placement scheme. The clustering criteria in SMIO is designed to capture
both the similarity and the migration cost. With the purpose of obtaining the criteria for the
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system, The VM manager first gathers data similarity matrices Mpg from all DHT nodes
that have the same epoch number with iteration number 0. It then calculates the global
data sharing matrix by summing up all the gathered data similarity matrices, followed by
calculating the global I/O similarity migration cost matrix Mgc. Next, the manager sorts
the v values of cluster pairs in a decreasing order, and groups the cluster pairs into a new
cluster, which can fit into a physical host and have ~ greater than the threshold thg;,,. The
algorithm will not group two clusters together as a new cluster if the two clusters cannot fit
into a physical host due to resource constraints. This makes sure that the cluster generated
by the manager does not exceed the capacity of a physical host. If there are new clusters
generated, the VM manager broadcasts the new generated grouping scheme to all DHT
nodes. Upon receiving a new grouping scheme, the DHT nodes update the My, for each
new cluster (i,j) by deleting column j, row j, updated column ¢, row i as described in
Section 4.3.6. The VM manager then proceeds to the next iteration for the current epoch.

If no more new clusters are generated, the VM manager sends the placement plan to VM
migration executor, starts and sends out a new epoch number current_epoch + 1 and ter-
minates the current algorithm iteration. On receiving the new epoch number, DHT nodes
clean up their hashtables and their data sharing matrices Mpg.

Figure 4.2 shows an example execution of the hierarchical clustering algorithm. Initially,
VM1 to VM6 each are separate clusters. After gathering the data sharing similarity matri-
ces and calculating the global I/O similarity matrix the VM manager determines to group
(VM1,VM3) and (VM2,VM5) into new clusters C'7 and C8, which have the first two
highest 1/O similarity ratio greater than threshold thg;,. VM4 and V M6 can not be paired
because the 1/O / similarity ratio is lower than thg,. In the second iteration, the VM
manager groups C'7, VM6 into cluster C'10, C8,V M4 intro cluster C'9. In the third itera-
tion, VM manager finishes the current algorithm because the C'9 and C'10 cannot be further
merged due to the fact that no physical hosts can fit cluster (C'9, C'10).

fn| [wee] [s] [wwe] [ws] [vwe]

Figure 4.2: An example execution of hierarchical clustering.
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4.3.5 1/0 Monitor

The I/O monitor inside each VM traps the block level data, calculates the hash value of
sampled blocks, stores the block hashes as keys in its hashtable _ht_iotrace. The value for
each hash key is simply null. We use hash table to quickly identify the redundant I/O within
a single VM and report only unique blocks because popular blocks within a VM should not
affect the similarity between VMs.

Every t3 second, the I/O monitor periodically sends the hashes of unique blocks accessed by
the VM during (current — ty, current], i.e., the collected hash keys, to corresponding DHT
nodes. The keys are sent to the DHT nodes based on hash ranges and not directly to the
VM manager. This distributes the network traffic across participating physical hosts, thus
avoiding saturating the network bandwidth to the VM manager.

Our implementation of the I/O monitoring process is done by modifying an existing 1/O
tracer for linux kernel, called blktrace, to also record the I/O content. The kernel space
component of the tracer transfers the I/O events onto the userspace one, which among other
things computes the fingerprint and pass that to the DHT node periodically. We would
also like to mention that we chose to implement this in the VM itself, rather than doing in
Dom0, as it was easy to modify an existing tool (blktrace). I/O monitoring and hash value
computation can also be done in Dom0, which would be less intrusive to the VM users. That
might also have lower overhead than in-the-VM approach used currently in SMIO.

In order to make I/O monitoring lightweight, SMIO samples the 1/O accesses with uniform
distribution [17] and only compute the hash value of sampled data blocks. The sampling
greatly reduces the monitoring overhead in terms of CPU and memory utilization.

4.3.6 DHT Node Operation

DHT nodes work cooperatively with the VM manager to implement the hierarchical cluster-
ing algorithm. Each DHT node is in charge of a distinct range of block hash values. Assuming
the block hash values are uniformly distributed, the work will be evenly distributed among
the DHT nodes. DHT nodes helps in offloading the computation and network traffic from
the VM manager by grouping and summarizing the data sharing information between VMs
before sending to the VM manager. This greatly increases the scalability of SMIO.

4.3.7 Migration Execution

Once a new clustering scheme is generated, the migration executor is responsible for com-
puting a migration plan. This plan specifies the host for each cluster. Since the hierarchical
clustering may generate more clusters than the number of hosts, multiple clusters may share
a single host.
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One policy in the migration plan is to place an entire cluster rather than part of it in a
host if possible, since the purpose of this work is to put VMs with similar IOs together.
Under this condition, we try to minimize the migration cost. Computing a migration plan
that minimize the migration overhead is NP-hard, because the wellknown NP-hard multi-
dimensional knapsack problem can be reduced to it. Therefore, we design a greedy heuristic
algorithm to determine the migration plan.

The main idea of this greedy algorithm is that initially each host has zero VMs or clusters
assigned. Then the algorithm picks a cluster ¢ and assigns it to a host 7, based on the benefit
of the cluster 7 can bring and the migration cost to place cluster ¢ to host j, if the resource
requirement does not exceed the physical limit. Next, we describe how to pick a cluster and
a host in details.

The benefit of cluster 7 is u;. p; represents the number of block accesses can be saved in
current epoch if its member VMs are placed together compared with each member VM is
placed on different hosts. If each VM is placed separately, the unique blocks accessed by each
VM will be requested from the storage server once. The subsequence accesses to an unique
block from the same VM will be satisfied by the host cache. If VM 1 accesses block 1 at the
first time, block 1 will be requested from storage. After that, the accesses to block 1 from
VM 1 will hit the cache, but the accesses to block 1 from VM 2 will still go to storage since
VM 2 is in a different host. Thus, the total accesses to the storage server from all separately
placed VMs will be the sum of the unique block accesses from each VM. If the VMs in a
cluster are placed together, only the unique blocks accessed by the cluster will be requested
from the storage server once. The subsequence accesses to an unique block from the same
VM or different VMs in this cluster will be satisfied by the host cache. For example, VM 1
is the first one in the cluster to access block 1, and the request to block 1 goes to storage
server. After that, the access to block 1 from VM 1 or other VMs in the cluster will not go to
storage server. Thus, the total accesses to the storage server from all VMs in the same host
will be the total number of unique blocks accessed by the cluster. Therefore, the benefit u;
is defined as the sum of the unique block accesses from each VM within cluster ¢ subtracted
by the total number of unique blocks accessed by cluster i.

The migration cost of assigning cluster ¢ to host j is v;;. It is the total cost of moving all its
VMs which are not in host j to host 5. The cost of moving a VM from host [ to host j is
defined as the memory size of the VM multiples the network distance between host [ and j.
To put the resource constraints into the picture, if host j does not have adequate resources
to fit cluster ¢, the migration cost is set to oo.

Combining both factors, we define the benefits-costs metrics of assigning cluster ¢ to host j
as:T;j = i * Shiock — @ * Vi, Where Sy is the storage block size, a is a parameter used to
adjust the weight between benefit and migration cost. For clusters with cluster size greater
than one, 7 values smaller than zero means the benefit is less than the migration cost, the
corresponding assignment is unqualified; if the cluster in its entirety are residing on host 7,
then 7 = p * Spioer >= 0. Clusters with cluster size one have y =0 and v = 0 thus 7 = 0 if
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they are on host j, 7 < 0 if not . Next, we describe the algorithm in

To decide to pick which cluster and place it to which host, the algorithm maintain a sort
list of 7 values in decreasing order. Unqualified assignment with negative 7 for clusters with
cluster size greater than one is not in the sorted 7 list. the algorithm picks the highest 7,
assigns the corresponding cluster ¢ to host j. The move is feasible because if host j does
not have sufficient CPU, network, memory resources to fit cluster i, the 7 value is —oo. The
affected 7s are updated to reflect the placement decision just made. Specifically, the 7;; are
set to —oo thus removed from 7 list if any unassigned clusters k£ can not fit on to host j. The
TS of cluster ¢ are deleted from 7 list for each host k. The algorithm repeats the process
until not positive 7 values in the list. At this point, the unassigned clusters with cluster
size greater than one will not be clustered. These clusters are then break into clusters with
size one, the corresponding 7 values are updated and inserted into the 7 list. The process is
repeated until all clusters are placed.

After the new placement topology is generated, the migration executor needs to make sure
that the new calculated placement topology actually outperforms the current placement
topology before the actual migration. This is done by comparing the total benefit (amount
of accesses saved) by changing from current placement to new placement with the total
migration cost of this change. For the comparison, we compute us for each physical host
of new placement topology, the u’s for each physical host of current placement topology,
the migration cost vs for each VM needed migration. The benefit-cost metrics ® here is
ZieP(:ui — 115) * Shioer, — @ * ZieMset v;, where P is the set of physical hosts, Mset is the
set of VMs required migration.The cluster for p; of host i is the VMs assigned or residing
on host i. If & > 0, then the new calculated placement topology have high possibility to
yield better performance than the current solution after migration. Otherwise, the current
migration plan is abandoned without changing the placement topology at this round.

If the algorithm decide to execute the migration plan. The output of the algorithm is a
list of clusters and the new destination host for each; the migration is triggered after the
algorithm is terminated. Note that it is common to have clusters with cluster size one stay
on the same host according to the computed migration plan.

4.4 Evaluation

We use trace driven simulations to evaluate the effectiveness of SMIO. In this section, we
first describe the traces we collected, then we give details of the simulator, followed by a
description of the experiments conducted.



Sushil G. Mantri

Chapter 4. Application

Table 4.1: Workload characteristics.

28

Workload Training | Biobenchl | Biobench2 | TestDev
center

Similarity medium | medium varied strong

Duration 2.5 hours | 1.5 hours | 46 min 36min

Read 28.9G 419G 407.7G 479G

write 30.5G 29G 10.2G 16.3G

# of requests 201K 495K 456K 4.1M

# of clients (VMs) || 280 12 12 8

4.4.1 Methodology
Workloads

We collected and used four different traces for our experiments, which are summarized in
Table 4.1. The traces are classified into different similairty level, namely strong, medium
and varied, based on the I/O accesses they exhibit. Strong similarity means different clients
(VMs) have higher possiblity to access the same data contents in a relatively small time
frame, whereas varied similarity means different clients have lower possiblity to access the
same data contents or access the same data contents at very different time. Within the trace
file, for each I1/O access we collect the type of 1/O (read/write command), the timestamp,
the IP address of hosts, the file name, the offset and the size of the I/O and a list of hash
values computed from actual data.

Training center traces: Running VMs within a training center is another common usecase
that presents similar I/O workloads. For example, in a TOEFL English Test training center,
all the classes have same time durations of typically 45 minutes. The first class usually begins
at 8am with 4 classes packed in the morning. Within a class section, VMs owned by each
student is likely to show similar I/O workloads. for example, VMs in a listening test section
are going to retrieve the same audio file as students are instructed by the teacher to listen
to a particular content. VMs in a speaking test section retrieve same spoken instructions
but write different I/O contents to the shared storage as the audio recorded from different
students will be different. We collect the traces of a total of 280 students within 5 listening
sections and 2 speaking sections. Each section comprises of 40 students. The VMs from
the listening sections present strong similarity correlation, while the VMs from the speaking
section show weak similarity correlation. The 7 sections begin at the same time with a total
duration of 2.5 hours.

Bioinformatics benchmarking traces: These traces capture a typical scenario within
scientific research centers such as national labs or university labs where users perform bio-
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informatics related research. Users in this case usually focus on the research of a particular
DNA and protein, and run search queries against corresponding databases. We use Blastto
demonstrate such a usecase and collect the traces. Blast is a widely used DNA /protein
sequence searching application. In our setup, three databases are used: NR with size of
17G, NT with size of 14G, and HTGS with size of 6G. Our bio-benchmark 1 (biobenchl)
has 4 clients running on queries against each database with a total of 12 clients. Clients
searching against the same database run queries with different parameters representing the
case that users are tweaking the parameters. Our bio-benchmark 2 (biobench2) has a similar
setup except that clients searching against the same database run a set of 4 queries in different
orders representing the cases that users are collaborating on research of same types of protein
or nucleotide sequences. The similarity between VMs are varied in these traces.

Test and development traces: A typical scenario is enterprise level test development
environment where users usually continuously 1) develop/ edit codes, 2) compile codes,
3) install builds, and 4) conduct QA activities. Within an enterprise, different departments
might be responsible for developing and testing different products and different teams within
a department might be responsible for developing and testing different features of the same
product. The group of VMs that test different features of the same product will typically
exhibit strong similarities since the majority of code base is the same. We setup such a test-
dev environment and collect the traces. More specifically, there were four VMs for developing
and testing linux kernel version 2.6.32.15 and four VMs for developing and testing Xen 4.2.
The 8 VMs read 47.9G data and write 16.3G data in total.

Simulator Design

Trace driven based simulation allows us to explore a variety of configuration spaces and the
scalability of our system. We developed our simulator based on the one used in SeaCache.
SeaCache is a simulator that simulates I/O behavior of VMs and hypervisors under a share
storage architecture that is responsible for computing the average I/0 latency and I/O reduc-
tion between VMs and storage server. Our simulator implements all the components shown
in Figure 4.1 except the I/O monitor because we collected the traces offline. Particularly, the
simulator consists of a DHT node, hierarchical clustering component and migration execu-
tion component. The hierarchical clustering component takes traces and configured system
parameters as input and generates clustering schemes that are fed into the migration execu-
tion components. The migration execution component then computes the actual placement
of clusters, and executes the migration plan by instructing the SeaCache simulator to change
the placement of VMs.

We assume each VM has the same cache size of 1G, and the storage server cache size is
4G. The parameters used in the following experiments are: threshold thg;,, of 0.2, decision
interval of 90 seconds, and no sampling unless mentioned otherwise.
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4.4.2 Effectiveness of SMIO

In our first set of experiments, we use our simulator to show the effectiveness of our system
SMIO by comparing with First Fit Decreasing (FFD) [15] placement, the best and worst
placement technique under test development, training center and biobench workloads. FFD
is a greedy approximation algorithm designed for multi-dimensional bin packing problem,
which attempts to place the VMs in the first host that can accommodate the VM. The order
of hosts are sorted according to network architecture initially but fixed in all the algorithm
runs. Particularly, hosts within a rack are neighbors in the host list. The placement of VMs is
processed in the arrival order. The best/worst placement is the best/worst placement policy
that yields the best/worst performance under different traces, which in general consumes the
least/most I/O bandwidth between storage server and hosts. We obtained the best/worst
placement manually to the best of our knowledge of the traces used.
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Worst placement W &
FFD placement W
FFD placement W

SMIO placement R
SMIO placement W
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Best placement W
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Figure 4.3: I/O bandwidth consumption under training center trace.

Training center trace Figure 4.3 shows how much data is transferred between storage
server and 280 VMs for training data center trace under different number of VMs per host.
The four groups of bars in the graph are 10 VMs/host with 28 hosts in total, 20 VMs/host
with 14 hosts in total, 30 VMs/host with 10 hosts in total and 40 VMs/hosts with 7 hosts in
total. With each group, the I/O bandwidth between hosts and storage servers are illustrated
under FFD placement, SMIO placement and best placement policy. We observed that the
different placement policies significantly impact the I/O bandwidth consumption between
hosts and the storage server. As we can see, SMIO can effectively detect the similarity
between VMs belonging to different sections and yields low I/O bandwidth consumption
comparable to best placement in all cases. On average, the read path performance of FFD
is 4.9 times worse than SMIQ, while write path is only 2.1% worse. The reason is that the
students in each listening section of training center trace listen to same materials most of
the time during the section. This leads to high similarity of read workloads within each
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listening section. On the other hand, the students in speaking section listen to instructions
intermittently and record their speeches most of the time during the section, which results
in nearly zero similarity for the write path I/O traffic. As the number of VMs per hosts
increases, the 1/O bandwidth consumptions are all reduced for all placement techniques.
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Figure 4.4: 1/O bandwidth consumption under biobenchl trace.

Biobench traces Figure 4.4 and Figure 4.5 show the 1/O bandwidth consumption for
biobenchl and biobench2 traces under different placement policies and different number of
VMs per host, namely 12 VMs distributed evenly on 3 hosts, 4 hosts and 6 hosts. In both
traces, SMIO achieves almost the same 1/O consumptions as the best placement policy. In
biobenchl, the I/O consumptions of worst placement policy is 1.27, 1.37 and 1.87 times worse
than SMIO for the three number of hosts considered, while the FFD placement is 1.22, 1.27
and 1.63 times worse than SMIO. In biobench2, the I/O consumptions of worst placement
policy is 1.52, 1.51 and 1.97 times worse than SMIO for the considered scenarios, while
the FFD placement is 1.35, 1.31 and 1.95 times worse than SMIO for the corresponding
scenarios. It is observed that SMIO again effectively detects the similarity between VMs
working on different data sets and groups the VMs correspondingly. Here we do not show
the I/O consumption of read and write path separately because the traces are read-intensive
with negligible write traffic.

Test development trace Figure 4.6 shows similar results that SMIO effectively detects
the I/O similarity and achieve the performance as the best placement. To see how the
migration scheme is helping save the I/O consumptions, we plot the I/O consumption over
time using test development trace. In the simulator, we record the /O and print out the
value every 20 seconds. Figure 4.7 illustrates that after monitoring the 1/Os for the first
5 minutes, SMIO decides to migrate VMs for new placement and the 1/O seen by storage
server are consistently less than the I/O consumption before migration. Moreover, SMIO
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Figure 4.5: 1/O bandwidth consumption under biobench2 trace.
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Figure 4.6: 1/O bandwidth consumption under test development trace.

helps to reduce the peak bandwidth requirement by 33%. In total, SMIO reduces the 1/O
consumption by 74% compared to the base case.

4.4.3 Parameter sensitivity analysis

The performance of SMIO depends on selection of various thresholds and system parameters,
such as thg,, t1 and te, which needs to be chosen carefully. Lower benefit-costs threshold
thgi, indicates that more clusters would be paired up within each iteration, which results
in fewer iterations and faster algorithm convergence. However, it may miss better pair-
up opportunities. For example, cluster 3,4 might be paired up in ny, iteration with lower
thsim, which misses the opportunity to pair cluster 3 with cluster 1,2 in n + 1, iteration.
On the other hand, if thg;, is set too high, it would increase the number of clusters with
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Figure 4.7: I/O bandwidth consumption under test development trace.

size 1 and deteriorate the quality of generated cluster scheme. In terms of ¢y, if it is set
too low, unnecessary resources will be wasted. To generate a new VM placement plan,
network bandwidth will be consumed for VM manager to communicate with DHT nodes
not to mention the computing cycle and memory space utilized by Algorithm 3. If ¢; is set
too high, the potential I/O optimization opportunities will be missed. On the other hand,
interval ¢, decides the length of the package delivered to corresponding DHT nodes. Small
to would lead to small packages with larger network package header overhead, whereas large
ts would lead to big package which would get large memory overhead since I/O monitors
have to buffer them before sending to DHT nodes.

To quantify the quality of a generated cluster scheme, we use the ® as discussed in Sec-
tion 4.3.7. The experiments in this section are conducted with 40 VMs per host on 7 hosts.
The results show a general guideline for picking thg,, t1 and ts.

® —=—  Unclustered VMs ————

100 T T T T T 60
80
60 -

40 |

Normalized ® (%)

20

Number of Unclustered VMs

0.2 0.4 0.6 0.8 1
sampling rate

Figure 4.8: Sampling rate and similarity score.
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Impact of sampling rate

The next experiment demonstrates the relationship between sampling rate of 1/O monitor
and the similarity score and the number of clusters with size 1 under hierarchical clustering.
As expected, Figure 4.8 shows that the similarity score positively relates to the sampling rate,
the higher sampling rate yields higher similarity score. This provides a trade-off for users
to adjust. The sampling rate can be dynamically increased when the host has idle system
resources and decreased when the VMs use up the system resources. On the other hand, the
number of clusters with size one keeps decreasing as the sampling rate keeps increasing until
to 0.6, which suggests a sweet configuration spot under this setup.
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Figure 4.9: Overhead of the I/O Monitoring component.

4.4.4 System Overhead and Scalability

Monitoring overhead. In this experiment, we measure the overhead of our I/O Monitoring
component under different sampling rates, including without monitoring (baseline), 1 : 10
sampling rate, 1 : 2 sampling rate, and monitoring all I/Os (no sampling). The performance
(speed) is normalized to the baseline performance. Since our monitoring component kicks
in only when there are active I/Os happening to the disk, we test some I/O intensive and
[/O-CPU intensive applications. The first experiment is sequential read of a 5GB file (seqS)
under various sampling rates. The experiment shows that even with no sampling, i.e., tracing
all the I/Os, the observed read speed decreases by less than 3%. The same is not true for
the multi-threaded (2 threads) version of this experiment (seqM), where we see how higher
sampling rate helps to keep the performance hit in check. For our third experiment, we run
the unix utility dd to copy a 10GB file. Again, as this is more “I/O-intensive” than the first
experiment, we see a more decreased transfer speed (in terms of MB/s). Finally, we run the
task of Linux kernel compilation, which is both computation and I/O intensive task. We
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observe that . These results show that the overhead of the I/O monitoring can be kept low
with an appropriate sampling rate, thus SMIO offers a feasible and practical approach to

managing VMs.
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