List of Nomenclature ## **English Notations:** - A = Amplitude Ratio, (No Units) - C =Centroid of pipe, inches - D_0 = Outside Diameter of Pipe, inches - $E = Modulus of Elasticity, lb/in^2$ - E_c = Elastic Modulus at 70° F, lb/in² - E_H = Elastic Modulus at Operating Temperature, lb/in² - E_{w} = Weld Joint Factor, (No Units) - f =Stress-Range Reduction Factor, (No Units) - F =Force, lbs - I = Moment of Inertia of Pipe, in⁴ - K_f = Fatigue Strength Reduction Factor, (No Units) - M = Moment, ft-lbs - N = Number of Cycles, cycles - $P = \text{Pressure}, \text{lb/in}^2$ - R =Stress Ratio, (No Units) - $S_a = S_h = \text{Allowable Static Stress, lb/in}^2$ - S_{al} = Allowable stress, lb/in² - S_c = Allowable stress at Minimum Temperature (70°), lb/in² - $S_e = \text{Endurance Limit, lb/in}^2$ - $S_L = \text{Sum of Longitudinal Stresses, lb/in}^2$ - S_A = Thermal Expansion Stress Range, lb/in² - S_{II} = Ultimate Strength, lb/in² - $S_Y = \text{Yield Strength, lb/in}^2$ - *Tmin* = Dupont® Pipe-Wall Thickness Calculator - t_m = Nominal Thickness, inches - t_{Min} = Minimum pipe wall thickness, in t_{Str} = Minimum Pipe-Wall Thickness to Support Structural Integrity, inches t_{Nom} = Nominal Pipe Wall thickness, inches V =Shear, lbs Y = Temperature Dependant Coefficient, (No Units) Z_{Nom} = Section Modulus, in³ ## **Greek Notations:** \ddot{A}_{e}^{o} =Elastic Strain Range, (No Units) \ddot{A}_{p}^{o} = Plastic Strain Range, (No Units) $\ddot{A}e$ = Total Strain Range, (No Units) \mathbf{e}_a = Alternating Strain, (No Units) \mathbf{e}_{cl}^{l} = Total Longitudinal Strain, (No Units) \mathbf{e}_{F} = Fatigue Ductility Coefficient, (No Units) \mathbf{e}_{a} = Strain Amplitude, (No Units) \mathbf{e}_{pa} = Plastic Strain Amplitude, (No Units) \mathbf{e}_{a} = Elastic Strain Amplitude, (No Units) $\ddot{A}\acute{o} = \text{Stress Range, lb/in}^2$ $\acute{o}_{aTC} =$ Allowable Stress (Tension-Compression) , lb/in² $oldsymbol{o}_{aRB} = Allowable Stress (Rotating-Bending), lb/in²$ $olimits of d_{Max} = Maximum Stress, lb/in^2$ $oldsymbol{o}_a = \text{Stress Amplitude, lb/in}^2$