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Abstract: The world population is increasing, and our current agricultural practices are not sustain-
able enough to address the concerns. Alternative proteins including plant-based proteins would
provide a more sustainable source of food and feed ingredients. Among food systems, the aquaculture
industry is rapidly growing, while still depending on marine sources as a main source of protein.
Thus, using alternative plant-based proteins as a source for developing aquafeed would make this
industry more viable. Sorghum is a valuable grain with high protein contents, proper mineral and
fatty acids balance, and is available all around the world. However, sorghum has not been used
widely for aquafeed development. In this review article, we cover sorghum production, composition,
sorghum as a protein source for aquafeed development, and bioprocessing methods for enhancing
the quality of sorghum.
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1. Introduction

As the world population increases to 10 billion by 2050, total food and meat production
must rise by 70 to 100% to satisfy global demand [1]. The USA food production system faces
several issues in meeting this demand due to the limited available agricultural water and
land and increased greenhouse gas emissions. Increasing water scarcity in major production
regions and increasing vulnerability to disruptions from natural disasters due to climate
change are just some of the growing issues that prompt the need for new technologies in
meat production. Therefore, the new sustainable protein sources would help alleviate these
concerns and supply sufficient protein for the world population [2,3].

Sorghum is a drought-resistant cereal grain typically cultivated in semi-arid conditions.
This grain has been ranked fifth worldwide after wheat, corn, rice, and barley in terms of
both production and area planted [4–6]. Global sorghum production accounted for 2.2% of
total worldwide grain production in 2013 [7] and reached 62.3 MT in 2020 [8]. The United
States is the main producer of sorghum, with 15.21% of the total production.

Sorghum’s special characteristics, such as mostly being grown by subsistence farmers,
resistance to wild plants, and adaptability to poor soils and climate, increase its utilization
above the other cereal grains [9]. Sorghum has long been a principal food crop and a major
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source of protein, energy, and minerals for millions of people in Asia and Africa [10,11].
This grain has gained a global reputation in the production of fermented foods due to its
wide adaptability and low production cost [11]. Sorghum demand is growing by consumer
choice because the grain is a non-GMO (non-genetically modified organism), gluten-free,
and high in antioxidants. In the USA sorghum is being used mainly for animal feed [12]
and biofuel production [13,14]. In 2018, researchers indicated that by converting 10% of the
pastureland and cropland to sorghum, the total ethanol production could be increased to
17 billion gallons [15]. Sorghum is one of the few crops that can fit into all of the current
bioenergy frameworks, including grain-to-ethanol, sweet sorghum sugar into bio-fuels,
and as lignocellulosic and cellulosic biomass feedstock for bio-fuels [16]. Sorghum has also
been used as a novel ingredient for developing sustainable aquafeeds [5,17–19].

Fish and fishery products are an important source of essential nutrients in the human
food chain, and demand is growing along with the increasing population [20]. Aquaculture
is a rapidly-growing segment of the food industry, and production growth is dependent
on the utilization of resources other than the fish meal for aquafeeds. With such a huge
demand for fish feed, agricultural ingredients such as cereal grains and oilseeds have
been introduced in progressively increasing amounts, replacing fish meal and marine
protein sources [21]. Among these ingredients, sorghum grain has potential due to its
extensive global production and suitability of nutritional properties [22]; although like any
other ingredient, sorghum has its own cons and pros as a feed ingredient for aquafeed
development (Tables 1 and 2).

Table 1. A summary of sorghum pros and cons for aquafeed development [2,4–6,8,9,11,18,23].

Pros Cons

Large global production Low protein content
Sustainable Lower protein and starch digestibility
Non-GMO Negative impact on organ health

Emerging nutrient source Deficiency in lysine and threonine
Good results in omnivorous and herbivores Anti-nutritional factors

Great source for value-added products Limited studies in aquaculture
High antioxidant level

Table 2. Different grains’ price in 2020.

Commodity Price (US Dollar/Pound)

Sorghum 0.06
Wheat 0.08
Corn 0.06

Soybean 0.14

In addition, compared to other plant-based protein sources, the sorghum price is much
lower, making it a cost-effective feed ingredient (Table 2).

Despite the potential use of sorghum grain in aquafeeds, there are no review papers
related to the effect of sorghum on the nutritional status and health of fish and crustaceans.
The present review includes an overview of studies on sorghum grain characteristics,
composition, and application in aquafeed, emphasizing improving fish productivity when
fed high sorghum-based diets.

2. Sorghum Biology and Agriculture

Sorghum is a genus of grasses native to Australia and certain regions in Africa, Asia,
the Indo-Pacific, and Middle America, but widely cultivated and naturalized throughout
the world [24]. Although the genus name Sorghum is part of the formal taxonomy of these
plants, “sorghum” or “sorghums” is also used in common parlance and throughout the
present text. Sorghums are more heat- and drought-resistant than other cereal or forage
crops, less prone to fungal infections and mycotoxin contamination, and better-suited to
marginal cropland. Sorghums are typically categorized according to their use:
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- Grain sorghums (Caffrotum group) are cultivated for their grain, similar to corn/maize,
and used to make human foods and beverages and in animal feeding.

- Sweet sorghums (Saccharatum group) are cultivated for their stalks and foliage, which
are used to produce syrups, silage, and, increasingly, biofuels.

- Grass sorghums (Sudan grass) are cultivated as animal fodder consumed directly as a
pasture or hay crop or as silage.

- Broom corn (Technicum group) are woody varieties cultivated for their fibrous struc-
tures used to make brooms and brushes [24].

Although sweet or grass sorghums could be developed for use in aquaculture, grain
sorghums (hereafter, simply “sorghums”), specifically varieties of S. bicolor, are more
similar to other commonly used feed ingredients and likely have greater potential for use
in aquafeeds.

Grain sorghums are also classified into three types according to their tannin contents,
including type I, type II, and type III, in which type I is tannin-free and types II and
III contain low and high levels of tannin, respectively [25–27]. Sorghums are raised in
warm, semi-arid regions throughout the world and, as shown in Table 3, the USA, Nigeria,
Ethiopia, Sudan, Mexico, India, China, Argentina, Brazil, and Niger are the countries with
the highest production of sorghum grains. However, sorghum production in these countries
has changed from 2019 to 2018. Argentina and Sudan have shown the highest production
growth of 28% and 25% during 2020–2021, respectively, while sorghum production by India
and Brazil has dropped by 18.7% and 6.8%, respectively. Selective breeding has produced a
wide range of sorghum varietals and hybrids varying in their tolerance of poor climatic
conditions, resistance to pathogens, higher yield, and suitable time of maturity, as well as
grain shape, size, color, hardness, and nutritional value [28].

Table 3. Production of sorghum and changers percentage during 2019 to 2021 in different countries.

Country
Sorghum Production (1000 MT)

Changes (%)
2019–2020 2020–2021

USA 8.67 9.47 9.2
Nigeria 6.67 6.90 3.5
Ethiopia 5.20 5.20 0.0
Sudan 4.00 5.00 25.0
Mexico 4.30 4.50 4.7
India 4.73 3.85 −18.7
China 3.60 3.55 −1.4

Argentina 2.50 3.20 28.0
Brazil 2.25 2.10 −6.8
Niger 1.97 1.90 −3.6

Varietals are commonly grouped according to grain color, e.g., black, brown, red,
yellow, and white. Grain color is indicative of other attributes, including nutrient levels
and the presence and concentrations of phenolic compounds, including tannins produced
by the plant to discourage grazing by herbivores. Whereas some of these phytochemicals
are thought to have beneficial effects, perhaps nutraceutical and biological activities [29],
tannins impart a bitter or astringent flavor and are generally considered anti-nutritional fac-
tors (ANF) in animal feeding. White tan sorghums have low levels of phenolic compounds
in general and contain little or no tannins. Yellow and red varieties have modest and
moderately high levels of phenolic compounds, respectively, but do not contain tannins.
Black varieties are genetically red and compositionally similar to red varieties, but the
grain darkens in response to sunlight as it matures. Brown varieties contain high levels
of tannins and are sometimes referred to as “tannin sorghums” [30]. Consequently, while
tan, cream, and white varieties are used to make flours for human consumption and the
food industry, black and burgundy varieties are raised for their antioxidant properties and
are used in specialty foods. Additionally, red, orange, and bronze are the most commonly
raised varieties and have various applications in human foods and animal feeding. Notably,
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sorghum varieties’ diversity and characteristic are the results of conventional selective
breeding only; genetic modification has not been implemented in sorghum agriculture and
all commercially produced crops are non-genetically modified.

3. Nutrient Composition of Sorghum

The sorghum kernel has three distinct parts, including a pericarp or bran on the out-
side, the germ or embryo, and the endosperm or storage tissue. The pericarp represents a
small proportion of the sorghum kernel and available nutrients, with a content of 4% total
protein, 11% fat, and 4% starch; the remaining tissue is cellulose and hemicellulose [31,32].
Endosperm represents 85% of the whole grain on average and is filled with starch gran-
ules [31]. The germ, a rich source of lipid (28% of the germ), also has high levels of protein
(19%) and ash (10%) [31] (Figure 1).

Figure 1. Sorghum grain structure.

The proximate composition and nutrient content of various sorghum grains is different
according to their varieties. As shown in Table 1, in a study performed by Gassem and
Osman [33] on the varieties of Hamra, Shahla and Baidah, the protein content was 14.80%,
14.51%, and 14.75%, respectively, while three varieties of sorghum including white, red, and
black analyzed by Pontieri and Troisi [34] showed 6.14%, 6.85%, and 7.28%, respectively.
Another significant difference between the varieties was in crude fiber, for which an analysis
of the sorghum varieties in the Pontieri and Troisi [34] study revealed 6.5% on average,
while the Gassem and Osman [33] study showed 1.87% crude fiber for the three varieties
on average. Despite the crude fiber, the crude fat content showed a reverse pattern in their
studies [33,34]. Furthermore, in another study, Udachan and Sahoo [35] determined the
proximate composition of the four varieties dadar, parbhani, CSH-5, and CSH-9. As shown,
similar to the other analyses, the total carbohydrate was not significantly different; however,
protein content, crude fiber and fat as well as the ash content were different from the other
two analyses. Moreover, according to the analyses that the authors carried out on the
four varieties of Texas, red, white/tan, and super sack, their protein contents were 14.9%,
15%, 10.9%, and 13.4%, respectively. In addition, as indicated in Table 4, the crude fat is
comparable among the Hamra, Shahla, and Baidha varieties. However, it was higher than
the varieties analyzed by Udachan and Sahoo [35] and Pontieri and Troisi [34], whereas
the crude fiber content was almost in agreement with the results reported by Udachan and
Sahoo [35] and Gassem and Osman [33].
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Table 4. Proximate composition of some sorghum varieties.

Parameters White Red Black Hamra Shahla Baidha Dadar Parbhani CSH-5 CSH-9 Texas Red White Super
Sack

[34] [33] [35] Authors

Moisture (%) 11.86 11.92 11.44 8.33 8.58 8.43 9.99 8.51 8.10 9.80 13.5 11.6 11.1 12.2
Crude protein (%) 6.14 6.85 7.28 14.80 14.51 14.75 11.02 10.65 8.90 9.60 14.9 15 10.9 13.4

Crude fiber (%) 5.37 6.46 7.78 2.26 1.71 1.64 1.90 1.58 1.40 2.70 1.6 1.0 1.6 1.6
Total carbohydrate (%) 73.17 71.32 70.07 68.34 69.65 68.81 71.89 73.35 76.20 70.65 74.8 64.2 70.3 63.8

Crude fat (%) 2.23 2.00 1.55 4.33 3.58 4.47 2.30 2.80 2.50 2.70 3.16 3.93 3.94 4.01
Ash (%) 1.22 1.44 1.88 1.94 1.97 1.90 1.09 0.92 1.55 1.75 2.85 2.55 2.58 2.53
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Overall, these components yield a macronutrient profile with abundant carbohydrate
and energy levels and modest amounts of lipids and protein (Table 4).

3.1. Protein Content and Amino Acids Compositions

The protein content of sorghum varies with environmental conditions (particularly
rainfall), growing region, and soil type, and among varieties [36], with average levels rang-
ing from 8 to 15% [4,36,37] on a dry matter basis. The sorghum proteins are divided based
on their solubility in different solvents as: water-soluble proteins (albumins), salt-soluble
(globulins), prolamins, aqueous alcohol-soluble (kafirins), aqueous alcohol + reducing
agent-soluble (cross-linked kafirins), detergent + reducing agent + alkaline pH-soluble
(cross-linked glutelins), and unextracted protein residue [38]. Another classification method
is based on the homogeneous nature and different origin of the kafirin storage prolamins
relative to the heterogeneous nature of the non-kafirin proteins (albumins, globulins, and
glutelins) which will divide the proteins into kafririn and non-kafirin proteins.

As discussed before, the amino acid composition of sorghum varies along with the
protein content. Sorghum cultivars have been proven to contain smaller amounts of lysine,
threonine, and total sulfur amino acids compared to soybean [9,39]. In comparison with
yellow corn protein, sorghum grain protein typically contains higher levels of Ala, Asp,
Glu, Leu, Ile, Phe, Tyr, and Val, and lower levels of Arg, Gly, His, and sulfur amino acids
(methionine and cystine) [36,40]. Despite the variation in amino acid profiles of sorghum
varieties and types, sorghum proteins (similar to other plant proteins) are generally lower in
the essential amino acids such as lysine, tryptophan, and threonine than are animal-based
ingredients [40]. In sorghum grains with higher levels of protein, there is usually a lower
ratio of lysine [41] (Figure 2).

Figure 2. Lysine and methionine contents of common feed ingredients of aquafeed [36,42,43].

Sorghum protein is less digestible as compared with that of corn for humans [44,45],
and cooked sorghum also has lower protein digestibility than that of other grains [9,46].
Reduced digestibility is primarily associated with the formation of disulfide bonds [47].
This condition also affects the starch digestion, since starch granules in sorghum grains
are usually entrapped in the protein matrix [48]. In addition, an association has been
observed between protein and the pericarp or endosperm cell walls in sorghum [49,50]
and barley [51]. Starch granules and protein of the endosperm are surrounded by cell
walls [52] and bound to dietary fiber [50]. This bonding between protein and non-starch
polysaccharides can reduce protein digestibility either by reducing accessibility to enzymes
or forming indigestible complexes [23].
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Sorghum proteins also could be divided into two groups, including prolamins and
non-prolamins. Prolamins are a group of storage proteins in plants with high proline and
glutamine content. They solubilize best in strong alcohol (70–80%), light acid, and alkaline
solutions. Kafirins, the predominant protein in sorghum, are classified as prolamin storage
proteins and are soluble in alcohol–water mixtures [53,54]. Sorghum varieties are further
classified into α-, β-, γ-, and δ-kafirin. α-Kafirin is the main protein store in sorghum
(80–84%) [55]. Increasing the α-kafirin ratio can improve the protein digestibility [56]. This
protein is rich in nonpolar amino acids and is found primarily as monomers and oligomers.
It is thought that inter- and intra-molecular disulfide bonds between β- and γ-kafirin
result in an increased degree of protease resistance in protein bodies, thereby lowering the
digestibility [57–59]. It has been suggested by researchers that genetical modification of
sorghum may lower the outer layer of the protein body (β, γ) to improve digestibility (20%)
by allowing greater access of proteinase to α-kafirin [38].

3.2. Fat and Fatty Acids

Sorghum, rice and wheat fat contents are 3.4, 5.5, and 7.5%, respectively [7]. The germ
and aleurone layers are the major sources of fat; the germ contributes approximately 80%
of the total fat [60]. Sorghum lipids are valuable nutrients that influence the taste and
storage time of sorghum meals; they consist primarily of unsaturated fatty acids, with
polyunsaturated fatty acids being the most abundant [30]. Usually, sorghum oil is extracted
using wet-milled germ fraction through a water-intensive technology, which applies water
for extracting and separating different fractions including starch, oil, and protein from
seeds [31].

The major lipid class in sorghum seeds is triacylglycerols (accounting for approxi-
mately 90% of total lipids), with linoleic acid being the predominant fatty acid. Oleic acid
is the second-most abundant fatty acid in sorghum grain followed by palmitic acid and
stearic acid [7]. The fatty acid composition of sorghum oil is as follows: linoleic, 52%; oleic,
32%; palmitic, 10%; stearic, 4%; and linolenic, 1% [61]. Generally, sorghum oil is similar to
corn oil, and due to its higher content of essential fatty acids, sorghum has a high potential
to be used as another grain in human and animal nutrition [62].

3.3. Micronutrients

Sorghum contains high levels of minerals but with variable bioavailability, ranging
from less than 1% for some forms of iron to greater than 90% for sodium and potassium.
The reasons for this are varied and complicated since many factors interact to determine
the ultimate bioavailability of a nutrient [37].

Sorghum is a rich source of B-complex vitamins, contains fat-soluble vitamins, namely
D, E, and K, and is not a rich source of vitamin C. The concentrations of thiamin, riboflavin,
and niacin in sorghum are high. Sorghum does not contain vitamin A, although certain
yellow endosperm varieties contain small amounts of β-carotene, a precursor of vitamin A.

3.4. Fiber

Sorghum bran is low in ash and protein and rich in fiber. Cellulose, the major insoluble
fiber component of sorghum, varies from 1.19 to 5.23% among sorghum varieties [63].
Processing removes the outer pericarp, and thus proportionally increases the protein
content and reduces the cellulose, lipid, and mineral contents of the grain [64].

3.5. Starch

Starch is the major component of sorghum meal and constitutes 83% of the endosperm
and 69.5% of the whole grain [65]. Starch granules of sorghum are similar to those of corn in
general size, range, and shape [31]; however, the starch and sugar in sorghum are released
more slowly than those in other cereals [66]. Sorghum starch has a higher gelatinization
temperature range (68–76 ◦C) than that of both corn starch (62–68 ◦C) and wheat starch
(58–64 ◦C) [31].
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Sorghum starch digestibility is relatively lower than that of corn due to being bound in
a protein matrix, limiting accessibility to enzymes [56]. The release of starch granules from
the protein matrix using processing methods renders them more susceptible to enzymatic
digestion [67]. The low starch digestibility has also been attributed to the high dietary fiber
content [50].

The chemical nature of the starch, particularly the amylose and amylopectin content,
is yet another factor that affects its digestibility. Starch digestibility has been reported to be
higher in low-amylose, i.e., waxy sorghum, than that in normal sorghum [68]. The presence
of tannins in the grain contributes to the poor digestibility of starch in some varieties of
sorghum [69]. Tannins isolated from sorghum grain have been shown to inhibit the enzyme
X-amylose and also bind to grain starches to varying degrees [70].

3.6. Anti-Nutritional Factors (ANFs)

Like many other plant ingredients, sorghum contains various ANFs, including trypsin
and amylase inhibitors, phytic acid, and tannins. These compounds are known to have a
negative impact on protein, carbohydrate, and mineral metabolism [11].

Tannins are the primary ANFs, limiting the utilization of sorghums in animal feeding.
Seeds from a large number of sorghum varieties contain tannins, primarily of the condensed
type. Atteh [71] observed that sorghum, especially the brown variety, contains high levels
of tannins; only the white variety of sorghum is reported to be tannin-free [72] or contain
negligible levels. Purseglove [73] highlighted that sorghum grain contains tannins in
varying proportions depending on the variety, with certain strains containing up to 5%.

Tannins are responsible for the bulk of protein binding activity and are able to precip-
itate gelatin and other proteins from aqueous solutions [74]. The presence of sorghum’s
tannin has a huge negative economic impact on the livestock industry and has been as-
sociated with a lower nutritive value, a lower biological availability of macromolecules
such as proteins, carbohydrates, amino acids, and vitamins, and a lower protein efficiency
ratio and weight [72]. Tannins also have a negative effect on feed intake [4], leading to
poor feed efficiency [75], reduced nutrient digestibility [76], and weight gain in poultry and
swine. Tannins bind to proteins, carbohydrates, and minerals, reducing the digestibility of
these nutrients [77,78] and decreasing the utilization of energy, protein, and specific amino
acids [79,80]. Tannins also diminish the permeability of the gut wall by reducing nutrient
flow [81].

In monogastric animals, the feed efficiency can be reduced by 10–30% as compared
with that of non-tannin sorghums [82]. The negative impact on feed intake has been
attributed to the astringent taste of tannins [79,83].

Almost all cultured sorghum varieties contain minor amounts of tannins. There is evi-
dence that tannins can also have significant health advantages [84]. Studies have revealed
that sorghum phenolic compounds have potent antioxidant activity, and consumption of
sorghum whole grain can improve gut health, and lower the risk of heart disease [30], due
to the sorghum anti-inflammatory and anti-colon cancer activities [84].

4. Sorghum in Animal Nutrition

Sorghum has a long history in animal nutrition, and approximately half of the global
sorghum production is used for animal feed [56,85]. Sorghum has been used in poultry
feed as a corn replacement. This grain has approximately 95% of the feeding value of
corn [60], while the price of sorghum in many areas is 10–15% lower than that of corn [12].
Mabelebele et al. [86] reported that whole sorghum inclusion does not negatively influence
feed intake or weight gain in growing broiler chickens.

Sorghum is also grown for forage or silage, and dried leaves and stems are a useful
carbohydrate ingredient for feeds for ruminants and other grazing species [81]. Whole
sorghum grains can be given to sheep and pigs; however, they are usually ground to
improve the feed conversion efficiency [71,87].
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4.1. Aquatic Livestock

Limited studies are available regarding the application of sorghum as an aquafeed
ingredient, although the potential of the grain has been examined extensively in poultry and
cattle [88]. Available data, while limited, show that omnivorous fish such as carp and tilapia
can digest and metabolize sorghum-based diets. In common carp, the nutrient digestibility
of sorghum has been compared with that of wheat bran and rye. Protein digestibility in
rye (91.89%) is higher than that of sorghum (71.86%) and wheat bran (80.64%), and fat
digestibility estimates are 79.84%, 76.71%, and 82.01% in rye meal, sorghum meal, and
wheat bran, respectively [89]. In another study, sorghum or pellets containing 25% protein
were used to feed common carp in ponds. The results show that feeding on sorghum
led to lower growth and higher body fat as compared with feeding on the pellet diet [17]
(Figure 3).

Figure 3. A comparison between sorghum and corn and rye nutrient digestibility in common carp [88]
and Sunshine bass [89].

In Sunshine bass, however, sorghum protein and fat digestibility were 60% and
79%, respectively, which are similar to those seen with corn [90]. Indigestible sorghum
carbohydrates, such as lignin pentosans and cellulose, are hypothesized to be responsible
for the relatively lower digestion efficiency of protein and fat in Sunshine bass. Fish
species’ differences have a critical role in sorghum digestibility and performance, and
omnivorous species such as carp digested sorghum better than a fish such as Sunshine
bass. Sorghum apparent digestibility has also been evaluated in Florida pompano as a
carnivorous species. Digestibility of the dry matter and energy of the sorghum diet are 45.4%
and 63.9%, respectively, which are lower and higher than that of corn (58.1% and 71.4%)
and wheat middlings (24.4% and 58.6%). The relatively lower digestibility of sorghum
has been attributed to the source or type of starch, which needs higher temperatures for
gelatinization [91].

Previous studies evaluating the use of sorghum products in tilapia have yielded
some promising but inconclusive results. A comparison of five grain sources (corn, wheat,
barley, sorghum, and rice) revealed that tilapia fed a diet containing 25% sorghum showed
maximum growth performance and superior protein retention efficiency. The addition of
sorghum also increased body fat content and reduces body moisture in tilapia [18].

In another study, Yones and Metwalli [92] demonstrated that sorghum starch can be
used as the main carbohydrate source at inclusion rates of up to 30% in juvenile tilapia
without any negative impacts on growth or digestibility. In a newer study, the growth
performance and feed conversion of tilapia fed sorghum hominy at two inclusion rates
(15% and 25%) were shown to be similar to that of tilapia fed a commercial diet [93]. These
results confirm the ability of tilapia to use sorghum as the main dietary component at
inclusion rates of 25% in custom formulated diets.
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Sorghum is also considered a suitable replacement for corn in fish diets. Competition
for use in human nutrition and other animal feeds has raised the corn market price and
limited its availability [94]. It appears that sorghum as a source of starch has an immense
potential to replace corn or cassava in omnivorous species. Replacement of cornmeal with
up to 50% sorghum in both raw and fermented meals does not change growth-related
parameters in juvenile Clarias gariepinus [5]. The growth performance in pangasius is not
affected when cassava and corn are replaced with sorghum [95]. In addition, a sorghum
diet does not change the fillet color in pangasius or the physical properties of the feed
pellets (density and floatability). In silver catfish, the sorghum dry matter and protein
digestibility are higher than corn [96], suggesting that sorghum is a favorable ingredient in
catfish feed. Recent results reported by Rodrigues and Sanchez [97] reveal that corn can be
replaced entirely by low-tannin sorghum in silver catfish diets without a negative impact
on growth or efficacy.

4.2. Supplementation Strategies for Improving Sorghum Performance in Aquafeed

The relatively low protein, high fiber, and anti-nutritional content of sorghum grain
restricts its inclusion ratio in high-value aquafeeds for higher trophic species. Improving
digestibility and increasing the protein content through modification approaches could
improve the ability of sorghum to serve as an alternative feed ingredient in aquaculture.
Fungal fermentation increased sorghum hominy protein content by 21% and improved
the desirable amino acid ratio. However, tilapia showed a lower feed efficiency on diets
that contained bioprocessed sorghum with Trichoderma reesei compared to the commercial
control diet [98]. Moreover, the resulting fillets from market-sized fish fed bioprocessed
feed sometimes contained an off-flavor, which is highly undesirable for consumer choice.
Final product quality also must be considered along with the bioprocessing results.

A combination of sorghum and probiotic has been introduced as a solution to increase
the sorghum content of the fish feed. Nile tilapia fed diets containing 33% sorghum plus
lactobacillus probiotic showed significantly larger growth and feed utilization than those
fed corn-based diets [99]. An improved feed conversion ratio may suggest that a probiotic
stimulates sorghum digestion, thereby increasing growth.

Prebiotic inulin has been used to protect the immune system against ectoparasite infec-
tion in tilapia fed sorghum-based diets. Supplementation of inulin and sorghum (2.5 g/kg
and 15%, respectively) improved fish health and increased resistance to ectoparasites in
Nile tilapia due to enhancement of the immune system [100]. The application of probiotics
with prebiotics will improve fish growth, innate immune system and protection against
bacteria [101].

Sorghum-based distilled soluble dried grain (DDGS) is a byproduct of the bio-fuel
production industry and contains 28.7–32.9% crude protein, 8–13% fat, and 34.7–51.1%
fiber [66,102,103]. There is interest in using this ingredient in aquafeed owing to its in-
creased supply and low cost. The efficiency of extruded and pelleted sorghum-based
DDGS diets has been assessed in two growth studies in Litopenaeus vannamei [104]. The
results indicate that up to 40% of this new protein source can be used in feed formulations
without affecting the performance of L. vannamei. Similar results have also been observed
following the addition of up to 40% corn DDGS to feed for catfish, rainbow trout, and
channel catfish [105–107].

Replacement of rice bran with sorghum distillery residue does not affect growth
performance in grey mullet (Mugil cephalus); however, dietary intake of this ingredient,
which has strong antioxidant activity, reduced hydroperoxide formation in fish gills [108].
The authors suggested that the presence of polyphenols in sorghum, which are able to
inhibit hydroperoxide formation in the gill, is useful for stress resistance against changes in
the marine or aquatic habitat [108].

A comparison between high- and low-tannin sorghum revealed that tilapia fed low-
tannin sorghum silage had a larger weight gain and feed intake as compared with those fed
either a high-tannin sorghum silage or corn diet, the latter two of which were similar [109].
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Enzyme supplementation has been used as an alternative to increasing sorghum use in
aquafeed. Phytase supplementation (1.500 FTU·kg−1) improved the digestibility coefficient
of energy (3%) and phosphorous (7%) of sorghum grain in silver catfish as compared
with those without enzyme supplementation [96]. Full replacement of corn with sorghum
has been achieved using a combination of low-tannin sorghum and phytase addition to
silver catfish diets. Phytase addition (1.500 FTU·kg−1) also improved feed conversion and
protein efficacy in silver catfish when corn was replaced with low-tannin sorghum (50% or
100%) [110].

4.3. Reducing the Impact of Anti-Nutritional Factors

Fermentation, germination, enzymatic hydrolysis, heating, and chemical treatments
have been employed as solutions to reduce the effect of the anti-nutritional factors [111,112].

In general, fermentation makes the feed ingredients easier to digest and the nutrients
easier to absorb [113]. Fermentation reduced the sorghum crude protein content (12.25 vs.
10.70%) but improved the in vitro protein digestibility of sorghum flour (18 vs. 23%) [11].
Total polyphenols and phytates were decreased during the fermentation process of sorghum
flour (8.1 vs. 6.6 and 317.6 vs. 247.9 mg/100 g, respectively); however, the tannin content
was not affected. Soaking in water reduced the tannin content by 56–66% and 98–99%
during 72 h in low- and high-tannin cultivars, respectively. In vitro protein digestibility was
significantly increased by 15% after soaking in water only in high-tannin sorghum [114].

A combination of cooking and fermentation improved the nutrient quality and drasti-
cally reduces the anti-nutritional factors to safe levels (1.9 g and 3.2 ppm for tannin and
cyanide, respectively), which is much better than any of the other processing methods
tested [10]. The fungal fermentation process was also found to be an effective alternative
to enhance the protein content of the sorghum hominy and increase the sorghum protein
content by 20% [98].

Processing treatments of sorghum such as extrusion have a positive impact on tan-
nin concentration. Awika and Dykes [115] observed that extrusion of tannin sorghum
caused an 85% decrease in polymeric tannins, while the lower molecular weight tan-
nins increased by 29–478%. Cooked sorghum protein is less digestible than the other
grains [46]. The protein of moist-cooked sorghum has lower digestibility than that of
uncooked sorghum [46,116,117] and proteins of other similarly cooked grains such as
wheat and corn [47,118]. Moist cooking considerably alters the solubility properties of
the sorghum protein as compared with those of corn, thereby lowering digestibility [58];
however, through proper processing, this problem can be overcome [82]. Some methods
of processing sorghum can also improve protein digestibility. The inclusion of reducing
agents seems to prevent the formation of protein polymers linked by disulfide bonds and
can compensate for the decline in protein digestibility during the cooking process [58].

5. Improving Sorghum Digestibility

The low digestibility of sorghum protein (kafirins) and starch coupled with the low
content of essential amino acids, lysine, and threonine, are the main obstacles to its further
use in animal diets [119]. Genetic engineering tools may be alternatives to enhance kafirin
digestibility and improve the nutritional value of sorghum grain [38,120]. A number of
alternatives have been suggested to improve sorghum feed and food efficiency.

5.1. Fermentation

Fermentation has long been used as a way to improve protein digestibility [121–123].
A substantial increase in sorghum digestibility (51.8% to 75.6%) was observed after 24 h of
fermentation [121], highlighting that enhanced protein digestibility may be attributed to the
fractional degradation of complex storage proteins into simpler and more soluble products.
In addition to digestibility, fermentation also influences functional properties, i.e., the pH
shift in sorghum protein solubility. Water- and oil-binding capacities of sorghum flours
decreased and increased, respectively, as a result of fermentation [123]. These modifications
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are due to proteolysis, during which monomers are generated from complicated large
polymer molecules.

5.2. Chemical Modification

Sorghum protein conjugated to dextran or galactomannan has been applied to improve
its functional properties [124]. Conjugation improves protein solubility at all pH levels
and emulsification capacity doubles. Reducing agents, such as sodium metabisulphite and
glutathione, have also been used to improve protein and starch digestibility [123,125], since
these agents can break down the protein matrix [116].

5.3. Enzymatic Hydrolysis

Enzymatic methods are safer and cheaper than chemical methods and also do not
produce toxic substances. Proteases have mainly been used to detach sorghum starch to
improve the digestibility of animal feeds and increase the hydrolysis of starch for alcohol
production. Treating sorghum starch with proteases reduced the protein content from
0.7–1.1% to 0.5–0.6% [126]. Pepsin pretreatment also increased sorghum starch digestibil-
ity [127].

Protease enzymes appear to have the potential to improve the digestibility and func-
tionality of sorghum protein residue. Due to the protein barrier surrounding the starch
granule, the enzymatic extraction of starch is not effortless. Thus, enzymatic hydrolysis
of the protein matrix would significantly enhance the rate of starch hydrolysis by increas-
ing surface area and improving starch-α amylase and amyloglucosidase interaction [128].
Zhang and Hamaker [125] used pepsin for sorghum and observed similar results. Sorghum
has a high content of starch, which may reduce the efficiency of enzymatic hydrolysis due
to the gelatin formation after heating [46].

5.4. Thermo-Mechanical Treatment

Sorghum protein digestibility can also be improved by extrusion technology. Fapo-
juwo and Maga [129] showed that extrusion improves the in vitro protein digestibility of
sorghum by up to 30%. In another study, the digestibility of the sorghum flour protein was
increased (18%) by extrusion [130].

6. Conclusions

Increasing food demand and shortages of natural resources (i.e., water and land) will
result in a greater opportunity for the incorporation of sorghum into the food and feed
industries. This highly photosynthetic-efficient crop can not only be used as a main source
of grain but also for biomass production to produce high-quality food such as meat and
milk. Increased use of sustainable plant ingredients to replace the long-used cereal crops
such as corn and wheat in animal feed may also alleviate the conflict of human food security.
Sorghum is also an ingredient opportunity for aquaculture and can easily replace corn in
aquafeed. Herbivorous and omnivorous species can consume sorghum as the main feed
ingredient without negative impacts on growth or digestibility. Improvements in sorghum
nutritional value can increase its use in the aquafeed market as a new emerging substitute
for fish meals. Sorghum protein content is between 8 and 15%, with different types of
proteins including water-soluble, salt-soluble, alcohol-soluble, and reducing agent-soluble
proteins. Sorghum protein usually contains high levels of Ala, Asp, Glu, Leu, Ile, Phe,
Tyr, and Val, and low levels of Arg, Gly, His, and sulfur amino acids. Thus, in order to
balance the animal diets, other protein sources should be used with sorghum. Protein
modifications including thermal processing, enzymatic hydrolysis, and fermentation can
improve sorghum protein functionality and digestibility; therefore, future research should
focus on developing a suitable economical and safe method for the extraction of protein,
starch, or even phenolic compounds that are useful for human health.
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