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A B S T R A C T

Phosphorus (P) loading to lakes is degrading the quality and usability of water globally. Accurate predictions of
lake P dynamics are needed to understand whole-ecosystem P budgets, as well as the consequences of changing
lake P concentrations for water quality. However, complex biophysical processes within lakes, along with
limited observational data, challenge our capacity to reproduce short-term lake dynamics needed for water
quality predictions, as well as long-term dynamics needed to understand broad scale controls over lake P. Here
we use an emerging paradigm in modeling, process-guided machine learning (PGML), to produce a phosphorus
budget for Lake Mendota (Wisconsin, USA) and to accurately predict epilimnetic phosphorus over a time range
of days to decades. In our implementation of PGML, which we term a Process-Guided Recurrent Neural Network
(PGRNN), we combine a process-based model for lake P with a recurrent neural network, and then constrain the
predictions with ecological principles. We test independently the process-based model, the recurrent neural
network, and the PGRNN to evaluate the overall approach. The process-based model accounted for most of the
observed pattern in lake P; however it missed the long-term trend in lake P and had the worst performance in
predicting winter and summer P in surface waters. The root mean square error (RMSE) for the process-based
model, the recurrent neural network, and the PGRNN was 33.0 μg P L−1, 22.7 μg P L−1, and 20.7 μg P L−1,
respectively. All models performed better during summer, with RMSE values for the three models (same order)
equal to 14.3 μg P L−1, 10.9 μg P L−1, and 10.7 μg P L−1. Although the PGRNN had only marginally better RMSE
during summer, it had lower bias and reproduced long-term decreases in lake P missed by the other two models.
For all seasons and all years, the recurrent neural network had better predictions than process alone, with root
mean square error (RMSE) of 23.8 μg P L−1 and 28.0 μg P L−1, respectively. The output of PGRNN indicated that
new processes related to water temperature, thermal stratification, and long term changes in external loads are
needed to improve the process model. By using ecological knowledge, as well as the information content of
complex data, PGML shows promise as a technique for accurate prediction in messy, real-world ecological dy-
namics, while providing valuable information that can improve our understanding of process.
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1. Introduction

Phosphorus (P) is a critical limiting nutrient for phytoplankton and
microbes (Schindler et al., 2016) and thus is an important driver of
water quality in many lakes and reservoirs (Wetzel 2001). Where lakes
and reservoir water quality is driven by phosphorus (P) dynamics, long-
term P budgets can be used to understand lake responses to land use
and climate change (Motew et al., 2017). However, predicting lake P
dynamics is challenging because of the variety of factors that control P
cycling and the time scales at which they occur (Chapra, 2008). For
example, rapid P uptake by organisms with high turnover rates, sedi-
mentation of those organisms, release of P from anoxic nutrient-rich
sediments, and hydrologic load and export all are important processes
that operate on minute to annual time scales (Cooke et al., 2005).

In response to the challenges of predicting aquatic ecosystem pro-
cesses, such as P cycling, new modeling approaches are being devel-
oped that leverage recent increases in the availability of observational
data (Porter et al., 2012). However, taking advantage of the informa-
tion content of complex data remains difficult, in part due to the lack of
integration between differing approaches to modeling ecosystems (e.g.,
Karpatne et al., 2017)(Fig. 1).

Traditionally, ecologists have focused on empirical and mechanistic
approaches, which range in complexity from relatively simple statistical
and process models to highly complex numerical simulations (Fig. 1, y-
axis). Process-based models are commonly built to capture physical,
chemical, and biological interactions governing natural systems
(Starfield et al., 1994). Despite extensive use, the majority of process-
based models implement approximate forms of relationships, either due
to incomplete knowledge of certain processes or for practical com-
puting purposes (Clark et al., 2016; Robson, 2014). This commonly
introduces biases in predictions and significantly impacts the accuracy
and the generalizability of the models (Allen & Hoekstra, 2015;
Arhonditsis & Brett, 2004).

With advances in computing infrastructure and data availability,
there is opportunity to incorporate machine learning into the ecological
modeler's toolbox (Fig. 1, x-axis). Machine learning has shown tre-
mendous success in many commercial applications, such as natural
language processing, due to the capacity of computer algorithms to
detect complex patterns in large volumes of data (Wang & Deng, 2019).
In ecology, machine learning approaches are sometimes regarded with
skepticism, because as a black-box approach they lack the ability to
interpret the relationships between input drivers and the targeted re-
sponses, and therefore cannot resolve underlying mechanism (Jia et al.,

2018, 2019; Lazer et al., 2014). Moreover, since the algorithms’
training processes are ignorant of any theoretical principles, there is no
guarantee that the predictions are consistent with physical laws or
ecological theory (Peters et al., 2014).

An emerging modeling approach, process-guided machine learning
(PGML; Karpatne et al., 2017), shows promise for improving model skill
and ecological inference by exploiting the strengths of both mechanistic
models and machine learning (Fig. 1). By combining ecological process
with machine learning, PGML improves prediction accuracy while en-
suring that predictions do not violate relevant physical laws or ecolo-
gical principles. For example, Jia et al. (2018) has demonstrated that
combining machine learning with a hydrodynamic lake model leads to
predictions that are more accurate than either of the two approaches
used independently, while remaining true to lake thermodynamics.
PGML has also been used effectively to reduce the amount of en-
vironmental observations necessary for using powerful machine
learning tools (Jia et al., 2019; Read et al., 2019), which is an important
consideration, given that most ecosystems have a sparsity of observa-
tional data (Read et al., 2017).

In this work, we advance both prediction accuracy and scientific
discovery of P cycling in eutrophic Lake Mendota (Wisconsin, USA) by
comparing three different modeling approaches: a process-based model,
machine learning, and a third approach that implements PGML as a
hybrid of process-based and machine learning models and that are
constrained by ecological principles. By comparing the three modeling
approaches, we address three objectives: 1) develop a lake P budget
that includes P inputs and outputs and P exchange between lake sedi-
ments and the water column. An accurate P budget will help us better
understand the controls of water column P, assess the water quality
implications of factors affecting external loading, and weigh those
against factors controlling internal P loading; 2) compare the ability of
the three models to produce accurate and unbiased predictions for
epilimnetic P concentration over scales ranging from days to decades,
because P is a limiting nutrient for primary production and the for-
mation of harmful algal blooms in Lake Mendota; and 3) use the PGML
to identify what processes might be missing from what we assume to be
the dominant controls over lake P cycling, as instantiated in the process
model. By addressing these objectives, we aim to gain a better under-
standing of whether PGML may be generalizable to other ecosystem
applications, as well as compare its ability to predict P versus other
methods.

2. Methods

2.1. Study site and model objectives

We used Lake Mendota, Wisconsin, a 40 km2, 25 m deep eutrophic
lake (Fig. 2), as our study system because of the extensive long-term
data available through the North Temperate Lakes Long Term Ecolo-
gical Research program (NTL LTER) (Magnuson et al., 2006) and past
work focused on understanding catchment P dynamics and long-term
water quality (Kara, Heimerl, et al., 2012; Lathrop & Carpenter, 2013).
Lake Mendota exhibits high P concentrations as a result of agricultural
and urban runoff in its catchment. High P leads to summer cyano-
bacterial blooms and degraded water quality, which negatively impact
recreational use and produce adverse effects on wildlife and human
health (Lathrop, 2007). Morphometric, hydrologic, and biogeochemical
information, including data sets and their sources, is available in
Tables 1, 2.

Given our objectives of producing a whole-lake P budget and sur-
face water P predictions, we devised a time dynamic approach for
predicting lake surface P concentrations over scales ranging from days
to decades. Short time scales are necessary to address the summer
months of July and August when water quality is at its worst and to
capture critical transitions that occur during spring and fall turnover
(i.e., when the lake fully mixes). Longer time scales are necessary for

Figure 1. Adapted from Karpatne et al. (2017; Fig. 1b), this graph represents
the intersection of empirical and theory driven approaches to science. Process-
guided machine learning (PGML) exploits the strengths of each approach. The
implementation of PGML in this study, which is process-guided recurrent neural
networks (PGRNN), happens at the intersection of recurrent neural networks
(RNNs) and simple process models.
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addressing slow changes due to interannual and long-term variation in
precipitation, P loads, and temperature, as well as possible influences of
changing P mass storage in lake sediments.

Our analytical approach blends an ecosystem process model (here-
after referred to as PROCESS) with the machine learning technology,
recurrent neural networks (hereafter referred to as RNN). When com-
bined, they are an implementation of PGML that we term a Process-
Guided Recurrent Neural Network (PGRNN; after Jia et al. 2018). The
purposes of the PGRNN are to improve overall prediction accuracy,
reduce bias of PROCESS, and reduce over-fitting of RNN, while pro-
viding insights into the design of PROCESS.

2.2. PROCESS model description

We developed a simple process-based model to predict water
column total phosphorus (P) on a daily time step over a period of
decades. We prioritized summer epilimnetic P concentration, as well as
reproducing the annual signal. There were few examples in the litera-
ture of ecosystem scale P models applied over decades and that used

relatively simple approaches. Jensen et al. (2006) formulated a model
with most of the features that interested us, was relatively simple, and
had been used on multi-year data. We devised PROCESS as a time dy-
namic model (after Jensen et al., 2006) with the processes we assumed
to represent the dominant fluxes of water column P: external load, se-
dimentation, recycling, and export (Hakanson & Bryhn, 2008). PRO-
CESS (Fig. 3) is a mass-balance model that tracks three different pools
of P within the lake system: epilimnetic P (PEpi; Eq. 1), hypolimnetic P
(PHypo; Eq. 2), and sediment P (PSed; Eq. 3). We used a mass balance
approach so that we could estimate P retention, the relative contribu-
tions of internal versus external loads of P to the water column, and so
that we could potentially run scenarios of changing lake condition or
changing P load. We also felt a simple model could be applied to other
lakes. Data requirements and parameter values are in Tables 1 and 2.

P load in the epilimnion is described by the mass balance differ-
ential equations as follows:

= + − −
dP

dt
Load Entrainment Sedimentation ExportEpi

DP (1)

Where LoadDP, the proportion of the load that is dissolved P, is calcu-
lated using Equation 1a:

= −( )Load Load C* 1DP Total LoadPP (1a)

And LoadTotal is the total daily P load (g d−1), and CLoadPP is a con-
stant, unitless parameter with a value of 0.5 that is the fraction of the
input load that is particulate P. Although we do not have direct evi-
dence to select that value with precision, it is based on expert advice
from scientists at the Wisconsin Department of Natural Resources. We
note that this value is simply a scalar that does not affect the time
dynamics of lake P. Hydrological inflow was obtained from the USGS
gage on the Yahara River at Windsor, WI (USGS-05427718), and these
data were used to calibrate the catchment hydrology model, PIHM
(Penn State Integrated Hydrologic Model) (Qu & Duffy, 2007). PIHM
provided the lake water budget, and phosphorus loads were estimated
from the water budget and the USGS loading functions (Appling, Leon,
& McDowell, 2015).

Entrainment is calculated differently for two different scenarios.
Scenario one is when the epilimnion is increasing in depth (growing).
The entrainment is calculated by multiplying the change in epilimnion
volume by the phosphorus concentration of the hypolimnion as shown
in Equation 1b1:

Figure 2. The study site, Lake Mendota, Wisconsin, is located in the Yahara
River watershed of southern Wisconsin (see inset map). Land use in the wa-
tershed, as defined by the US National Land Cover Database, is predominantly
cultivated crops, urban, and pasture/hay. A long history of agriculture in the
watershed has contributed to the eutrophic state of the lake.

Table 1
Parameters for the model, PROCESS. Parameters estimated during model optimization (i.e., free parameters) are in bold. NTL LTER denotes the North Temperate
Lakes Long-Term Ecological Research program.

(Abbreviation, if any) Description Value and units Source

Lake area 39,393,719 m2 NTL LTER
Mean depth 12.8 m NTL LTER
Maximum depth 25 m NTL LTER
Hypsometry m2 per 1 m increment in lake

depth
NTL LTER

Mean hydrologic residence time (not used in model, but for
information only)

4.5 y Approximated from hydrology data. Not used directly in any of the
calculations.

(SedDepth) Lake sediment available to P recycling 0.1 m (Nurnberg, 1988)
Sediment bulk density 1.33 × 106 g m−3 Standard bulk density for clay/silt USDA
Sediment available P 0.806 mgP g−1 (sediment dry

weight)
(Holdren & Armstrong, 1980)

(CBurial)Permanent sediment burial rate 1.2 mm y−1 Manually fit in the process model to ensure approximately constant
sediment P over the simulation period

(CSed) Phosphorus sedimentation rate 0.0137 d−1 Free parameter fit by optimization
(a) First constant in the recycling equation -4.30 mg P m−2 d−1 (Nurnberg, 1988)
(b) Second constant in the recycling equation 22.86 g dry weight m−2 d−1 Free parameter fit by optimization
(θSedimentation) Temperature scaling factor for P

sedimentation
1.065 (unitless) Free parameter fit by optimization

(θRecycling) Temperature scaling factor for P recycling 1.172 (unitless) Free parameter fit by optimization
(TBaseSed) Base temperature for sedimentation temperature

scaling
10°C Manually set to improve optimization of temperature scaling

(TBaseRec) Base temperature for recycling temperature scaling 10°C Manually set to improve optimization of temperature scaling
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=Entrainment
dEpiVolume
EpiVolume

P Growing epilimnion* ( )Hypo
(1b1)

Scenario two is when the epilimnion is decreasing in depth
(shrinking). The entrainment is calculated by multiplying the change in
epilimnion volume by the phosphorus concentration of the epilimnion
as shown in Equation 1b2:

=Entrainment
dEpiVolume
EpiVolume

P Shrinking epilimnion* ( )Epi
(1b2)

Sedimentation is the sum of the fraction of the total load inputs that
are particulate P and the amount of P within the epilimnion that con-
tributes to sedimentation as shown in Equation 1c:

= + −( ) ( )
Sedimentation

Load C P C θ* * *Total Load Epi sed Sedimentation
T TBase( )

PP
Epi Sed (1c)

Where Csed (d−1) is a free parameter and a first order decay rate for the
epilimnetic P pool, θSedimentation is a unitless free parameter (i.e., esti-
mated in model optimization) and an Arrhenius coefficient for tem-
perature scaling of sedimentation, TEpi, is the observed epilimnetic
temperature, and TBaseSed is the base temperature for sedimentation
temperature scaling.

Export is calculated by multiplying the observed volumetric daily
outflow, QOut(m3 d−1), by the P concentration in the epilimnion as
shown in Equation 1d:

=Export Q P*Out Epi (1d)

The second P pool, PHypo, is described by the mass balance differ-
ential equation shown below:

= −
dP

dt
Recycing EntrainmentHypo

(2)

Recycling is the flux of P from the sediment P pool (PSed) back into
the water column and is modeled as the product of three different terms
described in Equation 2a. Although multiple mechanisms have been
proposed for efflux of P from sediments, our goal is to provide a simple,
empirically-based approach that subsumes more than one possible
process within the parameters. This approach provides flexibility and
generalizability.

= −Recycling LakeArea C θ* *Hypo FSedP Recycling
T TBase( )Hypo Rec (2a)

LakeAreaHypo is the calculated area based on lake hypsometry at the
thermocline depth, which was estimated from General Lake Model
(GLM) that used observed data as inputs (Hipsey, Salmon, & Mosley,
2014). θRecycling is a unitless free parameter and an Arrhenius coefficient
for temperature scaling of recycling, THypo is the observed hypolimnetic
temperature, and TBaseRec is the base temperature for recycling tem-
perature scaling. CFSedP is a recycling term calculated using the re-
gression developed by Nurnberg (Nurnberg, 1988):

= +C a b P*FSedP Sed (2b)

In Equation 2b, a is a constant value of -4.3 mg P m−2 d−1, b is a
free parameter that is the slope of the recycling equation, and PSed is the
phosphorus mass in the lake sediments.

The third P pool, Psed, is described by the mass balance differential
equation:

= + − −
dP

dt
Load Sedimentation Recycling Burialsed

PP (3)

Where LoadPP is the P load that is particulate phosphorus as shown in
Equation 3a:

=Load Load C*PP Total LoadPP (3a)

Burial is the Psed that becomes no longer available to recycling, as in
Equation 3b:

= − −Burial C P SedDepth*365 * *Burial Sed
1 1 (3b)

Where CBurial is a constant value of 1.2 mm y−1 that determines the rate
at which P is no longer available for recycling and is permanently se-
questered. SedDepth is a constant value of 0.1 m (Hoffman, Armstrong,
& Lathrop, 2013) that quantifies the sediment available for recycling.

Four parameters for PROCESS were estimated as part of an opti-
mization routine. Optimization used the predictions of PEpi, converted
to concentration units, and the observations of P concentration that
were taken from surface waters of Lake Mendota over the study period.
Hypolimnetic P observations were not used during optimization, be-
cause PHypo from PROCESS was sensitive to our estimates of the

Table 2
Time series driver datasets used in the three models, including abbreviation used for the driver, the units, the source, and the model for which the data were used, as
indicated by an 'X'.

(Abbreviation) Description Units Source Used in PROCESS Used in RNN Used in PGRNN

(TEpi) Epilimnetic water temperature °C; mean daily water temperature at 1 m and 20
m

NTL LTER X X X

(THypo) Hypolimnetic water temperature °C; mean daily water temperature at 1 m and 20
m

NTL LTER X X X

(Z) Thermocline depth m GLM X X X
(QIn) Discharge, overland flow m3d−1 PIHM X X X
(LoadTotal) Lake P load g d−1 USGS X X X
(TAir) Air temperature °C NLDAS X X X
(EpiVolume) Volume of the epilimnion m3 GLM X X
(HypoVolume) Volume of the hypolimnion m3 GLM X X
(Strat) Stratification boolean GLM X X
(Precip) Precipitation m NLDAS-2 X X
(SW) Shortwave radiation W m−2 NLDAS-2 X X
(U) Wind speed ms−1 NLDAS-2 X X
(LL) Lake water level m NTL LTER X X
(P-PROCESSEpi) Epilimnetic P concentration μg P L−1 PROCESS predictions X
(P-PROCESSHypo) Hypolimnetic P concentration μg P L−1 PROCESS predictions X

Figure 3. Conceptual diagram illustrating the three state variables (PEpi, PHypo,
PSed) and the fluxes (→) in the simple process model, PROCESS, of a temperate
dimictic lake. The numbers correspond to the equations that describe the state
variable or fluxes.
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hypolimnetic volume, especially when hypolimnetic volumes were
small. Moreover, our primary concern was accurate estimates of PEpi
because of its importance to water quality. PROCESS was optimized
using the Levenberg-Marquardt algorithm, which is a least-squares
method, in the FME package (Soetaert & Petzoldt, 2010). Parameters
estimated in model fitting are based on values referenced, with gen-
erous ranges to accommodate broad searching space. The parameters
are phosphorus sedimentation rate (CSed), the second constant in the
recycling equation (b), temperature scaling factor for P sedimentation
(θSedimentation), and temperature scaling factor for P recycling (θRecycling),
which are constrained between 0.0010 – 0.10 d−1 (Soranno, Carpenter,
& Lathrop, 1997), 0-40 g dry weight m−2 d−1 (Nurnberg, 1988), 1.0-
1.4 (unitless), and 1.0-1.4 (unitless), respectively. While this relative
simplicity helps ensure generalizability by reducing the number of free
parameters to four (Table 1), it also subsumes potentially important
processes unaccounted in the model that may explain important var-
iance in the observed P, which we explored below with the machine
learning approaches.

2.3. RNN model descriptions

A standard RNN model aims to learn a mapping relation from a
series of input drivers = …X x x x{ , , , }T1 2 on a total of T consecutive dates
to a series of target variables = …Y y y y{ , , , }T1 2 (i.e., phosphorus con-
centration) on corresponding dates through a black-box function fRNN.
The power of RNN lies in its ability to capture the data dependencies
across time. Specifically, the RNN model introduces hidden re-
presentation ht at each time step t, which summarizes the information at
both current time step and previous time steps. The hidden re-
presentation ht can be computed using a transition function, as follows:

= + +−h σ W x U h b( ),t h t h t h1 (4)

where σ( · ) denotes the sigmoid function, Wh, Uh, and bh are model
parameters that need to be tuned using true observations. It can be seen
from this equation that the hidden representation ht at time t not only
depends on input drivers at the same step (i.e., xt), but also depends on
the hidden representation from the previous time step (i.e., ht).

Once obtaining the hidden representation, we can compute the final
model outputs as:

= +y σ W h b( ),t y t y (5)

where Wy and by are another set of model parameters.
While standard RNN can model the dependency across time (Eq. 4),

it can hardly memorize long-term patterns as the model will gradually
lose its memory towards long history. To address this problem, various
black-box transition functions have been used to replace the transition
function used in the standard RNN (Eq. 4). Gated Recurrent Unit (GRU)
(Chung, Gulcehre, Cho, & Bengio, 2014) is one of the most widely
structures to define transition functions, which has shown promising
results to memorize both short-term and long-term patterns in a variety

of real-world applications. In our problem, successfully modeling sur-
face P is contingent on capturing dynamics at both short time scale and
long time scale, and thus we adopt the GRU to define transition func-
tions in this work. However, due to the sole dependence on the training
data, this model is likely to produce results that are inconsistent with
our knowledge of ecological process.

The tuning of model parameters within each machine learning
model requires a training process that optimizes toward a specific loss
function. In the RNN model, we use a supervised loss function that
minimizes the RMSE between the predicted values ŷt and the observed
values yt at each time step. This supervised loss function can be defined
as follows:

∑= −L y T(^ y) /RNN
t

t t
2

(6)

where yt and ŷt denote the observed target value and the predicted
target value at time t, respectively. The ∑ ·t operation takes the sum-
mation over all the time steps when the observed data are available.

2.4. PGRNN model description

The Process Guided Recurrent Neural Network (PGRNN) model
makes two important advancements beyond PROCESS and RNN. The
first is to combine PROCESS and RNN in a hybridized model and the
second is to use ecological principles to constrain predictions from the
hybrid model. Together, these techniques are the PGRNN.

Hybrid-process-data (HPD) model: We can use the process-based
model fPROCESS (described in 2.2) to simulate the value of the target
variable YPROCESS. YPROCESS will provide an incomplete representation
of the target variable due to simplified or missing processes in fPROCESS,
thus resulting in model discrepancies with respect to observations. To
overcome the model deficiencies, we combine fRNN and fPROCESS to
leverage information in both ecological process and data (Fig. 4). The
PGRNN architecture makes it possible to leverage the knowledge em-
bedded in traditional process-based models by using the process-based
model output (YPROCESS) as additional inputs to the machine learning
for training. This results in the hybrid-process-data (HPD) model: fHPD:
[X, YPROCESS] → Y.

The HPD model goes far beyond that of many traditional ap-
proaches (e.g., Eq. 4) to fitting observational data. For example, a
common approach to leveraging the simulated outputs from process-
based models is through residual modeling, which is widely used in
ecological research (Hamilton, Lloyd, & Flores, 2017; Xu &
Valocchi, 2015). In residual modeling, an additional function g( · ) is
fitted to close the gap between the simulated output YPROCESS and the
true observations Y. The residual modeling can be summarized as:

= +f x f x g x( ) ( ) ( )Residual PROCESS (7)

HPD improves upon Eq. 7. Since the deep neural networks can serve
as a universal learner with sufficient layers (Hornik, Stinchcombe, &

Figure 4. The architecture of the
PGRNN model. We use RNN as the
machine learning model to make pre-
dictions of surface water P (Ypred). The
training data include observed driver
data ("Drivers") and the output of
PROCESS ("Simulated outputs") from
1999-2015. After training, the model is
validated on data from 1995-1998. The
loss function includes the supervised
loss on the training data and the pro-
cess-based loss, which represents con-
straints imposed on predictions by
ecological principles ("Physical laws").
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White, 1989), the HPD model has the potential to capture complex
relationships between x, YPROCESS, and Y. In other words, HPD model
has the capacity to learn arbitrary functions to map the input [x, YPR-

OCESS] to the true observations Y. Here we consider a case when the
learned fHPD(x, YPROCESS) function can be decomposed into two separate
parts +g x Y( ) PROCESS. This is equivalent to the residual modeling
method. However, the hybrid-process-data model can also learn cou-
pled relation between x and YPROCESS, which cannot be easily decom-
posed into separate modeling components on x and on YPROCESS. Hence,
the HPD model goes far beyond the capacity of many traditional ap-
proaches such as the residual modeling method.

Ecological constraints: Another major innovation of our PGRNN
modeling approach is to incorporate constraining principles into the
traditional loss function that guide the learning of weights of the RNN.
For instance, in the implementation of PGRNN to hydrodynamic mod-
eling, the laws of energy conservation were used to constrain thermal
profile predictions (Jia et al., 2018). However, for P cycling the con-
straining physical principle is mass balance, which is already in-
corporated in fPROCESS. As an alternative to physical constraint for fit-
ting the PGRNN, we use an ecological principle common to data from
natural systems. We consider the power scaling laws, which dictate that
power in lower frequencies exceeds power in higher frequencies (e.g.,
Kara et al., 2012; Fig. 5, as an application to lake data). In our case, this
means that changes in P will tend to be smaller at short time scales,
such as daily, than at longer time scales, such as monthly. This rule is
useful in regularizing the daily change of model predictions and elim-
inating spuriously high or low values that in the real world would re-
quire an unrealistic P flux. Specifically, the PGRNN model makes pre-
dictions at daily scale, which is at a higher frequency than the observed
data. Therefore, we include an additional term in the loss function of
the PGRNN to penalize any daily prediction changes that are larger
than the 80 percentile of the changes of the first differences of the
observed values, as follows:

∑= − −+L ReLU y y p y T( ^ ^ (Δ ))/ ,deltas
t

t t1 0.8
(8)

Where p0.8(Δy) denotes the 80 percentile of the changes of the first
differences of the observed values. The first difference was used to
eliminate long-term signals in the observational data. The function
ReLU( · ) is the rectified linear unit, which is expressed as

=x xReLU( ) max(0, ). The 80 percentile was chosen through manual
tuning to ensure that daily predictions had variability that conformed to
reasonable expectations of daily mass change in epilimnetic P.

An additional constraint to PGRNN is applied and that also relates to
ecological scaling. Even if the predicted data and the observed data are
sampled at different frequency, they should maintain similar statistical
property over the spectrogram. Therefore, we apply the Short Time
Fourier Transform, with a window length 256 on predicted outputs and
observed data to generate their spectrogram over time, represented as
ŝ and s, respectively. Then we penalize large power discrepancy be-
tween them, as follows:

=
∑ ∑ −

L
s s

TF

^
,stft

t f t f t f, ,

(9)

where TF is the total number of frequency levels, ŝ and s represent the
obtained spectrogram from ŷ and y, respectively, st, f and ŝt f, represent
the power of the spectrum at time t and frequency f. Combining the
Eqs. 5–7, we have the final training loss function, as follows:

= + +L L λ L μ L ,training RNN deltas stft (10)

Where λ and μ are hyper-parameters to control the weight of each
component in the training objective function. In our test, we set λ as
400 and μ as 0.05 based on a cross-validation test. The learning model is
trained using the standard back-propagation algorithm with the Adam
optimizer (Kingma & Ba, 2015).

In summary, the PGRNN incorporates ecological knowledge from

two aspects. First, it indirectly incorporates process knowledge hidden
in the existing process-based model through HPD model. Second it di-
rectly includes known ecological principles (e.g., power scaling) by
generalizing the loss function of standard RNN to include ecological
constraints.

We fit all models to epilimnetic P concentration, which was sampled
approximately monthly for 20 years. Hypolimnetic P observations were
not used for model fitting, because our primary concern was accurate
estimates of PEpi because of its importance to water quality. Moreover,

Figure 5. Data informing the ecological scaling principal. (A) Power spectrum
of observed epilimnetic P shows higher power in lower frequencies, with the
highest frequency being bi-monthly (ca. twice the sampling frequency). The
modeled data, which are daily, are assumed to have lower power at the daily
scale than the observed data have at the bi-monthly scale. The daily frequency
indicated for reference. (B) A density plot of the first difference of observed
epilimnetic P (black line), modeled P from RNN (blue line) and from PGRNN
(purple line). Vertical dashed lines represent the constraints in Eq. 8. Note that
observed data are bi-weekly, and modeled data are daily. (C) The predictions
from PGRNN without the ecological principal in the loss function (black line)
and with the ecological principle in the loss function (purple line).
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PHypo from PROCESS was sensitive to our estimates of the hypolimnetic
volume, especially when hypolimnetic volumes were small.

In this work, we implement a one-layer RNN model with the GRU
structure. The model has 10 units in the hidden layer (i.e., the dimen-
sion of htis 10). During the training process, we create data chunks with
100 time steps each (i.e., =T 100) and 15 input drivers (Table 2) for
each time step. Hence, the input data for each chunk is a 100-by-15
matrix. We preprocess the input data by standardizing the data along
each of 15 feature dimensions. The output is a 100-dimension vector for
the predicts outputs at every time step.

We conducted a 6-fold cross validation test by dividing our study
period for a single data set equally into six parts. Each time we trained
the PGRNN and RNN using the data from five selected sections and then
tested the model on the remaining section. In particular, we divide
7,200 samples into six parts. In each test, we train the model using
6,000 samples and test on the remaining 1,200 samples. We repeat this
process for six time periods so as to eliminate the possibility that the
model is biased towards specific parts. We chose to use section 1 as the
validation section for model comparison because it provided overall
best model performance.

Direct interpretation of neural network parameters (i.e., nodes in
the network) is not informative, given their large numbers and the
abstract nature of layering in RNNs. Thus, we determined the relative
importance of 15 drivers (Table 2) in PGRNN by comparing the average
absolute weights of network parameters that connect drivers to hidden
network layers (Cho et al. 2014; Fig. 6). For the most important drivers,
we determined the effect on epilimnetic P by setting all but one driver
to their mean values, and plotting epilimnetic P as a function of the
remaining unaltered driver. Comparison of drivers in this way, in-
cluding PROCESS as a potential driver, provides insights into the design
of PROCESS and our understanding of how P cycling works in Lake
Mendota.

We evaluated all three models (PROCESS, RNN, and PGRNN) for
goodness-of-fit using root mean squared error (RMSE) and visual in-
spection of predictions and observations over annual and decadal time
scales. For the entire time series, as well as for summer-only (mean of
July and August) and winter-only (mean of January and February)
periods, we evaluated long-term trends using Mann-Kendall (MK, A.I.

McLeod, 2011) statistics for observed and modeled data. Residuals were
analyzed for long-term trends using MK statistics, and for auto-corre-
lation using Auto Correlation Function (ACF, R Core Team, 2015).

3. Results

3.1. Lake phosphorus budget

PROCESS produced an ecosystem-scale balanced P budget, with
predictions that reproduced the annual surface water P dynamics rea-
sonably well (Fig. 7A). Each year, PEpi rises rapidly during fall turnover
(i.e., when the water column mixes) and remains high during winter. In
spring, there is gradual decrease in PEpi, followed by a precipitous de-
crease in summer, due to settling of P, presumably in the form of par-
ticulate organic phosphorus (POM) (mostly phytoplankton) from the
epilimnion through the hypolimnion to the sediments. During the
summer stratified period, PEpi remains low, while P builds rapidly in the
hypolimnion (not shown) due to efflux of P from the sediments and
capture of fallout from the epilimnion. We note that in our model, P
sedimenting from the epilimnion is added to the sediment P pool for
simplicity. Mean annual load was 1.80 g m−2 lake area y−1. The lake
retained 72.3% of the load (burial ~1.29 g m−2 y−1) and exported the
remainder (~0.51 g m−2 y−1). On average, P in the epilimnion due to
external and internal loads was 22.6% and 77.4%, respectively, in-
dicating the importance of the large lake sediment P pool to surface
water concentrations. The magnitudes of these fluxes should be treated
with caution, given the issues with model fit identified immediately
below.

3.2. Model evaluation

Overall, the PGRNN performed better than PROCESS and RNN in
reproducing both long-term (Fig. 7) and seasonal P cycling (Fig. 8). In
winter, epilimnetic P is under-predicted by PROCESS early in the time
series and over predicted later in the time series (Fig. 8A). RNN nearly
matches the winter slope of the observed data, but is biased high
(Fig. 8B), and PGRNN better reproduces the trend and has less overall
bias (Fig. 8C). In summer, PROCESS has no long-term trend (Fig. 8D),
and RNN has a modest decreasing trend (Fig. 8E), while PGRNN re-
produces the long-term trend and captures some of the large

Figure 6. Criteria for selection of the most important drivers for the (a) RNN
and (b) PGRNN. Each row depicts the level of importance of the corresponding
driver in the respective models. The level of importance is calculated as the
average absolute values of the weight parameters that connect each driver to
different hidden units in the RNN model (Cho et al., 2014).

Figure 7. Observed epilimnetic P and model predictions from (A) PROCESS, (B)
RNN, and (C) PGRNN. The vertical dashed lines bound the time range of the
validation data.
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interannual changes missed by the other two models (Fig. 8F). Trends
for observations, model predictions, and residuals are quantified in
Tables 3 and 4.

Residual error for PROCESS was lowest of the three models for the
validation segment, highest for the overall time series, and had the
greatest downward trend (Fig. 9A, Table 3). RNN improved fits over
PROCESS for the whole time series, with lower and less downward
trend in the residuals (Fig. 9B). Although fit improved, RNN introduced
high variance at the daily scale and occasionally spuriously high or low
predictions (Fig. 7B). The PGRNN provided better fit to the data over
RNN, and like the RNN captured additional scales of variability missed
by PROCESS (Fig. 9C, Tables 3, 4). The PGRNN did not produce spur-
iously high or low predictions for P. For both winter and summer,
PGRNN (Fig. 10C, F, respectively) had best overall model performance
(Tables 3, 4) with the least biased residuals.

The PGRNN improved prediction by using additional features (i.e.,
explainable patterns) in the driving data, as well as adjusting

predictions from PROCESS. The five most significant drivers for PGRNN
model prediction were determined to be PROCESS, epilimnetic tem-
perature, P load, lake level, and thermocline depth (Fig. 6). Mann-
Kendall statistics for trends in the five predictors are as follows: PRO-
CESS (MK τ = -0.0122, p>0.1); T (MK τ = -0.0118, p>0.1); P load
(MK τ= -0.069, p<0.001); lake level (MK τ= -0.093, p<0.001); and Z
(MK τ = -0.059, p<0.001).

Because parameters in neural networks have no directly inter-
pretable values, we show the importance of predictors through their
influence on the predictions. In Figure 11A, high frequency variability
shows the recurrent nature of the PGRNN. The influence of PROCESS on
the predictions (Fig. 11B, red line) is approximately double that of
temperature (Fig. 11C), which is approximately double that of the re-
maining predictors (Fig. 11D). The difference between the pink and red

Figure 8. Winter (mean of January, February) predictions for (A) PROCESS, (B)
RNN, and (C) PGRNN. Summer (mean of July, August) predictions for (D)
PROCESS, (E) RNN, and (F) PGRNN. The dashed black lines are long-term
trends of observed data and the dashed colored lines are long-term trends of the
model predictions.

Table 3
Analysis of trends in observational data and model predictions for the complete
time series (All data), winter (mean of December, January), and summer (mean
of July, August). Mann-Kendall (MK) statistics were used to determine trend,
with “Score” representing either downward (-) or upward (+) trend and its
significance (p value). Separate tests were run for summer (July and August)
and winter (December and January).

Test Observational data PROCESS RNN PGRNN

All data
MK Score -8689 -1459 -4387 -5689
MK tau -0.186 -0.0311 -0.0934 -0.121
MK p value <0.001 0.417 0.0147 0.00155
Winter
MK Score -22 -12 -56 -32
MK tau -0.183 -0.100 -0.467 -0.533
MK p value 0.344 0.620 0.0133 0.00456
Summer
MK Score -55 12 -42 -48
MK tau -0.290 0.0632 -0.221 -0.253
MK p value 0.0796 0.721 0.183 0.127

Table 4
Analysis of model residuals for the complete time series (All data), winter
(mean of December, January), and summer (mean of July, August). Mann-
Kendall (MK) statistics were used to determine trend, with “Score” representing
either downward (-) or upward (+) trend and its significance (p value). Values
for auto-correlation function (ACF) are the lags that are significant. Root mean
squared error (RMSE) is for the full time series, with values in parentheses
referring to the validation segment.

Test PROCESS RNN PGRNN

All data
MK Score -11715 -8715 -8166
MK tau -0.249 -0.186 -0.174
MK p value <0.001 <0.001 <0.001
ACF 1-7 1-10 1-10
RMSE (μg L−1) 28.0 (19.8) 23.8 (25.4) 21.1 (22.7)
Winter
MK Score -20 4 -2
MK tau -0.167 0.0333 -0.0167
MK p value 0.392 0.893 0.964
ACF None None None
RMSE (μg L−1) 33.0 22.7 20.6
Summer
MK Score -46 -44 -6
MK tau -0.242 -0.232 -0.0316
MK p value 0.144 0.163 0.871
ACF None None None
RMSE (μg L−1) 14.3 10.9 10.7

Figure 9. Residuals of model predictions for full time series of (A) PROCESS,
(B) RNN, and (C) PGRNN.
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lines in Figure 11B shows that PGRNN reassigns some of the variance
from PROCESS (pink line) to the other predictors. Figure 11E shows for
a few years how the PGRNN predictions (purple line) are the result of
the additive effects shown in panels A-D, with the final predictions
shown in purple to be consistent in color with other figures. The long-
term downward trend in the observational data, and missed by PRO-
CESS, was partially described by PGRNN, which assigned significant
negative trends for P load, lake level, and thermocline depth. Notably,
PGRNN indicates that neither temperature nor PROCESS contribute to
long-term downward trends.

4. Discussion

Process-guided machine learning (PGML) shows promise in accu-
rately predicting lake surface water P dynamics. Our implementation of
PGML, the PGRNN model, melds PROCESS and RNN and outperforms
both of those models in a number of ways. PGRNN provides better
accuracy, and it rarely predicts outside the range of magnitudes of
realistic biogeochemical fluxes (Fig. 5). The improvement in mean error
for summer predictions from PROCESS to PGRNN (Table 4, Fig. 10) is
about 4 μg L−1, which is approximately 10% of the mean long-term
summer P concentration in the lake (39.8 μg L−1). Model performance
in previous lake P modeling work rarely is documented (e.g.,
Bennett et al., 2013), and there are few examples of models applied for
more than about a decade, making it challenging to compare our per-
formance with the literature. However, our RMSE values were about
half those of the model on which PROCESS was based (Jensen et al.,
2006).

Our application of a common ecological principle, spectral power
scaling, improved the quality of the predictions for the PGRNN, in part
by eliminating outlier predictions. While a similar 'smoothing' of the
predictions could have been accomplished by post processing them, it
would not have fed back to improve the estimation of the PGRNN
parameters. Thus, we argue that building such principles into the
model's loss function (Eq. 10) provides for a better model calibration.
Previous work on PGML used physical laws of water density to con-
strain lake temperature predictions for the machine learning compo-
nents (Jia et al., 2018), and the PGML approach outperformed the
original physical model in prediction accuracy, while maintaining fi-
delity to physical laws. It could be argued for lake P, however, that
occasional spurious predictions could better represent the observational

data features. In this case, a different principle could be applied that
would force predictions to conform to statistical characteristics of the
observed distributions, which might work particularly well for extreme
value distributions (Carpenter, Booth, Kucharik, & Lathrop, 2015).

The use of ecological knowledge as part of PGML helped us learn
about PROCESS and guides future work on that model. Although we
were encouraged that the predictions from PROCESS were the most
important input to PGRNN for surface water P predictions (Fig. 11B,E),
the PGRNN suggests that PROCESS could be improved in predicting
annual cycles by including an additional temperature component
(Fig. 11C). PGRNN also selected P load, lake level, and thermocline
depth (Fig. 11D) to improve the annual cycle. Interestingly, PGRNN
uses these last three terms to create a downward trend missed by
PROCESS over the time series. While our confidence in lake level and

Figure 10. Residuals of winter (mean of January, February) model predictions
for (A) PROCESS, (B) RNN, and (C) PGRNN. Residuals of summer (mean of
July, August) model predictions for (D) PROCESS, (E) RNN, and (F) PGRNN.

Figure 11. The influence of multiple drivers, including the output from
PROCESS, on epilimnetic P predictions from the PGRNN: (A) all drivers set to
mean values shows the mean of the predictions and the dynamics inherent in
the neural network coefficients; (B) the effect of the PROCESS output on
PGRNN predictions (red), and for comparison the original predictions from
PROCESS (pink); (C) the effect of epilimnetic water temperature; (D) the
combined effects of lake P load (LoadTotal), lake level (LL), and thermocline
depth (Strat). (E) The additive effects (purple line, as in Fig. 7C) of predictions
in panels A-D, as well as the observed surface water P concentration (black
circles) for three annual cycles.
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thermocline depth is high because they are directly measured with
high-frequency sensors, our confidence in P load is lower, suggesting
the downward trend lies in that variable. There are many reasons to
suspect the P load. There are challenges in developing the rating curve
for P load via surface inflows, because inflow from big storms is difficult
to characterize, even though a few storms might account for half of the
annual P load to Lake Mendota (Carpenter et al., 2015). Inter-annual
variability of loads is high as well, ranging from about 0.5-2.0 g P m−2

y−1 (Carpenter et al., 2015), and our long-term estimate of 1.8 g P m−2

y−1 is at the high end of that range. Furthermore, P measurements in
the inflows are sparse through time, and not all inflows have observed P
data. The results of PGRNN suggest we investigate further a possible
downward trend in P load to the system over the past few decades. The
inclusion of these factors could improve both the predictions of the
annual cycle and the long-term downward trend.

There is some evidence that a downward step-change in the ob-
servational data for epilimnetic P around 2010 may be real, and that
the inaccuracies from model predictions appear to be due to over-pre-
diction in winter (Fig. 10). All models over-predict P concentrations
from 2010 onward (Fig. 9), suggesting that neither the driving data nor
PROCESS can account for the change. Food web changes may be the
answer. Introduction of spiny water fleas to Lake Mendota (high con-
centrations beginning ~2010) has perturbed the zooplankton commu-
nity in ways that alter nutrient dynamics (Walsh et al., 2016). By
preying on daphnia that consume phytoplankton, spiny water fleas
potentially support higher phytoplankton biomass and therefore addi-
tional sedimentation. Recent invasion by zebra mussels (discovered in
year 2015) has likely altered the phytoplankton community in ways
that affect P cycling (Mellina et al., 1995); however, given their low
densities and the narrow littoral zone, the effects on water clarity are
likely too small to detect. Other catchment changes, such as increased
plant biomass capturing P in river outlets, may be decreasing P loading
into Lake Mendota, but these have yet to be well-studied and docu-
mented and are important topics for future work.

Recommended modifications to PROCESS thus far would be re-
levant to modeling Lake Mendota, but what about application of
PROCESS to other lakes? For dimictic temperate lakes, it may be im-
portant to discriminate between processes related to iron in lake sedi-
ments, because iron can have strong control over P exchange between
lake sediments and the water column. Alternative mechanisms between
high iron and low iron P cycling were described by
Hoffman et al. (2013). In high iron lakes, hypolimnetic buildup of P
results primarily from the dissociation of P and Fe under anoxic con-
ditions, but also from mineralization of POP from the epilimnion to the
hypolimnion. During fall turnover, the water column becomes oxyge-
nated, Fe binds P, and the precipitate settles back to the sediments
(Campbell & Torgersen, 1980). However, in low iron lakes, such as Lake
Mendota, efflux of P from the sediments is dominated by mineralization
of POP sedimented from the epilimnion, as well as legacy P. For Lake
Mendota specifically, an empirical study showed that approximately 2/
3 of the hypolimnetic P buildup can be attributed to epilimnetic POP
sources (Hoffman et al., 2013). This corresponds closely to our mod-
eling results, in which annual sedimentation is roughly 65% of annual
recycling. In our model, we do not discriminate alternative sediment-
water column biogeochemical processes. We lump them all into re-
cycling, under the assumption that particulate P settles to the sedi-
ments, whether bound to Fe or organic matter. While this simplification
conceptually blurs the separation of water column and sediments, we
argue that, in practice, that line is blurred in Mendota by a substantial
layer of loose, flocculent matter that rests between the sediment and the
hypolimnion. If we were to apply PROCESS to a high iron lake, we
might consider adding a P scavenging process that would occur during
mixing or oxygenation events.

While our application of PGML shows promise, many avenues of
PGML evaluation have yet to be explored. PGRNN has provided useful
information about PROCESS and its model structure, which can be the

greatest source of error in predictions (Arhonditsis & Brett, 2004).
However, we have not evaluated the parameter uncertainties for
PROCESS nor have we assessed the importance of observational un-
certainty. In addition, the relative contributions of two defining fea-
tures of PGRNN – PROCESS as an input to RNN and the ecological
principle in constraining predictions – have not been fully assessed. It
may be the case that an RNN with ecological principles built into the
loss function (i.e., PGRNN without PROCESS as an input) predicts
nearly as accurately as PGRNN. However, in cases where observational
data are sparse, training the RNN with process (i.e., putting PROCESS
back into PGRNN) may reduce the amount of data needed for accurate
predictions (Jia et al., 2018), and for most lakes and reservoirs, we have
sparse data for important characteristics, such as water quality
(Read et al., 2017).

PGML offers a framework to both improve prediction accuracy and
update understanding, both of which are at the heart of the scientific
endeavor. Often in ecology, we have insufficient data to exploit the
most powerful machine learning techniques. We can relieve machine
learning of the burden of capturing ecological signals by essentially
training them with known process (Lee, Ros, Li, & Gaidon, 2018). This
allows the machine learning to attribute remaining ecosystem variance
to a set of drivers. We find it heartening that in an era of “big data” and
“deep learning” ecological knowledge retains an important role. At the
same time, we must be cautious in our predictions, because the largest
source of error tends to be in our assumptions of which processes are
most important, and therefore included in our models (Arhonditsis &
Brett, 2004). Predicting P dynamics is a critical aspect of understanding
lake water quality, and as we apply our process models to predicting P
dynamics in a much broader suite of lakes, we will need techniques that
leverage both our knowledge and the growing data from Earth obser-
ving systems.

4. Conclusions

Process guided machine learning, implemented as a process guided
recurrent neural network (PGRNN) in this study, is a particularly va-
luable approach to modeling the lake phosphorus problem because it
helped in overcoming challenges in both understanding and predicting
surface water phosphorus accurately. PGRNN made the most accurate
predictions, outperforming the process based model and the recurrent
neural network in prediction accuracy, reducing prediction bias, and
reproducing both short term and long term variability in observed lake
phosphorus. As importantly, the PGRNN provided additional valuable
information relevant to ecosystem process. The process model was de-
signed to be parsimonious and to reproduce ecological processes known
to be relevant to the annual dynamics of surface water phosphorus
concentration. The PGRNN identified scales of variability missed by the
process-based model. There was a long-term downward trend in lake
phosphorus that occurred over decades, which the process model did
not predict but that PGRNN attributed to a long and slow change in the
phosphorus loads to the lake. There was a small but significant annual
cycle related to water temperature that was identified by the machine
learning but not predicted by the process model. These insights resulted
from the hybridization of ecological knowledge and machine learning,
which shows tremendous potential for advancing our prediction cap-
abilities and understanding of dynamical natural systems.
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