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ABSTRACT

Various coverage criteria are commonly used to assess the quality
of test suites, but achieving full coverage according to these criteria
is often impossible or impractical. Our research starts from the pop-
ular assumption that a disproportionate number of faults is likely to
reside in recently changed code. Based on this assumption, we
propose several change-based coverage criteria that reflect to what
extent changes with respect to a previous program version are exer-
cised by a test suite. In a set of experiments on programs from the
SIR repository, we found change-based criteria to reveal faults bet-
ter than traditional criteria, and to enable the construction of much
smaller test suites with similar fault detection effectiveness. We
also report on a case study that shows that achieving (near) 100%
coverage according to a change-based criterion is both feasible and
useful.

1. INTRODUCTION

Software evolves throughout its lifetime as developers adapt ap-
plications to changing requirements, add new functionality, and fix
bugs. To ensure that their changes do not have unintended con-
sequences, developers typically rely on a suite of unit or regres-
sion tests. The hope is that, by executing the test suite after each
edit, faults are exposed early when understanding and fixing the
problem is relatively easy as the changes are still fresh in the de-
veloper’s mind. The effectiveness of this approach hinges on the
quality of the test suite, (i.e., its ability to expose faults). Following
Miller and Maloney [14], various notions of code coverage have
been proposed as a proxy for test suite quality, including statement
coverage, branch coverage, method coverage, and others |15} |19}
34]. The basic assumption is that a test suite is likely to be effective
at revealing faults if it exercises the code where the fault is located.
Therefore, increased code coverage is expected to correlate with
more revealed faults.

Unfortunately, achieving 100% coverage according to a tradi-
tional code coverage criterion is often neither possible nor practi-
cal. Achieving full coverage becomes impossible when applica-
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tions contain unreachable code, which may arise due to program-
mer carelessness, or when the implementation of a feature is not
yet complete. Furthermore, only a limited amount of time may be
available for writing tests, and achieving full coverage may not be
practical because it is often quite difficult to construct a test that ex-
ercises a particular area of the code. Therefore, organizations often
select some arbitrary coverage level (e.g., 70%) as their target [4].
In our opinion, imposing an arbitrary coverage level target is prob-
lematic because there is no guarantee that programmers will focus
their efforts on writing tests that cover the most fault-prone parts of
an application.

It has long been understood that changed code requires more at-
tention than code that has been stable for a long time and a variety
of program analysis techniques have been developed to analyze the
effect of changes. For example, regression test selection techniques
identify those tests whose behavior may have been changed as a re-
sult of code changes [23]], change impact analysis techniques can
identify the parts of a program that are potentially affected by a set
of changes [|6], change classification techniques identify the subset
of a programmer’s changes that is responsible for the failure of a
given test [28], safe-commit analysis determines changes that can
be committed safely to a version control repository [32]], and test
suite augmentation techniques provide guidance for creating new
test cases that specifically target a program’s changed behavior [2|
21, 26]. All of these techniques involve some form of program
analysis, starting from the changed code fragments, with the objec-
tive of helping the programmer improve or preserve code quality.

In this paper, we suggest that a test suite’s quality should be
measured directly by its ability to cover changes. To this end, we
propose a number of change-based coverage criteria that reflect
to what extent the changes with respect to a previous version of
the program are exercised by a test suite. In particular, we de-
fine novel changed statement, changed method, changed branch,
and atomic change coverage criteria. The premise of our research
is that the change-based coverage achieved by a test suite should
correlate well with its fault-finding ability because faults are likely
to be concentrated in recently modified code. Furthermore, as the
number of changed statements (or methods or branches) is typi-
cally much smaller than the total number of statements (or methods
or branches), change-based coverage criteria are likely to be more
practical than traditional coverage criteria.

We conducted a set of experiments to compare the fault-finding
ability of test suites constructed according to the 4 change-based
coverage criteria mentioned above to that of test suites constructed
according to 3 traditional (statement, method, and branch) coverage
criteria. To evaluate the relative effectiveness of these 7 criteria, we
considered 12 version pairs of 3 existing Java applications from the



SIR repository [7]], in which faults were seeded. For each version
pair and each criterion, we then determined the coverage achieved
and number of faults exposed for many subsets of the originally
provided test suite. From this information, we computed a corre-
lation between coverage and exposed faults using the Kendall 7
method [10]. Our results indicate that change-based coverage cri-
teria correlate more strongly with exposed faults than non-change-
based coverage criteria on all but one of the version pairsﬂ We
did not find any change-based coverage criterion to be clearly su-
perior to all others. However, for 10 of the 12 version pairs, one of
the changed branch and changed statement criteria correlates most
strongly with exposed faults, and in the remaining two cases, one
of these criteria is very close to the winner. In our opinion, these
results experimentally confirm that it is a good idea to focus testing
effort on changed code fragments, and that it is particularly impor-
tant to cover changed branches and statements.

In a second set of experiments, we evaluate the tradeoff between
test suite size and fault-detection effectiveness, for test suites cre-
ated according to the different coverage criteria. To this end, we
minimized the existing test suite for each version pair under test in
a way that preserved coverage according to each criterion and mea-
sured the fault-detection effectiveness of the resulting minimized
test suites. Our results indicate that minimizing a test suite ac-
cording to the change-based criteria can decrease suite size signif-
icantly, without decreasing the number of faults exposed by much.
For example, we found that test suites minimized according to the
changed statement coverage criterion are on average between 36%
and 89% smaller than the test suites minimized according to the
statement coverage criterion. However, these smaller test suites
were equally effective at revealing faults on 9 of the 12 version
pairs under consideration, and nearly as effective on 2 additional
version pairs. These results again suggest that, when limited time
is available for writing additional tests, priority should be given to
covering changed code fragments.

We also conducted a case study in which we investigated, for 7
version pairs of two of the subject programs, how practical it is for
programmers to write additional tests that achieve 100% coverage
according to the atomic change criterion. We found this task to be
feasible in terms of effort, and surprisingly useful for pointing pro-
grammers at untested changes that might otherwise be overlooked.
In particular, the additional tests written revealed 3 previously un-
exposed seeded faults and 2 real faults not previously reported (an
arithmetic error and a situation where one of the programs throws
a NullPointerException when given a malformed input),
thus providing some evidence that the use of change-based test ad-
equacy criteria may help prevent errors and improve code quality.

In summary, the contributions of this paper are as follows:

e We define several new change-based code coverage criteria.

e We compare the effectiveness of these criteria to that of sev-
eral traditional code coverage criteria. Empirical results in-
dicate that change-based criteria reveal faults better than tra-
ditional criteria, and that they can be used to construct much
smaller test suites with similar fault detection effectiveness.

e We report on a case study that shows that achieving (near)
100% coverage according to a change-based coverage crite-
rion is both feasible and useful.

These results provide some quantitative evidence to confirm the
popular belief that it is worthwhile to focus testing effort on changed
code fragments, and suggest that change-based coverage criteria
can serve as a practical measure of test suite adequacy.

! In the one remaining case, a non-change-based criterion was only
slightly better.

class Bar {
void zap(Q) { LC2
System.out.println("Bar.zap()");

3

}
class Foo extends Bar {
void zip(String s) {

Edit 1 cm
System.out.print(s.lengthQ) + ": ");
System.out.print("Foo.zip(");
Edit 2

if (s.length() == 1 Il s.lengthQ) == 2 ) {

System.out.println("1)");
} else {

System.out.print("--");

System.out.println("2)");
}

Edit 3

3

, LC1, CM2
S CRL O Edit 4

System.out.println("Foo.zap()");

3

3

Figure 1: Original and Edited Version of the Example Pro-
gram with Edits and Atomic Changes (Textual edits are shown
with shaded boxes. Atomic changes (CM, LC) are indicated by
framed boxes. The original version of the program excludes all
shaded code fragments, and edited version can be constructed by
adding these fragments to the program.)

The remainder of this paper is organized as follows. Section 2]
defines the change-based coverage criteria. Our empirical evalua-
tion is presented in Section[3} A case study involving writing new
tests to cover the changes made during edits of NanoXML and
JTopas is presented in Section 4] Threats to validity are discussed
in Section 5] Finally, related work is discussed in Section [¢] and
conclusions are presented in Section[7]

2. COVERAGE CRITERIA

Code coverage is a white-box testing technique to measure how
much of a program is exercised by a test suite. Each test in the suite
uses assertions to specify expected program behavior. A run of a
test suite tries to verify that the program works as expected. Each
run computes the degree to which the program is covered by tests
as measured by a specific coverage criterion, which is defined in
terms of a measurable unit, such as a method, statement, or branch.
In this section, we give an overview of all the coverage criteria
compared in our empirical study.

2.1 [Illustrating Example

Figure[I|shows two versions of a small example program that we
will use to illustrate several traditional and change-based coverage
criteria. The original version contains the lines of code that lie
outside of the shaded areas. The edited version can be obtained
by adding all code in the shaded boxes. Edit I adds a new print
statement, Edit 2 adds a test to the or condition in the i f statement,
Edit 3 adds a new print statement to the else branch, and Edit 4
adds a method Bar. zap () that overrides Foo . zap (). The four
atomic changes computed from the textual edits and labeled on the
right side of Figure[T]are defined in Section[2.3] For each coverage
criterion, we discuss how a test suite can be constructed that attains
full coverage of the program, summarizing each test suite simply
by the set of method calls that it performs.



2.2 Traditional Coverage Criteria

These criteria are measured with respect to the complete pro-
gram. Method, statement and branch coverage are commonly used.

Method Coverage.

Method (or function) coverage [34] is commonly used to mea-
sure which methods (functions) in the program are invoked during
test execution. It indicates whether at least one statement within a
method is executed at least once during a test suite run. Method
coverage does not differentiate the individual statements actually
executed. If we consider the edited version of the example pro-
gram, 100% method coverage can be achieved by running a test
suite containing the following method calls:

new Foo().zip("");
new Bar () .zap();

new Foo().zap();

Statement Coverage.

Another common coverage measure is statement (or line) cover-
age [[15]). Statement coverage reports all statements that are invoked
at least once during a test suite run. Statement coverage subsumes
method coverage, (i.e., a test suite with 100% statement coverage
will have 100% method coverage). A test suite with the following
method calls reports 100% statement coverage in the example pro-
gram

new Foo () .zip(""); new Foo().zip("a");
new Foo () .zap(); new Bar().zap();

The extracalltonew Foo () .zip("a") exercises the statements
on the then branch of the i f statement, which were not covered
by the previous test suite for method coverage.

Branch Coverage.

Branch coverage [15]] requires that each outcome (e.g., true and
false) of each branch in a logical expression controlling an if,
loop, or switch statement be covered. For practical reasons (we
use instrumentation tools that operate at the bytecode level), we
assume that composite logical expressions are decomposed into a
sequence of lower-level branches. For example, using short circuit
execution, full branch coverage of a logical or expression a or b
can be obtained with: (i) a ==T, (ii) a==F, b==T and (iii) a==F,
b==F. Note that the last case is required to be covered, but the set-
tings a==T, b==F and a==T, b==T are not.

As usually defined, branch coverage subsumes statement cover-
age [[19]. To maintain this constraint, in our implementation we
require branch coverage to cover all methods in addition to all de-
cisions within these methods. A set of method calls that achieves
100% branch coverage on the example is:

new Foo().zip(""); new Foo().zip("a");
new Foo () .zip("ab"); new Bar().zap();
new Foo () .zap();

2.3 Change-based Coverage Criteria

The basis for the change-based coverage criteria used in our em-
pirical study is a previously developed change impact analysis im-
plemented in the tool CHIANTI [25} 20, 31]. This analysis com-
putes an abstract representation of a textual difference between two
program versions and decomposes it into a set of atomic (or small-
est) changes to a program. The resulting representation enables a
classification of different kinds of changes and their dependences,
making textual edits amenable to program analysis. Various change
categories are supported, such as change method (CM), add field
(AF), and lookup change (LC) (i.e., a change to dynamic dispatch)
[20]. However, in this paper we use a simplified version of the

change model including only change method (CM) changes and
lookup (LC) changes.

Atomic Change Coverage.

The atomic change coverage criterion reflects the CM and LC
atomic changes that are exercised by a test suite. CM changes cor-
respond to methods whose code has changed. CM changes also
summarize other changes; for example, adding a new instance field
to a class implicitly changes the constructor method for that class to
initialize an additional field. Note that we generate one CM change
per method regardless of the number of changed statements within
the respective method’s body, (e.g., CM1 in the example represents
Edits 1 — 3 as a single CM change).

A lookup change (LC) represents the effect of an edit on dy-
namic dispatch. It is represented as a pair of the form <C, f()>
indicating that the behavior of invoking a method f() on an ob-
ject of runtime type C' has changed. Many kinds of edits may alter
the existing dynamic dispatch behavior of a Java program, such as
adding the overriding method zap () to class Foo in our example
(LC1, LC2), or changing method visibility from private to pub-
lic [20, 125, 31]). A test suite with the following method calls covers
all CM and LC changes and achieves 100% atomic change cover-
age on the example program:

new Foo () .zip("");
new Bar () .zap();

new Foo().zap();

Changed Method Coverage.

The changed method coverage criterion reports how many of
the CM changes are covered by a test suite. It uses the same ap-
proach as atomic change coverage but is restricted to CM changes.
As such, changed method coverage is subsumed by atomic change
coverage. The following method calls within a test suite result in
100% changed method coverage:

new Foo () .zip(""); new Foo().zap();

Changed Statement Coverage.

A test suite’s changed statement coverage reflects the set of state-
ments that were changed or added since the previous version and
exercised by at least one test in the suite. A test suite with the fol-
lowing method calls reports 100% changed statement coverage:

new Foo () .zip(""); new Foo().zap();
A change impact analysis at the level of individual statements (or
lines) implemented by JDIFF [[1] is used to compute changed state-
ment coverage. Two different versions of a program are compared
and both differences and correspondences at statement-level are
identified to capture all the changed statements in a Java program.

Changed Branch Coverage.

There are multiple possible ways to define a changed branch
coverage criterion. For example, one could focus only on those
branches where the condition has changed, or one could also in-
clude branches where the body has changed. Since we are not
aware of any existing definition or approach for identifying a set of
changed branches within an application, we define a simple, con-
servative notion of changed branch coverage based on the set of
CMs identified by CHIANTI. Our changed branch coverage cri-
terion requires that all branches within each changed method are
covered, even if none of the edits affected the corresponding control
statement. In addition, the criterion requires that all CM changes
are covered, in order to ensure that changed branch coverage sub-
sumes changed statement coverage. According to this criterion, a
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Figure 2: Subsumption relationships between the criteria.

test suite with the following method calls achieves 100% changed
branch coverage:

new Foo().zip(""); new Foo().zip("a");
new Foo () .zip("ab"); new Foo().zap();

2.4 Subsumption Relationships

Figure 2] shows the subsumption relationships that hold between
the coverage criteria discussed in this section. The presence of an
arrow from a criterion A to a criterion B in the figure means that
100% coverage according to criterion A implies 100% coverage
according to criterion B. Note that atomic change coverage is not
subsumed by any other coverage type as it is the only criterion to
consider the coverage of (changed) method dispatch behaviors.

3. EXPERIMENTAL EVALUATION

In order to better understand the properties of the different cov-
erage criteria, we conducted a study that compares these criteria by
answering the following research questions:

RQ1 How well do the different coverage criteria predict the rela-
tive quality of test suites?

RQ2 How do test suites constructed according to the different cov-
erage criteria compare in terms of size and number of regres-
sion faults exposed?

3.1 Coverage Criteria

Our empirical study compares the effectiveness of the seven dif-
ferent code coverage criteria defined in Section 2} method cover-
age, statement coverage, branch coverage, changed method cov-
erage, changed statement coverage, changed branch coverage and
atomic change coverage. The first three of these are traditional code
coverage metrics in common use. To identify the set of changed
statements empirically for each program version, we used the JDIFF
tool [1]. COBERTURA, version 1.9 [8]] was used to run each test
suite and to measure method, statement, branch, changed state-
ment, and changed branch coverage. We used JUNITMX [31] to
identify atomic changes, run each test suite, and calculate changed
method and atomic change coverage as well as the faults exposed
by each suite.

As defined in Section 2] changed statement coverage subsumes
changed method coverage and changed branch coverage subsumes
changed statement coverage. However, JDIFF computes changes
by analyzing bytecode, while CHIANTI computes changes by an-
alyzing the source code. It is possible for unchanged source code
within a method to produce different bytecode when compiled (e.g.,
when a call site is resolved to a different method definition) or for
minor changes in source code to result in identical bytecode. This
can lead to differences in the set of methods with changes identified
by JDIFF and CHIANTI, breaking the subsumption relationships
discussed in Section[2:4] We experimentally determined that these

tests faults
benchmark | version all | used || all | rev
vO/vl 77 77 || 20 5
v1/v2 80 80 || 21 5
JMeter v2/v3 78 77 || 20 8
v3/v4 78 75 || 13 1
va4/v5 97 80 || 13 2
vO/vl 126 126 || 10 7
JTopas v1/Nv2 128 128 || 12 6
v2/v3 209 | 206 || 17 8
vO/vl 214 | 214 7 7
v1/Nv2 214 | 214 7 6
NanoXML =5 3516 | 216 [ 11| 10
va4/v5 216 | 216 9 9

Table 1: Benchmark Details

minor discrepancies did not significantly affect the results reported
in this section (see Section ).

3.2 Benchmarks

To evaluate our technique, we used three existing Java appli-
cations, JMeter, JTopas, and NanoXML, available from the SIR
repository [7]. The SIR repository contains between four and six
versions for each of these applications, with an associated test suite
for each version, and with associated seeded faults for most ver-
sions. Since this study is focused on changes to the software, we
used successive version pairs of each application from the SIR
repository as shown in column 2 of Table [T} resulting in 12 dif-
ferent version pairs

Column 3 of Table[I] indicates the number of tests available for
the most recent version of each version pair. COBERTURA required
that each test be run in isolation from the rest of the tests in the
test suite; however, some tests for JMeter v3, v4, and v5 could
only be successfully executed when run as part of the entire test
suite. Therefore, we removed these tests from the test suites that
we used for this study; column 4 shows the number of tests actu-
ally used. The faults columns of Table[] show the total number of
seeded faults for each version pair (all) and the number revealed by
the pool of tests we used for each version (rev). Table |Z| provides
the number of coverable elements (all) and the number of those
elements covered by the test suite used (cov) for each of the test
coverage criteria we considered.

3.3 Experimental Methodology

For each version pair, V4 and V.., We created faulty versions
of Vi.ew by enabling a single fault within Ve, Then, we computed
coverage and fault detection matrices by executing each test case ¢
in the test suite on each faulty version of V., as well as on the
correct version of V.. For each ¢, we created coverage and fault
detection matrices that indicated the coverable elements covered
by ¢ and the faults exposed by ¢, respectively. We considered an
element covered by the execution of ¢ if for at least one version of
View (correct or faulty) that element was covered. A fault f was
exposed by test ¢ if ¢ failed on the version of V), with that fault
f enabled. The coverage values for a test suite were calculated by
unioning the matrix entries for their constituent test cases.

“Version 4 of NanoXML did not include any seeded faults so we
were unable to use the v3/v4 version pair of this application



meths stmts brchs chg meths chg stmts chg brchs atomic chgs
[ benchmark | version | all | cov all | cov all | cov all | cov all | cov all | cov all | cov
VOVT || 3082 | 1222 || 16993 | 6865 || 7042 | 2059 || 897 | 337 || 5761 | 2451 || 2701 | 641 || 1974 | 534
v1/v2 3033 | 1192 || 16948 | 7036 || 7186 | 2029 281 | 119 || 2408 | 1276 || 1156 236 || 1209 401
JMeter v2/v3 3650 | 1591 || 18412 | 7720 || 8541 | 2598 || 1530 | 874 || 8605 | 4760 || 4121 | 1320 || 5294 | 2483
v3/v4 3767 | 1666 || 19038 | 8050 || 8635 | 2679 370 | 145 || 3163 | 1462 || 1062 253 || 1046 331
v4/v5 3849 | 1701 || 20519 | 8571 || 8677 | 2735 159 74 || 2069 766 826 204 247 101
VOIv1 199 | 164 || 796 | 683 | 625 ] 434 30| 27] 185| 157] 60| 46] 55| 49
JTopas v1/v2 213 178 878 744 726 490 46 41 223 175 154 90 79 70
v2/v3 490 349 2181 | 1620 || 1692 | 1025 360 | 245 || 1404 984 || 1242 732 797 549
VOV 120 | 98 || 925] 717 552 ] 376 68| 52| 645 471 416 266 110] 85
NanoxmL | VIV2 T77 [ 106 || 1100 | 745 || 625 | 394 || 126 | 69 || 684 | 428 || 411 | 260 || 242 | 97
ano V23 214 [ 126 || 1391 | 921 || 810 | 487 || 78| 54 || 651 | 446 || 334 | 204 || 187 | 115
v4/v5 229 134 1509 981 876 508 64 50 590 375 420 279 84 59

Table 2: Criteria Details
34 RQI was the best (although there was some overlap in the ranges). This

The goal of RQ1 was to determine which of our coverage criteria
most accurately measures the relative quality of different test suites
with respect to exposing regression faults. To answer this question,
we needed to study the effect of varying coverage on fault expo-
sure by measuring the coverage and fault exposure on several test
suites for each VUT (i.e., version pair under test). Since we only
were supplied with a single test suite for each version, we needed
to construct additional test suites. This was accomplished by ran-
domly selecting 100,000 different subsets of the original test suite
for each VUT. Note that we only needed to run each test in the orig-
inal test suite once. After randomly constructing new test suites, we
used the previously collected coverage and fault exposure data to
calculate the coverage and exposed faults for each test suite.

Table [3] shows the correlation coefficients computed for cover-
age vs. fault detection for each of the coverage criteria on each
of the VUTSs. The coefficients were computed using the Kendall 7
method [10]. Kendall 7 is a standard test that computes the corre-
lation between the ranks of the values for two variables. Kendall 7
is 1 if the ranks of the values for the two variables exactly match,
-1 if the ranks of the values are in exactly the opposite order, and
near 0 if the variables are not related. The correlation coefficients
of different coverage criteria can be compared to determine which
criterion more accurately predicts the relative strengths of the dif-
ferent test suites at exposing faults. Specifically, if criterion C1
correlates more strongly with fault detection (i.e., has a higher cor-
relation coefficient) than criterion C'z, then C' is the better criterion
for predicting which of two test suites is more likely to reveal re-
gression faults. It should be noted, however, that this says nothing
about whether a particular test suite with high C'; coverage is more
likely to reveal regression faults than another test suite with equally
high C> coverage.

For 7 of the 12 version pairs, changed branch coverage showed
the strongest correlation with fault exposure. These seven cases
included all version pairs of JMeter and two of the three JTopas
pairs. Looking at the cases where changed branch coverage was
not the winner, the primary difference seems to be the percentage
of all of the branches that were identified as changed. For exam-
ple, on JTopas v2/v3, where changed statement coverage won, 73%
of all of the branches were identified as changed. In contrast, on
JTopas v1/v2, where changed branch coverage won, only 21% of
the branches were identified as changed. In general, the five runs
where changed branch coverage was not the best had a higher pro-
portion of changed branches (and changed methods and changed
statements) than the seven runs where changed branch coverage

suggests that the size of the change as a proportion of the entire
application is an important component in determining the effec-
tiveness of using a change-based coverage criterion. This is not un-
expected as the main purpose of change-based criteria is to focus
attention on testing the changed portions of the application, and,
in cases where large portions of the code have changed, it is rea-
sonable to expect that such a focus would be less effective. How-
ever, it should be noted that in four of the five cases where changed
branch coverage was not the best, another change-based criterion
performed the best, suggesting that even with large sets of changes
a change-based criterion could be useful in guiding testing effort.

Another way to look at these results is by comparing the corre-
lation coefficient for traditional coverage criteria to those for their
change-based counterparts. Comparing the results for method cov-
erage to those for changed method coverage, we see higher corre-
lation coefficients for the latter on 7 of the 12 version pairs. The
changed statement coverage criterion outperformed the traditional
statement coverage criterion in 10 of 12 cases, and the changed
branch criterion did better than the traditional branch coverage cri-
terion in 9 of 12 cases.

These results suggest that by focusing attention on changes, we
can better indicate the relative quality of test suites in exposing re-
gression faults. This result may not seem surprising as the faults
are in the changed portions of the applications; therefore, execut-
ing these portions of the programs is likely to execute the faulty
statements. However, it is quite possible that the context in which
a fault is executed is just as important as executing the fault it-
self. Therefore, a criterion that emphasizes exercising more of the
program may be a better indicator of the regression fault detection
effectiveness of a test suite.

Summary.
We found that:

e change-based criteria provide better predictions about the rel-
ative regression fault detection exposure of test suites than
non-change-based criteria;

o of the change-based criteria, changed branch coverage gen-
erally provided the best prediction.

3.5 RQ2

Our second research question focused on evaluating the trade-
off between test suite size and fault-detection effectiveness, for
test suites created using the different criteria. The ideal evalua-



| benchmark | version || meths | stmts | brchs || chg meths | chg stmts | chg brchs | atomic chgs |

vO/vl 0.5180 | 0.5237 | 0.5241 0.5075 0.5203 0.5439 0.5073
vinv2 || 0.4762 | 0.4685 | 0.4798 0.5438 0.5284 0.5922 0.4801
JMeter v2/v3 0.5350 | 0.5326 | 0.5415 0.5392 0.5336 0.5449 0.5211
v3/v4 || 0.4386 | 0.4417 | 0.4451 0.5073 0.4389 0.5416 0.4359
v4/v5 0.5183 | 0.5200 | 0.5276 0.5740 0.5669 0.6767 0.5884
vO/vl 0.6767 | 0.7081 | 0.6631 0.7443 0.7343 0.7826 0.7376
JTopas vi/v2 || 0.6110 | 0.6783 | 0.6931 0.6637 0.7516 0.7968 0.6903
v2/v3 0.6487 | 0.6728 | 0.6634 0.6555 0.6799 0.6453 0.6472
vO/vl 0.5450 | 0.6516 | 0.5917 0.5078 0.7422 0.6534 0.5078
NanoXML vi/nv2 || 0.7509 | 0.6792 | 0.7040 0.7353 0.6821 0.7095 0.7529
v2/v3 0.8093 | 0.7693 | 0.7917 0.7313 0.7792 0.7736 0.7976
v4/v5 0.5505 | 0.5697 | 0.5430 0.3286 0.7254 0.5137 0.3286

Table 3: Correlation Coefficients (bold indicates best value for row, all values were statistically significant (p < 0.05))

meths stmts brchs chg meths chg stmts chg brchs || atomic chgs
object version || size | rev || size | rev size | rev || size | rev size rev size | rev || size | rev
vO/vl 21 335 || 36 3 36 3 15 3.1 27 3 22 333 (| 17 | 32
v1v2 23 |5 38 5 36 5 11 5 23 5 13 5 16 |5
JMeter v2/v3 28 |8 378 | 8 34 8 27 8 33.8 8 28 8 30 |8
v3/v4 26 1 36 1 32 1 9 1 22 1 10 1 9 1
v4/v5 26 |2 36 2 33 2 11 1.05 || 20 2 47 [ 16512 |2
vO/vl 15 |7 21 7 21 7 6 5.2 14.1 7 6 7 6 |53
JTopas vinv2 15 |6 22 6 22 6 8 6 12 6 6 5 10 [ 6
v2/v3 30 | 45 45 8 46.65 | 8 20 4.1 35 7.5 196 | 7 20 | 4.15
vO/vl 15 |57 255 | 7 21 6.45 5 355 || 11.95 | 6.25 || 10 5.55 5 |38
NanoXML v1inv2 16 | 4.7 255 | 525 | 21 4.3 102 | 4.65 || 1455 | 525 | 11 425 [ 10 | 4.7
v2/v3 17 | 6.5 29 10 24 9 10 3.6 22 10 15 9 13 | 65
v4/v5 17 |74 29 9 23 7.7 3 425 || 10.55 | 6.35 7 7 3 |35

Table 4: Average Size of and Faults Revealed by Minimized Test Suites

tion mechanism would have been to generate a variety of adequate
test suites for each of the criteria and compare them. Unfortunately,
doing so in a fashion that allows fair comparisons of the criteria is
expensive and difficult. Therefore, we approached this problem by
minimizing the existing test suite for each VUT using each of the
coverage criteria.

Since the goal of our minimization was to select subsets of the
original test suite without sacrificing coverage, an optimal or near-
optimal minimization technique was not required. Instead, we im-
plemented a simple greedy minimization technique that allowed us
to readily generate different test suites with no completely redun-
dant tests. Our minimization technique begins with an empty test
suite, S. Then, we incrementally add a test to S' by randomly select-
ing a test for the VUT that increases the coverage of S. This step
is repeated until the coverage achieved by S equals the coverage of
the entire test suite for the VUT. We then iterate through the tests in
S, identifying and removing any test whose removal does not de-
crease the coverage of S. While this approach does not guarantee a
minimal test suite, in practice we found that it effectively generated
small test suites that varied little in size and included different tests.

For our experiments, we generated 20 unique test suites for each
criterion, VUT pair. For each of these test suites, we calculated the
number of faults exposed and the test suite size. The averages of
these two metrics across the 20 test suites is presented in Table ]

Although method coverage minimized suites revealed more faults
than changed method coverage minimized suites on eight of the
version pairs, this difference was small, only exceeding one fault

on four of the version pairs. Interestingly, this increase in fault ex-
posure comes at considerable expense. The test suites for method
coverage tended to be significantly larger than the test suites for
changed method coverage, ranging from 1.04 times as large to 5.67
times as large, and exceeding 2.0 times as large on 7 of the 12 ver-
sion pairs. The same pattern was found when comparing statement
coverage minimized suites with changed statement coverage min-
imized suites and branch coverage minimized suites with changed
branch minimized suites, although the changes in number of ex-
posed faults and in test suite size tended to be smaller. These find-
ings show that a significant benefit in efficiency can be gained by
focusing on testing changes while missing few regression faults.

Comparing the different change-based criteria to each other, we
see that changed statement coverage minimized suites reveal more
faults and contain more tests on average than the other change-
based criteria minimized suites and changed method coverage min-
imized suites generally reveal fewer faults and contain fewer tests
than the other minimized suites. There is not a consistent difference
in ranking between changed branch minimized suites and atomic
change minimized suites. Thus, for change-based coverage crite-
ria, there is the usual trade-off between fault-exposure potential and
test suite size.

Summary.
We found that:

e test suites constructed according to change-based criteria found
approximately the same number of faults on average, but



were significantly smaller than test suites constructed accord-
ing to corresponding non-change-based criteria;

e there is a trade-off between fault-exposure potential and test
suite size for test suites constructed according to different
change-based criteria.

4. CASE STUDY

In this section we report on a case study investigating the feasi-
bility of achieving 100% change coverage using the atomic change
criterion. We chose this criterion for three reasons:

e [t provides information (computed using program analysis)
about semantic changes in object-oriented programs that can
guide the developer in writing new tests (e.g., the addition of
a method resulting in a new target of a dynamic dispatch);

e Since this criterion tracks method-level changes, there are
fewer changes to cover than, for example, with statement
coverage, making 100% coverage a more feasible goal; and

e We have a long-standing interest in analyzing the impact of
changes in a object-oriented setting [20} 25} |31].

To demonstrate the effectiveness of the atomic change criterion,
we ran the test suites for each changed version of two SIR bench-
marks —NanoXML and JTopas— and then tried to write additional
tests to cover all changes reported as uncovered. Although our re-
sults are anecdotal, we believe they demonstrate that the atomic
change criterion aided the construction of new tests and thereby,
the achievement of near 100% change coverage.

Quantitative Results.

Table [5] summarizes our quantitative results. For each version
pair the table shows: (i) the number of uncovered changes, (ii) the
number and LOC of additional tests written, (iii) the number and
LOC of the new input files used by the additional testsE] and (iv)
the number of additional seeded and real (i.e., non-seeded) faults
exposed by the additional tests.

For example, for the v2/v3 version pair of NanoXML, 13 addi-
tional tests were written, comprising a total of 135 lines of source
code, in order to cover CM and LC changes reported as uncovered
by our tool. These additional tests required 3 new input files, which
comprised a total of 21 lines of XML. No additional seeded faults
were exposed by the tests, but they did uncover a real fault that
was accidentally introduced by the developers as they made their
changes!

For our benchmarks, newly written tests exercising the uncov-
ered CM changes usually also covered any reported LC changes.
Hence, the use of the changed method coverage criterion would
have produced similar results in terms of the required effort and
the number of exposed faults. To a large extent this is because
neither of the benchmarks under study was written in a very object-
oriented style, therefore, we suspect that different subject programs
with more complex class hierarchies might have yielded different
results.

Test Creation Process.

Initially, we were unfamiliar with the code of these benchmarks.
After some initial experience with trying to cover methods that
were previously not exercised by the test suite, we quickly realized

? Only NanoXML required the creation of additional input files,
containing XML code.

that developing new test cases “from scratch” can be quite challeng-
ing. As a result, we converged on a process for deriving new tests
from existing ones. Specifically, we search for a covered method
m containing a call to a changed method m’ that we need to cover
(if we are unable to do this, we try to find a covered method m that
indirectly calls m’). Presumably, the call to m’ is not executed be-
cause a control condition is not satisfied (e.g., the call to m’ is on an
unexecuted else-branch of an if-statement). In such cases, the chal-
lenge is to understand how—by changing the program input—we
can persuade the program to select the branch containing the call to
m/. In the absence of automated tool support for this task, we had
to inspect the program state in the debugger and understand how
the conditions that guard the call to m’ depend on program inputs
or constant values. Following this approach, we were able to cover
all but a few of the atomic changes with relatively little effort.

The use of a change-based criterion helped us to focus on new
tests covering the edited portions of the program. In contrast, to
achieve 100% coverage with a non-change-based criterion, we would
have introduced unnecessary tests for portions of the program un-
affected by the edit. Additionally, by reporting changes at the
method-level, the atomic change criterion suggested a natural struc-
ture for the additional tests that statement-based criteria did not.

We estimate that the amount of effort involved in writing the
additional tests was in the order of 2-8 hours per version pair; how-
ever, we conjecture that the original developers could have per-
formed this task in a fraction of the time, given their familiarity
with the code.

JTopas.

Achieving atomic change coverage of the versions of JTopas re-
sulted in the exposure of three seeded faults not covered by the
original test suite and discovery of a non-seeded fault in one ver-
sion!

For JTopas, most of the changes were of a trivial nature
and could be covered with relatively little effort. For example,
in the JTopas v1/v2 version pair, an uncovered getter method
PluginTokenizer.getKeywordHandler () was tested by
adding a simple assertion to a test that already invoked the corre-
sponding setKeywordHandler () setter method.

A more interesting case in JTopas Vv1/v2 was a
new uncovered method AbstractTokenizer.
getTextUnchecked (int, int), which is similar to an
existing covered method AbstractTokenizer.getText
(int, int). The new getTextUnchecked () method
does not check to make sure that its parameters are within
range, but if they are not, the JavaDocs report that “a
Jjava.util.IndexOutOfBoundsException may occur, or unini-
tialized data may be retrieved”.  Covering this method is
a bit involved, because it is not intended to be invoked
directly from a test. = However, the getText () method
is invoked by a method current (), a method in the
same class, which is invoked by several tests, including
TestInputStreamTokenizer.testLineCounting ().
We covered getTextUnchecked() by adding: (i) a
currentUnchecked () method, which 1is similar to
current () but calls getTextUnchecked () instead of
getText (), and (ii) a test testLineCounting2 () that
is identical to testLineCounting () except that it calls
currentUnchecked () instead of current (). Interestingly,
this added test exposed one of the seeded faults for JTopas that was
not exposed by the original test suite, thus illustrating how the use
of a change-based coverage criterion can help improve software
quality.



uncovered || added tests || added inputs #faults exposed
benchmark | version changes #| LOC || # LOC || seeded | non-seeded
vO/vl 5 3 91 || O 0 1 0
JTopas v1/v2 7 2 74 1| 0 0 0 0
v2/v3 106 || 31 104 || O 0 2 1
vO/vl 18 9 114 || 6 33 0 0
vi/nv2 86 || 10 420 || 6 63 0 0
NanoXML —57r3 W[ 13| 1353 21 0 |
v4/v5 16 9 127 || 9 103 0 0

Table 5: Quantitative Results of Case Study

Another interesting case occurred in the JTopas v2/v3 ver-
sion pair. ~ While adding new tests that exercise the un-
covered changes, we discovered a bug in the newly added
Token.getEndPosition () method (i.e., a non-seeded fault).
This method is currently implemented as:

public int getEndPosition () {

return getLength() - getStartPosition();

}
but it should be:

public int getEndPosition () {

return getLength () + getStartPosition();

}

This newly added method was not covered by any of the existing

test cases, and the use of atomic change coverage as a test adequacy
criterion led us directly to this non-seeded fault.

NanoXML.

Achieving atomic change coverage of the NanoXML benchmark
versions resulted in the exposure of a non-seeded fault. More-
over, many of the uncovered changes revealed the inadequacy of
the test suite in testing newly introduced code for handling excep-
tions, as well as some instances of poor Java coding practice using
finalize (). Although 100% coverage was not possible due to
the latter cases, the quality of the original test suite was strength-
ened by providing tests of exceptional conditions, which are often
ignored.

NanoXML is an XML parser. Many of the tests in its existing
test suite apply the parser to an XML input file and execute some
assertions that compare the actual output against the expected out-
put. Several of the tests apply the parser to malformed XML and
check whether or not an expected exception is thrown. Most of the
uncovered changes for NanoXML correspond to error handling for
various forms of malformed XML that the original test suite did
not exercise. Writing additional tests to cover such functionality
involves creating a new malformed XML input file and creating a
test case with the appropriate assertions and/or exception handlers.
This was a bit challenging because we were not familiar with either
the NanoXML source code or with the finer details of XML syntax.

As a specific example of the kind of new tests needed, consider
the NanoXML v0/vl version pair, which includes a method
XMLUtil.errorInvalidInput (IXMLReader, String)
containing some error handling code not exercised by the existing
test suite. After some experimentation, we determined that this
method will be executed if a line

<!ENTITY % extParamEntity "blah">
in the input file associated with an existing test
testParserl_vw_v1l_17 is changed to the following:

<!ENTITY >> extParamEntity "blah">
Executing NanoXML on the resulting modified input file resulted
in an XMLException being thrown with an associated message

XML Not Well-Formed at Line 3:
Invalid input: e
We added a new test testParserl_vw_v1_17B that parsed
the resulting modified input file, caught the XMLException
and contained an assertion to check the error message. In our
opinion, this is precisely the kind of test the programmer should
have written to cover this functionality.

In the course of writing a test to exercise the uncovered method
XMLElement .getFirstChildNamed (String, String)
in the NanoXML v2/v3 version pair, we encountered a non-seeded
fault (i.e., a bug) that causes a NullPointerException to be
thrown if the parser is invoked on certain malformed XML input
files. After some investigation, we tracked the fault down to an
assignment

found &= (name == null);
in XMLElement .getFirstChildNamed (String, String)
that should have been

found &= (namespace == null);

This provides further evidence that the use of atomic change cover-
age as a test adequacy criterion can help developers identify faults
that would be missed otherwise.

Our final discussion concerns uncovered finalize () meth-
ods in the NanoXML v4/v5 version pair. These finalizers appear
in newly added classes PIReader and CDATAReader in an at-
tempt to ensure that reader-objects wrapped by these classes are
properly discarded. This is an erroneous coding practice because
the Java runtime provides very weak guarantees about the execu-
tion of finalize () methods, and the use of finalizers for time-
critical and resource-critical operations is strongly discouragedﬂ In
this case, the preferred solution is to replace the finalizers with ex-
plicitly invoked clean-up methods. We considered debugging the
subject programs to be outside the scope of our study and therefore
left these methods uncovered, achieving only near 100% coverage.

Summary.

We found the use of atomic change coverage as a test adequacy
criterion feasible in terms of the amount of effort involved, and
useful for pointing programmers at untested changes that might
otherwise be overlooked. The case study revealed 3 previously
unexposed seeded faults and 2 real faults, thus providing some
evidence that using atomic change coverage as a test adequacy
criterion may help prevent errors and improve code quality.

* In his seminal book, Bloch [5, page 27] writes that “Not only does
the language specification provide no guarantee that finalizers will
get executed promptly; it provides no guarantee that they’ll get exe-
cuted at all.”. Regarding the use of finalizers to release nonmemory
resources, he goes on to say that “...it is a grave error to depend
on a finalizer to close open files because open file descriptors are
a limited resource. If many files are left open, because the JVM is
tardy in executing finalizers, a program may fail because it can no
longer open files.”.



S. THREATS AND LIMITATIONS

There are a wide range of threats and limitations relevant to
our research. The primary threats to validity are external, affect-
ing the generalizability of our results. These include the choice of
benchmarks and the versions, test suites and seeded faults for these
benchmarks. Any of these choices may not be representative of
what is found within the wider software development community
and, therefore, our results may not generalize. To mitigate these
threats, we used benchmarks from the SIR repository that have
been used in the evaluation of a wide variety of testing method-
ologies. The particular selected benchmarks were chosen based on
the ability of the tools we were using to handle them and to cover a
range of different applications.

Our choice of benchmarks and study design also limits the ap-
plicability and interpretation of our results. In particular, we used
sampled subsets of the tests provided for these benchmarks as prox-
ies for different possible test suites. In practice, it is possible that
test designers creating tests for a particular test coverage criteria
would create different types of test suites than those studied. Addi-
tionally, our goal was to study the usefulness of different coverage
criteria in finding regression faults in applications. In practice there
are also likely to be faults left over from earlier versions of the pro-
gram under test, and the use of a change-based criterion actually
may make it more difficult to find these faults.

An additional threat to validity arises from the differences be-
tween the change sets identified by JDIFF and CHIANTI as men-
tioned in Section[3:1] To determine how much impact these differ-
ences had on the actual results, we also implemented a changed
method coverage based on JDIFF. The differences between the
Kendall 7 coefficients for the two different changed method imple-
mentations were generally small, exceeding 0.1 in only one case
(NanoXML v4/v5) and 0.01 in 5 other cases, suggesting that the
different change analysis techniques had little effect on the results.

6. RELATED WORK

Several different coverage criteria for measuring the adequacy of
a test suite have been developed (e.g. [[17,/19]), including statement
coverage, branch coverage, and various notions of dataflow cover-
age. In this work, we derive three new criteria, changed statement
coverage, changed branch coverage, and changed method cover-
age, from these traditional coverage criteria, and compare these
new criteria to their non-change-based counterpoints.

A number of techniques have been proposed for evaluating dif-
ferent coverage criteria. For example, Weyuker developed a set
of 11 properties that a coverage criteria should possess [30] that
were later applied to evaluating object-oriented coverage criteria
by Perry and Kaiser [[18]]. Both Wong et al. [33] and Namin and
Andrews [16] present studies comparing the effect of test suite size
and coverage on fault detection that are similar in setup to ours.
Wong et al. find that block coverage correlates better with fault de-
tection than test suite size. Namin and Andrews found that fault de-
tection effectiveness correlated well with block coverage, decision
coverage, and two different dataflow coverage criteria; however a
model that also included test suite size was even more effective.
Unlike our work, these studies are not looking specifically at the
practice of regression testing where it is expected that the faults are
more likely to be in the changed portions of the code.

Regression testing focuses on ensuring that modifications do not
impact pre-existing functionality. Most of the regression testing
literature falls into one of two categories: regression test selection
(surveyed in [22]) and regression test prioritization (e.g. [9, |11}
12, [13| 24} |27, 29]]). Regression test selection attempts to select

a subset of the entire test suite of a program that will identify any
faults introduced by the modification into the pre-existing function-
alities of the system. Regression test prioritization uses heuristics
to reorder the tests in a test suite to increase the likelihood that
any newly introduced faults will be revealed earlier in the testing
process. These techniques focus on ways of more efficiently using
an existing test suite to test a modified version of a system while
change-based coverage criteria attempt to evaluate the quality of a
test suite relative to a modification and to indicate portions of the
modified application that may need additional testing.

Bates and Horwitz [3|] and Harrold and Rothermel [21] present
techniques for identifying the set of changed dataflow and control-
flow testing requirements for a modified program. Their techniques
support several criteria including statement coverage, branch cov-
erage, and def-use testing. These techniques use program depen-
dence graph or system dependence graph representations for the
original and modified programs to identify the changed testing re-
quirements. While not presented as such, these techniques could
form the basis for additional change-based coverage criteria.

The goal of the MATRIX [2] and MATRIXRELOADED [26]
projects has been to identify testing requirements for changed soft-
ware based on data- and control-flow chains and on the symbolic
state of the program at the beginning and end of these chains. Then,
test inputs are generated to cover these requirements. These cover-
age criteria have been shown to be more effective and sometimes
more cost-effective at identifying changed behavior in the modi-
fied programs than changed statement coverage or weaker changed
dataflow coverages. However, this work has not directly evaluated
the ability of their coverage criteria to expose faults or predict the
fault exposure capabilities of different test suites.

7. CONCLUSIONS

Code coverage criteria are commonly used to assess the quality
of test suites. The basic idea is that a test suite is likely to be ef-
fective at revealing faults if it exercises the code where the fault is
located. Therefore, increased code coverage is expected to corre-
late with more revealed faults. However, achieving full coverage
according to traditional coverage criteria is often impossible or im-
practical when applications contain unreachable code, which may
arise due to programmer carelessness, or when the implementation
of a feature is incomplete.

In this paper, we start from the popular assumption that a dispro-
portionate number of faults is likely to reside in recently changed
code. Based on this assumption, we propose several change-based
coverage criteria that reflect to what extent changes with respect
to a previous program version are exercised by a test suite. In a
set of experiments on programs from the SIR repository, we found
change-based criteria to reveal faults better than traditional criteria,
and to enable the construction of much smaller test suites with simi-
lar fault detection effectiveness than those constructed according to
traditional coverage criteria. We also reported on a case study that
shows that achieving (near) 100% coverage according to a change-
based criterion is both feasible and useful.
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