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Changlai Du

ABSTRACT

Wireless communications are ubiquitous nowadays, especially in the new era of Internet of
Things (IoT). Most of IoT devices access the Internet via some kind of wireless connections.
The major role of wireless signals is a type of communication medium. Besides that, taking
advantage of the growing physical layer capabilities of wireless techniques, recent research
has demonstrated the possibility of reusing wireless signals for both communication and
sensing. The capability of wireless sensing and the ubiquitous availability of wireless signals
make it possible to meet the rising demand of pervasive environment perception. Physical
layer features including signal attributes and channel state information (CSI) can be used
for the purpose of physical world sensing. This dissertation focuses on exploring the sensing
capability of wireless signals. The research approach is to first take measurements from
physical layer of wireless connections, and then develop various techniques to extract or
infer information about the environment from the measurements, like the locations of signal
sources, the motion of human body, etc.

The research work in this dissertation makes three contributions. We start from wireless
signal attributes analysis. Specifically, the cyclostationarity properties of wireless signals
are studied. Taking WiFi signals as an example, we propose signal cyclostationarity models
induced by WiFi Orthogonal Frequency Division Multiplexing (OFDM) structure including
pilots, cyclic prefix, and preambles. The induced cyclic frequencies is then applied to the
signal-selective direction estimation problem.

Second, based on the analysis of wireless signal attributes, we design and implement a
prototype of a single device system, named MobTrack, which can locate indoor interfering
radios. The goal of designing MobTrack is to provide a lightweight, handhold system that can
locate interfering radios with sub-meter accuracy with as few antennas as possible. With a
small antenna array, the cost, complexity as well as size of this device are reduced. MobTrack
is the first single device indoor interference localization system without the requirement of
multiple pre-deployed access points (AP).

Third, channel state information is studied in applications of human motion sensing. We
design WiTalk, the first system which is able to do fine-grained motion sensing like leap
reading on smartphones using the CSI dynamics generated by human movements. WiTalk
proposes a new fine-grained human motion sensing technique with the distinct context-
free feature. To achieve this goal using CSI, WiTalk generates CSI spectrograms using
signal processing techniques and extracts features by calculating the contours of the CSI
spectrograms. The proposed technique is verified in the application scenario of lip reading,
where the fine-grained motion is the mouth movements.
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GENERAL AUDIENCE ABSTRACT

Wireless communications are ubiquitous nowadays, especially in the new era of Internet of
Things (IoT). Most of IoT devices access the Internet via some kind of wireless connections.
The major role of wireless signals is a type of communication medium. Besides that, taking
advantage of the growing physical layer capabilities of wireless techniques, recent research
has demonstrated the possibility of reusing wireless signals for both communication and
sensing. The capability of wireless sensing and the ubiquitous availability of wireless signals
make it possible to meet the rising demand of pervasive environment perception. Physical
layer features including signal attributes and channel state information (CSI) can be used
for the purpose of physical world sensing. This dissertation focuses on exploring the sensing
capability of wireless signals. The research approach is to first take measurements from
physical layer of wireless connections, and then develop various techniques to extract or
infer information about the environment from the measurements, like the locations of signal
sources, the motion of human body, etc. Based on the analysis to cyclostationary properties
of wireless signals, we propose a new method for indoor interference source localization. We
also design a fine-grained human motion detection system using channel state information,
which can be applied to application scenarios like lip reading.
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Chapter 1

Introduction

Wireless signals exist ubiquitously in our daily life, especially in the new era of Internet of
Things (IoT). The major role of wireless signals is a type of communication medium. Recent
research has extended the role of ubiquitously available wireless signals to be a sensing
platform of the physical world. This dissertation focuses on the problem of exploring the
sensing capability of wireless signals. In this section, the research position and the current
research status of wireless sensing is briefly introduce. The research goals, research methods
as well as research contributions will be also be covered.

1.1 Sensing Using Wireless Signals

Sensing of objects and the environment using wireless signals is not a new concept. Radar
has been extensively studied and employed to gather information about distant objects such
as the range, angle or velocity [16] using radio waves. When electromagnetic wave encounters
an object, some part of the electromagnetic energy is absorbed and the rest energy will be
reflected back because of the sudden changes in conductivity in the medium. The reflected
electromagnetic is then received by Radar antennas and analyzed to locate the objects.
However, Radar techniques usually rely on dedicated hardware or ultra-wide bandwidth to
achieve high range resolution, which impedes their daily life application.

On the other hand, wireless communication techniques have been tremendously developed
and deployed in the new era of IoT. IoT is the network of “things”, where each “thing”
is uniquely identified through its embedded computing system and is able to communicate
with others within the network. A “thing” in IoT can be any devices, mechanical or digital
machines, objects, animals or people implanted with embedded computing systems. Kevin
Ashton first mentioned the Internet of Things in a presentation he made to Procter & Gamble
in 1999 [10]. Since then, IoT has been a hot topic both in the industry and in academia.
It is estimated that Internet connected devices outnumber humans in sometime between

1



2

2008 and 2009 (Figure 1.1) by Cisco [37], which is believed to be the “birth” of the Internet
of Things. Gartner’s estimation is more conservative by suggesting that over 20 billion
connected IoT devices will be in use by 2020 [1]. Most of IoT devices will be connect to
the Internet using some kind of wireless connections because the cost of wireless radios has
dropped tremendously. For example, in 2017, Sigfox pronounced a $0.20 IoT wireless module
that is so cheap that even disposable items can become part of the internet of things [7].
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Figure 1.1: Cisco estimates that there will be over 50 billion connected devices by 2020. An important
inflection point occurred in 2008, when the number of things connected to the Internet surpassed the human
population, which is believed the “birth” of IoT.

The ubiquitous availability of wireless connections and wireless signals leaves a wide gap
for the research community to explore. The technology of using wireless communication
systems as the ubiquitous sensors has been named wireless sensing or sensorless sensing
[121, 145]. To take after Kristen Woyach in [121], “the radio itself, provided that it can
measure the strength of the incoming signal, is the only sensor we use; with this sensorless
sensing approach, any wireless network becomes a sensor network”.

It should be noted that the concepts of wireless sensing and wireless sensor network(WSN)
[12] are very different. In WSN, a sensor node consists of sensing, data processing and
communicating components, where the communication module uses some kind of wireless
techniques. The “wireless” in its name only refers to the used communication technique,
while its sensing capability relies on the sensors equipped on the nodes. In wireless sensing,
the sensing capability comes from the wireless communication system itself. We are using
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the “side channel” of wireless communications for the purpose of sensing.

Wireless sensing has various application possibilities, among which indoor localization and
human motion sensing are the two most active research areas. In the next sub-sections, I
will briefly introduce the state-of-art of research results along these two directions.

1.1.1 Indoor Localization

Wireless sensing based indoor localization spawns numerous location-based applications in a
wide range of living, production, commence, and public services. In outdoor environments,
global navigation satellite systems are used as the location service, among which Global
Positioning System (GPS) is the most widely used. But in indoor environments, GPS signals
are usually not accessible, which makes indoor localization more challenging than outdoor.
Localization precision requirement is also higher than GPS system to room-level or even sub-
meter level. Because of the ubiquitous deployment of wireless networks and devices, wireless
sensing has been extensively studied for indoor localization during the past two decades
The basic idea of wireless indoor localization is to map physical measurements derived from
wireless signals into geometric parameters such as distances or directions from reference
points.

The previous research literature can be briefly categorized according to the physical mea-
surements. Power(RSSI, CSI), time and angle are the physical measurements for indoor
localization with different accessibility and accuracy.

Received Signal Strength (RSS) based approach is one of the mostly widely used ap-
proaches for indoor localization because of its simplicity and direct availability [25, 47, 60,
63, 129, 131]. The value of Received Signal Strength Indication (RSSI) can be read from
most wireless network interface cards (NIC). RSSI based solutions can be archived into two
categories. One is the range based algorithms, which estimate the distances from multi-
ple measurement points to the target using wireless signal propagation models and locate
the target geometrically [134]. The other category is fingerprinting based [17, 92, 101, 130].
The problem of fingerprinting is that they need extensive accurate environment calibration
workload before system deployment.

Channel State Information (CSI) provides more fine-grained channel measurements
for every subcarrier for Orthogonal Frequency Division Multiplexing (OFDM) technology
based wireless systems. It is potential to achieve accurate and pervasive indoor localization
using CSI, which has attracted much recent research interests [100, 101, 118, 122, 123]. For
example, [122] and [118] construct CSI fingerprinting to improve the performance of RSSI
based fingerprinting methods. However, like RSSI, CSI fingerprinting localization methods
suffers the same problem of environment calibration.

Time of Flight (ToF) or Time of Arrival (ToA) measures the signal propagation time
to calculate the distance between the transceivers. ToA based ranging solutions require
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dedicated hardware with high sampling rate. Instead of measuring signal propagation time
directly, researchers usually turn to measuring frequency differences [11, 42] or using slower
signals like acoustic signals [68, 81, 128, 143]. However, in order to distinguish line-of-sight
(LoS) signal and non-line-of-sight (NLoS) signals, ToA based ranging solutions must ap-
ply extremely high sampling rate because the propagation distance difference between LoS
component and the second arriving multipath component is only about tens of nanosec-
onds [108,112].

Angle of Arrival (AoA) based estimation algorithms [95, 98] rely on antenna arrays to
estimate the angle at which the transmitted signal impinges on the receiver [62, 125]. Sig-
nal samples collected from the antennas are processed using eigenvalue decomposition based
methods to estimate signal AoAs. One challenge for AoA based approaches is to deal with
the multipath phenomenon in indoor environments. Multipath components from the same
source can be highly correlated, which makes eigenstructure based AoA estimation algo-
rithms inaccuracy or even infeasible to estimate the AoAs. Recent techniques can overcome
the multipath challenge by using a high density of Access Points (AP). For instance, [29]
utilizes over 100 APs, ArrayTrack [125] leverages several WiFi APs with 7 to 8 antennas and
PinPoint [52] assumes 5 APs on a floor.

1.1.2 Human Motion Sensing

Motion sensing based human localization, human tracking, gesture and activity recognition
have been studied intensively in the research community. Existing work on motion sensing
can be briefly divided in three categories: vision-based, wearable sensor-based and RF-based.

Vision-based approaches are the most popular for video gaming and virtual reality plat-
forms. Such systems include Microsoft Xbox Kinect [2], Leap Motion [3], and Sony PlaySta-
tion Camera [5]. They use color and infrared cameras to do body-depth perception, motion
tracking and gesture recognition. The main problem of vision-based motion sensing is that
its performance is highly influenced by the condition of lighting. These systems also require
LoS condition for proper operation.

Wearable device based methods like RF-IDraw [115] traces trajectory of fingers and
hands by attaching Radio Frequency Identification Device (RFID) to the fingers. [126] uses
smartwatch to identify 37 gestures. TypingRing [83] asks the users to wear a ring for text
inputting with the capability of detecting and sending key events in real-time. AllSee [54]
is a gesture-recognition system that can operate on a range of computing devices including
those with no batteries. The problem of wearable device based methods is that they are
invasive. The users have to wear extra devices all the time.

RF-based motion sensing can be briefly divided in two categories. The first category meth-
ods rely on specialized hardware. WiTrack [11] tracks 3D human body motion using an
FMCW(Frequency Modulated Carrier Wave) radar at the granularity of 10cm. WiSee [89]
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works by looking at the minute Doppler shifts and multi-path distortions for gesture recog-
nition. Google Project Soli [6] uses on-chip 60GHz radar to detect fine-grained motion.
However, the short effective range limit its application in long distance scenarios.

Recent work focuses more on Commercial Off-The-Shelf (COTS) instead of specialized hard-
ware. By analyzing CSI dynamics from WiFi NICs, it’s possible to estimate human motions.
CSI-based method like CARM [117] builds a CSI-speed model and a CSI-activity model,
which depicts the relationship between CSI value dynamics and human body parts move-
ment speeds, and the relationship between the body movement speeds and specific human
activities. WiKey [13] uses CSI waveform shape as the features and can recognize keystrokes
in a continuously typed sentence. WiKey works well only in controlled environments and
specific devices positioning. WiFinger [110] also uses CSI waveform shape as the features
and can discern 8 finger gestures. WiFinger also requires static transceivers and finger mo-
tions must be near the LoS line of the transceivers. WindTalker [67] allows an attacker to
infer the sensitive keystrokes on a mobile device using CSI. However, WindTalker requires
that the mobile device being placed in a stable environment. Wi-Wri [22] uses WiFi signals
to recognize written letters. WiDraw [104] leverages WiFi signals from commodity mobile
devices to enable hands-free drawing in the air. WiHear [113] uses specialized directional
antennas to obtain usable CSI variations for the purpose of lip reading.

RF-based motion sensing does not require users to wear any physical sensors. Because of
the physical properties of RF signals, these approaches can sense user motion under both
LoS and NLoS scenarios. The prevalence of RF wireless network infrastructures also enables
large scale deployment.

1.2 Research Contributions

This dissertation explores the sensing capability of wireless signals. In the indoor localization
research area, the problem of interference source localization is studied. We conquer two
major challenges to do indoor interference localization: to identify the interfering signal
type and to isolate the LoS component. In the human motion sending research area, we
extended the research boundary of CSI based human motion sensing to fine-grained context-
free quadrant.

The meaning of sensing capability can be explained using this DIKW model as shown in
Figure 1.2. Sensing is the process of collecting data from physical world to cyber space. The
collected data can be raw data open to interpretation, or have some higher level meaning to
human, depending on how we define the sensor. Data need to be analyzed to extract some
useful information. Combining multiple pieces of information, we may get some knowledge.
And from knowledge, it’s possible to learn some wisdom. The meaning of sensing capability
should cover all the four levels and the four processing steps. The sensing capability depends
not only on what data we can collect, but also on how we interpret the data and what to
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learn from the data.

In this dissertation, we use the DIKW model to determine the roadmap of each piece of
work. For the interference localization problem, we use a top-down method. We start from
problem because the problem definition is clear. We then identify three types of methods to
uniquely define a location point, namely distances, directions and environment fingerprints.
We then go to the data layer, and identify what kind of data we can collect: the RSSI,
CSI, ToF and the phase array raw signals and how we can map the collected data to the
localization methods. Comparing their pros and cons, we make the selection of our roadmap.

For the fine-grained motion sensing problem. We use a bottom-up method. We firstly
identify CSI as one of the promising research topics. We then analyze CSI to determine
what kind of information we can get from CSI streams. We find out that spectrogram is
promising for context-free human motion detection. At last we select the research topic of
fine-grained motion sensing because it’s out of the boundary of the current research status.
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Figure 1.2: The DIKW model. Sensing is the process of collecting data from physical world to cyber space.
Data need to be analyzed to extract some useful information. Combining multiple pieces of information,
we may get some knowledge. From knowledge, it’s possible to learn some wisdom. Wireless sensing should
cover all the four processing steps.

The first piece of work is wireless signal attributes analysis. Specifically, the cyclostationar-
ity properties of WiFi signals are studied, which are induced by OFDM features like pilots,
cyclic prefix (CP), and preambles. Signal models of these features is first proposed. Then
the spectral correlation functions are derived. The induced cyclic frequencies is studied of
its applicability to the signal-selective direction estimation (SSDE) problem. Theoretical
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analysis is verified using simulation results. The analysis results (e.g., OFDM feature in-
duced cyclostationarity) are also useful for other applications, such as signal detection and
identification in Cognitive Radio (CR) networks.

The second piece of work is to solve the problem of indoor interference localization. We
design and implement a prototype of a single device system that can locate indoor interfering
radios. The goal of designing MobTrack is to provide a lightweight, handhold system that
can locate interfering radios with sub-meter accuracy with as few antennas as possible.
With a small antenna array, the cost, complexity as well as size of this device will be also
reduced. MobTrack is the first single device indoor interference localization system without
the requirement of multiple pre-deployed access points.

Channel state information is then studied in human motion sensing applications. We design
and implement the prototype of WiTalk, the first context-free fine-grained motion sensing
system using WiFi physical layer channel information. Similar to previous CSI-based motion
sensing solutions, WiTalk infers human motion by analyzing the CSI dynamics. WiTalk is
the first feasible system in the context-free fine-grained quadrant of motion sensing solution
plane using WiFi CSI dynamics. We show the existence of this quadrant I solution by
identifying the CSI spectrograms as the intrinsic stable properties that correlate to fine-
grained human motion. We identify and extract effective features from CSI spectrograms
by calculating the contours of CSI spectrograms. These new discerning features solve the
problem of low time-frequency resolution using discrete wavelet transform(DWT). We verify
the feasibility of WiTalk by applying it to the lip reading scenario. Experiment results show
that WiTalk achieves comparable results to previous fine-grained context-related solutions.

1.3 Organization

The dissertation is organized as follows.

Chapter 2 introduces the background knowledge related to this dissertation. We briefly
overview the knowledge background of wireless signals and technologies related to this dis-
sertation. The purpose of this overview is to set a whole map for understanding the position
of the research work of this dissertation. Different types of wireless signals are firstly in-
troduced as well as their specific properties both for the purpose of communication and
sensing. The introduction is mainly focus on RF signals. Measurement methods of RF
signal attributes as well as applications of using these attributes will be listed. At last, the
superposition properties of RF signals are introduced, including interference superposition
and multipath superposition.

Chapter 3 presents the work on cyclostationary analysis of WiFi signals for direction estima-
tion. We present our solution for the first step of solving the indoor interference localization
problem by analyzing the cyclostationary properties of wireless signals. We take WiFi signals
as an example and illustrate how to model wireless signals and perform cyclostationary anal-
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ysis and how to use these properties to help solving the signal selective direction estimation
problem.

In Chapter 4, the complete solution to the indoor interference localization problem is pre-
sented. We first introduce the related work and research method. The four system work
flow steps are then detailed one by one. We then present the implementation details as well
as the performance evaluation.

In Chapter 5, we introduce the research work on WiFi based fine-grained motion sensing. We
first briefly talk about the concept of CSI and the preliminary of CSI-based motion sensing.
The six system work flow steps are then presented in detail, among which we concentrate
on interference elimination and feature extraction. We implement and evaluate the system
design using the lip reading application.

Chapter 6 summarizes the research achievements, concludes this dissertation and list several
possible future research directions.



Chapter 2

Sensing Using Wireless Signals:
Fundamentals and Applications

In this chapter, we briefly overview the knowledge background of wireless signals and tech-
nologies related to this dissertation. The purpose of this overview is to set a whole map
for understanding the position of the research work of this dissertation. Different types of
wireless signals is firstly introduced as well as their specific properties both for the purpose of
communication and sensing. The introduction will focus on RF signals. Measurement meth-
ods of RF signal attributes as well as applications of using these attributes will be listed.
The superposition properties of RF signals are introduced, including interference superposi-
tion and multipath superposition. At last, we briefly introduce the concept of physical layer
security, which is an application of wireless sensing.

2.1 Wireless Signals and Communications

In a broad sense, wireless signals can be any signals that are transferred without wire connec-
tion. The most commonly used wireless technologies are radio waves. Other types of wireless
signals include visible light and acoustic based techniques. Recent developed counterfactual
communication uses quantum mechanics to transfer information without any particles trav-
elling between two recipients. In a sense, this counterfactual communication is also wireless,
though there is no traditional “signals”.

Radio

A radio frequency (RF) signal refers to a wireless electromagnetic signal used as a form of
communication. The radio frequencies of radio waves are in range from 3kHz to 300GHz.
Frequency refers to the rate of oscillation of the radio waves. RF signals can cover a large
distance and is able to penetrate opaque objects like wall and human body. This property

9
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allows radio signals to be used in through-the-wall sending applications. RF wave is electro-
magnetic radiation and can propagate at the speed of light and does not need a medium like
air to travel. The high propagation speed makes it hard to accurately measure its travelling
time in a distance at an indoor scale.

Many RF communication systems have been broadly deployed in industry and in our daily
life. Exiting RF technologies which has been used to provide wireless sensing services include
WiFi [50], Bluetooth [21, 78, 79], Zigbee 1 [18, 57, 65], and Radio Frequency Identification
Device (RFID) [39,64,120]. As we previously mentioned, RSSI, CSI, ToF and AoA techniques
can be used to provide wireless sensing services using these RF communication signals.

Visible Light

Visible light (VL) as well as its nearby bands like infrared (IR) and ultraviolet (UV) consists
of a wide frequency bands on the electromagnetic spectrum. Optical wireless communica-
tion (OWC) [15, 30, 35, 59] uses light propagating in free space to transmit wirelessly data.
“Free space” means the light beams travel through the open air or outer space instead of
transmission lines such as optical fiber.

Compared to RF, optical wireless has several technology-specific characteristics. First, RF
networks suffer from spectrum congestion. Some of the RF bands are licensed to specific
organizations. OWC provides the unlicensed, free of charge optical band. At the same time
it has potentially much larger available bandwidth. So OWC is considered be to a promising
network technology. Second, optical wireless has its own technical limitations compared to
RF, such as the absence of line of sight (LoS) and infeasibility of uplink transmission.

Current OWC technologies include visible light communication (VLC) [86,93], light fidelity
(LiFi) [33,46,71], optical camera communication (OCC) [44,127,144] and free space optical
(FSO) communication [20,55,75].

Using optical signals as remote sensing technology for very-high-resolution 3D mapping is
also proposed such as LiDAR [140].

Sound and Ultrasound

Unlike electromagnetic, sound [58] is a mechanical pressure wave resulting from the back
and forth vibration of the particles of the medium. The frequency band of sound waves is
between 20Hz and 20kHz, while ultrasound [105] is sound waves with frequencies higher than
20kHz. Ultrasound devices can be used to detect objects and measure distances [87,107].

Sonic and ultrasonic short range communication systems have been studied and proposed in
the literature [66]. Recently, near ultrasound based localization and raging systems have been
well studied. These systems leverage the ubiquitous microphone sensors in smartphones and
voice assistant systems to capture acoustic signals emitted by microphones and estimate the
user locations [45,70,82,141]. Traditionally, acoustic-based localization transmits modulated
acoustic signals, containing time stamps or other time related information for the purpose
of ToF estimation by the microphone sensors. Another solution is to use the phase and
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frequency shift of the Doppler effects in the received acoustic signal, which is caused by a
moving object to estimate the relative position and velocity.

Quantum communication

Before this counterfactual quantum communication, all our communication is essentially
physical, which is to say, all the information is transmitted using actual objects. For ex-
ample, in previously mentioned RF and optical communications, the information is carried
by photons and transmitted at the speed of light. However, in the most recently developed
quantum communication domain, information can be transmitted using the transfer of q
quantum state instead of an actual quantum or classical particle [23, 96].

In quantum physics, a quantum is described as a possibility wave function. When the quan-
tum is observed, the wave function will collapse. In 1993, Avshalom Elitzur and Vaidman
designed a thought experiment as shown in Figure 2.1 [36]. In this experiment, photons are
divided into two paths using a beam splitter and reunite at the second beam splitter. The
paths can interfere at detector D1 constructively and D2 destructively. So the photons will
be detected on D1 but not on D2. If an obstacle like a bomb is placed in one of the paths,
the wave function collapses and the photons will use other path only, which will be detected
on both D1 and D2. In 2013, Hatim Salih designed a protocol for direct counterfactual
quantum communication [96] by repeating the split-reunite structure. If Bob controls the
“bombs” in the series of paths, he can use them to send information to Alice’s detectors even
he does not send any particles to Alice. In 2013, Jianwei Pan and his team implemented this
experiment by transmitting a 100× 100 bitmap of Chinese knot across a tabletop, and the
results are published in 2017 [23].

Figure 2.1: Bomb-testing problem diagram. This diagram includes a photon emitter, the bomb to be tested,
two photon detectors. Mirrors in the lower left and upper right corners are semi-transparent.
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Though there is no classical signals transmitted, the quantum wave function does demon-
strate its ability of sensing at least the presence/absence of an obstacle. Whether it’s possible
to be used as a more general sensing method needs future study.

2.2 Measurement of RF Signals Attributes

In this dissertation, we mainly focus on the sensing capability of RF signals, because RF
communication are the main technologies used in our daily life. To reuse the RF communi-
cation systems as a sending method, we first identify what measurements we can do to RF
signals and how these measurements can help us in the sensing applications.

An RF signal is an electromagnetic wave that communications systems use to transport
information through air from one point to another. The basic elements of a RF signal is
depicted in Figure 2.2, including its amplitude, phase and frequency.

t

Amplitude

Phase

T f=1/T

Figure 2.2: The basic elements of RF signals: the amplitude, phase and frequency.

Amplitude

The amplitude of a radio wave is the difference between its maximum and its minimum value
during one cycle. Radio waves have amplitudes with units used for the intensity of electronic
field, the Volt (V). The amplitude of a radio indicates its strength. In practice, the power
rather than the amplitude of signal is measured, because it’s difficult to perform voltage
measurements with Alternating Current (AC), especially for high frequency RF signals.
Power measurement is simpler and more accurate, and the measurement of power can be
converted to amplitude.

Power
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The power of a RF signal is the transfer rate of energy per unit time. In terms of electro-
magnetic signals, power represents the amount of energy necessary to push the signal over a
particular distance. As the power increases, so does the range. Power is measured with the
unit of Watts or in dBm units (decibels referenced to 1 mW) to represent the amplitude of
radio waves. The dBm is the amount of power in watts referenced to 1 mW. Zero (0) dBm
equals 1 mW. The dBm values are positive above 1 mW and negative below 1 mW.

In practical systems, RSSI is the measurement of power. The higher the RSSI values, the
stronger the signal. Different from dBm, RSSI is a relative index while dBm is the absolute
number representing power levels in mW. For most widely used wireless techniques ranging
from UWB, ZigBee, and WiFi to cellular networks, RSSI is handily accessible.

The main drawback of RSSI measurement is that it’s not stable in complex indoor environ-
ments. RSSI not only varies over distance but also suffers from shadow fading and multipath
fading, as shown in Figure 2.3. RSSI also fluctuates over time even at a static link because
of the multipath effect.

Figure 2.3: RSSI variations due to path loss, shadow fading and multipath fading [129].

Phase

The phase of a radio wave corresponds to how far the signal is offset from a reference point
(such as a particular time or another signal). By convention, each cycle of the signal spans
360 degrees. For example, a signal might have a phase shift of 90 degrees, which means that
the offset amount is one-quarter (90/360 = 1/4) of the signal [41].
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The phase measurement is important in RF wireless applications. The phase measurement
techniques include: direct oscilloscope methods, Lissajous figure methods, and zero-crossing
methods [84].

Time-of-Arrival

The measurement of RF signal transmission time is name the measurement of Time Of
Arrival (ToA) and Time Difference Of Arrival (TDoA). ToA is the time used for a signal to
flight from the transmitter to the receiver. The measurement of ToA is based on knowing
the exact time the signal leaves the transmitter and the exact time it arrives at the receiver.
However, it’s hard to exactly synchronize the transmitters. TDoA is more versatile than
ToA by measuring “time difference of arrival” (TDOA) of a signal from the emitter at three
or more synchronized receiver sites. The main drawback of ToA measurement is that it
requires a high Analog-Digital Converter (ADC) sampling rate to get high accuracy.

Frequency Modulated Continuous Waveform (FMCW) is typically used for accurate ToA
measurement. In FMCW, an electromagnetic signal is continuously transmitted with time-
varying frequencies. As shown in Figure 2.4, the signal with an continuously changing
frequency is named a chirp. The difference in frequency between the transmitted signal
and the reflected signal can be calculated by mixing the two signals, producing a new signal
whose frequency is in base band and can be measured to determine the time of flight because
the frequency difference is proportional to the transit time. The time can then be mapped
to distance or velocity. FMCW radar is an indirect method of ToA measurement.

138.2𝑘𝐻𝑧

𝑡

𝑓

2.5𝑚𝑠

1.69𝐺𝐻𝑧

Figure 2.4: The FMCW system estimates the ToF by measuring the frequency difference.
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Angle-of-Arrival

The measurement of Angle of Arrival (AoA) is to determine the electromagnetic wave di-
rections of arrival on a sensor. It is important to many wireless sensing systems. Angle
information is an orthogonal dimension to distance. For geometric mapping, angle can be
combined with distance to estimate the location of a target from a single reference point.
The measurement of angle can be distinguished in two categories. The first category is to
measure the maximum signal strength during the antenna rotation and then use algorithms
like maximum likelihood to determine the AoA. The second category is the high resolution
method using an antenna array [27], which is high cost specific hardware. However, with the
development software defined radio and MIMO technology, it’s not that hard to construct
an antenna array with more than a dozen of antennas.

Instantaneous frequency

The frequency of a radio wave is the number of times per second that the signal repeats itself.
The unit for frequency is Hertz (Hz), which is actually the number of cycles occurring each
second. The frequency of radio waves impacts heir propagation. Lower-frequency signals
have longer wavelengths. The lower the frequency, the smaller the propagation loss and the
longer the coverage distance. But as the lower frequency bands are limited, low-frequency
radio waves are mainly used for broadcast, TV and paging systems. On the other hand, the
higher the frequency is, the greater the propagation loss and the closer the coverage distance.

In practice, RF signals have a set of frequencies, which is named frequency spectrum. Fre-
quency spectrum is measured using spectrum analyzers. Spectrum analyzers use fast Fourier
transform (FFT) to analyze the frequency components of the RF signals.

Time-Frequency Spectrogram

A spectrogram is a visual representation of the spectrum of frequencies as the signals vary
with time. Using spectrogram, we not only can see the signal energy at specific frequen-
cies, but also we can see how the frequency spectrum changes over time. Spectrogram are
two dimensional graphs: the time and the frequency. The energy level of the signals are
represented by colors.

The spectrogram can be generated using short-time Fourier transform (STFT) [90]. An
example of a liner chirp and its corresponding spectrogram is shown in Figure 2.5.

2.3 Superposition of RF Signals

When two RF signals encounter, they will combine to generate a resultant wave whose
amplitude is the algebraic sum of the individual waves. Two types if superposition can
be identified, namely interference and multipath propagation. Interference signals are from
different signal sources, while multipath components are signals from the same source.
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Figure 2.5: A liner chirp and its corresponding spectrogram.

2.3.1 Interference

Interference occurs when two different signals are present at the receiving station at the
same time. The two signals have the same frequency band. When interference happens,
the RF communication will be degraded because the receiver will fail to decode the signals.
Interference can be express as x = s + i + n, where x is the received interfered signal, s is
the sent signal, i is the interfering signal and n is background noise.

To reduce the possibility of signal interference between different systems, the Federal Com-
munications Commission (FCC) regulates the use of most frequency bands and modulation
types. However, radio interference can still occur, especially with systems operating in
license-free bands. For example, the ISM band is heavily used by many systems include
WiFi, cordless phones, microwave ovens, and Bluetooth devices. When these types of RF
devices are in use, the performance of a wireless network can significantly decrease because of
retransmissions and competition on the network for use of the medium. This requires care-
ful planning and consideration of other radio devices that might interfere with the wireless
network.

To combat RF interference, it is important to eliminate the sources of interference. Orgniza-
tions may set policies for using wireless devices in their network, but it is hard or even
impossible to completely restrict the use of wireless devices becuase the large number of
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them. Another way to avoid interferene is to use a frequency band that does not confict.
However, as the radio frequency regulated by FCC, it is usually hard to find unused fre-
quency band. In this situation, it is an urgent need for network operators to identify and
locate the interference sources as quick as possible.

2.3.2 Multipath

Multipath propagation occurs when portions of an RF signal take different paths when
propagating from a source to a destination node, such as an access point, as shown in Figure
2.6. A portion of the signal go directly to the destination, which is the line of sight (LoS)
component; and another part might bounce from the ceiling, and then to the destination,
which is a static reflected component. The part bonce from the moving human body and then
to the destination is the dynamic reflected component. Multipath components encounter
delay and travel longer paths to the receiver [38].

Sender Receiver

Figure 2.6: Multipath components of the signal include the line of sight component, static reflected compo-
nents, and dynamic reflected components.

Multipath propagation may cause interference. If two components are in phase, then they
are constructive factors, otherwise, they are desctructive factors as shown in Figure 2.7.

In case where the LoS path is much stronger than reflected paths, multipath interference
effects may be negligible. However, the LoS path may not always be available and multipath
signals may cause significant corruption of the communication. What is worse, the multipath
channel characteristics may change over time because of the change of channel geometry. In
indoor environments, the propagation path contains all kinds of reflectors like walls, ceilings,
the floor, desks , file cabinets, etc. The net channel characteristics result from the sum of all
the individual reflection channels. For example, when a user move a little bit, the electrical
lengths of all the paths reflected from the user change simultaneously. This will both change
the delays and the phases of the signals. Small differences in the delay and phases can make
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Figure 2.7: Multipath components. Multipath superposition may be constructive or destructive.

big differences in the received signal because of the superposition effects. For example, for
2.4GHz WiFi, the signal wavelength is about 6cm, and the path delay of half a wavelength
will totally null the received signal if we assume the signal strength of the two paths are the
same.

OFDM is specially designed to eliminate multipath effects in the wireless communications.
Multipath delays cause inter-symbol interferences (ISI). OFDM divides the total signal band-
width in to number of small subcarriers and transmits information on each of the subcarriers.
By inserting guard time that is longer than the delay of the channel, OFDM is able to mit-
igate ISI.

2.4 Physical Layer Security

The application of wireless sensing in security domain is physical layer security (PLS). PLS
exploits the unpredictable features of wireless channels such as channel fading. Using the
DIKW model, the data collected is the channel/signal status, and then the data are analyzed
to extract useful information like physical layer keys for security applications. Like motion
sensing, physical layer security does not rely on the communication system but utilize the
sensing capability of the wireless signals. Thus we identify PLS as an application of wireless
sensing.

Conventional wireless systems are protected using classical cryptosystems which are mainly
based on computational security. However, there are challenges in applying these approaches
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in IoT, especially the low-end IoT devices. Those devices are usually embedded devices,
which are low-cost and low-energy with limited computing ability. They can’t afford the
additional size, power consumption, and code space needed to perform the expensive math-
ematical calculations of cryptographic methodologies [111]. In addition, IoT devices that
work in a device-to-device communication mode may not have access to a secured public key
infrastructure (PKI) for the distribution of public keys.

While the main security streams have focused on the upper layers, another research thread
has been active in recent years, which leverage physical layer to enhance security as well
as to decrease hardware complexity requirement and energy cost. Physical layer security
enhancement is twofold as shown in Figure 2.8 [136]. Information-theoretic security [88]
which is also known as physical layer security (PLS), exploits the unpredictable features
of wireless channels such as channel fading. PLS transmission techniques achieve security
through artificial noise [43], jamming [72], or beamforming [80], etc. However, these PLS
transmission schemes are not practical yet because they require complex coding and the
perfect channel state information (CSI) of the receiver and imperfect CSI of the eavesdroppers
[146]. Physical layer key generation, which is promising and an active branch of PLS, is
implementable because the legitimate users are able to agree on the same key from the noisy
channel estimation [135], which can be used as an alternative to PKI in many circumstances.

Security Enhancement at Physical Layer

Information Theoretic 

Security
Computational Security

Physical Layer Security

Transmission

Physical Layer Security

Key Generation

Physical Layer 

Encryption

Figure 2.8: Taxonomy of physical layer security enhancement techniques.

Physical layer encryption (PLE) is a hybrid approach, which integrates information theo-
retical security and computational security schemes. Physical layer key generation is used
over the noisy channel to generate common keys using pilot signals. The key generation
protocol that consists of channel probing, quantization, information reconciliation, privacy
amplification. The key is then fed to the PLE, which performs encryption operations at the
modulation stages of the physical layer, and protects the IoT wireless transmission. The
integration of information-theoretic security schemes and computational security schemes
has some advantages over conventional upper layer encryption-based security primitives. It
simplifies the process of common key distribution and removes the requirement of access to
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PKI. It also protects physical layer package headers from side-channel analysis attacks [91].

Physical layer key generation depends on the randomness of wireless channels, and is built on
three physical principles of the channels: channel reciprocity, temporal variation and spatial
decorrelation. In physical layer key generation protocols, the wireless devices measure the
highly correlated wireless channel characteristics such as channel impulse response(CIR),
received signal strengths(RSS), channel state information(CSI), and use the measured values
as the randomness sources to generate a shared secret key. Physical layer key generation
has the potential to achieve information-theoretic security because it does not rely on the
hardness of a computational problem. Thus, it does not require expensive computation.

Channel reciprocity means the channel responses of the forward and backward links are the
same, which is the basis for key generation. When two users measure the same channel
parameters at the same frequency in a time-division duplex (TDD) mode, the measurements
at Alice and Bob are impacted by the non-simultaneous sampling and noise. However, a
high correlation between channel measurements of Alice and Bob can still be maintained
and eligible for key generation in a slow fading channel, as demonstrated in many practical
experiments [51,77,139].

Temporal variation indicates that there is randomness residing in the dynamic channel,
which ensures the extracted keys are random. A random key will make the cryptographic
applications robust against attacks such as brute force. In the urban area, the interference
may be chaotic, because of the densely deployed access points [53]. The interference will
impact the channel measurements accuracy but will not affect randomness nature of the
wireless link between users. In addition, the statistical features of the channel may be
deterministic [28], but key generation is exploiting the instantaneous channel variation, which
is random in nature.

Spatial decorrelation implies that when located a half-wavelength away from the legitimate
users, the eavesdropper experiences an uncorrelated channel compared to that between Alice
or Bob, guaranteeing the security of the key generation. When the system works at 2.4 GHz,
a half-wavelength is about 6cm, which is quite short. These principles have been theoretically
modeled and analyzed in [137,138].



Chapter 3

Cyclostationary Analysis of WiFi
Signals for Direction Estimation

In this chapter, we present our solution for the first step of solving the indoor interference
localization problem by analyzing the cyclostationary properties of wireless signals. We
take WiFi signals as an example and illustrate how to model wireless signals and perform
cyclostationary analysis and how to use these properties to help solving the signal selective
direction estimation problem.

3.1 Motivation and Objects

Wireless communication has become ubiquitous all over the world. In indoor environments,
IEEE 802.11 (WiFi) is the predominant wireless communication solution. However, due to
the “open air” property of wireless media and the crowded unlicensed industrial, scientific,
and medical (ISM) band, WiFi communication may be easily interfered with by itself or other
ISM systems (e.g., Bluetooth). When WiFi communication is interrupted by interference,
quick and accurate detection and localization of the interfering source is of great importance
to resolve the problem, especially in business scenarios like enterprises and hospitals. If
the interfering source can be localized, it is possible to restore WiFi communication (e.g.,
by turning off the interfering source). Signal-Selective Direction Estimation (SSDE) is a
popular method for interfering source localization. The basic idea of SSDE is to compute
the coordinates of the interfering source based on the Angle of Arrival (AoA) of the line-
of-sight signal from the interfering source at a set of anchoring WiFi nodes [40, 95, 98]. A
prerequisite, which is also a major challenge, of the SSDE problem is that at an anchoring
WiFi node, one should distinguish the signal of the targeted interference source from the
signals of other (interfering or desired) signal sources.

Cyclostationary based direction estimation algorithms (see [40]) have been proposed to ad-

21



22

dress this challenge, by exploiting the signal selection properties of cyclic frequencies. A sig-
nal can be modeled as cyclostationary if its cyclic autocorrelation function (CAF) is nonzero
for some nonzero cyclic frequencies. The Spectral correlation density function (SCD) is the
Fourier transform of a CAF, which can be estimated efficiently from discrete samples of the
signals. A cyclic frequency is a frequency at which the CAF is not zero, which can be deter-
mined by examining the peaks on the signal CAF or SCD surfaces. Once a cyclic frequency
of the target signal is identified, the Cyclic MUSIC algorithm [97] can be used to estimate
the signal AoA. The Cyclic MUSIC algorithm takes a cyclic frequency of the target signal
as an input, and then performs the MUSIC algorithm in [98] to estimate only the desired
signal directions of arrival. Therefore, estimation of signal cyclic frequencies is the first step
to exploit the Cyclic MUSIC algorithm for direction estimation. A thorough analysis and
evaluation of WiFi cyclostationary properties needs to be performed to estimate signal cyclic
frequencies.

OFDM is widely used as the modulation technique for major communication applications
such as WiFi (IEEE 802.11a/g/n) to improve spectrum efficiency. For the purpose of sig-
naling, channel estimation, and synchronization, OFDM frame structure introduces some
features including pilots, cyclic prefix (CP), and preambles. These features generate peaks
on the SCD surface at specific cyclic frequencies, which can be utilized to distinguish WiFi
signals from other signals.

In this chapter, we analyze WiFi cyclostationarity induced by these OFDM features. We
first present the signal models of these features and then derive their spectral correlation
functions. After that, we investigate the applicability of the induced cyclic frequencies to
the SSDE problem. Simulation was conducted and the results are in agreement with our
theoretical analysis. The work of this chapter are the first to analyze the cyclostationary
properties of OFDM-based WiFi signals comprehensively for this purpose. The analysis
results (e.g., OFDM feature induced cyclostationarity) are also useful for other applications,
such as signal detection and identification in the Cognitive Radio (CR) networks.

The rest of this chapter is organized as follows. Related work is presented in section 3.2.
Section 3.3 offers essential background of the cyclostationary analysis. Section 3.4 presents
the cyclostationary analysis induced by OFDM features of WiFi. In section 3.5 we evaluate
the influence of these features on the direction estimation of WiFi signals. Section 3.5
concludes this chapter.

3.2 Related Work

Cyclostationary analysis is widely studied for the purpose of signal detection and identifica-
tion. In [103], the authors proposed an OFDM system identification scheme for CR networks
based on pilot-induced cyclostationarity. In [106], an embedded cyclostationary signature
method for OFDM-based waveform identification was proposed. They generated a cyclo-
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stationary signature using OFDM subcarrier set mapping, thus a spectral correlation was
created in each OFDM symbol by simultaneously transmitting data symbols on more than
one subcarrier. In [24, 73, 99], the authors discussed pilot-induced and preamble-induced
cyclostationarity as well as their applications for signal detection in CR networks.

Cyclostationary property based interfering radio localization was proposed in [49, 52]. In
these papers, the authors exploited cyclostationary analysis to extract feature vectors to
detect signal types, the occupied spectrum, and the AoAs of arriving signals at the detecting
radio. However, the authors did not provide the details of how cyclic frequencies(in these
papers named pattern frequencies) were generated. They only gave a conclusion that the
pattern frequencies of WiFi is any one between [fc − BW

2
, fc + BW

2
] in [49]. Our work is

inspired by these two papers, with a focus on the how cyclostationary properties are induced
by WiFi OFDM structures.

3.3 Cyclostationarity Preliminary

In this section, we introduce the concept of signal cyclostationary properties and the Cyclic
MUSIC algorithm.

3.3.1 Cyclostationary Properties

A signal x(t) in time domain is shown in Figure 3.1 (a). If x(t) contains some finite-strength
additive sine-wave components with frequency fn,

x(t) = a0 +
N∑
n=1

an cos (2πfnt)

if the corresponding Fourier coefficients is not zero. The frequency spectrum of x(t) will
peak at these fn values, as shown in Figure 3.1 (b).

As shown in Figure 3.1 (c). Real life signals contain more frequency components, noise and
high order “hidden” periodicity [40]. Unlike first order periodicity, signals with high order
periodicity do not give spectral lines in spectrum. A signal can be modeled as cyclostationary
if its cyclic autocorrelation function (CAF) is nonzero for a nonzero cyclic frequency. The
Cyclic Autocorrelation Function (CAF) is defined by

Rα
x(τ) ,< x(t+ τ/2)x∗(t− τ/2)e−j2παt >, (3.1)

where the < · > is the time averaging operation defined by
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(a)     x(t) (b)    F(x(t))

(c)     y(t) (d)       Fα(y(t)y*(t-τ))

Figure 3.1: A signal can be modeled as cyclostationary if its cyclic autocorrelation function (CAF) is nonzero
for a nonzero cyclic frequency.

< · >, lim
T→∞

1

T

∫ T/2

−T/2
(·)dt.

If for some cyclic frequency α and delay τ , Rα
x(τ) 6= 0, then this signal x is a cyclosta-

tionary signal, as shown in Figure 3.1 (d). When α = 0 , Rα
x(τ) reduces to a conventional

autocorrelation function.

Equation (3.1) can be further interpreted as

Ruv(τ) =< u(t+ τ/2)v∗(t− τ/2) >, (3.2)

where u(t) = x(t)e−jπαt and v(t) = x(t)ejπαt.

We can see from Equation (3.2) that a signal exhibiting the cyclostationary property cor-
relates with a frequency-shifted version of itself, which means that the signal exhibits the
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spectral coherence property.

The Fourier transform of CAF is spectral correlation density function (SCD), which is defined
by

Sαx(f) =

∫ ∞
−∞

Rα
x(τ)e−j2πfτdτ

= lim
B→0

1

B
< [hfB(t)⊗ u(t)][hfB(t)⊗ v(t)]∗ >,

(3.3)

where ⊗ denotes convolution, u(t) and v(t) are given in Equation (3.2), and hfB(t) is the
impulse response of a one-sided bandpass filter with center frequency f (see [40] for details).

In the discrete domain, the continuous signal x(t) is sampled as a series x[n] and the values
of SCD must be estimated from the samples. The algorithm we choose here is Fast Fourier
Transform (FFT) accumulation (FAM) [94].

3.3.2 Signal Direction Estimation

MUltiple SIgnal Classification (MUSIC) is an algorithm to determine the parameters of
multiple wavefronts arriving at an antenna array. MUSIC algorithm can be used to asymp-
totically unbiased estimates the number of signals, directions of arrival, strengths and cross
correlations among the directional waveforms and strength of noise or interference.

Array Signal Measurement Model

For simplicity, we assume a Uniform Linear Array (ULA) for the antenna elements, which
consists of M antennas with an interval of d between adjacent antennas. The array signal
model is illustrated in Figure 3.2. Assume I signals exist in the referred space and for the
ith signal, there are Ki multipath components perceptible by the antenna array. Further,
we assume that the signal sources are far field sources, which means the impinging signals
are plane waves.

The signal received by the mth antenna can be expressed as

xm(t) =
I∑
i=1

Ki∑
k=1

sik(t−
(m− 1)dsinθik

c
) + nm(t) (3.4)

where sik(t) and θik are the wavefront of kth component of ith signal impinging on the ULA
and its AoA respectively. nm(t) is additive measurement noise with zero mean value and no
cyclostationary property.
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Figure 3.2: Phase Array Data Model. Multipath components from multiple sources impinge on the antenna
array. Antenna array is a Uniform Liner Array with interval distance d = λ/2. Propagation phase delay
between array elements can be used to infer the incoming angle θ.

We further assume d = λ/2, then we make the narrowband assumption and the effect of
propagation delay is simply a phase shift.

We then simplify the non-interested signals, and omit the subscript of signal of interest (SoI)
without loss of generality

xm(t) =
K∑
k=1

sk(t)e
−jπ(m−1)sinθk + im(t) + nm(t) (3.5)

where im(t) is the sum of all signals other than the SoI measured by mth antenna and K is
the number of multipath components of SoI.

Denoting

a(θk) = [1, e−jπ sin θk , ..., e−jπ(M−1) sin θk ]T (3.6)

The antenna array signal measurement model can be expressed in a matrix form as

x(t) = A(θ)s(t) + i(t) + n(t) (3.7)

where

• x(t) = [x1(t), ..., xM(t)]T is the measurement vector;

• s(t) = [s1(t), ..., sK(t)]T is the wavefront vector ;
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• i(t) = [i1(t), ..., iM(t)]T is uninterested signals vector;

• n(t) = [n1(t), ..., nM(t)]T is the measurement noise vector;

• A(θ) = [a(θ1), ..., a(θK)].

Note that x(t), i(t),n(t), a(θk) ∈ CM , s(t) ∈ CK and A(θ) ∈ CM∗K and ()T denotes transpose.

As defined in Equation 3.6, a(θ) is the steering vector of the array, which is a function of
the AoA of the incoming signals.

Conventional MUSIC algorithms

Conventional MUSIC algorithms [98] are based on decomposition of the autocorrelation
matrix of the input signal x(t) = A(θ)s(t) + n(t)

Rxx , E{xx∗} = ARssA
∗ + σ2I (3.8)

where A is composed of the steering vectors of the antenna array, and σ2 is the variance
of noise n(t). Rss = E{ss∗} is the source autocorrelation matrix. If the signals s(t) are
modeled as stationary processes, and uncorrelated with the noise, then Rss is a Hermitian
matrix and ARssA

∗ is positive semidefinite whose rank is the number of the incoming signals
I. MUSIC requires that number of antenna M > I.

The autocorrelation matrix Rxx is then eigen-decomposed to getM eigenvalues. The smallest
M − I eigenvalues are all equal to noise variance σ2. Using this property, the number of
incoming signals can be estimated.

Corresponding to the eigenvalues, theM eigenvectors span two subspaces: signal subspace Es

and noise subspace EN . The eigenvectors whose eigenvalues are σ2 span the noise subspace.
For each ei ∈ EN , we have

Rxx(t)ei = ARssA
∗ei + σ2ei

so

ARssA
∗ei = 0

A∗ei = 0
(3.9)

Equation 3.9 means that for every steering vector a(θk) ∈ A, a(θk) ⊥ ei. The set of a(θ) is
named the array manifold as shown in Figure 3.3 [95]. For our azimuth-only AoA estimation
problem, the array manifold is a one-parameter “line” in the M -dimensional space spanned
by the eigenvectors of Rxx(t).

As a(θk) ⊥ ei, the intersections of array manifold a(θ) and signal subspace Es are the
solutions of estimating θk. The spacial spectrum function is selected to use the inverts of
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Figure 3.3: Illustration of the concept of array manifold and signal subspace. This three-sensor two-source
example illustrate the geometry of MUSIC [95].

the distance between a point moving along the array manifolds and Es, who will peak at the
signal AoAs

P (θ) =
1

a∗(θ)ENE∗Na(θ)
(3.10)

Cyclic MUSIC

Cyclic MUSIC [97] algorithms automatically classify signals based on their known spectral
correlation properties and estimate only the desired signals’ directions of arrival. Cyclic MU-
SIC algorithms perform singular value decomposition on the signals’ cyclic autocorrelation
matrix defined in Equation (3.1). Improved Cyclic MUSIC algorithms [26, 132] perform
singular value decomposition (SVD) on composition of the cyclic autocorrelation matrix.

The incoming signals can be written as

x(t) =
I∑
i=1

si(t) + n(t),

where si(t) is the ith incoming signal, n(t) is the noise, and I is the number of incoming
signals.
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In discrete domain, continuous signal x(t) is sampled and becomes a series x[n]. The values of
SCD should be estimated from the samples. There are several SCD estimation algorithms in
the literature. Considering the computation efficiency and result accuracy, we choose a time-
smoothing algorithm here named Fast Fourier Transform (FFT) accumulation (FAM) [94]
to calculate the bi-frequency SCD values.

The block diagram of FAM is shown in Figure 3.4 [94]. Let fs be the sample rate. Ts = 1/fs
is the sample duration. In a time period of ∆t, N = ∆t/Ts data are sampled and input into
the algorithm. The bandpass filter is implemented using a tampering Hamming Window
whose length is T . N ′ = T/Ts is the number of samples in the window, which is the size
of the first FFT. In the frequency domain, ∆f = 1/T defines the frequency resolution. The
window slides all over N samples, with a hopping step of L samples. P = N/L is the number
of windows, which is the size of the second FFT. ∆α = 1/∆t defines the cyclic frequency
resolution.

x(nL+1:nL+N’)

n=0,…,P-1

N’ Point

Hamming Window
N’ Point FFT

x(nL+1:nL+N’)

n=0,…,P-1

N’ Point

Hamming Window
N’ Point FFT

X(nL, fl )

l=1,…,N’
1

N’ Point FFT

X(nL, fl )
l=1,…,N’

2

Sα (nL,fl l )N
1 2

xy

l1,l2=1,2,…,N’

e-j2πlLn/N’

e-j2πlLn/N’

*

Figure 3.4: FAM Block Diagram. There are two FFT stages. Frequency resolution is ∆f = 1/T ; Cyclic
frequency resolution is ∆α = 1/∆t.

Then we have

Sαx(f) =
I∑
i=1

Sαsi(f) + Sαn(f). (3.11)

For signal i which has a particular cyclic frequency αi, the SCD in Equation (3.11) can be
simplified to

Sαix (f) = Sαisi (f). (3.12)
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This equation follows from the fact that at cyclic frequency αi, all other signals and noise
are uncorrelated with si. This is the signal selection property of cyclic frequencies, which we
exploit to solve the SSDE problem.

3.4 WiFi Cyclostationary Analysis

WiFi standards (IEEE 802.11a/g/n) implement OFDM as the physical layer modulation
method. OFDM is a modulation scheme that uses multiple carriers to transmit data. For
the purpose of signaling, channel estimation, and synchronization, OFDM frame structure
introduces some features including pilots, Cyclic Prefix (CP), and preambles. In this section,
we analyze the cyclostationary properties induced by these features.

3.4.1 OFDM Frame Structure

The basic frame structure of an 802.11a burst is shown in Figure 3.5. A frame contains a
preamble field followed by a SIGNAL field and multiple data fields.

rS rS rS rS rS rS rS rS rS rS
1     2       3        4        5         6          7         8     9       10 

CPL       r L        r  L
1                  2

CP SIGNAL CP  Data 1 CP  Data 2

SERVICE+DATA   DATARATE 

LENGTH

Channel and Fine Frequency

Offset Estimation

Coarse Freq.

Offset Estimation

Timing Synchronize

Signal Detect, 

AGC, Diversity

Selection

0.8+3.2=4.0μs 0.8+3.2=4.0μs 0.8+3.2=4.0μs2×0.8+2×3.2=8.0μs2×0.8+2×3.2=8.0μs

8+8=16μs

Figure 3.5: IEEE 802.11 a/g OFDM frame structure [50]. The OFDM structure contains features that
generate cyclostationary properties: pilots, CP, and preambles.

The preamble contains a short training sequence and a long training sequence. The tenfold
repetition of the short training sequence rS1 , ..., rS10 is used by the receiver to detect the
frame, while the two long training sequence symbols are used by the receiver to perform
channel response estimation.

The SIGNAL symbol contains the RATE and LENGTH fields. The RATE field transmits
the data rate, which conveys information about the type of subcarrier modulation, and the
coding rate used in the rest of the packet.

The cyclic prefix acts as a buffer region or guard interval to protect the OFDM signals from
intersymbol interference (ISI). CP is inserted into the OFDM symbol by copying a portion of
the higher index IFFT output samples and appending it to the front of the OFDM symbol.
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3.4.2 Pilot-Induced Cyclostationarity

Pilots are a key component in the structure of OFDM signals, making it possible to perform
channel estimation and frequency compensation. Figure 3.6 illustrates the subcarrier layout
of a 16 subcarrier OFDM structure [99]. Ten data subcarriers and two pilot subcarriers are
adopted in this structure. Three guard subcarriers and a DC Null are also depicted. All the
subcarriers are indexed by the offset to DC Null. Data values are random complex numbers
while the pilots are fixed complex numbers. As the pilots are fixed and of higher power,
they exhibit some peaks on their SCD surface over data and noise, where a cyclostationary
pattern is formed.

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7-8Subcarrier index:

Data Subcarriers Data SubcarriersDC Null

Frequency

Guard SubcarrierGuard Subcarriers

Pilot Subcarriers

Figure 3.6: OFDM Subcarriers. Ten data subcarriers and two pilot subcarriers are included. Three guard
subcarriers and a DC Null are also depicted. All the subcarriers are indexed.

The discrete-time baseband transmitted OFDM signal with pilots (but without CP1) can be
modeled as

x(m) =

√
Es
N

[xd(m) + xt(m)] (3.13)

where

xd(m) =
∑
k

N−1∑
n=0
n/∈I

ak(n)ej2π
n
N

(m−kN) · q(m− kN)

1The cyclostationary feature of CP in OFDM signals will be analyzed later.
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and

xt(m) =
∑
k

N−1∑
n∈I

bk(n)ej2π
n
N

(m−kN) · q(m− kN).

Es is the signal power and ak(n) is the transmitted data at the nth subcarrier of the kth
OFDM symbol. I denotes the set of pilot subcarrier indices and bk(n) is the pilot symbols.
q(m) is the pulse shaping filter. For WiFi, the pilot’s index subset I stays the same with all
OFDM symbols and is determined by the implementation.

From Equation (3.3), it is easily derived that the SCD surface peaks when the frequency-
shifted versions of the OFDM subcarrier layouts align at a pilot subcarrier. Take Figure
3.6 as an example, when α = 0, SCD peaks at f = ±4B, where B is subcarrier frequency
spacing. For simplicity, we omit B afterward, and use the index numbers to indicate the
frequencies. Further, when α = ±8, SCD peaks at f = 0.

In general, suppose that OFDM signals have 2K pilots evenly and symmetrically distributed
and the index distance between two adjacent pilots is 2p, then SCD peaks at

α = ±4kp, f = ±p,±3p, ...,±(2K − 1− 2k)p,
α = ±(4k + 2)p, f = 0,±2p, ...,±(2K − 2− 2k)p,

(3.14)

where 0 < k < K.

Figure 3.7: WiFi SCD Surface by simulation. SCD surface is bi-frequency, with one dimension the frequency
and the other the cyclic frequency. The peaks are induced by pilots on the OFDM subcarriers. Sampling
frequency is 20MHz with 64 points FFT. The pilots index are {−21,−7, 7, 21} and pilot gain is set to 3db.
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Figure 3.7 and Figure 3.8 illustrate the simulation results of the SCD of OFDM with no
CP. The number of subcarriers is N = 64, with 48 data subcarriers, 4 pilot subcarriers
and 12 null subcarriers. The sampling frequency is 20 MHz (with subcarrier spacing of 325
kHz). The indices of subcarriers are set to {−21,−7, 7, 21}. We can see from Fig. 3.8 that
when f = 0, the peaks of the SCD surface appears at the cyclic frequencies α = ±4.375
MHz, ±13.125 MHz. We note that in order to illustrate the SCD peaks, the power of pilot
subcarriers is given a 6 dB gain.

-1.3125 -0.4375 0.4375 1.3125

Figure 3.8: Cyclic frequencies when f = 0. The cyclic frequencies are α = ±4.375 MHz, ±13.125 MHz.

3.4.3 CP-Induced Cyclostationarity

In OFDM modulation, the data and pilot on the frequency subcarriers are converted to
time-domain signals via IFFT operations. A CP is then inserted into the OFDM symbol by
copying a portion of the higher index IFFT output samples and appending it to the front
of the OFDM symbol. The purpose of the CP is to combat Inter-Symbol Interference (ISI)
between neighboring OFDM symbols caused by transmission in a multipath channel.

IEEE 802.11 a/g OFDM frame structure is shown in Figure 3.5, which has 64-point IFFT
operations and a CP of 16 points. For a 20 MHz sampling frequency, a standard OFDM
symbol with CP is 4µs in time duration.

The discrete-time baseband OFDM signal with CP can be modeled as



34

x(m) =

√
Es
N

∑
k

N−1∑
n=0

ak(n)ej2π
n
N

(m−D−k(N+D)) · q(m− k(N +D)), (3.15)

where D is the number of points of CP and ak(n) is an independent and identically dis-
tributed (i.i.d) message symbol sequence. Notice that in this model we only consider CP-
induced cyclostationarity, as pilot-induced cyclostationarity has been studied in the previous
subsection.

The spectral correlation can be derived as:

Sαx (f) =


Es
N

∑N−1
n=0 Q(f − n

N
+ α/2)

·Q∗(f − n
N
− α/2) α = d

N+D

0 α 6= d
N+D

(3.16)

where Q(f) =
sin(πf

N
)

πf
is the Fourier transform of the square shaping pulse q(m).

From Equation (3.16) we can see that CP-induced peaks at the bi-frequency SCD surface
appear at d

N+D
, where d ∈ Z.

Figure 3.9 illustrates the simulation results of the SCD for OFDM with N = 64, D = N/4,
and sampling frequency F = 20 MHz. We note that to illustrate CP-induced cyclostation-
arity more clearly, the cyclic frequency resolution of the FAM algorithm is set to F/256 in
the simulation, so that the SCD peaks only at ±5l

4
MHz, with l ∈ {1..13}.

3.4.4 Preamble-Induced Cyclostationarity

A WiFi physical protocol layer data unit (PPDU) begins with a preamble. As depicted
in Figure 3.5, the preamble consists of two parts: the short and long preamble training
sequences. The preamble in an OFDM signal is designed to provide the means to estimate the
channel, estimate frequency offset, and identify the beginning of the OFDM signal through
a preamble correlation process.

Different OFDM implementations have distinct preamble patterns, which enables the receiver
to detect the presence of a compliant signal. Although it seems to be a promising method
of signal identification by cyclostationary analysis, the random WiFi package transmission
pattern makes it impossible.

It is worth pointing out that the strategy of inserting specific subcarrier patterns into pream-
bles to induce cyclostationarity does not work for our purpose. This is because in the SSDE
problem it is assumed that we have no control of the signal structure of the interfering
sources.
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Figure 3.9: CP-induced Cyclostationarity. SCD surface peaks at the cyclic frequencies ± 5l
4 MHz, with

l ∈ {1..13}.

3.5 Performance Evaluation

In this section, we evaluate how these (pilot-induced and CP-induced) cyclic frequencies
perform when using them in Cyclic MUSIC algorithms to estimate the signal direction of
arrival. We evaluate their performance by conducting simulation in Matlab, the simulation
parameters are listed in Table 3.1.

Table 3.1: Simulation Parameters

FFT size 64
Sampling frequencey 20 MHz
Subcarrier spacing 0.325 MHz
# of data subcarriers 48
# of pilot subcarriers 4
Pilot subcarrier index -21, -7, 7, 21
# of OFDM frames 10
WiFi signal AoAs -60, -45, -30, -15
Bluetooth Signal AoAs 15, 30, 45, 60
# of array sensors 16
Sensor space 0.5 wavelength
Pilot gain 2.5 dB

We assume that there are two signal sources: one WiFi and one Bluetooth. The channel from
each signal source to the anchoring node for detection consists of 4 multipath components.
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An antenna array with 16 sensors (i.e., 16 antenna elements) in a Uniform Linear Array
(ULA) are used to collect signals from the signal sources.

Two AoA estimation algorithms are employed for the purpose of comparison: Spatial smooth-
ing MUSIC algorithm (SS-MUSIC) in [125] and Cyclic MUSIC with spatial smoothing in [97].
Although SS-MUSIC is not able to distinguish different types of signals, SS-MUSIC efficiently
eliminates the correlation between multipath components of the same signal source.

MUSIC-based AoA estimation algorithms differentiate signals and noises according to their
corresponding singular values (or eigenvalues). Intuitively, Cyclic MUSIC algorithm will
decrease the singular values of undesired signals at proper cyclic frequencies, which make
them easier to differentiate. Simulation results in Figure 3.10 illustrate this effect, where
singular values after the 5th point are decreased.

Figure 3.10: Cyclic MUSIC and Spatial Smoothing MUSIC. Cyclic MUSIC decreases the ratio of the largest
undesired singular value and the smallest desired singular value.

Based on this consideration, we employ the ratio of the largest undesired singular value and
the smallest desired singular value as a metric to evaluate the performance of different cyclic
frequencies in the SSDE problem.

Figure 3.11 depicts the simulation results. The ratio values are the average of 50 runs. From
the figure we can see that the ratio values calculated by pilot-induced cyclic frequencies are
smaller than those by CP-induced cyclic frequencies, which indicates that at pilot-induced
cyclic frequencies, it is easier to distinguish desired signals from undesired signals. Suppose
that the threshold value is set to 0.3, as depicted in Figure 3.11. We can see that pilot-
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Figure 3.11: Ratios of singular values. The ratio values calculated by pilot-induced cyclic frequencies are
smaller than those by CP-induced cyclic frequencies.

induced cyclic frequencies can differentiate noise successfully while some of the CP-included
cyclic frequencies cannot. We thus conclude that pilot-induced cyclic frequencies are better
than CP-induced cyclic frequencies to solve the SSDE problem.

3.6 Summary of Contributions

In this chapter, we analyzed the cyclostationary property of IEEE 802.11 (WiFi) signals
induced by the features of underlying OFDM frame structure, including pilots, CP, and
preambles. We studied the influence of these features on the signal’s spectral correlation
function. We also evaluated the applicability of the induced cyclic frequencies to solve the
SSDE problem. Simulation results confirmed that pilot-induced cyclic frequencies are a
better approach for the SSDE problem when compared to CP-induced cyclic frequencies.
Following the current results, future work will be undertaken to estimate the localization of
interference radios by exploiting the estimated cyclic frequencies and signal directions.



Chapter 4

MobTrack: Locating Indoor
Interfering Radios With A Single
Device

In this chapter, the complete solution to the indoor interference localization problem is
presented. This chapter is based on the previous chapter and use its analytical results as the
fundamental tools in the system design. We first introduce the related work and research
method. The four system work flow steps are then detailed one by one. We then presents
the implementation details as well as the performance evaluation.

4.1 Motivation and Objects

As the coming of more wireless devices working on the unlicensed ISM band are produced,
this portion of the radio spectrum is becoming more and more crowded, which inevitably
leads to interference between these devices. When interference happens, the wireless com-
munication performance may be severely degraded. For example, we all have the experience
that though we are close to the WiFi Access Point, our device still experience poor commu-
nication performance. Besides WiFi, many other types of devices like Bluetooth speakers,
baby monitors, cordless phones and microwave ovens also work on the same frequency band,
which causes interference to our WiFi communications from time to time. The interference
problem becomes even more crucial especially in some circumstances like hospitals or busi-
ness environments, where sudden poor wireless performance may lead to serious outcomes.

WiFi has become the predominant wireless communication solution in indoor environments
nowadays. In this chapter, we consider the scenario of WiFi being interfered by one or
multiple unknown radios. When interference happens, a quick and accurate method to find
and terminate the interfering radio will be helpful. However, in indoor environments, it is

38
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not easy to locate the interfering signal.

There are many previous research work on the topic of wireless localization in the literature.
However, none of them are applicable for the problem of locating indoor interfering radios.
Traditional solutions to the wireless localization problem follows three research lines by
measuring the values of Received Signal Strength Indication (RSSI), Time of Arrival (ToA)
or Angle of Arrival (AoA). RSSI based solutions [17, 134] collect RSSI values and then use
signal propagation models to compute the distances. However, under the circumstance of
interference, both interfering and working signals impinge on antennas at the same time
and the power is the sum of all incoming signals, which makes it infeasible to differentiate
interfering radios from working signals. ToA based ranging solutions [11, 68] require high
time resolution measurement and usually rely on dedicated hardware or leverage slower
waveforms like acoustic signals. AoA based algorithms [95, 98] rely on antenna arrays to
do angle estimation. However, traditional AoA based algorithms cannot address all the
challenges encountered by our problem.

Locating indoor interfering radios using AoA based methods has many specific challenges.
First, as the nature of the interfering radios are unknown to us, nor can we expect cooper-
ation from the interfering radios, a way to differentiate the interfering radios from working
signals is needed. On the other hand, because of the multipath phenomenon, too many
signal components will impinge on the antenna array simultaneously, which significantly
increase the demand for antenna numbers. The second challenge is to isolate the LoS com-
ponents from Non-LoS (NLoS) components. Among all the multipath components, only the
LoS component contributes to calculation of signal source position using AoA, so the LoS
component must be isolated from all Non LoS components.

Recent research has made great advances to address these challenges. In Pinpoint [52], an
modified Access Point (AP) infrastructure is leveraged to compute LoS AoA. Their algo-
rithms are based on cyclostationary signal analysis to identify the source of interference. To
meet the challenge of multipath propagation, they isolate the LoS component by finding the
relative delays between LoS and NLoS components and the relative delays between different
antennas at APs. However, as the difference of propagation distance between LoS com-
ponent and the second arriving multipath component is only about several meters, which
corresponds to tens of nanoseconds [108], it is hard to differentiate them without expensive
dedicated hardware with high sampling rate. Pinpoint uses a modified frontend that was
able to send and receive arbitrary waveforms in the entire 100MHz ISM band [49]. Another
work ArrayTrack [125] proposes algorithms to eliminate the effects of multipath by paring
peaks in AoA spectrum. Their multipath suppression algorithm could make 71% percent of
success to find the LoS by moving the mobile device for five centimeters. However, in our
scenario, we have no control to the interfering radio and can not move the source arbitrarily,
which makes the solution in ArrayTrack not feasible to our problem. These systems achieve
sub-meter location accuracy, but the problem is that their performance relies heavily on the
number of cooperating APs. However, though the density of WiFi APs has increased largely,
it is not necessary and infeasible to deploy 4 to 5 APs on the same channel in a single area
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because of the distributed channel assignment algorithms by the IEEE standards [76].

θ1 θ2

Figure 4.1: System Model. WiFi communication between AP and client are working signals. The interfering
radio source is a cordless phone which is the target we are trying to locate. MobTrack locates the interfering
radio by compute the LoS AoA of the cordless phone at multiple positions on its moving trace.

In this chapter, we present MobTrack, a single device system that locates indoor interfering
radios. The goal of designing MobTrack is to provide a lightweight, handheld system that
can locate interfering radios with sub-meter accuracy with as less antennas as possible.
MobTrack eliminates the dependence on the AP infrastructure. With small antenna array,
the cost, complexity as well as size of this device will be also reduced.

MobTrack system model is shown in Figure. 4.1. A MobTrack device consists of an antenna
array, signal processing firmware and our novel algorithms to compute the LoS AoA and
estimate the source location. The device is started when an interference is detected. By
moving it around, our multipath suppression algorithm can isolate the LoS component from
all other impinging components. At the same time, the angles of the LoS component on the
movement trace are collected to do triangulation.

Based on cyclostationary signal analysis on existing protocols, we design novel algorithms to
classify the signal types and find the cyclic frequencies. Different from PinPoint which creates
a dummy signal as the test signature, we analyze cyclostationary signatures of different
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signal types theoretically and store their cyclostationary signature in bi-frequency domain
locally. Thus we don’t need to store the dummy signals for every cyclic frequencies. Another
difference is that we adopt Cyclic-MUSIC algorithm [97] to calculate AoAs. In contrast,
Pinpoint leverages a optimization method, whose target is a residual function of both signal
components delays and the angle of arrival. Our algorithms doesn’t work on time domain
for the purpose of efficiency and designing goal of a lightweight system without dedicated
wireless frontends.

To address the problem of multipath propagation, we design a novel algorithm that effectively
find the LoS components based on the stability difference of LoS and NLoS components. The
key insight of our multipath suppression algorithm is that with the movement of MobTrack
device, the values of LoS AoA tend to be continuous, while reflected paths AoA values are
more segmented. Using this property, MobTrack finds LoS AoA by selecting the longest
continuous AoA line on the angle-movement plane explained in Section 4.3.3.

The main contributions of this work are summarized as follows:

• To the best of our knowledge, MobTrack is the first single device indoor interference
localization system without the requirement of multiple pre-deployed Access Points.

• We propose a novel algorithm to eliminate the multipath effect in the indoor environ-
ment. Our multipath suppression algorithm could robustly and efficiently isolate the
LoS component from other reflected components.

• We propose a novel signal type identification algorithm for MobTrack to calculate the
AoAs of only interfering radios, which significantly reduces the requirement to antenna
numbers and device complexity.

A prototype system of MobTrack is implemented on Ettus USRP platform with 6 antennas
as the wireless frontend. The location performances are evaluated on a test bed at 16 points
over one floor of our department building. Experimental results show that within a movement
of 1 meter, MobTrack achieves a median 55cm location accuracy using data collected from
5 points with an LoS isolation correction of 95%.

The rest of the chapter is organized as follows. The system design details are presented in
Section 4.3. Implementation is stated in Section 4.4. Section 4.5 elaborates the simulation
and experimental results. We discuss related work in Section 4.2 and conclude the chapter
in Section 4.6.

4.2 Related Work

The previous research literature can be briefly categorized according to the physical mea-
surements. Power(RSSI, CSI), time and angle are the physical measurements for indoor
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localization with different accessibility and accuracy.

RSSI based solutions can be archived into two categories. One is the range based algorithms,
which estimate the distances from multiple measurement points to the target using wireless
signal propagation models and locate the target geometrically [134]. However, it can not dis-
tinguish different signals. The other category is fingerprinting based [17] [130] [92] [101] but
they need extensive accurate environment calibration workload before system deployment.

ToA based ranging solutions require dedicated hardware with high sampling rate. Instead of
measuring signal propagation time directly, researchers usually turn to measuring frequency
differences [11] or using slower signals like acoustic signals [68]. However, in order to distin-
guish LoS signal and NLoS signals, ToA based ranging solutions must apply extremely high
sampling rate because the propagation distance difference between LoS component and the
second arriving multipath component is only about tens of nanoseconds [108].

AoA based estimation algorithms [95, 98] relies on antenna arrays. Signal samples collected
from the antennas are processed using eigenvalue decomposition based methods to estimate
signal AoAs. The challenge for AoA is the multipath phenomenon in our scenario. Multipath
components from the same source can be highly correlated, which makes eigenstructure based
AoA estimation algorithms inaccuracy or even infeasible to estimate the AoAs. Nevertheless,
MobTrack follows the AoA based research line and solve the multipath challenge.

Recent techniques require no costly equipments and they can overcome the multipath chal-
lenge, but they assume a high density of APs. For instance, EZ [29] utilizes over 100 APs,
ArrayTrack [125] leverages several WiFi APs with 7 to 8 antennas and PinPoint [52] as-
sumes 5 APs on a floor. Because of the popularity of WiFi, the density requirement seems
to be acceptable. Nevertheless, there exists some practical limitations. First of all, 4 to 5
strong APs with known locations are necessary with multilateraion, which are not realistic in
most circumstances such enterprise or hospital network. Second, FCC permits 802.11 b/g/n
standard to employ 14 channels in the 2.4GHz frequency band, so it is difficult to find 4 to
5 strong APs on the same channel even if they do exist. And this problem requires WiFi
scanning technique, which is an energy hungry operation and can reduce the battery life of
mobile devices by over 2-3 time [14] even if the scanning operation is invoked once every
10 seconds for continuous location tracking. Third, when the APs are operating scanning,
regular data communication cannot happen, which impacts the user experience, especially
for real-time service like VoIP. In comparison, MobTrack only utilize a single device and
thereby will not have the limitations above.

Research Roadmap

We analyze the related work and present the selection of our research roadmap as shown
in Figure 4.2. The most intuitiveway to calculate distance is to measure the time-of-flight.
However, the time-of-flight is very hard to measure because of the high speed of wireless
signals. In indoor environments, it is typically several nanoseconds. We need high speed
Analog-Digital Converter (ADC) to get high resolution. So this path is not feasible. Raw
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signal data from antenna arrays can be used to calculate the signal directions. The raw
signals are ready to use. But we need special hardware, the antenna array. With the help
of software defined radio (SDR), this solution looks very promising. Fingerprinting methods
are based on the measurement of received signal strength RSSI or channel state information
CSI. The RSSI is ready to use. However its very cumbersome to build and maintain the
fingerprint database. So we also pass this roadmap. In summary, we choose the direction
based solution.

Data

Information

Knowledge

Wisdom

Location

Distance Direction Fingerprint

ToF Raw Signals RSSI CSI

Figure 4.2: The research roadmap. We select AoA based method with the help of promising software defined
radio (SDR) technique.

4.3 System Design

We describe the system design of MobTrack following the data flow in system architecture as
shown in Figure 4.3. We assume that the interfered communication is a WiFi link between
an AP and a client. The interference to this communication from a nearby device is the
signal we want to locate. MobTrack is a movable device equipped with an antenna array.
We choose the number of antennas to be 6, which will be explained in Section 4.4. This
device is carried by an operator moving around in the interfered area to locate the interfering
radio and get an increasing accuracy continuously by moving towards it.

As we have stated in the introduction, there are two major challenges to do indoor interfer-
ence localization using a single device: to identify the interfering signal type and to isolate
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Figure 4.3: MobTrack Architecture. Raw samples are phase aligned and then input into the interference
detection process, where cyclic frequencies α are extracted. Spacial smoothed cyclic-music algorithm is ap-
plied to estimate the AoAs of the multipath components of only the interfering radio. Multipath suppression
algorithm is then applied to isolate the LoS component and identify its AoA. LoS AoAs at different points
are used to locate the source by triangulation.

the LoS component. Our system design meets these challenges as well as achieve our goal of
a lightweight system. By identifying signal type and using Cyclic-MUSIC algorithm, we can
significantly reduce the demand for the number of antennas. The system is designed to be a
single device, so that we are able to move it to get angles from different points and suppress
multipath effect at the same time. The challenges are addressed step by step. We follow the
data flow and make a brief introduction to each step first before diving into the details.

1. Identify the interfering radio type (Section 4.3.1): MobTrack takes the phase-
aligned signal samples as input. It has to eliminate the influence of noise and signals
except the interfering radio first. The property it utilizes is the cyclostationarity prop-
erty of the interfering radio. MobTrack correlates the received signal with pre-stored
signal signatures to determine the interfering signal type. Then it picks a cyclic fre-
quency α which is unique to this interfering radio and pass it along with the received
samples to the next step.

2. Calculate the AoAs of only interfering radio (Section 4.3.2): Cyclic-Music
algorithm takes advantage of the signal selection property of cyclic frequencies. If α
selected is unique to the interfering radio, all impinging components from other signals
are filtered. Only AoAs from the interfering radio are left. Furthermore, multipath
components from the same signal source correlate with each other, which degrades
the performance of MUSIC algorithm. To handle this problem, a spacial smoothing
method is adopted. In this step, we address the fist challenge. The output of this step
is the AoAs of impinging components from the interfering radio only.

3. Isolate the LoS AoA among multiple NLoS AoAs (Section 4.3.3): At this
step, MobTrack can finally address the second challenge. It leverages a novel algorithm
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called LongestCurveFitting to separate LoS signals from NLoS signals and thus find
the LoS AoA of interfering radio. The output of this step is LoS AoAs at multiple
points on the device moving trace.

4. Triangulation to find the interfering radio (Section 4.3.4): The above steps
help MobTrack figure out the relative angle between itself and the targeted interfering
radio. It can now tell us the direction of the interfering radio. By triangulation, we
use least square method to est*mate its location. Thereby we can follow its lead to
find the target and turn it off.

4.3.1 Interference Identification

WiFi signals are packet based. As we assume that we don’t know the nature of the interfering
radio, it may be constant or intermittent. Once the samples of a packet are received from
the antenna array, we test whether it is interfered using our interference identification algo-
rithm described below. If no interfering radio is detected, the samples are dropped off and
MobTrack waits for the next packet. Otherwise, it is analyzed to find its signal type. In this
section, we introduce signal cyclostationary properties first, and then we elaborate our in-
terference identification algorithm. The purpose of identifying the interfering radio is to find
its cyclic frequencies which are used as input in Cyclic-MUSIC algorithm in Section 4.3.2.

Cyclostationary Property

Different types of signals exhibit different cyclic signatures, on which we can rely to detect
interference or even determine the interference source type. We first review the concept
of signal cyclostationary properties and then elaborate on the algorithms to find the cyclic
frequency α.

A signal can be modeled as cyclostationary if its cyclic autocorrelation function (CAF) is
nonzero for a nonzero cyclic frequency. The definition of Cyclic Autocorrelation Function
(CAF) can be found in Equation(3.1).

Instead of CAF, its Fourier transform is more often used in cyclostationary signal analysis
because of computation efficiency [40], which is called the spectral correlation density function
(SCD). SCD is defined by

Sαx(f) =

∫ ∞
−∞

Rα
x(τ)e−j2πfτdτ (4.1)

In discrete domain, continuous signal x(t) is sampled to be a series x[n]. The values of SCD
should be estimated from the samples using algorithms like Fast Fourier Transform (FFT)
Accumulation (FAM) [94].
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The simulated WiFi SCD surface is plotted in Figure 3.7. SCD surface is bi-frequency, with
one dimension the frequency and the other the cyclic frequency. The peaks are induced by
pilots on the OFDM subcarriers. Sampling frequency is 20MHz with 64 points FFT. The
pilots index are -21,-7,7,21 and pilot gain is 3db. As shown in previous chapter, WiFi signals
exhibit cyclostationary properties because of the OFDM structure like pilots and cyclic
prefixes. Similarly, other protocols also exhibit similar cyclostationary properties. With
different physical layer implementations, these protocols has their unique cyclic frequencies,
on which we rely to differentiate them.

Interference Identification

We make a reasonable assumption here that the WiFi signal modulation parameters are
known, including the number of subcarriers and the positions of the pilot subcarriers. These
parameters define the value of cyclic frequencies.

MobTrack utilizes peak patterns on the SCD surface to differentiate signal types. By doing
cyclostationary analysis on the signal universe (including WiFi, Bluetooth, ZigBee, DECT
cordless phone, etc), we calculate their possible SCD peak patterns and store the ”ideal”
SCD surfaces locally. An ”ideal” SCD surface take values of only 1 or 0. If there is a peak
at a coordinate (α, f), its value is 1. Otherwise, it’s 0.

Once the interfered samples are received and the corresponding SCD surface is calculated,
We calculate the correlations of the SCD with each stored ”ideal” SCD surface. We define
a threshold CTH . If a correlation is found over CTH , then we say that the interfering radio
of this type exists.

The interference identification algorithm is summarized in Algorithm 1.

Algorithm 1 Interference identification algorithm

1: Analyze signal universe, store “ideal” surfaces SN
2: Calculate the sample surface Sc
3: for each “ideal” surface Si ∈ SN do
4: Calculate the correlation Cic of Si and Sc
5: if Cic > CTH then
6: Set Si as the interfering radio type
7: end if
8: end for

This algorithm may return two or more signal types. In this situation, we assume more than
one interference exists. We can find unique cyclic frequencies for them separately and all
these interfering signals can be located. However, in this work, we focus on the scenario
where there’s only one interference.
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What should be noted is that unlike previous work on signal classification using cyclosta-
tionary approaches [56] [49], we don’t use machine learning methods. Instead of training
the algorithm when interference happens, we analyze the signal universe and store their
signatures.

4.3.2 AoA Spectrum Computation

Once the interfering radio is identified, we select a cyclic frequency that is unique to the
interfering radio, and use Cyclic-MUSIC algorithm to calculate the AoA spectrum. Signal
components impinging on the antenna array from different directions with different power.
AoA spectrum is the incoming signal’s power as a function of angle of arrival. We locate
the peaks on the AoA spectrum and say that there is a signal component at this direction.
However, the directions may or may not be the actual direction of the source because of
multipath propagation. Nor the highest peak means that it is the direct path because the
direct path signal may be blocked. The concept of phase array model, the MUSIC algorithm
and Cyclic-MUSIC algorithm have been introduced in Section 3.3.2.

Spacial Smoothing to Eliminate Correlation

1 2 m m+1 m+2 M-1 M

Q

Q

Q

Q

P

Figure 4.4: Subarray Spacial Smoothing Totally M antennas in P groups with Q antennas in each group.
M = P +Q− 1.

By selecting cyclic frequency α, we have eliminated the influence of noise and other signals.
But in our application scenarios, there is another challenge. Multipath components from
the same interference source are apparently correlated. If the multipath components are
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fully correlated, the rank of Rα
xx will be 1. This will degrade the performance of eigen-

decomposition based algorithms or even make them infeasible. In order to increase the
rank of CAF so that we can estimate all the multipath components, we adopts the spacial
smoothing algorithm [102] to eliminate the correlation between multipath components.

An illustration of spacial smoothing is shown in Figure 4.4. We group the antennas in the
array into P groups with Q antennas in each group. For group p, the cyclic correlation
matrix Rp is calculated as in Equation 3.9.

The spatially smoothed cyclic correlation matrix is defined by

R̄ =
1

P

P∑
p=1

Rp (4.2)

It is proved that as long as the number of antenna groups is more than the number of
multipath components, namely P > K, the spatially smoothed cyclic correlation matrix
R̄ ranks K [102]. Thus, we can use MUSIC algorithm to calculate the AoAs of multipath
components of the SoI by eigen-decomposition of R̄. Figure 4.5 compares the eigenvalues
before and after spacial smoothing. There are two independent signal sources with four
multipath components respectively in this example. Spacial smoothing successfully increases
the detectable eigenvalues from six to eight.

Cyclic MUSIC Algorithm

The difference between cyclic MUSIC algorithm and conventional MUSIC algorithm [97] is
that instead of the autocorrelation matrix, the decomposition of the cyclic autocorrelation
matrix is leveraged here. Assuming that all signals are not fully correlated, we can then
choose a cyclic frequency α, at which the K of them exhibit spectral correlation. Because
of the frequency selection property of cyclic frequency α, the cyclic autocorrelation matrix
of i(t) and n(t) are all zeros, and the cyclic cross-correlation between s(t) and i(t) and n(t)
are also zeros. So we get

Rα
xx = ARα

ssA
∗ (4.3)

whose rank is K and K < M .

The rest of the cyclic MUSIC algorithm is the same as conventional MUSIC algorithm.
It is worth noting that different from autocorrelation matrix, the CAF matrix Rα

xx is not a
Hermitian matrix. So the eigendecomposition method is not applicable here and the singular
value decomposition (SVD) method must be applied.

Because of the signal selection property we stated above, Cyclic-MUSIC does not require
higher number of antennas than the number of multipath components. Taking the unique
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Figure 4.5: The eigenvalues before and after Spacial Smoothing. Spacial smoothing successfully increases
the detectable eigenvalues from six to eight.

cyclic frequency of interfering radio as input, it successfully output the AoAs of only the
interfering radio. Taking advantage of this property, we only need a number of antennas to
separate the multipath components from only one signal source. In indoor environments,
there are usually 5 multipath components that can be detected. As MobTrack is movable,
the blocking effect of LoS is eliminated when moving around. So we equip MobTrack with
6 antennas as we can always find places where LoS component is in the strongest three.

4.3.3 Multipath Suppression

Now we get the directions of all the components of the interfering radio including both
LoS and NLoS components. The next step is to isolate the LOS component in order to
find the target interference. The algorithm we employ to achieve multipath suppression is
motivated by the observation that LoS components and NLoS components have different
stabilities with the movement of the device. As illustrated in Figure 4.6, the LoS component
is continuous compared to discrete NLoS components when we move MobTrack and record
the angle data. This is because if the location of MobTrack change successively, the angle
between the target interference and MobTrack will change consecutively. But this is not true
for multipath components, which bounce on walls or object surface which is inconsecutively
themselves. Based on this observation, we develop an algorithm which can find the longest
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continuous path in the angle-movement plane, which is the LoS component.
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Figure 4.6: Multipath Suppression. We record the peaks and plot it as a dot in this figure. With the
movement of MobTrack device, the LoS AoA changes continuously, but NLoS components will disappear
intermittently. By finding the longest line, we can isolate the LoS component.

The multipath suppression algorithm is summarized in Algorithm 2. We name this algorithm
LongestCurveFitting. It takes the AoA spectrum as the inputs, finds the peaks and records
their coordinates. It then uses the Curve Fitting algorithm to test which curve line the peak
dots belong to. If a curve line is segmented, it is removed from the candidate set. If there is
only one curve line left in the candidate set, we terminate the function and set it as the LoS
component.

An experimental result will be presented in Section 4.5. Using the above algorithm, we are
able to find the LoS AoAs within a movement distance less than half a meter.

As long as we find the LoS AoAs from several points, we can estimate the source location
using triangulation methods.

4.3.4 Triangulation

As MobTrack is a moveable or handheld device, we can simply find the interference by
following the direction which MobTrack is pointing to. We run MobTrack continuously
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Algorithm 2 LongestCurveFitting

1: Set the LoS candidate set S to be Φ
2: while The LoS components is not found do
3: Find the peaks on current AoA Spectrum
4: For every peak do CurveFitting
5: Find the current longest curve C
6: if Length of C > LTH then
7: C is the line corresponding to LoS AoAs
8: end if
9: end while

at different locations on the movement trace and then we adopt triangulation to estimate
the location of interference with AoAs displayed. As shown in Figure 4.7, we observe that
the directions which MobTrack points to will not intersect at a single point because of the
estimation and measurement errors. Thus, we apply the well-known least square algorithm
in linear algebra to calculate a single estimation point. When employing the least square
method, the known variables are the 2D locations of the MobTrack and the θs in the figure
while the unknown variables are the 2D location of the estimation point. The matrix A and
vector b in Ax = b are formed by the 2D locations of the MobTrack and the θs. Because
the directions which MobTrack points to can not form a single point, so Ax = b will have no
solution. Then we project vector b onto the column space of matrix A to get the projection
vector p. By solving Ax = p, we get the single estimation point we desire.

4.4 Implementation

We implement the MobTrack prototype on Ettus USRP software defined radio platform, as
shown in Figure 4.8. The system consists of 6 USRP-N200 software defined radio platform.
Four of the USRP devices are equipped with a daughterboard XCVR2450, and two of them
are equipped with a daughterboard SBX, which provides the support of 2.4GHz WIFI chan-
nel. The distances between antennas are set to be 6.13cm, which is half the wavelength of
2.4G signal.

Figure 4.9 explains the connections between the devices of our prototype. Every two of
the six USRPs are connected using a MIMO cable, which provide communication as well
as synchronization between them. The master USRP in each group is connected to the
host computer via a Gigabyte Ethernet switch. Another USRP N200 works as a phase
reference tone provider. The transmit antenna of this USRP is cable connected to the six
receivers using an SMA (SubMiniature version A) splitter. The cables have the same length,
which provide the receivers a stable reference tone. The master USRP in each group as
well as the reference transmitter are all connected to an external clock, which provides a
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Figure 4.7: MobTrack Triangulation. We apply the well-known least square algorithm in linear algebra to
calculate a single estimation point. When employing the least square method, the known variables are the
2D locations of the MobTrack and the θs in the figure while the unknown variables are the 2D location of
the estimation point.

Antenna

Phase tone

EthernetMIMO cable

Clock in

PPS in

Figure 4.8: Prototype implementation. The MobTrack prototype is composed of six USRP radios mounted
on a movable case, which form an antenna array. Another USRP works as the phase alignment reference,
and one more works as the interferer(not shown in picture).

synchronized 10MHZ reference clock and the PPS signal for the purpose of frequency and
time synchronization.

The phase reference tone and signals received over the air are sampled to GNURadio. Two
band pass filters are used to split them into separate data streams. The data streams are
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Figure 4.9: MobTrack prototype connections.Every two of the six USRPs are connected using a MIMO cable.
The master USRP in each group are connected to the host computer via a Gigabyte Ethernet switch. All
master USRPs are connected to an external clock for time and frequency synchronization. A phase reference
tone is provided by another USRP.

then transmitted to a Matlab script via a named pipe. The phase differences are calculated
from the phase reference tone and compensated to data streams over the air. And then start
our interference identification process.

4.4.1 Time and Frequency Synchronization

Every two USRP N200s are a group and are synchronized with the USRP MIMO cable.
The master USRP in each group as well as the reference transmitter are all connected to an
external clock, which provides a synchronized 10MHZ reference clock and the PPS signal for
the purpose of frequency and time synchronization.

We use a Ettus OCTOCLOCK-G 8-Channel clock distribution module with integrated GPS
disciplined oscillator (GPSDO) [4] as the clock and PPS source. The Ref In ports of the
master USRPs are connected to the 10 MHz reference from which the ADC/DAC clocks and
local oscillator are derived. The PPS In ports can be used as a standard pulse per second
port or as a general purpose digital trigger input line.

4.4.2 Phase Synchronization

Beamforming and direction finding applications place additional requirements on the antenna
array and sampling system. In addition to time and sample clock alignment, the system must
maintain a known phase relationship between each RF input. Due to phase ambiguities
caused by phased- locked loops which are used for up and down-conversion, some calibration
may be required to determine this phase relationship [9].
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For phase synchronization, we use a reference tone generated from another USRP (phase
tone USRP) to calibrate the multi-channel system. The tone is split using an SMA splitter
and then distributed to the inputs of each master USRP device with match-length RF cables.
The reference tone we use is a 10kHz sine wave as shown in Figure 4.10.

Figure 4.10: The GRC flowgraph for phase tone USRP. We use 10kHz sine wave as the phase tone signal.

The phase reference tone is transmitted to the host computer via the Ethernet. For each
USRP receiver, we applied two band pass filters to separate the reference tone and the over-
the-air signal as shown in Figure 4.11. This is figure is not a complete version for the purpose
of simplicity. We only show the filter channels of one USRP. The other USRPs use the filters
with the same parameters.

Figure 4.11: The GRC flowgraph for the antenna array. This is figure is not a complete version for the
purpose of simplicity. We only show the filter channels of one USRP. The other USRPs use the filters with
the same parameters.

The phase was then synchronized using a piece of phase compensation Matlab code:
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air(:, n) = air(:, n). ∗ exp(−1i ∗ angle(direct(:, n)));

where air is the split over-the-air signals, direct is the split reference tone signals, and n is
the index of USRP devices.

4.5 Performance Evaluation

To illustrate the performance of MobTrack in real indoor environments, we present exper-
iment results in this section. We first describe the test bed setup methodology. The we
present an experimental results of LoS signal stability. After that, we present the location
accuracy MobTrack can achieve, comparing with the results of Pinpoint. We also explore the
effects of number point we use to do triangulation on the movement trace on the performance
of MobTrack.

4.5.1 Test Bed Setup

The location performances are evaluated on a test bed over one floor of our department
building, as shown in Figure 4.12. The interfering radio is placed at the blue point in Room
314, which is in the same room as the WiFi AP. Our device follows the trace in the figure
on the same floor. Most of the test points are in the hall and some of them are in the lab
mentioned above. The distance of the whole trace are 20 meters. Along this trace, we take
a measurement every 25 centimeters. The ground truth are measured before the experiment
with an accuracy of 1cm.

4.5.2 LoS Signal Stability

To illustrate the difference of stabilities between LoS component and NLoS components, we
set up an experiment in our office room. The transmitter works at frequency 2.437GHz
(Channel 6) and locates in the same room as the MobTrack device. The distance between
the transmitter and MobTrack is 172cm. We move MobTrack along the parallel direction
of the antenna array and the transmitter. In a distance of 1 meter, we record the angles
of arrive estimated by MobTrack, including both LoS and NLoS components. The results
are shown in Figure 4.13. The distance between each location is 2.5cm. As we can see from
this figure. The LOS component AoA changes from 0 degree to about -26 degree following
a continuous curve. Our curve fitting algorithm finds this line as the longest successfully.

On the other hand, NLoS components change intermittently. We list the percentage of
segmented curves in this Figure 4.13 using LongestCurveFitting algorithm. From Table 4.1,
we can see that most of the distance of multipath components is about 15cm, which means
that by moving MobTrack for 15cm, the multipath components almost always change their
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Figure 4.12: Test bed. This figure is a part of the floor our lab sits on. The dotted line in this figure is the
trace of executed experiments. The blue point in the lab is the interfering radio we would like to locate.
Following the trace, we conduct a test per 25 centimeters.

impinging direction. This experiment verifies that our multipath suppression algorithm is
feasible.

Table 4.1: Percentage of segmented multipath curves

Distance 5cm 10cm 15cm
Percentage of Segmented 30% 75% 95%

4.5.3 Localization Accuracy with Different Calculation Points

This section presents the localization accuracy changes with different calculation points. In
Figure 4.14, we estimate the location of interfering radio by the information provided by
MobTrack at different locations. We employ respectively 2, 3, 4 and 5 different locations
in the triangulation step in our estimation. We can see that the more locations we select
to do the calculation, the more accurate results we can achieve. The distances between
two locations range from 10cm to 1 meter. We prefer to use longer distance because the
longer distance between the points, the better performance it will achieve. Estimating in
5 locations, MobTrack achieves a median localization error of 0.55 meter. Comparing with
Pinpoint locating the interfering radio using 5 static APs with accuracy of 0.97 meter, our
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Figure 4.13: The stability of LoS and NLoS components. The distance between the transmitter and Mob-
Track is 172cm. The distance between each location is 2.5cm.

scheme performs better. The reason for this better performance is that, MobTrack starts
estimating the location from the second point and leads moving towards the target. It will
perform the estimation repeatedly. At the 5th point, MobTrack has moved 4 meters at most
towards the interfering radio. Besides, MobTrack’s antenna array contains 6 antennas, while
Pinpoint has 4 antennas.

4.5.4 Localization Accuracy with Different Moving Distances

As shown in Figure 4.15, we also test if we can achieve a valuable estimation within a short
distance. We calculate the location from 5 locations within different distances. And the
results shows we can achieve an accurate estimation even if we only move around a meter.
If we want to make an estimation in half a meter, the accuracy drops, but still it can tell the
location with a median location error of 2 meters. This is vital for us, because MobTrack is
a single device designed for users to carry with them, with the ability to find the interference
in a meter, MobTrack is proved practical.
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Figure 4.14: Localization Accuracy with Different Calculation Points. The median error is 0.55m estimating
from 5 locations.

4.6 Summary of Contributions

MobTrack is a single device system that can locate indoor interfering radios with sub-meter
accuracy. Comparing to previous solutions, it significantly reduces the requirement to AP
infrastructure and the number of antennas. By moving the device around for a short distance
within several meters, it depresses multipath effects and determines the LoS component.
Simultaneously, the AoAs at these locations are recorded to estimate the location of the
interfering radio by triangulation methods. In order to decrease the physical size of this
device and make it suitable for handhold, the method of synthetic array can be explored
where the number of antennas can be further reduced to two.
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Figure 4.15: Localization Accuracy with Different Moving Distances. The longer distance between the
calculation points, the more accurate MobTrack achieve.



Chapter 5

Context-Free Fine-Grained Motion
Sensing using WiFi

In this chapter, we introduce the research work on WiFi based fine-grained motion sensing.
This is the second research area that we explore under the topic of wireless sensing. Unlike
interference localization, in wireless motion sensing, the wireless signal transmitter and re-
ceiver are both parts of the system. We take advantages of the signal reflection to sense the
motion of human body. We first briefly talk about the concept of CSI and the preliminary
of CSI-based motion sensing. The six steps of the system work flow are then presented in
detail, among which we concentrate on interference elimination and feature extraction. We
implement and evaluate the system design using the lip reading application.

5.1 Motivation and Objects

WiFi-based motion sensing has received a lot of research attention in recent years, lever-
aging the fact that human motion will change the channel states between transceivers. By
monitoring these channel state changes, researchers are able to extract useful information
to infer human motion. Channel State Information(CSI) is one of the most popular mea-
surements for the purpose of motion sensing because it provides more fine-grained channel
information than Received Signal Strength Index(RSSI). CSI is the time series of the channel
frequency responses(CFR) which can be collected from physical layer of off-the-shelf WiFi
devices thanks to the previously released CSI collecting tools [48,124].

Previous work on human motion sensing has made grate effort focusing on several ap-
plication scenarios like human localization [122, 129], activity detection and recognition
[117, 119], human authentication [116, 133], health care [69, 114] and fine-grained motion
sensing [13,67,110,113,142]. Using a quadrant classification method, we position these pre-
vious research works and the proposed work in this chapter in Figure 5.1. The four quadrants
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are determined by whether the motion to be detected is coarse-grained or fine-grained, and
by whether the detection is context-free or not. For example, E-eyes [119] can recognize
human activities by comparing the testing CSI measurements to a set of CSI profiles. The
CSI profiles constructed in time domain are not the same in different contexts such as at
different locations. E-eyes needs to set up a profile group for a single human activity. We
classify E-eyes into quadrant III as a coarse-grained context-related solution. On the other
hand, CARM [117], WifiU [116] extract features from CSI spectrograms in time-frequency
domain. CSI spectrogram is proved to be intrinsically correlated to the moving speed of
different human body parts but not correlated to contexts. We classify them into quadrant
II as coarse-grained context-free solutions. The work proposed by Liu et al. [69] makes use
of channel information in both time and frequency domain to capture human breathing rate
and heart rate. These scalar values of vital signs are estimated in frequency domain and are
uncorrelated to contexts. Thus we also classify it into quadrant II.

Fine-GrainedCoarse-Grained

Context-Related

Context-Free

Proposed: WiTalk

CARM[11]

WiKey[17]

WindTalker[19]

WiHear[23]

Liu2015[16]

WiFinger[18]E-eyes[12] 

WifiU[13]

Figure 5.1: Research Position. The interpretation of the four quadrants classification method. We classify
the works in the literature according to whether they are fine-grained or course-grained, and whether they
are resilient to context change.

In the right half plane of Figure 5.1, existing fine-grained motion sensing solutions construct
the CSI profiles in time domain. Time domain CSI profiles are subject to changes of contexts,
including changes of locations, users or multipath environments. For example, WiKey [13]
recognizes keystrokes based on CSI-waveform for each key. WindTalker [67] inferences
mobile device keystrokes exploiting the strong correlation between the CSI fluctuation and
the keystrokes. WiFinger [110] senses and identifies subtle movements of finger gestures by
examining the unique patterns in CSI. WiHear [113] detects and analyzes fine-grained radio
reflections from mouth movements by introducing Mouth Motion Profile. These solutions
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are all context-related. They require the construction and testing of the CSI profiles in the
same contexts. For a different user, different location, or a different multipath environment,
the profiles need to be reconstructed. We classify them into quadrant IV as fine-grained
context-related solutions.

The piece of work follows the bottom-up research method. Three type of information that
can be analyzed from CSI streams are identified, the waveform, the frequency and the time-
frequency spectrogram. Using these information and mainly the machine learning tools,
previous work implemented the various applications as shown in Figure 5.2. WiTalk follows
the solution roadmap from CSI to spectrogram to fine-grained motion detection.

Data

Information

Knowledge

Wisdom

Location

Waveform Frequency Spectrogram

CSI

Activity

Vital Sign
Lip Motion Gesture

Figure 5.2: The research roadmap. WiTalk follows the solution roadmap from CSI to spectrogram to fine-
grained motion detection.

To design a context-free fine-grained motion sensing solution in quadrant I, some specific
challenges that differ from previous research settings must be addressed. First, WiFi signal
reflections from fine-grained human motion are very tiny, much smaller than those from
large-scale human movements. CSI dynamics caused by fine-grained human motion are easily
buried in noise and interferences. To ensure the CSI dynamics to be detectable, previous
solutions make some assumptions or use special tools. For example WiKey [13] assumes
that the tested motion takes place near one end of the transceivers. WiFinger [110] assumes
that the tested motion takes place near the line of sight(LOS) between the transceivers.
WiHear [113] and WindTalker [67] use special purpose directional antennas to enhance signal-
to-noise ratio(SNR) in CSi dynamics. Second, effective denoise methods must be adopted to
reduce noises and interferences and obtain a clean CSI waveform that reflects the motion to be
detected. Third, to design a context-free solution, intrinsic properties in CSI dynamics that
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are only correlated to fine-grained motion to be detected must be identified. To effectively
detect the fine-grained motion, feasible features must also be carefully identified and selected.

In this chapter, we present WiTalk, the first context-free fine-grained motion sensing system
using WiFi physical layer channel information. Similar to previous CSI-based motion sensing
solutions, WiTalk infers human motion by analyzing the CSI dynamics. To effectively denoise
CSI streams, we use principal component analysis(PCA) filtering methods based on the
observation that signal fluctuations on all subcarriers are correlated. To address the context-
free challenge, we identify CSI spectrogram in time-frequency domain as the stable property
in CSI dynamics and extract features from CSI spectrograms by calculating the contours of
the spectrograms.

We verify the feasibility and performance of WiTalk in the application scenario of lip reading.
To ensure that the CSI dynamics generated by mouth movements are detectable, we make
similar assumptions as in previous solutions. Specifically, we assume that mouth movements
take place near one end of the transceivers similar to [13], based on the observation that
people tend to hold the phone close to the cheek while talking over the phone. Directional
antennas can also be used to further amplify CSI dynamics and eliminate CSI noises. We
leave this as future research work.

The main contributions of WiTalk are summarized as follows:

• To the best of our knowledge, WiTalk is the first feasible system in the context-free
fine-grained quadrant of motion sensing solution plane using WiFi CSI dynamics. We
show the existence of this quadrant I solution by identifying the CSI spectrograms as
the intrinsic stable properties that correlate to fine-grained human motion.

• We identify and extract effective features from CSI spectrograms by calculating the
contours of CSI spectrograms. These new discerning features solve the problem of low
time-frequency resolution using discrete wavelet transform(DWT).

• We verify the feasibility of WiTalk by applying it to the lip reading scenario. Exper-
iment results show that WiTalk achieves comparable results to previous fine-grained
context-related solutions.

We implement WiTalk on a commercial laptop and demonstrate its feasibility through ex-
periments. The performance is evaluated under various contexts with different transceivers
distances, different locations and users. The results show that WiTalk can achieve over
92.3% recognition accuracy to discern a set of 12 syllables and 74.3% accuracy to discern a
set of short sentences up to six words.

The rest of the chapter is organized as follows. We discuss related work in Section 5.2
and introduce the technical background in Section 5.3. The system design is detailed in
Section 5.4. The performance of WiTalk is verified in Section 5.5 under the lip reading
scenario. We conclude the chapter in Section 5.6.
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5.2 Related work

Motion sensing. Motion sensing based human localization, human tracking, gesture and
activity recognition have been studied a lot in the research community. Existing work on
motion sensing can be divided in three categories: vision-based, sensor-based and RF-based.

The most popular approaches for video gaming and virtual reality platforms are vision-based.
Such systems include Microsoft Xbox Kinect [2], Leap Motion [3], and Sony PlayStation
Camera [5]. They use color and infrared cameras to do body-depth perception, motion
tracking and gesture recognition. The main problem of vision-based motion sensing is that
its performance is highly influenced by the condition of lighting. These systems also require
line-of-sight (LOS) for proper operation.

Wearable device based methods like RF-IDraw [115] traces trajectory of fingers and hands
by attaching RFID to the fingers. Xu et. [126] uses smartwatch to identify 37 gestures with
an accuracy of 98%. TypingRing [83] asks the users to wear a ring for text inputting with
the capability of detecting and sending key events in real-time with an average accuracy of
98.67%.

Earlier work on RF-based motion sensing rely on specialized hardware. WiTrack [11] tracks
3D human body motion using an FMCW(Frequency Modulated Carrier Wave) radar at the
granularity of 10cm. WiSee [89] works by looking at the minute Doppler shifts and multi-
path distortions for gesture recognition. Google Project Soli [6] uses on-chip 60GHz radar to
detect fine-grained motion. However, the short effective range limit its application in long
distance scenarios.

CSI-based method like CARM [117] builds a CSI-speed model and a CSI-activity model,
which depicts the relationship between CSI value dynamics and human body parts move-
ment speeds, and the relationship between the body movement speeds and specific human
activities. CARM is coarse-grained as it discerns human activities like walking, falling and
sitting down. Different from CARM, WiTalk is fine-grained and reads the motion of human
mouth. CARM also requires a sampling rate as high as 2500 samples per second. It is very
difficult to reach such high sampling rate in WiTalk scenario. WiKey [13] uses CSI waveform
shape as the features and can recognize keystrokes in a continuously typed sentence with an
accuracy of 93.5%. WiKey works well only in controlled environments and specific devices
positioning. WiFinger [110] also uses CSI waveform shape as the features and can discern
8 finger gestures with 93% recognition accuracy. WiFinger also requires static transceivers
and finger motion must be near the LOS line of the transceivers. Different from WiKey and
WiFinger, WiTalk removes the limitation of static transceivers and works on mobile devices.
WindTalker [67] allows an attacker to infer the sensitive keystrokes on a mobile device using
CSI. However, WindTalker requires that the mobile device being placed in a stable environ-
ment. Wi-Wri [22] uses WiFi signals to recognize written letters. WiDraw [104] leverages
WiFi signals from commodity mobile devices to enable hands-free drawing in the air. These
two projects focus on the user’s hand trajectory tracking, which is not WiTalk’s research
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target. The most related work to our work is WiHear [113]. Our work is inspired by Wi-
Hear, but we must point out that the system setting and techniques used are significantly
different. WiHear uses specialized directional antennas to obtain usable CSI variations. It
takes 5-7 seconds for stepper motors to adjust the emitted angle of the radio beam to locate
the target’s mouth, which is not acceptable for a real-time eavesdropping system in our set-
ting. Furthermore, WiHear does not have enough noise filter mechanisms. It still needs the
training process per location per user. On the other hand, WiTalk can be implemented on
commercial WiFi devices and has the one-time training feature.

Lip reading. [34] present a combination of acoustic speech and mouth movement image
to achieve higher accuracy of automatic speech recognition in noisy environment. [61]
presents a vision-based lip reading system and compares viewing a person’s facial motion
from profile and front view. [32] shows the possibility of sound recovery from the silent
video. SilentTalk [109] generates ultrasonic signals from mobile phone and analyzes the
frequency-shift caused by mouth movements from the reflections. It can identify 12 basic
mouth motion up to 95.4% accuracy. Chung et. [31] presents their recent results on lip
reading which performs better than hum pros. The system was trained using 5000 hours of
videos including 118,000 sentences.

5.3 CSI Preliminary and CSI-Speed Model

CSI-based motion sensing researches rely on the same principle that the change of CSI values
has correlation with the motion to be detected. In this section, we briefly introduce the CSI
related backgrounds, especially the CSI-speed model proposed in [117].

Figure 5.3: CSI streams. The time-series of the CSI matrix contains 30×Ntx ×Nrx CSI streams.

In WiFi protocols like IEEE 802.11a/n/ac, Orthogonal Frequency Division Multiplexing
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(OFDM) is adopted as the modulation format. In OFDM, the channel frequency response
(CFR) is measured on subcarrier level. Let X(f, t) and Y (f, t) be the transmitted and
received signals in frequency domain respectively, then we have Y (f, t) = H(f, t)X(f, t),
where H(f, t) is the CFR at frequency f and time t. As the FFT/IFFT operations are
integrated in OFDM receivers, the receivers are ready to calculate CFRs. Taking advantage
of the released tools [48, 124], CFR values are revealed from NIC firmware to drivers and
then to upper layers in the format of CSI. In IEEE 802.11 standards, CFRs on 30 selected
subcarriers are reported for every received 802.11 frame. If a WiFi link has Ntx and Nrx of
emitting and receiving antennas respectively, then the reported CFRs form a CSI matrix in
dimensions of 30 × Ntx × Nrx. A CSI matrix is instantaneous. For a specific subcarrier on
an antenna pair, we name the time-series of CFRs a CSI stream. Then the time-series of
the CSI matrix contains 30×Ntx×Nrx CSI streams. We can see that CSI characterizes the
frequency response of the wireless channels. Please refer to Figure 5.3 for the definition of
CSI streams.

In indoor environments, wireless signals arrive at a receiver antenna through multiple paths
including the LOS path, paths reflected by static objects like walls and paths reflected
by moving objects like human body. The signals transmitted through these paths have
different amplitudes and phases. The CFR can be modeled as the sum of static and dynamic
components [117]:

H(f, t) = e−j2π∆ft(Hs(f) +Hd(f, t)) (5.1)

where ∆f is the carrier frequency difference between the sender and the receiver, Hs(f) is
the sum of static CFRs and Hd(f, t) is the sum of dynamic CFRs:

Hd(f, t) =
∑
k∈Pd

ak(f, t)e
−j2π dk(t)

λ (5.2)

where Pd is the set of dynamic paths, ak is the attenuation and initial phase of kth path and
dk(t) is the length of path k at time t. If the static and dynamic components are in phase,
the dynamic components are constructive factors, otherwise, they are desctructive factors.

The power of the CFR can be calculated to eliminate ∆f :
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|H(f, t)|2 =
∑
k∈Pd

2|Hs(f)ak(f, t)|cos
(2πvkt

λ
+ φk(0)

)
+
∑
k,l∈Pd
k 6=l

2|ak(f, t)al(f, t)|cos
(2π(vk − vl)t)

λ
+ φk,l(0)

)
+
∑
k∈Pd

|ak(f, t)|2 + |Hs(f)|2 (5.3)

where φk(0) and φk,l(0) are initial phase and phase difference. The total CFR power is the
sum of a constant offset and a set of sinusoids. The frequencies are functions of the speeds of
path length changes, which is further correlated to human movement speed. This CSI-speed
model is the technical principle of using CSI dynamics to detect human motion.

5.4 System Design

The design of WiTalk is illustrated in Figure 5.4. It consists of the following components: CSI
data collection and preprocessing, interference elimination, segmentation, feature extraction,
classification and error correction. In this chapter we mainly focus on three components:
interference elimination, feature extraction and classification. We will briefly introduce CSI
data collection and preprocessing, segmentation and error correction components because
they are not the core contributions of this work.

5.4.1 Feasibility Analysis and Verification

We take lip reading as the example to analyze if it’s feasible to do fine-grained motion sensing
based on CSI dynamics. We make a reasonable assumption that when a person talks over
the phone, he/she tends to hold the phone close to the mouth, specifically, with the top
receiver covering the ear and the bottom microphone close to the mouth. We empirically
assume that the mouth is less than 10 centimeters from the WiFi antenna of the phone. The
analysis tool that is ready to use here is the Fresnel zone model [114].

When a signal is reflected, the phase of the signal reverses and its phase changes by π/2.
The reflected path is longer than LOS path, so the signal phase is shifted further by the
difference in path length. Fresnel zones refer to the concentric ellipses with foci in a pair of
transceivers. As shown in Figure 5.5, T and R are the transmitter and receiver respectively.
For every point Q on the blue lines, the distance of the multipath reflected at Q must be
nλ/2 longer than the LOS path, that is:
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Figure 5.4: WiTalk System Design and Workflow. We take lip reading as an application example but it can
be extended to any fine-grained motion detection.

|TQ|+ |QR| − |TR| = nλ/2 (5.4)

For the first Fresnel zone F1, the phase shift between the reflect and LOS path is path length
difference π plus π at the reflection point, that is 2π. The two signals are in phase and the
reflected signal is constructive. Similarly, other odd fresnel zones are also constructive and
even fresnel zones are destructive.

T R

Q

LOS path

Figure 5.5: The first 4 Fresnel zones for 5.18GHz WiFi signals. Human mouth is in the first 4 fresnel zones
when human talking over the phone.

Figure 5.5 shows the first 4 Fresnel zones for 5.18GHz WiFi signals where the wavelength is
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about 5.8cm. According to the previous research, the significant zones for RF transmission
are the first 8-12 zones, more than 70% of the energy is transferred via the first Fresnel
zone [114]. The dotted green circle in Figure 5.5 has a radius of 10cm, which locates in the
first 4 Fresnel zones. So it’s reasonable for us to assume that the smartphone WiFi signals
reflected from the mouth have some good level of energy.

Figure 5.6: CSI SNR change with the distance of mouth and smartphone. When the distance is over 20cm,
the SNR is near 0.

We verify whether the reflected energy is strong enough to be detected through experiment.
We set the distance between the phone and the laptop to 1 meter at the same height in a
normal lab environment. A speaker stays still and pronounces /æ/ for 5 times at an interval
of 2s. The speaker then moves in the perpendicular direction of the LOS path for 20cm
and repeats this process. The SNR results are shown in Figure 5.6. With the distance of
human mouth to the phone antenna increases, the signal power decreases sharply. However,
when the human mouth is close enough to the phone, the SNR is about 15dB, indicating
it’s feasible to do smartphone lip reading based on CSI dynamics.

5.4.2 CSI Data Collection and Preprocessing

WiTalk is implemented on the receiving end of a WiFi link and collects CSI measurements
on each received packets. For each pair of sending and receiving antennas, 30 CSI streams
are collected.

Different from the previous works which rely on two devices including both of the sender
and the receiver to collect CSI data, we apply an approach that leverages Internet Control
Message Protocol (ICMP) in hotspot to collect CSI data during the user accesses to the pre-
installed access point. In particular, WindTalker periodically sends a ICMP Echo Request
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to the victim smartphone, which will reply an Echo Reply for each request. To acquire
enough CSI information of the victim, WindTalker needs to send ICMP Echo Request at
a high frequency, which enforces the victim to replay at the same frequency. In practice,
WindTalker can work well for several smartphones such as XiaoMi, Samsung and Nexus at
the rate of 800 packets per second. It is important to point out that this approach does
not require any permission of the target smartphone and is difficult to be detected by the
victim. ICMP based CSI collection approach introduces a limited number of extra traffic.
For a 98 bytes ICMP packet, when we are sending 800 ICMP packets per second to the
victim, it needs only 78.4 kB/s for the attack where 802.11n can theoretically support the
transmission speed up to 140 Mbits per second. It is clear that the proposed attack makes
little interference to the WiFi experience of the victim.

CSI streams are firstly normalized to obtain its z score as Z = (Y − m)/s, where m and
s are mean and standard deviation vector respectively. After normalization, Z has a mean
of 0 and a standard deviation of 1. The reasons why we normalize CSI streams are two-
folds. WiTalk uses CSI spectrograms in time-frequency domain, where the amplitude of CSI
streams does not affect our analysis. Besides, CSI normalization helps in the PCA based
filtering step because after normalization, all CSI streams contribute equally to PCA and
none of them will dominate the PCA results.

5.4.3 Interference Elimination

CSI streams reported from WiFi NICs are very noisy. Figure 5.7a shows one original CSI
stream collected at a sampling rate of 250Hz. The noise sources include environmental
noises and that are caused by WiFi NICs internal state transitions. These noises are in the
high frequency zone on the spectrum. Besides the high frequency noises, some interferences
also exit in CSI streams. Typical interferences include reflected signals from surrounding
moving people and the movement of other body parts of the target like chest movements
when breathing. In this section, we first use a Butterworth band pass filter to denoise the
CSI streams and analyze its parameters. PCA based filter is then applied taking advantage
of the correlation among CSI streams.

Band Pass Filtering

The key of designing a band pass filter is to determine its cut-off frequencies. Fine-grained
human motion has low speed comparing to large-scale movements. For example, previous
study on mechanical properties of lip movements [74,85] shows that average movement speed
of human jaw and lips when speaking is between 3 − 6cm/s, corresponding to 0.5 − 1.1Hz
dynamics in CSI streams for 5.18GHz WiFi signals. Instantaneous speed is higher than
the average speed, which means a higher CSI frequency. In WiHear [113] the authors use a
frequency range of 2− 5Hz. In this work, We choose a wider frequency range of 1− 10Hz
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(a) Original CSI Stream (b) Spectrum

Figure 5.7: The original CSI stream contains breathing variations and noise, which can identified in the
corresponding spectrum.

to keep more details. In application scenarios other than lip reading, the cut-off frequencies
should be determined by the corresponding applications.

In a static environment, human respiration is the most significant interference existing in CSI
streams. Figure 5.7a shows one original CSI stream in a static environment. The repeated
pattern of breathing can be clearly observed in this figure. Typical respiratory rate for a
healthy adult at rest is 12 − 20 breaths per minute [19], corresponding to 0.2 − 0.33Hz
dynamics in CSI streams. Figure 5.7b shows the spectrum of the CSI stream in Figure 5.7a.

To eliminate out-band interferences and noises, we use band-pass filter on CSI streams.
According to what we discussed above, we set the cutoff frequency of the band-pass filter
to be 1 − 10Hz. We keep the frequency components up to 10Hz to get more details of
the mouth movements. We choose 3-order Butterworth filter because it has a maximal
flat amplitude response in the pass-band. Most of the high frequency burst noises and low
frequency interference caused by respiration can be removed by the band-pass filter. Figure
5.8b shows the band-pass filter results of the original CSI stream in Figure 5.8a.

PCA Based Filtering

To further denoise the CSI streams and strengthen the effective CSI dynamics, we use princi-
pal components analysis(PCA) to track the correlation introduced in CSI streams by human
motion. We get 30 × 3 × 1 = 90 CSI streams in total when a WiTalk device has three
antennas and the other end of the WiFi link has one antenna.

Among all the 90 CSI streams, we observe that not all of them show strong correlation.
Specifically, the correlation is time varying and antenna related. Subcarriers from different



72

(a) Original CSI Stream (b) After Butterworth band-pass
filter

(c) After PCA based denoising

Figure 5.8: Denoising the CSI Streams. Bandpass filter keeps the signals between 1-10Hz. PCA filter utilizes
the correlation between CSI streams to enhance filtering quality.

antennas tends to be uncorrelated. For example, Figure 5.9a shows three CSI streams that
are collected from the three different antennas. Though the bottom two streams has some
observable correlations, the top CSI stream from the third antenna does not seem to be
correlated with them. CSI streams of the third antenna are more “noisy”. If we use PCA
on all 90 CSI streams from 3 antennas, noises from the third antenna will impinge the
performance of PCA. Thus before PCA, we calculate the mean values of the correlation
coefficients of the 30 CSI streams from an antenna, and setup a threshold to filter out the
“noisy” antenna(s). We choose the threshold value 0.95. If none of the three antennas has
a correlation coefficients higher than this threshold, we simply choose the antenna with the
highest mean coefficient.

There are four main steps of applying PCA to CSI streams. The first step is data prepro-
cessing. Data of CSI streams are segmented into small chunks to form a data matrix H.
Next, we calculate the correlation matrix of the data matrix as HT ×H. The dimension of
the correlation matrix is N×N , where N = 90 is the number of CSI streams. The third step
is to perform eigen-decomposition of the correlation matrix. In the last step, the principal
components are reconstructed as hi = H× qi, where qi is ith eigenvector.

Only the first several principal components of PCA results with highest variance are valuable
to our analysis. Due to correlated nature of CSI streams, all principal PCA components
contain the same information. We discard the first principal component because noises
caused by internal state changes are highly correlated and are captured in the first principal
component [117]. We chose the second principal component as the input of the feature
extraction step. Figure 5.8c shows the second principle component of the PCA results.
Compared to the band-pass filtered result of the same CSI stream in Figure 5.8b, this PCA
component contains more details of the CSI stream with higher strength.
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5.4.4 Segmentation

Segmentation is an important preprocessing step to determine the start and end points of
human motion. A good quality of segmentation will improve the performance of fine-grained
motion sensing. WiTalk simply requires a short static interval between the movements to
be detected. The static interval serves as the sentinel signal, helping WiTalk to segment the
movements. We make this requirement because segmentation is not the research focus of
this work. In lip reading application, more details about syllable and word segmentation can
be found in [113].

5.4.5 Feature Extraction

The design of a context-free fine-grained motion sensing system requires us to find the
intrinsic properties in CSI streams that are stable and correlated to human motion only.

Spectrogram Construction

Previous fine-grained motion sensing systems [13,67,110,113] use time domain CSI profiles to
extract features for subsequent classification step. However, as time domain CSI waveforms
change with different contexts, it is infeasible to use CSI waveforms as the discerning profiles
in this work. We verify this claim by performing experiments on mouth movement sensing.
Figure 5.9a shows the original CSI waveforms of /æ/ form three subcarriers on three different
antennas. Figure 5.9b shows the corresponding band-pass filtered waveform. The top red
line of Figure 5.9b is a CSI waveform of /æ/ collected at a different location. Please be noted
that there are translations of the lines in Figure 5.9b to see them clearly. From Figure 5.9b
we can see that the waveforms from different contexts are significantly different. This verify
our claim that it’s infeasible to use CSI waveforms as the profiles in context-free settings.

As discussed in Section 5.3, the CSi-Speed model proves that CSI spectrogram in time-
frequency domain is a stable property of CSI streams that are highly correlated to human
movement speeds. The movement speeds of different human body parts are correlated to a
specific human activity like pronouncing a syllable. In the lip reading scenario, when pro-
nouncing a specific syllable, there exists a specific movement pattern of all mouth parts [109].
A movement pattern includes the speed,direction and duration of the movements of every
evolving mouth parts. WiTalk identifies CSI spectrogram in time-frequency domain as the
stable property in CSI dynamics and extract features from these CSI spectrograms.

We take the second principle component of PCA based filtering process as the input to
construct the spectrogram following these steps:

(1) Divide the input into equal-length segments. The segments must be short enough that
the frequency content of the signal does not change appreciably within a segment. The
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(a) Original CSI Stream (b) Filtered CSI Stream

Figure 5.9: Different CSI waveforms for the same syllable are quite different in time domain, indicating the
difficulty of using time domain waveforms as the classification features.

segments may or may not overlap. We choose the segment size to be 128, corresponding to
about 0.5 second of samples, so that the time is smaller than pronouncing a syllable and
at the same time the number of samples is large enough to calculate the short-time Fourier
transform. The overlap is set to be 126. Large overlap produces more spectrum lines and
therefore a smoother spectrogram.

(2) Window each segment using a Hamming window and compute its spectrum using short-
time Fourier transform.

(3) Display segment-by-segment the power of each spectrum in decibels and depict the
magnitudes side-by-side as an image with magnitude-dependent colormap.

(4) Segment the CSI spectrogram using the static intervals to get the spectrograms for
different syllables.

Figure 5.10 shows the spectrograms for three different syllables. The spectrograms show how
the energy of each frequency component evolves with time, where high-energy components
are colored in red. We can see that there exists distinguishable patterns in the spectrograms,
though not very clearly. As an example, the energy of spectrogram of /æ/ concentrate in
the center. It is because when pronouncing /æ/, the jaw moves at a relatively higher speed
in a short time. On the contrary, the spectrogram of /s/ spreads wider than /æ/, because
when we pronounce /s/, the lips move slower and last longer time.

Feature Extraction

Though the spectrogram patterns are human distinguishable, we need to further extract
features from CSI spectrograms for classification of the fine-grained motion.
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We find that discrete wavelet transform (DWT) on CSI spectrograms is not suitable for
fine-grained motion sensing, which is used in coarse-grained solutions in quadrant II such as
CARM [117]. Fine-grained motion like mouth movements have lower speed than large-scale
human activities like walking or falling, which results in low frequency components in CSI
spectrograms. Without enough frequency resolution, it is infeasible to extract frequencies at
multiple resolutions on multiple time scales using DWT.

In WiTalk, we propose to first calculate the contours of the spectrogram images to extract
features. The contours represent the edges of different energy levels of the spectrograms, and
depicts the unique patterns of the spectrograms of fine-grained motion. Figure 5.10 shows
three contour lines for the corresponding upper spectrograms. The top yellow contours mark
the lines of signal energy and noise. The bottom blue contours enclose the major part the
of signal energy.

(a) /æ/ (b) /s/ (c) /u/

(d) /æ/ (e) /s/ (f) /u/

Figure 5.10: Spectrograms and contours of different syllables. The x axis and y axis are time and frequency
respectively.

Directly using the contour lines as the classification features leads to high computational costs
for classification. Therefore, we use the most relevant signal processing tool DWT on the
contour lines to compress their length by extracting approximate sequences. In WiTalk we
choose Daubechies wavelet filter of order 4 because it has the best classification performance.
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5.4.6 Classification

People may perform the same micro motion at different speeds, and even for the same person,
the motion speeds may vary from time to time. Dynamic time warping(DTW) can be used
to measure similarity between two temporal sequences which may vary in speed. DTW
calculates the optimal match between the two time sequences and warp the sequences to
measure their similarity. The output of DTW is the distance between the two series. Low
distance means high similarity between the two sequences. We build a classifier using the
DWT compressed contours of the CSI spectrograms as features. The classifier calculate the
DTW distances between the input and all the contours in the dataset. The one with the
shortest distance is identified as the recognized motion.

5.4.7 Error Correction

The performance of fine-grained motion sensing can be further improved using application
specific context information. For example, in the lip reading application, such information
includes constraints that reject sentences that are not following these constraints. For ex-
ample the sentence “The apple is red” will be accepted but “The apple is angry” will be
rejected [8]. In WiTalk, we implement context-based error correction using a simple Bayesian
method similar to [109].

5.5 Performance Evaluation

We implement WiTalk on a commercial laptop, and evaluate its performance in a typical
lab environment. The system scenario of WiTalk is illustrated in Figure 5.11. WiTalk is
implemented on the receiving end of a WiFi link. The transmitter continually sends packets
to WiTalk at a speed of 250 packets/second. WiTalk collects CSI data and use the proposed
algorithms to infer the fine-grained motion from the hidden patterns of CSI streams. We
design experiments to detect a set of pronounced syllables, which is the bases for lip reading
applications. We select lip reading as our example application scenario because it is the
most fine-grained motion sensing in the literature that is previously reported using WiFi
CSI dynamics [113].

5.5.1 System Setup

WiTalk is implemented on a commercial Thinkpad X301 laptop. The laptop is equipped
with an Intel Core 2 U9600 processor, 4GB memory and an Intel 5300 NIC with 3 omni-
directional antennas. The operating system running on the laptop is Ubuntu 14.04 LTS.
We install and configure Linux 802.11n CSI Tool as described in [48]. The laptop works as
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Mouth Reflection 

Sender Receiver

Figure 5.11: System application scenario of WiTalk. WiTalk is implemented on a commercial laptop.

the receiver and collects CSI streams using the CSI tool. Collected data are processed using
Matlab scripts for signal processing and classification. Matlab version is R2016a. We do the
experiments on channel 36 at 5.180GHz.

We test WiTalk using two model of smartphones: a LG Nexus 5 with Android 6.0.1 and
a Samsung Note 5 with Android 5.1.1. The smartphones work as the transmitters. The
transmitter continually sends packets to WiTalk at a rate of 250 packets/second during the
experiments. The CSI streams are collected and stored for later processing. WiTalk can also
work in real time currently. By writing the CSI dynamics to a named pipe, Matlab script
can read from the pipe and process the data simultaneously.

We test WiTalk in a normal lab environment depicted in Figure 5.12. The WiTalk device
is tested at two positions marked as blue dots. We collect data with three volunteers(all
males). The volunteers are asked to stand still at the positions marked as stars. They hold
the phone steadily in normal phone call position the same way as depicted in Figure 5.11.
Instead of making a real phone call, they are asked to read a set of syllables and a set of
short sentences no more than six words. Static intervals are inserted intentionally between
syllables and words to facilitate segmentation. The set of syllables includes 12 elements: /a/
/i/ /u/ /e/ /O/ /b/ /f/ /d/ /g/ /j/ /S/ /z/. Each volunteer reads the set of syllables 10
times at each test location, and the set of short sentences 5 times at each location.

5.5.2 Syllables Classification Accuracy

The recognition results for the syllables set is depicted in Figure 5.13 and Figure 5.14. We
do the experiments in two steps to verify the syllable detection performance. We first train
and test the classifier in the same context with the same volunteer at the same location. The
confusion matrix is reported in Figure 5.13 with an average detection accuracy of 92.3%. Next
we mix the data collected from different users, different transmitters at different locations
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Figure 5.12: WiTalk test bed. The locations of WiTalk device are marked as the blue dots. The locations
of the user are marked as stars.

for both training and testing. The confusion matrix is reported in Figure 5.14. In the
mixed contexts situation, the average detection accuracy is 82.5%. The reasons for the lower
accuracy in mix contexts situation are two-folds: 1) There are slight differences for different
people to pronounce the same syllable. For example, in our experiments one of the volunteers
tends to pronounce /u/ more lightly than others. His lips pucker very little when he makes
this pronunciation, which impinges the detection accuracy of this syllable. 2) Signal reflection
multipaths are significantly changed at different locations. This will introduce noises to CSI
streams which cannot be removed completely. This impinges the classification performance
compared to the same-context situation.

5.5.3 Sentence Recognition Accuracy

We evaluate the performance of sentence recognition with and without context-based error
correction. The set of short sentences include sentences from 1 word to 6 words. As shown in
Figure 5.15, with the increase of the number of words, the accuracy drops significantly. For
6 words situation, without context based correction, the recognition accuracy is only about
43%. With context based correction, the accuracy is improved by 16%. This is because the
longer the sentences, the more they context information can be applied. The drop of the
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Figure 5.13: Confusion matrix of 12 syllables in the same context. The average detection accuracy is 92.3%.

Figure 5.14: Confusion matrix of 12 syllables in the mixed contexts. The average detection accuracy is
82.5%.

performance is mainly because the difficulty of in-word syllables segmentation. To solve this
problem, continuous lip reading model could be adopted as in [31].
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Figure 5.15: Sentence recognition accuracy drips significantly when the number of words increase because
of the difficulty of in-word segmentation.

5.5.4 Performance with Distance

Figure 5.16 depicts the performance with increase of distance between the transceivers. For
the receiver location marked as B, we only did the experiments at transmitter location 1, 2
and 5. The distance of B1,B2 and B5 are 1.5m, 1.5m and 3m respectively. As we can see
from Figure 5.16, the syllable discerning accuracy drops by 9% when the distance increase
from 0.5m to 5m in the same room with LOS available. And the accuracy of sentence
detection drops by 19%. However in through-the-wall scenario as in location 5, both syllable
and sentence detection rate drop significantly by over 25% compared to location 4 at the
same distance. To improve the performance and increase the working range of WiTalk, using
a directional antenna will be a promising choice.

5.6 Summary of Contributions

WiTalk is the first fine-grained motion sensing system using CSI dynamics of WiFi. WiTalk
can be implemented on a single WiFi device. We analyse and verify the feasibility of WiTalk
in the application of CSI-based lip reading on smartphones. We propose to denoise CSI
streams using band-pass filtering and PCA based filtering. We identify the spectrograms
of CSI dynamics as the intrinsic features that correlate to human fine-grained motion only,
and extract features from the contours of CSI spectrograms. WiTalk needs only one-time
training and works for different environments. Experiment results show that WiTalk can



81

Figure 5.16: Identification performance drops with distance between WiTalk device and the user.

discern a set of 12 syllables with an accuracy of 92.3% and short sentences up to six words
with an accuracy of 74.3%.

The current implementation of WiTalk has some limitations. First, the performance of
WiTalk degrades with the increase of the distance between the two transceivers and the
distance between the transceiver and moving human body parts. The main reason is that
the reflected signal power from fine-grained motion is too small and is easily buried in noises
and interferences. Using directional antennas is one possible solution, which we leave as
future work.

Second, WiTalk requires the user staying relatively still for the fine-grained motion sensing.
If the user talks over the phone while walking around, WiTalk will fail because the useful
CSI dynamics will be buried in the CSI changes caused by the moving user body and legs.
Even if the user stays still at one location, if he/she makes some hand or body gestures,
the extraction of useful CSI dynamics will also become harder. How to eliminate these
interferences will be our future research target.



Chapter 6

Conclusion

Withe the ubiquitous availability of wireless techniques, we need to pay attention to the
sensing capabilities of wireless signals while we enjoy the convenience of wireless communi-
cations. Wireless sensing has endless possibility of helping us to know the physical world
around us.

6.1 Research Summary

This dissertation focuses on the problem of exploring the sensing capability of wireless sig-
nals. The research approach is to first take measurements from physical layer of wireless
connections, and then develop various techniques to extract or infer information about the
environment use those measurements, like the locations of signal sources, the motion of
human body, etc.

The research work in this dissertation has three contributions. My research starts from wire-
less signal attributes analysis. Specifically, the cyclostationarity properties of wireless signals
are studied. Taking WiFi signals as an example, we propose signal cyclostationarity models
induced by WiFi OFDM structure like pilots, cyclic prefix, and preambles. The induced
cyclic frequencies is then applied to the Signal-Selective Direction Estimation problem. We
are the first to provide complete model for OFDM features-induced cyclostationary prop-
erties. Tough we focus on WiFi signals, the analysis methods proposed can be generally
applicable to other wireless signals. We verified the cyclic frequencies by simulation and
compared the performance of the cyclic frequencies in direction estimation problem.

Second, based on the analysis of wireless signal attributes, we design and implement a proto-
type of a single device system, named MobTrack, which can locate indoor interfering radios.
The goal of designing MobTrack is to provide a lightweight, handhold system that can locate
interfering radios with sub-meter accuracy with as less antennas as possible. With a small
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antenna array, the cost, complexity as well as size of this device are also reduced. MobTrack
is the first single device indoor interference localization system without the requirement of
multiple pre-deployed Access Points. To the best of our knowledge, MobTrack is the first
single device indoor interference localization system without the requirement of multiple pre-
deployed Access Points. We propose a novel algorithm to eliminate the multipath effect in
the indoor environment. Our multipath suppression algorithm could robustly and efficiently
isolate the LoS component from other reflected components. We propose a novel signal type
identification algorithm for MobTrack to calculate the AoAs of only interfering radios, which
significantly reduces the requirement to antenna numbers and device complexity.

Third, channel state information is studied in applications of human motion sensing. We de-
sign WiTalk, the first system which is able to do fine-grained human motion sensing like leap
reading on smartphones using the CSI dynamics generated by human movements. WiTalk
proposes a new fine-grained human motion sensing technique with the distinct context-free
feature. To profile human motion using CSI, WiTalk generates CSI spectrograms using signal
processing techniques and extracts features by calculating the contours of the CSI spectro-
grams. The proposed technique is verified in the application scenario of lip reading, where
the fine-grained motion is the mouth movements. To the best of our knowledge, WiTalk
is the first feasible system in the context-free fine-grained quadrant of motion sensing so-
lution plane using WiFi CSI dynamics. We show the existence of this quadrant I solution
by identifying the CSI spectrograms as the intrinsic stable properties that correlate to fine-
grained human motion. We identify and extract effective features from CSI spectrograms
by calculating the contours of CSI spectrograms. These new discerning features solve the
problem of low time-frequency resolution using discrete wavelet transform(DWT). We verify
the feasibility of WiTalk by applying it to the lip reading scenario. Experiment results show
that WiTalk achieves comparable results to previous fine-grained context-related solutions.

6.2 Future Work

The current work in this dissertation is far from completion and perfection.

MobTrack is designed to be a single device system. However, the current prototype device
is quite large, because of the size limitations of the antenna array. In the future, we need to
find a better way of implementation. One possible method is to use a virtual antenna array,
by moving a single antenna or a couple of antennas in a controlled direction. By measuring
the moving direction and speed of the antenna(s), we can make some compensation using
a software method to construct the virtual antenna array. Though it’s ought to be many
challenges, we believe this is a promising direction to further simplify the device.

The current implementation of WiTalk has some limitations. First, the performance of
WiTalk degrades with the increase of the distance between the two transceivers and the
distance between the transceiver and moving human body parts. The main reason is that
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the reflected signal power from fine-grained motion is too small and is easily buried in noises
and interferences. Using directional antennas is one possible solution, which we leave as
future work.

Second, WiTalk requires the user staying relatively still for the fine-grained motion sensing.
If the user talks over the phone while walking around, WiTalk will fail because the useful
CSI dynamics will be buried in the CSI changes caused by the moving user body and legs.
Even if the user stays still at one location, if he/she makes some hand or body gestures,
the extraction of useful CSI dynamics will also become harder. How to eliminate these
interferences will be our future research target.
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