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We appreciate the interest our Commentary [Rinaldo et al.,, 2015] has generated. We also thank Porporato
and Calabrese [2015] (hereinafter P&C) for pointing out similarities between our approach using storage
selection (SAS) functions to determine water ages and the age-structured population approach. P&C make a
rather technical point. Regardless of the merits of the technical issues they raise, on which we shall return
below, we note that the scope of our work was aimed at explaining in simple terms involved mathematical
concepts. Overall, we meant to stress the open research issues and the perspective tools our approach
brings to hydrologic practice for predicting both flow and transport at catchment scales.

As per the technical issues, we had previously concluded that the wealth of existing exact solutions to the
McKendrik-Von Foester equation is unlikely to apply to catchment flow and transport phenomena. We
maintain our position after learning the mathematical exercises proposed by P&C. The reasons can be sum-
marized as follows:

1. The demographic model proposed by P&C (a formulation of the transport problem perfectly equivalent
to the one used by the authors) is based on assigning a loss function, u(T,t), to obtain the distribution of
individuals exiting the control volume and their total number. The hydrologic analogy, in P&C’s notation,
is to assign w(T,t) to obtain the distribution of deceased individuals, no(T,t)=u(T,t)n(T,t) (which is not a
pdf), and their total flux, i.e.,

Q(t) = J w(T,t)n(T, t)dT (M

0

This approach is interesting from the theoretical viewpoint, but it implies that the loss function u(T,t) must
be capable of reproducing both flow and transport processes consistently. In the SAS approach, equation
(1) is imposed as a nonlinear constraint (a position that per se drastically affects chances of obtaining exact
solutions for the general master equation [Botter et al.,, 2010, 2011]). This allows the direct use of values of
discharge Q measured or modeled. Why remove a known term from the formulation of the problem,
requiring additional assumptions be made regarding it? Moreover, by using a transformed domain for the
equivalent term, as in the fractional [van der Velde et al., 2012] or ranked [Harman, 2015] SAS functions
(termed fSAS and rSAS, respectively), equation (1) is automatically verified. Enforcing the constraint (1) in
the exercise proposed by P&C defies exact solutions.

2. ltis easy to demonstrate that x must contain time variability due to the input, contrary to the claim of P&C
(also in cases for which fSAS or rSAS functions do not). Consider a simple flow tube of fixed volume but vari-
able flow, the case dealt with by, e.g., Niemi [1977], Zenger and Niemi [2009], and Botter [2012]. The w(T,t)
function is a Dirac delta distribution located at whatever the maximum age in the system is at a particular
time. This will naturally change in time depending on the sequence of “recent” fluxes through the stream
tube. Thus, the value of u(T,t) cannot be specified unless those fluxes are known. However, fSAS and rSAS
functions are invariant in this case. The former is a Dirac delta distribution centered at a unit value of the
rescaling parameter, the latter is a Dirac delta centered at the volume of the stream tube. Clearly, the claim
that u is less likely to contain input and output variability is not justified.
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3. We note that, in P&C’s framework leading to closed-form solutions, i.e., u(T), flow and transport must neces-
sarily have the same time scale. In fact, if H is the Kernel of the relationship linking J and Q, one can show
that the analog linking input and output concentrations of a tracer is instead H(T) J%%)T), hardly modifying
the basic time scales. Empirically measured time scales of tracer concentration in the runoff, however, are
orders of magnitude larger [e.g., Kirchner et al., 2000; Kirchner and Neal, 2013], entailing such concepts as
residual and dynamic storages much discussed in the literature [e.g., Zuber, 1996; Kirchner, 2009; Birkel
et al, 2015]. In fact, major differences between flow velocities in the system (that control the tracer
response) and the celerity with which hydrologic perturbations are transmitted (which control the hydro-
graph) are to be expected since they are driven by different mechanisms [e.g., Beven, 2012; McDonnell and
Beven, 2014]. Therefore, if one is interested in both flow and transport at catchment scales, the exact solu-
tions proposed by P&C ignore the effects of the so-called old-water paradox [e.g., McDonnell, 1990]
exposed empirically by the forceful growth of isotope hydrology and high-frequency tracer measurements.
Also, P&C's claim that a “reasonable first-order approximation is to assume that the basin behaves in a
time-invariant way, so that the specific loss function only depends on age,” i.e,, u(T;t) = u(T). As such, the
catchment behaves in a linear manner corresponding to a time-invariant instantaneous unit hydrograph
H(T). Such claim is at odds with the above results and much empirical and theoretical evidence (omitted
here for brevity). P&C’s solutions suggest a return to the state of affairs we found before SAS functions
were proposed. The authors firmly believe, on the contrary, that understanding of time variant and mixing
behaviors of the basic kernels transforming inputs into outputs of both flow and transport are crucial to
catchment hydrology and find misleading the commenters’ focus on the need to find linear solutions.

4. Neglecting for the sake of the mathematical exercise the partitioning of losses between Q and other
fluxes, chiefly evapotranspiration, is misleading as a number of technical issues arises (discussed in the
outlook of Rinaldo et al. [2015]).

5. The statement “Unfortunately, an always-useful loss function is not available” is unclear. Why should
there be one? SAS functions can be computed moving from observational data. For instance, Plynlimon
data [Harman, 2015; Benettin et al., 2015a] suggest that the instantaneous ratio of travel and residence
time distributions (the SAS function) displays a preference for younger waters during wet conditions.
Such tendency is enhanced at increasing degrees of wetness. Conversely, when the catchment becomes
dry, older water tends to be preferentially discharged from the catchment because the shallow system
becomes almost inactive. The link between age-selection and storage dynamics, however, is not one-to-
one because the same storage can correspond to different catchment conditions depending on whether
the catchment is wetting or drying [Hrachowitz et al., 2013] and similar age-selection functions may cor-
respond to different shallow storage states (say, during peaks or recessions). Thus, SAS functions are
known to provide useful insights for the characterization of the hydrologic state of a catchment high-
lighting the key differences between flow and transport that linearized solutions miss. If a parsimonious
nonlinear, yet insightful and accurate, SAS function can be formulated, then important problems are
being solved and progress is being made.

In conclusion, we note that P&C's solutions have not yet confronted the simultaneous description of both flow
and transport contrasting catchment hydrochemical data, which is precisely the scope of the SAS function devel-
opment. If they did so, they would have realized that their approach, however prone to exact solutions, is analo-
gous to earlier ones [e.g., Rinaldo and Marani, 1987; Rinaldo et al. 1989] whose appealing theoretical angles
proved incapable of reproducing real life tracer data [e.g., Kirchner, 2003; McGuire and McDonnell, 2006; McGuire
et al., 2007; Birkel et al., 2012; Kirchner and Neal, 2013; Aubert et al., 2013], prompting us to foster the development
of the approach summarized in Rinaldo et al. [2015] and applied to hydrologic transport in a number of diverse
catchments where intensive field data had been gathered [e.g., Hrachowitz et al,, 2010; van der Velde et al., 2010;
Harman et al,, 2011; Rinaldo et al., 2011; van der Velde et al., 2012; Hrachowitz et al., 2013; Benettin et al., 2013; Har-
man and Kim, 2014; van der Velde et al,, 2014; Queloz et al., 2015; Harman, 2015; Birkel et al., 2015; Benettin et al.,
2015a; Hrachowitz et al., 2015; Benettin et al., 2015b].
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