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(ABSTRACT) 

 

Probabilistic models and fuzzy set models describe different aspects of uncertainty.  

Probabilistic models primarily describe random variability in parameters.  In engineering system 

safety, examples are variability in material properties, geometrical dimensions, or wind loads.  In 

contrast, fuzzy set models of uncertainty primarily describe vagueness, such as vagueness in the 

definition of safety. 

When there is only limited information about variability, it is possible to use probabilistic 

models by making suitable assumptions on the statistics of the variability.  However, it has been 

repeatedly shown that this can entail serious errors.  Fuzzy set models, which require little data, 

appear to be well suited to use with designing for uncertainty, when little is known about the 

uncertainty.  Several studies have compared fuzzy set and probabilistic methods in analysis of 

safety of systems under uncertainty.  However, no study has compared the two approaches 

systematically as a function of the amount of available information.  Such a comparison, in the 

context of design against failure, is the objective of this dissertation.  

First, the theoretical foundations of probability and possibility theories are compared.  We 

show that a major difference between probability and possibility is in the axioms about the union 
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of events.  Because of this difference, probability and possibility calculi are fundamentally 

different and one cannot simulate possibility calculus using probabilistic models.  We also show 

that possibility-based methods tend to be more conservative than probability-based methods in 

systems that fail only if many unfavorable events occur simultaneously.  

Based on these theoretical observations, two design problems are formulated to demonstrate 

the strength and weakness of probabilistic and fuzzy set methods.  We consider the design of 

tuned damper system and the design and construction of domino stacks.  These problems contain 

narrow failure zones in their uncertain variables and are tailored to demonstrate the pitfalls of 

probabilistic methods when little information is available for uncertain variables.  

Using these design problems we demonstrate that probabilistic methods are better than 

possibility-based methods if sufficient information is available.  Just as importantly, we show 

possibility-based methods can be better if little information is available.  Our conclusion is that 

when there is little information available about uncertainties, a hybrid method should be used to 

ensure a safe design. 
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CHAPTER 1 INTRODUCTION TO DESIGN METHODS IN THE 

PRESENCE OF UNCERTAINTIES 

 
 

This Chapter is a summary of historical development of design methods in the presence of 

uncertainties and an introduction to the significance of this dissertation.  We first present the 

motivation for this research.  Next, we present a taxomonomy of engineering design decision 

problems and focus on the importance of design in the presence of uncertainty.  We review the 

literature on methods for design under uncertainty.  We explain the significance of comparing 

probabilistic methods and fuzzy set methods.  Next, we describe the objectives of this research 

and the approach to achieve these objectives.  Finally, we describe the outline of this dissertation. 

 

1.1 Motivation for studying design methods in the presence of uncertainties 

The term uncertainty reflects lack of knowledge about the world or lack of ability to predict 

the outcome of a process.  When we flip a coin we do not know if we will get heads or tails; 

when we have a batch of bulbs, we do not know the service life of each bulb.  Unfortunately, 

there is no universal interpretation of uncertainty.  For a long period uncertainty was understood 

merely as the impossibility to predict occurrences of events, and probability was the unique 

agent to represent uncertainty.  When new areas such as artificial intelligence are explored, we 

discover that uncertainty is also associated with imprecise statements, such as "there is a good 

chance that the price of oil ten years from now will be pretty high".  This is another form of 

uncertainty, which can not be represented by probability.  One way to represent imprecise 

statements mathematically is by using fuzzy set theory. 

We have reducible and irreducible uncertainties.  Reducible uncertainties are due to lack of 

knowledge.  They can be reduced if we collect more information.  Reducible uncertainties can be 

categorized as either modeling uncertainties (uncertainties in the errors of models of physical 

phenomena) or statistical uncertainties (uncertainties in probabilistic models).  Irreducible 

uncertainties cannot be reduced even if we collect more information.  For example, even if we 
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flip a coin many times and record the outcomes, we still cannot predict the outcome the next time 

we flip a coin.  However, the statistical uncertainty in the probabilistic model of predicting the 

chance of "head" or "tail" reduces as we collect more observations. 

The success of engineering design depends significantly on whether the most appropriate 

model of uncertainty has been identified and used.  A model used for design that overlooks 

uncertainty might cause severe consequences such as loss of life or property.  On the other hand, 

a design based on a model that overestimates uncertainty will waste resources.  Also, a model 

that wrongly predicts the behavior of customers might cause a company to lose market share.  In 

a highly competitive engineering world, properly addressing uncertainty is required for designs 

to be successful. 

The simplest and still widely used approach to safeguard a design from uncertainty is the 

safety factor method, where safety factors derived from previous engineering experiences are 

used to consider uncertainty.  The worst-case-scenario method and the Taguchi method are 

popular among design engineers (Otto and Antonsson, 1993).  Probabilistic and fuzzy set 

methods are the most general and can be applied to model uncertainties in all types of problems. 

Ever since the emergence of the fuzzy set theory, there have been disagreements between 

proponents of probabilistic and fuzzy set-based methods over their domains of applicability and 

robustness.  Many researchers have carried out studies to resolve these controversies by 

comparing these two methods (Wood and Antonsson, 1990).  Unfortunately, these studies 

compared the two methods in calculating the safety of the same system using probability and 

fuzzy set models.  They considered simple structures.  None of these studies conducted both 

theoretical and analytical comparisons.  It is our objective in this dissertation to compare 

probabilistic and fuzzy methods thoroughly from theoretical and analytical perspectives.  

Moreover, the study described in this dissertation uses design rather than analysis to compare the 

methods.  Specifically, the study tries to address directly the following question: "given the same 

information and the same resources, which design method leads to the best design?"  The author 

believes that this is the proper way to compare methods since the ultimate test of a method is 

how well its designs fare in the field. 
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1.2 Taxonomy of design problems  

Engineering design can be regarded as a decision-making process (Hazelrigg, 1996).  In a 

decision-making problem, a decision-maker's task is to select an act from a set of alternatives 

that will result in the best outcome.  To do this, he/she has to find out a set of alternative acts.  

He/she has to determine the set of all possible states of nature.  The outcome of the design 

process depends on both the act chosen and the state of the world.  Since the state of the world is 

uncertain the decision-maker cannot predict the outcome of an act. 

Decision-making problems can be classified according to certain criteria.  Here, we will 

categorize decision-making problems in terms of the following characteristics: 

• Number of attributes needed to describe an outcome;  

• Ability to predict the outcome of an act; 

• Definition of success and failure (precise versus vague). 

In some problems, the outcomes may have only one attribute.  For example, we might design 

steel plates with the minimum weight.  Hence, weight is the only attribute to describe our 

outcomes.  In another case, we may design plates to achieve two goals: minimize cost and 

minimize weight.  Cost and weight may be conflicting attributes.  Also, in many problems, there 

is uncertainty in the occurrence of each outcome.  For example, due to fluctuation in the steel 

prices, we may not know the price of steel.  Thus, a problem can be categorized in terms of how 

many attributes are needed for each outcome and whether there is uncertainty in predicting the 

occurrence of each outcome.  Table 1.1 lists categories of decision problems and the 

corresponding approaches that a decision-maker can use to solve these problems.  The transition 

between survival and failure is gradual (i.e. there is imprecision in the decision-maker's 

preferences). 

Problems in which there is no uncertainty and involve a single attribute (Type I in Table 1.1) 

can be solved using optimization.  The decision-maker needs only to determine the optimum act 

that maximizes a function measuring the value of each outcome to the decision-maker.  Multiple 

objective optimization (Pareto, 1906), utility theory or fuzzy set theory can be employed to solve 

problems with many attributes (Type III).  These approaches find multiple optima (efficient 

solutions) or use the utility function (Thurston, 1991) or the membership function (Diaz, 1988, 
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Wood and Antonsson, 1990, Carnahan et al. 1994) to express the worth of each outcome to the 

decision-maker so they can select the best action.  

 

Table 1.1  Taxonomy of decision problems  

 
 
 

Certainty about the 
outcomes of actions 

Uncertainty about the 
outcomes of actions 

One attribute is 
sufficient for 
describing an 

outcome 

Type I problems 
Approach: Deterministic 

optimization 

Type II problems 
Approaches: Utility 

theory, fuzzy set theory 

Multiple 
attributes are 

needed for 
describing an 

outcome 

Type III problems 
Approaches: Multiple 

objective optimization (i.e. 
Pareto optimal method), 
utility theory, fuzzy set 

theory 
 

Type IV problems 
Approaches: Utility 

theory, fuzzy set theory 

 
 

In problems involving uncertainty (Types II and IV), we can express the likelihood of an 

event using probability or possibility.  Utility theory addresses problems where uncertainty in 

outcomes is modeled by a probability distribution. In utility theory, a decision-maker selects the 

best act by maximizing the expected utility (Thurston, 1994).  Wood et al. (1990) proposed the 

method of imprecision to solve design problems involving uncertainty.  They used membership 

functions to express the decision-maker's preferences about the values of the design variables 

(actions) as well as the preferences about the outcomes.  Probability was employed to quantify 

the likelihood of events associated with uncontrolled stochastic uncertainties, such as 

manufacturing variability.  Possibility was used to model non-stochastic uncertainties, such as 

modeling errors. 

In many decision problems, preferences are imprecise, i.e. there is no clear, sharp boundary 

between success and failure.  In other problems, this boundary is clear and crisp.  An auto 

manufacturer who wants to build a "quiet" car faces a problem with imprecise preferences, in 

that it is insensible for him/her to call a design that exceeds the noise limit by 0.01db a failure.  
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On the other hand, a construction company who wants to design a building or a bridge that 

should not collapse in the next hundred years faces a problem with a clear, sharp boundary 

between success and failure. 

Finally, problems involving uncertainty can be also partitioned into those in which there is 

sufficient information to accurately determine the probabilities of all the states of nature and 

those in which there is insufficient information.  Most real life problems fall under the latter 

category. 

 

1.3 Review of the probabilistic approach for designing in the presence of 
uncertainties 

The probabilistic approach to design accounts for the uncertainties existing in the parameters 

of engineering design problems.  This method uses probability theory to combine the effects of 

uncertainties to create a prediction about the reliability of the resulting design.  In a simple yet 

typical probabilistic design problem, a designer might be asked to find the optimal section 

dimensions for a beam to minimize the probability of structural failure, when the beam is 

subjected to an external load which has known probability distribution.  

Mathematically, probability is defined as a number assigned to events of a universal set (the 

set of all possible events or outcomes of an experiment).  Probability satisfies the three axioms of 

Kolmogorov (Papoulis, 1965), which dictate that: a) the probability of any single event occurring 

is greater or equal to zero; b) the probability of the universal set is one (since the universal set 

includes all possible outcomes, we are certain that an experiment will create an outcome) and c) 

the probability of the union of mutually exclusive events is equal to the sum of the probabilities 

of these events.  This last axiom is called the "additivity axiom". 

There are two principal interpretations of probability, the objective and the subjective. 

According to the objective interpretation, probability is the relative frequency of occurrence of 

an event (Siddall, 1983).  In this objective sense, probability must be estimated from a large 

number of observations.  However, many events only occur once or rarely occur so it is 

impossible to estimate their probabilities using data.  For example, we could not objectively 



CHAPTER 1 INTRODUCTION TO DESIGN METHODS IN THE PRESENCE OF 
UNCERTAINTIES           

 

6 

predict the probability of the outburst of the Y2K problem in 1999 based on observations 

because we did not have any data. 

The second interpretation of probability is the subjective (Bayesian) interpretation (Savage, 

1972).  According to this interpretation, probability is the degree of belief that an event will 

occur.  Whether or not a large number of observations are available, many people still use 

judgment to estimate probabilities of events.  For example, although there is abundant data about 

the number of candidates admitted to universities, many people may still believe that their child 

will PROBABLY be admitted based on his/her high school record, and not because of the large 

number of observations.  Subjective probabilists (also called Bayesians) maintain that 

probabilistic methods are also useful for problems where there are only a few observations and 

probability is based on one's experience or intuition that an event will occur.  With these two 

definitions, probabilistic methods can model uncertainties of a stochastic nature as well as of a 

subjective nature, either when the available information is based on judgment or when it is based 

on measurements.  Indeed, in practice, subjective perception is always present because we are 

rarely fortunate to have sufficient data to create an accurate probabilistic model that reflects the 

real random nature of a phenomenon or an event.  In this sense, every probabilistic model is a 

combination of the two interpretations. 

The probabilistic approach is applied in reliability-based structural engineering design by 

introducing the probability of failure as a measure of unreliability.  The lower the probability of 

failure is, the higher the reliability of a structure will be.  The probability of failure can either be 

the objective of a design (e.g., minimize the probability of failure) or be the constraint of a 

design.  In the latter case, the weight or the cost of the structure may be the objective (e.g., 

minimize the weight of the design subject to the probability of failure being less than, say, 

0.01%). 

Sundararajan (1995) collected probabilistic design applications in a wide spectrum of 

industries.  These applications include: 

! Analysis of the limit state  (i.e. performance requirements for a structure to function 

properly, the violation of which will result in the structural failure) for the design of 

concrete structures in nuclear plants; 
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! Reliability-based aircraft design considering variability in external loads, material 

properties and finite element methods; 

! Reliability-based fatigue design for ship structures, taking into account variations in 

the quality of workmanship and welding.  

Recent applications of probabilistic design include probabilistic structural design of thin 

shells (Torng and Lin et al., 1998), and optimum design of composite laminates (Mahadaven and 

Liu, 1998). 

It has been repeatedly shown that designs obtained using the same safety factor actually have 

significantly different failure probabilities (Marek, 1999, and Frangopol, 1985).  The latter 

reference showed that the use of deterministic optimization may give designs that have either an 

unacceptably low or an unnecessarily high level of reliability as a result of inefficient use of 

resources.  Probabilistic methods yield designs with reliability levels that are consistent with the 

cost because these methods explicitly account for the probability of failure.  For example, in a 

structure consisting of bolts and a beam, the probabilistic method will find out that, to achieve 

the same reliability increment, it is cheaper strengthening the bolts than strengthening the beam. 

Safety factors in deterministic models are not appropriate for problems involving innovative 

designs because safety factors are based on experience and there is no experience for these 

problems.  Probabilistic design works better for this type of problems because it is based on first 

principles rather than on experience.  For example, new materials like composites may have 

large scatter in their properties and no safety factors properly consider this variability.  However, 

we can develop probabilistic models from sample tests to represent uncertainties in their 

properties. 

One of the reasons that deterministic methods are still popular is that probabilistic methods 

involve prohibitively expensive calculations.  With reliability-based method, we need to estimate 

the reliability of tens of hundreds of alternative designs.  Specifically, we can calculate the 

probability of failure of a design using either Monte Carlo simulation or second moment 

methods.  Monte-Carlo simulation requires a number of deterministic analyses ranging between 

few hundred to tens of thousands.  Second moment methods (see for example, Madsen, Krenk 

and Lind, 1986) require fewer deterministic analyses (from 10 to 100) provided that we have 
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analytical, closed form expressions for the sensitivity derivatives of the performance function 

with respect to the random variables.  However, second moment methods do not always 

converge and they can yield erroneous estimates of the failure probability of structures for which 

there are multiple most-probable failure points.  Moreover, probabilistic data is difficult to get.  

Based on the above, we conclude that the cost of reliability-based design often presents a 

formidable challenge (Maglaras and Nikolaidis, 1990).   

To mitigate this high cost, Hasselman et al. (1996) proposed a probabilistic safety margin 

(PSM) method to approximate probabilistic design optimization.  However, this method is 

inaccurate for large uncertainty or situation where a high degree of reliability is required.  Yu 

and Choi (1997) suggested a mixed interactive design approach, which combines deterministic 

design, design trade-off analyses and what-if studies to achieve efficiency in computation.  

However, using a purely probabilistic design approach is still impractical for design problems 

involving large numbers of design variable uncertainties and constraint uncertainties. 

The validity of the probabilistic method is based on the accuracy of the probabilistic model.  

It has been shown that small uncertainties in the probability distributions can cause large errors 

in the computed probability of failure (Ben-Haim and Elishakoff, 1990, Fox and Safie, 1992).  

Although Fox and Safie (1992) proposed guidelines for proper choice of probabilistic 

distributions when little numerical information is available, these guidelines are based on 

experience.  It has not been proven that they always lead to safe and efficient designs.  Therefore, 

it is imperative that one should examine the efficacy of alternative methods, such as fuzzy set 

methods, for these types of problems. 

Bayesian interpretation of probability is criticized for the additive axiom it has to abide and 

for the requirement that probabilities of all elementary events should be precisely expressed by 

real numbers.  In real world, imprecise probabilities exist because of little information.  These 

imprecise probabilities violate the additive axiom.  For example, if we flip a bent coin, we can 

assess the upper and lower probabilities of the event "heads" to account for the lack of 

information.  If one does not have experience with this game, he/she will assume a large 

difference between these two probabilities to account for the lack of information.  When he/she 

has sufficient observations, these two probabilities will converge (Klir, 1994 and Walley, 1991).  
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For example, we might assign upper probabilities 0.8 for the events "head" and "tail" 

respectively.  The sum of these two probabilities will be greater than one in this case.  

In engineering practice, it is often the case that we have few or no data to build a probability 

distribution.  For example, when we design new equipment to manufacture steel plates, we are in 

a situation where we have no data to estimate the variability for the thickness of the processed 

plates.  In this event, subjective judgements based on experts' experience with similar equipment 

are used to derive a probabilistic model.  Fox and Safie (1992) illustrated how to create a 

conservative probabilistic model that best represents the current knowledge for the underlying 

probability distribution by using subjective judgements. 

If one uses Bayesian probability, one can describe the uncertainty in probabilistic models by 

considering that the distribution parameters (e.g., the mean value or the standard deviation of a 

random variable) are random variables.  Suppose we flip a bent coin.  We do not know the 

probability of the event “head” because the coin is bent and because we do not have data to 

estimate this probability.  In Bayesian statistics, the probability of the event "head", which is 

unknown, can be considered a random variable with its own probability distribution function.  

This distribution function is called a prior probability distribution function.  We can predict 

outcomes of flipping based on our observations and the prior distribution of the parameter. 

However, the selection of the prior probability distribution function is still a controversial issue 

(Berger, 1985).  Therefore, Bayesian probability might not be appropriate to account for the 

ignorance about the true probability destribution of a random variable because of these 

restrictions. 

To summarize, we have reviewed the probabilistic approach and also shown that it is a 

widely accepted and effective method for design in the presence of uncertainties.  However, for 

problems with a large number of variables, or with very little data from which to model 

uncertainties, the probabilistic approach can be either too expensive or not effective.  A method 

based on fuzzy sets will be discussed in the next section, which addresses some of the 

shortcomings of the probabilistic approach. 
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1.4 Review of the fuzzy set approach for designing in the presence of uncertainty 

Fuzzy set is "a class with a continuum of grades of membership" (Zadeh, 1965).  This 

concept is a generalization of a classical set where an element either belongs or does not belong 

to the set.  We can claim that a specific element belongs to a fuzzy set to a certain degree.  Fuzzy 

set theory was first introduced by Zadeh to model uncertainty in subjective information.  In 

natural language, many expressions are ambiguous and imprecise, like "Mark is tall".  Though 

one can theoretically assign a definite height to discriminate between "tall man" and "short man", 

in practice it is not feasible because most of us will agree Mark is tall even if he is 0.1 inch 

shorter than that marking height.  

In fuzzy set theory, a membership function is used to represent the degree that elements 

belong to the set in question.  For example, "the class of quiet cars" is a fuzzy set.  A new 

Mercedes belongs to this fuzzy set to the degree of 1.0, while a 20-year-old pickup with no 

muffler belongs to it with the degree of 0.01. Mercedes and Lexus may both have a membership 

1.0, however their technical specifications for noise level may be quite different.  

Shackle (1961) first proposed the possibility theory as a non-probabilistic framework in 

which decision process was modeled in term of "possibility". By Shackle's definition, possibility 

is the degree to which it is easy for an event to occur.  He stated that possibility of an event is 

equal to one minus a person’s degree of surprise if the event occurs.  He stated that possibility 

should be used instead of probability when the conditions under which we have to make a 

decision under uncertainty cannot be reproduced.  For example, if a company is to decide 

whether to make a risky investment, which will lead to bankruptcy if it is not successful and 

there is no data from which to estimate the probability of success, then the company should use 

possibility instead of probability to model uncertainty. 

Zadeh (1978) formulated possibility theory as an extension of fuzzy set theory.  According to 

Zadeh, a possibility distribution is numerically equal to the membership function.  Therefore, 

given that the membership function of a new Mercedes is 1.0 in the fuzzy set "quiet cars," the 

possibility that a particular car is a Mercedes is 1.0 if we know that this particular car is quiet.  

Possibility distributions can also be derived from evidence theory without association with 

fuzzy set theory (Klir and Yuan, 1995). In evidence theory, a measure is a set function that 
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assumes nonnegative values and satisfies underlying axioms.  Evidence theory studies 

uncertainties using belief measures and plausibility measures. The belief measure represents the 

total evidence that an element belongs to a set and to its subsets. The plausibility measure 

represents the total evidence that an element belongs to a set and its subsets and the evidence that 

the element belongs to other sets that overlap with the set. When the evidence assigned to the set 

and its subsets does not conflict (i.e. all these sets can be ordered in a sequence without 

overlapping), plausibility measures will become possibility measures.  

A possibility distribution is a mapping of the elements in the set to the unit interval.  A 

possibility distribution function uniquely represents a possibility measure and vise versa. 

In our research, we will adopt the possibility theory developed by Zadeh, and consider "fuzzy 

set" and "possibility based" interchangeable. Therefore, we accept that fuzzy set theory satisfies 

the axioms for possibility measures in evidence theory. 

There are many approaches to determine a fuzzy set membership function (possibility 

distribution) from experts' judgement or from experimental data (Pedrycz and Gomide, 1998).   

For uncertainties that are modeled simultaneously by probability distributions and possibility 

distributions, there exist some rules to ensure consistency between the two measures (Klir and 

Yuan, 1995).  We use these rules when constructing a possibility distribution from the given 

probability distribution or vise versa. The most evident rule is simply common sense: something 

that is probable must be possible. For example, "It will probably snow" indicates stronger 

evidence of chance of snowing than "It will possibly snow".  More specifically, the first rule of 

consistency between the two distributions is that the possibility of any event should be greater 

than or equal to the probability of the same event. This will be called the "weak consistency 

principle". A stronger consistency principle requires that any event with a non-zero probability 

has a possibility of 1.0. For a given probability distribution, there are infinite numbers of 

possibility distributions, which satisfy the weak consistency principle. To meet the strong 

consistency principle, there is only one possibility distribution, and that distribution is equal to 

one everywhere.   

We choose the possibility distribution, which is the least conservative among all the 

consistent possibility distributions, which satisfy the requirement, that the possibility of an event 
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is larger than the probability of the same event (Nikolaidis et al., 1998). This transformation 

principle guarantees that we add the smallest possible amount of information to our model of 

uncertainty when we transform a probability distribution into a possibility distribution. 

Fuzzy set methods have been used in engineering design. Wood et al. (1990) introduced the 

Method of Imprecision (MoI), which used mathematics of fuzzy sets to model uncertainties in 

the form of poorly defined, incomplete design descriptions at the early design stage. Scott and 

Antonsson (1998) applied MoI in preliminary design of vehicle structures to account for styling 

preferences and engineering requirements. Carnahan and Thurston (1994) used fuzzy rating to 

identify the levels of attributes and their relative importance in a multiple attribute decision-

making problem at the preliminary design stage. Butler, Rao and LeCair (1995) modeled a 

designer's judgement about spatial relationships in detailed layout design for process 

manufacturing facilities using fuzzy sets. Sawyer and Rao (1999) proposed a concept of the 

fuzzy safety factor for rating designs of mechanical and structural systems in terms of strength-

based reliability and damage tolerance. 

Fuzzy set methodology provides a mathematical framework for modeling linguistic 

imprecision and graduality in propositions. It provides a convenient approach when we need to 

model complex systems on the basis of vague pieces of knowledge from descriptions of human 

language (Dubois and Prade, 1994). This uncertainty can not be represented adequately by 

probability theory. For example, to say somebody is probably old is not equivalent to express 

that he/she is very old. Klir (1994) stated that the additive structure of probability is not 

appropriate for some uncertainties.  For example because observations in close neighborhoods of 

the "crisp" boundaries of events may not be reliable, additivity can not be actually achieved.  

Opponents of fuzzy set theory criticized the "reality hypothesis", the "subjective hypothesis", 

the "behaviorist hypothesis", the "probability as fiction hypothesis" and the "superset hypothesis" 

in the fuzzy set theory from a philosophical viewpoint (Laviolette and Seaman, 1994). They also 

criticized the lack of operational meaning for the membership function, and the lack of theory for 

inference from data (Almond, 1995). Laviolette and Seaman (1994) demonstrated an example 

where the fuzzy set decision model can be insensitive to radical changes in the underlying 

probabilistic model.  
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In this section, we have reviewed fuzzy sets, possibility theory and their relations with 

probability theory. Fuzzy set theory is useful for designs in the presence of uncertainties which 

involve modeling linguistic imprecision and uncertainties with little numerical data to develop a 

valid probabilistic model. 

 

1.5 Review of other design methods in the presence of uncertainty 

Besides probabilistic and fuzzy set methods, there are other methods effective for certain 

types of uncertainties. 

Safety factor method is traditionally used for uncertainties that are not quantified but known 

to exist.  For example, the assumptions we use to derive a mathematical model induce modeling 

uncertainty.  The finite element method we use to solve boundary value problems involves many 

approximations such as the representation of the response of a system in terms of shape 

functions.  Safety factors are determined from experience.  Traditional design approaches use a 

single safety factor to account for all uncertainties.  For example, the stress in a structure is 

scaled by a safety factor that is greater than one to account for all of the uncertainties.   

Methods using a single safety factor consider the worst-case scenario.  Therefore, usually 

they are overly conservative.  Since it is impractical to determine safety factors on case-to-case 

basis, design codes recommend using the same safety factor in a wide range of applications.  It 

has repeatedly shown that different structures designed using the same safety factor have 

significantly different reliability levels (Frangopol, 1984 and Marek, 1999).  Most of these 

structures are over-designed but few are unsafe. 

Recently, methods that apply multiple safety factors, called partial safety factors, to different 

load and strength parameters have replaced traditional methods using a single safety factor.  The 

larger the uncertainty in a load parameter, the larger is the value of the applied safety factor.  In 

design of offshore platforms, different safety factors are applied to the static load, the wave 

induced loads and the strength.  This method is called, load and resistance factor design (LRFD) 

(American Institute of Steel Construction, 1986).   
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Methods using partial safety factors are very popular in design codes for structures such as 

buildings, bridges and ships.  These factors are calibrated using probabilistic methods in a way 

that designs obtained using these partial safety factors have a target reliability level (or 

equivalent failure probability).  Methods for calibrating partial safety factors can be found in 

Ditlevsen and Madsen (1996). 

Taguchi method introduces statistical concepts into traditional engineering design.  Its main 

objective is to improve quality by making robust designs against uncontrollable variability in 

manufacturing processes and the operating environment.  The philosophy of the Taguchi method 

is that in many design problems it is more efficient to design a system in a way that it is 

insensitive to uncontrollable variability rather than to reduce variability.  Taguchi method for 

robust design involves the following main steps: identify and distinguish the controllable and 

uncontrollable factors in design settings; arrange statistically designed experiments; determine 

combinations of controllable factors that reduce the performance variations caused by the 

uncontrollable factors (internal or external noise) while still maintaining the average 

performance (Logothetis and Wynn, 1989, Phadke, 1989).  

Taguchi method is very popular in product design because it does not require a designer to 

develop complex models of uncertainties, yet it is very effective in increasing the quality of a 

design.  

Grieve and Barton et al. (1998) combined FEA with the Taguchi method for design of a 

lightweight automotive brake disc that considers all the critical design and material factors. 

Sunar and Hyder (1998) applied Taguchi robust design methodology to a closed-loop structure 

containing a cantilever beam and a thermopiezoelectric actuator pair, where the size and location 

of actuators are considered as controllable factors.   

Taguchi method is criticized because it does not form a model for the response, and does not 

model interactions among control or noise variables. Also Taguchi method uses array designs, 

which are more expensive than fractional factorial designs. Besides, the signal and noise ratio is 

not sufficient as a criterion of merit (Myers, 1992). 

Ben-Haim (1996) proposed the robust reliability method, which uses convex-set models of 

uncertainties and uses the concept of robustness-to-uncertainty as a measure of reliability. 
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Convex sets contain functions or vectors that enclose all possible combinations of values of the 

uncertain variables.  For example, when we design a pressure vessel subject to fluid pressure 

with unknown probability density, we can assign a convex set consisting of all possible 

probability densities that are consistent with available information.  The size of the convex 

model is controlled by the uncertainty parameter.  The objective of robust reliability design is to 

maximize the value of the uncertainty parameter that corresponds to the largest variation in the 

uncertain variables that the design can tolerate without failure.  Elseifi, Gurdal and Nikolaidis 

(1998) applied convex models in design of stiffened composite panels with uncertainties in the 

geometric imperfections.  Pantelides and Tzan (1996) used convex models for the seismic design 

of a structure. 

Robust reliability design method is actually a worst scenario method since the convex models 

have to cover the uncertainty that causes the worst consequence.  Although robust reliability may 

lead to overly conservative designs compared to probabilistic methods it is a logical alternative 

to probabilistic methods when the parameters needed to create probabilistic models cannot be 

precisely determined due to lack of data.  

Finally, there are methods that consider the performance of a design under the worst-case 

scenario (Emch and Parkinson 1994) or interval methods (Mullen and Muhanna, 1999, 

Koyluoglu and Elishakoff, 1998). 

 

1.6 Significance of comparing probabilistic and fuzzy set design methods 

Probability theory used to dominate the domain of modeling uncertainty.  Recently, 

alternative theories, such as fuzzy set theory and evidence theory have been introduced for 

modeling uncertainty.  Proponents of fuzzy set theory argued that probability theory is not 

adequate for uncertainties related to the intrinsic meanings in human language.  Proponents of 

probability theory defended that "probability is the only sensible description of uncertainly and is 

adequate for all problems involving uncertainty" (Lindley, 1987).  With the concept of subjective 

probability, probability theory can model non-stochastic uncertainty as effectively as fuzzy sets. 
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Proponents of fuzzy sets and probability theory do not agree with the philosophy behind 

these two theories. Proponents of fuzzy sets insist on the necessity of modeling human thinking 

and emulating human behavior which is a descriptive perspective, whereas proponents of 

probability insist on the prescriptive standpoint which eliminates the incoherence in human 

thinking when modeling subjective behavior by imposing axioms (Bernardo and Smith, 1994).  

Besides the philosophical differences of probabilistic and fuzzy set methods, we are interested in 

the differences in their theoretical foundations.  Because of these differences each theory is 

suitable for a specific kind of uncertainty. 

Investigating the differences in their theoretical foundations and the ensuing impacts on their 

efficacy of modeling uncertainties will help us identify the advantages and limitations in each 

theory.  Also it will help us develop guidelines for choosing an appropriate method according to 

the available information. 

Many researchers have conducted studies comparing fuzzy set theory and probability theory 

from different perspectives. Klir and Yuan (1995) compared the mathematical properties of 

possibility theory and probability theory.  Wood and Antosson (1990) compared probability and 

fuzzy calculus for representing design imprecision (the uncertainty in choosing among 

alternatives).  They found that the fuzzy calculus is well suited for the imprecision aspect of 

uncertainties, and that probability is best for stochastic uncertainty (the uncertainty which exists 

in processes a designer can not directly control, for example, the manufacturing tolerance).  

Chiang, Dong and Hasselman (1987) stated that possibility could be better than probability if 

there is little information about uncertainty.  Vadde et al. (1994) obtained heavier structural 

designs using a fuzzy set based approach than a probabilistic approach.  Maglaras et al. (1997) 

applied probabilistic and fuzzy set optimization to the design of a cantilevered truss structure and 

compared the respective optimum designs with experimentally.  The results revealed that 

probabilistic methods yield significantly better designs than fuzzy set methods when there is 

sufficient information about uncertainties and a crisp definition of failure. 
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1.7 Objective of comparing probabilistic and fuzzy set design methods 

Our objective in this dissertation is to understand the differences and similarities between 

probabilistic and fuzzy set methods in modeling uncertainties by comparing the theoretical 

foundations of probability and possibility theories and also by demonstrating the advantages and 

limitations of these two methods on design problems.  In the end, we will try to develop 

guidelines for selecting appropriate design methods in the presence of uncertainty depending on 

how much information is available. 

The study considers problems that involve random and modeling uncertainties but is limited 

to cases where there is only numerical information.   

 

1.8 Approach to compare probabilistic and fuzzy set design methods 

In this study, we first compare the theoretical foundations of probabilistic and fuzzy set 

methods.  Fuzzy set methods use possibility to measure safety of a design; therefore, we compare 

the respective axioms that probability measures and possibility measures adhere to.  Probability 

measures satisfy the three axioms of Kolmogorov, whereas possibility measures also satisfy 

three axioms as a special branch of fuzzy measures (Sugeno, 1977). 

Also, we compare probabilistic and fuzzy set based models of uncertainties.  We identify the 

properties of these models and their differences in modeling uncertainties when there is limited 

numerical information.  

Next we compare the calculus of probabilistic and fuzzy set methods to calculate functions of 

uncertain variables.  Based upon these comparisons, we want to show that probabilistic and 

fuzzy set methods are distinct and we cannot simulate one method with the other. 

We exhibit cases where probabilistic or fuzzy set methods underestimate the risk of failure of 

a system.  We use both methods to analyze the reliability of systems that are composed of 

parallel or serial components.  Both of these two methods can underestimate risk of failure.  

Probabilistic methods underestimate the risk of systems for which there is a narrow failure zone 

in the space of the random variables. 
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As the last part of theoretical comparisons, we compare the algorithms the methods use to 

find out their optimums to minimize the chance of failure.  These differences result in totally 

different designs for the same design problem. 

As we have stated, we use design rather than analysis to evaluate the advantages and 

limitations of probabilistic and fuzzy set methods.  In the design comparison, probabilistic and 

fuzzy set methods use the same amount of numerical data to create their models of uncertainties.  

They assess the safety of the design with different metrics, the probabilistic method by 

probability of failure, the fuzzy set method by possibility of failure.  Accordingly each method 

finds out its own optimum design.  The best design between the two optimum designs is the one 

that performs better under real life conditions.  We use the design of a tuned damper system to 

compare probabilistic and fuzzy set methods analytically.  This tuned damper system consists of 

an original system and a tuned damper.  The tuned damper is designed to minimize the vibration 

of the original system as well as to minimize the construction budget.  We choose this particular 

problem because there is a narrow failure zone in this problem and consequently the probabilistic 

method tends to underestimate risk when little information is available.  Failure is defined as the 

excessive vibration of the original system or the construction cost overrun.  In this problem, 

failure is catastrophic, which means that the boundary between failure and success is sharp.  We 

use probabilistic and fuzzy set models to represent uncertainties in the design. The probabilistic 

method minimizes the probability of failure and the fuzzy set method minimizes the possibility 

of failure.  We transform probabilistic models of uncertainty into fuzzy models using a 

transformation that minimizes the loss of information.  When developing the probabilistic 

models from numerical data, we use standard statistics method and Bayesian method 

respectively to estimate distribution parameters and develop conservative probabilistic models.  

We compare these two design methods in terms of the amount of data used to create uncertainty 

models.  For each sample data size, we also compare probabilistic and fuzzy set designs when 

the wrong type of the probability distribution of the random variables is used. 

Finally, we consider a problem involving design and construction of stacks of dominoes to 

demonstrate advantages and limitations of probabilistic and fuzzy-set methods both analytically 

and experimentally.   
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1.9 Outline of the dissertation 

In Chapter 2, we examine the theoretical foundations of probabilistic and fuzzy set methods. 

We compare the underlying axioms of probability measure and possibility measure.  We also 

compare probabilistic and fuzzy calculus for functions of uncertain variables. Next, we 

demonstrate that both probabilistic and fuzzy set methods can underestimate chances of failure 

for a system with many components.  Based on these investigations, we summarize observations 

about the theoretical differences of these two methods to model uncertainties.   

In Chapter 3, we first propose a general approach for comparing probabilistic and fuzzy set 

methods for design in the presence of uncertainties.  Then we formulate the problem of design 

for a tuned damper system.  We describe the approaches of creating the probability and 

possibility distributions for the uncertain parameters from numerical data.  The probabilistic 

method finds the optimum design to minimize the probability of failure of the system whereas 

the fuzzy set method finds its optimum design to minimize the possibility of failure of the 

system. 

In Chapter 4, we explain that we can compare probabilistic and fuzzy set methods by 

calculating the true probabilities of failure of each optimum design.  We describe the factors that 

contribute to the differences of these two design methods, and then we present the analytical 

results for each method considering all the factors.  Based on these results, we summarize our 

observations of the advantages and limitations of these two methods. 

In Chapter 5, we compare both analytically and experimentally probabilistic and possibility-

based methods on a problem involving design of domino towers.  First, we formulate the design 

problem.  Next, we explain the probabilistic and possibility-based approaches to the design 

problem.  Also, we explain the method for comparing the designs from these approaches.  Then, 

we present and compare these designs both analytically and experimentally.  Finally, we present 

the conclusions about the effectiveness of the probabilistic and possibility-based methods. 

In Chapter 6, we draw conclusions based on our observations from the comparison the 

theoretical foundations of the methods and the design comparisons.  Then, we propose guidelines 
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for how to choose between these two methods in terms of amount of numerical data available.  

Finally, we suggest future studies for investigating design methods in the presence of 

uncertainty. 

In this dissertation, "we" refers to the author, Dr. E. Nikolaidis and Dr. H.H. Cudney. 
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CHAPTER 2 PROBABILISTIC AND FUZZY SET METHODS 

 
 

This Chapter compares theoretical foundations of probabilistic and fuzzy set method.  First, 

we compare the axioms of probability and possibility by identifying the differences and 

similarities in these axioms.  Next, we compare how probabilistic and possibility-based methods 

model uncertainties.  We also compare how probabilistic and possibility calculi compute the 

distributions of a dependent variable as a function of the independent variables.  Then, we 

compare these two methods for assessing the safety of a system and demonstrate the weakness in 

these two methods.  We also compare how each method maximizes safety for a given budget.  

Finally, we summarize our observations based on these theoretical comparisons. 

 

2.1 Comparing axioms of probability and possibility 

People had used the classical definition of probability by Laplace (1812) as the fundamental 

notion of probability theory before Russian statistician Kolmogorov proposed three axioms as 

foundations of probability in 1933. According to the Laplace definition, if we partition the 

outcome space of a random experiment into equally likely elementary events, the probability of 

an event, A, is the ratio of the number of elementary events whose occurrence implies the 

occurrence of A over the total number of elementary events. The Laplace definition of 

probability satisfies the Kolmogorov axioms that are presented in the fist column of Table 2.1.  

Kolmogorov actually extended the measure notion in set theory to study probability. Measure 

is a set function defined on a σ-algebra   a class of subsets S of a universal space Ω that is 

closed with respect to complementation and finite unions. This function satisfies the following 

conditions (Billingsley, 1986): 

(i) µ(A) ∈  [0, ∞], for A∈  S; 

(ii) µ(∅ ) = 0; 

(iii) for any disjointed A1, A2, …, of sets of S, such that: 
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Probability measures are special measures where the conditions of their set functions are 

restricted to the form presented in the first column of Table 2.1.  

 

Table 2.1 Axioms of Probability Measures, Possibility Measures and Fuzzy Measures 

 

Probability measure, P(⋅⋅⋅⋅) Possibility measure, ΠΠΠΠ(⋅⋅⋅⋅) Fuzzy measure, g(⋅⋅⋅⋅) 
1) Boundary requirement: 
P(Ω)=1  

1) Boundary requirements: 
Π(∅ )=0, Π(Ω)=1 

1) Boundary requirements: 
g(∅ )=0, g(Ω)=1 

2) Non-negativity: 
P(A) ≥ 0 ∀  A∈ S 

2) Monotonicity: 
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Sugeno (1977) introduced fuzzy measures as a generalization of real measures.  Fuzzy 

measure theory studies the uncertainty due to lack of perfect evidence to identify which set a 

specific element belongs to.  Here every set is crisply defined.  For example, a doctor diagnoses a 

patient who might have ordinary flu or pneumonia.  From the patient's symptom, he can assign 

two values that represent the degree to which the evidence supports the fact that the patient has 

flu or pneumonia, respectively.  These values are known as fuzzy measures.  Fuzzy measures are 

functions that satisfy axioms listed in Table 2.1, which state that:   
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1) The degree to which the evidence supports the fact that any element belongs to the empty 

set is zero, whereas the degree to which the evidence supports the fact that any element belongs 

to the universal set is one. 

2) The degree to which evidence supports the fact that an element belongs to a set must be 

greater than or equal to the degree that the evidence supports the fact that the element belongs to 

any subset of that set. 

3) For an infinite sequence of monotonic sets, which converge to a certain set, the respective 

degrees of evidence that an element belongs to each set construct an infinite sequence, which 

converges to the degree of evidence that the element belongs to that set the sequence converge 

to.    

Belief measures and plausibility measures, which were defined in Section 1.4, are fuzzy 

measures in that they satisfy the axioms of fuzzy measures.  As we have stated, the possibility 

measure is a special plausibility measure in evidence theory.  Possibility measures satisfy the 

axioms of fuzzy measures and an additional axiom, which states that the possibility of the union 

of events is equal to the maximum of the possibilities of the individual events.  

Table 2.1 also compares the underlying axioms for probability and possibility measures.  Let 

Ω be the universal set and S a set of crisp subsets of Ω.  The boundary axiom for probability and 

possibility measures indicates that they are mappings from the universal set space onto a unit 

interval.  These measures assume values between zero and one.  The boundary axiom states that 

the probability (or possibility) that an element belongs to the universal set Ω is one.  Probability 

and possibility measures are monotonic.  The second axiom of possibility in Table 2.1 dictates 

that possibility is a monotonic measure.  We can show that probability is also a monotonic 

measure from the additivity axiom of probability measures. Let A ⊆  B and C = B−A. Then 

A∪ C=B and A∩C=∅ .  Plugging A and C to the equation in the additivity axiom, we have: 

P(A∪ C) = P(B) = P(A) +P(C) ≥ P(A).   

The major difference between the axioms of possibility and probability measures is that 

probability is additive whereas possibility is subadditive (i.e., the possibility of an event, which 

can be partitioned into smaller events is less than or equal to the sum of the possibilities of the 
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constituent events).  On the contrary, the probability of the union of a set of disjoint events is 

equal to the sum of the probabilities of each event.  As a result, if {A1, …, An} is a partition of the 

universal event, Ω, the probabilities of Ai must add up to one, whereas there is no such constraint 

for the possibilities of Ai.  For example, the probabilities of the events "Tomorrow it will rain" 

and "Tomorrow it will not rain" must sum up to one.  On the other hand, if one estimates the 

possibility that tomorrow it will rain is 0.7, he/she has to assign the possibility of "Tomorrow it 

will not rain" as 1.0.  The reason is that, since the possibility of Ω is equal to the maximum of the 

possibilities of events Ai, the possibility of at least one of these events should be one.  Therefore: 
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1)(                          (2.2) 

An important difference between the axiomatic foundations of probability and possibility is 

that we can only assign a probability measure to a σ-algebra.  On the contrary, we can assign 

possibilities to any universe, since possibility is both a measure and a function.  The class of all 

subsets of the real line is not a σ-algebra.  A probability measure can be assigned to the smallest 

σ-algebra that contains all intervals (-∞,x1], where x1 is a real number (Papoulis, 1965), whereas 

we can assign a possibility to any class of subsets of the real line. 

 

2.2 Comparing uncertainty models by probabilistic and fuzzy set methods 

In the previous section, we introduced axioms of probability measures in the context of set 

theory.  In many problems, the outcomes of a random event can also be identified through the 

values of a function, which is called a random variable.  This function maps the events of the 

outcome space of random experiments onto the set of real numbers.  For example, if the value of 

X represents the number of vehicles passing an intersection in a day, X > 1000 represents the set 

of events that more than 1000 cars pass an intersection in a day.  Instead of using sets to 

represent random events in a universe, we use values of random variables to represent different 

events. 
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Random variables can either be discrete or continuous.  The range of a discrete random 

variable is a set of isolated points, whereas the range of a continuous random variable is a 

continuum.  Probability theory models a discrete random variable in terms of a probability mass 

function and models a continuous random variable in terms of a probability density function.  

The probability distribution of a random variable X is: 

 

)()( xXPxFX ≤=      (2.3a) 

 

For a discrete random variable X, the above definition can be written as follows: 
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where pX(xi) is the probability mass function. The probability mass function of a discrete 

variable, X, assigning to each real number, xi, is the probability of the random variable X being 

equal to xi. If X is continuous, the probability mass function is not defined. Instead, we use the 

probability density function fX(x), which is the derivative of the probability distribution function, 

FX(x).  Probability distribution functions must also satisfy the same axioms satisfied by 

probability measures. 

The counterparts of random variables in fuzzy set theory are fuzzy variables.  Fuzzy set 

theory uses the membership function (possibility distribution function), Π X(x) (possibility of X 

being equal to x) for both discrete and continuous variables.  Possibility distribution functions 

must satisfy the same axioms as possibility measures.  Following are some differences in the 

properties of a probability density function and a possibility distribution function of a continuous 

variable (Fig. 2.1): 
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Figure 2.1  Comparison of probability density function and possibility distribution function 

 

1. The area under the probability density function of a variable in an interval is equal to the 

probability of the variable assuming any value in that interval, whereas the area under the 

possibility distribution function has no meaning. 

2. The total area under any probability density function is one whereas the area below a 

possibility distribution can be less or greater than one. 

3. The probability of a variable, whose probability density function is a continuous function, 

assuming a specific value is zero, whereas the possibility of the same event can be any value 

between zero and one. 

4. Both the probability density function of a random variable and the possibility distribution of 

a fuzzy variable must be nonnegative.  In the case of the possibility distribution function, we 

have the additional restriction that its maximum value must be one. 

5. The horizontal interval between two points with possibility α on the possibility distribution 

curve represents an α-cut, which is a crisp set that contains all the variables with possibility 

greater or equal than α. For example, the interval [a, b] in Fig. 2.2 represents a set for which 

the possibility of each variable is greater or equal to α. For a probability density function, 

there is no analogy for this representation. 
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Figure 2.2 αααα-cut representation in a possibility distribution function 

An important difference between probability and possibility is in the ways they model 

uncertainty when there is limited data.  We will show that, in many problems, the same 

assumptions about the possibility distribution of the uncertain variables always make the model 

more conservative.  On the other hand, an assumption about the probability density of a random 

variable may make the model more or less conservative depending on the particular problem.  

Consider a problem where the frequency of excitation applied to a lightly damped mechanical 

system, ω, is an uncertain variable.  The system fails if the frequency of excitation falls in a 

danger zone shown in Fig. 2.3.  We want to construct probabilistic and possibilistic models for ω 

and to assess the safety of the system.  However, we do not have sufficient data for a probability 

distribution.   The only information available is that the frequency falls in some interval.  We do 

not know the type of its distribution and we do not have confidence in the definition of the 

interval.  In this case of total ignorance, both probability and possibility theories use a uniform 

density or distribution, respectively.  The probability method will assign a probability density of 

1/∆ where ∆ is the length of the interval, whereas the possibility distribution will be one over the 

interval (Fig. 2.3). 
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Figure 2.3  Probabilistic and possibilistic models when there is very limited information 

about a variable, such as the excitation frequency.  The possibilistic model is guaranteed to 

become more conservative as we increase the length of the interval of variation of the 

excitation frequency but this is not the case for the probabilistic model. 

 

Since in this problem there is uncertainty about the model we use to characterize uncertainty, 

it is reasonable to use the most conservative model in each case, which is consistent with the 

available information.  A general approach is to enlarge the span of the interval to represent a 

higher degree of uncertainty about the model and thus make the model conservative.  The 

probabilistic model increases the interval to ∆' and accordingly lowers the probability density to 

1/∆' so that the total area under the probability density function is kept equal to one. On the other 

hand, we do not have to lower the value of the possibility distribution since there is no restriction 

about the total area under this distribution.  As a result, although we are trying to make the 

probabilistic model more conservative, in reality, we underestimate the probability of failure, 

which occurs if the frequency of excitation falls in the shaded failure zone.  On the other hand, 

the two possibility models with different intervals are equally conservative because the 

possibility distribution remains equal to one as the interval length increases (Fig. 2.3).  One may 

argue that it is easy in this problem to make the probabilistic model more conservative by setting 

the lower and upper limits of the probability density function of the frequency of excitation equal 

to the bounds of the failure zone.  However, in real-life complex systems involving many failure 

modes and many uncertain variables we may not know how to make a probabilistic model more 
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conservative.  Therefore, possibility-based models can be useful in assessing the safety of such 

systems. 

Another difference is in the notion of independence of events.   In probability, two events are 

independent if the occurrence of one event does not affect the probability of the other event. 

Mathematically, independence is satisfied if and only if the probability of their intersection is 

equal to the product of each probability.  In possibility theory, non-interaction is analogous to 

the concept of independence in probability theory (Zadeh, 1975).  Two events are non-interactive 

if the possibility of their intersection is equal to the smallest possibility of these events.  Non-

interaction is a form of non-compensation because an increase in the possibility of one event can 

not compensate the decrease in the possibility of the other event.  On the contrary, an increase of 

probability can compensate the decrease of the other event if these two events are independent. 

We will show later that the assumption of non- interaction always makes a possibility-based 

model more conservative than other models whereas the assumption of independence in 

probability can make a probabilistic model less or more conservative. 

 

2.3 Comparison of the probability calculus and fuzzy set calculus 

The probability density of a function of independent variables is calculated using the 

following concept.  If the function transforms a small element of volume in the space of the 

independent variables to another element of volume in the space of dependent variables, then the 

probabilities corresponding to the two elements of volume are equal.  Specifically, for a random 

variable Y, which is a function of random variables Xi, i=1, …, n.  Suppose we know that the 

mapping function between Y and Xi is Y=g(X1,…,Xn).  The following equation is used for 

calculating the probability distribution function of Y, ),y(FY  (Davenport, 1970): 
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where )x,...,x(f nX,...,X n 11 is the joint probability density of variables Xi, i=1, …, n.  The 

probability density function of Y, ),y(fY  can be found by differentiating )y(FY  with respect to 

y. 

In the special case where Y = g (X1), and g is a one to one transformation, the probability 

density function of y is found using the following equation: 

 

yd
)y(dh))y(h(f)y(f XY =                                                        (2.5) 

 

where h(y) is the inverse function of Y = g(X1) and 
dy

)y(dh  is the derivative of h(y) with respect 

to y. 

Consider, for example the function Y=X2 applied to X with a uniform probability density 

function as shown in Fig. 2.4.  According to the above concept, the probability density of 

dependent variable Y, at any value y0 in the interval [64,144] is equal to the density of X at x0, 

divided by the slope of x2, at x0.  This slope is 2x0, where y0= x0
2.   Note that this means that the 

value of Y=X2 with the largest probability density is 64, corresponding to the lower end of the 

range [8,12] in Fig. 2.4. 

 

Figure 2.4  Probability density and possibility distribution of X, for the statement `X is 

about 10'. 
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The extension principle (Zimmerman, 1996) can be used to derive possibility distribution of 

a dependent variable. According to this principle, the possibility of Y = y is equal to the 

maximum of the possibilities of the all combinations of values of the independent variables for 

which ),...,( 1 nxxgy = : 

 

),...,(max)( 11
),...,( 1

nn
xxgy

Y xXxXy
n

==Π=Π
=

                                    (2.6) 

 

The possibility of the dependent variable Y becoming equal to y0, is equal to the maximum of 

the possibilities of all combinations of the independent variables mapped by the function to y0.  

Thus, if Y=X2 is applied to X defined in Fig. 2.4, the possibility of Y=100 is one, and this is the 

only value of Y with this high possibility.  That is, the most possible value of the function 

corresponds to the most possible value of the argument, while this is rarely the case in 

probabilities.  This result was presented by Wood et al. (1990), in a comparison of probability 

and fuzzy set calculi for modeling preferences. 

In possibility theory, there is no law corresponding to the law of large numbers, which is a 

fundamental law in probability.  This principle states that the probability density of the average 

of the n independent variables (called sample mean) tends to become less scattered than the 

density of the original variables and, as the number of variables tends to infinity, the average 

converges to the mean value of the variables. In possibility theory, the average of n identically 

distributed, non-interactive fuzzy variables has the same possibility distribution as the original 

variables, regardless of n.   

Because of the above differences, we conclude that one cannot simulate the results of 

possibility calculus by deriving the parameters of the possibility distributions of the independent 

variables from probability density function or vice versa.  Even if  the input variables are 

consistent, the output possibility and probability may not be comparable. 
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2.4 Comparison of the ways probability and possibility measure safety 

As a result of the additivity axiom of the probability measure, the sum of the probabilities of 

survival and failure of a system is always one. Therefore, the probability of survival of a system 

is always less than one.  In contrast, the axiom for the possibility of the union of events leads to 

the conclusion that either the survival or the failure of the system has a possibility of one. 

Therefore, any practical system has a possibility of survival of one because it should be perfectly 

possible that it can survive. 

Let F denote the failure event of a system.  The following approach is followed to find the 

probability and possibility of failure.  We partition F into elementary events whose probabilities 

or possibilities are easy to calculate.  Then, according to the axiom for the probability of the 

union of disjoint events, we add the probabilities of the elementary events to find the probability 

of failure.  Similarly, according to the axiom for the possibility of the union of events, the 

possibility of failure is the maximum of the possibilities of all the elementary events, whose 

union is the failure event, F. 

Possibility is more conservative than probability in assessing the risk of failure of systems 

whose failure requires the simultaneous occurrence of many unfavorable independent events.  

Consider a parallel system for which the failures of all the components are mutually independent, 

and system failure is defined as simultaneous failure of all components.  The probability of 

failure of the system decreases with the number of components, whereas the possibility of failure 

of the same system is the minimum of the possibility of failure for each component.  The system 

failure region is usually small, which tends to make the probability of failure small, whereas the 

possibility of failure can be still high if all the components have large possibilities of failure.  For 

example, Fig. 2.5(a) illustrates a system of n nominally identical, independent components 

connected in parallel.  The probability of failure of the system P(F) is the nth power of the 

probability of failure of one component and decreases with n as shown in Fig. 2.5(b).  In 

contrast, the system possibility of failure Π(F) is equal to the possibility of failure of a single 

component, regardless of n, as shown in Fig. 2.5(c).  
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Figure 2.5  A parallel system and its probability and possibility of failure as a function of 

the number of components 

 

However, possibility can be non-conservative when assessing the risk of failure of a system 

that has many failure modes. An example is a series system of n nominally identical, 

independent components, such as the system in Fig. 2.6(a).   From the axiom for the possibility 

of the union of events, the possibility of failure of this system is equal to the possibility of failure 

of a single component, regardless of n (see Fig. 2.6(b)).  On the other hand, the probability of 

survival of the system is the nth power of the probability of survival of each component, which is 

(1−p).  Therefore, the probability of system failure is np)1(1 −−  and increases with n.  As a 

result, we can always find a system that consists of a large number of components for which its 

possibility of failure is smaller than its probability of failure.  For example, if π = 0.8, p = 0.2 and 

n > 7, then P(F) > Π(F).  This violates the probability-possibility consistency principle, 

according to which the possibility of an event must always be greater or equal to its probability.  
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Figure 2.6  A series system and its probability and possibility of failure as a function of the 

number of components 

 

Similar results are observed when we try to model extreme events using probability and 

possibility. The probability distribution of the maximum of n independent, identically distributed 

random variables, e.g., the maximum 50-year wind speed at some location, follows an 

asymptotic distribution derived from the annual maximum wind speed using order statistics 

(Ochi, 1990).  On the other hand, the possibility distribution of the maximum is identical to the 

possibility distribution of any of the n variables.  Thus, the possibility distribution of the 

maximum 50-year wind speed is identical to the possibility distribution of the maximum annual 

wind speed.  This means that if n is large, a possibility-based approach will underestimate the 

risk of failure of a design (say a building subjected to wind loads over a 50-year period).  On the 

other hand, wind loads over a 50-year period, which are derived from year to year distributions 

by order statistics, are severer than annual data and make probabilistic design more conservative. 

Fig.2.7 shows that possibility theory is not always more conservative than probability. 
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Figure 2.7  Probability density and possibility distributions of one and 50 year wind speed.  
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The prediction of the possibility of failure of a system with many failure modes and the 

prediction of the possibility of extreme events appear to be the weak points of possibility theory 

since it yields counter-intuitive results and contradicts with the probability-possibility 

consistency principle.  In these cases, a low calculated system possibility of failure by 

possibility-based methods does not guarantee a low actual risk of failure for such a system.  The 

axiom on the union of events is responsible for this counterintuitive result of possibility-based 

methods.  

One may try to overcome this weakness by defining the joint possibility distribution of the 

components (Klir and Yuan, 1995), which is the possibility distribution defined on the Cartesian 

product space of all the components, in a way that the probability-possibility consistency 

principle is satisfied for any possible event.  In this case, one will need to model failures of 

components using the following properties, which seem counterintuitive:  

a)  The possibility of failure of a component would depend on the number of components.  This 

is surprising because the possibility of failure of a component should depend only on its 

properties and the operating environment. 

b)  To avoid the dependence of the possibility of failure on the number of components listed in 

the previous conclusion, one can try to define the possibilities of failure of the components so 

that the consistency principle is guaranteed to be satisfied for any number of components.  

That is, for any n, the possibility of failure should be greater than or equal to the probability 

of failure.  But this will yield the possibility of failure to be one.   This is because, in general, 

one can find that, in a problem involving n uncertain variables X1, …, Xn, the only joint 

possibility distribution guaranteed to satisfy the consistency principle should be equal to one 

for all combinations of values of the uncertain variables that have non-zero probability 

density.  Otherwise, one can always find a case where the probability of the event: x1 ≤  X1 ∪  

x2 ≤  X2…∪ xn ≤  Xn exceeds its possibility simply by increasing the number of variables.  Of 

course, such a possibility distribution would be of little use because it would lead to overly 

conservative designs. 

In conclusion, possibility theory is of little use in design of systems with a large number of 

independent failure modes. 
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On the other hand, the weak link of probability theory appears to be the way it handles 

insufficient data.  Specifically, if little data is available, then a probabilistic designer does not 

know what assumptions will increase the conservatism of his/her model.  The following example 

demonstrates this point.   

In Fig. 2.4, we describe the uncertainty in the statement "X is about 10" with a uniform 

distribution over the interval [8, 12].  If we are less confident about the range of variable X, we 

can enlarge the interval, for example, to [7, 13] to reflect our increased uncertainty in the 

probabilistic model. This method of increasing the length of an interval in which an uncertain 

variable can vary maximizes Shannon Entropy (Shannon and Weaver, 1964).  Entropy, which 

forms the basis of information theory, measures the uncertainty associated with predicting the 

results of a random experiment.  We have to lower the probability density from 0.25 to 0.16667 

so that its integral over the interval will remain one.  This means that if there is a danger zone for 

failure localized to the interval [8.5, 9], the probability of failure is reduced from 12.5% to 8.3%.  

Thus, our increased uncertainty about the range of X reduces the probability of failure, which 

defies common sense.  On the other hand, it is easy to increase the degree of conservatism of a 

possibility-based model in cases where little data is available.  Here, we compare a triangular 

possibility distribution with a uniform probability density function because the former is the least 

conservative distribution, which is consistent with a uniform probability density, as we will 

explain in Chapter 3.  As shown in Fig. 2.8, if we use triangular membership functions to 

describe the uncertainty in X, the possibility of failure assumes the maximum value at X = 9 for 

the failure zone [8.5, 9].  The possibility of failure increases from 50% to 66.7% as we extend the 

interval from [8, 12] to [7, 13] to account for lack of data.   
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Figure 2.8 Possibility distribution of X, for the statement `X is about 10' when extending the 

interval from [8, 12] to [7, 13] 

 

In highly redundant systems, many rare events have to happen simultaneously for failure to 

occur.  For example, an offshore platform may only fail if several of its structural members fail 

and both the wind and wave loads on the structure are unusually high.  In these cases, 

probabilistic methods tend to be less conservative in estimating the risk of failure than 

possibility-based methods because the size of failure zone is very small as explained in Section 

2.2.  If uncertainties are modeled accurately, then probabilistic methods are better than 

possibility-based methods because they yield more efficient designs.  Consider however a 

scenario where these rare events that may lead to failure are highly correlated, and the correlation 

is not known.  Then, if one ignores correlation and uses probabilistic methods one may come up 

with an unsafe design, whereas a possibility-based approach can yield a safer design.  Indeed, we 

will show that assuming that the uncertainties are non-interactive when using a possibility-based 

approach always yields more conservative results.  

Lemma 2.1 (Extracted from Nikolaidis et al., 1997): 

The most conservative joint possibility distribution that is consistent with the marginal 

possibility distributions of the individual variables is the one corresponding to the assumption 

that the variables are non-interactive.   
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Proof: Let )x,x(X,X 2121Π ′  be a joint possibility distribution of X1 and X2 that is consistent 

with the marginal possibility distributions of these variables.  We will prove that 

)x,x(XX 2121Π  is greater or equal to )x,x(XX 2121Π ′ .   

Let x10, y20 be any pair of values of variables X1 and X2.  Then, 

 

          )),((max)( 210,10 2121
xxx XXxX Π′=Π                                (2.7a) 

 

              and )),((max)( 201,20 2112
xxx XXxX Π′=Π                                             (2.7b) 

In Equations (2.7a) and (2.7b), the maximum is taken over all values of X1 and X2, 

respectively. 

From equation (2.7a) we conclude that )x,x()x( X,XX 21010 211 ΠΠ ′≥ , and from equation 

(2.7b) we conclude that )x,x()x( X,XX 20120 212 ΠΠ ′≥ .  Therefore, 

).,())(),(min( 2010,2010 2121
xxxx XXXX Π′≥ΠΠ  

But ).x,x())x(),x(min( X,XXX 20102010 2121 ΠΠΠ =  

Therefore, )x,x()x,x( X,XX,X 20102010 2121 ΠΠ ′≥ .   

Since the pair x10, x20 is arbitrary, we can conclude that, out of all joint possibility 

distributions consistent with the marginal possibility distributions, the possibility distribution 

corresponding to the non interaction assumption is the most conservative, that is the one that 

yields the largest probability of failure of an event.  Q.E.D. 

It is also important to note that probabilistic methods may fail to predict the trends in the 

probability of failure because of design modifications.  Suppose the true probability distribution 

is uniform over the range [8, 12].  Suppose that we could modify a design to move the failure 

zone in the example of the previous paragraph from the interval [8.5, 9] to [7.5, 8].  If we model 

X as a uniformly distributed random variable from [7, 13], we will conclude that this 

modification is useless because the probabilistic approach shows that the probability of failure 

remains 8.3%.  In reality this modification is effective because it reduces the true failure 
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probability from 12.5% to 0 because the modified interval [7.5, 8] is out of the failure zone.  

Note that a possibility model correctly predicts that this modification will increase safety. 

In this section, we presented differences in probability and possibility measures when they 

are applied to estimate the safety of systems.  We also explained why it is easier to determine the 

most conservative possibility model that is consistent with the data than to determine the most 

conservative probabilistic model consistent with the data.  

 

2.5 Comparison of the ways probability and possibility maximize safety for a 
given budget 

Consider a design problem in which two designers try to design a system to maximize safety 

using probabilistic and possibility based methods, respectively.  For simplicity, consider that the 

system has only two failure modes.  Consider that the events of failure under the first mode and 

the second mode are statistically independent.  We will investigate how probabilistic and 

possibility-based methods allocate resources to maximize safety. 

The probabilistic designer formulates the design problem as follows:                             

 

Find the optimum values of the design variables, d1,...,dn, 

     to minimize PF                                                                                                                    (2.8) 

such that gj(d1,...,dn) ≥ 0, j =1,…, m.  

 

In the above formulation, PF is the probability of failure of the system.  The constraints 

prevent a designer from exceeding a budget and/or a maximum allowable weight. 

The possibilistic designer uses the same formulation as the probabilistic designer except that 

his/her objective is to minimize the possibility of system failure, ΠF, instead of the probability of 

failure, PF.   

The necessary conditions for the optimum of (2.8) are: 
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Consider the case when λi=0, i.e. when none of the constraints is active at the optimum.  

Then, at the optimum, the derivatives of the system failure probability with respect to the design 

variables should be equal to zero.  Since there are two failure modes: 
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If the probabilities of the two failure modes are small (e.g., 10-3), then the third term is much 

smaller than the individual failure probabilities and can be omitted.  Then the optimality 

condition (2.10) reduces to the following equation: 

 

|||| 21
ii d

PF
d

PF
∂

∂
≈

∂
∂

   for i=1,...,n                                               (2.11) 

 

According to the above optimality condition, probabilistic optimization will try to equate the 

absolute values of the derivatives of the probabilities of failure under the two failure modes. 

The possibility of system failure, consisting of two failure modes, is calculated by: 

 

),max()( 2121 FFFFF ΠΠ=∪Π=Π     (2.12) 

 

The optimum design will minimize the possibility of system failure: 
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)],min[max()min( 21 FFF ΠΠ=Π        (2.13) 

 

The optimum occurs when ΠF1= ΠF2.  Otherwise, any offset from this condition will either 

increase ΠF1 or ΠF2 or both ΠF1 and ΠF2.  Therefore, for the possibilistic optimum design, if all 

constraints are inactive at the optimum, the optimizer will try to equalize the possibilities of 

failure under the two failure modes: 

 

21 FF ΠΠ =                                                                    (2.14) 

 

The different optimization mechanisms of the probabilistic and possibility-based designs can 

result in dramatically different optimum designs, as we will see in Chapter 3.  Moreover, 

generally, the optimum of the possibilistic approach is less sensitive than the optimum of the 

probabilistic design.  The reason is that, generally, the sensitivity derivatives of a quantity are 

more sensitive to errors than the quantity itself.  For example, in strength of materials, stresses 

and strains are more sensitive to discretization errors than displacements.  Another reason that 

the possibility-based optimum is less sensitive than the probabilistic optimum is that the 

possibility of an event is bounded between zero and one whereas the sensitivity derivative of the 

probability is unbounded. 

As we will see in chapters four and five, if there is little data about the uncertain variables 

one has to make strong assumptions to construct models of the uncertain variables.  The 

probabilistic optimum can be very sensitive to these assumptions.  This indicates that a designer 

ought to invest more resources to collect more data so that he/she can build more accurate 

models of the random variables.  If it is impractical to do so, then the probabilistic approach is of 

little use to the designer.  In many real life design problems, probabilistic designers do not 

perform a parametric study to assess the sensitivity of the optimum designs to errors in modeling 

uncertainties.  One reason is the high computational cost.  In this case, the optimum probabilistic 

design can be too expensive or even unsafe, that is its true probability of failure can be 

unacceptably high. 
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2.6 Observations based on the  comparison of theoretical foundations 

The fundamental axiomatic difference between possibility and probability is that the 

probability of the union of a set of disjoint events is equal to the sum of the probabilities of each 

event.  On the other hand, the possibility of the union of a finite number of events is equal to the 

maximum of the possibilities of these events.  This leads to the following observations: 

1. The possibilities of an event and its complement may add up to a number greater or equal to 

one.  Moreover, either the possibility of that event or the possibility of its complement should 

be one.  In contrast, the probabilities of an event and its complement must add up to one. 

2. The possibility of failure of a series system consisting of identical, independent components 

is equal to the possibility of failure of one component.  On the contrary, the probability of 

failure of the system increases as the number of components in series increases.  As a result, 

a possibility-based method is likely to underestimate the chance of failure of a series system 

with large numbers of components.  This property of possibility violates the possibility-

probability consistency principle. 

3. The possibility of failure of a system, consisting of identical, independent components 

connected in parallel, is equal to the possibility of a single component.  The probability of 

failure of the system decreases as the number of components in the system increases.  The 

failure zone for such a system is usually small compared to the range of the uncertain 

variables.  The possibility-based method appears too conservative to predict the chance of the 

system failure.  Compared to the possibility-based method, the probabilistic method may 

estimate more accurately the chance of failure of this system. 

4. If little data is available to a probabilistic designer, he/she does not know how to increase the 

conservatism of the probabilistic model.  In some problems, his/her rational effort to increase 

the uncertainty in a model leads to underestimation of the true probability of failure.  In this 

dissertation, the term "true probability of an event", refers to the limit of the relative 

frequency of the event obtained from a number of independent replications of the same 

random experiment as the number of replications tends to infinity.  On the contrary, a 
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designer who uses possibility can always increase the conservatism of his/her model when 

little data is available.  This can be done by increasing the range in which the variables are 

assumed to vary and by assuming that the variables are non-interactive. 

5. For a design problem to maximize the safety of a series system where two failure modes are 

present, the probabilistic optimization approach will try to equate the absolute values of the 

derivatives of the probabilities of failure under the two failure modes. On the contrary, the 

possibility-based optimizer will try to equate the possibilities of failure under the two failure 

modes. The different optimization mechanism in the probabilistic and possibility-based 

designs can result in dramatically different optimum designs. 

From the above observations, we conclude that one cannot simulate the results of possibility 

calculus using probability calculus by scaling of the parameters of the probability distributions of 

the random variables.  

In Chapter 3, we present an approach, which uses design, to compare probabilistic and 

possibility-based methods. 
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CHAPTER 3 TWO ANALYTICAL STUDIES COMPARING THE 

EFFICACIES OF THE METHODS IN MAXIMIZING SAFETY FOR A 

GIVEN BUDGET  

 
 

In the previous Chapter, we compared theoretical foundations of probabilistic and fuzzy set 

design methods and concluded that we should use design rather than analysis to compare these 

two methods.  In this Chapter, we first explain a general approach to compare probabilistic and 

fuzzy set methods using designs. Then, we describe a tuned-damper system and formulate 

probabilistic and fuzzy-set design optimization problems to minimize the risk of failure of the 

system for a given budget.  Next, we present in detail the probabilistic approach to find an 

optimum as well as its fuzzy set counterpart approach.  We also explain how to ensure these two 

design methods to use the same amount of information by building a probability distribution of 

the uncertain variable based on the available data and transforming the probability distribution 

into a possibility distribution that is consistent with the probability distribution. 

3.1 An approach to compare probabilistic and fuzzy set methods 

Figure 3.1 explains our approach of comparing methods for design in the presence of 

uncertainty.  The key idea is to compare the safety of competing designs obtained by fuzzy set 

and probabilistic optimizations using the same resources and same amount of data about 

uncertainties. 

To simulate real life design, where we rarely have enough data about uncertainties, we design 

using only a portion of the available information.  Both probabilistic and fuzzy set based 

optimizations maximize safety, but they use different metrics of safety.  Probabilistic design 

minimizes the failure probability, whereas fuzzy set design minimizes the failure possibility.  

Both use the same design variables.  Because of the incomplete information, both techniques 

must work with inaccurate models of the uncertainties. 
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Once we have obtained two competing designs we compare them using complete information 

about uncertainties.  Complete information means all the data needed to construct the true 

probability distributions of uncertain variables, which is infinite in the number of values.  As 

noted in Chapter 1, this study considers only random uncertainties.  Therefore, the designs are 

compared on the basis of their relative frequency of failure or probability of failure. This means 

that with complete information available, the probabilistic design is safer. 

However, if little information is available, probabilistic design optimizes a design using 

estimates of the probability of failure, which can be significantly different from the true 

probability of failure.  As explained in Chapter 2, designers who use probabilistic methods do 

not know how to make models more conservative to protect themselves from building unsafe 

designs because of lack of information.  As a result, they may end up with designs that are less 

safe than their fuzzy set counterparts. 

Optimization: Maximize Safety

Fuzzy Design Probabilistic  Design

Analysis Analysis

Compare relative frequencies of failure

Information
about uncertainties

Incomplete
informationBudget

 
 

Figure 3.1.  Analytical Comparison of Method 

 



CHAPTER 3 TWO ANALYTICAL STUDIES COMPARING THE EFFICACIES OF THE 
METHODS IN MAXIMIZING SAFETY FOR A GIVEN BUDGET  
 

 

51 

To demonstrate our approach of comparison, we present a design problem that involves the 

design of a damped single-degree of freedom system with a dynamic vibration absorber.  The 

objective is to minimize the risk of failure due to cost overrun or performance shortfall. There 

are uncertainties in the system physical properties as well as in the construction budget.  There 

are two narrow failure zones in the vicinity of the nominal values of the uncertain variables. In 

these types of problems, users of probabilistic design methods may seriously underestimate the 

risk of failure, if they assume large tolerances in the uncertain variables to account for the lack of 

data.  These problems demonstrate the advantages of the fuzzy set based designs when there is 

limited information.  

 

3.2 Design of a tuned damper system with parameter uncertainties 

3.2.1 System description 

Figure 3.2 illustrates a tuned damper system consisting of a single-degree of freedom system, 

called the original system, and a dynamic vibration absorber, which is used to reduce the 

vibration of the original system due to a harmonic excitation force.  The amplitude of the 

displacement of the tuned damper system is normalized by the amplitude of the quasi-static 

response, and is denoted by y.  The normalized amplitude of the vibration depends on the 

following system parameters: the mass ratio of the absorber to the original system ( R ); the 

damping ratio of the original system (ζ); the ratio of the natural frequency of the original system 

to the excitation frequency (β1) and the ratio of the natural frequency of the absorber to the 

excitation frequency (β2). 

Figure 3.2 Tuned damper system 

m, ωn2 Dynamic absorber 

Original 
system 

M, ωn1 

F=cos(ωet)

Normalized 
system 
amplitude y 
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The normalized amplitude of the tuned damper system is calculated using the following 

equation: 
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This tuned damper system is ideal to demonstrate advantages of possibility-based methods 

and the pitfalls of probabilistic methods when little information is available for modeling 

uncertainties.  The reason is that the probabilistic designer does not know how to make his/her 

model of the uncertainties more conservative to account for the lack of information.  Figure 3.3 

and 3.4 show the vibration amplitude of the tuned damper system as a function of β1 and β2.  In 

Fig. 3.4, there is only one random variable β since β1 and β2 are assumed equal in the figure.  

Failure due to excessive vibration occurs in two narrow zones near the nominal values of β1 and 

β2.  

 

Figure 3.3 The normalized amplitude of the tuned damper system 

 as a function of ββββ1 and ββββ2. ζζζζ =1%, R=1% 
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In design problems where little information is available, designers who use probabilistic 

methods tend to assume a large tolerance on the uncertain variables to be conservative. 

Otherwise, they may miss the peak values of the amplitude (Fig. 3.4).   
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Figure 3.4 The normalized amplitude of the tuned damper system  

when ββββ1 = ββββ2 and ζζζζ =1% 

 

However, if a system has narrow failure zones, like the system in Fig. 3.4, increasing 

tolerances may produce a less conservative probabilistic model and lead to large errors in 

predicting the effect of design modifications on reliability. We have discussed this weakness of 

the probabilistic method in detail in Section 2.3.  Figure 3.5 demonstrates how the standard 

deviation of normalized frequencies β1 and β2 affects the estimated probability of failure due to 

excessive vibration as a function of mass ratio R.  The failure due to excessive vibration is 

defined to occur when the normalized amplitude exceeds 20.  It is observed that even a small 

change in the calculated standard deviation of β1 and β2 dramatically changes the sensitivity of 

the probability of failure with respect to R. 
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Figure 3.5 Effect of standard deviations of ββββ1 and ββββ2 on the probability of failure  

(y > 20) due to excessive vibration, ββββ1 and ββββ2 are equal 

 

Specifically, if the normalized frequency is uniformly distributed about one with a standard 

deviation of 5%, the probability of failure due to excessive vibration decreases dramatically as 

the mass ratio, R, increases.  However, if the standard deviation is 10%, increasing the mass ratio 

does not reduce the failure probability. When the standard deviation is small, increasing the mass 

pushes the failure zones outside the range of variation of the normalized frequency, which 

reduces the probability of failure (Fig. 3.4).  When the standard deviation is larger (say 10%), the 

failure zones of all systems with R between 1% and 5% fall within the range of variation of the 

normalized frequency β so all these systems have nearly the same failure probability.  

Probabilistic methods can lead to poor designs in this type of problems if there is limited data 

about uncertainties because they cannot estimate the sensitivities of the probability of failure 

with respect to the design variables. 

3.2.2 Design problem formulation 

3.2.2.1 Failure modes 
The following scenario is considered for the design problem: a tuned damper system is 

designed to have low vibration, to be insensitive to variations in the normalized natural 
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frequencies β1 and β2, and to simultaneously satisfy the construction budget requirement of a 

client.  The budget of the client has not been decided   the designer just knows the upper and 

lower limit in which it varies.  Also, the cost is assumed proportional to the mass of the dynamic 

vibration absorber.  The failure of this system consists of failure due to excessive vibration or 

construction cost overrun.  

 

3.2.2.2 Uncertainties in the design problem 
In Chapter 3 and 4, we assume that the random variability in β1 and β2 is the only source of 

uncertainty in the system parameters. Two cases are studied:  

a) β1 and β2 are statistically independent. This is possible when the natural frequencies of 

the original system and the absorber are independent random variables, and the excitation 

frequency is deterministic.  

b)  β1 and β2 are equal (The two variables are perfectly correlated). This can happen if both 

natural frequencies are deterministic and the excitation frequency is uncertain.  

To analytically simulate the real life scenario where a designer builds the probabilistic model 

with incomplete information about uncertainty, we use a random generator to produce sample 

values of β1 and β2.  With these data as samples we calculate the statistics of β1 and β2.  

The sample size is a main factor to influence the accuracy of probabilistic model.  In this 

dissertation, we evaluate the effectiveness of the probabilistic and possibility-based methods as a 

function of the sample size. 

Besides the uncertainties in the system properties, there is uncertainty in the budget, which is 

the maximum amount of money a client is willing to pay for a tuned damper system. In this 

dissertation the probability distribution of the budget is assumed known. 

 

3.2.2.3 Formulation of design optimization problem 
In this design problem, both failure modes involve uncertainties. The design variable is the 

mass ratio R.  A light absorber is cheaper but not effective in reducing the vibration. On the other 



CHAPTER 3 TWO ANALYTICAL STUDIES COMPARING THE EFFICACIES OF THE 
METHODS IN MAXIMIZING SAFETY FOR A GIVEN BUDGET  
 

 

56 

hand, a heavy absorber successfully dampens the vibration but is more likely to exceed the 

budget. 

The objective of the design problem is to minimize the risk of excessive vibration or 

construction cost overrun by adjusting the mass ratio R. This ratio can vary between bounds Rl 

and Ru which are known.  An optimization design problem is thus formulated as follows: 

 

Find R to      

Minimize:   Risk of failure of the system due to excessive vibration or construction cost  

overrun 

Subject to:   gi (R, ζ, β1, β2) ≤ 0    ( i = 1, …, m) 

 

In this problem, constraints are imposed on the allowable range of the mass ratio: 

 

0)(
0)(

2

1

≤−=
≤−=

u

l

RRRg
RRRg

      (3.2) 

 

3.3 Design using probabilistic method 

3.3.1 The probabilistic design problem formulation 

The probabilistic method minimizes the probability of failure in this problem. The design 

problem is formulated as: 

 

Find R to    

Minimize:    P(FS) = P(A ∪  B)                   (3.3) 

Subject to:  gi (R) ≤ 0    (i = 1, 2) 

 

where g1 (R)  and g2 (R)  were defined in  inequality(3.2). 
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P(A) stands for the probability that the construction cost of the system exceeds the budget; 

P(B) is the probability that vibration above a required safe level occurs, and P(FS) is the 

probability of system failure, which is the union of the above two failure modes.  Section 3.3.3 

presents the equations for determining if failure due to cost overrun or failure due to excessive 

vibration occurs, and the equations for computing the probabilities of failure under these two 

modes.   

 

3.3.2 Creating conservative probability distributions from sample data 

The probabilistic design models uncertainties with probability distributions. In this 

dissertation, the main objective is to study the effectiveness of probabilistic and possibility-based 

methods in the presence of incomplete information about the frequency ratios β1 and β2.  In real 

life, the probabilistic designer first determines the distribution type available information or 

based on experience, and then he/she uses a statistical inference method to estimate the 

distribution parameters using the available sample values of uncertain variables.  In this 

dissertation, two statistical inference methods are used for estimating the probability distributions 

of β1 and β2, the standard statistical method and Bayesian method.  These methods are described 

below. 

 

3.3.2.1 Standard statistical method 
The standard statistical method uses the statistics of sample data to infer the distribution 

parameters of a random variable.  For example, statistics such as mean and variance of a sample 

of size N, are used to estimate the mean and variance of the population, which are the true mean 

and standard deviation of the random variable respectively.  As N tends to infinity, these 

estimates converge to the population parameters.  In the tuned damper design problem, the 

population parameters of uncertain variables β1 and β2 are calculated using these estimates.  

In this design problem, we assume that the population means of β1 and β2 are known to be 

one. This means that, on average, the dynamic vibration absorbers are perfectly tuned. The 

standard deviations of β1 and β2 are estimated from samples. Consider a random variable, X, and 
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a sample x1, …, xN of size N. The mean square error of the sample,δ2, is an unbiased estimate of 

the population variance σ 2 (Deming, 1966):  
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The standard error of δ 2 can be derived using a standard inference method: 
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where µ is the population mean of the variable X;  

and 2δσ  is the standard error of δ 2. 

When a small sample (sample size less than 30) is used to estimate the parameters of the 

probability distribution of a random variable there is considerable statistical error in the 

estimates.  It is common practice to assume a large tolerance for this random variable to account 

for the statistical error.  Since the true values of the distribution parameters of the random 

variable are unknown (e.g., the mean, and the variance) they are treated as random variables.  To 

account for the error in the estimate of the variance we scale the standard error in the variance by 

an inflation factor greater than one.  This increases the range in which the variable can vary.  In 

the tuned damper design problem, the variances of β1 and β2 are estimated from Equation (3.4) 

and the standard errors in these variances are calculated from Equation (3.5).  To account for the 

statistical error, we increase the estimates of the variances obtained from Equation (3.4) by two 

times the square of the standard error: 

 
222

22 δσδσ +=       (3.6) 
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Note that as the sample size used to estimate the variance of the normalized frequency 

increases the error in the estimate of the variance tends to zero, and so does the increase in the 

estimate of the variance on the right hand side of Equation (3.6). 

 

3.3.2.2 Bayesian method 
In Bayesian statistics, the unknown parameters of the probability distributions of the 

uncertain variables (e.g., the mean and the variance) are considered as random variables and 

have their own probability distributions. 

Bayesian inference combines the objective information from numerical data and the prior 

information about a distribution parameter (which is usually based on judgment) into a posterior 

distribution of that parameter through a likelihood function. 

A prior probability distribution for each distribution parameter is selected based on the 

available prior information, which can be either subjective or objective. If there is little 

knowledge about the system, the prior that has a minimal effect on the posterior distribution 

should be chosen. This kind of prior is called a noninformative prior.  One approach to create a 

noninformative prior, which is called the invariance principle, is based on the idea that two 

variables that are related by a one-to-one transformation should have the same noninformative 

prior. For example, if a probability density with parameter σ has the form of σ--1f(x/σ), σ is 

called a scale parameter. Scale parameters control the shapes of probability density functions. 

The standard deviations in both normal and uniform distributions are examples of scale 

parameters.  The scale parameters of two variables X and Y, related by a transformation X = c Y, 

should have the same noninformative prior according to the invariance principle. The 

noninformative prior for a scale parameter is 1/σ. (Berger, 1985). 

Assume that X is a random variable with uniform distribution U(µ,σ2). The population mean, 

µ, is known to be one. The standard deviation, σ, is uncertain and its posterior distribution is 

estimated using information from the sample and an assumed prior. σ is a scale parameter and 
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we adopt the noninformative prior, which is 1/σ.  The posterior probability density function and 

probability distribution of σ are derived as follows: 

      Using Bayes theorem, the posterior probability density function of σ is: 
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      where: N is the sample size, X is the sample set. σ1 is the lower boundary of σ, which is 

determined using the following equation:  

 

     111 3131 σσ +≤≤≤− Nxx                   (3.8) 

 

where x1 is the smallest value, xN is the biggest value in the sample. 

 

      Thus, σ1 is the bigger of the following quantities: 
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The posterior probability distribution of σ is found by integrating the probability density 

function of σ in Equation (3.7): 
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3.3.3 Calculating the probability of failure 

The probability of failure due to excessive vibration over the maximum allowable limit is 

evaluated by Monte Carlo simulation.  100,000 repetitions are performed.  If the standard 

statistical method is adopted to infer the population parameter, samples for β1 and β2 are 

generated from the estimated probability distributions of β1 and β2.  

When a Bayesian method is used to infer a population parameter, σ, the posterior distribution 

of σ is obtained from a set of sample data. In that case, the probability of failure, P(B), is the 

expectation of the conditional probability of failure given the value of σ, over all possible values 

of σ (Der Kiureghian, 1990): 
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where Pf(σ) is the conditional probability of failure given the value of σ, p(σ) is the posterior 

density of σ, and p(x, σ) is the posterior joint density of the vector of random variables, x, and σ. 

In the problem of finding the probability of failure of the system with the dynamic vibration 

absorber, x={β1, β2}T. Using Equation (3.11) the probability of failure could be evaluated from 

the joint distribution of x and σ by Monte Carlo simulation. 

In this dissertation, we assume that the designer knows the true distribution of the budget. 

The construction cost of the system consists of a constant component and a component that is a 

linear function of the tuned damper mass, R.  The equation for the construction cost, ic, is as 

follows: 

 

Ric 50020 +=             (3.12) 
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We also assume that the budget is a random variable uniformly distributed between [20, 

200]; therefore, the probability of failure due to cost overrun can be evaluated as: 

 

180
)20()( −= icAP                          (3.13) 

 

The probability of failure due to excessive vibration or cost overrun is: 

 

)()()()()()( BPAPBPAPBAPFSP −+== U              (3.14) 

 

3.3.4 Finding the optimal design 

In this dissertation, the mass ratio can assume 11 discrete values equally distributed from 1% 

to 5.5%.  For each mass ratio, the probability of failure due to excessive vibration or construction 

cost overrun can be determined as described in the previous subsection. Among all the designs 

with different mass ratios, the one with the smallest estimated failure probability is the optimum. 

 

3.4 Design using the fuzzy set method 

3.4.1 The fuzzy set design problem formulation  

The possibility-based method minimizes the possibility of failure of the system. The 

formulation of the possibility-based optimization is: 

 

Find R to      

Minimize:    Max [Π(A),Π(B)] 

Subject to:  gi (R)  ≤ 0  (i = 1, 2) 

where g1 (R) and g2 (R) were defined in the inequality (3.2). 
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Π (A) is the possibility that the construction cost of the system exceeds the allowable budget; 

Π(B) is the possibility that vibration exceeds the safety level. Note that both probabilistic and 

possibility-based designers use the same amount of information and have to satisfy the same 

constraints. However, they use different metrics to define the chance of failure of a design. 

3.4.2 Creating a possibility distribution that is consistent with the probability distribution 

The probabilistic design method and the possibility-based method differ in the way they 

model uncertainties and evaluate the risk of system failure. It is important to ensure that both 

models are constructed using the same data. For this purpose, first we construct a probabilistic 

model of an uncertain variable, as described in the previous section, and then we transform this 

model into a possibility distribution.   

The least conservative principle is used to construct a possibility distribution that is 

consistent with the given probability distribution (Nikolaidis et. Al., 1997). This principle is 

based on the concept that, among all transformations that yield possibility distributions 

consistent with a given probability distribution, the one that results in the minimum loss of 

information is the best.  A possibility distribution is said to be consistent with a probability 

distribution if the possibility of any event is greater than or equal to its probability.  In the 

following we will derive a necessary condition that a possibility distribution must satisfy so that 

it is consistent with a given probability distribution.   

Figure 3.6 shows the probability density function f(x) for variable X. Assume that this 

distribution is unimodal. The corresponding probability distribution of X is F(x).  Suppose Π(x) 

is a possibility distribution consistent with the probability distribution of X.  

 

 

 

 

 

 
Figure 3.6 A probability density function and its consistent possibility distribution function 
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1

0 xx ΠΠ=′ −  

)x( 0Π  
Possibility distribution Π(x) 

Probability density function f(x) 



CHAPTER 3 TWO ANALYTICAL STUDIES COMPARING THE EFFICACIES OF THE 
METHODS IN MAXIMIZING SAFETY FOR A GIVEN BUDGET  
 

 

64 

 

Consider a value x0 to the right of the apex of the possibility distribution function. All events 

that have possibility of occurrence, Π(x0), have the form UU )xxxx)xxxx( ul ≥′≤≥≤ 00 (or  . 

Let x0' is the value of X on the increasing side of the possibility distribution with the same 

possibility as x0, xl is any value of X smaller than x0' and xu is any value of X larger than x0. Of all 

events that have possibility Π(x0), the one that has the highest probability is the event 

U )( 00 xXxXA ≥′≤= .  The probability of this event is the shaded area in Fig. 3.6.  The reason 

is that the probabilities of events lxX ≤ and uxX ≥ , becomes maximal when 

00  and xxxx ul =′= . 

The probability of the event E is represented by: 
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     (3.15) 

 

Therefore, if the possibility distribution of X is consistent with the probability distribution of 

the same variable, then the following inequality holds:  
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     (3.16) 

 

If x0 locates to the left of the apex, a similar inequality can be obtained:  

 

)(1)()( 000 xFxFx ′−+≥Π     (3.17) 

 

We have proven that, inequalities (3.16) and (3.17) are necessary conditions so that the 

possibility distribution Π(x) is consistent with the probability distribution F(x).   
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We will prove that inequalities (3.16) and (3.17) are also sufficient conditions.  Suppose that 

the possibility distribution and the probability distribution of a variable, X, satisfy these 

inequalities for any value that variable X can assume.  Consider an arbitrary event, E', with 

possibility Π.  Because Inequlities (3.16) and (3.17) are satisfied, the probability of any event 

that has possibility Π, is equal to or smaller than Π.  Therefore, the probability of E' is equal to 

or smaller than the possibility of E', which means that the possibility distribution of X is 

consistent with the probability distribution of the same variable. 

 

 

Figure 3.7 Demonstration of the proposition “possibility distribution ΠΠΠΠ’(x) is more 

conservative than ΠΠΠΠ(x)” 

 

For a given probability density function, there are infinite possibility distributions satisfying 

the consistency principle expressed by inequalities (3.16) and (3.17).  We will impose an 

additional requirement that the possibility distribution be the least conservative among all 

possibility distributions consistent with a given probability distribution.  A possibility 

distribution function, Π(x), is defined to be less conservative than another possibility distribution 

function Π’(x) if for any x, )()( xx Π′≤Π .  For example, if we are not sure about tomorrow's 

weather, we may want to say that the possibility that it will rain tomorrow is one instead of 0.3.  

x 

Π’(x) 

Π(x) 
α 

α-cut of Π(x) 
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All α-cuts of Π(x) are subsets of the corresponding α cuts of Π’(x).  Fig. 3.7 demonstrates two 

possibility distributions with different degrees of conservatism. 

Unfortunately, even when inequality (3.16) becomes equality, it does not completely define 

the least conservative possibility distribution for a given probability distribution.  The reason is 

that for a given value of x0, there are infinite choices for x'0.  However, if the probability density 

is symmetric, by introducing symmetry as an additional requirement for the possibility 

distribution we can resolve this difficulty (Fig.3.8).  In the following, we consider only 

symmetric probability density functions.  To find a unique solution to the above equations, we 

impose the restriction that the possibility distribution is symmetric and its peak has the same 

value as the mode xmod of the probability density function. The mode in a probability density 

function is the value with the biggest probability density.  It is reasonable to assign the highest 

possibility to this value. 

 

Figure 3.8 A probability density function and its least conservative consistent possibility 

distribution, which is symmetric and the symmetric axis coincides xmod 

 

With above additional restrictions, inequalities (3.16) and (3.17) become: 
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If the random variable x has a uniform distribution over interval [a, b], the probability 

distribution of this random variable is: 

x x0 2xmod-x0 

Π(x) 

xmod 

f(x) 
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In a uniform probability distribution, there is no mode over the interval.  All x values are 

equally probable.  We assume the symmetric apex of the least conservative possibility 

distribution locates at the middle point of the interval [a, b]. Applying Equation (3.18) with xmod 

=(a+b)/2:   
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The least conservative possibility distribution consistent with a uniform density function is a  

symmetric triangular distribution with apex at (a+b)/2.  Its support is the interval [a, b] (Fig. 

3.9): 

 

 

Figure 3.9  Least conservative possibility distribution that is consistent with a uniform 

probability density function 

 

When using the Bayesian approach to model the uncertainty in the normalized frequencies, 

the standard deviations of these frequencies are treated as random variables.  We could use the 
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mean value of the standard deviation of a frequency, σ, as an estimate of σ.  However, since little 

information is available about the frequencies of the original system and the absorber, we want to 

increase the assumed tolerance in the uncertain frequency. To do so, we calculate the standard 

deviation of σ and increase this mean value of σ by two standard deviations  

 

σσσσ 2)( += E                       (3.21) 

 

where E(σ) is the posterior mean of σ, and σσ is the standard deviation of σ.  The latter 

statistic is calculated using the posterior distribution P(σ/X) obtained from Equation (3.10). 

After estimating the standard deviation of the normalized frequency, we transform the 

probability distribution of the normalized frequency into a possibility distribution using the least 

conservative distribution principle. 

3.4.3 Calculating the possibility of failure 

The possibility of failure due to excessive vibration is evaluated using the vertex method 

(Dong and Shah, 1987).  This method allows us to calculate the possibility distribution for the 

system amplitude that is a function of R, ζ, β1 and β2, from the possibility distributions of β1 and 

β2.  The possibility of failure due to excessive vibration, Π(B), is the maximum value of the 

possibility distribution of the vibration amplitude over all values of the amplitude that are greater 

or equal to the maximum allowable amplitude.  As we know, the budget is uniformly distributed 

between [20, 200]. Its consistent possibility distribution Π(A) is a triangular function over the 

same interval that has the maximum at the middle of the interval. 

The possibility of failure of events A and B (failure due to budget overrun or excessive 

vibration, respectively) is: 

 

))(),(()( BAMaxBA ΠΠ=Π U                  (3.22) 
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3.4.4 Finding the optimal design 

To determine the optimum possibilistic design we compute the possibilities of failure of 

designs with mass ratios, R, from 1% to 5.5%.  For a given mass ratio, the possibility of failure 

due to excessive vibration or construction cost overrun can be determined using Equation (3.22). 

The optimum mass ratio is selected as the value that corresponds to the smallest possibility of 

system failure. 
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CHAPTER 4 COMPARING THE RESULTING OPTIMAL DESIGNS 

 
 

In Chapter 3, we developed analytical models of probabilistic and fuzzy set methods for the 

tuned-damper design problem.  This Chapter we performs numerical analysis to compare these 

two methods.  First, we explain the criteria to justify which method is better.  Next, we list 

factors that we consider in comparisons.  Finally, we present comparison results with bar charts 

and summarize observations from these results. 

4.1 Calculating the true probability of failure for both approaches 

This design problem considers only crisply defined failure.  Therefore, the designs are 

compared on the basis of their relative frequency of failure (in an experimental comparison) or 

the probability of failure (in a comparison based on computer simulation).  This means that with 

complete information available, the probabilistic design is the safest one. 

However, if little information is available, probabilistic methods optimize a design using 

estimates of the probability of failure, which can be significantly different than the true 

probability of failure.  Moreover, probabilistic design may fail to predict accurately the 

sensitivity derivatives of the probability of failure with respect to the design variables as we 

show in Section 2.4.  In these cases, it can yield less safe designs than possibility-based methods. 

For each design, the probability of failure due to excessive vibration is calculated from 

Monte Carlo simulations using sample values of uncertain variables β1 and β2.  The probability 

of failure due to construction cost overrun is determined analytically as a function of the mass 

ratio. The true optimum mass ratio is the one with the smallest true probability of failure. 

For comparison, the possibility distributions of β1 and β2 are derived according to the least 

conservative principle from the true probability distributions of β1 and β2.  The optimum mass 

ratio R corresponding to the probabilistic method is thus calculated. 

Table 4.1a shows true probability distributions for β1 and β2, as well as the probability 

distribution for budget.   
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Table.4.1a The true distribution parameters of the budget, ββββ1 and ββββ2 

Distribution parameters β1 and β2 Budget 

Mean 1.0 100 

Standard deviation 0.05 100 3 /3 

 

Table 4.1b presents the optimum probabilistic and possibility-based designs as described in 

the previous two paragraphs.   The true probability distributions of the frequency ratios β1 and β2 

are uniform with mean value of one and standard deviation of 0.05.   From Table 4.1b we 

observe that the optimum mass ratios obtained using Equation 3.3 are sensitive to the correlation 

and the type of distribution of β1 and β2, while the optimum mass ratios obtained using the 

possibility-based method are the same for different degrees of correlation and the type of 

distribution of β1 and β2.  

 

Table.4.1b The true optimum R and true probability of failure, P(FS), when the type of 

distributions and the standard deviations of ββββ1 and ββββ2 are known 

 

Probabilistic method 
Possibility-based 

method 
Degree of correlation and 

type of distribution of   

ββββ1 and ββββ2 
True P(FS) 

at optimum 

Optimum 

R 

True P(FS) 

at optimum 

Optimum 

R 

β1 and β2 are equal 

(True distribution is uniform) 
11.3% 4% 19.7% 3% 

β1 and β2 are independent 

(True distribution is uniform) 
9.85% 3% 9.85% 3% 

 

Figure 4.1 plots the probability of the system failure vs. mass ratio.  β1 and β2 are equal and 

follow a uniform distribution.  We observe that when mass ratio is small, the system has a high 

probability of failure due to the inefficacy of a small mass to absorb vibrations.   Though a 
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damper with big mass is efficient to reduce vibrations, it also tends to increase the cost of 

construction.  The optimum tuned-damper has a mass ratio 4%, which minimizes the probability 

contributed by the two failure modes in the problem. 

Figure 4.1 Probability of failure of the system vs. mass ratio, ββββ1 = ββββ2 

 

4.2 Factors considered in the comparison 

In this dissertation, the following four factors are investigated for comparing the efficacy of 

probabilistic and possibility-based methods:  a) the size of the samples of values of β1 and β2 

used to estimate the probability distributions of these variables; b) the correlation between β1 and 

β2; c) the method used to infer the statistics of β1 and β2; and d) the error in the type of 

probability distribution of β1 and β2.  In this dissertation, we do not study the effect of errors in 

the correlation between variables.  

Sample size reflects the amount of information one has to estimate the probability 

distributions of uncertain variables. The larger the sample size, the more accurate the probability 

distributions estimated from the sample are.  Seven sample sizes of 3, 5, 10, 20, 100, 1000 and 

3000 are considered in this dissertation.  For the first four sample sizes, it is difficult to identify 

the true probability distribution using hypothesis tests, such as the χ2 test. That is, probability 

distributions that are significantly different from the true probability distribution pass the χ2 test.  
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The last three sample sizes represent situations when information about uncertainty is sufficient 

to accurately identify the true type of probabilistic distribution with χ2 test. 

In this dissertation, random variables β1 and β2 are either statistically independent or equal. 

The statistics of β1 and β2 are inferred by either the standard statistical method or by the Bayesian 

method.  Two cases are studied to investigate the effect of the error in the type of the probability 

distribution: the true probability distribution of the uncertain variables is uniform while a normal 

distribution is assumed and vice-versa. 

 

4.3 Results of the analytical comparison 

The effectiveness of the two methods is assessed by considering: 

1. Which method produces safer designs, on average? 

2. Which method produces designs whose optimum masses or failure probabilities are less 

sensitive to sample-to-sample variation? 

The mean values of the normalized frequencies β1 and β2 both are equal to one.  The true 

standard deviations are 5%.  Failure due to excessive vibration is assumed to occur when the 

normalized amplitude, y, exceeds 20.  Note that without the dynamic vibration absorber, the 

normalized amplitude at resonance is 50.  100,000 replications are used in Monte Carlo 

simulation to calculate the true probability of failure due to excessive vibration.  

Figures 4.2 and 4.3 compare the results of the two methods, when the standard deviations of 

the probability distributions of β1 and β2 are unknown and estimated from 3 and 3000 sample 

points, respectively using the probabilistic/standard statistical method.  

Figure 4.2 presents 10 pairs of designs obtained using 10 sets of sample values. Each sample 

has three points, generated from a uniform distribution.  The true standard deviations β1 and β2 

are both 5%.  This figure corresponds to a case where: a) β1 and β2 are equal, b) the designer 

knows the true type of correlation and distribution of these random variables, and c) he/she uses 

the standard statistical method to infer the standard deviations of β1 and β2.  Table 4.2 shows the 
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standard deviations estimated using Equation 3.6.  The same table shows the optimum mass 

ratios of the probabilistic and possibility-based designs. 
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Figure 4.2 Standard statistical probabilistic vs. possibility-based method, ββββ1 and ββββ2  are 

equal. Three sample values of ββββ1 and ββββ2 are used to estimate their standard deviations 

 

Table 4.2 Probabilistic vs. possibility-based optima when ββββ1 and ββββ2 are equal 

(3 sample points) 

 
 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8 Design 9 Design 10 

Optimum R: 

Probabilistic 

method 

1% 1% 1% 1% 5.5% 1% 5.5% 2.5% 1% 1% 

Optimum R: 

Possibility-based  

method 

5% 4.5% 5.5% 5% 4% 4.5% 4% 2% 1% 5% 

σ (from Equation 

3.6) 

7.54% 6.73% 8.21% 7.58% 6.29% 7.09% 6.17% 3.65% 1.96% 7.70% 
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Figure 4.3 Standard statistical probabilistic vs. possibility-based method, ββββ1 and ββββ2  are 

equal. 3000 sample values of ββββ1 and ββββ2 are used to estimate their standard deviations 

 

Table 4.3 Probabilistic vs. possibility-based optima when ββββ1 and ββββ2 are equal  

(3000 sample points) 

 
 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8 Design 9 Design 10 

Optimum R: 

Probabilistic 

method 

4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 

Optimum R: 

Possibility-based  

method 

3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 

σ (from Equation 

3.6) 

5.03% 5.08% 5.00% 5.03% 5.09% 5.09% 5.09% 5.09% 5.06% 5.11% 
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Figure 4.4 Standard statistical probabilistic vs. possibility-based method, ββββ1 and ββββ2  are 

independent. Three sample values of ββββ1 and ββββ2 are used to estimate their standard 

deviations 

 

Table 4.4 Probabilistic vs. possibility-based optima when ββββ1 and ββββ2 are independent  

(3 sample points) 

 
 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8 Design 9 Design 10 

Optimum R: 

Probabilistic 

method 
3.5% 4% 3.5% 1.5% 3.5% 4% 1% 3.5% 4.5% 1% 

Optimum R: 

Possibility-based  

method 
3.5% 4% 3% 1.5% 3% 4.5% 5.5% 3% 4.5% 4.5% 

σ1 (from Equation 

3.6) 

7.61% 8.13% 6.42% 5.98% 5.90% 7.59% 8.19% 6.92% 5.23% 8.78% 

σ2 (from Equation 

3.6) 

4.58% 4.95% 4.31% 1.92% 4.74% 6.93% 8.49% 4.00% 8.13% 6.38% 
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Figure 4.5 Standard statistical probabilistic vs. possibility-based method, ββββ1 and ββββ2  are 

independent. 3000 sample values of ββββ1 and ββββ2 are used to estimate their standard deviations 

 
Table 4.5 Probabilistic vs. possibility-based optima when ββββ1 and ββββ2 are independent  

(3000 sample points) 

 
 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8 Design 9 Design 10 

Optimum R: 

Probabilistic 

method 
3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 

Optimum R: 

Possibility-based  

method 
3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 

σ1 (from Equation 

3.6) 

5.04% 5.05% 5.11% 5.12% 5.07% 5.03% 5.09% 5.07% 5.10% 5.01% 

σ2 (from Equation 

3.6) 

5.02% 5.07% 5.05% 5.05% 5.05% 5.12% 5.07% 5.09% 5.01% 5.10% 
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Figure 4.6 Bayesian probabilistic vs. possibility-based method, ββββ1 and ββββ2  are equal. Three 

sample values of ββββ1 and ββββ2 are used to estimate their standard deviations 

 
Table 4.6 Probabilistic vs. possibility-based optima when ββββ1 and ββββ2 are equal  

(3 sample points) 
 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8 Design 9 Design 10 

Optimum R: 

Probabilistic 

method 
4.5% 4% 5% 4.5% 4% 4% 3.5% 2% 1% 4.5% 

Optimum R: 

Possibility-based  

method 
5.5% 5% 5.5% 5.5% 5% 5% 4.5% 2.5% 1% 5.5% 

σ  4.58% 3.81% 5% 4.54% 3.85% 4.01% 3.53% 2.12% 1.1% 4.73% 
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Figure 4.7 Bayesian probabilistic vs. possibility-based method, ββββ1 and ββββ2  are equal. 100 

sample values of ββββ1 and ββββ2 are used to estimate their standard deviations 

 

Table 4.7 Probabilistic vs. possibility-based optima when ββββ1 and ββββ2 are equal  

(100 sample points) 
 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8 Design 9 Design 10 

Optimum R: 

Probabilistic 

method 
4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 

Optimum R: 

Possibility-based  

method 
3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 

σ 5% 4.92% 4.98% 4.91% 4.99% 5% 4.97% 4.99% 5% 4.9% 
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 Figure 4.8 Bayesian probabilistic vs. possibility-based method, ββββ1 and ββββ2  are independent. 

Three sample values of ββββ1 and ββββ2 are used to estimate their standard deviations 

 
Table 4.8 Probabilistic vs. possibility-based optima when ββββ1 and ββββ2 are equal  

(3 sample points) 
 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8 Design 9 Design 10 

Optimum R: 

Probabilistic 

method 
1% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 

Optimum R: 

Possibility-based  

method 
4% 5.5% 5.5% 5% 5% 3.5% 4.5% 5% 5.5% 4.5% 

σ1  4.6% 4.8% 4.9% 4.7% 3.5% 2.5% 3.5% 4.0% 4.1% 2.9% 

σ2  2.6% 3.9% 3.8% 3.8% 4.4% 2.9% 3.5% 3.8% 4.2% 4.1% 
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Figure 4.9 Bayesian probabilistic vs. possibility-based method, ββββ1 and ββββ2  are independent. 

100 sample values of ββββ1 and ββββ2 are used to estimate their standard deviations 

 
Table 4.9 Probabilistic vs. possibility-based optima when ββββ1 and ββββ2 are equal  

(100 sample points) 
 Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8 Design 9 Design 10 

Optimum R: 

Probabilistic 

method 
3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 

Optimum R: 

Possibility-based  

method 
3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 

σ1  4.95% 4.98% 4.95% 4.98% 5% 4.92% 4.99% 5% 4.97% 4.89% 

σ2  5% 4.97% 4.99% 4.97% 4.94% 4.96% 4.97% 4.93% 4.99% 4.91% 
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Figure 4.10 Standard statistical probabilistic vs. possibility-based method, ββββ1 and ββββ2  are 

equal. True distribution is normal, assumed is uniform. Three sample values of ββββ1 and ββββ2 

are used to estimate their standard deviations 

 

Figure 4.11 Standard statistical probabilistic vs. possibility-based method, ββββ1 and ββββ2  are 

equal. True distribution is normal, assumed is uniform. 20 sample values of ββββ1 and ββββ2 are 

used to estimate their standard deviations 
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Figure 4.12 Bayesian statistical probabilistic vs. possibility-based method, ββββ1 and ββββ2  are 

equal. True distribution is normal, assumed is uniform. Three sample values of ββββ1 and ββββ2 

are used to estimate their standard deviations 

Figure 4.13 Bayesian statistical probabilistic vs. possibility-based method, ββββ1 and ββββ2  are 

equal. True distribution is uniform, assumed is normal. 20 sample values of ββββ1 and ββββ2 are 

used to estimate their standard deviations 
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Eight out of 10 probabilistic designs have higher probabilities of failure than their possibility-

based counterparts.  Among these probabilistic designs, seven designs have optimum mass ratio 

of 1%, which means that the lightest possible absorber is used.  In reality, this light absorber is 

cheap but unsafe in terms of excessive vibration.  This absorber has a higher probability of 

failure of 28.79%.  The possibility-based method, on the other hand, is likely to choose a heavier 

absorber, and on average, yields safer designs than the probabilistic method. 

Figure 4.3 and Table 4.3 compare probabilistic and possibility-based designs for a similar 

problem, except that the sample size is 3000 instead of three.  The estimated standard deviations 

of β1 and β2 are very close to their true values.  All probabilistic designs have optimum R of 4%.  

On the other hand, all the possibility-based designs have R equal to 3%.  The true probability of 

failure of these possibility-based designs 19.68% is considerably larger than the failure 

probabilities of their probabilistic counterparts 11.33%. 

Figure 4.4 and Table 4.4 compare probabilistic and possibility-based designs when random 

variables β1 and β2 are independent.  Three sample values are used in each design to create 

probabilistic models.  The standard statistical method is used to infer the standard deviations of 

β1 and β2.  Two out of 10 probabilistic designs produce a mass ratio of 1%, which has significant 

higher true probabilities of failure than their possibility-based counterparts.  Three other 

probabilistic designs slightly exceed the possibility-based designs in the true probability of 

failure.   Four designs have the same probabilistic and possibility-based results.  The sixth data 

group has an inferior possibility-based design.   Possibility-based designs are better than 

probabilistic designs on average even if it is not so evident as the case when two uncertain 

variables are equal.  

Figure 4.5 and Table 4.5 compare probabilistic and possibility-based designs when sample 

size is 3000 and two variables are independent.  The standard statistical method is used to 

estimate the standard deviations of β1 and β2 which are very close to their true values in Table 

4.5.  All probabilistic and possibility-based designs have the same optimum R of 3% with a true 

probability of failure as 9.85%.  
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Figure 4.6 and Table 4.6 compare probabilistic and possibility-based designs when Bayesian 

statistics is used to estimate the distribution parameters for β1 and β2 when they are equal.   

Three sample values are used in each design to create probabilistic models. Seven out of 10 

possibility-based designs produce higher true probabilities of failure than their probabilistic 

counterparts.  Two possibility-based designs are safer than the probabilistic designs in the true 

probability of failure.   One design has the same probabilistic and possibility-based results.  

Probabilistic designs are better than possibility-based designs on average if Bayesian method is 

used to estimate the standard deviations of uncertain variables.  From Table 4.6, we observe that 

the standard deviations estimated by Bayesian method are close to the true value even if only 

three sample values are available. 

Figure 4.7 and Table 4.7 compare probabilistic and possibility-based designs when sample 

size is 100 and two variables are equal.  Bayesian method is used to estimate the standard 

deviations of β1 and β2.  All probabilistic designs have the same optimum R of 4% compared 

with all same optimum designs at sample size 3000 with the standard statistical method.  

Bayesian method is more efficient than the standard statistical method to create a probabilistic 

model using few sample data for the prior distribution we chose.   

Figure 4.8 and Table 4.8 compare probabilistic and possibility-based designs when Bayesian 

statistics is used to estimate the distribution parameters for β1 and β2 when they are independent.  

Three sample values are used in each design to create probabilistic models.  Eight possibility-

based designs produce higher true probabilities of failure than their probabilistic counterparts.  

One possibility-based design is safer than the possibility-based designs in the true probability of 

failure.   One design has the same probabilistic and possibility-based results.  Probabilistic 

designs are better than possibility-based designs on average if Bayesian method is used to 

estimate the standard deviations of uncertain variables.   From Table 4.8, we notice that Bayesian 

method does not inflate the standard deviation of the uncertain variable.  This is the reason that 

why most Bayesian probabilistic designs do not underestimate the probability of failure and 

therefore are conservative. 
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Figure 4.9 and Table 4.9 compare probabilistic and possibility-based designs when sample 

size is 100 and two variables are independent.  Bayesian method is used to estimate the standard 

deviations of β1 and β2.  All probabilistic and possibility-based designs have the same optimum 

R of 3%.  

Figure 4.10 compares probabilistic and possibility-based designs when true distribution is 

normal and the designer assumes a wrong distribution type, which is uniform. β1 and β2 are 

equal.  Three sample points are used to create probabilistic model.  Here the standard statistical 

method is used to estimate the standard deviation of distributions.  Eight probabilistic designs 

have higher true probability of failure, compared to one possibility-based design with higher true 

probability of failure.  The other group has the same optimum for both methods.  Possibility-

based methods are better in this case. 

Figure 4.11 compares probabilistic and possibility-based designs when true distribution is 

normal and the designer assumes a wrong distribution type, which is uniform. β1 and β2 are 

equal.  20 sample points are used to create probabilistic model. In this case, a χ2 test can not 

distinguish two distributions.  The standard statistical method is used to estimate the standard 

deviation of distributions.  All probabilistic designs have higher true probability of failure.  The 

accumulation of data for a wrong probabilistic model will worsen probabilistic designs. 

Figure 4.12 compares probabilistic and possibility-based designs when true distribution is 

normal and the designer assumes a uniform distribution. β1 and β2 are equal.  Three sample 

points are used to create probabilistic model.  The Bayesian statistical method is used to estimate 

the standard deviation of distributions.  Three probabilistic designs have higher true probability 

of failure, compared to six possibility-based designs with higher true probability of failure.  The 

other group has the same optimum for both methods. Probabilistic methods are better in this 

case. 

Figure 4.13 compares probabilistic and possibility-based designs when true distribution is 

normal and the designer assumes a uniform distribution. β1 and β2 are equal.  20 sample points 

are used to create probabilistic model.  The Bayesian statistical method is used to estimate the 
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standard deviation of distributions.  Nine out of 10 probabilistic designs have higher true 

probability of failure, whereas the other one has lower true probability of failure. 

Figure 4.14 shows a coordinate system P1 - P3 whose axes represent the factors considered 

when assessing the effectiveness of the two methods.  P1 represents the correlation of the 

frequencies, P2 the type of probabilistic analysis and P3 the type of probability distribution of the 

frequency. A cube, whose vertices correspond to the combination of factors considered in each 

comparison, is used to summarize the results (Figure 4.14).  The vertex at the origin represents 

the case where: a) the frequencies are independent, b) we use a probabilistic/standard statistical 

method to estimate the standard deviations of β1 and β2, c) use the true type of probability 

distribution of the frequencies.  For each vertex of the cube in Fig.4.14, we compare probabilistic 

and possibility-based methods using samples of seven different sizes ranging from 3 to 3000.  

Normalized
frequencies
independent

P1

P2

P3

Normalized
frequencies
equal

P1

P2

P3 Standard
statistical
method

Bayesian
method

P1

P2

P3

Use true distribution of
normalized frequencies

Use incorrect distribution of
normalized frequencies

 
Figure 4.14  Summary of factors considered 

 

According to the above paragraph, a total of 7×2×2×2 = 56 cases are studied. In each case, 10 

sets of sample values of frequencies are generated, and 10 pairs of alternative probabilistic and 

possibility-based designs are compared   one pair for each sample. Thus, 560 comparisons are 

performed. 
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Figures 4.15 and 4.16 compare the methods in terms of a) safety of the optimum designs and 

b) the variability in the failure probabilities.  Black, white and gray bullets are used to show 

which method was found better in each case.  A black bullet means that the probabilistic method 

is better, a white bullet means that the possibility-based method is better, and a gray bullet means 

that the results did not make clear which method is better.  

Figure 4.15  Effect of sample size on effectiveness of method in terms of true failure 

probabilities at optimum designs 

 

 

Figure 4.16 Effect of sample size on method in terms of consistency of the true failure 

effectiveness of probabilities of optimum designs 
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Black bullet: Probabilistic method is better ; 
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P 2 

P 3 
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4.4 Observations on the relative merits of each design method 

The following trends are observed from the results in the previous section: 

• When the probabilistic/standard statistical method is used (P2=0), the possibility-based 

method is better for small sample sizes (N≤ 20) regardless of type of correlation and 

probability distribution used (true or wrong). 

• When we know the true distribution (P3=0) and use large sample size (N≥100), the 

probabilistic/ standard statistical method yields safer designs. 

• In cases where the true type of the probability distribution is not known (P3=1), a possibility-

based method yields safer designs. This observation applies to cases with small sample sizes. 

• When the sample size is large enough ( N ≈ 40), a hypothesis test can be used to identify if 

the sample data fit to the assumed distribution.  

• In cases where the true type of the probability distribution is known (P3=0), the Bayesian 

probabilistic method (P2=1) is better than the possibility-based method, even for small 

samples.   

• In cases where the wrong type of distribution is used (P3=1), possibility-based method yields 

safer designs than the Bayesian method (P2=1). This is more significant when two variables 

are equal (P1=1). 

• Overall, the true failure probabilities and the optimal mass ratios of the possibility-based 

designs are less sensitive to sample-to-sample variation than those of the probabilistic 

designs are. There are 36 white bullets, 8 black bullets and 12 gray bullets in Figure 4.15. 

In general, probabilistic design is better when sufficient information is available about 

uncertainties because, in contrast to possibility-based design, it accounts for the sensitivity of the 

failure probability to the mass ratio when seeking the optimum design.  This allows the 

probabilistic design to trade effectively requirements for low cost and high performance(low 

vibration). 

However, the probability of failure and the sensitivity of the failure probability with respect 

to design variables can be completely wrong if little information is available (Figure 3.5).  For 

small samples and/or when the wrong type of probability distribution is used, the probabilistic 
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design overestimates the variability in the frequencies (Table 4.2), and grossly underestimates 

the probability of failure for low mass ratios (Figure 3.5).  This also results in severe errors in the 

sensitivity of the probability of failure with respect to the mass ratio. (Figure 3.5) The 

probabilistic design opts for the lowest possible mass to minimize the probability of budget 

overrun, because it neglects the effect of the mass on the probability of failure (see the curve 

corresponding to σ =10% in Figure 3.5).  This happened in most of the cases where the sample 

size was three or five and when the wrong type of probability distribution was assumed. For 

example, six out of the 10 optimum probabilistic designs in Figure 4.2 have a mass ratio of 1% 

instead of 4%, which is the true optimum. These designs have high system failure probability 

(about 28%). 

The Bayesian method is very effective when the true type of probability distribution of the 

frequency is known, because it uses this information when estimating the standard deviation of 

the frequency.  However, when the type of distribution is not known, the use of information 

based on the wrong type of distribution becomes a disadvantage and the Bayesian approach tends 

to yield inferior designs to the possibility-based designs (Figure 4.12~4.13).   
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CHAPTER 5 ANALYTICAL-EXPRIMENTAL COMPARISON OF 

PROBABILISTIC AND POSSIBILITY-BASED METHODS USING A 

PROBLEM INVOLVING DESIGN AND CONSTRUCTION OF DOMINO 

STACKS 

In chapter two, we examined the theoretical foundations of probability and possibility.  We 

showed that possibility-based methods can be better than probabilistic methods in design of 

systems that fail only when many things go wrong simultaneously, when there is little data about 

uncertainty.  In chapters three and four, we demonstrated this on a numerical example.  Here we 

use a problem involving design and construction of stacks of dominoes to demonstrate the same 

assertion experimentally.  In section 5.1 we describe this design problem.  Sections 5.2 and 5.4 

describe a probabilistic approach and a possibility-based approach to the design problem, 

respectively. Section 5.5 explains how to compare these two methods analytically and 

experimentally.  Section 5.6 presents the comparison results and draws conclusions about the 

effectiveness of the probabilistic and possibility-based methods. 

 

5.1 Design problem formulation 

5.1.1 Design problem description 

The objectives of this chapter are to present an efficient experimental approach for 

comparing probabilistic and possibility-based methods for design under uncertainty and apply 

this approach to demonstrate that possibility-based methods can be better than probability-based 

methods when there is little data about uncertainty.  Experimental comparison of methods for 

design under uncertainty requires a large number of experiments so that statistically significant 

results can be obtained.  Very few experimental comparisons of methods for design under 

uncertainty have been performed because the cost for performing such experiments is too high.  

We need a type of problem for which there exists an experimental procedure for comparing 

methods for design under uncertainty in the problem that is cheap and easy to repeat many times.  

The design problems should involve modeling errors, human errors and randomness.  A design 

problem, which involves building stacks of dominoes (Rosca and Haftka, 2000), is suitable for 

comparing methods for design under uncertainty because it has the following features:  There are 
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minimal requirements for a builder's skill and building facilities.  Experiments can be performed 

rapidly (in few minutes) and failure (collapse of domino towers) is not destructive.  Therefore, 

the cost of experiments is low.  The experiments involve the most important types of 

uncertainties encountered in real-life design problems, such as randomness because of 

geometrical imperfections in domino blocks, human errors in the building process and modeling 

errors in developing analytical models for predicting the collapse of a domino tower.  We will 

implement this idea to compare probabilistic and possibility-based methods. 

Consider a design situation where two designers are asked to build a domino tower (called 

tower A) close to another tower (called tower B) using probabilistic and possibility-based 

methods, respectively (Figure 5.1).  Each designer tries to build a tall and stable tower.  

However, the designer does not know exactly the minimum acceptable height for a tower and of 

course he/she does not know if the tower she/he will try to build will collapse.  Moreover, the 

designer has to design tower A before he/she is told where to build it.  Therefore, he/she does not 

know the exact location where he/she has to build the tower. 

 

Figure 5.1 Building Tower A close to Tower B 
 

Suppose that the coordinates of the centers of these two towers are (xA, yA) and (xB, yB), 

respectively.  yA and yB are almost equal and known to the designers.  When towers A and B 

overlap in the x direction, the distance between xA and xB, which is denoted as d0, is smaller than 

the length of a domino block D.  The designers also know that xA and xB are uniformly 

distributed, however, they have to estimate the distributions of these variables from a few 

x 
y 

(xA,yA) 
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measurements.  In this problem, when xA and xB are equal to their mean values respectively, the 

towers do not overlap. 

We can find an analogous scenario in real life.  One company is going to construct a building 

near another building in an earthquake-prone area.  One of the buildings is short and safe to 

earthquake.  The company buys insurance against earthquake for the other building whose height 

is the design variable.  The company will determine the height of this building based on two 

concerns: 1.  If the building is tall, it is likely to fall in the event of an earthquake and might 

damage the other building; 2. If the building is short, it might fail to meet future demand for 

space, and the company will have to build another building.  Each event will cause the company 

a significant monetary loss.  The company will suffer the highest loss if one building collapses in 

the earthquake and destroys the neighboring building.  The next highest loss will occur if the 

building is short because the company must construct another building to meet space demand.  In 

the event that the insured building collapses but does not damage the uninsured building, the 

insurance company will pay most of the loss.  Therefore, this is the event with the smallest loss.  

The exact locations of the two buildings are not known because they depend on zoning decisions, 

and there is very limited information about this uncertainty.  Since this design involves 

uncertainties, the company gives this project to two designers, who use probabilistic and 

possibility-based designs respectively, to find out the optimum building height that minimizes 

the expected monetary loss.  

We use the domino design problem to simulate this real life situation.  In this domino design 

problem, the designer selects the height of a tower A built next to tower B.  Either a short tower 

or a tower that has collapsed is a failure.  Each failure mode entails a monetary loss.  If a 

designer builds a tall tower it is likely to collapse.  In this case, it may knock down tower B if the 

latter is close to tower A.  On the other hand, if the designer sets up a modest target for the tower 

height he may end up with a stable but short tower.  Monetary loss for this failure mode is 

medium.  If the tower collapses but misses B, the loss will be the lowest.  Each designer has to 

minimize the risk of monetary loss caused by building a tower that is too short or a tower that 

collapses.  

The two designers obtain the same information for their designs.  They know the probability 

distribution of the height at which tower A collapses.  They know the height of tower B.  The 
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designers also obtain a few measurements of the locations of a tower A and B to model the 

uncertainty in their locations.  These measurements are extracted randomly from the probability 

distributions of the locations of two towers.  Though the designers do not know the exact 

minimum acceptable height, they know the range within which the minimum acceptable height 

varies.  

One designer uses probability while the other uses possibility to model the uncertainties. 

Designs obtained by these two methods are evaluated based on the incurred losses and the 

probability distributions at this height.  The best design has the lowest loss. 

5.1.2 Uncertainties in the domino design problem 

In this problem there are irreducible uncertainties in the locations of the towers, the minimum 

acceptable height of tower A and the collapse height of tower A.  First, the exact locations of 

towers A and B are unknown.  This uncertainty contains irreducible and reducible parts.  The 

available information about locations is a sample of measurements, which the designers will use 

to construct probabilistic or possibilistic models of the uncertainty in the locations of the towers, 

respectively.  If we had infinite measurements we could construct accurate probability 

distributions for these locations and eliminate the reducible part of the uncertainty.  However, 

even though there are sufficient measurements to build the true probability distributions of 

locations of the towers, the designer still does not know the exact location when designing a new 

tower.  Second, the two designers do not know the minimum acceptable height.  They know that 

the minimum acceptable height is a random variable that is uniformly distributed between known 

lower and upper limits.  These uncertainties are irreducible.  Even though there is sufficient data 

to construct the true probability distribution of the minimum acceptable height, the value of this 

variable for a particular design is still unknown.  Finally, there is uncertainty in the collapse 

height of tower A.  This uncertainty consists of a reducible part and an irreducible part.  Even if 

we know the true probability distribution of the collapse height we can not predict the collapse 

height each time we build a new tower.  

There is also reducible uncertainty due to lack of knowledge, which can be eliminated by 

collecting data or refining our predictive model.   As we mentioned before, there is reducible 

uncertainty in the locations of tower A and B.  Moreover, the true probability distribution of the 
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collapse height of a tower is estimated using data from one hundred experiments.  Designers 

assume that the distribution is normal.  This uncertainty is reducible because the designers can 

estimate the probability distribution more accurately by collecting more data about the collapse 

height.  There is reducible uncertainty because of assumptions the designers make to predict 

whether collapse of tower A will entails collapse of tower B. 

In Fig.5.1, the longer side of a domino block is along the x direction.  When tower A 

collapses, it falls in the y direction.  The designers assume that the distance between tower A and 

B in the y direction is so small that, if the two towers overlap in the x direction, the collapse of 

tower A always entails collapse of tower B.  As we will see in the later sections, this is a strong 

assumption. 

This problem is designed to demonstrate the limitations of probabilistic methods.  If the 

probabilistic designer has complete information about the probability distribution of locations, 

he/she will find an optimum height, which minimizes the expected loss of all modes of failure.  

When there is very few data about the locations of towers A and B (e.g., three data points), it is 

common practice to assume large standard deviations for these locations to account for the large 

reducible uncertainty.  However, in this problem, this practice may lead to underestimation of the 

probability that both towers will collapse.  If the standard deviations of distributions of xA and xB 

are small, the probability of the failure mode that has the highest penalty (collapse of both 

towers) is small.  As the probabilistic designer increases the standard deviation to be 

conservative, the probability increases because xA and xB are more likely to overlap with each 

other.  However, when the standard deviations exceed some value, this probability will start 

decreasing as the standard deviations of xA and xB keep increasing.  Thus, the probabilistic 

designer may underestimate the probability of the most severe failure mode and build designs 

that are found unsafe when perform experiments.  

5.1.3 Analytical model of the design problem 

In this design problem, failure (denoted as F) occurs if tower A fails to meet the height 

requirement or tower A collapses.  Let S be the event that the design height is shorter than the 

minimum acceptable limit.  Let EC be the event that tower A collapse and Ec
C be its 
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complementary event that tower A is stable.  Failure can be interpreted as the union of A being 

short while being stable and A collapsing.  

 

F = (S ∩ Ec
C) ∪  EC      (5.1) 

 

We further divide the event EC into two sub-failure-modes: A collapses while knocking down 

B and A collapses while missing B.  Thus, there are three failure modes at the needed height: (1) 

E1   A is stable but too short; (2) E2   A collapses but misses tower B; (3) E3   A collapses 

and knocks B down.  As we mentioned earlier, we assume that if tower A collapses it will knock 

down tower B if and only if towers A and B overlap.  Let EO be the latter event and Ec
O be its 

complementary event, then:  

 

EC = EC ∩ (Ec
O ∪  EO) = (EC ∩ Ec

O) ∪  (EC ∩ EO)     (5.2) 

 

Therefore, Equation (5.1) is extended to: 

 

F = (S ∩ Ec
C) ∪  (EC ∩ Ec

O) ∪  (EC ∩ EO)     (5.3) 

 

For each failure mode, there is a corresponding monetary loss.  A loss function measuring the 

degree to which a designer considers each penalty is associated to each loss considerable is used.  

The objective of the probabilistic method is to minimize expected value of the loss function.  The 

possibility-based method is to minimize the possibility of considerable loss due to each failure 

mode.  We need to develop a membership for each loss measuring the degree to which a given 

amount belongs to the set "considerable loss".  In order to do this, we first transform monetary 

losses to normalized loss factors.  Let ML1, ML2, ML3 be the monetary losses for the three 

failure modes, ML3 > ML1 > ML2 as we have stated before.  The corresponding loss factors will 

be: γ1 = ML1/ML3, γ2 = ML2/ML3, γ3 = 1.0. To ensure that the designer who uses probability 

and the designer who uses possibility have the same preferences, we assume that the membership 

of each monetary loss is equal to the corresponding loss factor.  Details are given in Section 5.4. 
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5.2 Probabilistic and possibilistic models of the uncertainties 

In this section we will explain how we collect data and construct probabilistic and 

possibility-based models for the uncertain variables.  

5.2.1 Probabilistic models 

In section 5.1, we explained that there are four uncertain variables: the height at which a 

tower will collapse, the x-coordinates of towers A and B (Fig. 5.1) and the minimum acceptable 

height.   Data for constructing the probability distribution of the collapse height of tower A is 

obtained from domino stacking experiments, while data for the locations of the towers are 

generated from the true probability distribution of the locations of the towers using a random 

number generator.  The true probability distribution of the minimum allowable height is known.   

First, we explain how to collect data for the collapse height.  We mix domino blocks 

thoroughly before we randomly pick a block and place it dotted face up.  Then, we randomly 

pick a block again and stack it on top of the previous domino block, with the same face 

orientation.  We repeat this procedure until the tower collapses.  By repeating the stacking for a 

number of times, we can plot a histogram for the number of stacks when a tower topples.  Here 

we assume that the number of blocks represents the height of a tower since the height of each 

block is approximately the same.  We find that both the normal and gamma probability 

distributions fitted well to the histogram of the collapse height.  In this dissertation, we use the 

normal distribution for convenience.   

The x-coordinates of towers A and B are uniformly distributed.  However, we do not know 

the mean values and standard deviations of these locations.  We estimate these parameters from 

sample values obtained from the true probability distributions of these variables using a random 

number generator by treating these values as measurements.  Standard statistics is used to 

estimate distribution parameters from the sample values.  To account for the lack of data, the 

standard deviation of the mean and the standard deviation of the standard deviation are also 

calculated.  The range of the x-coordinates of the towers is inflated to account for the statistical 

errors in the mean and standard deviations.  The procedure for estimating the distribution 

parameters is described in detail in Section 3.3.2. 



CHAPTER 5 ANALYTICAL-EXPRIMENTAL COMPARISON OF PROBABILISTIC AND 
POSSIBILITY-BASED METHODS USING A PROBLEM INVOLVING DESIGN AND 
CONSTRUCTION OF DOMINO STACKS 
 

 

99 

The minimum allowable height follows a uniform distribution with known distribution 

parameters. 

5.2.2 Possibilistic models of the uncertain variables 

In order to ensure that the probabilistic and possibility-based designs are obtained using the 

same amount of information, all possibility distributions for the uncertain variables are 

developed using the least conservative principle detailed in Section 3.4.2.    

5.3 Probabilistic analysis 

In Equation (5.3), the three failure modes are mutually exclusive events.  Therefore, the 

probability of failure, P(F), is expressed as: 

 

P(F) = P(S ∩ Ec
C) + P(EC ∩ Ec

O) + P(EC ∩ EO)           (5.4) 

 

Equation (5.4) implies that: 

 

P(F) = P(S Ec
C) P(Ec

C) + P(EC Ec
O) P(Ec

O) + P(EC EO) P(EO)                      (5.5) 

 

Since EC and Ec
O, EC and EO are statistically independent pairs of events, respectively, 

P(EC Ec
O) = P(EC) and P(EC EO) = P(EC).  

P(EC), which is the probability that a tower will collapse, is denoted as p1.  This probability is 

equal to the probability that the collapse height is less than or equal to the target height.  The 

probability density function of the collapse height can be approximated from the histogram of 

measured heights of dominoes when they collapse.  Figure 5.2 shows a histogram of collapse 

height of 100 towers.  A normal distribution, whose mean is equal to the sample mean and the 

standard deviation is equal to the sample standard deviation, is used to model the collapse height.  

The sample mean and the sample standard deviation are 31.5 and 3.6, respectively.  This 

distribution is denoted as N(31.5, 3.6). 
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Figure 5.2 Histogram and fitted normal distribution of collapse height 

(from the 1st 100 repetitions of building) 
P(S Ec

C) is the probability that, given that we have been able to build a stable tower with 

height equal to the target height, H=h, this tower fails to meet the requirement about the 

minimum acceptable height, h0.  Since the tower is stable, its height is equal to the target height.  

Therefore, P(S Ec
C) is equal to the probability that the target height, H = h, is less than the 

minimum acceptable height h0 and is denoted by p2.  We assume that h0 varies uniformly within 

lower and upper limits h1 and h2 (Fig. 5.3).  Then, p2 is: 
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Figure 5.3 Calculation of p2 
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P(EO), which is the probability that the two towers overlap in the x direction, is denoted by 

p3.  It is calculated by Monte Carlo simulation or methods explained in Appendix A.1. 

Since each failure mode is associated with a different loss factor, the expected loss due to 

failure is expressed as: 

 

PLS(h) = p2 (1 − p1) γ1 + p1 (1 − p3) γ2 + p1 p3 γ3     (5.7) 

 

The objective of the probabilistic designer is to minimize the expected loss in Equation (5.7). 

5.4 Possibility-based analysis 

In possibility-based design, we characterize the uncertainty in the outcome of the process of 

building tower A with a given target height using possibility.  We use a membership function for 

each outcome of the building process to express the degree to which the loss is judged to be 

considerable.  The membership of loss for each failure mode represents the severity of that 

mode. E3 , is the most disastrous outcome and it is assigned a membership µ3 = 1.    As explained 

in Section 5.1, failure to meet the requirement for height is less severe and has a membership µ1.  

E2 causes the minimal loss because the insurance will cover most of the damage.  The 

membership of loss for E2 is µ2.   

In the probabilistic formulation, there are loss factors γ1, γ2 and γ3 for each failure outcome 

and the objective is to minimize the average loss.  To make the possibility-based problem 

equivalent to the probabilistic counterpart, we assume that µ1 = γ1, µ2 = γ2 and µ3 = γ3. 

 

Figure 5.4 Membership function of loss for the three failure modes 
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Let π1 be the possibility that a tower with height equal to the target height, h, will collapse, 

and π1
C be the possibility that the tower will be stable.  In this problem, the collapse height Hc 

satisfies a normal distribution N(µHc, σHc).  Figure 5.5 plots a normal probability density function 

and its corresponding least conservative possibility distribution.  Applying the least conservative 

principle, the possibility of the collapse height Hc =h is expressed as: 

 

Π1(h) = 1 − p1(h) + p1(h')      (5.8) 

 

where h' is the point with the same possibility value with h at the other side of the apex.  

Therefore,  

 

Π1(h) = 1 + p1(2µHc − h) − p1(h) = 2(1− )(
Hc

cHh
σ

µ−
Φ )    (5.9) 

 

Π1
C(h) has the same support and mode value as Π1(h).   

The possibility that a tower with height equal to the target height will collapse is equal to the 

possibility that the collapse height Hc will be less or equal to the target height h: 
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The possibility of the tower not collapsing is: 
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Figure 5.5  Least conservative possibility distributions that are consistent with a normal 
probability density function p1(h) Dashed line: ΠΠΠΠ1(h); Double-Dotted line: ΠΠΠΠ1

C(h) 
 

Let π2 represent the possibility of the design height being too short. π2
C represents the 

possibility of the design height being acceptable.  The possibilistic designer transforms the 

probability distribution of the minimum acceptable height (Equation 5.6) into a possibility 

distribution using the least conservative principle.  Therefore, the possibility distribution of the 

minimum acceptable height is: 

 

 Π2(h)=p2(h)+1−p2(h')      (5.11) 

 

where h' is the point with the same possibility value with h at the other side of the apex of 

possibility distribution. Here,  
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This is a symmetric triangular possibility distribution with the symmetric axis at (h1+h2)/2 

over the interval [h1, h2].  Π2
C(h) has the same support and mode value as Π2(h).  Figure 5.6 plots 

the probability density function and its corresponding least conservative possibility distribution.  

Therefore:  
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Figure 5.6  Least conservative possibility distributions that are consistent with a uniform 
probability density function p2(h) 

Dotted line: ΠΠΠΠ2(h); Dashed-dotted line: ΠΠΠΠ2
C(h) 

 

π3 is the possibility that the towers overlap, that is the possibility that the distance of the 

centers of two towers is smaller than D.  π3
C is the possibility that the distance of the centers of 

two towers is larger or equal to D.  Figure 5.7 demonstrates the relative locations of towers A and 

B.  As we mentioned, the centers of the two towers, xA and xB, are estimated from measurements 

and are assumed to have a uniform probability distribution between [x0', x1'] and [x0 , x1], 

respectively.  The corresponding possibility distributions, which satisfy the least conservative 

principle, have a triangular shape with an apex of one at the middle of the intervals in which xA 

and xB vary.  Let xm' and xm be the apexes for the locations of towers A and B, respectively.  
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Figure 5.7 x-coordinates of Tower A and Tower B 
 

Using possibility calculus we find that the possibility that the towers overlap is:   
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The possibility that the towers do not overlap is:  
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The detailed calculations are attached in Appendix A.2.  

The possibility of occurrence of failure modes E1, E2, E3 are:   

 

πE1 =min(π1, π2)       (5.16a) 

πE2 = min(π1, π3
C)              (5.16b) 

     πE3 = min(π1, π3)              (5.16c) 

 

According to the principle of fuzzy set events, the possibility of a considerable loss at a given 

height H = h is calculated as: 

 

 Π(h) = max[min(µi, πEi)] i=1,…,3     (5.17) 
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The objective of the possibility-based approach is to find an optimum height, which 

minimizes the possibility of considerable loss, Π(h).  

5.5. Scope and method for comparison 

First, we describe the procedure for analytical comparison of the methods in subsection 5.5.1.  

Subsection 5.5.2 explains the procedure for experimental comparison of the methods.  The goal 

of the comparison is to demonstrate both analytically and experimentally that, in problems 

involving systems with narrow failure zones, probabilistic methods may yield poor designs when 

little data is available about uncertainties.  For this purpose, we select the parameters of the 

design problem so as to maximize the sensitivity of the probabilistic optimum design to 

statistical errors.  Subsection 5.5.3 explains how the parameters of the design problem are 

selected.    

5.5.1 Procedure for analytical comparison 

In the analytical comparison, the optimum probabilistic and possibility-based designs are 

calculated using the same data about uncertainties.  To be able to compare designs we need a 

measure of goodness of a design.  To select such a measure we assume that in a problem 

involving only randomness (irreducible uncertainty), the best design is the one with the largest 

expected utility (or equivalently smallest expected loss).  Therefore, to test which design is better 

the true average loss of each optimum is calculated using the true probability distribution of the 

uncertain variables.  The design that has the lowest expected loss is the best.  In the analytical 

model, two assumptions are essential: (1) The probability distribution of the collapse height of 

tower A is normal; and (2) Tower A will knock down tower B if and only if the x-coordinates of 

the two towers overlap.  

As we mentioned in Section 5.3, the designers know that the probability distributions of the 

x-coordinates of the towers are uniformly distributed and they estimate the mean and the 

standard deviations from sample values.  They obtain conservative estimates of these parameters 

using the standard statistical method described in Sec.3.3.2.  The possibilistic designer 

transforms the probability distributions of the uncertain variables into possibility distributions 

using the least conservative principle in Sec.3.4.2.  Then, the expected losses of the probabilistic 

and the possibility-based designs are computed and compared based on the true probability 
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distributions of the x-coordinates of the towers.  The expected loss of a design is computed using 

Monte-Carlo simulation with 10,000 replications. 

5.5.2 Procedure for experimental comparison 

In the analytical comparison, we compare the probabilistic and possibilistic designs after 

removing a portion of the reducible uncertainty involved in this problem (the statistical errors in 

the mean and standard deviation of the x-coordinates of the two towers).  However, we cannot 

remove all reducible uncertainty because the analytical models involve many assumptions.  The 

objective of the experimental comparison is to compare the probabilistic and possibilistic designs 

after removing almost all the reducible uncertainties.  However, because a finite number of pairs 

of probabilistic and possibilistic designs are compared, still, some statistical uncertainties in the 

estimates of the expected losses of the two designs remain, which cannot be removed unless a 

very large number of experiments are performed. 

The following hybrid experimental-analytical procedure allows us to compare designs much 

more efficiently than a purely experimental comparison, which would compare a very large 

number of pairs of probabilistic and possibility-based designs.  In each experiment, we build two 

towers, called towers A and B.  We keep stacking blocks for tower A until it collapses.  Tower B 

has a fixed short height so that it will not topple by itself.  In each experiment, we build these 

towers on the locations obtained from the true probability distributions of the x-coordinates of 

the two towers using a random number generator.  We record the height at which tower A 

collapses and record if it destroys B when it falls.  After repeating this procedure for one hundred 

times, we compute the frequencies of each failure mode and the true expected loss for every 

target height.  This allows us to construct a look-up table for the true expected loss of any design 

whose target height is given.  Using this table, we can compare the probabilistic and possibility-

based designs determined in the analytical model in terms of the their true expected losses.   

5.5.3 Selection of the parameters of the design problem 

As mentioned in Section 5.5.1, we need to select the values of the problem parameters to 

maximize the sensitivity of the probabilistic optimum design to statistical errors.  This process of 

finding a combination of parameters that maximizes the sensitivity of a method to modeling or 

statistical errors is called antioptimization.  The only fixed design parameter is the length of a 
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domino block, D, which is 2" (51 mm).  Besides loss factors γ1~ γ3 and the corresponding 

memberships of the penalties for the three failure modes, µ1~µ3, we have to select the values of 

the following parameters: 

• NH1, NH2: the lower and upper limits of the minimum acceptable height; 

• xAB: the difference in the mean values of the x-coordinates of the two towers; 

• σx/D: the normalized standard deviations of the x-coordinates of the two towers.  For 

simplicity, we assume that two towers have the same standard deviation.   

These last two parameters control the probability distribution of the x-coordinates of the two 

towers, from which we compute the probabilities of failure modes E2 and E3.  

First we select the loss factors.  The 3rd failure mode, where both towers A and B collapse, is 

the most severe.  We will normalize its loss factor so that γ3 =1.0.  There is a narrow failure zone 

for the 3rd failure mode (tower A collapses and knocks down tower B), which makes the problem 

difficult to solve using probabilistic methods.  To increase the importance of this failure mode 

relative to the second mode, we will assign a small loss factor to this mode.  This corresponds to 

the real life scenario where the insurance company covers most of this failure damage.  We 

assume that γ2 =0.1.  The loss factor for the 1st failure mode will be determined in order to 

maximize the difference between probabilistic and possibility-based designs.   

We found that an average builder can build a stable tower with at least 20 blocks.  Therefore, 

we assume that NH1=20.  We also assume that the target height should be at least 20.   

Next, we select the remaining design parameters in the problem.  Since the possibility-based 

method is insensitive to sample to sample variations (a conclusion derived from the tuned-

damper design problem), we will select the combination of values of the design parameters that 

maximizes the sample to sample variations of the optimum probabilistic design.  There is sample 

to sample variation because different sample data will give a different estimate of the probability 

distribution of the x-coordinates of the towers compared to the true distribution.  The larger the 

difference between the estimated distribution and the true distribution is, the larger the variation 

in the optimum height will be.   

Our strategy is to select values for the problem parameters that produce a significant 

variation between the optimum heights of the towers obtained using the estimated and the true 

distributions of the x-coordinate of Tower A. 
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Next, we will explain how to measure the error in the estimated standard deviation of the x-

coordinate of a tower from sample data with a given size N and the true standard deviation.  

Assume that we know the true type of the probability distribution for the tower locations.  We 

generate N sample data from the true distribution and calculate the estimated standard deviation.  

Let us denote the true standard deviation as σt and the estimated as σe.  After we repeat this 

procedure 10 times, we calculate the standard error in the standard deviation, which is defined 

as: 

 

 
t

te

σ
σσ

δ
−

=       (5.18)  

 

Figure 5.8 illustrates the sensitivity in the estimated standard deviations when the sample size 

varies.  To construct this figure, we generated ten samples of the same size of the x-coordinate of 

Tower A and estimated the standard deviation from each sample.  Then we computed the 

standard error of each sample.  Figure 5.8 shows the maximum and the mean value of the 

standard error as a function of the sample size.  They are denoted as δmax and δmean respectively 

in Fig. 5.8. We vary the sample size N from three to 50.  These two curves represent roughly the 

variations a group of sample data can produce to the standard deviation of a distribution.  The 

smaller the sample size is the larger the standard error and its variation will be.  We use small 

sample sizes to study variations.  Any value between the two curves in Fig.5.8 is a valid estimate 

of the standard deviation.  The figure indicates that for a sample size of three the estimated 

standard deviation can be as high as 2.5σt if the designer uses an inflation factor of two.  We will 

find out the parameter combination which maximizes the difference between the optimum 

heights of the towers when these optimum heights are calculated using the true value of the 

standard deviation, σt, and σe=2.5σt.   
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Figure 5.8 Standard error of the estimated standard deviation as a function of sample size 
 

The remaining parameters to be determined are NH2, γ1 , xAB/D and σx/D.  Here we use the 

same distribution as Fig 5.2 for the collapse heights, which is based on the experiments 

performed with the 1st 100 repetitions of building.  It is a normal distribution N(31.5, 3.6).  

Figure 5.9 shows the optimum height variation, which is the largest sample-to-sample variation 

in optimum heights of 10 designs, as a function of NH2 and γ1, when NH2 varies from 30 to 60 

and γ1 varies from 0.1 to 0.5.  We notice that the larger the NH2 and γ1, the bigger the variation 

in the optimum height is.  γ1 is the loss factor for the failure mode "the tower is stable but too 

short".  In real life, it should be a relative small portion of γ3, which is the loss due to collapse of 

both buildings.  Therefore, we select NH2=60 and γ1 = 0.3 for the domino problem.  Next, we 

investigate the impact of the other two location parameters xAB/D and σx/D on the optimum 

height variation.  Table 5.1 lists the maximum optimum height variation and the corresponding 

σx/D for a given xAB/D.  From this table we observe that the smaller the distance xAB/D, the 

larger the sensitivity of the optimum heights to errors.  Therefore, we should select a small 

distance and a large standard deviation for the distance.  However, for convenience we want to 

perform the experiments in a small area.   Balancing these two concerns, we select location 

parameters as xAB/D = 1.0 and σx/D = 1.25.  Other parameters are: NH1=20, NH2=60 and γ1 = 

0.3.   In later sections, we will find that this combination creates significant differences in 

probabilistic designs due to sample to sample to sample variations. 
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Figure 5.9 Optimum height variations vs. NH2 and γγγγ1 
 

Table 5.1 Maximum variations in optimum height for different location parameters 

xAB/D 0 0.25 0.5 0.75 1 1.25 1.5 1.75 
σx/D 2.25 2.25 2.5 2.5 2.75 2 2.25 2.5 

Max variation 9 9 9 9 9 8 8 8 
 

5.6 Results 

In this section, we perform analytical and experimental comparisons according to the 

methods presented in the previous section.  After presenting comparison results, we summarize 

the observations and draw conclusions. 

5.6.1 Analytical comparison 

The parameters of the design problem in the analytical comparisons depend on the 

distribution parameters of the collapse height, which are derived from the histogram of the 

collapse height.  Therefore, first have to perform experiments on one tower to collect sample 

values of the collapse height, and then we select the problem parameters and perform 

experiments involving two towers.  When we perform the experiments with the two towers we 

collect data about the collapse heights of the towers and estimate the probability distribution of 

the tower at which a tower topples again.  In the project presented in this dissertation, an 

undergraduate student, Jonathan Abbott, collected the 1st 100 data about the collapse height of a 

single tower first.  Then, the author estimated the probability distribution of the collapse height 
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and performed antioptimization to determine the problem parameters.  She also conducted the 2nd 

100 repetitions of experiments with the two towers.  Here, the design problem parameters were 

determined from the normal distribution of collapse height, N(31.5, 3.6), as mentioned in the 

previous section.  The only exception is the parameter σx/D.  In the experiments, we assumed 

that the probability distributions of the locations of the two towers to be uniform in the ranges [-

2", 6"] and [0, 8"], respectively.  Thus, σx/D = 8"/(2 3 D)=1.155 instead of 1.25.  Figure 5.10 is 

the histogram and the fitted normal distribution of 100 experiments on two towers conducted by 

the author.  The fitted normal distribution is N(34.47, 4.18). The mean and standard deviation is 

calculated from the sample mean and sample variance respectively.  We performed a χ2 test with 

10 intervals with a significance level of 0.05.  The degrees of freedom of χ2 is 10−2−1=7.  We 

found that the chi-square statistic was: χ2 = 4.6.  This value is smaller than the test statistics χ2 

0.05(7) = 14.067. As a result, we can not reject the null hypothesis that these 100 data follow a 

normal distribution. 

 

Figure 5.10 Histogram of collapse height and the fitted normal distribution 
(from the 2nd 100 experiments) 

Histogram of Random Domino Stacks, with 100 repetitions mean=34.47, st. dev.=4.18
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First we obtained six sets of 20 optimum designs using probabilistic optimization.  For each 

set we used a different sample size of data to estimate the mean and standard deviation of the x-

coordinates of the towers, ranging from 3 to 1000.  Table 5.2 shows the analytical optimum 

heights of the six sets of 20 probabilistic designs.  Using the true probability distributions of the 

x-coordinates of the towers, instead of those estimated from data, we found that the optimum 

height from the probabilistic design is 28.  

 

Table 5.2 Probabilistic optimum heights for estimated distributions of the x-coordinates of 

the towers using 3~1000 sample values 
Design No. Sample 

size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
3 32 31 27 35 32 31 31 29 35 33 34 29 31 32 35 32 33 31 33 34 
5 30 31 29 30 32 30 30 31 32 33 29 32 32 31 32 31 30 31 32 31 

10 30 30 30 30 31 31 30 30 30 30 31 30 30 30 30 30 31 31 30 29 
20 29 30 30 30 29 30 29 30 30 29 30 30 30 29 30 29 29 29 29 30 

100 29 29 29 29 28 29 29 28 28 28 28 29 29 29 28 29 29 29 28 29 
1000 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 

 

Figure 5.11 Composition of probability of loss of each failure mode, N=3 
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Figure 5.12 Composition of probability of loss of each failure mode, N=100 
 

Figures 5.11 and 5.12 show the expected losses, and the probabilities of failure for each 

failure mode as a function of the target height for 20 designs in Table 5.2 when the sample size is 

three and 100, respectively.  When the sample size is three, the optimum heights of all designs 

except No.3 are higher than the true optimum height.  This is because when designing these 

towers we overestimate the variability in their locations.  This happens because we apply an 

inflation factor to the sample standard deviation of the x-coordinates of the towers to account for 

the statistical error.  This strategy underestimates the probability of the 3rd failure mode, because 

when the variability in the locations of towers A and B is assumed large, the towers are unlikely 

to overlap.  Therefore, when designing these towers the optimizer incorrectly increases the 

height to reduce the chance that a tower is too short.  

When 1000 measurements are available, the statistical error in the mean and the variance is 

negligible so the estimated distribution of the location of a tower approaches the true distribution 

even when using inflation factors.  Therefore, the estimated probability of the 3rd failure mode 

and the expected loss are close to their respective true values.  In this case, all 20 probabilistic 

designs are identical with the true optimum designs. 

Figure 5.13 presents the possibility of considerable loss of 20 designs, and a breakdown of 
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the towers.  The possibility of considerable loss at each target height is the maximum of the 

possibilities of considerable loss for each of the three failure modes.  The possibility of 

considerable loss due to failure to meet the minimum height requirement is the minimum of the 

possibility of the tower being too short and the membership function of the penalty to the set 

"considerable loss" (equation 5.17).  This failure mode dominates for heights ranging from 20 to 

30 and is constant.  The possibility of loss due to collapse of tower A only is the minimum of the 

possibility of this event and the membership of the penalty to the set "considerable loss".  Since 

the latter is minimal, this failure mode is less significant than the other two modes.  The 

possibility of loss due to both tower A and B falling is the minimum of the possibility of this 

event and the loss membership of both tower A and B falling.  The failure mode "both towers 

collapse" dominates for tower height greater than 31.  The possibility of considerable loss for 

this mode is equal to the possibility of both towers collapsing because the membership of the 

penalty is always one.  The possibility of loss due to this failure mode is also insensitive to the 

height when the height exceeds 35, because the possibility of tower A knocking down tower B is 

determined by the possibility of the two towers overlapping.  It is observed that all towers with 

heights between 20 and 30 have the same minimum possibility of considerable loss.   
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Figure 5.13 Breakdown of the possibility of considerable loss, N=3 
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The possibility-based counterparts of the probabilistic designs have optimum heights in a 

range of 20~30 regardless of the sample size.  This means that even if each design is developed 

from different sample points, the possibility-based method will always provide a range instead of 

a specific number for the choice of the optimum height.  Therefore, the possibility-based 

designer has to use other criteria to determine the optimum.  The designer has two reasonable 

options after studying the composition of failure modes within the range from 20 to 30 as shown 

in Fig.5.13.  Since the failure mode due to shortness dominates in this range, the possibility of 

loss is the minimum of the possibility of a tower failing to meet the minimum height requirement 

and the membership function of the penalty to the set "considerable loss".  When the height 

increases, the possibility of a tower being too short decreases.  Based on this concern, a designer 

will choose 30 as the optimum.  However, a designer might also choose 20 as the optimum.  

His/her concern is that if all heights have the same possibility of loss for the dominant failure 

mode, then he/she has to find an optimum to minimize possibility of loss for the other two 

modes.  Increasing the height will increase these possibilities of loss.  This designer will choose 

the smallest value that is 20.  We will compare probabilistic designs with these two opposite 

possibility-based options, respectively. 

Each pair of bar charts in Figures 5.14 ~ 5.16 compares the true average loss of a 

probabilistic and possibility-based designs obtained from the same sample data.  The possibility-

based designs have a height of 30 blocks.  The true average loss of a design height is calculated 

from Equation 5.7 using the true probability distribution of the locations of the towers.  Each 

figure contains 20 pairs of designs.  Each pair is obtained using the same sample of data.  Thus, 

we can investigate the sample to sample variations of the probabilistic and possibilistic optima 

and compare which method yields designs with lowest expected loss on average. 

In Fig. 5.14~17, the probabilistic designs have higher true average loss than their possibility-

based counterparts with a sample size of three.  When the sample size increases to five, 13 

probabilistic designs are worse than their possibilistic counterparts in terms of true expected loss.  

When there are 10 sample points, five probabilistic designs are worse than their possibilistic 

counterparts, and 14 are the same.  However, this result is not shown.  When the sample size 

increases to 20 as shown in Fig.5.15, on average, probabilistic designs are better than the 

corresponding possibility-based designs.  Specifically, 11 probabilistic designs are the same as 
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the corresponding possibility-based designs, while nine probabilistic designs are better than the 

corresponding possibilistic designs.  When the sample size is 100, all probabilistic designs are 

better than the corresponding possibility-based designs.  The heights of the probabilistic designs 

are close to the true optimum height of 28 (Table 5.2).  In Fig.5.16, when 1000 sample points are 

available, all the probabilistic designs have the same optimum heights as the true optimum 

height.  On the other hand, the possibility-based designs are the same as those obtained using 

three sample values for the locations of the towers.   

Figures 5.17 ~ 5.19 compare the true average losses of probabilistic and possibility-based 

designs when possibility-based designs have 20 as their optimum. In Fig. 5.17, eight 

probabilistic designs have higher true average loss than their possibility-based counterparts with 

a sample size of three.  Therefore, the probabilistic designs are better than the possibility-based 

designs on average.  When sample size increases to five, 19 probabilistic designs are better in 

terms of true average loss than the corresponding possibilistic designs in Fig.5.18.  In Fig.5.19, 

when 1000 sample points are available, all the probabilistic designs have the same optimum 

heights as the true optimum height.   Probabilistic designs are better in terms of analytical true 

average loss.  

The analytical comparisons reveal that probabilistic designs can generate very poor designs 

when few sample values are available (e.g. three).  The worst designs with the highest true 

average losses had large heights (34 or 35) and were obtained using the probabilistic method.  

However, the verdict as to what method is better on average when the sample size is small, 

depends on what optimum the possibility-based method chooses.  When sample size is greater 

than 20, probabilistic designs are better in terms of true average loss.  
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Figure 5.14 Comparison of true expected losses for 20 sets of probabilistic and possibility-
based designs with 30 as optimum (sample size=3) 

 

 
Figure 5.15 Comparison of true expected losses for 20 sets of probabilistic and possibility-

based designs with 30 as optimum (sample size =20) 
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Figure 5.16 Comparison of true expected losses for 20 sets of probabilistic and possibility-
based designs with 30 as optimum (sample size = 1000) 

 

Figure 5.17 Comparison of true expected losses for 20 sets of probabilistic and possibility-
based designs with 20 as optimum (sample size = 3) 
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Figure 5.18 Comparison of true expected losses for 20 sets of probabilistic and possibility-
based designs with 20 as optimum (sample size = 5) 

 

 
Figure 5.19 Comparison of true expected losses for 20 sets of probabilistic and possibility-

based designs with 20 as optimum (sample size = 1000) 
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5.6.2 Experimental comparison 

As we have explained in Sec.5.5, the experimental comparison removes the major portion of 

the reducible uncertainties in the analytical model of this design problem.  In the analytical 

model, the probability distribution function of the collapse height is assumed normal.  Also, the 

probabilities of occurrence of the 2nd and 3rd failure modes are computed based on the 

assumption that the collapse of tower A will definitely hit B if and only if they overlap in x-

direction.  In experimental comparisons, these probabilities are estimated directly from the 

frequency of occurrence of these modes in the experiments.   

Figure 5.20 plots the true expected loss from the analysis and the experiments.  In 

experiments, we built 100 towers.  From this figure, according to the experimental results, the 

optimum height is 32, whereas, according to the analytical results, the optimum height is 28.  

There is a significant drop in the expected loss in the neighborhood of 32 blocks.  This could be 

due to the discrepancy between the relative frequencies of collapse of a tower with a height of 32 

blocks obtained from the histogram of the collapse height and from the idealized normal 

distribution (Fig.5.10).  Also, because only 100 experiments were performed we did not get any 

observations of the event "Tower A collapses and knocks down tower B" for heights greater than 

37 blocks.  Therefore, the experimental results for heights greater than 37 yield a lower average 

loss compared with analytical results.   

 

Figure 5.20 The true average losses of target heights by analytical and experimental results 
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Each pair of bar charts in Figures 5.21 ~ 5.23 compares the true average loss of a 

probabilistic and possibility-based designs obtained from the same sample data.  The possibility-

based designs have a height of 30 blocks.  The true average loss of a design height is obtained 

from the experimental curve in Figure 5.20.  In this way, we avoid the modeling errors in the 

calculations of analytical true losses.  Similar to analytical comparisons in Figures 5.14~5.16, we 

investigate the sample to sample variations of the probabilistic and possibilistic optima and 

compare which method yields designs with lowest expected loss on average.  

In Fig.5.21, there are 11 probabilistic designs whose true average losses exceed those of the 

corresponding possibility-based designs for a sample size of three.  Probabilistic designs No. 4, 9 

and 15 have significantly higher expected losses than the other designs in Fig. 5.21.  When the 

sample size increases to five, the probabilistic designs with a higher true average loss than the 

corresponding possibility-based designs decline to three.  Five probabilistic designs have the 

same optimum height with their possibility-based counterparts, whereas the average losses of the 

remaining twelve probabilistic designs are slightly lower than those of the corresponding 

possibilistic designs.  When the sample size increases further to 10, in Fig. 5.22, most 

probabilistic designs are close to the possibility-based designs.  When the sample size exceeds 

20, probabilistic designs become worse again in terms of their expected loss than the 

corresponding possibilistic designs.  The reason is that the optimum height of the possibilistic 

designs (30 blocks) is closer to the experimental optimum of 32 blocks compared to the 

probabilistic optimum height (28 blocks).   

Figures 5.24 ~ 5.27 compare probabilistic and possibility-based designs using experimental 

true losses when possibility-based designer chooses the height of 20 blocks.  In Fig.5.24, there 

are three probabilistic designs whose true average losses exceed those of possibility-based 

designs for a sample size of three.  In Fig.5.25, when sample size is five, all probabilistic designs 

have lower expected losses than the corresponding possibility-based designs.  When the sample 

size increases to 1000 in Fig.5.26, all probabilistic designs are still better than the corresponding 

possibility-based designs in terms of experimental true loss.  In conclusion, when the possibility-

based optimum is 20, the probabilistic designs are better in terms of experimental true losses 

regardless of the sample size. 
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The results of the experimental comparisons are inconclusive.  The conclusions depend on 

what optimum the possibility-based designer chooses.   
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Figure 5.21 Comparison of experimentally estimated expected losses for 20 sets of 
probabilistic and possibility-based designs with 30 as optimum (sample size=3) 

 

 

Figure 5.22 Comparison of experimentally estimated expected losses for 20 sets of 
probabilistic and possibility-based designs with 30 as optimum (sample size = 10) 
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Figure 5.23 Comparison of experimentally estimated expected losses for 20 sets of 
probabilistic and possibility-based designs with 30 as optimum(sample size = 1000) 

 

Figure 5.24 Comparison of experimentally estimated expected losses for 20 sets of 
probabilistic and possibility-based designs with 20 as optimum 

(sample size = 3) 
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Figure 5.25 Comparison of experimentally estimated expected losses for 20 sets of 
probabilistic and possibility-based designs with 20 as optimum (sample size = 5) 

 

 
Figure 5.26 Comparison of experimentally estimated expected losses for 20 sets of 

probabilistic and possibility-based designs with 20 as optimum (sample size = 1000) 
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5.6.3 Discusssion of results 

We compare probabilistic and possibility-based designs using an analytical approach and an 

experimental approach.  The following conclusions can be drawn from comparison results: 

• When the sample size is small (e.g. three or five), both analytical and experimental 

comparisons demonstrate that probabilistic methods can yield designs with considerably 

higher true expected loss than their possibilistic counterparts.   

• Possibility-based methods yield a multiple optimum designs and they can not discriminate 

between these designs.  As a result, other criteria have to be added to specify the optimum 

design.  Two criteria are applied in this study to obtain two different possibility-based 

optimum designs, with heights of 20 and 30 blocks.  Based on these two criteria, we have 

different conclusions on which methods yield safer designs in terms of analytical and 

experimental true losses.  Table 5.3 shows the comparison results.  The conclusion on this 

issue is conditional. 

 

Table 5.3 Winners of experimental and analytical comparisons in terms of true average 

losses 

 

Analytical comparisons Experimental comparisons  

Small sample 

size 

Large sample 

size 

Small sample 

size 

Large sample 

size 

Possibilistic 

optimum is 30 

Possibility-

based method*  

Probabilistic 

method 

Possibility-

based method* 

Possibility-

based method 

Possibilistic 

optimum is 20 

Probabilistic 

method* 

Probabilistic 

method 

Probabilistic 

method* 

Probabilistic 

method 

 

* Some probabilistic designs had considerably higher expected loss than the other probabilistic 

and possibilistic designs 

• When the sample size increases, analytical comparisons demonstrate that probabilistic 

methods improve designs very fast by adjusting the probabilistic models according to the 
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accumulation of data.  However, possibility-based methods are insensitive to the change in 

sample size. 

• When very little information is available for uncertainty models, a designer should avoid 

using these two methods alone.  A probabilistic designer can resort to possibility-based 

method to screen out the poor designs if he/she has many probabilistic candidates.  If a 

probabilistic design has a relative higher possibility of failure, this design should be rejected.  

If the possibility-based method can not discriminate these probabilistic designs, the designer 

should try to collect more information to develop a reliable model rather than go ahead and 

make risky decisions.  

5.6 References 

Rosca, R., Haftka, R.T., et al, "Block Toppling Model for Testing Procedures for Design Against 
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CHAPTER 6 CONCLUSIONS 

The goal of this dissertation was to understand the advantages and limitations of probabilistic 

and possibility-based methods for design under uncertainty.  We considered problems involving 

both random uncertainty and reducible uncertainty, but we modeled only random uncertainty 

using probabilistic and possibility-based methods.  In Chapters 2 to 4 we only considered 

problems where failure is crisply defined, that is the boundary between survival and failure is 

sharp.  In Chapter 5 we considered a design problem in which failure is a matter of degree.  We 

focused on how the lack of information about the uncertainties affects each method.  In Chapter 

2, we examined the theoretical foundations of probability and possibility-based methods.  In 

Chapters 3-5 we compared them in design for maximum safety. 

6.1 Differences in the  theoretical foundations of the two design methods 

In Chapter 2, we examined the theoretical foundations of probabilistic and possibility-based 

methods in modeling uncertainties.  We reached the following conclusions: 

A major difference between probability and possibility is in the axioms for the union of 

disjoint events: the probability of the union is the sum of the probabilities of these events, 

whereas the possibility of the union is equal to the largest possibility of these events.  

Consequently, the probabilities of all events, which partition the universal event, must add up to 

one.  Possibility theory does not impose such a constraint on the possibilities of these events.  

This makes possibility models more flexible than their probabilistic counterparts.  For example, 

if we have no information about the weather tomorrow we can estimate that both the possibilities 

of raining and not raining tomorrow are one, to account for the lack of information.  On the other 

hand, if we estimate that the probability of raining is 0.5 then we have to assign a probability of 

0.5 to the event "it will not rain tomorrow".  If we have enough information about uncertainties 

and accurate predictive models probability is advantageous, whereas possibility is useful if we 

have little information. 
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Possibility and probability calculi are fundamentally different.  We cannot simulate the 

results of possibility calculus using probability calculus by properly selecting the parameters of 

the probabilistic models.  

Possibility can be less conservative than probability in risk assessment of systems with many 

failure modes.  Possibility-based methods tend to underestimate the risk of failure of such 

systems, especially if the number of modes is large. 

Possibility tends to yield more conservative estimates of the risk of failure for systems for 

which many unfavorable events have to occur simultaneously in order to produce failure.  An 

example is a parallel system. 

In many reliability assessment problems, one can easily determine the most conservative 

possibilistic model that is consistent with the available information.  On the other hand, it is 

difficult to choose the most conservative probabilistic model if little information is available. 

If there is little information about uncertainty, probabilistic methods may fail to predict the 

effect of design modifications on the system probability of failure. 

The difference between probabilistic and possibilistic models can lead to a diametrically 

opposed balancing of risks associated with cost over-runs and risks associated with performance 

shortfall.  The reason is that probabilistic optimization tends to make the derivatives of the 

probabilities of failure of the failure modes with respect to the design variables equal, whereas 

possibility-based optimization tends to make the possibilities of the modes equal, rather than 

their derivatives. 

Possibility-based design leads to optimum designs that tend to be less sensitive to errors in 

the models of uncertainties and in the predictive models than their probabilistic counterparts.  

The reason is that, as mentioned in the previous paragraph, probabilistic design uses sensitivity 

derivatives, whereas possibility uses the possibilities of the failure modes, and because the 

derivatives of a quantity tend to be more sensitive than the value of this quantity to errors.   

The difference in the axioms about the union of events is the principal reason for the 

differences mentioned in the previous paragraphs. 

If we have enough information about uncertainties and accurate predictive models, then 

probability is advantageous.  On the other hand, when making design decisions under limited 
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information or using crude predictive models it is important to consider both the probability and 

possibility of failure of a system. 

 

6.2 How the two design methods compare in design problems 

In Chapters 3 through 5, we demonstrated the advantages and the limitations of probabilistic 

and possibility-based methods using a problem involving design of a tuned vibration absorber 

and a problem involving design and construction of domino stacks.  The results showed that 

when limited information is available for the uncertainty and there are narrow failure zones close 

to the mean values of uncertain variables, the probabilistic method might produce unsafe 

designs.  In these cases, a possibility-based method is useful.  A principal reason is that it is easy 

to determine what assumptions about the distribution parameters and the correlation of the 

uncertain variables make a possibility-based model more conservative whereas this is not the 

case with the probabilistic models. 

6.3 Guidelines for the use of probabilistic and possibility-based methods 

In sections 4.4 and 5.6, we recommend that when limited numerical information is available 

for the uncertainties in a design problem, one should choose his/her design method based on the 

following considerations:  

1) How much data about uncertainties is available?   

2) Is the true type of probability distribution of the random variables known?   

When the true type of the probability distribution is known, a Bayesian probabilistic method 

is better than the possibility-based method.  However, when the true type of the probability 

distribution is unknown and little data is available, we should use both probabilistic methods and 

possibility-based methods to assess the safety of a design.  When there is a large amount of data, 

one should determine the true distribution type first and then use a probabilistic method.  Table 

6.1 provides tentative guidelines to select a method based on the amount of information available 

for a given design problem.  These guidelines are based on the results of the tuned damper and 

domino stack design problems. 
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Table 6.1 Guidelines for selection of methods for a given design problem  

 

Sufficiently large  
        sample size 

 
True type  
of distribution 
known 

Yes No 

Yes 
Probabilistic/standard 

statistical method 

Bayesian method 

No 

Try to identify the correct 

distribution type and use 

probabilistic methods if N 

> 40. 

• Consider both probabilistic and 

possibility-based designs.  

Calculate both the possibility 

of failure and the probability of 

failure of these designs.  If a 

design scores well with both 

measures, it should be 

selected. (N < 40) 

• Try to identify the correct 

distribution type and use 

probabilistic methods if N > 

40. 

 

When very little statistical information is available for uncertainty models and the true type 

of probability distribution is not known, a designer should avoid using probabilistic methods 

alone.   He/she should use possibility-based methods to screen out those probabilistic designs 

that might be unsafe.  If a probabilistic design has a relatively high possibility of failure, this 

design should be rejected even if it has a low failure probability. If the possibility-based method 

can not distinguish probabilistic designs, the designer should collect more information to 

construct a reliable uncertainty model before performing designs. 
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6.4 Future research  

In this dissertation, we compared probabilistic and possibility-based design methods in the 

presence of uncertainties.   It is useful to compare other methods, such as methods using convex 

models, imprecise probability and evidence theory with probabilistic and possibilistic methods.   

In this study we only dealt with modeling random uncertainties.  We have not investigated 

methods of modeling reducible uncertainties, such as errors in the deterministic models for 

predicting the performance of a system and errors in uncertainty models.  Theories of 

uncertainty, such as imprecise probability and evidence theory could be better than probability 

theory for these uncertainties.  To the best of the author's knowledge, nobody has investigated 

applications of these theories to engineering design.  

It is important to develop and study hybrid methods for design under uncertainty.  For 

example one could model random uncertainties using probability and reducible uncertainty using 

possibility.  This approach will provide a measure of the significance of the reducible 

uncertainty.  It will yield a possibility distribution of the probability of failure, instead of a single 

number for the probability of failure.  The larger the range of variation of the probability of 

failure the larger the reducible uncertainty is. It is also important to compare this hybrid 

probabilistic-possibilistic approach with a probabilistic approach that tries to account for 

reducible uncertainty by modeling the parameters of the distributions of the random variables as 

random variables and computes a probability distribution of the probability of failure.   
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APPENDIX A  CALCULATING PROBABILITY AND POSSIBILITY OF TWO 
TOWER OVERLAPPING 

A.1 Deriving the probability of two towers within and out of a certain distance 

A.1.1 Calculating the probability of two towers overlap   p( xB −xA  <D) 
As shown in Fig.5.1, xA and xB are x-coordinates of centers of tower A and B.  We split  xB 

−xA  <D into two cases. 

I. For  0 ≤  xB −xA<D: 
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II. For 0 > xB −xA>-D : 
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A.1.2 Calculating the probability of two towers overlap in another way   p( xB −xA  <D) 
No matter how the relative location of these two towers change, we only need to calculate the 

overlapping portion in the overall distributions.  In Fig.A.1, x0 and x1 are the left and right range 
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in which the center of tower B, xB, may vary.  Similarly, x0' and x1'are the left and right range in 

which the center of tower A, xA, may vary. 

 

 

 

 

 

 

 

Figure A.1 Alternative calculation of p( xB −−−−xA  <D) 
 

If  x0 − x0' > D and x1 − x1' > D 
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If x0 − x0' ≤ D, we have to subtract additional part from Equation (A.3), which is: 
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If x1'− x0' ≤ D, we have to subtract additional part from Equation (A.3), which is: 
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If x1− x1' ≤ D, we have to subtract additional part from Equation (A.3), which is: 
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If x1− x0 ≤ D, we have to subtract additional part from Equation (A.3), which is: 
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A.2 Deriving the possibility of two towers within and out of a certain distance 
I.  When x0 − x0' < D and xm− xm' > D, as shown in Fig. A.2. 

In this case, the maximum value for calculating  d0≥ D occurs when A locates at the middle 

point where π(xA)=1. From Fig.A.2, we observe that at this point, out of the range [xA − D, xA+ 

D], the maximum value for π(xB) is equal to one. Therefore, π d0  ≥D =1. 

The maximum value for calculating π d0 <D occurs when the horizontal interval between the 

right side of triangle A and the left side of triangle B is equal to D.  Suppose the right end of that 

interval is xAm, and the right end of the interval is xBm. When xAm is smaller than xA: 
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When xAm is bigger than xA, then: 
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In the equations, h represents the height of the horizontal interval with length of D. h0 

represents the height of the intersection of right side of A with left side of B. 

Figure A.2 Illustrations for calculating ππππ  xB −xA  <D and ππππ  xB −xA ≥≥≥≥D for case I 
 

II.  When x0 − x0' < D and xm− xm' ≤ D: 
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Figure A.3 Illustrations for calculating ππππ  xB −xA  <D and ππππ  xB −xA ≥≥≥≥D for case II 
 

In this case, the maximum value for calculating π  xB −xA  <D occurs when A locates at the 

middle point where π(xA)=1. From Fig. A.3, we observe that at this point, within the range [xA− 

D, xA+ D], the maximum value for π(xB) is equal to one. Therefore, π  xB −xA  <D =1. 

The maximum value for calculating π  xB −xA ≥ D occurs when the horizontal interval 

between the left side of triangle A and the right side of triangle B is equal to D.  Suppose the right 

end of that interval is xAm, and the right end of the interval is xBm.  
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III. When x0 − x0' ≥ D and xm− xm' > D: 

In this case, the maximum value for calculating π  xB −xA ≥ D will occur when A locates at the 

middle point where π(xA)=1, from a similar approach to Case I. Therefore, π  xB −xA   ≥D =1. 

From Fig.A.4, we observe that the maximum value for calculating π  xB −xA  <D will occur when 

the horizontal interval between the right side of triangle A and the left side of triangle B is equal 
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to D.  Let the right end of that interval is xAm, and the right end of the interval is xBm. Similar to 

Case I, π  xB −xA  <D is calculated as: 
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Figure A.4 Illustrations for calculating ππππ  xB −xA  <D and ππππ  xB −xA ≥≥≥≥D for case III 

 

IV. When x0 − x0' ≥ D and xm− xm' ≤ D: 

This case is similar to Case II, where π  xB −xA  <D =1. 
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Figure A.5 Illustrations for calculating ππππ  xB −xA  <D and ππππ  xB −xA ≥≥≥≥D for case IV 
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