5.8 Example of the Time-I ndependent Label-Constrained Shortest Path Problem (TILSP)

Suppose that we are given a single-trip request shown in Table 4 for a traveler designated 1D

13300, involving a trip starting from “home” and going to “work”. The admissible mode strings are
“W..WC...cWw..w” or “w..wb...bw..w”. Note that in this context, as in TRANSIMS, the string

w..wc...cw...w, for example, represents a sequence of one or more walk links, followed by one or

more car links, and ending with one or more walk links.

Table 4: Sngle-Trip Requests for a Traveler.

Person Trip Starting | Destination Starting Time Maximum Travel Time Mode

ID Number | | ocation Location (seconds since midnight) (second) String

13300 1 845654 833503 28800 (8.00 am.). 3000 * wcw or
(Home) (Work) wbw

*Note: the maximum travel time is 3000 seconds hence the maximum finish time equals the starting time
plus the maximum travel time, which is 31800 seconds since midnight (8.50 a.m.).

Furthermore, suppose that we have constructed the Internal Network as given in Figure 17,
having unidirectional links, along with associated constant travel times, and travel mode labels.
This example is the same instance described earlier for TISP, except that the links have mode-
labels associated with them such as w, ¢, and b, and the problem has an associated label string

restriction

82

A starting [~ 10800 «—| A destination
location location
W
w| 5
c c c
60 \ w {0 <———| Travel Time
1737, busroute 1
3 BSlr B2
b w
W

Travel mode

Key

Walk L .
ye —> Intra-layer network links
> Process links (walk)
Street Layer
O« | Travel Time
60
Bus Layer
Travel mode
w| 3
b Y
Bus Route 1 Layer 1737
b
3l w 4
Bus Route 2 Layer
2821

Figure 18: Layers of the Internal Network for the example for TILSP.

83

Figure 18 depicts the layers of the Internal Network for this example. The starting location
(H) and the ending location (W) are placed on the walk layer. The street layer provides the street
network. Here, we have four street nodes (Py: car parking at home, R;: start of road 1, R start of
road 2, and Py car parking at work). This Internal Network has two bus routes. The bus layer
contains the two bus shelters for the passengers (S1 and S2). The bus route 1 layer contains a bus
route 1 network, which has only one link in our example, from BSlg: (a bus-parking place 1 for bus
route 1) to BS2gr; (a bus-parking place 2 for bus route 1). The bus route 2 layer contains a bus route 2
network, which also has only one link in our example, from BSlg, (a bus-parking place 1 for bus

route 2) to B2g, (a bus-parking place 2 for bus route 2).

Step 1

Examining the admissible mode strings “w...wc...cw..w” and “w..wb...bw...w”, we can
construct a corresponding transition graph G, as follows. We begin with a single node corresponding
to adummy label sy representing Stage 0. Then, the next transition (Stage 1) is necessarily conducted
viaawak link. We might continue to walk over several subsequent stages (depicted by the self-loop
inGL from @ to itsdlf), or transition via alink that represents a car travel or viaalink that represents

abustravel. The remainder of G, shown below has a similar interpretation.

Graph G
P Stage O

A A
9300
oo

A stage-wise partial blow-up of the graph G, is shown below.

Stage0 Stagel Stage 2 Stage 3 Stage4

O—F—OE 0 w

Stage-wise expansion of graph G,

Step 2

Using the graph G and the Interna Network shown in Figure 17, we can construct a

combined graph G* as described earlier. The actual shortest path problem will be solved on this
graph G*. Beginning with Stage 0O, the graph G* hasanode (H, $). Recursively, we determine nodes

for each subsequent Stage s as shown below in order to construct G*.

85

Graph G*

Stage O Stage 1 Stage 2 Stage 3 Staged Stage 5

Q—»—» L o (ww)

The graph G* contains all possible admissible paths starting from the node H,) and
ending at node (W, w) at Stage 5. We can see that there are three possible paths. The first path uses
a wceew-mode string. The second path uses a wwbww-mode string. The third path also uses a
wwbww-mode string (on a different bus route). Note that the link from (H,) to (W, w) at Stage 1
has no feasible continuation, and this node (W, w) at Stage 1 is not a legitimate termina node
(unlessif the string www...w is admissible).

The diagram below offers a specific sample explanation of afeature of the graph G*.

Stage 0 Stage 1 Stage 2 Stage 3 Stage4 Stage 5

@D
oﬁﬁ %ﬁ—>@

This link means that “ starting from node BS1g,, which is reachec
by walking, it is possible to come to node BS2x, at stage 3 viaa
link with the travel mode b (bus) and having the travel time 2821
seconds.

86

Step 3
In the graph G*, find the shortest path from the starting node H, %) to the destination node

(W, w) a Stage 5 using any standard shortest path algorithm. Here we use Dijkstra's agorithm as in
the previous example. This yields a shortest path for the Time-1ndependent Label-Constrained
Shortest Path Problem (TILSP), which turns out to be the same as the solution for the previous

example (as shown in Figure 19).

The destination
location

The starting
location

1737, busroute 1
> BRr 4
b W

——> The shortest path.

Figure 19: The shortest path solution for the example for TILSP.

Next, we consider the case where the travel time on a link is dependent on the arrival time

on that link.

87

5.9. Example of the Route Planner Module (Time-Dependent L abel-Constrained Shortest Path

Problem)

In this example we are using the same single-trip request provided in the earlier example (as
shown in Table 5) for the traveler designated ID 13300, with admissible mode string

“W..WC...CcW..w” or “w..wb...bw..w".

Table 5: Sngle-Trip Requests for a Traveler.

Person Trip Starting | Destination Starting Time Maximum Travel Time Mode
1D Number | | ocation | Location (seconds since midnight) (second) String
13300 1 845654 833503 28800 (8.00 am.). 3000 * wcw or
(Home) (Work) wbw
*Note: the maximum travel time is 3000 seconds, hence, the maximum finish time equals the starting time

plus the maximum travel time, which is 31800 seconds since midnight (8.50 a.m.).

Also, we are using the same Internal Network as shown in Figure 19, except that the links

have time-dependent travel time functions d;(t), excluding the walk links, which are time-

Independent.

88

Starting [~ 10800 «—| Destination
location location

Travel time

Travel mode

Travel time function #1 for all links between node P and node Py, Travel time function#2 for alink in bus route 1
Ouput from the) & Ouputfom the
14.5 Traffic | e
14.0} - Microsimuiator
/ (= o A \.‘\ Mode 29.00. s 6@} Modie,
13.0)] Lnear Lnesr
° /» \ approximatons ©
= 120 = /
E / E 3800
% 11.0 \& (ﬂ“
E a4 E 4
5 109 :
3 g0 ot 3 3700
(=N L] [=3
80
Starting tim Starting timd
70 (am),t 36.00 (am)t
6.45 7.00 715 730 7.45 8.00 8.15 8.30 8.45
6.45 7.00 7.15 7.30 7.45 8.00 815 8.30 8.45

Travel time(min.),d Travel time function#3 for a link in bus route 2
@outputfrom
the Traffic
345 i i
4 - =,
o .
(2
.
325
N 4
30.5 4
e
o lpae—*
- v Starting time
285 (am.), t
6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45

Figure 20: The Internal Network representation for the example for TDLSP.

In Figure 20, the starting location of the trip is node H (home), and the destination location is
node W (work location). Figure 21 depicts the layers of the Internal Network, where the links have

time-dependent travel time functions.

89

Key

Walk Layer |
i —> Intra-layer network links
> Process links (walk)
Street Layer
0« | Traveltime
Bus Layer
Travel mode
Bus Route 1 Layer el -
b

Bus Route 2 Layer

BSle, Functit())n #3 > B

Figure 21: Layers of the Internal Network for the example for TDLSP.

The same procedure is used in developing the graph G in TDLSP as described earlier in
TILSP except that the links have travel time values dependent on the arrival time at the starting
node of that link. To avoid repetition of the procedure for determining graph G, we skip directly to
the solution of the actual example.

Initialization:
> i (P, ,28805,w)ij
s=0 No ={(H, 288000, o)} i 7 =Ny
——~{ (SL28860w) }

90

Travel time function #1 for all links between node P and node Py,
1 & Output from the
Traffic
14, | 460+0.013t ¢ Microsimulator
\ Module
13, \’ Linear
© imati
= N \ ‘ approximations
£ : *
H i
[} 11 "
L4
£ . [N
— 10.
: 4 \
S 9.0
[¥
*
8.
34 ¢
7. [Starting time
6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45 (am.)
(28800 29700 30600 secondssince midnight)
l \
Obtained from atravel time function for Also obtained from atravel time function
the 8.00-8.15 a.m. interval because the for the 8.00-8.15 am. interval because
starting time is 28805 (8.08 am.). the starting time is 29639 (8.14 am.).
—
. 46010013t (R, 29639,) i
i (P, 28805, W)E i i
s=1 Ni =1 3 i (BSlR1,28863,W)y = N>
= 7 (S1, 28860, w) i --
33— (BSl,, 28863 W)},
i (R,29639,c) u_40r0013t _j(R,,30484,c) (i
_ 1 I 900+0.05t [|}
s=2 N2 = [(BSLy,, 28863 W)y > i (BS2;,,31206,b)y
1(BSL,,,28863,W 200 5 1(Bs2,,,30933,b) |,
D
Obtained from atravel time function Obtained from atravel time function
for the 8.00-8.15 a.m. interval because for the 8.00-8.15 a.m. interval because
the starting time is 28863 (8.01a.m.). the starting time is 28863 (8.01 am.).
ravel time Travel time function#2 for a link in bus route 1 ravel time Travel time function#3 for a link in bus route 2
;rmin.)l,zj. / .Ol:lput(mm ;rmin.)l,zj. . \ .Su:'puthuml
Tt I
390 . ol eV Module
. e . 345, — = Sy o
4 3
. _¥1 [900+0.05t | &\ [os+004t |
| . AP 1325 7
37.0 1 30.5, <
.
» —
36.9 Starting time . 285 Starting time
@m).t " 645 7.00 715 730 745 800 815 830 8as&™:t
6.45 7.00 7.15 7.30 745 8.00 8.15 8.30 8.45

91

Travel time (min.), d Travel time function #1 for all links between node R; and nodePw

145 ¢ Output from
X the Traffic
Microsimulator
14.0 ol o
/»A—""' Module
13.0 \' Linear
y Approximatiory

P4 | 750-0.012t |

12.6

7 |

10.0

P /
. /

7
6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45

Starting tim]

(28800 29700 30600 seconds since midnight)

Obtained from atravel time function
for the 8.15-8.30 a.m. interval because
the starting time is 30484 (8.28 am.).

750-0.012t
1(R,,30484,c) 1 ' >1(P,,30868,c) U
s=3 N3 = [(BS2;,,31206,b)y — 24— >1(S2,31210,wjy| = N4
!) X)
1 (Bs2,,30933,b) | >1(S2,30987,W)p| Thisis climinated later because

we select min {31210, 30937} .

_i(R,,30868,¢) i 9 i (W, 30877, W) * I
" 1(S2,30987,W)}, —— >4 (W, 31007, w) h—"

s=4 Ny {(W, 30877, W)}

s=5 Terminate with Destination node = W, and with the node (W, 30877, w) as the terminal
node of the shortest path. Note that there are no paths that exceed the maximum finish time (31800
seconds since midnight). Tracing backwards yields the path H> Py> Ri> R—=> Py =2 W (as shown
in Figure 22), having a travel mode wcecew and an ending time of t* = 30877 seconds since midnight,
or 835 am. The tota travel time is (30877 — 28800) = 2077 seconds, which is less than the
maximum allowable travel time of 3000 seconds.

92

Key

Walk Layer —>Intra-layer network arcs
—>Process links (walk)
—>The shortest path
Street Layer
Bus Layer

Bus Route 1 Layer

Bus Route 2 Layer

Figure 22: The shortest path solution for the example for TDLSP.

The shortest path has three legs:

The first leg is alink between node H (home) to node Py (car parking at home).

The second leg is comprised of the links between node Py and node Ry (road 1), between node
R; and node R, (road 2), and between node R, and node P,, (car parking at work).

The last leg is alink between node P, and node W (work).

93

