
HIDE - METADATA BASED DATA INTEGRATION
ENVIRONMENT FOR HYDROLOGICAL DATASETS

Nimmy Ravindran

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science
In

Electrical and Computer Engineering

Dr. Yao Liang, Chairman
Dr. Lamine Mili
Dr Luiz daSilva

Dec 1st, 2004
Alexandria Research Institute,

Alexandria, Virginia

Keywords: Scientific data integration, data interoperability, metadata, distributed
information systems, earth science data.

Copyright by Nimmy Ravindran

HIDE - METADATA BASED DATA INTEGRATION
ENVIRONMENT FOR HYDROLOGICAL DATASETS

Nimmy Ravindran

ABSTRACT

Efficient data integration is one of the most challenging problems in data management,

interoperation and analysis. The Earth science data which are heterogeneous are collected

at various geographical locations for scientific studies and operational uses. The intrinsic

problem of archiving, distributing and searching such huge scientific datasets is

compounded by the heterogeneity of data and queries, thus limiting scientific analysis,

and generation/validation of hydrologic forecast models. The data models of hydrologic

research communities such as National Weather Service (NWS), National Oceanic and

Atmospheric Administration (NOAA), and US Geological Survey (USGS) are diverse

and complex. A complete derivation of any useful hydrological models from data

integrated from all these sources is often a time consuming process.

One of the current trends of data harvesting in scientific community is towards a

distributed digital library initiative. However, these approaches may not be adequate for

data sources / entities who do not want to “upload” the data into a “data pool.” In view of

this, we present here an effective architecture to address the issues of data integration in

such a diverse environment for hydrological studies. The heterogeneities in these datasets

are addressed based on the autonomy of data source in terms of design, communication,

association and execution using a hierarchical integration model. A metadata model is

also developed for defining data as well as the data sources, thus providing a uniform

view of the data for different kind of users. An implementation of the model using web

based system that integrates widely varied hydrology datasets from various data sources

is also being developed.

Nimmy Ravindran Acknowledgements iii

Acknowledgements

I would like to thank my research and academic advisor Dr. Yao Liang for his guidance

and support during this program. His advice, patience and optimism have helped me

tremendously in the realization of this work. This has been an amazing learning

experience. I would also like to thank Dr. Lamine Mili and Dr. Luiz daSilva for

reviewing this work and providing valuable suggestions and comments.

I wish to express my gratitude to the National Weather Service River Forecast Center for

their financial support in developing the architecture and implementation of the models.

Special Thanks go to Dr Xu Liang, Department of Civil and Environmental Engineering,

University of California, for reviewing my work and providing valuable insights and

comments. Thanks also to Thomas Adams, NWS Ohio River Forecast Center for his

patience in reviewing and testing the implementation of the models.

My deepest gratitude goes to the faculty of ECE department and all the staff at

Alexandria Research Institute. It has been an honor to work with you in these past years.

Very special Thanks to Dr. Binoy Ravindran, for his invaluable attention, and guidance

throughout this program. Thank you for your encouragement, and directions as a

professor, advisor and family. I will be in eternal debt to you.

This thesis is dedicated to my family and my husband. I owe it to my parents for their

love and support in this exciting experience. You have taught me to fight hard, face the

adversities and be happy. Mahesh, without you standing beside me, and guiding me

through every difficult time in my life, this dream would not have been possible. You are

my inspiration.

Nimmy Ravindran Table of Contents iv

Table of Contents

Acknowledgements.. iii

Table of Contents... iv

Table of Figures... vi

Table of Tables ... vii

Chapter 1 . INTRODUCTION .. 1

1.1. Motivation... 1
1.2. Data Management Methods in Scientific Community 2
1.3. Problem Definition .. 3
1.4. Approach... 3
1.5. Outline .. 5

Chapter 2 . Literature Review ... 6

2.1. Interoperability and its Impact on Information Systems 6
2.2. Mediation .. 9
2.3. Example Information Systems ... 11
2.4. Metadata Standards ... 15

Chapter 3 . Data Integration Model ... 18

3.1. Introduction... 18
3.2. DataNode(s) and DataNode Tree ... 18
3.3. Views – User, Logical & Physical ... 19

Chapter 4 . Metadata model .. 22

4.1. Introduction... 22
4.2. Metadata schema describing DataNode:... 25
4.3. Metadata schema defining the operational characteristics-query plan of a data
node: 26
4.4. Metadata schema for describing the data (syntax): ... 28
4.5. Metadata schema for describing the access to the data engines: 29
4.6. Metadata schema for transformation of the data:.. 30

Chapter 5 . HIDE Architecture .. 32

5.1. Introduction... 32
5.2. Design Objectives.. 34

5.2.1. Neutral Mechanisms: ... 34
5.2.2. Uniform Information Infrastructure: .. 35
5.2.3. Layering Mechanism: .. 35

Nimmy Ravindran Table of Contents v

5.2.4. Flexibility and Extensibility:.. 35
5.2.5. Simplicity: ... 36

5.3. Object Factory ... 36
5.4. Application services .. 37

5.4.1. Search and Query Engine... 37
5.4.2. Query Screens: .. 40
5.4.3. Recently viewed Data .. 41

5.5. Data Models .. 42
5.5.1. Mathematical Analysis of models .. 42
5.5.2. Object Models ... 47
5.5.3. Aggregation Model.. 49

5.6. Transformation Engine .. 50
5.7. Access Engine ... 51
5.8. Plugins .. 52
5.9. Integration Levels.. 54

Chapter 6 . Data source(s)/ Dataset (s) Registration... 55

6.1. Registration with primary level Integration.. 55
6.2. Registration with secondary level of integration... 59

Chapter 7 . NWS Dataset integration... 60

7.1. Introduction... 60
7.2. FS5Files .. 61
7.3. Integration of Time series data of FS5Files to HIDE...................................... 64

7.3.1. Integration to Access Engine Layer.. 66
7.3.2. Integration to Transformation Engine Layer... 67
7.3.3. Integration to Search Engine and Query Engine ... 67

Chapter 8 . CONCLUSIONS AND FUTURE WORK... 69

8.1. Summary ... 69
8.2. Future Work .. 70

8.2.1. Metadata Security Mechanisms.. 70
8.2.2. HIDE-gen : A metadata generation tool ... 70
8.2.3. Data Visualization ... 71
8.2.4. Data Mining Models .. 71

Appendix .. 72

XML Schema for the metadata model ... 72
Documentation:hide-funcModel .. 72
Documentation: hide-querymodel.. 78
Documentation: hide-syntax.. 88
Documentation: hide-Access Definition .. 93
Documentation: hide-Transformation .. 96
Documentation: hide-dataModel.. 102

REFERENCES ... 113

Nimmy Ravindran Table of Figures vi

Vita... 118

Table of Figures

Figure 1.1 A Schematic representation of the data integration of HIDE.......................... 4

Figure 2.1 Wrapper – Mediator Architecture ... 10

Figure 3.1 A DataNode Tree representation .. 19

Figure 3.2 The three views- user view, logical view, and physical view and the

corresponding DataNode tree. ... 21

Figure 4.1 A simple representation of the relationship between data, metadata and

schema. Every data has a metadata associated with, which follows the rules of the

schema. ... 23

Figure 4.2 The metadata representation for a DataNode tree. A) The metadata required

for each DataNode. B) The dependency between various metadata........................ 24

Figure 4.3 A snapshot of the XDMS metadata. A high level representation of the

description metadata is shown. .. 26

Figure 4.4 A snapshot of the XOMS metadata for precipitation data from USGS data

source is shown. Each search criteria is associated with a field and a validation rule.

.. 28

Figure 4.5 The figure shows XFD metadata for an ASCII comma-separated data file with

a string header and the dataset. The dataset is of type dataTable with dataFields.

Each dataField is further characterized with name, display Name, description and

data Type. ... 29

Figure 4.6 A snapshot of the XAD metadata. The figure shows an Access point definition

for a web based data source. The URL for connecting to the data source is

represented as a baseURL along with the selection parameters. Each parameter has a

name (param) and value associated with it... 30

Figure 4.7 A snapshot of XTMS metadata. The figure shows the type of the dataset as a

two dimensional “Array” along with the spatial and temporal coverage................. 31

Figure 5.1 HIDE – A wrapper/mediator Architecture .. 33

Figure 5.2 HIDE Architecture. .. 33

Nimmy Ravindran Table of Figures vii

Figure 5.3 An object level representation of the object factory at each level and its

relationships with the metadata files. ... 37

Figure 5.4 The trace for a simple query “precipitation for a period of 2 days at the site

Uchee Creek in the state of Alabama. .. 39

Figure 5.5 Search Screen... 39

Figure 5.6 Query Screen ... 40

Figure 5.7 DataView... 41

Figure 5.8 Recently viewed Data List.. 42

Figure 5.9 A Sample Dataset for temporal data ... 43

Figure 5.10 Raster model representation.. 44

Figure 5.11 A temporal-spatial model for a univariate data.. 46

Figure 5.12 The relationship between the data, dataobjects, DataModel and DataModel

schema for a dataset B.dat ... 49

Figure 5.13 A schematic representation of Transformation engine and its operations 51

Figure 5.14 A schematic representation of the plugin for the Access Engine layer......... 53

Figure 6.1 A DataNode sub-tree for the data source TOVS. .. 57

Figure 6.2 The DataNode tree after adding the new data source. 58

Figure 7.1 A schematic representation of PRDPARM files.. 62

Figure 7.2 A schematic representation of PRDTs files... 63

Figure 7.3 The DataNode tree for OFS data. ... 65

Figure 7.4 A high level representation of integration of OFS files to HIDE. 65

Figure 7.5 OFS Time Series Data Integration with HIDE .. 66

Figure 7.6 The integration of FS5Files to the Access Engine layer. The relations between

various modules is also shown... 67

Table of Tables

Table 1 An Overview of three generation of information systems 12

Nimmy Ravindran INTRODUCTION 1

Chapter 1 . INTRODUCTION

1.1. Motivation

Water is a vital resource for both human needs and natural ecosystems. The tremendous

increase in population (e.g., 6 billion people in the 21st century) places a severe burden on

the natural environment. Today, about one-third of world’s population lives in countries

that are experiencing moderate to high water stress (UN-SWI, 1997). On the other hand,

severe weather causes deadly flooding hazards that are socially and economically

devastating. Therefore, investigations, for example, on trends and spatial distribution of

precipitation over the global, and on improvement of hydrologic model forecasts of

future floods and available water play an invaluable role in hazard mitigation (e.g.,

droughts, and floods), agriculture and food production, human health, municipal and

industrial supply, environmental quality, and sustainable development in the changing

global environment. However, more accurate study on the trends and spatial distribution

of precipitation and more accurate hydrologic forecasts rely on better and quicker access,

share, and analysis of heterogeneous datasets, measured and transmitted by various

technologies, and on better data visualizations.

With the advent of global observing systems (e.g., satellite remote sensing) and global

field programs, unprecedented large amounts of critical multi-variate data have been or

are being generated. These new data offer great potentials for researchers to discover

new hydrologic findings/relationships and to make better forecasts if the data are made

accessible and retrievable promptly and appropriately for hydrologic studies. However,

these large-scale heterogeneous datasets are presented, over time, with very different

structures and formats that require substantial efforts to process in order to be able to

make any effective use of them, even with a number of current available software tools,

due to rapid advancement of technology to measure and transmit them. Thus, how to use

these data promptly and effectively to improve hydrologic research and operational

forecast skills poses great challenges. In fact, data preparation generally becomes one of

Nimmy Ravindran INTRODUCTION 2

the most time-consuming, expensive, and tedious tasks, and sometimes could take as

much as 80% of the overall effort (Anand and Buchner, 1998). Clearly, if such

challenges and issues in data acquisition, processing, and management are not

sufficiently addressed, significant improvement in hydrologic research would not be

achieved efficiently.

1.2. Data Management Methods in Scientific Community

The burden of accessing and processing the heterogeneous data is worse for the

hydrologic community compared to others such as oceanic, atmospheric, and ecological

areas. In the oceanic area, for example, DODS (Distributed Ocean Data System)

provides tools (DODS servers) to simplify scientific data networking issues, and for

transforming existing applications into DODS clients (i.e., enabling them to remotely

access DODS served data).. In the atmospheric community, the Unidata Program Center

(UPC, 1998) under University Corporation for Atmospheric Research (UCAR) offers

software and services that enable universities to acquire and use atmospheric and related

data on their computers. In the ecological area, a system called Science Environment for

Ecological Knowledge (SEEK), is under development. SEEK is an information

technology framework and infrastructure that will be used to derive and extend ecological

knowledge by facilitating the discovery, access, integration, interpretation, and analysis

of distributed ecological information. In the hydrologic area, however, an equivalent data

system is not available, although some software tools such as geographic information

system (GIS) tools (e.g., Arc/Info and ArcView) are widely used to delineate watersheds,

obtain river networks, and display spatial images. JOSS (Joint Office for Science

Support) operated by UCAR also provides some preliminary tools for obtaining data

different data sources. The USGS developed Modular Modeling System (MMS) utilities

-- Object User Interface (OUI) providing a general framework to couple disparate

environmental models and to manage some temporal and spatial data at limited scales

(http://www.brr.cr.usgs.gov/projects/SW_precip_runoff/mms/). With recent support

from the National Science Foundation, an effort to develop a system for the hydrologic

community is now started through the Hydrological Information System of CUAHSI

(Consortium of Universities for the Advancement of Hydrologic Science Inc.).

Nimmy Ravindran INTRODUCTION 3

1.3. Problem Definition

The main focus of this research is to develop a data integration model and tool to
facilitate easier access of various data sources which are autonomous in nature with
heterogeneous data formats needed for improving widely hydrological research and
application activities in hydrology community, and in particular, for hydrological model
calibration processes at the NWS (National Weather service). The new model and tool
will have the following four features:
(1). Various heterogeneous data sources with dramatically different formats and
structures will be coherently managed, shared, and visualized with extensibility,
scalability, uniformity, and transparency.
(2). The model will allow geographically distributed researchers to effectively and
rapidly search, access and understand massive amounts of data by specifying query
conditions, browsing, analyzing, aggregating, and visualizing the queried data, and
customizing the formats of retrieved data.
(3). The model will allow users to analyze and visualize the accessed data first before
retrieving them which could facilitate the data selecting process.
(4). The tool conforming to the model will be platform independent and have one
consistent and unified user-friend interface, based on any type of web browser, such as
Netscape or Internet Explorer.

1.4. Approach

We address the problems of integration with heterogeneous data sources and datasets

using a novel tree based integration model supported on XML-based extended

wrapper/mediator architecture. Our system is called as HIDE - Hydrological Integrated

Data Environment. The model specifically addresses the data integration needs of

autonomous systems (Sheth, 1998) considering the structural and volatile nature of the

data. HIDE, assuming that datasets are external and physically distributed across a

network and separate from our system, enables a loosely coupled architecture with a

dynamic data fusion methodology. A schematic representation of the HIDE system is

shown in Figure 1.1.

Nimmy Ravindran INTRODUCTION 4

Figure 1.1 A Schematic representation of the data integration of HIDE

The aim of the model is to enable user to pose a query specifying what she/he wants to

know and the system would locate where the relevant data is and present the integrated

data to the user. For example, the user would be able to obtain data much more easily to

answer questions such as “What is the spatial distribution of annual precipitation for the

year of 2003 around the world?” or “How does the spatial precipitation distribution in

the past ten years compare to the climatology mean spatial distribution?” or “What are

the precipitation trends (e.g., drying or wetting) in the Eurasia sub-continent?” For

instance, to answer the questions above, the researcher using HIDE would be able to

conduct the following steps effectively and user-friendly:

(1) Find data source(s) by providing source names, attributes and domain concepts in the

search engine;

(2) Extract useful data, for instance, “year 2003” by posting a query;

(3) Retrieve the data; store it in data storage mechanism;

(4) Repeat steps 1 to 3 for all other relevant data sources;

(5) Aggregate and fuse datasets from different data sources as needed;

(6) Reformat datasets to meet the data format requirement of the models and/or analytical

tools she/he plans to use.

Clearly, performing each of these steps would require considerable amount of time and

effort with current available / existing systems or software.

Most of the information systems deal with data from non-autonomous or semi-

autonomous data sources. The autonomy nature of the data sources with respect to the

USGS data
engine

HyDRO
data

engine

GPCC
DODS data

engine

Nimmy Ravindran INTRODUCTION 5

management of data, data representation, semantic nature, implementation and sharing

with the other systems plays a significant role in the architecture of the information

systems. To fully address the autonomy nature of data sources, our model assumes each

data source as a “black box”, while concentrating mostly on the data extraction

technologies and thus handles the problem of autonomy in data sources (i.e., autonomous

data sources).

This thesis contributes to the realization of a data integration model with dynamic data

fusion capability. The model addresses the semantic and structural interoperability issues

in autonomous data sources with unstructured or semi-structured metadata. Based on the

discussions, the work proposes a suitable architecture and metadata standard for

heterogeneous datasets and data sources from hydrology community with scalability,

flexibility and uniformity which often other general hydrology information system suffer

from. Finally the work involved the development of a web based system with features

search engine, query engine, data retrieval and visualization methods.

1.5. Outline

The remaining of the thesis is organized as follows. Chapter 2 delves into the various

issues of data integration of information systems and how one type of information system

is different from another. Chapter 3 details our approach including the data integration

model, metadata mechanisms, design objectives, and integration levels. Chapter 4

explains how a new data source or dataset can be registered to HIDE. Chapter 5 discusses

the integration of a new data source from NWS (National Weather source) to HIDE.

Chapter 6 summarizes our work and concludes with a synopsis of the future

enhancements to the model.

Nimmy Ravindran Literature Review 6

Chapter 2 . Literature Review

Research on information systems and data integration issues can be generally classified

into three categories: Issues of heterogeneity and its impact, architecture, and metadata

standards. A brief introduction of the existing research in these areas is described in the

following sections.

2.1. Interoperability and its Impact on Information Systems

Data and information interoperability has gained attention due to several reasons such as

the easy access to the independently managed information sources due to excellent web

interconnection and distributed computing architecture, reusability and sharing of

information knowledge. In Geographic information systems, interoperability has been a

major concern, as they deal with vast amounts of data used on a daily basis for solution

on problems such as weather forecasting, development of forecasting models etc. Some

of the key interoperability issues can be explained on autonomy and heterogeneity

between the information systems.

Most of the information systems managed by entities such as USGS (US Geological

Survey), NWS (National Weather Service) etc are autonomous in nature. Based on the

reported work (Sheth, 1998); a data source participating in a federation can exhibit

several kinds of autonomy such as design, communication, association and execution.

The decision of the component to choose its own design in data representation, data

management and data conceptualization falls into the category of design autonomy.

Communication autonomy decides whether the component would like to share its data

with others. In execution autonomy the component can make decisions on the changes

that can happen locally without affecting other source’s participation in the federation.

Association autonomy implies that component can decide what amount of data can be

shared with other components of the federation.

Nimmy Ravindran Literature Review 7

The complexities in data integration can also be attributed to various heterogeneities of

the data as well as the data systems. One can define several kinds of heterogeneity

leading us to several levels of interoperability (Sheth, 1998): system, syntax, structure

and semantic. In this classification, the machine readable aspects of data representation

falls into syntactic heterogeneity, and the representational heterogeneity in terms of data

modeling falls into structural heterogeneity. Semantic heterogeneity relates to the

difference in the semantics of the datasets to be relevant to semantic interoperability.

The semantic interoperability requires that system understands the semantics of the

information request as well as the those of the information sources and satisfy the request

as well as it can. The goal of a well defined data integration system is to construct a

global schema of the data from multiple heterogeneous (syntax, structure, semantics and

system) data sources. The global schema is a combined view of the underlying data

sources and provides a uniform query interface to pose queries independent of the

location, and heterogeneity of the data sources.

In a scientific data integration scenario, the heterogeneities between sources have a huge

impact due to their autonomous nature. Boucelma et al., (2002), lists some of the key

issues to be considered: the diverse nature of data sets in terms of structure, schema,

formats and coverage, the methods of data publication and management and the volatile

nature of the data sources. With the advent of ‘Semantic Web’ technology, there have

been various efforts in the field of scientific data integration to improve the semantic

interoperability with various data sources. Recent developments focus on the design of

ontologies to support the semantic data integration. The advent of semantic web will lead

to better data retrieval methods by incorporating data semantics into the search process.

Ontology can be described as a formal specification of a certain domain, a shared

understanding of a domain of interest and a machine manipulable model of a domain of

interest. Ontology can also be defined as “An explicit specification of a

conceptualization” (Gruber, 1993). There are multiple logic based ontology languages

Nimmy Ravindran Literature Review 8

such as OWL (Web Ontology Language), RDFS (resource description framework) for

specifying ontology of the resources.

 The reported work (e.g., Egenhofer, 2002, Lin et al., 2003, Fonseca et al., 1999,

Uitermark et al., 1999, Gupta et al., 2002, Bowers et al., 2003) illustrates various efforts

in scientific domain addressing the needs of ontology to resolve semantic data

heterogeneity. The creation of a “Semantic Geospatial Web” (Egenhofer, 2002) requires

the development of multiple spatial and domain ontologies and processing of geospatial

queries against ontologies and retrieve results based on the match between the semantics

of information need and the semantics of the information resources. This will enable

users to retrieve more precisely the data they need, based on the semantics of the data.

This can be exemplified based on an example. Suppose a user would like to conduct

hydrological studies about the lakes in Maine. In order to retrieve the datasets, a query

such as “Find the precipitation datasets for lakes in Maine” would be used by the user in

an appropriate search engine. However if the datasets are distributed across multiple

organizations and research institutions, with multiple characteristics such as “names of

the lake”, “spatial distribution of hydrology data across United states” or the datasets uses

counties to reference lakes, the search using the existing search engines would not be

possible as they do not address the semantic needs of the request. Hence, without the

semantic knowledge of datasets in scientific domain, it becomes a tedious approach for

finding and analyzing the data. Moreover finding the appropriate datasets takes most of

the time for the data analysts. Hence a data integration model should address the semantic

requirements as well as the syntactic and structural nature of the data.

However, defining a comprehensive ontology for unstructured data in an autonomous

data sources is a cumbersome process. Our model addresses this issue by defining a

taxonomical domain model along with a structural model of the logical organization of

the datasets and thus handling the semantic, syntactic and structural heterogeneity. The

model also considers different aspects of the autonomy in design, communication,

association and execution of the data sources.

Nimmy Ravindran Literature Review 9

2.2. Mediation

Efforts in the scientific data interoperability generally fall into two major categories; data

warehousing and mediator-based systems. The data integration systems based on digital

library initiative belongs to data warehousing categories and webservice based systems

belongs to mediation category. Mediator based systems are constructed from a large

number of relatively autonomous data sources, communicating using a standard protocol

and enabling an “on-demand” data integration. Thus, the mediator approach provides

scalability and modularity. A mediator is a software module that exploits encoded

knowledge about some sets or subsets of data to create information for higher layer of

applications. Hence it can hide all the heterogeneities over the underlying systems. Apart

from these advantages, mediator based systems while responding to user queries, only

retrieves and combines the query results from participating data sources without actually

retrieving and combing the raw data.

The mediator based systems follows 3-level architecture (Wiederhold, 1992): a

foundation layer with “wrappers,” a mediation layer which supports varying querying

capabilities of the wrapped data sources and an application layer. Given a user query

against the global integrated schema, the mediator transparently decomposes it into local

sub-queries to appropriate data sources, collects the query results, transforms into a

global data model and presents to the user. The wrapper translates the request from the

mediator’s language to that of the information sources and transforms the results from the

information sources back to the mediator’s language. Acting as proxy of information,

wrapper “talks” to the sources in its own language (native language/API) or interface and

communicates with the mediator in a commonly agreed language. The wrapping of the

data sources makes the diversity in protocols manageable. Also, the use of a global data

model at the mediator layer enables modeling of systems with semi-structured or un-

structured data. A mediator – wrapper system architecture is shown Figure 2.1.

Nimmy Ravindran Literature Review 10

Figure 2.1 Wrapper – Mediator Architecture

Most of the mediation based systems are built on the structural knowledge of the datasets.

However, with the introduction of semantic requirements, a semantics based mediation

system is most appropriate to solve the integration needs of the scientific datasets. In a

semantic mediation, sources cannot be integrated solely based on their structural schema

but rather based on a conceptual model. There have been many efforts to use semantic

mediation in the scientific integration scenario (Gupta et al., 2002). In their approach, a

source registers with integrating system wrapped in its “conceptual model.” The

conceptual model of the source consists of its object model, local ontology, and

contextualization of the local ontology relative to the mediator ontology. This approach

requires a thorough and complete understanding of the semantics of the underlying

datasets which may not be a possibility with autonomous data sources with unstructured

datasets. Following along similar lines, we define a taxonomical based concept model of

the source, with a wrapped logical schema and perform integration as a “tree.” In order to

facilitate the search mechanisms, we employ a keyword based search on the semantics of

the datasets, by traversing down the tree to find the appropriate datasets. Mediation in our

approach follows the semantic needs of the system along with the “wrapped” logical

(syntax and structural) schema integration.

Applications

Mediators

Data DataData

Wrapper Wrapper Wrapper

Nimmy Ravindran Literature Review 11

2.3. Example Information Systems

Information Systems can be broadly classified (Sheth, 1992) based on interoperability

issues to First Generation, Second Generation and Third Generation information systems.

Much of the work in First generation systems occurred in multidatabases or federated

databases. The emphasis in this generation was to achieve system interoperability

particularly addressing the heterogeneity arising due to differences in DBMSs. The

second generation of information systems supports a wide variety of data including visual

media, uses metadata to support interoperability and integration along with knowledge

representation and reasoning. The third generation information systems deals with more

autonomy, more heterogeneity and more digital data, but also operations and

computations (simulations) that can create new data. The key challenges in this

generation are the understanding of the system at the semantic level where the systems

help people at the information level and not at the data level. Table 1 provides an

overview of generation of information systems based on a variety of criteria.

Generation I Generation II Generation III

T y p e s o f

interoperability

emphasized

system (computer system and

communication); limited aspects of

syntax and structure (data model);

t r ansparency of loca t ion ,

distribution, replication, data models

syntax (data types and formats),

structure (schematic, query

languages and interfaces)

Semantic (increasingly domain-specific)

Dominant

interoperability

architecture

multidatabases or federated

databases

federated information systems,

mediator

Mediator, information brokering

Scope of system

interoperability

handful of interconnected computers

and databases

tens of systems on a LAN,

databases and text repositories

enterprise-wide and global scope

Communication

infrastructure on

which system

interoperability

solutions are built

proprietary (IBM domination),

TCP/IP

TCP/IP, http, CORBA Internet/Web/Java, distributed object

management, component, but increasingly

higher-level such as multi-agent, mobile

Types of data structured databases and files structured databases, text

repositories, semi-structured and

structured and data in generic

(e.g., SGML, HTML) and domain

specific formats

all forms of digital media with increasing

support for visual/spatio-temporal/

scientific/engineering data;

Nimmy Ravindran Literature Review 12

Data/

information

interoperability

approaches

structural and data model, data

representation

understanding of a variety of

metada ta , comprehens ive

understanding of schematic

heterogeneity

comprehensive use of metadata, increasing

emphasis on semantics and ontology

supported approaches

Access options database query language (SQL) for

structured databases, keyword

accesses for textual data/files

keyword-based attribute and

(limited) content-based access,

(limited) ontology-based access,

multimedia views; visual interfaces;

information requests that are media-

independent, multi-ontology based,

context-sensitive and domain-specific

One

representative

complex query

Find a four star restaurant with less

than $25 average cost that serves

Mediterranean food in Richmond (a

multidatabase query on distributed

structured databases)

Find flowers suitable for winter

gardens that look like this

<image> with a soft smell (a

keyword-, attribute-, and content-

based query on text and image

data repositories)

Find a block of land with urban land cover

and moderate relief and population greater

than 5000 and area greater than 1000 sq ft

suitable for a strip mall (a query with

terms whose meanings are understood by

the system, and may involve multi-step

processing against multi-modal data)

Table 1 An Overview of three generation of information systems

A representative set of information systems that support access to heterogeneous sources

includes TSIMMIS (Hammer et al., 1995 & 1997), Information Manifold (Levy et al.,

1995 & 1996), InfoHarness (Shklar et al., 1995), SIMS (Arens et al., 1993&1996),

Infosleuth (Bayardo et al., 1997), OBSERVER (Mena et al., 2000), MIX (Zaslavsky et

al., 2000, Baru et al., 1999) and DISCO (Tomasic et al., 1998). SIMS, InfoSleuth,

OBSERVER and MIX belong to third Generation of information systems as they support

ontology with knowledge based reasoning.

The focus of research in TSIMMIS is to combine data from structured and unstructured

data sources which are encapsulated using wrappers and an automated generation of

wrappers for the data sources based on templates. The wrappers translates the data model

to a global data model while the mediator layer routes the query requests to appropriate

data sources. The query is formulated using a rule based query language called MSL. The

data is represented using Object Exchange Model (OEM). The MSL query extracts the

OEM objects and its sub objects by matching patterns in the query against existing OEM

structures (wrapper templates). TSIMMIS deals with data in a relational database system.

In the Information Manifold, the information is integrated from disparate (structured and

unstructured) data sources. The architecture is based on a knowledge base built by

Nimmy Ravindran Literature Review 13

describing the source capabilities and uses views to express the limited capabilities of the

sources. The system presents the user with a unified view of the information space called

world view. The world view is expressed in an object - relational data model. The queries

can be posted as “declarative” in terms of objects and relations in the view. Every

information site expresses its contents using a site description language which would be

used by the query processor to match the query. The site descriptions can be used to

relate the semantic content of the information site to world view relations. The system

also uses an optimized approach to connect to only required information systems in order

to satisfy the query. This is achieved by using constraints in site relations and pruning site

relations which are irrelevant to the query. The information manifold system can be used

to integrate information from relational databases, object oriented knowledge base etc.

The InfoHarness system provides integration of web accessible documents and relational

databases with the support of third party indexing and browsing technologies. The SIMS

system uses an application domain model, describing the properties, relationships

between objects. A model is constructed for each information source, involving the

source and its relation to domain model. The user formulates queries using terms from

application domain without actually knowing anything specific about the information

sources.

The Infosleuth system uses a common domain ontology which gives a declarative

description of the semantic information without the underlying syntactic representation.

The local database schemas are being mapped to the domain ontology. The systems

utilizes an agent based approach, for representing each information resources and

semantically match information needs with currently available resources using brokers

and so, retrieval and update requests can be routed only to relevant resources. The system

consists of a network of cooperating agents such as User Agent, Ontology agent and

Broker agent. The agents advertises their services and process the requests based on the

Infosleuth ontology or route to the appropriate agents or decompose the queries into a

collection of sub-queries and forwards them to appropriate agents. The “Infosleuth

ontology” describes the relationship between agents and their knowledge. The

Nimmy Ravindran Literature Review 14

decomposition of query is supported on the domain ontology chose by the user. The

agents communicate between each other using a specialized communication language.

The different types of agents in the architecture are User agent, broker agent, ontology

agent, resource agent, data analysis agent and task execution agent.

The OBSERVER project presents a query processing architecture for the Global

Information Systems. The user of the OBSERVER can browse various domain ontologies

which are the conceptual view of the Information content of heterogeneous repositories.

The interoperation between ontologies is achieved through synonym relationships

between various terms across ontologies. The key objective of the approach is to reduce

the knowledge of structure and semantics of data in huge number of repositories to small,

by knowing the synonym relationships between terms across ontologies. The query

presented by the user is translated to a query, represented as a conjunction of constraints

expressed using description logic based on the ontology chosen by the user. Then the

query processor translates the query in terms of the ontology of the information sources

and thus preserving the semantics of the user query. If the user is not satisfied with the

results, he/she can chose other ontologies and proceed with the query. The systems make

the assumption that an elaborate ontology for the components is available. This approach

is mostly used when the data is represented as a “document” where generation of

ontologies is not entirely limited by the domain.

The DISCO project addresses the issues of “fragile mediator” problem due to the

volatility of the data sources. If there is a tight integration scheme, then whenever a new

data source is added, there is an added responsibility on the DBA to make sure that the

integration goes smoothly with other data sources. This is handled by providing a partial

query evaluation scheme that accounts for source unavailability and thus managing

graceful failures of the sources.

The MIX project is an XML based mediation architecture for spatial data interoperability

in Geographic information systems. The MIX architecture uses XML wrappers for

individual data sources to export data in a uniform format to the mediator. MIX uses a

Nimmy Ravindran Literature Review 15

lazy approach or on-demand approach i.e. XML queries are rewritten at runtime as they

flow downwards from user to sources. An interesting aspect of MIX is that it uses a

spatial mediation engine to handle spatial interoperability and thus enabling spatial data

integration. The communication between various modules in MIX is based on XML. The

spatial mediator parses the spatial part of the query and generates an evaluation plan.

MIX can dynamically evaluate the minimal number of sources required to satisfy the

query attributes by exporting the schema information by the wrappers as XML DTD.

This helps if the schema is not known at the time of integration.

Coming to the Hydrology domain, the system HDMRAS (Hydrologic Data Management

Retrieval & Analysis System) (Liu et al., 2003) is another example of integration and

management of heterogeneous data for hydrologic studies. HDMRAS uses a metadata

based approach for data integration. The system, however, assumes that all datasets being

integrated are not physically distributed over the network, but reside on local data

storage. A user in HDMRAS can define various characteristics such as data organization,

structure, and semantics of the datasets to be integrated through the metadata files.

HDMRAS dynamically generate the query interfaces written as metadata files, create and

execute a query evaluation plan and retrieve the results. HDMRAS demonstrates the

effective usage of metadata as a primary task in scientific data integration scenario. But,

as a part of the data source registration process, datasets are to be uploaded into the

system, which imposes an extra responsibility of data management into the system.

2.4. Metadata Standards

The metadata standards play a crucial role in a successful integration of data. Metadata is

usually defined as “data about data.” But often it is more than that, involving information

about the data representation, management and semantics. The metadata may provide the

information related to content, context, quality, structure, accessibility etc. of a specific

dataset. It necessarily offers comprehensive information about the data without

completely describing it. Metadata descriptions present two advantages: an abstraction of

the representational details of the data and capture the information content independent of

Nimmy Ravindran Literature Review 16

the representation of the domain knowledge describing the domain to which the data

belongs. Some classifications of metadata (Sheth, 1992) are, Content independent

metadata (e.g.: type of sensor used to record an image), content dependent metadata (e.g.:

size of the dataset), direct content-based metadata (e.g.: indices based on the text of the

document), content-descriptive metadata (e.g.: textual annotations describing an image),

domain independent metadata (e.g.: HTML document independent of the subject) and

domain specific metadata (e.g.: land cover from a GIS domain). Domain specific

metadata are particularly useful as they utilize the semantic understandings of the dataset

in an effective data retrieval process. Information systems use metadata for various

responsibilities.

Foundational to our approach is the use of metadata for describing data sources, datasets,

query plans and transformation of source data model to our data model. The diversity of

efforts in the earth science community with respect to metadata standards is many. The

Federal Geographic Data Committee Standard (FGDC) has designed geospatial standard

CSDGM which is a content standard for Digital Geospatial Metadata. The Earth Science

Markup Language (ESML) describes the structure, semantics and content of any Earth

science dataset in any data format. The ESML provides syntactic metadata describing the

data in bits and bytes. The data sets are modeled as binary/ASCII sequence, arrays and

structures.

The Geography Markup Language of OGC (Open Geospatial Consortium) describes the

features and geometry associated with data sets. It is a widely supported specification for

geographic information. The specification is based upon a large number of other W3C,

IETF, ISO, and OpenGIS standards. GML uses a wide variety of objects to describe the

geography including feature, coordinate reference systems, geometry, topology and time.

GML specification describes an open framework for defining geospatial application

schema and thus increasing the ability to share the geographic application schemas and

the information. The GML emphasize on the geographic nature of the data and, needs to

be tailored for other domain needs.

Nimmy Ravindran Literature Review 17

In the Ecology domain, Ecological Metadata Language (EML) describes the ecology

datasets. EML offers modularity as it is designed as a collection of modules. The intent is

to provide a set of core modules which can be later customized without any lengthy

approval process. Although EML presents a detailed structure of the data, it has strived to

strike a balance between too much of information and too little information. EML offers

compatibility as it has been developed from other geographic standards.

 In all the above mentioned XML standards, it has to be noted that, standards describe the

data and datasets with little information about data source. EML tries to solve this to

some extent.

Considering the importance of the information about the sources in a data integration

scenario, in the Sensor network domain, the standard SensorML (Sensor Modeling

Language) offers the model and schema for defining the geometric, dynamic and

observational characteristics of sensor. These sensors that are capable of observing and

measuring different physical and chemical properties, has specific response

characteristics that can be used to assess the values of the measurements and quality of

these measurements. The purpose is to give sensor information in support of data

discovery and quality characteristics of the data. An interesting aspect to note that

SensorML provides the performance characteristics (threshold, accuracy) of the

measurements, and archives the fundamental properties and assumptions regarding the

sensor. SensorML gives a functional model of sensor, not a detailed descriptions of the

hardware.

From all the above mentioned standards, it is quite clear that metadata plays a significant

role in the data integration as a solution to heterogeneities across sources and

architecture.

Nimmy Ravindran Data Integration Model 18

Chapter 3 . Data Integration Model

3.1. Introduction

Heterogeneity can be due to many technological differences between information

systems. One aspect of heterogeneity is based on syntax, structure and semantics.

Differences in the formatting of the data lead us to syntactic heterogeneity. Structural

heterogeneity revolves around the data modeling constructs. Differences in the

representation of the domain knowledge or concepts relates to the semantic

heterogeneity. An Absolute data integration model should handle all the issues of various

heterogeneities.

HIDE assumes that the data sources and datasets are distributed physically across

networks with various methods of accessibility. The data integration model of HIDE

logically integrate these data sources and datasets, thus presenting the user with a unified

view of the underlying data irrespective of the geographic location, data formats ,low

level data models and semantics of the data. To address the issues of heterogeneity, HIDE

employs a tree based data integration model incorporating the semantic knowledge as

well as the structural knowledge of the data sources and datasets. The syntactical

information relevant to the data sources are captured in the metadata model of the HIDE.

The hierarchical nature of the data integration model facilitates scalability, extensibility,

modularity, user management, security and privacy.

3.2. DataNode(s) and DataNode Tree

The model is constructed by disseminating the data and information, into information

units, called DataNodes while keeping in mind the design objective of simplicity. We

associate each unit with information structure, semantics, syntax, and contents which

facilitates data analysts to perform any useful query.

A DataNode can represent a data source such as a sensor node, a data file, or data

organization (US Geological Survey), a data portal/engine and a hydrology concept. The

DataNode is the smallest entity of the system and a collection DataNodes conceptualizes

Nimmy Ravindran Data Integration Model 19

Surface water
data

May
12,
2004

Year

2004 2003 2002

Daily Monthly

Jan Feb

May
13,

2004

DataNode:
Directory

DataNode:file

a physical organization of data, a logical organization of data or a user specific view of

the data organization. This level of abstraction provides the user with flexibility and

defines a clear line of separation between the low level and high level view of the data.

Once the DataNodes of various views has been identified, users can define the

relationships among them. We describe the relationships between DataNodes as links in a

tree, finally evolving into a DataNode tree. The relevance of the relationships between

each DataNode is reflected differently in each view of the tree. This hierarchical

dissemination of the data access space into a tree helps a better classification and

understanding of the data. A typical example of a DataNode tree is shown in Figure 3.1

Figure 3.1 A DataNode Tree representation

3.3. Views – User, Logical & Physical

The data integration model is also separated into three views. The semantic nature of the

hydrological datasets is modeled as a domain model and acts as the user view of our

integration model. The user view provides a taxonomical nature of the concepts in the

hydrology domain. The structural information of various data (structured, semi-structured

and unstructured) which is hidden in most of the autonomous systems is presented as

structural model in the logical view. The logical view can be looked upon as a logical

organization of the data resembling a tree as perceived by an integrator. The combination

Nimmy Ravindran Data Integration Model 20

of the domain view and logical views of the data sources and sets forms a DataNode tree.

The physical organization of the data is defined by the physical view which is mostly

hidden in the data sources.

The relationship between various DataNodes in the DataNode tree is identified based on

the view to which it belongs. In the user view (domain level), the relationship is more of

a taxonomical nature. While in the logical view (structural view), the relationship is more

of a structural nature.

Three kinds of users are recognized in the context of data integration: Users as domain

analysts who query the data and perform data retrieval, analysis, fusion and mining;

Users as system integrators who integrate an external data engine into the HIDE system;

And the users assumed to be part of the external data engine who perform the low level

data management such as data file organization. Only the first two categories of users are

associated with the HIDE system. The conceptual view of the DataNode tree for each

kind of users is different. This difference in views of the system is reflected on the views

of the model: the physical view as seen by the low-level data managers, the logical view

as seen by the HIDE system integrators, the user view as seen by the high level domain

analysts. As the physical view is associated with the external data engine unit, it is

assumed to be separate from the HIDE and is entirely limited within the data engine unit.

A typical example for the three views is shown in Figure 3.2.

Nimmy Ravindran Data Integration Model 21

Figure 3.2 The three views- user view, logical view, and physical view and the

corresponding DataNode tree.

USER VIEW root

Precipitation Windspeed

LOGICAL
VIEW

USGS Water
Data

Daily Monthly

Site:Alabama

HIDE

PHYSICAL
 VIEW

Surface Water
Data

Year

2004 2003

MonthlyDaily

USGS Data
Engine

External Data Engines

Nimmy Ravindran Metadata model 22

Chapter 4 . Metadata model

4.1. Introduction

Metadata standards are crucial part of an Information system. Metadata which is typically

”data about data” provides comprehensive information about the data. Or in other words,

understanding of the metadata of a data/resource is sufficient to understand the

data/resource. For example; Metadata for a library contains the information of the various

titles, authors, abstracts of book or articles. While the metadata for a geographical map

contains information about the scale of the map, geographical coverage etc. Note that,

based on the nature of the data and the context, the metadata for data/resource/datasource

can vary. Hence metadata for data ‘must’ contain all the relevant information about the

data, and not the data itself.

The introduction of XML has revolutionized the scope of the representation of the

metadata. The extensible Markup Language (XML) offers an ideal means for an effective

representation of the metadata and information exchange across domains. In simple

terms, an XML document is a text based metadata for a data/resource/datasource.

“Schema” has been used to provide a means for defining the structure, contents and

semantics of the metadata. Hence schema is a model of a metadata or a template for a

metadata, defining the rules for the metadata. Therefore to understand all the aspects of

the data, one requires metadata which follows the rules of the schema. A simple

representation of the relationships between data, metadata and schema is shown in the

Figure 4.1

Nimmy Ravindran Metadata model 23

Figure 4.1 A simple representation of the relationship between data, metadata and schema.

Every data has a metadata associated with, which follows the rules of the schema.

In this thesis, a metadata schema is referred as a metadata model. Considering the

relevance of metadata in a data integration system, the metadata model of HIDE

encompasses various requirements of integration. The necessary information required for

integrating a data source/ data set into HIDE system as a DataNode is extracted through a

metadata model. We define that an effective integration, requires the information to

answer the following questions.

1. Describe the data source or dataset.

2. What kind of operations is permitted on the data source / dataset?

3. What are the syntax and semantic details of the data from the data source?

4. How to access the external data engines?

5. What kind of transformations should be applied to the data to transform to the data

model of HIDE?

In the HIDE system, appropriate information as answers to the above questions for each

data node which effectively represents a data source/dataset, is provided as metadata.

Using metadata to define the data source and its operations and accessibility enables

handling the interoperability efficiently between data engines. Our primary aim in

Data1

Data2

Metadata for
Data1

Metadata for
Data2

Schema

Nimmy Ravindran Metadata model 24

designing the metadata was to define a certain level of flexibility and simplicity to the

users in integrating the data sources/datasets. Once the user as an integrator presents the

metadata to the HIDE, the data source specified by the metadata can be integrated

without any modifications/changes to the HIDE system. We use XML language for the

metadata representation.

HIDE defines a clear separation between the description of the data engines and the low

level details of accessing the data from the data engines. We separate the information

with respect to the DataNode as description model and the operational details of the node

in an operational model. The operational model covers the details of the operations,

transformation, accessibility and syntactical information. Hence there exists a

dependency between the operational model metadata and access, transformation and

syntax metadata. Also the existence of the operational model depends on the existence of

description model. The organization of the metadata for DataNodes is shown in Figure

4.2

Figure 4.2 The metadata representation for a DataNode tree. A) The metadata required for

each DataNode. B) The dependency between various metadata.

monthly

Description model,
operational model

Description model,
operational model

daily

Description
model,
operational
model

Site: Alabama

Description model, operational
model, Access

definition,syntax&semantics and
transformation definitions.

USGS Water data
Description model

metadata

operational model
metadata

Transformation
definition metadata

Access
definition
metadata

Syntax &
Semantic
metadata

(a) (b)

Nimmy Ravindran Metadata model 25

As shown in Figure 4.2, the description model metadata is to be specified for all the data

nodes as it defines the DataNode. The operational model is optional for metadata except

for leaf data nodes. All the other metadata files are dependent on the existence of the

operational model. Each metadata model is described in detail in the following sections.

4.2. Metadata schema describing DataNode:

Each DataNode in our system irrespective of view describes itself in an XML description

model (XDMS). The details of the description model are captured in a metadata schema

and are used by HIDE for defining the DataNode tree. This description model details the

following information.

1. Identity: The identity for the data node. The system integrator can specify a unique id,

list of indices for choosing the DataNode while performing a search and an associated

name.

2. Documentation: The historical information about the data source / dataset that

identifies the DataNode along with external links for additional information.

3. Measurements: The type of measurements and its quality constraints for a DataNode as

a data source such as sensor node.

4. Children: A list of its child DataNodes for a specific data node.

5. Capabilities: The operational abilities of a data node as a data engine such as query

operations, and data update operations.

A snapshot of the XDMS metadata file complying XDMS schema is showed in figure

4.3. See Appendix for the XDMS schema.

Nimmy Ravindran Metadata model 26

Figure 4.3 A snapshot of the XDMS metadata. A high level representation of the description

metadata is shown.

4.3. Metadata schema defining the operational characteristics-

query plan of a data node:

 Disparity of interfaces to each data engine makes easy locating and access to data

cumbersome. Hence our primary concern is to provide a uniform representation of the

access interface to the user irrespective of the complexities of underlying data engine.

This is achieved with the definition of operational model and is defined through the

metadata schema XOMS (XML operational model specification).

A user as a data analyst typically performs two kinds of operation on the data, a data

query such as “what is the wind speed for a period of 2 days in the state of Alabama” and

a data update operation. Our system identifies that, these operations are performed on the

information units – DataNodes. Each DataNode is provided with relevant operational

information. The operations suggested by the analysts are translated to operations on the

data node through the operational characteristics defined for each node. Our system

Identity

Documentation

Measurements

Operations

Childre
n

Nimmy Ravindran Metadata model 27

specifically concentrates more on the query operations that can be performed on the

DataNode irrespective of the view (user view or logical view) to which it belongs. The

query operational characteristics of each DataNode is described as a query model which

enables for an efficient tracing of the query from the root DataNode in the user view to

the end leaf node in the logical view. The end leaf node of the query trace connects to the

external data engine, possibly the physical view, performs the query and retrieves the

result.

The operational model details the following information.

1. Conditions & Results: A data query operation can be considered as a combination of a

set of search conditions and the result parameters. In the above example, search condition

is “period of range of 2 days/ 2 months” and result parameter is “precipitation.” In our

system, user can define the possible search conditions and a set of result parameters in the

query metadata for each node. Each search condition is identified as a field with a unique

name, display name, display format, unit and a field type associated with it. The field

type can be used to decide the kind of user interface applicable for a search condition.

2. Validation rules: Validation rules provide necessary information to the operation

engine for performing validation on each field of the search condition. Examples of

validation rules can be Range rule, format rule, date rule etc.

An instantiation of the model as a metadata, details the above information enabling an

easy and flexible dynamic generation of the user interface. A snapshot of the XOMS

metadata complying the rules of the operational model metadata schema specification is

shown in Figure 4.4. See Appendix for the XOMS schema.

Nimmy Ravindran Metadata model 28

Figure 4.4 A snapshot of the XOMS metadata for precipitation data from USGS data

source is shown. Each search criteria is associated with a field and a validation rule.

4.4. Metadata schema for describing the data (syntax):

Once the data has been retrieved by the HIDE system, a question that arises is “How the

system can understand the data file.” This is achieved by specifying the syntax

information of the data retrieved by the system through XFD (XML format description)

specification and can be represented through the XFD schema file. The schema describes

syntax information such as (1) what is the format of the file ASCII/binary? (2) What is

the type of the file such as comma-seperated/tab-sperated? (3) What are the retrieved

fields? (4) What are the data types of the retrieved fields?

It is not necessary to define the metadata complying the XFD schema for all the retrieved

data if they are from the same DataNode. In such a case, all such retrieved data can share

single metadata file. It contains structural segments which further describes the details of

the data structure. Binary metadata describes a binary format and ASCII metadata

describes an ASCII format. Every data file begins with a header and comment (optional).

Validation
rules

Search
Conditions

Results

Nimmy Ravindran Metadata model 29

The data model representation of the data in the data file varies depending on the nature

of the data. HIDE identifies data represented as a structure (binary) of data fields with

varying types, table of data fields (ASCII) with varying types and an array of data fields.

Each data field is characterized by name - A unique value which identifies the data field,

display name- A name used for display purposes, data type - The type of the data field

(integer, float, spatial array, and string), default nature of the data field and the name of

the query field corresponding to the requested data field. A snapshot of the XFD

metadata file which complies to the XFD schema is shown in Figure 4.5. See Appendix

for the XFD schema specification.

Figure 4.5 The figure shows XFD metadata for an ASCII comma-separated data file with a

string header and the dataset. The dataset is of type dataTable with dataFields. Each

dataField is further characterized with name, display Name, description and data Type.

4.5. Metadata schema for describing the access to the data

engines:

One of the primary objectives of the HIDE system is to hide the low level details from

the high level users (data analysts). However the HIDE system requires information on

“how to access the external data engine.” This information can be described through a

XAD (XML Access point definition) specification and is represented by an XAD

schema. The schema describes how to connect to the external data engine, submit the

Syntax & Semantics

Data
representa
tion

Nimmy Ravindran Metadata model 30

query and retrieve the results. A point to be noted here is that the XAD metadata

complying the XAD schema is defined only for the end leaf node in the logical view as it

makes the connection to the external engine and retrieves the results. An assumption

made here is that all the external data engines provide an interface for accessing the data.

The information provided by the specification is detailed below.

1. Physical accessibility: This information includes the protocol to be used for accessing

the external engines, and the necessary additional information related to protocol. For

example, if the protocol to be used is http, the additional information to be specified

consists of the links to the external data engine.

2. Conditions & results: This information defines how the conditions and results specified

by the user in the operational model can be transformed to the details required for the

access to the external engine.

A snapshot of XAD metadata complying to XAD schema is shown in Figure 4.6. See

Appendix for the XAD schema.

Figure 4.6 A snapshot of the XAD metadata. The figure shows an Access point definition for

a web based data source. The URL for connecting to the data source is represented as a

baseURL along with the selection parameters. Each parameter has a name (param) and

value associated with it.

4.6. Metadata schema for transformation of the data:

One of the primary objectives of our system is to provide different data analysis and

visualization techniques of the retrieved data to the external user. Due to heterogeneous

Physical
Accessibility

Conditions
& Results

Nimmy Ravindran Metadata model 31

nature of the retrieved data from various data sources/engines, an efficient method is

required for transforming the data into a uniform data model. We have identified two

basic kinds of low level data model for scientific data sets, a temporal model and spatial

model. The necessary information for transforming the data such as the low level data

model is defined in a transformation specification and is represented by XTMS (XML

transformation specification) schema. The information is detailed as below.

1. Model types: Depending on the nature of the retrieved data from a data source, the

integrator can specify what kind of data model is applicable for the data. As mentioned,

user can specify two basic kinds: Temporal model, and Spatial model. User can also

specify the combination of the two basic models: Temporal-Spatial model.

2. Coverage: Describes the coverage of data in terms of time, and space. This coverage

(temporal and spatial) represents the extent of applicability of the data in those domains.

The Temporal coverage defines a single time instance or a period of time for the dataset.

The spatial coverage defines the area represented by the dataset. For example, the

temporal coverage for a data node can be a period of time 1986-01 to 1986 -01, which

indicates the month of January for the year 1986. The spatial coverage for a dataset can

be 90° N to -90° S and 180° E to -180° W.

A snapshot of the XTMS metadata complying the XTMS schema is shown in Figure 4.7.

Please see Appendix for the metadata schema.

Figure 4.7 A snapshot of XTMS metadata. The figure shows the type of the dataset as a two

dimensional “Array” along with the spatial and temporal coverage.

Coverage

Model types
&
Definitions

Nimmy Ravindran HIDE Architecture 32

Chapter 5 . HIDE Architecture

5.1. Introduction

The HIDE architecture follows an extended wrapper/mediator approach called as plugin/

wrapper/mediator. The XML based wrappers handle the syntactic differences in the

underlying data models, querying capabilities and low-level access level information. The

structural and semantic differences are managed by the tree model. The mediation engine,

upon receiving the query, finds the suitable sources (DataNodes), decomposes the query

into appropriate low level queries, retrieves the data via multiple sources, transforms the

data models to HIDE data model, combines the result and presents to the user. Most of

the information systems assume a standardized mechanism to access the external data

source such as SQL for a relational database. However such generalization cannot be

applied in this scenario, as datasets of hydrology community are often complex and

diverse. Hence an extended framework is defined for the wrapper/mediator architecture

that provides a mechanism called as plugins, to extend the functionalities of the

mediation engine.

Due to the heterogeneous nature of the data engines, we identified a layered approach is

appropriate for handling various issues in data integration. The problems of integration

can be divided into sub-problems and handled at each layer. Our system architecture is

shown Figure 5.1

Nimmy Ravindran HIDE Architecture 33

Access Engine

Transformation Engine

Data Models

Search Engine Data Analysis tools Data Visualization
tools

Figure 5.1 HIDE – A wrapper/mediator Architecture

The application layer incorporates the search engine, visualization tools etc. The

mediation engine is layered as Data Model layer, transformation engine and Access

Engine layers as shown in Figure 5.2. The metadata model (description, operational,

transformation, access and syntax) acts as the XML wrappers for each individual data

source. Apart from these, to extend the functionalities of each layer in the mediation

engine with respect to a data source or a data concept, the architecture uses plugins as a

mechanism to plugin the extensions.

Figure 5.2 HIDE Architecture.

D1 D2 D3

XML-Wrapper XML-Wrapper XML-Wrapper

Application Services

Mediation Engine

USER/CLIENT

HIDE

Nimmy Ravindran HIDE Architecture 34

The HIDE prototype is implemented as a web-based Integration, data analysis and

management system with functionality of a search engine, query, aggregation and

visualization of data. The system uses client-server architecture, with Apache-Tomcat

web server running at the back end. The HIDE server handles accessing external data

engines, data querying, data modelling and transformation of the data. HIDE employs a

thin client capable of user interface generation and handling of user interactions which

interacts with the HIDE server. We use XML language for representing the metadata.

Once all the metadata files are defined for a data engine, the system automatically

performs the integration. Each layer in the HIDE architecture is developed as a Java

package in the prototype. The interface between each layers are open through java

“interface.” This provides more flexibility and extensibility. Any additional features

required in a layer can easily be plugged in without affecting other layers.

The prototype has integrated four different kinds of data sources and engines USGS

[2004], GPCC [2001], Australian Antarctic Automatic Weather Station data engine

[2004], and OFS data from NWS (National Weather service) with two levels of

integration.

5.2. Design Objectives

The following principles drive the design of our architecture. The principles are derived

from the fact that all data systems are autonomous, and work in a multi-user and

heterogeneous environment where a single rule is not enough to define a diverse system.

Our design objectives of the data integration architecture also incorporate the basic

principles of extensibility, flexibility, and transparency.

5.2.1.Neutral Mechanisms:

 Most of the scientific computing environments use file systems for storage of the data.

The scientific community has defined various data formats for representing these

complex temporal and spatial data. What scientists really want to do is to manage the data

rather than the files. The Integration architecture of HIDE is completely independent of

the low level mechanisms of the data storage, file organization and search methods. This

Nimmy Ravindran HIDE Architecture 35

goal is achieved by identifying each data engine as a separate entity with an interface to

access the data. The entity encapsulates the complexity involved in the data storage and

data search which is handled by the data engine based on the existing scientific standards

and is separate from the Integration architecture.

5.2.2.Uniform Information Infrastructure:

One of the key issues of an integration environment is to define a uniform information

infrastructure to the users. This enables an easy integration of data engines and, a uniform

query pattern. The application services should not be aware of the specific low level

mechanisms required to access data which are diverse geographically as well as in

structure and content. Instead, applications are represented with a uniform view of data,

with uniform interfaces for access across diverse and distributed data sources.

5.2.3.Layering Mechanism:

 In our approach, the data integration problem is divided into multiple sub-problems. A

layered architecture then is employed to solve each sub-problem. The inputs to these

layers are templates which describes “how to integrate an external system to the layer.”

By using the layering approach, the technical problems of integration are confined within

each layer and are simplified.

5.2.4.Flexibility and Extensibility:

Two fundamental principles of software systems are flexibility and extensibility. As the

time grows, increasingly, new data systems with heterogeneity in data model, geographic

location, accessibility can be identified for data integration and analysis. New standards

for defining the data would emerge. Flexibility and ease in integration of these emerging

data systems can also be achieved through the layered approach. The responsibility of

each layer is defined through templates. The lower layers of the system require the

understanding of the data and are defined through templates which contains the syntax

and semantics of the data. Hence newer data standards can be plugged in through

templates or as external packages into the system.

Nimmy Ravindran HIDE Architecture 36

5.2.5.Simplicity:

 We have kept simplicity in mind in the design and implementation of our architecture.

We assume that data (sources/real datasets) are distributed across a network. The

organization of all these data sources into a meaningful representation leads us to a

simple tree based model where each node is defined as a data source or a dataset with

defined relationships between them. The hierarchical methods of representation provide

the necessary advantages of simplicity and extensibility. It is much easier to decide where

to integrate a data source in a tree-based model rather than a flat model.

5.3. Object Factory

HIDE architecture employs the concepts of object factory methodology for the creation

of various objects at each layer. Depending on the nature and corresponding identifier for

the objects, the object factory methods create the necessary objects. This helps to separate

the creation and management of the objects.

The Object factory methodology is being used at each corresponding layer of HIDE with

exception on the application services layer. At Access engine layer, based on the type of

accessibility defined through the XAD metadata file, the Access Engine factory creates

the corresponding Access engines. For example, if the accessibility is defined as “http”,

the Access engine factory creates a “HttpAccessEngine” object which can specifically

handle the requirements of HTTP access. Similar factory methods are also employed at

the data model layer and data model transformation engine layer. An object level

representation of the object factory and objects are as shown Figure 5.3

Nimmy Ravindran HIDE Architecture 37

Figure 5.3 An object level representation of the object factory at each level and its

relationships with the metadata files.

5.4. Application services

In this layer, various kinds of application services can be defined. These application

services includes data visualization techniques such as 2D plots and 3D plots, data

analysis methods such as query, multi-streaming of data, and a high level search engine.

As the interface between each layer is open, new application services can be identified

and added in without significant changes in the subsequent layers. This provides a great

deal of extensibility. The application services use description model metadata and

operational metadata for identifying the DataNodes and their query operations.

5.4.1.Search and Query Engine

One of the essential operations an earth scientist would like perform is to query multiple

data sources / datasets uniformly, extract the data and perform various analysis. To

facilitate this, we characterize operation – query at various layers of the system

architecture.

Object Factory

Access Engine
Factory

Data Model
Factory

Data Model TE
Factory

XAD / XFD, XTMS
files

Nimmy Ravindran HIDE Architecture 38

Consider the following query, “What is the precipitation for a period of 2 days at the site

Uchee creek in the state of Alabama”? There are two levels of query identified here. In

the first level, the system has to identify the appropriate top-level DataNode to which the

query has to be performed with the help of search engine. This type of query is identified

in HIDE as a “search.” HIDE employs a search engine similar to “Google” for searching

the appropriate DataNodes based on the query string provided by the user. The search

engine uses the indices presented through the description model metadata for each

DataNode in the DataNode repository to match against the “keywords” supplied by the

user. To satisfy the above query, user has to find the appropriate data node by describing

a search string “USGS real time precipitation from Alabama.” In this scenario, query is

traced to the DataNode “Alabama” from the root based on the indices of precipitation,

water data and Alabama as shown figure 5.4. The search engine then lists all the possible

integrated data nodes. The user can view a subset of information of the data node along

with a link to view the query interface to perform the query, in the list.

 Once a DataNode is identified, the second level query is performed on the DataNode

based on the query operational model defined in the DataNode. This kind of query

operation is identified as a “data query.”

By contrast, consider another query from the data analyst, “what is the precipitation for

the state of Alabama for 2 months including current month.” In this case, system

identifies water as the appropriate node where the data query can be performed.

Consider another query, “what is the precipitation for a range of latitudes-longitudes for

the period 1986-1987.” In this case, the precipitation node is identified by the system to

perform query operations. It has to be noted here that this data query operations involves

two different external sources. In this kind of data query of higher level DataNodes, the

system translates the query to multiple queries, distributes them to multiple data sources.

The data from each data source is then extracted and transformed into internal data

models. Finally all the data from the multiple data sources are aggregated.

Nimmy Ravindran HIDE Architecture 39

Figure 5.4 The trace for a simple query “precipitation for a period of 2 days at the site

Uchee Creek in the state of Alabama.

As mentioned earlier, HIDE would list all the possible data nodes that satisfy the search

string as shown in Figure 5.5. On selecting one of them, HIDE takes the user to the next

level of search – a query screen (data query).

Figure 5.5 Search Screen

HIDE
root

Precipitation Windspeed

USGS GPCC

USGS water Data

Daily Monthly

Site:
Alabama

USER
VIEW

LOGICAL
VIEW

USGS Data
Engine

Nimmy Ravindran HIDE Architecture 40

5.4.2.Query Screens:

 Our system provides a dynamically generated and uniform web based query interface to

perform data query on a data node. The query interface is generated from the operational

model (XOMS) with the search conditions and result parameters. The generation of query

screens from the XOMS metadata files, validation of user entered parameters and the

necessary changes is realized by the “operation” package of the HIDE system. A

dataField object of necessary type (Entry, choice, Range) is used to define each search

conditions and results. The validation rules for each condition is applied on to the data

field. The operation model package creates the data fields and validation rules based on

the XOMS files for each DataNode. Assume that a data analyst would like to perform a

query “what is the discharge and gauge height from the real time data for the site UCHEE

CREEK in the state of Alabama for a period of 3 days.” The query screen for this query

is shown in the Figure 5.6

Figure 5.6 Query Screen

Nimmy Ravindran HIDE Architecture 41

Considering the above mentioned query, user can select the appropriate site “Uchee

creek”, a range of 2 days and result parameter as “Discharge and Gauge Height.” Once

the user has submitted the query, the data is retrieved, transformed and can be viewed as

shown Figure 5.7

Figure 5.7 DataView

5.4.3.Recently viewed Data

HIDE keeps track of all the data retrieved by the user for the current session using the

recently viewed functionality. It will list all the data retrieved, along with its search

conditions and output parameters, as shown in Figure 5.8. This functionality facilitates

the further data aggregation and fusion from those retrieved datasets as needed.

Nimmy Ravindran HIDE Architecture 42

Figure 5.8 Recently viewed Data List

For every data retrieved by the user for the current session, the HIDE server notes the

data file corresponding to the data retrieved along with the a report of the data in a

“recently viewed report” file. Hence when user requests his/her recently viewed data, the

HIDE server displays the information from the corresponding “recently reviewed report”

file for the user.

5.5. Data Models

A model is an abstract representation of a real-world process. In the hydrology domain,

the data sets are usually characterized by the nature of the data with respect to time and

space. Based on these special characteristics of the hydrology data (temporal and spatial),

the HIDE architecture uses a simple temporal and spatial model for representing all the

data retrieved from multitude of data engines irrespective of their internal data model.

Hence this layer provides a uniform representation of the data, while masking the lower

layer details. The temporal model models temporal data while the spatial model models

spatial data. A combination temporal-spatial model combines both kinds of data.

5.5.1.Mathematical Analysis of models

Temporal Model: - Time specific data often arises when monitoring real world

events or measurements such as precipitation or temperature. The data can be univariate

or multivariate and can be continuous or discrete. A univariate data model consists of

single (scalar) observations recorded over time intervals, while a multivariate model

Nimmy Ravindran HIDE Architecture 43

consists of multiple measurements or observations recorded over specific time intervals.

Temporal models are often used in forecasting and statistical analysis.

HIDE assumes that data are equi-spaced and multivariate in nature. A sample temporal

dataset is shown in figure 5.9.

Figure 5.9 A Sample Dataset for temporal data

HIDE also assumes that data consists of stationary attributes (Source, StationId in figure

5.9) and non-stationary attributes which varies with time (Discharge and Precipitation in

figure 5.9). The mathematical temporal model in HIDE can be represented as follows.

Assumptions:

1. The data is multivariate in nature.

2. The data can be equally spaced in terms of time. This condition holds for data

aggregated from multiple data source, where each data sources, can use

different time steps.

3. The date and time are represented in 12z time zone.

Let Z(t) represents the temporal data and X(t) represents the non stationary temporal data

and Y represents the stationary data.

X(t) = { x1(t), x2(t) …..xn(t) } ; n = number of non-stationary attributes

Y = {y1,y2,.....ym}; m= number of stationary attributes

 Z(t) = X(t) ∪ Y; ∀t

And tr = tr-1+s; s = time step.

Spatial Model: The aspects relevant to the geographical nature of data are spatial data

(where the data is present) and attribute data (what is present). With respect to the

computer models, Geographic Information Systems (GIS) identify two spatial models

Source StationId DateTime Discharge Precipitation
USGS 02342500 2004-11-13 00:00 130 .00
USGS 02342500 2004-11-13 01:00 125 .00
USGS 02342500 2004-11-13 02:00 125 .00
USGS 02342500 2004-11-13 03:00 130 .00
USGS 02342500 2004-11-13 04:00 125 .00
USGS 02342500 2004-11-13 05:00 130 .00
USGS 02342500 2004-11-13 06:00 130 .00
USGS 02342500 2004-11-13 07:00 142 .02
USGS 02342500 2004-11-13 08:00 154 .00

Nimmy Ravindran HIDE Architecture 44

vector model and raster model. The Vector model is often used for representing objects

such as rivers, bridges etc and the Raster model is usually used for representing attributes

such as temperature, elevation, etc., which are off importance to the hydrology

community. HIDE models the spatial data as a raster model.

A vector model characterizes data with points, lines and regions (polygons). The points

are defined using Cartesian coordinates (x and y). Lines and Regions are defined by a

series of ordered points.

A raster model represents data as a matrix or grid of cells. Every cell has a unique

reference coordinate at the top left corner of the cell or centroid of the cell. For a

resolution of r degrees, and a known latitude, longitude (la,lo) of the top left corner of the

cell, a cell can be represented as, (la,lo) , (la,lo+r) , (la+r,lo), (la+r,lo+r). Every cell has an

associated attribute attached. Multiple attributes of the data can be modeled as individual

grids of values which are then overlaid on a single grid as shown in the figure 5.10.

Figure 5.10 Raster model representation.

Latitudes

Longitudes

The yellow cells show the presence of attribute
vegetation as 1/0 for the grid

The green cells show the presence of attribute
residential 1/0 for the grid

Both the attributes are overlaid into the single grid.

Nimmy Ravindran HIDE Architecture 45

Based on the continuous nature of the data, HIDE models data as a raster model and can

be represented mathematically as follows.

Assumptions:

1. The spatial parameter is represented as absolute coordinates of latitudes and longitudes

of the top left corner of the cell.

2. The cell size is uniform for the entire grid. This holds true even when the data is

aggregated from multiple data sources.

Let P represents a set of latitudes for a specific range and Q represents a set of longitudes

for a specific range.

Let m = number of latitudes for the grid.

 n = number of longitudes for the grid.

P = { p1,p2,…pm}

Q = {q1,q2,….qn}

S = P × Q (A Cartesian product of P and Q)

X(s) = set of attributes for cell s

 = { x1(s),x2(s),….| s ∈ S}

Temporal-Spatial Model

The temporal-spatial model is a combinational model, for modelling data with temporal

and spatial characteristics. HIDE models the spatial nature of the data as a raster model.

This model is particularly useful when the measurements are recorded for a region of

space at different time instants. This is shown in figure 5.11.

Nimmy Ravindran HIDE Architecture 46

Figure 5.11 A temporal-spatial model for a univariate data.

The model can be mathematically represented as the following.

Assumptions:

1. Data is univariate in nature.

2. Data is equally spaced with respect to time.

Let P represents a set of latitudes for a specific range and Q represents a set of longitudes

for a specific range and X is an attribute measurement.

Let m = number of latitudes for the grid.

 n = number of longitudes for the grid.

P = { p1,p2,…pm}

Q = {q1,q2,….qn}

S = P × Q (A Cartesian product of P and Q)

X = f(t,s); ∀t,∀s

Latitudes

Longitudes
The shaded cells show an attribute
measurement at time t.

Latitudes

Longitudes
The shaded cells show an attribute
measurement t+ts (ts = time step)

Nimmy Ravindran HIDE Architecture 47

5.5.2.Object Models

HIDE realizes, every dataset retrieved from a data engine as a Data object. The Data

objects in HIDE are associated with a Data model object which essentially comprises of

mathematical model (temporal / spatial), a data information model and a syntactic

representational model. The data information model in HIDE necessarily captures the

descriptive information about the data such as the list of data sources from which the data

is retrieved. This information is particularly relevant when the aggregated or retrieved

data from HIDE is to be exchanged with other data sources. The syntactical model

captures the representational details of the data.

The data models objects in HIDE is implemented as the data model package. The basic

nature of the data, i.e. information model and representational model is encapsulated in

the base class of “DataModel” while the temporal and spatial characteristics

(mathematical model) of the data is realized by the subclasses Spatial , temporal and

temporal-spatial model.

The data model object contains following information.

1. Information model

a) List of data nodes (data sources) from which the data has been retrieved and

modeled

b) The temporal and spatial coverage for the data if any. The temporal

coverage can be a single data-time point or a range of data-time points. The

spatial coverage is represented as a bounding rectangle coordinates. The limits

of coverage of a data set are expressed by latitude and longitude values in the

order western-most, eastern-most, northern-most, and southern-most. For data

sets that include a complete band of latitude around the earth, the West

Bounding Coordinate shall be assigned the value -180.0, and the East

Bounding Coordinate shall be assigned the value 180.0 . If the bounding area

is a single point, the same values are used for northBoundingCoordinate and

southBoundingCoordinate, as well as for westBoundingCoordinate and

eastBoundingCoordinate

Nimmy Ravindran HIDE Architecture 48

2. Data representation model

a) Type of the data (ASCII/binary)

b) Format of the data (comma-seperated/tab-sperated).

The temporal characteristics of the data are reflected in the temporal data model

object. The object follows the mathematical temporal model as described in the

section 5.5.1 The information contained in the object includes,

1. List of Data fields

2. Starting date time value.

3. The date time format. HIDE uses ISO 8601 Date and Time Specification. An

example for the time date format is YYYY-MM-DD

4. Time steps.

The spatial characteristic of the data is reflected in the spatial data model object. The

object follows the mathematical spatial model as described in the section 5.5.1

 The information in the object includes,

 List of Data fields

 Resolution of the cells in the grid.

 Range of latitudes

 Range of longitudes

The temporal-spatial data model objects combine both characteristics of temporal and

spatial.

Even though the data model objects are being implemented as “objects”, there exists a

necessity of the representation of the model objects as a “document” for the better

understanding of data exchange with other systems. This is achieved by the

representation of the models in a dataobjectmodel schema (See Appendix). Or in other

words dataobjectmodel schema acts as a template for the data. It provides the information

about the mathematical models, data source information model and syntactic

representation model. The schema acts as an abstract representation of the DataModel

object and is equivalent to the “DataModel” class. Hence a concrete implementation of

the schema which are the DataModel metadata, is equivalent to DataModel objects in the

Nimmy Ravindran HIDE Architecture 49

system. Therefore for every data object, there exists a DataModel object and a

DataModel metadata. These relationships can be shown as in figure 5.12

Figure 5.12 The relationship between the data, dataobjects, DataModel and DataModel

schema for a dataset B.dat

5.5.3.Aggregation Model

The DataNode tree of the HIDE system enables the user to retrieve the data sets from

multiple data engines based on the query provided, and aggregate the data. Each dataset

retrieved is transformed to a data model object (temporal or spatial) and then aggregated

using the aggregation model object. The aggregation is done based on the nature of the

data. If the all the datasets retrieved have a temporal data model, the aggregation is done

with the relevance to the temporal nature of the data. The similar rule applies to spatial

data model as well. If some of the datasets are temporal in nature while some has spatial

in nature, the aggregation data model, aggregates the data based on both.

For example, Assume that, user retrieves data from data source A for a time period of

06/06/2001 – 06/12/2001 and data source B with a time period of 07/1/2001 –

07/12/2001. The system retrieves the datasets from source A and source B, transforms

each into a temporal data model with the above specified range and aggregate using the

DataModel

Bdatamodel:Data
Model

B.dat

Bdata:Data B Metadata:
DatModel
Schema

DataModel
Schema

Nimmy Ravindran HIDE Architecture 50

aggregate data model. The resulting DataModel after aggregation would be temporal in

nature, with a range of 06/06/2001 – 07/12/2001.

It has to be noted here, that the data is being aggregated and not accumulated. Hence

aggregation data model cannot tolerate any overlap in the temporal and spatial

characteristics of the data.

5.6. Transformation Engine

The complex nature of scientific datasets can be defined using various standards such as

in DODS [2004] for oceanography data. Each of these standards has a defined data

model, for example; DODS has defined data types of ‘Structure’, ‘Sequence’, ’Arrays’

and ‘Grids’ for modeling various kinds of data. Each data engine uses multiple ways for

modeling the data.

The transformation engine performs a transformation of the retrieved data irrespective of

the underlying data model to the data model (temporal / spatial) of the HIDE. To achieve

this, Transformation engine requires an understanding of the underlying data engine’s

data model, metadata and syntactic information of the data. The XFD metadata describes

the data model and syntactic information of the data, while the XTMS metadata files

provides the necessary information for the transformation such as data model to be

converted to (temporal/spatial), the temporal and spatial coverage of the data and the

temporal/spatial characteristics of the data.

The transformation engine factory creates the requisite transformation data model objects

(temporal, spatial, and temporal-spatial) on the basis of the data nature provided by the

XTMS metadata. The respective transformation engine objects reads the data with help of

syntactic metadata (XFD) and transformation metadata (XTMS) , transforms the data into

a corresponding DataModel and serializes the data model for later use. A schematic

representation of the transformation engine is shown below.

Nimmy Ravindran HIDE Architecture 51

Figure 5.13 A schematic representation of Transformation engine and its operations

5.7. Access Engine

This layer realizes the access methods for connecting to the external data engine.

It identifies how to connect to the external data engine, what are the parameters to be

supplied, management of the connections, the operations to be performed if any error

occurs and retrieval of the datasets. It handles all the complexities of making a lower

layer connection to the external engine. The access engine defines an access point with

necessary information from access metadata (XAD).

The Access Engine layer is realized by the Access engine package. The Access engine

factory creates different kinds of access engines (http, ftp) for each leaf DataNode based

on the corresponding XAD metadata files. It has to be noted here that, usually access

engine interacts only with leaf data nodes as they connect with the data engines. The

Access Engine object keeps all the information required to make an external connection.

The information includes type of connection and a list of parameters to be sent to the

external data engine.

Transformation
Engine

Storage

XFD metadata

XTMS metadata

Temporal
data
model

spatial
data
model

Temporal
- Spatial
data
model

Nimmy Ravindran HIDE Architecture 52

 The HttpAccess Engine, handle and manage an http connection to the external data

engine. When a user submits the query to the data node, the HttpAccessEngine object

makes a connection based on the connection details provided by the XAD file, and sends

the search parameter names along with the user entered values to the external data

engine. On receiving the reply data, the engine retrieves the data and stores in a file and

sends it back to the transformation engine to begin the transformation process. If any

error occurred, the HttpAccessEngine object replies back with an error. Similarly an

FTPAccess Engine, handle and manage the ftp connections with the external data

sources.

5.8. Plugins

As explained in the above sections, each layer in the HIDE architecture has a defined role

and responsibility in the system. For example; Access Engine handles the complexities of

accessibility with the external data engines. Sometimes, it becomes necessary to extend

the functionality of the layers for a specific data engine. Consider a data engine that

requires a certain set of functionalities in any layer. This adds an extra responsibility to

the layer, but is limited to a specific data engine. A solution to this problem is to extend

the corresponding Engine in the object oriented paradigm. However the runtime

environment of the HIDE system is limited to the data engines. To avoid these

limitations, HIDE employs plugins at each layers of the system.

Plugins can be considered as “slots” through which new objects can be “plugged-in.” For

example; the AccessEngine object may not cover all comprehensive methods of

accessibility to the data entities. As new methods are being evolved, it becomes quite

impossible to realize all possible ways of connecting to external data entities. Moreover

some data engine might employ its own data access protocol or requires some data

preparation before accessing them. Hence to plugin a new Access Engine object, the data

sources can create the new Access engine as inherited from the AccessEngine of the

HIDE system, and plug in through the Plugin for the AccessEngine layer. Any external

access engine object can be plugged into the system without affecting the runtime nature

Nimmy Ravindran HIDE Architecture 53

of the system. The Plugin for the Access Engine acts as a point of contact for plugging

into the AccessEngine layer of the system. Once the external access engine object is

plugged in, the object can be used like any other access engine objects. All the

information required for plugin is supplied through the XAD files. The use of plugin

access engine object assist to separate the access engine object of the HIDE system and

the external system facilitating the encapsulation of any necessary security mechanisms

required for the external access, specific to the data engine in the external access engine

object. It is assumed here that external access engine follows the rules of the

AccessEngine object and can be plugged into the system.

A schematic representation of the plugin for the Access Engine layer is shown in figure

5.14

Figure 5.14 A schematic representation of the plugin for the Access Engine layer.

In the figure, assume that Data Source DS1, require to extend the functionality of the

Access Engine layer while maintaining the runtime environment of the HIDE system.

The extended AccessEngine for DS, DSAE1, is plugged in to the AccessEngine layer of

HIDE through a Plugin. The information about the plugin is provided through XAD

metadata for the data engine. Similar methods can be employed to other layers of the

system as well.

Access Engine

Data
Source
(DS1)

DS1
AE

plugin

HIDE

Nimmy Ravindran HIDE Architecture 54

5.9. Integration Levels

One of the characteristics that distinguish HIDE is the capability to provide different

levels of integration required for different data sources and users. We have identified two

levels of integration in our system, primary level and secondary level.

The primary level integration enables a complete integration of the data engine to HIDE

system. This includes searching, querying the data and performing the data analysis and

visualization. The secondary level integration enables only partial integration of the data

engine to HIDE system. This includes searching and querying the data without any

analysis and visualization features of the HIDE system.

Defining these integration levels provides multiple uses. One such kind of use would be,

if we would like to integrate a highly complex system but could not be completely

defined in HIDE system, the secondary level integration would be an ideal choice.

Another example is, if we would like to integrate a system but due to security reasons

would like to limit the degree of integration, the secondary level would be again an ideal

choice.

Nimmy Ravindran Data source(s)/ Dataset (s) Registration 55

Chapter 6 . Data source(s)/ Dataset (s)

Registration

HIDE architecture considers scalability and flexibility as fundamental design objectives.

But the primary concern for any data integration mechanisms is simplicity. A simple data

source/dataset registration mechanism is the first and foremost requirement for any data

integration mechanisms. We have defined the registration methodology to HIDE as a four

step process. It involves the following,

1. Which degree of integration you require? For a complete integration, primary

integration is an ideal choice. If the data entities have specific concerns, then to

address that, choose secondary.

2. Do you want to integrate at the domain level (applicable for domain analysts) or

integrate at the logical level (Applicable to logical analysts) and to which

DataNode?

3. Is the DataNode sub tree available for the data source/ dataset? The creation of

sub tree requires the development of the metadata model (XDMS, XQMS, XAD,

XFD, XTMS) for each DataNode and identification of the hierarchical

representation of it. At the domain level, the creation of DataNode sub tree should

be based on the domain hierarchy or the taxonomical relationships between the

concepts realized by the DataNode. At the logical level creation of sub tree should

be based on the structural organization of the data.

4. Integrate the DataNode sub tree by making changes in the parent DataNode to

which the sub tree is integrated.

Following sections would illustrate a more comprehensive description on the registration

process with an example.

6.1. Registration with primary level Integration

The HIDE architecture enables a system integrator to add a new data source with little

effort. It involves only the addition of new metadata files.

Nimmy Ravindran Data source(s)/ Dataset (s) Registration 56

Assume that a system integrator integrates a new data source such as “TOVS-Pathfinder

Atmospheric data” to HIDE. The integration of the new data source can be summarized

in the following steps.

1. Identify and create a DataNode sub-tree in the logical view.

2. Define the operational model of each DataNode in the DataNode sub-tree.

3. Define the access point for each leaf DataNode in the DataNode sub-tree.

4. Define the transformation information for each leaf DataNode in the DataNode sub-

tree

5. Define the syntax and semantic information for each leaf DataNode in the data node

sub-tree.

6. Add the DataNode sub-tree of the data source to the DataNode tree of the HIDE

system.

Each of these steps is described in the following paragraphs.

The process of integration begins with the identification of the desired integration levels.

As the above mentioned data source can be completely recognized by the HIDE, the

integrator can choose the primary level of integration. This information is recorded in the

operational model metadata files.

The first step involves identification and creation of the DataNode tree in the logical

view. In the above mentioned data source, a DataNode could represent the data sources

with leaf nodes depicting the years and months for which the data is available as shown

Figure 6.1. It has to be noted here that the logical view and physical of a DataNode sub-

tree can be identical.

Nimmy Ravindran Data source(s)/ Dataset (s) Registration 57

Figure 6.1 A DataNode sub-tree for the data source TOVS.

The creation of data node tree is achieved by defining the various metadata. Each data

node in the tree is described using XDMS specification file. This metadata includes

information such as identification, labels, indexes (for data search operations), additional

information such as history, URL, the operations supported and list of its child

DataNodes. This step is repeated until all the DataNodes in the DataNode sub-tree is

described.

Definition of operational model begins with the identification of the model for each data

node. In the above mentioned scenario, as the data source supports only query operations,

a query operational model can be defined for the data nodes. It has to be noted here, that

it is not mandatory to define the model for all the data nodes except for the leaf nodes.

Hence in the higher levels of data node hierarchy, the query model describes various

aspects of the query operations and aggregation of the data, while lower models would

also define the access point information, transformation information etc. The query

model for a data node is specified through the XOMS files. In these, integrators can

specify the query conditions fields, the validation rules for each field and the output result

fields.

The third step involves the definition of access point information for the leaf DataNodes.

This provides the leaf data nodes with information about “how to access the external data

source.” The integrators can specify the protocol to be used, and the query string format

to extract the data.

……..

………

TOVS-Pathfinder
Atmospheric sounding data

1985

1986 1987

01 02 03

Nimmy Ravindran Data source(s)/ Dataset (s) Registration 58

In the fourth step, integrators define the transformation model for transforming the data

extracted from the data source. This information can be specified through the XTMS

files. In these files, the integrators can provide the data model (spatial/temporal), spatial

and temporal coverage of the data from each data node.

The definition of syntax and semantic information for the data extracted from the

DataNode can be specified through XFD files. This information would be used by the

transformation engine to extract the data, analyze and transform.

In the final step, the integrator identifies the appropriate data node to which the sub-tree

belongs and which can acts as its parent DataNode. Then the sub-tree information can be

specified in XDMS specification of the parent DataNode. It also has to be noted here, that

if the parent DataNode has a query model already defined, then necessary changes are to

be made in the query model to include the newly added data source. The final data node

tree is shown in Figure 6.2. In the above mentioned scenario, as the data source provides

the precipitation data, the DataNode sub-tree is added into the precipitation DataNode.

Figure 6.2 The DataNode tree after adding the new data source.

……..

………

TOVS-Pathfinder Atmospheric
sounding data

1985
1986 1987

01 02 03

Root

Precipitation

USGS GPCC

Nimmy Ravindran Data source(s)/ Dataset (s) Registration 59

The process of addition of a new dataset follows similar steps as mentioned above. But, a

new dataset is identified as a single DataNode. Hence the steps are repeated for a single

DataNode.

6.2. Registration with secondary level of integration

The secondary level of integration enables the system integrator, to integrate those data

systems which cannot be completely recognized by the HIDE architecture. The process

of such kind of integration can be summarized in the following steps.

1. Identify and create the DataNode sub-tree in the logical view.

2. Identify the operational model.

3. Add the DataNode sub-tree of the data source to the DataNode tree of the HIDE

system.

The process of integration begins with identification and creation of the DataNode sub-

tree of the particular data source. Each DataNode in the sub-tree can be described through

the XDMS files which include documentation, child DataNodes and supported

measurements. This step is repeated until all the DataNodes are described.

The Definition of operational model begins with identification of the appropriate model

of each DataNode in the DataNode sub-tree. The definition of the operational model is

provided through the XOMS files. This would include the level of integration

(secondary) and the link to the external operation interface. It has to be noted here that, as

in this type of integration, HIDE system relies on the external data source interfaces to

perform the operations; the data extracted cannot be aggregated from multiple data nodes,

analyzed and transformed.

The final step involves the identification of appropriate parent DataNode in the HIDE

DataNode tree to which the DataNode sub-tree belongs. Once the parent node is

identified, the appropriate information of the DataNode sub-tree can be specified in the

XDMS files of the parent DataNode.

Nimmy Ravindran NWS Dataset integration 60

Chapter 7 . NWS Dataset integration

7.1. Introduction

Operational research plays a critical role in the operationally hydrologic forecast mission

at the NOAA National Weather Service (NOAA NWS) River Forecast Centers (RFCs)

which is uniquely mandated amongst Federal agencies to provide forecasts for the

Nation’s rivers by providing daily and other forecasts at over 4,000 points across the

contiguous United States and Alaska. The operational component of the mission is

performed at 13 River Forecast Centers and approximately 120 Weather Forecast Offices

at strategic locations across the United States.

The NWS Office of Hydrologic Development supports the operational mission by

developing, implementing, and maintaining forecast models which are calibrated for

specific rivers and streams based on historical events. Current observations and historical

information is used for conditioning and constraining the models. Hence, a delayed,

inaccurate, inconsistent, incomplete or insufficient data which is used for calibration of

the forecast models can cause significant problems in the forecast process and for the

forecasters who operate them.

Lack of appropriate tools could hamper hydrological calibrations, research and

development for improving the operational-related hydrological river forecast research.

HIDE system offers a data integration solution that helps in data exploration, analysis as

new heterogeneous data sources are being added. HIDE provides metadata architecture

with an open systems structure with interoperability and modularity. HIDE can access

multiple large volumes of heterogeneous data sources, with different structures and

formats and can easily adopt changes over time because of its modularity and simplicity.

HIDE also provides users with a uniform GUI and can merge multiple datasets and data

sources. As new data analysis is being introduced, the layered architecture of HIDE

enables for customization for specific requirements.

Nimmy Ravindran NWS Dataset integration 61

In the following sections, the integration and customization of HIDE with the time series

files (FS5Files) of River Forecasting centers (RFC’s) of NWS are being discussed. It can

be shown that, with the introduction of the data sources, the changes required in HIDE to

perform the integration is minimal.

7.2. FS5Files

The NWSRFS Operational Forecast system (OFS) is a continuous river forecasting

system which provides the forecaster with information required for flood forecasting. The

System stores observed and future point measurements such as temperature, precipitation

and produces forecasted products. These measurements are kept in specialized files

known as FS5Files. For better development of forecast models, it becomes a requirement

to integrate the time series information from these complicated FS5Files with the data

sets from other RFC’s, organizations such as USGS etc. FS5Files are a collection of files

used by various components of the NWSRFC modules.

The processed data base files (PRD) of FS5Files are time series files which contain the

time series data produced by preprocessor functions or forecast components. The

preprocessor functions of NWSRFC write these time series data which were created for

each RFC station or area, while the forecast component reads these time series and writes

it back to the processed data base. The PRD time series files are basically collection of

files with information such as various datatypes (MAP, MAT, and MPAE) and the

measurements for a time instant. The time series data time intervals can be 1, 2, 3, 4, 6,

8,12 or 24 hrs. One time series information is a combination of files PRDINDEX,

PRDPARM and PRDTS.

File PRDINDEX contains the index to the time series in the Processed Data Base. A

hashing algorithm is used to determine the location in the index, based on the time series

identifier and data type. The key is the time series identifier and data type. It consists of

16 byte binary records with each record containing the time series identifier, datatype

code, and the record number of the first logical record in the time series file.

Nimmy Ravindran NWS Dataset integration 62

The PRDPARM file contains PRD control information and the datatype index. The file

starts with a control information record and followed by a series of datatype records as

shown in figure 7.1

PRD Control information

User identifier

Maximum number of datatypes

Maximum number of time series

Min # of days for the observed data to be

kept

Actual number of time series

Actual number of datatypes

PRD Datatype Index

Datatype code

Unit number

of time series for this datatype

Maximum days data

Smallest time interval allowed

Processing indicator

Future data indicator

First record in the file of this type

Last record in the file of this type

Unit dimension

Number of values per time interval

Number of time series defined for a data

type

Figure 7.1 A schematic representation of PRDPARM files.

Nimmy Ravindran NWS Dataset integration 63

The PRDTSn files contain the PRD time series data. They consist of 64 byte binary

records with control and time series records. Each time series record consists of a header

and time series information. An explanation for each record is shown Figure 7.2.

Control record

File Unit number

Max number of records

Next available record

of datatypes in the file

Record # of the last record read

Time series Header

Length of header

Data time interval

of values per data time interval

Max number of data values

Actual # of data values

Location for the first value

Location for the first future value

Time series identifier

Time series datatype

Time series unit

Latitude and longitude

Julian hour of the first data value

Record number of the future time

series data

Record number of the next time

series record of the same datatype

Description

Time Series Data

Time Series Data

Figure 7.2 A schematic representation of PRDTs files.

Nimmy Ravindran NWS Dataset integration 64

The time series files are being generated with 45 days worth data with 30 days of

observed data and 15 days of forecasted data, collected and saved. All the FS5files are

then retrieved, zipped and stored in the repository. This process occurs on a timely basis

as part of the NWSRFC system. The zipped file contains all the FS5files along with the

PRDINDEX, PRDPARM and PRDTS file. The name of the zipped file follows the

pattern of “fs5filesyyyymmdd.” For example; if the FS5files are being saved on the day

Nov 10th 2004, the name of the zipped file would be represented as “fs5files20051110.”

The time series data from this collection of FS5files might contain 30 days of observed

data i.e. from Oct 10th 2004 – Nov 10th 2004 and 15 days of forecasted data i.e. from Nov

10th 2004 – Nov 15th 2004.

7.3. Integration of Time series data of FS5Files to HIDE

The integration to HIDE (See Chapter 6) can be done at each layer, depending upon the

complexities involved. Following steps are performed while integrating to HIDE. At

present, FS5Files from the Ohio River forecast center are being integrated to the HIDE

system.

1. Creation of a DataNode subtree. The DataNodes are identified and organized as a

DataNode subtree. The DataNode subtree includes the hierarchical organization

among RFCs. This would help to integrate FS5files from other RFCs with ease.

2. Defining description model metadata for all the DataNodes.

3. Defining the query model (XOMS), syntax (XFD), access model (XAD) and

transformation model for the end leaf nodes

4. Integrate the DataNode subtree to the corresponding parent node in the HIDE

resulting in a DataNode subtree as shown in the figure 7.3

Nimmy Ravindran NWS Dataset integration 65

Figure 7.3 The DataNode tree for OFS data.

It is assumed that HIDE is part of the local network of the River Forecasting center. The

integration of FS5files is performed with plugins and metadata files which act as

wrappers for the OFS system. Due to the complex nature of the FS5files data and

additional functionalities required at the Access Engine layer, the OFS data engine plugs-

in its specialized OFSAccessEngine through the plugins of the HIDE system. A high

level representation of the integration of OFS files to the HIDE is shown in Figure 7.4

Figure 7.4 A high level representation of integration of OFS files to HIDE.

As explained in the previous sections, the integration to HIDE is performed at each layer

and can be represented as in the Figure 7.4. Following sections briefly describes the

root

FS5files

NWSRFC

Ohio RFC

Access Engine

Transformation Engine

Data Models

Application Services

OFS Data engine

OFSAccessEngine
Plugin

Metadata wrappers
(XDMS, XOMS,

XAD, XTMS, XFD)

Nimmy Ravindran NWS Dataset integration 66

integration process at each layer. As FS5Files are off temporal in nature, it perfectly fits

with the temporal model of the HIDE system.

Figure 7.5 OFS Time Series Data Integration with HIDE

7.3.1.Integration to Access Engine Layer

The NWSRFC uses a utility “ReadOFS” to read the time series data from the FS5File for

a particular saved date-time. The utility requires the information such as the date, time,

datatype, time series identifier and time periods, reads the PRDINDEX, PRDPARM and

PRDTSn files and retrieves the data that matches the input conditions. This utility acts as

the interface for the FS5Files from HIDE and resides externally to HIDE.

As the FS5Files are being managed as a collection of zipped files, it becomes necessary

for the Access engine to make sure that the files are unzipped and available for the

ReadOFS utility. Hence this becomes an added responsibility to the Access Engine layer

which typically handles only the connections with the external engines. Since the data

preparation is not handled by the existing Access Engines of HIDE, a specialized Access

Engine – OFSAccessEngine is plugged into the Access Engine layer through the

PluginAccessEngine (plugin for the AccessEngine) of the layer. The integration at the

Access Engine layer can be represented as shown figure 7.6

OFS Integration Modules

OFS
Access
Plugin

XAD FS5Fil
es

Application Services

Models

Transformation Engine

Access Engine

Query EngineSearch
Engine

XTMS

XDMS XQMS

XFD

Nimmy Ravindran NWS Dataset integration 67

Figure 7.6 The integration of FS5Files to the Access Engine layer. The relations between

various modules is also shown.

The responsibility of the Engine includes,

1. Data Preparation

The searching and finding the appropriate zipped FS5File, and unzip it while

making it available for the ReadOFS utility.

2. Prepare the request based on user entered values and parameters specified in the XAD

files.

3. Handle the connection with ReadOFS utility.

4. Retrieve the results from ReadOFS which is external to HIDE.

7.3.2.Integration to Transformation Engine Layer

The time series data of FS5Files are temporal in nature. Hence it follows the temporal

model of the HIDE system. The layer uses XFD metadata to recognize the syntactic

structure of the retrieved data file (not the FS5File as it is not exposed to the HIDE

system), and the XTMS metadata to understand the retrieved file as shown in Figure 7.5.

7.3.3.Integration to Search Engine and Query Engine

As mentioned in the preceding sections, the search engine utilizes the indices specified in

the description model metadata files for the search of the appropriate Data node. Hence if

the user has entered a string “Ohio RFC data” in the search engine, it will traverse the

tree from “root” DataNode to the “OhioRFC” DataNode. Similarly, if the user entered

Access Engine Layer

Plugin Access
Engine

OFS Access Engine

FS5Files
zipped FS5Files

unzipped

ReadOFS

HIDE

Nimmy Ravindran NWS Dataset integration 68

string is “FS5Files data”, the Search engine will traverse from “root” node to the

“FS5Files” DataNode. Various indices relating to different possibilities of search can be

specified in the XDMS metadata model for each DataNode. i.e. FS5Files, NWSRFC,

OhioRFC.

The Query Engine of the HIDE system utilizes the query model metadata file (XOMS) to

identify the query plan to be used for querying the external engine (ReadOFS). This file

is defined for the DataNode “Ohio RFC.” If a need occurs for aggregating the time series

data from multiple RFC’s, a query model is to be defined for the DataNode “NWSRFC”

as well. The information in the query model for the DataNode “Ohio RFC” includes,

1. List of search parameters:

a. Time Series ID

b. Data Type ID

c. Number of periods to be retrieved

d. Date and time

e. Units of Data to be considered (English/Metrics)

2. Validation rule for parameters period and Date

a. The range of periods is limited from 1 – 23

b. The Date should follow a format of “YYYY MM DD HH”

3. The output parameter OFS time series data.

Query engine dynamically generates a query interface based on the query metadata

model, validates the user entered values and send the request to the Access Engine.

Nimmy Ravindran CONCLUSIONS AND FUTURE WORK 69

Chapter 8 . CONCLUSIONS AND FUTURE

WORK

8.1. Summary

Scientific data integration is a pressing issue in today’s global scenario. Multitudes of

data residing over various locations and being controlled by scientific institutions pose

many challenges in the scientific data integration problem. The heterogeneity of data and

sources with respect to the syntax, semantics, and structure imposes significant impact on

the architecture and the design of any data integration development. As the data

integration solutions move towards third generation of information systems, using

semantics for data search and retrieval provides an easier search and access for the end

users. The use of metadata as a context for the data is one of the many solutions used in

the current information systems.

In this work, a novel model for integration of heterogeneous hydrologic data engines

which are autonomous and diverse, using the concepts of data nodes and data node tree is

presented. The heterogeneities of the sources are addressed through a tree model which

incorporates semantics and structural nature of the data, while syntactical information of

the data is handled through the metadata model. HIDE uses an extended XML-based

wrapper/mediator, layered architecture for the integration, which realizes the data node

tree, performs the query operations by accessing the external data system, and transforms

them to the data models of the HIDE system. The problems of integration are

systematically handled at each layer. An XML-based metadata is used for the definition

of the DataNodes, operations, transformations and accessibility to the external data

source/engine. HIDE uses temporal and spatial model for the representation of the data as

opposed to the data models as structures, arrays or grids used in other geographic

systems. This is based on the nature of the hydrology data in the time space domain.

Finally HIDE encompasses the objectives of flexibility, scalability and simplicity which

are fundamental to software system, in its design and implementation.

Nimmy Ravindran CONCLUSIONS AND FUTURE WORK 70

8.2. Future Work

While this thesis has produced a scalable, flexible and simple data integration model for

the autonomous heterogeneous datasets, there is much scope for future research in this

topic. Some potential areas of improvement are discussed below.

8.2.1.Metadata Security Mechanisms

Metadata is a crucial component in any data system. This work has demonstrated the

significant role the metadata plays in a data integration scenario. Although metadata is

just “data about data,” it contains important information about the data. In fact, an

unauthorized change to the metadata could be a serious attack on the data system itself.

Hence securing the metadata becomes an important concern in the data integration.

In the HIDE system, metadata is used as a point of contact with external data sources.

Hence sufficient measures are to be made to secure the metadata to prevent any insecure

access to the external data sources. The need for metadata confidentiality, privacy,

authentication and metadata integrity needs to be addressed in the system. However,

providing a tight security for the data integration and loose security for the data sources

does not necessarily solve the unauthorized release of information. In order to strike off a

balance with sufficiency and necessity of the security measures, a study has been started,

to use secret key encryption methodologies for the metadata and a scheme of partial user

authentication with Merkle Trees. As the DataNode tree represents a logical hierarchy of

information, it can be used to identify Merkle Trees. The use of secret keys to define the

ownership for each DataNode by a source helps in user authentication using Merkle

Trees. This is more advantageous, as it can determine, with less storage of intermediate

states, if the DataNode tree has been altered. Current studies are continued in this

particular area.

8.2.2.HIDE-gen : A metadata generation tool

Keeping in mind the objectives of simplicity and flexibility, this work has demonstrated

the metadata model and effective usage of it in the data integration. However generating

a metadata model and DataNode tree can be a “bottleneck” in the system, if they are not

Nimmy Ravindran CONCLUSIONS AND FUTURE WORK 71

created properly. An Incorrect DataNode tree can result in incorrect representation of the

information space and can consume time and effort in a search process. Also, incorrect

metadata model will prohibit the user from retrieving the data from the external data

sources correctly.

In order to address these issues, a metadata generation tool for the HIDE system is

required. This tool can help the user to generate the metadata and in turn the DataNode

tree based on predefined constraints. As the interaction of the user with the metadata can

be limited to a certain extent with this tool, it might provide a secure mechanism for the

creation of the metadata. A combination of the tool and secure mechanism can ensure the

best mechanisms for the data integration.

8.2.3. Data Visualization

Data Visualization in 2D and 3D models is very much essential for an effective data

analysis. At present, HIDE allows the user to view the data which are being retrieved

from various data sources. The porting of a data visualization tool to HIDE will be done

in the near future.

8.2.4. Data Mining Models
Data mining exercises on observational data sets is useful in extracting hidden/unknown

relationships. For example in case of time series data, such analysis facilitates in deriving

recurrent patterns. This process of locating efficient and accurate patterns of interest in

time series data is important in data analysis in scientific domain. One such example

would be to use this information for weather prediction analysis in hydrology domain.

The time series models are essential in the hydrology domain as it deals with non-

stationary multivariate time series data on a daily basis. Traditional time series modelling

is based on global linear models. One approach is Box-Jenkins family of models, where

the current value is modeled as a weighted linear combination of past values plus additive

noise and is often used in time series prediction. Thus incorporating data mining models

with the data models of HIDE would be advantageous in analyzing forecasting nature of

the time series data.

Nimmy Ravindran Appendix 72

Appendix

XML Schema for the metadata model

Documentation:hide-funcModel

This metadata represents the description model of the HIDE system. It describes each

data source and its child members along with a comprehensive description.

Details:

Recommended Usage All data sources , data nodes and concepts

StandAlone Yes

Schema name funcModel.xsd

Element Definitions:

1. DataNode

Default Value No

Type A complex type with a sequence of other

elements

Description Describe the data node

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="DataNode">

<xs:complexType>

<xs:sequence>

<xs:element ref ="identifiedAs"/>

<xs:element ref="documentedBy "/>

<xs:element ref ="canMeasure"/>

<xs:element ref ="supportOperations"/>

<xs:element ref ="DataNodeMembers" />

</xs:sequence>

Nimmy Ravindran Appendix 73

</xs:complexType>

</xs:element>

2. identifiedAs

Default Value No

Optional No

Type A complex type with a collection of other

elements such as name, label and index.

Description Describe the identity of the data node. Name has

to be unique as it is used for identifying the

node. Index should be comma separated indices

of keywords used for search.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="identity" minOccurs=”1” maxOccurs=”1”>

 <xs:all>

 <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>

<xs:element name="label" type="xs:string" minOccurs="1" maxOccurs="1"/>

<xs:element name="index" minOccurs="1" maxOccurs="1" type="xs:string"/>

 </xs:all>

</xs:element>

3. documentation

Default Value No

Optional Yes

Type A complex type with a collection of other

elements such as url and history. URL has to be

a valid url to a description of the data source.

The history should be a brief textual description

about the source.

Nimmy Ravindran Appendix 74

Description Describe the documentation related to the data

node

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="documentation" minOccurs=”0” maxOccurs=”1”>

 <xs:all>

<xs:element name="url" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="history" type="xs:string" minOccurs="1"

maxOccurs="1"/>

 </xs:all>

</xs:element>

4. canMeasure

Default Value No

Optional Yes

Type Measurements.

Description Describe the measurements collected at each

DataNode.

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="measurements" minOccurs=”0” maxOccurs=”1”>

 <xs:all>

 <xs:element name="metadata" type="xs:string" minOccurs="1" maxOccurs="1"/>

 <xs:element name="measurements" minOccurs="1" maxOccurs="1">

<xs:complexType>

 <xs:sequence>

<xs:element ref ="measurement"/>

 </xs:sequence>

</xs:complexType>

Nimmy Ravindran Appendix 75

 </xs:element>

 </xs:all>

</xs:element>

5. measurement

Default Value No

Optional Yes

Type A complex type with a sequence of elements

such as type, minValue and maxValue. The type

represents the data type for the measurement

(int, float etc.). The minValue and maxValue

are the thresholds of the measurements

Description Describe the measurement type of DataNode.

Minimum Occurrence 0

Maximum Occurrence Unbounded

Schema:

<xs:element name="measurement" minOccurs=”0” maxOccurs=”unbounded”>

 <xs:sequence>

 <xs:element name="constraint" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="type" type="xs:string" minOccurs="1"

maxOccurs="1"/>

 <xs:element name="minValue" type="xs:float" minOccurs="1"

maxOccurs="1"/>

 <xs:element name="maxValue" type="xs:float" minOccurs="1"

maxOccurs="1"/>

</xs:sequence>

 </xs:complexType>

</xs:element>

 </xs:sequence>

Nimmy Ravindran Appendix 76

 <xs:attribute name="name"/

</xs:element>

6. support Operations

Default Value No

Optional No

Type A complex type with a sequence of elements

defining the operations. The operations can be

select (“query”) and get. For the select

operations, element points to the query

operational metadata file.

Description Describe the supported operations in a

DataNode.

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="operations" minOccurs=”0” maxOccurs=”1”>

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="operation" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="operate">

 <xs:complexType>

 <xs:sequence>

<xs:element name="select" minOccurs="0" maxOccurs="1"

type="selectType"/>

<xs:element name="get" type="xs:string" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

Nimmy Ravindran Appendix 77

 <xs:attribute name="type" type="xs:string"/>

 </xs:complexType>

</xs:element>

<xs:complexType name="selectType">

 <xs:all>

<xs:element name="select_templates">

 <xs:complexType>

<xs:sequence>

 <xs:element name="select_template" minOccurs="1"

maxOccurs="unbounded">

<xs:complexType>

 <xs:attribute name="fileName" type="xs:string"/>

 <xs:attribute name="seqNo" type="xs:integer" default="0"/>

</xs:complexType>

 </xs:element>

</xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:all>

<xs:attribute name="templates" type="xs:string" default="yes"/>

</xs:complexType>

7. DataNodeMember

Default Value No

Optional Yes

Type A complex type with a sequence of DataNodes.

Description List the entire child DataNodes. Each DataNode

element will point to the description model

metadata of the DataNode.

Minimum Occurrence 0

Nimmy Ravindran Appendix 78

Maximum Occurrence 1

Schema:

<xs:element name="DataNodeMembers" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="DataNodeMember" type="xs:anyURI"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Documentation: hide-querymodel

This metadata represents the query model of the HIDE system. It describes the query

conditions, search parameters and validation rules to be applied to the condition.

Details:

Recommended Usage Define for DataNodes which requires a

querymodel. Mandatory for the leaf

DataNode.

StandAlone No. Dependent on the description model

Schema name Query_template.xsd

Element Definitions:

1. Query

Default Value No

Optional Yes

Type A complex type with a sequence of external or

internal query. If the integration is of primary

level, then query is an internal query. If the

integration is of secondary level, the query is an

external query.

Nimmy Ravindran Appendix 79

external query.

Description The query templates are described

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="Query">

 <xs:complexType>

<xs:choice>

<xs:element name="external" type="external"/>

<xs:element name="internal" type="internal"/>

</xs:choice>

 </xs:complexType>

</xs:element>

2. External query

Default Value No

Optional Yes , if internal query is used

Type A complex type with URL and description. The

URL points to the external interface of the data

source. The description is a textual information

about the data source.

Description Definition of the external query

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:complexType name="external">

 <xs:all>

<xs:element name="details">

<xs:complexType>

<xs:all>

<xs:element name="URL" type="xs:anyURI"/>

Nimmy Ravindran Appendix 80

<xs:element name="description" type="xs:string"/>

</xs:all>

</xs:complexType>

</xs:element>

 </xs:all>

</xs:complexType>

3. internal query

Default Value No

Optional Yes, if external query is used.

Type A complex type with search condition and

output criteria elements

Description Definition of the external query

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:complexType name="internal">

<xs:sequence>

<xs:element ref="search_criteria" minOccurs="1" maxOccurs="1"/>

<xs:element ref="output_criteria" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

4. search criteria

Default Value No

Optional No

Type A complex type with fields and validation rule

elements

Description Definition of the search criteria

Nimmy Ravindran Appendix 81

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="search_criteria">

<xs:complexType>

<xs:sequence>

<xs:element ref="fields" minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

5. Fields

Default Value No

Optional No

Type A Sequence of different types of field (Choice,

Entry) with parameters

Description Definition of the Fields

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="fields">

 <xs:sequence>

<xs:element name="field" minOccurs="1" maxOccurs="unbounded">

 <xs:complexType>

<xs:choice>

<xs:element ref="choice"/>

<xs:element ref="Entry"/>

</xs:choice>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="displayName" type="xs:string"/>

<xs:attribute name="description" type="xs:string"/>

Nimmy Ravindran Appendix 82

<xs:attribute name="format" type="xs:string"/>

<xs:attribute name="unit" type="xs:string"/>

<xs:attribute name="type" type="fieldTypes"/>

<xs:attribute name="empty" type="xs:string" default="yes"/>

<xs:attribute name="dataNodeSearch" type="xs:string" default="no"/>

<xs:attribute name="boundsCheck" type="xs:string" default="no"/>

<xs:attribute name="relatedTo" type="xs:string" default="norelation"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:element>

6. choice element

Default Value No

Optional -

Type A complex type with items.

Description Definition of the choice field. Choice field can

take inputs from a separate file or as a series

values defined in the metadata.

Minimum Occurrence -

Maximum Occurrence -

Schema:

<xs:element name="choice">

 <xs:complexType>

 <xs:sequence>

<xs:element name="item" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="value" type="xs:string"/>

<xs:attribute name="displayString" type="xs:string"/>

</xs:complexType>

Nimmy Ravindran Appendix 83

</xs:element>

</xs:sequence>

<xs:attribute name="type" type="choiceTypes"/>

<xs:attribute name="input" type="inputTypes"/>

<xs:attribute name="value" type="xs:anyURI"/>

<xs:attribute name="defaultValue" type="xs:string" default="0"/>

 </xs:complexType>

</xs:element>

7. Entry

Default Value No

Optional -

Type A complex type

Description Definition of the Entry field. Entry field can be

single entry field, Range field (min-max), Array

field and spatial array entry field for defining

spatial array as lat:long

Minimum Occurrence -

Maximum Occurrence -

Schema:

<xs:element name="Entry">

<xs:complexType>

<xs:choice>

<xs:element ref="SingleEntry"/>

<xs:element ref="Range"/>

<xs:element ref="ArrayEntry"/>

<xs:element ref="SpatialArrayEntry"/>

</xs:choice>

<xs:attribute name="type" type="entryFieldType"/>

<xs:attribute name="defaultValue" type="xs:string" default="0"/>

</xs:complexType>

Nimmy Ravindran Appendix 84

</xs:element>

8. Integer data type field.

Default Value No

Optional -

Type A complex type

Description Definition of the integer datatype field

representing an integer. This datatype field is

defined for entry fields.

Minimum Occurrence -

Maximum Occurrence -

Schema:

<xs:element name="Integer">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="ValidationRule" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="rule" type="booleanTypes"/>

<xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

</xs:element>

9. String datatype field

Default Value No

Optional -

Type A complex type

Description Definition of the string datatype field

representing a string. This datatype field is

defined for entry fields.

Minimum Occurrence -

Nimmy Ravindran Appendix 85

Maximum Occurrence -

Schema:

<xs:element name="String">

 <xs:complexType>

<xs:sequence>

<xs:element ref="ValidationRule" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="rule" type="booleanTypes"/>

 </xs:complexType>

</xs:element>

10. Date datatype field

Default Value No

Optional -

Type A complex type

Description Definition of the date datatype field

representing a date. This datatype field is

defined for entry fields (Single and range).

Minimum Occurrence -

Maximum Occurrence -

Schema:

<xs:element name="Date">

 <xs:complexType>

<xs:sequence>

<xs:element ref="ValidationRule" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="format" type="DateType"/>

<xs:attribute name="rule" type="booleanTypes"/>

 </xs:complexType>

</xs:element>

Nimmy Ravindran Appendix 86

11. Validation rule

Default Value No

Optional -

Type A complex type

Description Definition of the validation rules. Different rules

are range rule, array rule, spatial rule, pattern

rule, format rule, date rule.

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="ValidationRule">

 <xs:complexType>

 <xs:choice>

 <xs:element name="RangeRule">

 <xs:complexType>

<xs:all>

<xs:element name="from" type="xs:string"/>

<xs:element name="to" type="xs:string"/>

</xs:all>

 </xs:complexType>

</xs:element>

<xs:element name="ArrayRule">

 <xs:complexType>

<xs:all>

<xs:element name="from" type="xs:string"/>

<xs:element name="to" type="xs:string"/>

</xs:all>

 </xs:complexType>

</xs:element>

<xs:element name="SpatialRule">

 <xs:complexType>

Nimmy Ravindran Appendix 87

<xs:all>

<xs:element name="from" type="xs:string"/>

<xs:element name="to" type="xs:string"/>

</xs:all>

 </xs:complexType>

</xs:element>

<xs:element name="PatternRule" type="xs:string"/>

<xs:element name="FormatRule" type="xs:string"/>

<xs:element name="DateRule">

 <xs:complexType>

<xs:attribute name="format" type="xs:string"/>

<xs:attribute name="from" type="xs:string"/>

<xs:attribute name="to" type="xs:string"/>

 </xs:complexType>

</xs:element>

</xs:choice>

<xs:attribute name="type" type="ruleTypes"/>

 </xs:complexType>

</xs:element>

12. Output_criteria

Default Value No

Optional -

Type A complex type

Description Definition of the output criteria. Sometime,

output criteria might depend on search

conditions. This dependency can be represented

as the attribute “dependsOn.”

Minimum Occurrence 0

Maximum Occurrence 1

Nimmy Ravindran Appendix 88

Schema:

<xs:element name="output_criteria" minOccurs="0" maxOccurs="1">

 <xs:complexType>

<xs:sequence>

 <xs:element name="items">

<xs:complexType>

 <xs:sequence>

 <xs:element ref="item" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="order" type="booleanTypes"/>

 <xs:attribute name="dependsOn" type="xs:string" default="null"/>

 <xs:attribute name="fileName" type="xs:string" default="null"/>

</xs:complexType>

 </xs:element>

</xs:sequence>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="displayName" type ="xs:string"/>

 </xs:complexType>

</xs:element>

Documentation: hide-syntax

This metadata represents the syntax definitions of data in HIDE system. It describes the

various data representations as ASCII, binary etc.

Details:

Recommended Usage Define for DataNodes which has a

querymodel.

StandAlone No. Dependent on the query model

Schema name Query_template.xsd

Nimmy Ravindran Appendix 89

Element Definitions:

1. Syntax

Default Value No

Optional No

Type A complex type

Description Definition of the syntax. Currently, only ASCII

is defined here. Syntax consist of comment

fields, header fields and dataset fields

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="syntax">

 <xs:complexType>

<xs:choice>

 <xs:element name="Ascii">

<xs:complexType>

 <xs:sequence>

<xs:element name="Comment" minOccurs="0" maxOccurs="1">

 <xs:complexType>

<xs:attribute name="value" type="xs:string"/>

 </xs:complexType>

</xs:element>

<xs:element name="Header" minOccurs="1" maxOccurs="1">

 <xs:complexType>

<xs:attribute name="type" type="xs:string"/>

<xs:attribute name="numLines" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 <xs:element ref="Dataset"/>

</xs:sequence>

</xs:complexType>

Nimmy Ravindran Appendix 90

 </xs:element>

</xs:choice>

<xs:attribute name="type" type="xs:string"/>

<xs:attribute name="delimiter" type="xs:string"/>

 </xs:complexType>

</xs:element>

2. Dataset

Default Value No

Optional No

Type A complex type

Description Definition of the dataset. Dataset can be a

dataTable or dataArray

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="Dataset">

 <xs:complexType>

<xs:choice>

 <xs:element name="dataTable">

<xs:complexType>

 <xs:sequence>

<xs:element ref="dataFields" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="numRecords" type="xs:string"/>

</xs:complexType>

 </xs:element>

 <xs:element name="dataArray">

 <xs:complexType>

 <xs:sequence>

<xs:element ref="dataFields" minOccurs="1" maxOccurs="1"/>

Nimmy Ravindran Appendix 91

<xs:element ref="ArrDimensions" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="numDimensions" type="xs:integer"/>

</xs:complexType>

 </xs:element>

 </xs:choice>

 <xs:attribute name="type" type="xs:string"/>

</xs:complexType>

</xs:element>

3. DataFields

Default Value No

Optional No

Type A complex type

Description Definition of the dataFields. DataFields

represents each field in the data. Each data field

has name, display name, its associated query

field name, description and datatype associated

with it.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="dataFields">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="dataField" minOccurs="1" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="displayName" type="xs:string"/>

 <xs:attribute name="type" type="xs:string"/>

Nimmy Ravindran Appendix 92

 <xs:attribute name="description" type="xs:string"/>

 <xs:attribute name="query_fldname" type="xs:string"

use="optional"/>

 <xs:attribute name="default" type="xs:string" default="no"/>

</xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

4. Array Dimensions

Default Value No

Optional No

Type A complex type

Description Definition of the Array Dimensions. This

element defines the array dimensions for the

data Array field

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="ArrDimensions">

 <xs:complexType>

<xs:sequence>

 <xs:element name="ArrDimension" minOccurs="1" maxOccurs="3">

 <xs:complexType>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="query_fldname" type="xs:string"/>

 </xs:complexType>

 </xs:element>

</xs:sequence>

<xs:attribute name="numDimensions" type="xs:string"/>

Nimmy Ravindran Appendix 93

 </xs:complexType>

</xs:element>

Documentation: hide-Access Definition

This metadata represents the Access definitions for the HIDE system. The access

specifications currently are defined for http and plugins.

Details:

Recommended Usage Define for DataNodes which has a

querymodel.

StandAlone No. Dependent on the query model

Schema name Query_template.xsd

Element Definitions:

1. AP Definition

Default Value No

Optional No

Type A complex type

Description Definition of Access point.

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="APDefinition" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:choice>

<xs:element ref="http"/>

<xs:element ref="external_plugin"/>

</xs:choice>

<xs:attribute name="type" type="xs:string"/>

Nimmy Ravindran Appendix 94

</xs:complexType>

</xs:element>

2. HttpAccessEngine

Default Value No

Optional Yes, if plugin access engine is used.

Type A complex type

Description Definition of http Access point. It is a

combination of the base URL with a set of

selection and projection parameters.

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="http">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="baseURL" type="xs:anyURI" minOccurs="1"

maxOccurs="1"/>

 <xs:element ref="selection" />

</xs:sequence>

 </xs:complexType>

</xs:element>

3. Selection

Default Value No

Optional No

Type A complex type

Description Definition of selection element. It consists of a

set of selection parameters with name, value and

corresponding query field name.

Nimmy Ravindran Appendix 95

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="selection" minOccurs=”0” maxOccurs=”1”>

 <xs:all>

<xs:element ref="parameters"/>

 <xs:complexType>

<xs:sequence>

 <xs:element ref="parameter" />

</xs:sequence>

<xs:attribute name="empty" type="booleanTypes" default="yes"/>

 </xs:complexType>

</xs:element>

 </xs:all>

</xs:element>

4. Parameter

Default Value No

Optional No

Type A complex type

Description Definition of parameter element.

Minimum Occurrence 1

Maximum Occurrence unbounded

Schema:

<xs:element name="parameter" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="type" type="xs:string" default="default"/>

<xs:attribute name="param" type="xs:string"/>

<xs:attribute name="value" type="xs:string"/>

<xs:attribute name="defaultValue" type="xs:string"/>

</xs:complexType>

Nimmy Ravindran Appendix 96

</xs:element>

5. Plugin AccessEngine

Default Value No

Optional No

Type A complex type

Description Definition of plugin Access Engine.

Minimum Occurrence 1

Maximum Occurrence Unbounded

Schema:

<xs:element name="external_plugin">

 <xs:complexType>

<xs:sequence>

 <xs:element name="plugin"/>

<xs:complexType>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="directory" type="xs:anyURI"/>

</xs:complexType>

 </xs:element>

 <xs:element name="selection" type="selection" minOccurs="0"

maxOccurs="1"/>

</xs:sequence>

 </xs:complexType>

</xs:element>

Documentation: hide-Transformation

This metadata represents the DataModel transformation definitions for the HIDE system.

The transformation definitions includes the type of DataModel to be considered and the

temporal and geographic coverage

Nimmy Ravindran Appendix 97

Details:

Recommended Usage Define for DataNodes which has a

querymodel.

StandAlone No. Dependent on the query model

Schema name TESchema.xsd

Element Definitions:

1. TE

Default Value No

Optional No

Type A complex type

Description Definition of transformation engine. The engine

can be spatial model or temporal model

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="TE">

 <xs:complexType>

<xs:all>

 <xs:element name="TEDataModelType">

<xs:complexType>

 <xs:choice>

<xs:element ref="TimeModelTE"/>

<xs:element ref="SpatialModelTE"/>

 </xs:choice>

 <xs:attribute name="type" type="xs:string"/>

</xs:complexType>

 </xs:element>

</xs:all>

 </xs:complexType>

Nimmy Ravindran Appendix 98

</xs:element>

2. TimeModelTE

Default Value No

Optional Yes, if spatial model is defined

Type A complex type

Description Definition of time model transformation engine.

The data would be represented as a dataTable

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="TimeModelTE">

<xs:complexType>

 <xs:sequence>

<xs:choice>

 <xs:element ref="dataTable"/>

</xs:choice>

<xs:element ref="SpatialCoverage" minOccurs="0" maxOccurs="1"/>

<xs:element ref="TemporalCoverage" minOccurs="0"

maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="datasetType" type="xs:string"/>

</xs:complexType>

</xs:element>

3. SpatialModel TE

Default Value No

Optional Yes, if temporal model is defined

Type A complex type

Description Definition of spatial model transformation

engine. The data would be represented as a

dataTable or dataArray

Nimmy Ravindran Appendix 99

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="SpatialModelTE">

 <xs:complexType>

<xs:sequence>

 <xs:choice>

<xs:element ref="dataTable"/>

<xs:element ref="dataArray"/>

 </xs:choice>

 <xs:element ref="SpatialCoverage" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="TemporalCoverage" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="datasetType" type="xs:string"/>

 </xs:complexType>

</xs:element>

4. Temporal Coverage

Default Value No

Optional Yes

Type A complex type

Description Definition of temporal coverage as a range of

date.

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="TemporalCoverage">

<xs:complexType>

<xs:all>

 <xs:element name="Date">

 <xs:complexType>

Nimmy Ravindran Appendix 100

<xs:attribute name="start" type="xs:string"/>

<xs:attribute name="end" type="xs:string"/>

 </xs:complexType>

</xs:element>

</xs:all>

</xs:complexType>

</xs:element>

5. Spatial Coverage

Default Value No

Optional Yes

Type A complex type

Description Definition of spatial coverage as a bounding

rectangle with N,S,E,W latitudes and longitudes

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="SpatialCoverage">

 <xs:complexType>

<xs:all>

 <xs:element name="Latitude">

<xs:complexType>

 <xs:attribute name="North" type="xs:integer"/>

 <xs:attribute name="South" type="xs:integer"/>

</xs:complexType>

 </xs:element>

 <xs:element name="Longitude">

<xs:complexType>

 <xs:attribute name="East" type="xs:integer"/>

 <xs:attribute name="West" type="xs:integer"/>

</xs:complexType>

Nimmy Ravindran Appendix 101

 </xs:element>

</xs:all>

<xs:attribute name="resolution" type="xs:string" default="1"/>

 </xs:complexType>

</xs:element>

6. dataArray

Default Value No

Optional Yes, if dataTable is used

Type A complex type

Description Definition of dataArray

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="dataArray">

<xs:complexType>

<xs:attribute name="dimension" type="xs:string"/>

</xs:complexType>

</xs:element>

7. dataTable

Default Value No

Optional Yes, if dataArray is used

Type A complex type

Description Definition of dataTable

Minimum Occurrence 0

Maximum Occurrence 1

Schema:

<xs:element name="dataTable">

<xs:complexType>

<xs:all>

Nimmy Ravindran Appendix 102

<xs:element name="TimeFormat" type="xs:string"/>

</xs:all>

</xs:complexType>

</xs:element>

Documentation: hide-dataModel

This schema defines the DataModels of the HIDE system. The information includes the

mathematical model, representational model and the information model.

Details:

Recommended Usage Define for the datasets retrieved.

StandAlone Yes

Schema name dataObjectModel_schema.xsd

Element Definitions:

1. DataModel

Default Value No

Optional No

Type A complex type

Description Definition of DataModel. The model contains

information model, representation model and

mathematical model. Based on the mathematical

model, the data model can be temporal / spatial.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="dataModelObject">

<xs:complexType>

<xs:sequence>

<xs:element ref="DataSources"/>

<xs:element ref="DataSet"/>

Nimmy Ravindran Appendix 103

</xs:sequence>

<xs:attribute name="type" type="xs:string"/>

</xs:complexType>

</xs:element>

2.DataSources

Default Value No

Optional No

Type A complex type

Description Definition of DataSources.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="DataSources>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="DataSource" minOccurs="1" maxOccurs="unbounded">

 <xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="link" type="xs:anyURI"/>

<xs:element name="AdditionalInfo" type="xs:string"/>

</xs:sequence>

 </xs:complexType>

</xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

3. Dataset

Nimmy Ravindran Appendix 104

Default Value No

Optional No

Type A complex type

Description Definition of datasets. It consists of information

about the coverage, representational information

and the mathematical DataModels.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="DataSet">

<xs:complexType>

<xs:sequence>

<xs:element ref="Syntax" minOccurs="1" maxOccurs="1"/>

<xs:element ref="Coverage" minOccurs="1" maxOccurs="1"/>

<xs:choice>

<xs:element ref="TemporalModel"/>

<xs:element ref="SpatialModel"/>

<xs:element ref="TemporalSpatialModel"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

4.Coverage

Default Value No

Optional No

Type A complex type

Description Definition of coverage. It consists of

information about the temporal and

geographical coverage of the data

Nimmy Ravindran Appendix 105

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="Coverage" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element ref="temporal" minOccurs="0" maxOccurs="1"/>

<xs:element ref="spatial" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

5. Temporal Coverage

Default Value No

Optional Yes

Type A complex type

Description Definition of temporal coverage. The coverage

can be provided as a range of dates with formats

and time zones.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="temporal">

 <xs:complexType>

 <xs:sequence>

<xs:element name="from" type="xs:string" minOccurs="1" maxOccurs="1"/>

<xs:element name="to" type="xs:string" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="format" type="xs:string"/>

 <xs:attribute name="type" type="xs:string"/>

 </xs:complexType>

Nimmy Ravindran Appendix 106

</xs:element>

6. Spatial Coverage

Default Value No

Optional Yes

Type A complex type

Description Definition of spatial coverage as a rectangle

with bounding coordinates representing the

latitudes and longitudes.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="spatial">

 <xs:complexType>

 <xs:sequence>

<xs:element name="northBoundCoordinate" type="xs:float" minOccurs="1"

maxOccurs="1"/>

<xs:element name="southBoundCoordinate" type="xs:float" minOccurs="1"

maxOccurs="1"/>

<xs:element name="eastBoundCoordinate" type="xs:float" minOccurs="1"

maxOccurs="1"/>

<xs:element name="westBoundCoordinate" type="xs:float" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

7. Temporal Model

Default Value No

Optional Yes

Type A complex type

Nimmy Ravindran Appendix 107

Description Definition of Temporal model. It consists of the

start time, format of the time and the timesteps.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="TemporalModel">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="dataFields" minOccurs="1" maxOccurs="1"/>

 <xs:element name="dateTime" minOccurs="1" maxOccurs="1">

 <xs:complexType>

<xs:all>

 <xs:element name="startValue"/>

<xs:complexType>

 <xs:attribute name="format" value="xs:string"/>

</xs:complexType>

 </xs:element>

 <xs:element ref="timeStep"/>

</xs:all>

 </xs:complexType>

 </xs:element>

</xs:sequence>

 </xs:complexType>

</xs:element>

8. TimeStep

Default Value No

Optional No

Type A complex type

Description Definition of Timesteps.

Minimum Occurrence 1

Nimmy Ravindran Appendix 108

Maximum Occurrence 1

Schema:

<xs:element name="timeStep" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="value" type="xs:integer"/>

</xs:complexType>

</xs:element>

9. dataFields

Default Value No

Optional No

Type A complex type

Description Definition of the dataFields. The dataFields can

be stationary or non-stationary.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="dataFields">

 <xs:complexType>

<xs:sequence>

 <xs:element name="stationary">

<xs:complexType>

<xs:sequence>

<xs:element ref="dataField"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="non-stationary">

<xs:complexType>

<xs:sequence>

<xs:element ref="dataField"/>

</xs:sequence>

Nimmy Ravindran Appendix 109

</xs:complexType>

</xs:element>

</xs:sequence>

 </xs:complexType>

<xs:element>

10. dataField

Default Value No

Optional No

Type A complex type

Description Definition of the attributes

Minimum Occurrence 1

Maximum Occurrence unbounded

Schema:

<xs:element name="dataField">

<xs:complexType>

<xs:attribute name="id" type="xs:string"/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="displayName" type="xs:string"/>

<xs:attribute name="description" type="xs:string"/>

<xs:attribute name="type" type="xs:string"/>

</xs:complexType>

</xs:element>

11.SpatialModel

Default Value No

Optional No

Type A complex type

Description Definition of the spatial model. It contains the

latitude and longitude range, resolution of the

cell in the grid, dataFields.

Nimmy Ravindran Appendix 110

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="SpatialModel">

<xs:complexType>

<xs:all>

 <xs:element name="LatitudeRange">

<xs:complexType>

<xs:all>

<xs:element name="from"> type="xs:integer"/>

<xs:element name="to"> type="xs:integer"/>

</xs:all>

</xs:complexType>

 </xs:element>

 <xs:element name="LongitudeRange">

<xs:complexType>

<xs:all>

<xs:element name="from"> type="xs:integer"/>

<xs:element name="to"> type="xs:integer"/>

</xs:all>

</xs:complexType>

 </xs:element>

 <xs:element name="resolution">

<xs:complexType>

<xs:attribute name="unit" type="xs:string"/>

<xs:attribute value="type" type="xs:float"/>

</xs:complexType>

</xs:element>

<xs:element ref="dataFields"/>

</xs:all>

</xs:complexType>

Nimmy Ravindran Appendix 111

</xs:element>

12. Syntax

Default Value No

Optional No

Type A complex type

Description Definition of the representational model. It

contains the information about how the data is

stored in HIDE.

Minimum Occurrence 1

Maximum Occurrence 1

Schema:

<xs:element name="Syntax">

 <xs:complexType>

<xs:sequence>

 <xs:element name="Ascii">

 <xs:complexType>

 <xs:sequence>

<xs:element name="dataFields" minOccurs="1" maxOccurs="1"/>

 <xs:complexType>

<xs:sequence>

 <xs:element name="id">

<xs:complexType>

 <xs:attribute name="value" type="xs:string"/>

</xs:complexType>

 </xs:element>

</xs:sequence>

 </xs:complexType>

</xs:element>

 </xs:sequence>

</xs:complexType>

Nimmy Ravindran Appendix 112

 </xs:element>

</xs:sequence>

<xs:attribute name="type" type="xs:string"/>

 </xs:complexType>

</xs:element>

Nimmy Ravindran REFERENCES 113

REFERENCES

Anand, S.S., and Buchner, A.G. (1998). Decision support using data mining, Financial

Times Pitman Publishers.

Arens, Y., Knoblock. C. (1993). SIMS: Retrieving and integrating information from

multiple sources. ACM SIGMOD Record, 22(2), 562-563.

Arens, Y., Knoblock, C. A. and Shen, W.-M. (1996). Query reformulation for dynamic

information integration. Journal of Intelligent Information Systems - Special Issue on

Intelligent Information Integration, 6(2/3), 99-130.

Australian Antarctic Automatic Weather Station Dataset. (2004),

http://www.antcrc.utas.edu.au/argos/awswebsite/datapage.html

Baru, C., Gupta,A., Ludäscher, B., Marciano, R., Papakonstantinou,Y., Velikhov,P., Chu,

V.(1999). XML-based information mediation with MIX. SIGMOD Record, 28(2),597-

599

Bayardo, R., Bohrer, W., Brice, R., Cichocki, A., Fowler, G., Helal, A., Kashyap, V.,

Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M., Shea, R.,

Unnikrishnan, C., Unruh, A., Woelk, D. (1997). InfoSleuth: agent-based semantic

integration of information in open and dynamic environments. Proceedings of the

ACM SIGMOD International Conference on Management of Data. (pp. 195-206).

Boucelma, O., Castano, S., Goble, C., Josifovski, V., Lacroix, Z., Ludäscher, B.(2002).

Report on the EDBT'02 panel on scientific data integration. ACM SIGMOD Record,

31(4), 107-112.

Bowers, S., and Lud ascher, B.(2003). Towards a generic framework for semantic

registration of scientific data. Semantic Web Technologies for Searching and

Retrieving Scientific Data (SCISW).

Bergamaschi, S., Castano, S., Vincini, M. (1999). Semantic integration of semistructured

and structured data sources. ACM SIGMOD Record, 28(1),54-59

Bray, T., Paoli, J., Sperberg-McQueen, C. M. (1998). The Extensible Markup Language

(XML) 1.0. W3C recommendation, World Wide Web

Consortium,http://www.w3.org/TR/1998/REC-xml-19980210

Nimmy Ravindran REFERENCES 114

DODS (2004), Distributed Oceanographic system.,

http://www.unidata.ucar.edu/packages/dods/

ESML (2004), Earth Science Markup Language, http://esml.itsc.uah.edu

Egenhofer M.J.(2002). Toward the semantic geospatial web. Proceedings of the tenth

ACM international symposium on Advances in geographic information systems, (pp.1-

4)

EML (2004), Ecological Metadata Language, http://knb.ecoinformatics.org/software/eml

FGDC (2003), Federal Geographic Data Committee,

http://www.fgdc.gov/metadata/metadata.html

Fonseca,F.T., Egenhofer, M.J (1999). Ontology-Driven Geographic Information Systems.

Proceedings of the seventh ACM international symposium on Advances in geographic

information systems.(pp. 14-19)

GML (2004), Geography Markup Language, http://opengis.net/gml

GPCC (2001), Global Climatology center,

http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/FTP_SITE/INT_DIS/readmes/gpcp_glo

bal_precip.html

Gruber, Thomas (1993). Toward principles for the design of ontologies used for

knowledge sharing. International Journal of Human-Computer Studies, Volume 43 (5),

(pp. 907-928) special issue on the role of formal ontology in the information

technology.

Gupta, A., Lud ascher, B., and Martone, M. E. (2002). Registering scientific information

sources for semantic mediation. Proceedings of the 21st International Conference on

Conceptual Modeling (ER), number 2503 in Lecture Notes in Computer Science

(pp.182—198).

Hammer,J., García-Molina,H., Ireland, K., Papakonstantinou,Y., Ullman,J.,Widom. J.

(1995). Information translation, mediation, and mosaic-based browsing in the

TSIMMIS system. Proceedings of the 1995 ACM SIGMOD international conference

on Management of data, 483

Nimmy Ravindran REFERENCES 115

Hammer,J., García-Molina, H., Nestorov, S., Yerneni, R., Breunig,M.,

Vassalos,V.(1997). Template-based wrappers in the TSIMMIS system. Proceedings of

the 1997 ACM SIGMOD international conference on Management of data, (pp. 532-

535)

Jeong, S., Liang, Y. and Liang, X. (2004). Design of an integrated data retrieval, analysis,

and visualization system: application in the hydrology domain, Environ. Modelling and

Software, submitted.

JOSS (2004), Joint Office for Science Support, http://www.joss.ucar.edu

Levy,A., Srivastava, D. and Kirk. T.(1995). Data Model and Query Evaluation in Global

Information Systems. Journal of Intelligent Information Systems (Vol. 5(2))

Levy,A., Rajaraman,A., and Ordille,J.J (1996). Querying heterogeneous information

sources using source descriptions. Proceedings of International Conference on Very

Large Databases (VLDB) , Bombay, India (pp. 251—262)

Levy, A., Mendelzon, A., Sagiv, Y., Srivastava, D. (1995). Answering queries using

views. Proc. ACM PODS Symp.(pp.95—104)

Lin, K., and Ludäscher, B. (2003). A System for Semantic Integration of Geologic Maps

via Ontologies, Semantic Web Technologies for Searching and Retrieving Scientific

Data (SCISW), Sanibel Island, Florida.

Liu, Z., Liang, Y. and Liang, X. (2003). Integrated Data Management, Retrieval and

Visualization System for Earth Science Datasets. Proceedings of the 17th Conference

on Hydrology, Long Beach, California.

Mena, E., Illarramendi, A., Kashyap, V., and Sheth, P.(2000). OBSERVER: An approach

for query processing in global information systems based on interoperation across pre-

existing ontologies. Distributed and Parallel Databases, (Vol. 8(2),pp. 223-271)

OGC (2004), Open Geospatial Consortium, http://www.opengeospatial.org

Pissinou, A, Makki, K, Park, E. K.(1993). Towards the design and development of a new

architecture for Geographic Information Systems. Proceedings of the second

international conference on Information and knowledge management, (pp. 565 – 573)

Nimmy Ravindran REFERENCES 116

SEEK (2004), Science Environment for Ecological Knowledge,

http://seek.ecoinformatics.org

SensorML (2004), Sensor Model Language. http://vast.nsstc.uah.edu/SensorML/

Sheth A 1998. Changing Focus on Interoperability in Information Systems: From

System, Syntax, Structure to Semantics. In Interoperating Geographic Information

Systems, M.F.GoodChild, M.J. Egenhofer, R.Fegeas, C.A.Kottman (Eds) Kluwer

Publishers.

Shklar ,L.A., Sheth ,A.P., Kashyap ,V., Shah,K. (1995). InfoHarness: Use of

Automatically Generated Metadata for Search and Retrieval of Heterogeneous

Information. Proceedings of the 7th International Conference on Advanced Information

Systems Engineering, (pp.217-230).

Shklar, L., Thatte, S., Marcus, H. and Sheth, A. The "Info Harness" Information

Integration Platform. http://www. ncsa.uiuc.edu/SDG/

IT94/Proceedings/shklar/shklar.html.

Tomasic, A., Raschid, L., Valduriez, P.(1998). Scaling access to heterogeneous data

sources with DISCO. IEEE Transactions on Knowledge and Data Engineering (pp. 808

– 823)

UCAR (2004),University Corporation for Atmospheric Research, http://www.ucar.edu/

Uitermark,H., Oosterom,P.V., Mars,N. and Molenaar,M (1999). Ontology-based

Geographic Data Set Integration. Proceedings of STDBM'99, workshop on Spatio-

Temporal Database Management, Edinburgh, Scotland (pp.60-79).

Unidata Program Center (UPC) (1998), NetCDF.

http://www.unidata.ucar.edu/packages/netcdf/.

UN-SWI (1997), Comprehensive assessment of the freshwater resources of the world,

United Nations and the Stockholm Water Institute, World Meteorological

Organization, 33pp.

USGS (2004), U.S Geological Survey, http://waterdata.usgs.gov/nwis

Wiederhold, G. (1992). Mediators in the architecture of future information systems. IEEE

Computer, 25(3),38—49

Nimmy Ravindran REFERENCES 117

Zaslavsky, I., Marciano, R., Gupta, A., Baru, C. (2000).XML-based Spatial Data

Mediation Infrastructure for Global Interoperability. 4th Global Spatial Data

Infrastructure Conference, Cape Town, South Africa (pp.13-15).

Nimmy Ravindran VITA 118

Vita

Nimmy Ravindran was born in Cochin, India on May, 1975. She graduated with a

Bachelor of Technology degree in Electronics Engineering from Cochin University, India

in 1996. She pursued a career in Software development in the Computer Industry for 6

years. She worked as a Project Leader for Wipro Technologies, India, where she received

a technical excellence award for her expertise in the performance tuning for the GSM-

OMC system of Lucent Technologies. She then started her Masters in Electrical and

Computer Engineering at Virginia Tech after taking a break from her career in Computer

industry. She actively participated in the research activities of hydrologic information

systems for National Weather Service. Her area of interest includes distributed data

computing, Data Mining, and Data fusion.

