List of Nomenclature

English Notations:

- A = Amplitude Ratio, (No Units)
- C =Centroid of pipe, inches
- D_0 = Outside Diameter of Pipe, inches
- $E = Modulus of Elasticity, lb/in^2$
- E_c = Elastic Modulus at 70° F, lb/in²
- E_H = Elastic Modulus at Operating Temperature, lb/in²
- E_{w} = Weld Joint Factor, (No Units)
- f =Stress-Range Reduction Factor, (No Units)
- F =Force, lbs
- I = Moment of Inertia of Pipe, in⁴
- K_f = Fatigue Strength Reduction Factor, (No Units)
- M = Moment, ft-lbs
- N = Number of Cycles, cycles
- $P = \text{Pressure}, \text{lb/in}^2$
- R =Stress Ratio, (No Units)
- $S_a = S_h = \text{Allowable Static Stress, lb/in}^2$
- S_{al} = Allowable stress, lb/in²
- S_c = Allowable stress at Minimum Temperature (70°), lb/in²
- $S_e = \text{Endurance Limit, lb/in}^2$
- $S_L = \text{Sum of Longitudinal Stresses, lb/in}^2$
- S_A = Thermal Expansion Stress Range, lb/in²
- S_{II} = Ultimate Strength, lb/in²
- $S_Y = \text{Yield Strength, lb/in}^2$
- *Tmin* = Dupont® Pipe-Wall Thickness Calculator
- t_m = Nominal Thickness, inches
- t_{Min} = Minimum pipe wall thickness, in

 t_{Str} = Minimum Pipe-Wall Thickness to Support Structural Integrity, inches

 t_{Nom} = Nominal Pipe Wall thickness, inches

V =Shear, lbs

Y = Temperature Dependant Coefficient, (No Units)

 Z_{Nom} = Section Modulus, in³

Greek Notations:

 \ddot{A}_{e}^{o} =Elastic Strain Range, (No Units)

 \ddot{A}_{p}^{o} = Plastic Strain Range, (No Units)

 $\ddot{A}e$ = Total Strain Range, (No Units)

 \mathbf{e}_a = Alternating Strain, (No Units)

 \mathbf{e}_{cl}^{l} = Total Longitudinal Strain, (No Units)

 \mathbf{e}_{F} = Fatigue Ductility Coefficient, (No Units)

 \mathbf{e}_{a} = Strain Amplitude, (No Units)

 \mathbf{e}_{pa} = Plastic Strain Amplitude, (No Units)

 \mathbf{e}_{a} = Elastic Strain Amplitude, (No Units)

 $\ddot{A}\acute{o} = \text{Stress Range, lb/in}^2$

 $\acute{o}_{aTC} =$ Allowable Stress (Tension-Compression) , lb/in²

 $oldsymbol{o}_{aRB} = Allowable Stress (Rotating-Bending), lb/in²$

 $olimits of d_{Max} = Maximum Stress, lb/in^2$

 $oldsymbol{o}_a = \text{Stress Amplitude, lb/in}^2$