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Abstract

Active research of SMAs has shown that its Seebeck coe�cient is sensitive to its

martensitic phase transformation and has the potential to determine the SMAs

state of transformation. The combination of Shape Memory Alloys, which have a

positive Seebeck coe�cient, and Constantan which has a negative Seebeck coef-

�cient (-35 mV/K) results in a thermocouple capable of measuring temperature.

The work presented in this thesis is based on the development and design of this

sensor.

This sensor is used to study the hysteretic behaviour of SMAs. Although Shape

Memory Alloys (SMAs) exhibit a myriad of nonlinearities, SMAs show two major

types of nonlinear hysteresis. During cyclic loading of the SMAs, it is observed

that one type of hysteretic behavior depends on the rate of heating the SMAs,

whilst the variation of maximum temperature of an SMA in each cycle results in

the other hysteretic behavior. This later hysteretic behavior gives rise to major

and minor nonlinear loops of SMAs. The present work analyzes the nonlinearities

of hysteretic envelopes which gives the di�erent maximum temperatures reached

for each hysteretic cycle with respect to stress and strain of the SMA. This

work then models this behavior using Adaptive Neuro Fuzzy Inference System

(ANFIS) and compares it to experimental results. The nonlinear learning and

adaptation of ANFIS architecture makes it suitable to model the temperature

path hysteresis of SMAs.



                                  |                      

                                  || 

Meaning: In search of knowledge of words and their meanings, I pay homage to

Parvathi and Paramesvara, the parents of the Universe who are inseparably

blended together like the word and its meaning.
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Chapter 1

Introduction

1.1 Motivation

The dawn of the 21st century has witnessed a relentless pursuit of development of actuators

and sensors based on Smart Materials. Shape Memory Alloys (SMAs) is one such material

which has been in focus for its superior physical characteristics and better power to weight

ratio. Although the potential properties of this material were discovered in the 1960's by the

US Naval Ordance Laboratory (Buehler et al. [1963]), it is this last decade which has seen

a enormous interest in utilizing these mechanical properties as a viable actuator. Engineers

in various industries ranging from aerospace (Hartl and Lagoudas [2007]) and naval (Shinjo

and Swain [2004]) departments, to surgical (Morgan [2004]) and medical sectors (Chen et al.

[2004]), have worked towards converting thermal energy into mechanical work through the

use of SMAs.

Research (Ryhänen [1999]) has shown that Ni-Ti based SMAs have a non-toxic and non-

irritant response towards muscular tissues. This work has shown that the bio-compatibility

of Ni-Ti is similar to, or better than other materials presently used in medical applications.

The mechanical properties of this material make it possible to develop a self-locking, self-

expanding and self-compressing medical equipment. With optimal surface treatment, this

work has shown that SMAs can be utilized in long-term implants. The elevation of SMAs

as a bio-material has created a new wave of research in integrating exo-skeleton structures

within the human body. Although several designs (Bundhoo et al. [2009]; De Laurentis and

Mavroidis [2002]; Esfahani and Elahinia [2010]; Price et al. [2007]) of SMA based actuators
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aimed at mimicking the kinematics of a human hand have been developed, it has proven

di�cult to track the biological trajectories of hands. Inherent complexity and non-linearity

of martensitic phase transformation of SMAs has made it di�cult to control SMA wires.

The �shape memory e�ect�of SMAs has facilitated the use of thin wires in various ac-

tuator con�gurations. Di�erent shapes and designs of SMA springs (Menciassi et al. [2002,

2004]) have been utilized in robotic applications for enhancing and adapting the properties

of SMA based actuators. The force and displacement developed by heating SMA wires has

to be discretely controlled in some of these shape set structures, particularly those used in

instruments engaged for minimal invasive surgeries (Maeda et al. [1996]). In such applica-

tions, the constantly changing temperature of the foreign environment severely complicates

the energy required from an external heat source needed to compensate for heat transfer

by conduction. In these applications, monitoring the change in shape of these structures

due to multiple sources of temperature, is critical in order to control them. Micro and mini

devices working in such space constraint situations, require an actuator capable of sensing

the e�ective temperature pro�le which regulates the motion of the structure.

When designing an SMA based actuator for a mechanism, one has to �rst decide on

the heating source for the SMA element. In certain specialized applications (Morgan and

Yaeger [1985]), the temperature of the surrounding medium can be used as a source of

heat.This method provides an excellent option when designing mechanisms that regulate

the temperature of the actuator element. If the control temperature required to initiate

and complete the phase transformation changes, the whole SMA element has to be changed

and a new setup has to be assembled. Even though research in material properties of SMAs

(Kohl et al. [2000]) is looking into adjustable material properties, it is not practically feasible

to cover the whole temperature domain. External and intentional heating of SMAs is the

only solution for this problem.

In course of using SMAs, for the purpose of actuation, various methods of heating SMAs

have been researched and tested. One of the traditional ways of heating SMAs is by utilizing

the concept of Joule heating (Hirose et al. [1988]). When electric current �ows through the

SMA wires, the power dissipated due to the electric resistance of the material raises the

temperature of the structure and activates it. The demand of various applications has led

to experimentally actuating SMA wires with a laser (Avirovik et al. [2013]). This work uses
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energy from the ultraviolet region of light spectrum to heat the SMA wires. In another

study Thermo-Electric Devices (TEDs) (Selden et al. [2006]) have been used to transfer

heat energy into SMA wires by conduction. There are many other applications(Elzey et al.

[2005]) where resistive heating of SMAs is not practicable and new heating methods have

been implemented.

Although the electrical resistivity measurement approach is popular, there are some ad-

vantages and some disadvantages of engaging ohmic heating over unconventional modes of

heating. In this, electrical resistance can be used to sense and relate it to the temperature

change of the SMAs. One of the major advantage of this is method is the possible use

of resistivity measurements of SMA wires for closed loop feed-back applications. But the

resistance measurement across the terminals of a wire, re�ects the temperature averaged

throughout the length of the wire. The level of phase transformation along the length of a

wire depends on the actual temperature distribution rather than on any average measure-

ment. Thus, in applications where the actual stress or strain pro�le of the SMA wire is

required, this feedback approach is limited.

Another disadvantage of using resistivity of SMAs to feedback the level of phase trans-

formation is that it is restricted to those cases where SMAs are heated by ohmic methods. A

closed electrical circuit is required to measure the changes in resistance of SMA wires. This

is possible in cases whre SMA wires have been heated by electric current and resistance. The

other limitation of Joule's resistive heating approach is its large electric power requirement

for achieving complete phase transformation. The electrical e�cieny of this mode of heating

is less than 10 precent. As this factor plays a major role in one-dimensional systems, it is

impractical to scale this method of heating into activating two- dimensional structures like

SMA ribbons (Barbarino et al. [2009]) or �lms (Craciunescu and Wuttig [2000]; Krulevitch

et al. [1996]). As the focus is increasingly shifted to harnessing the physical properties of

these 2D structures (Hassan et al. [2004]) as actuators, there is now a need for non-traditional

modes of heating to actuate these structures. Although di�erent applications might lead to

di�erent methods of heating SMAs, the major feature of these modes of actuation would

be to directly raise the temperature of the SMA system. So, to develop future SMA based

actuators, a methodology which can detect the temperature of SMA which can be adapted

to any mode of heating, is required.
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With this understanding of all the limitations and the present research in SMA actu-

ators, a sensor capable of determining the change in temperatures was designed based on

the thermoelectric properties of SMAs. A thermocouple was built by paring a positive See-

beck Coe�cient material, Shape Memory Alloy, with a negative Seebeck coe�cient (-35

mV/K) material, Constantan. The bi-material junction of this sensor utilizes the relative

thermoelectric properties of this compound system to sense the tip temperature.

One of the advantages of the developed technique is that it can be adapted to any mode

of heating. When multiple Constantan wires are welded onto a single SMA wire, numerous

bi-material contacts are formed. This hybrid con�guration is a potential source of sensing

temperature at di�erent locations at the same time. This gives a more viable tempera-

ture distribution at di�erent points contrary to the average measurements in conventional

feedback practices. Although the concept put forward in this work is applicable to higher

dimensional systems, the present work is con�ned to one-dimensional system of wires. The

proposed technique is applicable for higher dimensional systems with complex dynamics due

to the geometric independence of Seebeck voltage. The proposed concept is equally useful

in thin structures, such as wires and ribbons, and in 2D-structures, like membranes and

plates.

1.2 Previous Work

The rapid boom in developing applications using SMAs has produced a considerable amount

of research in studying and modeling SMA wires and structures. Many soft-computing

methodologies have been developed deriving inspiration from nature. The following sections

will focus on previously completed work covering SMAs and arti�cial intelligence methods.

A brief introduction on soft-computing methods used in the present work are also presented.

1.2.1 Shape Memory Alloys

Shape memory alloy actuators, which have the ability to return to a predetermined shape

when heated, and has the potentia to be used in numerous applications. On the other

hand, there has been little success in accurately controlling the motion of SMAs since the

inherent systems dynamics are highly nonlinear and a uni�ed model is unable to simulate
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these properties. This problem has been attacked in various fronts including deterministic

methods and non-deterministic methods. Some of these advances are presented in this

section.

Many applications of SMAs require a precise model to study changes in their mechanical

behavior with phase transformation. Researchers have tried to understand the mechanics

behind these changes and to develop a precise, theoretical or constitutive model of SMAs.

This type of modeling approach has been signi�cantly challenging due to their nonlinear

thermo-mechanical behavior. Substantial research has been conducted over the past three

decades with the aim of developing constitutive models that can predict SMA thermo-

mechanical behavior. The basis for the development of present research in this �eld is based

on the models proposed by Bertram [1983]; Birman [1997]; Brinson [1993]; Liang and Rogers

[1990]; Tanaka [1986]. One way of theoretically modeling macroscopic behaviors of SMAs is

by studying micro-structural changes based on the principles of micro-mechanics(Lagoudas

et al. [2006]; Levitas and Ozsoy [2009]; Patoor et al. [2006]; Petryk and Stupkiewicz [2010]).

These models require substantial computational e�ort in order to analyze the dynamic

crystallographic changes of SMAs, and then relate them to a macroscopic e�ect. The other

type of theoretical modeling considers, global e�ects, like the energy potentials de�ned over

the entire homogenized material volume, or thermo-mechanical loading paths. This type

of modeling is called phenomenological modeling (Chemisky et al. [2011]; Christ and Reese

[2009]; Popov and Lagoudas [2007]; Ziolkowski [2007]).

These theoretical models developed over last few decades have been able to simulate and

predict the complex and hysteretic behavior of SMAs, but most of them are case speci�c

and are limited by the constitution of the SMA material and thus cannot predict over a wide

range of material dynamics. These models cannot be directly used because of the di�erent

type of diverse behaviors of SMAs.

To resolve some of the problems that arise when using these constitutive methods of

modeling, various soft computing methodologies capable of capturing the hysteretic behavior

have been tested. This type of approach, in which models are generated based on adaptive

training of input-output data without actually studying the material, is called a black-box

approach. Arti�cial Neural Networks (ANNs) is one such method which has been popular for

the last two decades. The nonlinear adaptive function mapping property of ANNs makes it a
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forerunner for learning nonlinear problems. Literature shows that inverse models developed

using ANNs have been able to determine the control voltage required to actuate SMA wires

(Lee et al. [2013]; Tai and Ahn [2012]; Tan and Baras [2005]). One of the problems of

modeling hysteresis using these soft-computing methods is the identi�cation of the factors

e�ecting these inputs. But present advances in the application of neural networks is unable

to capture the non-linearities and model multi-loop hysteresis.

Another method which has given promising results in modelling this hysteretic behavior

is the hybrid technique based on neural networks and fuzzy logic. One such technique called

the ANFIS technique was used to track a desired trajectory for a single loop hysteresis

curve with position and velocity as inputs (Kumagai et al. [2000]). The time histories of the

inputs were used to learn and capture the nonlinear hysteretic behavior. In another work

(Kilicarslan et al. [2008]) that uses this techniques multiple loops of varying frequency, has

been modeled in order to capture strain characteristics of SMAs. One factor that needs to be

considered in determining the level of generalization of these black box models is the choice

of the feedback variable. As multiple inputs are generally required for dynamically complex

system like SMAs, there is a need for at-least two inputs. There has been a wide search

and applicability of di�erent inputs for modeling the path dependence of these systems.

Electrical resistivity is one of the most common methods for sensing the state of SMAs

during actuation. In most cases, one of the inputs has been the resistance and for the other

input there has been a variety of options, like a arti�cial tag signal (Song et al. [2003a,b])

or current and time (Grigorie and Botez [2010]), or time delayed signals (Kilicarslan et al.

[2011]).

Variation of electrical resistance for predicting and capturing the nonlinear hysteresis as

SMAs has been investigated for a long time. The nonlinear behavior of SMAs is traditionally

considered to depend on the fractional ratio of austinite to martensite phase (Wayman et al.

[1972]). This transformational change is related to the temperature of the material and can

be evaluated by noting the change in its resistance (Uchil et al. [1998]). Numerous attempts

have shown that the electrical resistance of an SMA can be used as feedback for strain of thin

SMA wires in actuators (Ma et al. [2004]). Despite years of research of electrical resistance

of SMA wires, the complex relationship of resistivity with thermo-mechanical properties of

SMAs is not fully understood and the results are not consistent. This measure of feedback
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cannot be con�dently used as a feedback sensor in actuation applications.

1.2.2 Arti�cial Neural Networks

It is well known that biological nervous system can communicate and perform complex tasks

without resorting to complex quantitative calculations (Hebb [2002]; Rosenblatt [1962]). In

particular, biological neurons have a capacity to generalize the response of a human body to

external stimuli by learning it (McCulloch and Pitts [1943]). Such learning capabilities of

nervous system has attracted researchers to design an arti�cial network of neurons capable

of processing and learning the dynamic relationship between complex data sets (Levenberg

[1944]).

Figure 1.1: Architecture of a simpli�ed Arti�cial Neural Network

Arti�cial Neural Networks (ANN) are computational models motivated from our under-

standing of biological nervous systems (Lippmann [1987]). A neural network is a collection of

simpli�ed mathematical replications of biological neurons. An incoming, informative signal

is computationally processed in the connection that links between two neurons. A simpli-

�ed representation of ANN is shown in Figure 1.1. Each neuron in hidden layer received is
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processed with a proper weight and bias. This information is added in this layer.

F1i =
n∑

j=1

iwijXj + hBi (1.1)

where X is the input matrix, n is the number of input variables, iw is the initial weight

matrix and hB is the bias of the network. The output of this hidden layer, A is calculated

by a suitable transfer function, TF, as

A1i = TF (F1i) (1.2)

The output of this layer is the input of the next layer. The selection of di�erent transfer

functions is critical in determining the converging dynamics of the model. Wide selections

of transfer functions are present in the literature, ranging from linear functions to nonlin-

ear functions, like sigmoid or radial basis type functions. Depending on the requirement

and complexity of the data set, multiple hidden layers can be included in the model. In

this section, a single hidden layer model is explained. The input to the output layer is a

combination of output response signals from the hidden layer.

F2k =
m∑
i=1

hwikA1i + oBk (1.3)

where hw is the hidden layer weight matrix,oB is the bias, m is the number of neurons in

the hidden layer. Assuming a linear transfer function at the output layer the outputs can

be given by:

Yk = F2k (1.4)

The mathematical derivation previously shown assumes that for an optimum set of bias

and weight values of the networks, the trained output of the neural network is identical, or

near to, the targeted output. In order to �nd these parameters of the network, the training

error is computed in each cycle. Speci�cally, the learning problem can be de�ned as
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T = {(Xp, Y p), p = 1, ...., N}

Xp = (Xp
1 , X

p
2 , ......, X

p
n) ∈ < (1.5)

Y p = (Y p
1 , Y

p
2 , ......, Y

p
s ) ∈ <

To train the model, the experimental data set is randomly divided into a training set

and testing set. The training data set is used to adjust the weights and biases of the neural

network with n input nodes and s output neurons with a hidden layer of m neurons. Di�erent

learning algorithms are available in literature to optimize the learning capabilities of the

neural network (Chen et al. [1991]; Elman [1990]; Hop�eld [1982]; Widrow and Lehr [1990]).

One such learning algorithm called Levenberg � Marquardt back propagation algorithm

(Hagan and Menhaj [1994]; Marquardt [1963]) is employed in determining the optimum

parameters of the system.

1.2.3 Adaptive Neuro-Fuzzy Inference System

Figure 1.2: Architecture of an Adaptive Neuro-Fuzzy Inference System
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Fuzzy set theory (Zadeh [1965]) generalizes classical set theory and widens the range of

the membership degree of a variable by inclusion of all values between 0 and 1 and do not

restrict it to a crispy set of {0, 1}. The linguistic sets (Zadeh [1975]) and fuzzy relations

between them form a Fuzzy Logic System (FLS) (Zadeh [1973]). The relationship between

di�erent membership functions is established by simple linguistic rules called Fuzzy IF-

THEN rules (Bellman and Zadeh [1970]; Mamdani and Assilian [1975]). Fuzzy if-then rules

have an ability to capture the imprecise modes of reasoning that play an essential role in the

human ability to make decisions in an environment of uncertainty and imprecision. In order

to relate physical variables with fuzzy membership functions, both inputs and output are

�rst fuzzi�ed, i.e. converted from crisp numbers to a fuzzy set. The relationship between

the fuzzi�ed input membership functions with the output membership function is de�ned

using if-then rules. The fuzzy sets computed by the fuzzy inference as the output of each

rule are then composed and defuzzi�ed (i.e., converted from a fuzzy set to a crisp number).

The connection of fuzzy systems with an arti�cial neural network is called a neuro-fuzzy

system. Similar to neural networks, wherein information is stored in connection weights,

fuzzy if-then rules are tuned to contain the data in a neuro-fuzzy system. There are many

versions of fuzzy neural networks in literature (Gupta and Rao [1994]; Horikawa et al.

[1992]). Adaptive network based fuzzy inference system, ANFIS (Jang [1993]) is one of

them. A simpli�ed architecture with two inputs, x and y, and one output with two Sugeno's

�Takagi fuzzy-if -then rules, is considered for studying ANFIS model (Jang et al. [1997]).

The ANFIS architecture is shown in Figure 1.2. The fuzzy rules based on the linguistic

variables A1 and A2 of Input 1 and B1 and B2 of Input 2 are given by

Rule 1 : If x isA1 and y isB1 then f1 = p1x+ q1y + r1 (1.6)

Rule 2 : If x isA2 and y isB2 then f2 = p2x+ q2y + r2

Where fi is output and pi, qi and ri are the parameters utilized in the training algorithm

of ANFIS. The circles in the �gure represents a �xed node while the square node denotes

an adaptive node. The output of ith node of a layer l is given by Ol
i.
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• Layer 1: The membership function µAi
of linguistic variable, Ai, is given by O1

i .

O1
i = µAi

(x) (1.7)

• Layer 2: In this layer, at each node denoted by Π the input signals are multiplied and

the product is sent out.

O2
i = wi

= µAi
(x)× µBi

(y) i = 1, 2 (1.8)

• Layer 3: In this layer, normalized �ring strength is calculated by using the ratio of

outputs of the previous layer, i.e. the �ring strength of each rule to the sum of all of

them.

O3
i = w̄i

=
wi

w1 + w2

, i = 1, 2 (1.9)

• Layer 4: The adaptive node function determining the output of this layer is given by

O4
i = w̄ifi

= w̄i(pix+ qiy + ri), i = 1, 2 (1.10)

where pi,qiand ri are the consequence parameters.

• Layer 5: In this layer the summation of all incoming signals is computed in this layer.

O5
i =

∑
i

w̄ifi

=

∑
iwifi∑
iwi

(1.11)
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This can be expanded as

Output =
w1

w1 + w2

f1 +
w2

w1 + w2

f2

= w̄1(p1x+ q1y + r1) + w̄2(p2x+ q2y + r2) (1.12)

parameters p1,q1,r1,p2,q2 and r2 are updated in each epoch to map input membership func-

tions with output membership function.

There are many methods to update these parameters. Some of them would be the

gradient decent method (Guély and Siarry [1993]), the least squares method and the hybrid

learning algorithm (Rutkowska [2002]).

1.3 Research Objectives

With growing interest in developing actuators based on SMAs for various applications, it

is necessary to understand and study the temperature response of SMAs. In order to fully

examine the non-linear dynamics of this material, and develop an actuator capable of multi-

step activation, a closed feedback control loop is required. Therefore, the principle objective

of this study is to develop a sensor capable of detecting the multi-phase transformations

of this material and correlate this crystallographic change with the non-linear hysteretic

response of SMA wires. To achieve these end goals, the following objectives need to be

addressed

• Study relative thermoelectric sensitivity: Thermoelectric sensitivity, or the See-

beck voltage of SMAs, is capable of converting temperature changes into easily mea-

surable electric voltage. This property has a potential to be harnessed to detect

temperature changes in the system. A material is to be selected capable of magnifying

the voltage signal from the proposed sensor.

• Fabricate and develop a SMA based sensor: A suitable fabrication methodology

has to be selected to form a bi-material junction capable of measuring temperature.

The developed sensor has to be tested and the di�erent parameters that are required to
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characterize the sensor have to be identi�ed. Once the in�uence of all the parameters

on the sensor is studied, a calibrated relationship has to be established.

• Study the strain characteristics of SMA wires: In order to study the stress

characteristics of thin SMA wires, an experimental setup will be built. A SMA wire

has to be constrained using �xed support at both ends. A weight will be suspended on

the SMA wire to maintain uniform and constant stress in the wire. The response of

this wire, with change in temperature will be recorded by measuring the displacement

of the weight by employing a laser displacement sensor.

• Model the position response of SMA wires: A hysteretic relation is expected

between the displacement and temperature change of the SMA wire. In order to

verify this, two di�erent soft-computing methods are studied to capture the dynamics

of the system; a single loop curve to modeled �rst. Then the e�ect of amplitude and

frequency of voltage applied on the displacement characteristics is to be studied. This

data will be utilized to model an ANFIS and ANN model to learn the dynamics of the

system.

• Experimentally validate the developed models: In order to prove the concept

of a closed loop system experimental validation of the developed models is required.

1.4 Dissertation structure

The research in this dissertation is organized and presented in the following manner. Chapter

1 lays out the motivation for developing a thermoelectric based SMA sensor and brie�y

discusses various soft computing techniques employed in the present work. Previous work is

presented along with research objectives. Chapter 2 presents the design and development of

an SMA-Constantan thermocouple. This chapter identi�es the variables a�ecting the sensor

and models a relationship to predict the tip temperature of the bi-material system. Chapter

3 discusses the experimental setup built to study the position characteristics of SMA wires.

Various ANFIS and ANN models developed using the data collected through experiments

are presented in this chapter. The e�ect of time-shift on the prediction capabilities of ANFIS

models developed to better understand the strain characteristics are discussed in Chapter
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4. The possible applications of the present work in developing a novel collocated sensor is

presented as an idea in Chapter 5.
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Chapter 2

SMA-Constantan Thermocouple

2.1 Introduction

Active materials have been on the forefront of research in actuation and sensing applications.

Shape Memory Alloys (SMAs) are a unique type of smart material that is engaged in a wide

range of applications, in order to make use of its stress and strain characteristics associated

with micro-structural behavioral changes (Degeratu et al. [2009]). The changes in the lattice

structure of SMAs have a signature e�ect on their thermoelectric properties (Yoshida et al.

[2000]). Thus, as the Seebeck coe�cient of an SMA is sensitive to the phase transformation

of an SMA, it can be exploited to determine the level of its Martensitic transformation. Using

this property, a thermocouple is built by paring Shape Memory Alloys which has a positive

Seebeck coe�cient, with a negative Seebeck coe�cient (-35 mV/K) material, Constantan.

The bi-material junction of this sensor utilizes the relative thermoelectric properties of the

compound to sense temperature. The e�ect of room temperature on this novel thermocouple

is discussed and an Adaptive Neuro-Fuzzy Inference Model (ANFIS) is developed to replicate

the Seebeck voltage characteristics of the thermocouple.

In this chapter the SMA-Constantan thermocouple is characterized and modeled. The

procedures adopted in joining SMAs and Constantans to form a bi-material junction is

explained in section 2.2. Although SMAs exhibit an inherent non-linearity in Seebeck co-

e�cients, the Seebeck Voltage of the thermocouple developed shows a linear relationship

with tip temperature. The experimentally determined linear �t is discussed in section 2.3.

The dependence of this equation on ambient temperatures is studied in section 2.4 and is
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modeled in section 2.6. As thermocouples quantify temperature changes, a reference viz. an

ice-bath is used to determine the actual temperature. An ergonomic approach in attacking

the problem of having an ice-bath is discussed and modeled in section 2.7.

2.2 Fabrication of SMA-Constantan Thermocouple

The Seebeck coe�cient, or the thermoelectric sensitivity of the material, re�ects the ease

with which the valence electrons of a material polarize upon enforcing a thermal gradient. A

thermocouple utilizes this principle and magni�es the e�ective voltage output by engaging

a pair of dissimilar materials. The relative Seebeck coe�cient (SAB) of materials with

individual Seebeck coe�cients SA and SB is given by:

SAB = SA − SA =
∆VB
∆T

− ∆VB
∆T

(2.1)

where ∆VA and ∆VA are the thermoelectric voltages developed across the terminals of

materials A and B due to a temperature gradient of ∆T . The sensitivity of the thermocouple

is magni�ed by a prudent choice of materials, one having a positive Seebeck coe�cient and

the other with a negative Seebeck coe�cient. Previous research (Yoshida et al. [2000]),

has shown that an SMA has a positive thermoelectric sensitivity (or Seebeck coe�cient) all

throughout its phase transformation cycle. Figure 2.1 shows a thermocouple formed when a

negative Seebeck Coe�cient (-35mV/K) material Constantan is paired with a Flexinol wire

(from Dynalloy [2011]). Flexinol and Constantan wires of equal diameters have been welded

using a capacitive discharge spot welder to form a bimetallic junction. The bare terminals

of both the materials have been welded with copper wires.

The thermoelectric electromotive force (emf) developed in one copper wire, due to the

temperature gradient, is nulli�ed with the emf generated by the other copper wire. Hence,

the voltage generated across the free copper terminals is the di�erence between the emfs

generated across the SMA and the Constantan wires. This is the Seebeck Voltage of the

SMA-Constantan thermocouple. A reference temperature is required at the other end of

the thermocouple wires to measure the temperature at the SMA-Constantan junction. The

reference temperature junctions in Figure 2.2, namely, the SMA-Copper and the Constantan-

Copper junctions, are maintained at 0o C at the terminal block by an ice and water bath.
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Figure 2.1: SMA-Constantan thermocouple

Figure 2.2: Electrical circuit using SMA-Constantan thermocouple
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The voltage developed due to the temperature gradient across the dissimilar materials is

measured at the bare copper terminals.

2.3 Linear characteristics of Thermocouple

The next step is to characterize the thermocouple and establish a relationship between the

tip temperature of the thermocouple and the terminal voltage of the thermocouple. In a

preliminary study performed in order to determine the required range of temperature mea-

surement, it is observed that the transformation temperatures of Flexinol lie within the

temperature range of [293K 298K] at a stress-free state. The thermoelectric voltage and

temperature characteristic is measured by heating the tip of the bi-material thermocou-

ple.The SMA-Constantan junction is inserted in a cold water bath and the water is heated

from 283 K to 358 K using a heat pan. Repeatability of the Seebeck voltage-temperature

trend is observed with di�erent rates of heating water and with di�erent diameter thermo-

couple pairs. To con�ne the transformation of NITINOL (a Nickle - Titanium alloy) to

the thermocouple junction, the SMA-Constantan junction is placed just below the water

surface. A K-type thermocouple is also placed at the same horizontal level as the tip of the

SMA-Constantan thermocouple pair to avoid the e�ect of thermal gradient in the water.

Throughout the experiment, the temperature of the reference junction is maintained at 273

K.

The thermoelectric voltage of the SMA-Constantan thermocouple is recorded along with

the temperature obtained from the K-type thermocouple. The SMA-Constantan thermo-

couple characteristic relation is plotted in Figure 2.3. The heating curve (red) corresponds

to the relationship between the thermocouple voltage and temperature during thermal load-

ing, and the cooling curve (blue) gives relationship during the thermal unloading. The water

is cooled by placing the setup in an ice water bath. Negligible e�ect on the thermoelectric

voltage characteristic due to the rate of heating or cooling is recorded. The slope of the

thermoelectric voltage temperature characteristic gives the relative Seebeck coe�cient of

SMA-Constantan pair as seen in Figure 2.4.

A slight hysteric behavior is observed in the thermoelectric voltage characteristic of the

SMA-Constantan thermocouple. In this case, to avoid the chaotic motion at the surface of

the water, a small portion of the thermocouple is inserted in water. Thus, as the tip of the

SMA-Constantan thermocouple is heated and rest of the room temperature is maintained
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Figure 2.3: Thermoelectric Voltage vs. Temperature

Figure 2.4: Relative Seebeck Coe�cient Characteristic
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at a constant room temperature, a negligible hysteretic behavior is observed.The shorter the

SMA wire is in the water the closer the heating and cooling curves. It was later observed

that a heat shrink rubber tube, used to insulate the SMA-Constantan thermocouple from

the change in room temperature, e�ciently insulates the SMA-Constantan thermocouple.

It protects the electrical circuit made out of the SMA-Constantan thermocouple from being

grounded. Electrical contact of SMA or Constantan bare wires, at any other place other

than the tip of the thermocouple results in change in Seebeck voltage. With the help of the

MATLAB curve �tting tool box (MATWORKS [1998]) a linear �t and a quadratic �t are

obtained for the data for di�erent cycles and the best set of equations are presented here.

The linear �t corresponding to Heating curve is given by

T = 18810Vsma + 274.277. (2.2)

The linear �t corresponding to Cooling curve is obtained by

T = 19430Vsma + 273.950. (2.3)

The linear �t corresponding to Average of Heating and Cooling curves is given by

T = 19120Vsma + 2734.1139. (2.4)

where T is the temperature corresponding to the Seebeck voltage Vsma. The quadratic �t

corresponding to heating curve is obtained by

T = −3.978× 105V 2
sma + 2.106× 104Vsma + 272.8985. (2.5)

The quadratic �t corresponding to cooling curve is obtained by

T = 9.276× 103V 2
sma + 1.886× 104Vsma + 274.234. (2.6)

The quadratic �t corresponding to average of heating and cooling curves is obtained by

T = −2.035× 105V 2
sma + 1.996× 104Vsma + 273.566. (2.7)

as before T is the temperature corresponding to the Seebeck voltage Vsma.
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Figure 2.5: Experimental setup for validation of Seebeck Voltage relation

To validate the thermoelectric Voltage-Temperature characteristic of the SMA-Constantan

thermocouple the temperature, distribution at three points along the length of an aluminum

cantilever beam is measured. The cantilever beam is heated at one end with the help of

a heating pan. Both the SMA-Constantan thermocouple and the K-type thermocouple

are put in place with the help of another supporting cantilever beam. The temperature

measured using a K-type thermocouple is used as a reference for comparison with an SMA-

Constantan thermocouple. The thermocouples are positioned such that only the tips of the

thermocouple lie on the beam to be heated. An ice-water bath is taken to be one of the

reference temperatures for the SMA-Constantan thermocouple. The beam is heated from

room temperature to 363K and allowed to cool back to room temperature naturally. Three

di�erent points are selected along the length of the beam and the temperature is measured,

as shown in Figure 2.5. The temperature of the pan is raised at several intervals.

The temperature of the cantilever beam is computed from the Seebeck voltage of the

SMA-Constantan thermocouple pair using the linear �t and quadratic �t. The heating,

cooling and average of the heating and the cooling relations for the linear �ts are compared

with the temperature obtained by the K-type thermocouple and the results are plotted in
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Figure 2.6: K-type thermocouple and linear �t validating the Seebeck Voltage -Temperature
relationship

Figure 2.7: K-type thermocouple and quadratic �t validating the Seebeck Voltage -
Temperature relationship
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Figure 2.6 1. It can be seen from this plot that the heating relationship predicts a tempera-

ture much closer to the actual temperature measured using a K-type thermocouple. Similar

plot for the quadratic �t can be seen in Figure 2.7 1. Contrary to the linear �t, the cooling

relationship predicts a better temperature than the heating and average relationships.

Figure 2.8: Comparison of error % between linear average �t and average quadratic �t

Upon comparing the error percentage of linear and quadratic �ts for average relationship

in Figure 2.8 1, it can be deduced that the linear �t has less of an error than the quadratic

�t for all points. The maximum error for both the linear and quadratic �ts is less than

0.8% for POINT 1, and less than 0.4% for the other two points. This shows that the the

Seebeck Voltage of an SMA-Constantan thermocouple can be approximated with a linear

relationship with temperature.

Among linear relationships it is observed that the heating relationship �ts much better

than the cooling relationship or the average relationship for POINT 1 and POINT 2. But for

POINT 3 the average relationship gives a better temperature prediction. As a temperature

reference, K-type thermocouples are placed near each SMA-Constantan thermocouple; both

1For interpretation of the references to color in this �gure legend, the reader is referred to the web

version of this article.
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Figure 2.9: Comparison of error % between heating, cooling and average �ts for linear
relation

these thermocouples are placed at the same longitudinal distance from the heating source.

These results show that the transient temperature variation along the width of the beam is

more prominent at the point nearer to the heating source (i.e POINT 3) than other points.

The error percentage range of the heating relationship is [-0.2% 0.4% ] and that of cooling

relation is [0.1% 1.1%] as can be seen in Figure 2.9 1. This experiment shows that the linear

relationship of the heating relationship gives the best result among all the relationships.

In another experiment, the tip temperature of the thermocouple is varied from 268 K to

375 K to test and validate the equation for an extrapolated range of temperatures.The data

obtained from the K -type thermocouple and the temperature predicted using the linear

SMA-Constantan relation is plotted in Figure 2.10 1. A green shade and a yellow shade

emphasize the portion of data which is outside the range of the Seebeck voltage-temperature

characterization. From the plot, it can be inferred that the linear �t is predicted in the lower

temperature with an error of less than 0.4 %, and in the higher temperature ranges with

an error less than 0.7 %. This shows that the linear relation obtained can be extended for

lower and higher temperatures with an acceptable error.
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Figure 2.10: Checking the extrapolation of �t

2.4 Non-linearities due to ambient temperature

Contrary to the general laws of thermocouples, the room temperature plays an important

role in the case of an SMA augmented thermocouple pair. Ambient temperature of SMA wire

plays an important role in the phase transformation and thereby thermoelectric sensitivity

of SMA. The e�ect of change in the material properties of an SMA on the thermoelectric

laws of an SMA-Constantan thermocouple are discussed next.

Figure 2.11: Schematic of a SMA-Constantan thermocouple
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Consider an SMA �Constantan thermocouple with junction J and terminals A and B as

shown in the Figure 2.11. The voltage developed across a wire with terminal temperatures

TA and TJ , with a linear Seebeck voltage vs. temperature relationship is given by

VAJ =

∫ TA

TJ

Sambient dt (2.8)

where Sambient is the Seebeck coe�cient of a small length of wire ∆l having a temperature

gradient ∆t at ambient temperature. Neglecting the heating e�ects of the thermocouple due

to conduction at its terminals, the Seebeck voltage (SSMA,T1) developed across junctions A

and J at an ambient temperature T1 can be simpli�ed into:

VAJ = SSMA,T1(TA − TJ) (2.9)

The potential di�erence generated across the terminal A and B is given by:

VAB = SSMA,T1(TA − TJ)− SCon,T2(TB − TJ) (2.10)

Assuming that the terminal temperatures are TA = TB = T , and the Seebeck coe�cient

variation of Constantan is independent of ambient temperature, the above equation can be

rewritten in terms of a relative Seebeck coe�cient as:

VAB = (SSMA,T1 − SCon)(T − TJ) = Srel,T1(T − TJ) (2.11)

The relative Seebeck coe�cient of the compound system is dependent on the ambient

temperature; i.e as the ambient temperature changes, the Seebeck voltage vs. temperature

relationship shifts from the calibrated equation. If the reference temperature is at 0oC, the

above equation can be further simpli�ed into:

VAB = −Srel,T1TJ (2.12)

An SMA-Constantan thermocouple fails to follow the conventional laws of thermocou-

ple for homogeneous materials. The law of successive or intermediate temperatures is not

applicable for this case and poses a challenge.
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2.5 Experimentation

In the previous section, we have shown that the tip temperature of the developed sensor

depends on the ambient temperature. In this section, we experimentally investigate and

model this relationship. To detect the e�ect of ambient temperature on this sensor, the

thermocouple is placed inside a temperature controlled environmental chamber (Teenney

environmental chamber, Model: 36ST). A schematic of this experiment is presented in

Figure 2.12 and the details of the di�erent equipment used are shown in Figure 2.13.

Figure 2.12: Schematic of an experiment varying the ambient temperature of a SMA-
Constantan thermocouple

Initially the temperature in the chamber is set to a desired value and then the exper-

iments on the thermocouple is conducted. When the chamber temperature has reached a

steady state, the tip temperature of the thermocouple is varied from 0oC to 180oC using a sil-

icone -type �exible heater (SILICONE RUBBER HEATER-Omega Model: SRFG-102/10).

The ends of this thermocouple are connected to a terminal ice block maintained at 0oC.

Due to the change in temperature at the tip of the thermocouple, the Seebeck voltage is

generated at its terminals. This is measured by a data acquisition system (National Instru-

ments PXI, Model: PXI 1031,PXI-4472,PXI-6259,PXI-6115). This experiment is repeated

at di�erent chamber temperatures and both the Seebeck voltage developed and the chamber
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temperature is recorded. In Figure 2.14, it can be observed that the slope of the relation-

ship, between Seebeck Voltage and junction temperatures, is altered with di�erent ambient

temperatures.

Figure 2.13: Experimental setup varying the ambient temperature of a SMA-Constantan
thermocouple

If any one of the phase transformation temperatures lie in the range of a change in

the room temperatures, the ratio of Martensitic phase to Austinite phase in SMA is liable

to change with ambient temperature of the thermocouple. In order to determine the tip

temperature of the SMA �Constantan thermocouple, the relationship between the relative

Seebeck coe�cient and ambient temperature has to be determined. Although the Seebeck

coe�cient of an SMA has a nonlinear hysteretic behavior with temperature, the temperature

of the atmosphere surrounding the thermocouple is assumed to be constant during the

experiment. Even when the ambient temperature is varying, the slow rate at which the

SMA wire heats up or cools down due to this change, supports the assumption of having a
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Seebeck coe�cient as a constant value.

Figure 2.14: Variation of Seebeck Voltage with Temperature

2.6 ANFIS - Forward Model

This section models the tip temperature of the thermocouple using the Adaptive Neuro

Fuzzy Inference System (ANFIS). Fuzzy models, in which the parameters of the model are

adaptively updated with iterations using Adaptive Neural Networks (ANNs), form the archi-

tecture of ANFIS. An input-output mapping re�ecting the nonlinear distributions of inputs

and outputs is constructed based on the experimental data. This black box technique has

Seebeck voltage and room temperature as inputs and, the SMA-Constantan tip temperature

as output. Initially, using suitable input-output data pairs, membership functions covering

the whole input-output space are computed. The initial untrained nonlinear Gauss mem-

bership functions have been computed using subtractive clustering functions in MATLAB.

The parameters of this set of membership functions are updated using the gradient descent

back propagation algorithm.

The number of fuzzy subspaces created by the membership functions determines the

capability of the ANFIS model to capture the nonlinearities in the input-output space. In
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order to determine the number of membership functions, the size of the cluster is varied,

and the error resulting from that con�guration is computed. Based on the RMSE errors

obtained from those preliminary models, the cluster size with the least predictive error is

chosen. The cluster radius determines the number of membership function generated by

the gen�s2 function. The inputs, the Seebeck voltage and the room temperature, and the

output tip temperature, are normalized before feeding them into the subtractive clustering

algorithm.

Figure 2.15: Optimum membership functions for ANFIS forward model

In order to choose the optimum number of fuzzy rules and antecedent membership func-

tions, the cluster radius has been varied from 0.07 to 0.5, and each model has been tested for

sets of training data and checking data for 50 epochs. Gen�s2 uses least squares estimation

to determine each rule's consequent equations. The e�ect of increasing the cluster radius

on the training RMSE and checking RMSE is plotted in Figure 2.15. At a cluster radius

of 0.1, a model of 31 rules and membership functions is observed to give a lower training

and checking RMSE. As a large number of data points have been fed into the model, the

comparatively higher fuzzy membership functions do not lead to over �tting of the data.

A Sugeno � type Fuzzy Inference System (FIS) structure is modeled by a hybrid learning
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Figure 2.16: ANFIS forward model for SMA-Constantan thermocouple

Figure 2.17: Tuned Seebeck voltage input membership function of ANFIS forward model
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Figure 2.18: Tuned Room Temperature input membership function of ANFIS forward model

Figure 2.19: Change in RMSE with epoches ANFIS forward model
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Figure 2.20: The �nal fuzzy rule surface

procedure using the initial membership functions developed. The structure of this model is

shown in Figure 2.16. The ANFIS command in MATLAB iterates a hybrid of least squares

estimation -method and gradient descent algorithm until the desired performance criteria

are met.

The tuned input membership functions of Seebeck voltage and ambient temperature are

plotted in Figure 2.17 and Figure 2.18. The �nal rule base formed by the ANFIS forward

model is given by Figure 2.20. The change in training error and testing error with each

epoch can be seen in Figure 2.19. As expected from an iterative learning algorithm, the

RMSE reduces with training and the generalizing capability is veri�ed using the checking

error. The �nal training RMSE is 0.3638oC and the �nal checking error is 0.3701oC. The

prediction capabilities of the ANFIS model for the training data of the case when the room

temperature is 12oC, can be seen in Figure 2.21. The correlation coe�cient for this case is

0.998 and the corresponding plot is shown in Figure 2.22.

The prediction model developed from these limited data points should allow the utiliza-

tion of this information to generalize the nonlinear behavior over the entire domain, and

applied in any dynamic situation. The ANFIS model was trained with data at eight di�erent

room temperatures from 10oC to 35oC and a tip temperature ranging from 0oC to 180oC.
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In order to test the generalization capabilities of the model, the data at room temperatures

di�erent from those used in training, is fed into the model. The error for room temperatures

17o and 22o are plotted in Figure 2.23. The model is capable of predicting the validating

error with an accuracy under ±2o.

Figure 2.21: Training data of ANFIS forward model

2.7 ANFIS - Inverse Model

In order to have a reference temperature for the system, the terminals of the thermocouple

are placed in an ice-water bath. The use of an ice-water bath is not practically feasible in

space constraint applications. In order to replace this ice-water bath, the di�erential Seebeck

voltage, due to the change in terminal junction temperature, has to be compensated.

From equation 2.11, the voltage across an SMA-Constantan thermocouple can be written

as a sum of an SMA Constantan thermocouple and a zero compensation voltage.

VAB = Srel,T1(−TJ) = Srel,T1(0− Troom)︸ ︷︷ ︸
Inverse ANFIS model

+ Srel,T1(Troom − TJ)︸ ︷︷ ︸
SMA-Constantan thermocouple

(2.13)

The zero-compensated di�erential voltage is obtained from an inverse ANFIS model,
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Figure 2.22: Correlation plot corresponding to the training data and ANFIS predicted data

Figure 2.23: Validation of ANFIS forward model
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where room temperature is an input and the Seebeck voltage is an output. Because an AN-

FIS model inherently requires two inputs, a two-column room temperature matrix is fed into

the model as an input. An inverse ANFIS model with eight Gaussian membership functions

is trained using 8,700 data points. Similar to the other ANFIS models, the membership

functions have been obtained using the subtractive -clustering method. The optimum clus-

ter radius is 0.5 for this case. The model has a training RMSE of 1.5084 × 10−5 Volts and

a checking RMSE of 1.5565× 10−5 Volts. The correlation graph is plotted in Figure 2.25.

Figure 2.24: Flowchart for working model of thermocouple

The �ow process involved in determining the tip temperature of an SMA-Constantan

thermocouple when integrating inverse ANFIS model with forward ANFIS model is pre-

sented in Figure 2.24. As can be seen in this �owchart, the room temperature obtained

from a K-type thermocouple, or an internal thermistor, is su�cient in determining the tip

temperature of the SMA-Constantan thermocouple. In order to obtain the actual Seebeck

voltage if there had been a reference ice -bath, the Seebeck voltage compensated for the ref-

erence temperature is added with the Seebeck voltage. This total Seebeck voltage and the

room temperature is fed into the forward ANFIS model to determine the tip temperature.
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Figure 2.25: Co-relation plot of Inverse ANFIS model

2.8 Conclusion

In order to determine the state of SMA wires during actuation, a sensor that measures the

temperature using a bi-material junction was developed. Wires of SMA and Constantan

are brought together to form a thermocouple. The Seebeck voltage developed across the

thermocouple due to the change in tip temperature, can be characterized using a linear

relationship at a constant room temperature. In this section, the dependence of room

temperature on the Seebeck voltage �tip temperature relationship is studied. The output of

the developed ANFIS model shows a good correlation with the experimental data. In order

to simplify the use of the sensor, an inverse ANFIS model was developed to eliminate the

reference temperature.
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Chapter 3

Study of Strain Characteristics of SMAs

3.1 Introduction

Despite the unique ability of SMAs to recover strain upon application of heat, SMAs have

highly complex nonlinear dynamics that limit applicability and utility of SMAs to simple

actuation tasks (Ruo� [1985]). It is not easy to control the degree of strain in an SMA

wire. New mechanisms and techniques need to address the nonlinear problems associated

with the actuation of SMA wires. The design and development of a sensor that can detect

temperature, which is critical to the degree of phase transformation is discussed in the

last chapter. The focus of this chapter, is the application of various black-box modeling

techniques to understand the nonlinear behavior of SMAs. Various models based on soft-

computing methods were developed using experimental data. The prediction capabilities of

these models are compared and studied in this chapter.

3.2 Closed - Loop Feedback

Directly or indirectly, a change in temperature is required to actuate any SMA device. The

speed of actuation of this device is dependent on the rate at which the temperature of

the SMA wire changes, whereas the degree of actuation depends on the magnitude of the

temperature change. In order to control the level of actuation of such devices, the hysteretic

relationship between the source of temperature and the strain characteristics of SMA is to

be established.
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The cause-e�ect relationship between the temperature and strain of an SMA wire makes

temperature a critical variable in analyzing the strain characteristics of SMAs. The ther-

moelectric voltage measurements from the SMA-Constantan thermocouple gives feedback

of the changes in tip temperature of the thermocouple. The potential di�erence created

across the ends of an SMA wire results in a change in its temperature. An SMA-Constantan

thermocouple in contact with this actuator can read these changes in temperature. A rela-

tionship between the temperature and strain characteristics of the SMA wire is required to

predict the dynamics of this system.

Figure 3.1: Closed loop position tracking system

The variables related to the strain characteristics of SMAs and the approach required
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to model these nonlinearities is discussed in this chapter. The ANFIS and ANN modeling

methodologies are used to understand and learn the path dependence of SMAs. Based on

these models an algorithm is designed to control the actuator characteristics of any SMA

device. The block diagram in Figure 3.1 shows a closed-loop system based on ANFIS models.

The di�erent ANFIS models involved in monitoring the present position of the system, and

then realizing the voltage required to track a prede�ned path, are listed and described below:

• Desired Displacement vs. Output Voltage model: The system in the block diagram

corresponds to an SMA device. Depending on the required position of the system, this

model predicts the required voltage to be applied across the terminals of the SMA. The

desired displacement-output voltage relationship of this model is a nonlinear hysteresis.

A time-delay input is introduced in the control-loop to predict the path dependent

output-voltage of this model. Displacements at times t and t+1 are considered as the

inputs to this model.

• Temperature vs. displacement model: The next step is to determine the change in

position of the system. This model predicts the position of the system of SMA wires

from the feedback temperature of the activated SMA obtained from the Seebeck volt-

age vs. temperature model discussed in the previous chapter. As the strain of the

SMA wires is a path dependent hysteric behavior, the input should also include time

in the form of a delayed variable. This model represents the non-linear map of an

SMA temperature at times t and t-1 with the strain of the SMA wires.

3.3 Experimental Setup

Experimental data is required to build and validate the proposed modeling approaches.

Figure 3.2 shows the experimental setup utilized to record the strain characteristics of an

SMA wire. A Flexinol SMA wire of diameter 0.005 inches and a length of 14 inches is

considered in this experiment. To maintain a constant stress, a weight of 200 grams is

suspended on a SMA wire that is secured at both ends to a non-conductive frame.

In order to capture the strain variation of the SMA with temperature, the terminals of

the SMA wire are subjected to a periodic sinusoidal voltage. The NI DAQ system is used to

vary the amplitude and frequency of the sinusoidal voltage generated. This voltage signal is
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Figure 3.2: Experimental setup for studying strain characteristics of SMAs
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ampli�ed by a HP 6825A bipolar ampli�er before it is applied to the SMA wire. This input

indirectly heats and cools the SMA wire periodically allowing the SMA to transform from

Martensitic state to an Austinite state, and vice versa.

Figure 3.3: Schematic of the di�erent equipment utilized in this experimental setup

The alternate rise and fall in temperature of an SMA results in the contraction and

expansion of the SMA wire, which causes a periodic displacement of its weight. The con-

traction of the SMA wire is obtained by measuring the displacement of the suspended weight

with the help of a laser displacement sensor.

The change in temperature of this SMA wire is captured through the Seebeck voltage

of an SMA-Constantan thermocouple. SMA and Constantan wires with diameter of 0.005
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inches are selected, and a bi-material junction is formed by a capacitive discharge-welding

machine. As the Seebeck voltage of a thermocouple is generated due to a temperature

gradient across the terminals of a thermocouple, the free ends of this sensor are placed

in an ice-water bath. This gives rise to the Seebeck voltage generated due to the actual

temperature of the bi-material junction. A K-type thermocouple is employed to measure

room temperature.

The characteristic response of an SMA wire is a�ected by variation of both amplitude

and frequency of excitation. The variation of either one of these values result in multiple

hysteresis loops. The in�uence of these factors on the nature of actuation is studied by

conducting experiments at di�erent values of amplitude and frequency of sinusoidal voltage.

Experiments were conducted by varying the input voltage from 6 to 10 volts in steps of

0.1 volts, and frequencies from 0.01 Hz to 0.2 Hz in steps of 0.01 Hz. The Seebeck voltage

and the displacement measurements are recorded by NI PXI data aquisition system. The

di�erent equipment used in the experimental setup is shown in Figure 3.3

3.4 Single-Loop Hysteresis

SMAs display highly complex hysteretic curves which are di�cult to model. In such sit-

uations, the applicability of the soft computing methods which handle hysteretic path de-

pendent nonlinearities has to be veri�ed. The predictive capabilities of the neuro-fuzzy and

the neural networks techniques are tested on a simpler model consisting of a single-loop

hysteresis. As detailed in the previous section, two major relationships, the Temperature

vs. displacement and the Displacement vs. Output Voltage models will be discussed for a

single hysteresis-loop. The experimental data required to build these models is obtained by

activating the SMA wire with a sinusoidal voltage of amplitude 6.9 volts and frequency of

0.05Hz. The displacement of the weight is measured by the laser sensor and the Seebeck

voltage is recorded by the thermocouple.

3.4.1 Desired Displacement vs. Output Voltage Model

The hysteretic nonlinearities present in strain characteristics of SMAs are path dependent.

Hence, the voltage required for the pendulum to maneuver a trajectory at time t is assumed

to depend on the displacements of the pendulum at time t and time t+1. The displacement
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measurements at time t and time t+1, plotted in Figure 3.4, are fed as inputs to train both

ANFIS and ANN models.

Figure 3.4: Input vectors to predict voltage for single loop hysteresis models

3.4.1.1 ANFIS model

The �rst step in modeling using an ANFIS method is to construct a set of membership

function. Initial membership functions are obtained by feeding input-output data pairs

into a grid clustering algorithm. The e�ect of the number of membership functions and

the prediction capabilities is studied. Figure 3.5 shows that as the number of membership

functions in the ANFIS model increases, the RMSE decreases. For 526 sets of data points,

gen�s1 function in MATLAB results in 11 Gauss membership functions with 121 fuzzy if-

then rules. Using this set of rule base, the parameters of the model were tuned using neural

networks. The change in RMSE with epoches is plotted in Figure 3.6. The �nal model has

a RMSE error of 0.2922. The comparison of the output voltage predicted by the ANFIS

model with the experimental data is shown in Figure 3.7. This plot shows that the ANFIS

model is able to predict the di�erent trends of output with reasonable accuracy. Figure 3.8

demonstrates that the ANFIS model is able to capture and predict the hysteretic behavior

of the displacement with voltage applied across the length of the SMA wire.
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Figure 3.5: E�ect of membership functions on single loop ANFIS displacement vs. voltage
model

Figure 3.6: Variation of RMSE with epoches for single loop ANFIS displacement vs. voltage
model
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Figure 3.7: Comparison of experimental voltage with single loop ANFIS predicted voltage

Figure 3.8: Single loop displacement vs. output voltage hysteresis
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3.4.1.2 Neural Networks model

The input-output data sets employed in the previous subsection for the ANFIS model is

utilized to build an ANN model. A feed-forward, back-propagation network with ten hidden

neurons, model a single-loop hysteresis system. The variation of error with iteration is shown

in Figure 3.9. In this �gure, it is seen that there is an initial drop of a RMSE value from 0.55

to 0.35, but as the number of iterations increases, the RMSE value �uctuates between 0.35

to 0.46. The ANN predicted voltage values in Figure 3.10 follow and track the experimental

data. At low voltages, this model is unable to predict accurately and has a lot of noise

in the prediction. The hysteresis prediction of this model is displayed in Figure 3.11. The

capabilities of ANN to predict nonlinear hysteretic relations is seen in this �gure.

The same data utilized for making the ANFIS model is also employed for this model.

A feed-forward, back-propagation network is created based on the input-output data sets.

Fifteen hidden neurons have been used to make this model. For this single -loop system, a

neural network is able to capture the dynamics of the system.

Figure 3.9: Variation of RMSE with iterations for a single -loop ANN displacement vs.
voltage model
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Figure 3.10: Comparison of experimental voltage with single -loop ANN predicted voltage

Figure 3.11: Single loop displacement vs. output voltage hysteresis
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3.4.2 Feedback Temperature vs. Displacement Model

A temperature vs. displacement model appears in the feedback line of the closed-loop

system and predicts the position of the weight. As explained before, the displacement of the

weight suspended on an SMA wire is due to the temperature-induced phase transformation.

As the voltage in the SMA wire increases, the temperature of the wire increases and the

SMA wire contracts. The temperature of the SMA wire is recorded by the SMA-Constantan

thermocouple previously developed. In this model the relationship between this temperature

and the displacement of the pendulum is established. The experimental data recorded is

both path-dependent and time-dependent. Thus, in order to track the path of the system,

time history has to be utilized. To predict the position of the pendulum at a time t it is

assumed to be related to the temperatures at time t and t-1. ANFIS and ANN models

have been constructed based on the experimental data and their predictive capabilities are

compared.

3.4.2.1 ANFIS model

The �rst step of building a neuro-fuzzy model is to construct membership functions. For this

set of data points, a grid partitioning method is used to determine the initial membership

functions. The change in RMSE with number of membership functions is shown in Figure

3.12. As the distribution of data points is crucial in determining the initial fuzzy membership

function, a nonlinear sampling is employed in feeding inputs into the model and is shown

in Figure 3.13. The initial membership functions are prepared based on these input data

sets by using the gen�s1 function in MATLAB. Using 10 membership functions and 100

fuzzy rules, the initial model is prepared. After 300 epoches, the RMSE error has reached

a value of 0.043, as seen in Figure 3.14. This model is able to predict the displacement of

the pendulum based on the inputs of temperature histories. The model tracking the actual

experimental data is seen in Figure 3.15. The ANFIS model is able to capture the nonlinear

path dependence of displacement with temperature. This trend is shown in Figure 3.16.
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Figure 3.12: E�ect of membership functions on single loop ANFIS temperature vs. displace-
ment model

Figure 3.13: Input vectors to predict displacement for single loop hysteresis models
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Figure 3.14: Variation of RMSE with epoches for single loop ANFIS temperature vs. dis-
placement model

Figure 3.15: Comparison of experimental displacement with single loop ANFIS predicted
displacement
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Figure 3.16: Single loop temperature vs. displacement model hysteresis
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3.4.2.2 Neural Networks model

To study the prediction capabilities of arti�cial neural networks, a temperature vs. dis-

placement relationship is modeled in this subsection using experimentally obtained data.

A feed-forward back-propagation network is created based on the input-output data sets

prepared for the ANFIS model in the last subsection. Ten hidden neurons have been used

to make this model. The variation of error with iteration is shown in Figure 3.17. This

plot shows that the RMSE is not consistent; i.e., it is neither increasing nor decreasing with

iterations. Figure 3.18 points out that the ANN predicted displacement lies on top of the

experimental data. The predicted data of this model is able to track the experimentally

obtained hysteresis curve. This trend is evident in Figure 3.19.

Figure 3.17: Variation of RMSE with iterations for a single loop ANN temperature vs.
displacement model
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Figure 3.18: Comparison of experimental displacement with single loop ANN predicted
displacement

Figure 3.19: Single loop temperature vs. displacement hysteresis
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3.5 Multi-loop characteristics - Amplitude variation

As seen in the previous sections, soft-computing techniques like ANFIS and ANN have been

employed to model the nonlinear behavior of a single-looped hysteretic curves. Comparing

the ANFIS displacement vs. voltage model with the ANN model, it is observed that both

these models are able to capture and predict the nonlinear hysteretic behavior of a single-loop

system with reasonable accuracy. It is observed that both ANN and ANFIS temperature

vs. displacement models are able to track the position of the weight with temperature as

the feedback variable. It is noted that in both single loop hysteresis cases, the RMSE of

ANFIS models reduce with iterations while no consistent behavior is seen for the ANN

models. Taking the prediction capabilities of all these models into consideration, it is noted

that both the ANFIS and the ANN techniques are able to capture nonlinear dynamics of a

single-loop system.

In this section, the learning capabilities of these soft-computing methods have been

veri�ed for single-loop hysteretic curves; using these methods, multi-loop hysteresis curves

will be modeled. Firstly, the e�ect of the amplitude of voltage on the hysteresis is studied,

then the response of an SMA due to the variation of frequency, is studied. During numerous

experiments, sinusoidal voltage signals with di�erent amplitudes and constant frequency is

applied to the terminals of the SMA wire. Although the amplitude of the voltage signal is

varied from 6 to 10 volts in di�erent experiments, the frequency is kept constant at 0.05 Hz.

Displacement of the pendulum, the Seebeck voltage of the SMA-Constantan thermocouple

and the output voltage measurements are recorded using LABVIEW and NI-DAQ system.

A part of the experimental data is selected for training these soft-computing methods. The

modeling techniques employed using these techniques are discussed in this section.

3.5.1 Desired Displacement vs. Output Voltage Model

Similar to the previous models, this model also assumes that the voltage applied to the SMA

wire is dependent on the time-shifted displacement signal. This, for the pendulum to be at

a required position at time t, the voltage to be applied to the system at time t is dependent

on the future position of the pendulum, i.e. its position at time t+1. Experimental data

points used as input vectors to train the soft-computing models are plotted in Figure 3.20.

As the data acquisition system has a uniform sampling rate, and the displacement of the
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pendulum is highly nonlinear, the sampling distribution of the data points experimentally

collected is also nonlinear. Nonlinear distribution of data points results in undue importance

at a particular portion of the data set, which results in a unreliable model. To avoid this,

a complex re-sampling method is employed to uniformly distribute data points throughout

its domain. The distortion in shape of the inputs is due to this sampling method.

3.5.1.1 ANFIS model

Initial membership functions are obtained by feeding input-output data pairs into a subtrac-

tive clustering algorithm. The radius of the cluster is varied in search of an optimum rule

base with minimum error. For 4,845 sets of data points, a cluster radius of 0.07 computes

113 Gauss membership functions using gen�s2 function in MATLAB.

The parameters of this set of membership functions are updated using the gradient

descent back propagation algorithm. Figure 3.21 displays the transition in root mean squared

error (RMSE) with epochs. As expected, the RMSE initially reduces with epochs and �nally

reaches a plateau to 0.294. The comparison of the output voltage predicted by the ANFIS

model with the experimental data is shown in Figure 3.22. This plot shows that the ANFIS

model is able to predict the di�erent trends of output with reasonable accuracy.

Figure 3.23 shows the hysteretic behavior of the displacement when the voltage is applied

across the length of an SMA wire. It is noted that for each cycle, the model is able to learn

the non-linearity of the output. Although the model works for training data, what is more

important is the model's ability to generalize the fuzzy rules and interpolate this behavior to

other data. The interpolation capabilities of this black box system are validated by testing

the model with a data set corresponding to an output voltage of 6.5 volts. This data set

has not been used in building and training the parameters of the model. The experimental

results are plotted along with the ANFIS predicted points in Figure 3.24 for this data set.

The predictions from the model accurately track the experimental results. This ability

of the model to predict and generalize the fuzzy rules for any data validates the learning

capabilities of the model.
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Figure 3.20: Input vectors to predict voltage for multi-loop hysteresis models

Figure 3.21: Variation of RMSE with epoches for multi-loop ANFIS displacement vs. voltage
model
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Figure 3.22: Comparison of experimental voltage with multi-loop ANFIS predicted voltage

Figure 3.23: Hysteresis multi-loop displacement vs. voltage model
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Figure 3.24: Validation of multi-loop ANFIS predicted Voltage

59



3.5.1.2 Neural Networks model

Arti�cial neural networks uses experimental data points to train its parameters to develop

a model capable of understanding and learning the nonlinearities present in this system.

The data set with nonlinear sampling, previously used, is also used to build a �fteen hidden

neuron model. The RMSE varies from a value of 0.65 to 0.9 volts with iterations, which is

plotted in Figure 3.25. The voltage predicted by this model with displacement as input is

compared with the actual experimental data in Figure 3.26. This model is able to capture

the peaks of voltage at lower amplitudes. ANN is unable to predict the variation of strain

dynamics of SMAs with a voltage. The hysteresis prediction of this model is shown in Figure

3.27. This plot shows that the ANN model is able to detect the presence of inner loops, but

it is unable to track the exact path of the pendulum.

Figure 3.25: Variation of RMSE with iterations for a multi-loop ANN displacement vs.
voltage model
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Figure 3.26: Comparison of experimental voltage with multi- loop ANN predicted voltage

Figure 3.27: Multi-loop displacement vs. output voltage hysteresis
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3.5.2 Feedback Temperature vs. Displacement Model

In the last experiment, the voltage required for the pendulum to track a desired path is

modeled. In this subsection, a model is developed to monitor the kinematics of the pendu-

lum. Multi input-single-output models with temperatures at time t and t-1, as the inputs

and the displacement at time t as the output are developed in this section. The nonlinear

change of position of the pendulum gives rise to a nonlinear sample distribution. Such data

also attributes to poor prediction capabilities of the resultant model. As before, a nonlin-

ear re-sampling method is employed to uniformly distribute the data points throughout its

domain. The distortion of the shape of the inputs is due to this sampling method. The

variation of temperature corresponding to the amplitude of the voltage signal is evident

from Figure 3.28.

3.5.2.1 ANFIS model

An initial model of 140 rules is developed using a subtractive clustering algorithm in MAT-

LAB. These rules are tuned into an ANFIS model by training with 4,232 data points. The

RMSE reduces with epoches and reaches a steady value of 0.056 mm after 200 epoches. The

change in RMSE with epochs is plotted in Figure 3.29. The ANFIS model predicted dis-

placement is compared with the experimental data in Figure 3.30. As seen from this �gure,

the corelation between the model and experimental data is approximately one. The ANFIS

model predicts and tracks the experimentally obtained displacement signal with reasonable

accuracy. The previously made assumption of displacement having a time history depen-

dence on temperature is correct. The nonlinear behavior of displacement with temperature

is seen in Figure 3.31. As before the generalization and interpolation characteristics of this

nonlinear model is tested by feeding the experimentally obtained temperature path data in

ANFIS model. From the results shown in Figure 3.32, it can be inferred that the model

is able to track the path followed by the pendulum with a temperature history of any new

data with good accuracy.
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Figure 3.28: Input vectors to predict displacement for multi-loop hysteresis models

Figure 3.29: Variation of RMSE with epoches for multi-loop ANFIS displacement vs. voltage
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Figure 3.30: Comparison of experimental voltage with multi-loop ANFIS predicted displace-
ment

Figure 3.31: Multi-loop temperature vs. displacement hysteresis
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Figure 3.32: Validation Multi-loop ANFIS temperature vs. displacement model
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3.5.2.2 Neural Networks model

Multi-loop experimental data is used to build an ANN model which learns and predicts the

hysteretic nonlinearities present in the displacement characteristics of the pendulum. A feed-

forward back-propagation network is created based on the temperature and displacement of

the input-output data sets prepared for the last model. Fifteen hidden neurons have been

used to develop this model. The variation of error with iteration is presented in Figure 3.33.

The RMSE for this data oscillates between 0.094 to 0.106 mm and it does not converge

to a speci�c value. The displacement predicted by the ANN model is compared with the

experimental values in Figure 3.34. The ANN predicted data has followed and captured

the higher amplitude peaks in this case. From the hysteresis plot shown in Figure 3.35,

it is observed that although the model is able to capture maximum displacements of the

pendulum, it is unable to track the path followed by the pendulum.

Figure 3.33: Variation of RMSE with epoches for ANN temperature vs. displacement model
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Figure 3.34: Comparison of experimental displacement with multi-loop ANN predicted dis-
placement

Figure 3.35: Multi-loop temperature vs. displacement hysteresis
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3.6 Multi-loop characteristics - Frequency variation

In this section, the in�uence of frequency on strain characteristics of the system is studied.

During di�erent experiments, sinusoidal voltage with varying frequencies and constant am-

plitude is applied to the terminals of an SMA wire. Although the frequency of the voltage

signal is varied from 0.01Hz to 0.2 Hz in di�erent experiments, the amplitude is kept con-

stant at 8 volts. Displacement of the pendulum, the Seebeck voltage of the SMA-Constantan

thermocouple, and the output voltage measurements are recorded using LABVIEW and NI-

DAQ system. A part of the experimental data is selected for training these soft-computing

methods. The modeling techniques employed using these techniques are discussed in this

section.

3.6.1 Desired Displacement vs. Output Voltage Model

Similar to the previous models, this model also assumes that the voltage applied to the

SMA wire is dependent on the time shifted displacement signal. This model assumes that

displacement at time t and t+1 are su�cient to predict the voltage signal at a time t. Based

on this assumption ANFIS and ANN models have been created using the experimental

input shown in Figure 3.36. Similar to previously developed models a nonlinear re-sampling

method is engaged to uniformly sample the data.

3.6.1.1 ANFIS model

As previously discussed, the �rst step in setting up an ANFIS model is to build membership

functions. Initial membership functions are obtained by feeding input-output data pairs

into a Fuzzy -C Clustering method. For 4,501 sets of data points a rule base of 256 rules

is created using 16 membership functions of each input. The parameters of this rule-base

are tuned to �t the data by neural networks. The change in RMSE with epoches is plotted

in Figure 3.37. The RMSE value is initially high; however with epoches the error reduces

and converges to a value of 0.058 volts. The output voltage predicted by the ANFIS model

is compared with the experimental data in Figure 3.39. This plot demonstrates that the

ANFIS model is able to capture and predict the hysteretic behavior of the displacement

when a voltage is applied across the length of the SMA wire.
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Figure 3.36: Input vectors to predict voltage for multi-loop hysteresis models

Figure 3.37: Variation of RMSE with epoches for multi-loop ANFIS displacement vs. voltage
model
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Figure 3.38: Comparison of experimental voltage with multi-loop ANFIS predicted voltage

Figure 3.39: Hysteresis multi-loop displacement vs. voltage model
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3.6.1.2 Neural Network

The input-output data sets employed in the previous subsection for the ANFIS model is

utilized for building an ANN model. A feed-forward back-propagation network with �fteen

hidden neurons models a single-loop hysteresis system. The variation of error with iteration

can be seen in Figure 3.40. The RMSE valve varies with each iteration but lies in the range

of 0.96 to 1.12 volts. The voltage predicted by this model with displacement as input is

compared with the actual experimental data in Figure 3.41. This model is unable to capture

the peaks of the voltage at any frequency. The ANN is unable to predict the variation of

strain dynamics of SMAs with frequency. The hysteresis prediction of this model is plotted

in Figure 3.42. This plot shows that the ANN model is able to detect the presence of

multiple loops, but it is unable to track the exact path of the pendulum. The complexity

of this ANN model is unable to predict the voltage required by an SMA to track a speci�c

path.

Figure 3.40: Variation of RMSE with iterations for a multi-loop ANN displacement vs.
voltage model
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Figure 3.41: Comparison of experimental voltage with multi-loop ANN predicted voltage

Figure 3.42: Multi-loop displacement vs. output voltage hysteresis
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3.6.2 Feedback Temperature vs. Displacement Model

In this section, the relationship between the feedback temperature of the system and the

displacement of the pendulum is studied. As explained in previous sections, the temper-

ature - displacement models assume that it is a multi-input single-output model, where

temperatures at time t and t-1 are the inputs and displacement at time t is the output.

The experimentally recorded data points are re-sampled to achieve uniform distribution of

training data, resulting in the distortion of the shape of the inputs plotted in Figure 3.43.

Using experimental data, both the ANFIS and ANN models have been developed in this

subsection.

3.6.2.1 ANFIS model

An initial fuzzy model of 144 rules is developed using Fuzzy-C clustering algorithm in MAT-

LAB. These rules are tuned into an ANFIS model by training it with 4,501 sets of data points.

The RMSE values reduce with each epoch and settle at a value of 0.74mm at the end of

100 epoches as shown in Figure 3.44. The results of the ANFIS model are compared with

experimental values of the displacement of the pendulum in Figure 3.45.The model predicts

and tracks the experimentally obtained displacement signal with reasonable accuracy. The

previously made assumption of displacement having a time-history dependence on temper-

ature is proven to be correct. The nonlinear behavior of displacement with temperature is

seen in Figure 3.45. The model is able to track the path followed by the pendulum using

temperature history of the SMA wire as inputs with good accuracy.

73



Figure 3.43: Input vectors to predict voltage for multi-loop hysteresis models

Figure 3.44: Variation of RMSE with epoches for multi-loop ANFIS temperature vs. dis-
placement model
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Figure 3.45: Comparison of experimental displacement with multi-loop ANFIS predicted
displacement

Figure 3.46: Multi-loop temperature vs. displacement hysteresis
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3.6.2.2 Neural Network model

Multi-loop experimental data is used to build an ANN model that learns the hysteretic

nonlinearities which are required to predict the position of the pendulum. A feed-forward

back-propagation network is created based on the temperature and displacement input-

output data sets prepared for the last model. Fifteen hidden neurons have been used to

make this model. The variation of error with iteration is presented in Figure 3.47. The

RMSE for this data oscillates between 1.06 to 1.14 mm and is much higher than the ANFIS

model. The displacement predicted by the ANN model is compared with the experimental

values in Figure 3.48. This plot shows that the ANN predicted data has followed and

captured peaks and troughs in the experimental data. From the hysteresis plot shown in

Figure 3.49, it is observed that although the model is able to capture maxima and minima of

the displacement response, it is unable to track the precise path followed by the pendulum.

Figure 3.47: Variation of RMSE with iterations for a multi-loop ANN temperature vs.
displacement model

76



Figure 3.48: Comparison of experimental displacement with multi-loop ANN predicted dis-
placement

Figure 3.49: Multi-loop temperature vs. output displacement hysteresis
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3.7 Conclusions

This chapter focuses on the development of soft-computing models like ANFIS and ANN

models to capture and predict the nonlinear hysteretic behavior of displacement-voltage

relationship and temperature-displacement relationship. Initially, to verify the applicability

of these techniques, single-looped hysteresis curves have been modeled. Both ANFIS and

ANN models were able to capture and predict these curves with good accuracy. Results of

these models have shown that the learning algorithm of soft-computing methods is su�cient

to predict its properties.

In the later part of this chapter, multi-loop hysteresis curves have been modeled. The

in�uence of frequency and amplitude of the voltage signal on the strain characteristics of

SMA wires is studied with the help of ANFIS and ANNmodels. In general, it is observed that

the ANFIS model was able to train and predict with higher correlation towards experimental

data than the ANN models. The ANN models were unable to predict these nonlinear

hysteretic curves, while the ANFIS models have captured these trends.
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Chapter 4

E�ect of Time-Shift on ANFIS Modeling

4.1 Introduction

In the last chapter, single and multi-loop hysteresis of strain characteristics have been mod-

eled based on inputs storing information with one-second shift. These models have shown

that ANFIS has the ability to learn and adapt its parameters to these nonlinearities and

model them. In modeling these path dependent behaviors, it is assumed that for predicting

voltage, displacement at times t and t+1 are required as inputs, and temperature at times t

and t-1 are required to predict displacements of the pendulum. Initial models present in the

last chapter prove the concept that the time-shift analysis is able to capture the complex

strain characteristics of SMAs. This chapter studies and veri�es if the time-shift value of

this system has any e�ect on the prediction capabilities of the ANFIS model.

To study these nonlinearities, the time-shift of the variables is generalized as seen in

Figure 4.1. The displacement vs. voltage model assumes that the positions of the pendulum

at time t and t+n are needed to predict the voltage required by the SMA wire. In this

case, as the trajectory of the pendulum is pre-determined, the value of n can vary in both

negative and positive domains. This means that if the pendulum has to track a speci�c path

then the positive time indicates the future position of the pendulum and the negative time

indicates the past position of the pendulum. Similarly, the temperature vs. displacement

model requires temperatures at times t and t+m to predict the position of the pendulum.

As this model is positioned in the feedback line, the value of m can only be negative.
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Figure 4.1: Time-shift inclusion in ANFIS models

4.2 Time-Shift e�ect on Single Loop Hysteresis

The e�ect of time-shift on the prediction capabilities of ANFIS model will be �rst studied

for single loop hysteresis curves. As previously explained, based on the data collected

from various experiments, ANFIS models with di�erent time-shift values are built. The

performance characteristic of these models is studied and analyzed in this section.

4.2.1 ANFIS Desired Displacement vs. Output Voltage Model

Experimentally collected time-series data is used to predict the potential di�erence that

is required to actuate the pendulum to a desired position. This multi-input single-output

system has two inputs; one is the displacement at time t and the other at time t+n. In this

case, the value of n is varied from -3.7 sec to 4 sec in steps of 0.1 sec. For each value of n

twenty Gauss membership functions are created using the Fuzzy-C clustering method. Data

collected in an experiment in which a sinusoidal voltage signal with 0.05 Hz frequency and

8 volts amplitude is applied to the SMA wire. Each model is iterated untill the error value

reaches a steady value. The e�ect of time-shift and the number of memebrship functions

is explained in Appendix A. It is observed that in 300 epochs all the parameters of the
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membership functions are optimized. Figure 4.2 shows that at time t=0, the RMSE of the

model is maximum and its prediction capabilities are minimum. As the value of n is shifted

from zero, the error slowly reduces untill it reaches a minimum value. If the time is shifted

further it is observed that the error starts increasing again. The RMSE at the optimum

time-shift value of 2.2 sec is 0.1457 volts. The input displacement signals at this time-shift

are plotted in Figure 4.3.

The prediction capabilities of this ANFIS model are optimized by varying the number of

MFs and fuzzy if-then rules present in the system. New membership functions are created

using the grid partitioning type of clustering method. The e�ect of membership functions

on the predictive capabilities of this model is plotted in Figure 4.4. Finally an ANFIS model

with 196 fuzzy if-then rules and 14 membership functions has the lowest RMSE of 0.0778

volts. Voltage predicted by this model is compared with the actual voltage signal in Figure

4.5. This plot shows that the ANFIS model is able to capture and learn the nonlinearities

present in the displacement vs. voltage relationship. The corresponding hysteretic curve is

plotted in Figure 4.6.

Figure 4.2: E�ect of time-shift on single loop ANFIS displacement vs. voltage model
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Figure 4.3: Inputs of optimized single loop ANFIS displacement vs. voltage model

Figure 4.4: In�uence of membership functions on single loop ANFIS displacement vs. voltage
model
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Figure 4.5: Comparison of ANFIS predicted voltage with experimental data

Figure 4.6: Single loop displacement vs. output voltage hysteresis
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4.2.2 ANFIS Feedback Temperature vs. Displacement Model

In the feedback loop of the proposed closed-loop system, it is essential that the temperature-

displacement model predicts the position of the pendulum precisely. To achieve better

learning and generalizing capabilities, the time-shift value is varied and numerous models

are prepared from experimentally obtained data. The prediction capabilities of these models

are compared with each other and the optimum value of the time-shift is determined. In this

case, as temperature is a feedback variable, the value of m is varied from 0 sec to -3.7 sec in

steps of 0.1 sec. For each value of m, twenty Gauss membership functions are created using

the Fuzzy-C clustering algorithm. Each model with di�erent values of time-shift is trained

and the RMSE after 300 epochs is noted and compared. A sample ANFIS program is present

in Appendix B. Figure 4.7 shows the e�ect of time-delay on the error of di�erent models.

Although, at time t=0 the RMSE is highest, as time-delay is further increased the RMSE

sharply falls and reaches pleatue. The minimum value in this plot is observed to occur when

the time-shift reaches a value of -0.8 sec. Corresponding to this time-delay value, input

temperatures at time t and t-0.8 is plotted in Figure 4.8. Similar to previous models, the

in�uence of membership functions on errors is studied in Figure 4.9. An ANFIS model with

sixteen membership functions and 256 Fuzzy if-then rules, produces a RMSE value of 0.05

mm. The ANFIS predicted displacement is compared with the experimental displacement

values in Figure 4.10. This model is able to capture and learn the nonlinearities present

in the temperature vs. displacement relationship. The corresponding hysteretic curve is

plotted in Figure 4.11.
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Figure 4.7: E�ect of time-shift on single loop ANFIS temperature vs. displacement model

Figure 4.8: Inputs of optimized single loop ANFIS temperature vs. displacement model
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Figure 4.9: In�uence of membership functions on single loop ANFIS temperature vs. dis-
placement model

Figure 4.10: Comparison of ANFIS predicted displacement with experimental data
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Figure 4.11: Single loop displacement vs. output displacement hysteresis
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4.3 E�ect of Time-Shift on Multi-Loop Hysteresis - Am-

plitude variation

Major and minor hysteresis loops are experimentally obtained by driving the experimental

setup at various amplitudes of voltage signal supplied to the system. To represent the

complete dynamics of the input-output space, input data sequences are selected from a

large pool of data sets. The ANFIS models in previous sections have shown that for a

single-looped system, time-shift has a greater e�ect on the displacement-voltage model than

the temperature-displacement model. A smart choice of time-shift value results in a better

predictive model for single-loop hysteresis systems. Does this time-shift value depend on

driving amplitude or frequency? ANFIS models with di�erent time-shift values are modeled

for a system in which the driving frequency is constant, but the amplitude is varied. ANFIS

displacement-voltage model and ANFIS temperature-displacement models are presented in

this section.

4.3.1 ANFIS Desired Displacement vs. Output Voltage Model

An optimum displacement-voltage ANFIS model includes an input with an optimum time-

shift stamp. Although optimum models require many steps, the �rst step is to create

large data sets with di�erent time-shift values. Each data set has two inputs; one is the

displacement at time t and the other at time t+n. By intuition, the domain of the time-shift

value is assumed to lie in an interval of [-4 4]. For all the models with di�erent time-shift

values, twenty initial membership functions and a corresponding rule base is created by a

Fuzzy C-clustering algorithm in MATLAB. The parameters of all these models were tuned

by training them with the experimental data sets and the �nal error of each of these models

is noted. The RMSE of these models is plotted in Figure 4.12. This plot shows that the

ANFIS model with a time-shift value of 2.6 sec has a minimum error. The input data with

optimum value of time-shift is plotted in Figure 4.13.

The next step is to optimize the number of membership functions required to model this

hysteretic system. In general, with a greater number of membership functions, the error

of the model is reduced and predictive properties are increased, but at the same time, the

interpolation properties are also degraded. Thus, to develop a better predictive model, a

grid clustering method is employed to reduce the number of membership functions, and at
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the same time, increase the number of fuzzy if-then rules. As the behavior of this data set is

determined by Fuzzy-C clustering method, it is safe to use any other clustering method to

optimize the number of rules and membership functions. The e�ect membership functions

on the RMSE of the model is plotted in Figure 4.14. The results of an ANFIS model with 15

membership functions and 225 rules is plotted in Figure 4.15 and Figure 4.16. The results

of the model for a new validation data set is plotted in Figure 4.17. This plot ascertains the

number of membership functions and the interpolation properties of this model.

Figure 4.12: E�ect of time-shift on multi-loop ANFIS displacement vs. voltage model
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Figure 4.13: Inputs of optimized multi-loop ANFIS displacement vs. voltage model

Figure 4.14: In�uence of membership functions on multi-loop ANFIS displacement vs. volt-
age model
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Figure 4.15: Comparison of ANFIS predicted voltage with experimental data

Figure 4.16: Multi-loop displacement vs. output voltage hysteresis
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Figure 4.17: Validation of multi-loop ANFIS displacement vs. voltage model
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4.3.2 ANFIS Feedback Temperature vs. Displacement Model

A similar procedure is followed in obtaining the temperature-displacement model. Initially

various data sets are created for di�erent time-delay values. As this is model is stationed in

the feedback line, the time-shift values are chosen to be in a domain of [−4 0] sec. Initial

fuzzy membership functions are created using Fuzzy-C clustering algorithm. The predictive

nature of these models is plotted in Figure 4.18. The RMSE error of di�erent models

decreases as time-delay increases from 0 to 4 sec. The time-shift value corresponding to a

minimum error model is chosen. Input temperature vectors time-shifted by 3.4 sec is plotted

in Figure 4.19. The next step is to optimize the number of membership functions and a

fuzzy rule-base. Using a grid partitioning algorithm in MATLAB, a variation of RMSE with

MFs is computed and those results are shown in Figure 4.20. An ANFIS model with 225

fuzzy if-then rules and 15 membership functions has a RMSE of 0.34 mm after 150 epochs.

The ANFIS predicted displacement is compared with the experimental displacement values

in Figure 4.21. This model is able to capture and learn the nonlinearities present in the

temperature- displacement relationship. The hysteretic curve is plotted in Figure 4.22. The

results of the model for a new set of validation data points is plotted in Figure 4.23. This plot

ascertains the choice of number of membership functions and the interpolation properties

of this model.
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Figure 4.18: E�ect of time-shift on multi-loop ANFIS temperature vs. displacement model

Figure 4.19: Inputs of optimized multi-loop ANFIS temperature vs. displacement model
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Figure 4.20: In�uence of membership functions on multi-loop ANFIS temperature vs. dis-
placement model

Figure 4.21: Comparison of ANFIS predicted displacement with experimental data
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Figure 4.22: Multi-loop displacement vs. output displacement hysteresis

Figure 4.23: Validation of multi-loop ANFIS temperature vs. displacement model
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4.4 E�ect of Time-Shift on Multi-Loop Hysteresis - Fre-

quency variation

Multiple hysteresis curves are experimentally obtained by driving the experimental setup at

various frequencies of a voltage signal supplied to the system. To represent the complete

dynamics of the input-output space, data sequences are selected from a large pool of ex-

perimental data. Previous ANFIS models have shown that a smart choice of the time-shift

value results in a better predictive model. ANFIS models with di�erent time-shift values are

modeled for a system in which the driving frequency is varying and the amplitude is con-

stant. An ANFIS displacement - voltage model and an ANFIS temperature - displacement

models are presented in this section.

4.4.1 ANFIS Desired Displacement vs. Output Voltage Model

A similar modeling procedure is followed in order to determine the optimum time-shift value

for the displacement-voltage model. The errors recorded for di�erent time-shift models are

plotted in Figure 4.24. This plot shows that the displacement signal time shifted by 0.8 sec

gives the best model with the lowest RMSE. Using this value, the input vectors based on

which ANFIS model is developed are plotted in 4.25. As the frequencies of these systems are

di�erent, the width of each of these pulses is di�erent. RMSE reduces as the parameters of

this ANFIS model with 15 membership functions and 225 fuzzy if-then rules are tuned. The

variation of RMSE with iterations is plotted in Figure 4.26. ANFIS predicted voltage signal

is plotted along with the experimental data points in Figure 4.27. This trained ANFIS model

is able to track and capture the dynamics between displacement and voltage. Although the

ANFIS predicted data is able to track the hysteretic curve shown in Figure 4.28, some

amount of noise is seen at the lower voltage ranges. This is due to the large density of data

points at the lower ranges of voltage than when the pendulum is in motion.
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Figure 4.24: E�ect of time-shift on multi-loop ANFIS displacement vs. voltage model

Figure 4.25: Inputs of optimized multi-loop ANFIS displacement vs. voltage model
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Figure 4.26: In�uence of epochs on multi-loop ANFIS displacement vs. voltage model

Figure 4.27: Comparison of ANFIS predicted voltage with experimental data
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Figure 4.28: Multi-loop displacement vs. output voltage hysteresis
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4.4.2 ANFIS Feedback Temperature vs. Displacement Model

As explained in previous models, the amplitude of the voltage signal is kept constant dur-

ing generation of the data required by this model. Multi-input-single-output models with

time-delayed temperature signals are used as inputs to predict the displacement of the pen-

dulum. The optimum time-shift values are obtained by creating and evaluating numerous

ANFIS models. The in�uence of time-delay on the prediction capabilities of this model is

displayed in Figure 4.29. This plot shows that an optimum ANFIS model is possible when

the input temperature signals are -1.1 sec apart. This time-delay value is used to build an

optimum temperature-displacement model with 196 fuzzy if-then rules and fourteen mem-

bership functions. The predictions of this optimum temperature�displacement model are

displayed in Figure 4.32 and Figure 4.33. This ANFIS model is able to track and predict

the path followed by the pendulum using temperature histories of the SMA wire as inputs

with reasonably good accuracy.

Figure 4.29: E�ect of time-shift on multi-loop ANFIS temperature vs. displacement model
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Figure 4.30: Inputs of optimized multi-loop ANFIS temperature vs. displacement model

Figure 4.31: In�uence of epoches on multi-loop ANFIS temperature vs. displacement model
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Figure 4.32: Comparison of ANFIS predicted displacement with experimental data

Figure 4.33: Multi-loop displacement vs. output displacement hysteresis
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4.5 Experimental Validation of ANFIS Models

In order to validate the ANFIS approach of modeling hysteresis, an experiment based on

the developed ANFIS models is conducted to track a path of the pendulum. As a �rst step,

an open-loop position tracking experiment is performed. In this experiment the pendulum

is required to follow the trajectory shown in Figure 4.34. Based on this trajectory and the

developed optimal single-loop ANFIS displacement vs. voltage model the output voltage

required to actuate the SMA wires is computed. For the inputs plotted in Figure 4.35, the

output voltage is given by Figure 4.36. This voltage signal is supplied to the SMA wire.

Figure 4.34: Desired trajectory of the pendulum

The change in temperature of this SMA wire is measured by an SMA-Constantan ther-

mocouple and the actual displacement of the pendulum is determined. The actual displace-

ment of the pendulum is compare with the desired trajectory in Figure 4.37. The correlation

coe�cient of this experimental data is 0.9849 . In another experiment, a PI controller is in-

cluded in the feedback line to accurately track the desired trajectory. Using an auto-tuning

program in LABVIEW, the proportional gain and the integral time are obtained to be 8.320

and 0.103 respectively. The bandwidth of the output voltage of the PI controller is main-

tained at ± 0.5 volts. The actual trajectory and the desired trajectory are plotted in Figure

4.38. The correlation coe�cient of this experimental data is given by 0.9903. These results
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show that a PI controller is able to improve the tracking capabilities of the an open-loop

system.

Figure 4.35: Inputs to determine voltage to the SMA wire

Figure 4.36: Voltage supplied to the SMA wire
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Figure 4.37: Resuts of open-loop ANFIS model

Figure 4.38: Resuts of the closed-loop ANFIS - PI model
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4.6 Conclusion

Results of all the models developed in this chapter have been tabulated in Table 4.1. The

striking point of this table is that for all these cases, the optimum model has a better pre-

dictive capability and a lower RMSE value than the initial one-second time-shift commonly

used in ANFIS modeling.

ANFIS model Type of model Time-Shift RMSE

1 sec 0.5824 volts
Amplitude variation

2.6 sec 0.4284 volts
Displacement vs. Voltage model

1 sec 0.5317 volts
Frequency variation

0.8 sec 0.4863 volts

-1 sec 0.484 mm
Amplitude variation

-3.4 sec 0.3818 mm
Temperature vs. Displacement model

-1 sec 0.7105 mm
Frequency variation

-1.1 sec 0.6973 mm

Table 4.1: E�ect of time-shift on di�erent ANFIS models

The optimum time-shift value for the amplitude variation models is farther from the

initial guess of one second than the frequency variation models. The error improvement on

modeling amplitude variation is much higher than the frequency variation. These results

suggest that the time-shift has higher in�uence on the amplitude variation models than the

frequency variation models.
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Chapter 5

Conclusions

5.1 Summary and Conclusions

The principle objective of this study is to develop a sensor capable of detecting the multi-

phase transformations of this material, and correlate this crystallographic change with the

non-linear hysteretic response of SMA wires. A simple bi-material junction of SMAs and

Constantan wires, senses temperature due to its relative thermoelectric properties. More

importantly, this work has shown that an SMA-Constantan thermocouple is a capable feed-

back sensor that directly measures the temperature of the system. This work established

that Seebeck voltage is an able variable to detect the degree of phase transformations of

the system. As Constantan is an alloy of nickel and copper, it can be welded to any nickel

based SMA wire. As the present work is not speci�c to the composition of an SMA wire, the

work can be extended for any Ni-Ti composition of an SMA wire. Similar black box mod-

eling techniques can be utilized to study the hysteretic behavior of SMA wires of di�erent

Ni-Ti compositions. Throughout this work, the usefulness of implementing ANFIS models

to study the nonlinearities of SMAs was shown. It is a black-box method of modeling the

hysteretic behavior of strain characteristics of SMAs. This �nal chapter will give a brief

overview of the research presented in this thesis and address how this work extends into

self-sensing actuator.

Chapter 1 provided the motivation for this research, an overview of soft-computing meth-

ods and a brief literature survey of modeling techniques used to study the hysteresis of SMAs.

Several researchers have used various techniques to model and predict the nonlinearities of
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SMAs. However, each of these methods has its advantages and disadvantages and none of

these methods is applicable for any mode of actuation of SMAs.

In Chapter 2, wires of SMA and Constantan were brought together to form a novel

thermocouple. The Seebeck voltage developed across the thermocouple due to change in

tip temperature is characterized using a linear relationship at a constant room temperature.

The dependence of room temperature on the Seebeck voltage tip temperature relationship

is modeled. The output of the ANFIS model developed shows a good correlation with the

experimental data. An inverse model is developed to simplify the setup required to use this

sensor.

Chapter 3 focused on experimentally studying the strain characteristics of SMAs. The

adaptive capabilities of soft-computing methods like ANFIS and ANN to model complex

path dependent data sets are tested. The ANFIS and ANN models are able to capture

the relationship between the temperature history data and nonlinear strain characteristics

for single-loop hysteresis curves of SMA wires. The in�uence of amplitude and frequency

of voltage signal applied to actuate an SMA wire is thoroughly explored in this chapter.

ANFIS and ANN techniques model the multi-loop hysteresis cures generated by actuation

of an SMA wire. The predictive capabilities of these techniques are compared to each other.

An ANFIS approach showed to be more versatile in the modeling the response for all cases.

Chapter 4 explores the e�ect of time-shift on the predictive capabilities of various ANFIS

models. The displacement vs. voltage model assumes that the positions of the pendulum

at time t and t+n, are required to predict the voltage needed to actuate an SMA wire.

Similarly, the temperature vs. displacement model requires temperatures at times t and

t+m to predict the position of the pendulum. An optimum time-shift value is discovered

for both single and multi-loop hysteretic relationships. Using this value, input vectors are

created to develop the models that optimally train their properties. Finally, chapter 4

concluded by discussing the various plots of the results generated by all these optimum

models.

In the present investigation, the hysteretic behavior of thin SMA wires with respect to

temperature is studied. In this work, the stress of the SMA wires is maintained constant by

suspending a �xed load on the SMA wire. The di�erent models developed in this thesis do
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not consider the e�ect of variation of stress in the SMA. Similarly, the force characteristics

of an SMA wire at constant strain conditions can be modeled by utilizing the various soft-

computing techniques described in this work. It is also possible to use these techniques to

build hybrid strain models that include the e�ects of varying temperature and stress of the

SMA wire. A hybrid model that predicts the strain of the system would require the stress

and temperature of the SMA wire as its inputs.

5.2 Future Work

In this work, it has been shown that an SMA-Constantan thermocouple is a capable sensor

and can be used in real-time applications. A nonlinear relationship has been established

between the tip temperature and the Seebeck voltage. Using this relation, an SMA can be

used to sense temperature when coupled with Constantan. The principle idea in eliminating

an external sensor can be explained with an example of a bi-morph cantilevered (clamped-

free) beam con�guration as illustrated in Figure 5.1.

Figure 5.1: Cantilevered beam bimorph con�guration

The thin layers of Shape Memory Alloy (SMA I and SMA II) cover the cantilever beam

on either side, such that the cantilever and the SMAs are electrically insulated from each
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other. The three layers are mechanically fastened with each other, i.e. activation of any

SMA layer results in the actuation of the cantilever beam along with the other SMA layer.

At the free end of the cantilever, SMA I and SMA II are in thermal contact with each other.

A Constantan wire is implanted at this end of the cantilever to have an electrical contact

with each SMA. This con�guration allows each SMA to form two bi-material junctions with

a Constantan. This bi-morph con�guration, along with the linear relationship of a Seebeck

voltage and Temperature, is presented as a sensorless control con�guration strategy. Appli-

cation of the Seebeck Voltage Temperature relation to the cantilever bi-morph is described

with a �owchart in Figure 5.2.

To activate SMA I, a voltage is applied across both its ends as shown in Figure 5.3B.

The resistive heating of the SMA I leads to the rise of temperature of this layer and the

actuation of the cantilever beam. The change in temperature of SMA I is sensed at the

SMA II-Constantan bi-material junction.

The displacement of the cantilever beam is in direct relation with the phase transfor-

mation in SMA I. The phase transformation of SMA I can be detected by measuring the

temperature of SMA I. The SMA II-Constantan thermocouple pair senses the temperature

change in SMA I at the free-end of the cantilever. An internal electrical �eld developed

in the SMA II layer and the Constantan wire is due to a temperature gradient developed

across the junctions. This �eld results in a thermoelectric emf across the free-end of the

Constantan and the SMA II. The developed voltage is measured and the temperature of

SMA I is obtained from the linear relation of the SMA-Constantan thermocouple pair. Us-

ing the temperature of SMA I, the SMA displacement and temperature relationship, the

displacement of the cantilever beam can be determined using the system model.
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Figure 5.2: Flowchart for actuating Cantilevered beam bi-morph
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Figure 5.3: Actuator-Sensor duality of Cantilevered beam bi-morph
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Appendix A

E�ect of time-shift and number of memebership functions
In Chapter 4 the e�ect of time-shift is studied for di�erent ANFIS models. In modelling

of di�erent hystersis curves, the optimal time-shift value is determined for �xed number

of membership functions. Then, at this time-shift value the optimum mebership function

is determined. This type of analysis assumes that the e�ect of number of membershift

functions on the RMSE is near linear. This assumption is justi�ed by studying the time-

Figure A.1: Variation of RMSE time-shift and memebership functions for a single loop
ANFIS displacement vs. voltage model

shift vs. RMSE relationship at di�erent number of membership functions. Figure A.1

shows tht time-shift vs. RMSE relationship, at di�erent memebrship functions, for a single
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-loop displacement -voltage model. In this �gure it can be seen that the time-shift value

has a higher e�ect than the number of membership functions. By changing the number of

memebrship functions the model is �ne tuned. The trends in this �gure also show that the

global minimum of earch curve occurs at the same position; this showns that there is a litte

e�ect of the number of memebrship functions on the optimum time-shift value.
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Appendix B

ANFIS program
clear all

clc

close all

% ====== Input File ===========================

names = [′V oltage06.9_f0.05′];

% ======Initialize Variables ======================

INPUT1 = [];

INPUT2 = [];

OUTPUT = [];

INPUT = [];

INPUT_1 = [];

OUTPUT_1 = [];

ii=1;

%======Time History Inputs and Output =======================

for i=1:size(names,1)

load(name_data(i, :))

[peakLoc, peakMag] = peak�nder(−V oltage_select);
cycle_start = peakLoc(1, 1);

[peakLoc, peakMag] = peak�nder(-V oltage_select);

cycle_end=peakLoc(1,3)+200;

INPUT_11=Displacement_select(1, cycle_start : cycle_end)−min(Displacement_select(1, cycle_start :

cycle_end));

OUTPUT_11 = V oltage_select(1, cycle_start : cycle_end);
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aa=resampling_uniform(500, INPUT_11);

% here the experimental data points are uniformly resampled

ifmax(aa) > size(V oltage_select)

[yyzz] = max(aa);

aa(zz) = aa(zz)− 1;

end

INPUT_1 = INPUT_11(aa);

OUTPUT_1 = OUTPUT_11(aa);

INPUT1 = [INPUT1 INPUT_1];

OUTPUT = [OUTPUT OUTPUT_1];

INPUT = [];

end

INPUT2 = [];

ii=1;

% time-shift value is de�ned here

time_shift = 1;

INPUT22 = Displacement_select(1, cycle_start+aa−1+time_shift∗100)−min(Displacement_select(1, cycle_start+

aa− 1 + time_shift ∗ 100));

INPUT2 = [INPUT2; INPUT22];

end

end

INPUT = [INPUT INPUT2];

% plot inputs

plot(INPUT1)

hold on

plot(INPUT2,'r')

trn_data = [INPUT ;OUTPUT ]′;

chk_data = trndata;

%======ANFIS program =======================

min_Input = min(min(input));

min_Output = min(min(output));

input = input− ones(size(input)) ∗min_Input;
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output = output− ones(size(output)) ∗min_Output;
max_Input = max(max(input));

max_Output = max(max(output));

Input = input/max_Input;

Output = output/max_Output;

trnINPUT=Input;

trnOUTPUT=Output;

trnDATA = [InputOutput];

chkINPUT=Input;

chkOUTPUT=Output;

chkDATA = [InputOutput];

% number of memebrship functions

numMFs=20;

mfType = 'trimf';

�smatsmatemp = gen�s1(trnData,numMFs,mfType);

plot�s(�smatsmatemp)

numEpochs =300;

err_goal = 0;

in_step = 0.1;

step_dec = 0.3;

step_inc = 1;

[fismatsmatemp1, trnErr, ss, fismatsmatemp2, chkErr] = anfis(trnDATA, fismatsmatemp, [numEpochs, err_goal, in_step, step_dec, step_inc], NaN, chkDATA)

trnout = eval�s(trnINPUT,�smatsmatemp2);

trnRMSE = norm(trnout-trnOUTPUT)/sqrt(length(trnout))
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