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Quantum spins in semiconductor nanostructures: Hyperfine
interactions and optical control

Arian Vezvaee

(ABSTRACT)

Quantum information technologies offer significantly more computational power for certain

tasks and secure communication lines compared to the available classical machines. In recent

years there have been numerous proposals for the implementation of quantum computers in

several different systems that each come with their own advantages and challenges. This dis-

sertation primarily focuses on challenges, specifically interactions with the environment, and

applications of two of such systems: Semiconductor quantum dots and topological insulators.

The first part of the dissertation is devoted to the study of semiconductor quantum dots

as candidates for quantum information storage and sources of single-photon emission. The

spin of the electron trapped in a self-assembled quantum dot can be used as a quantum bit

of information for quantum technology applications. This system possesses desirable photon

emission properties, including efficiency and tunability, which make it one of the most ad-

vanced single-photon emitters. This interface is also actively explored for the generation of

complex entangled photonic states with applications in quantum computing, networks and

sensing. First, an overview of the relevant developments in the field will be discussed and

our recent contributions, including protocols for the control of the spin and a scheme for

the generation of entangled photon states from coupled quantum dots, will be presented.

We then look at the interaction between the electron and the surrounding nuclear spins and

describe how its interplay with optical driving can lead to dynamic nuclear polarization. The

second part of the dissertation follows a similar study in topological insulators: The role of

time-reversal breaking magnetic impurities in topological materials and how spinful impur-

ities enable backscattering mechanisms by lifting the topological protection of edge modes. I



will present a model that allows for an analytical study of the effects of magnetic impurities

within an experimental framework. It will be discussed how the same platform also enables

a novel approach for applications of spintronics and quantum information, such as studying

the entanglement entropy between the impurities and chiral modes of the system.
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(GENERAL AUDIENCE ABSTRACT)

Quantum information science has received special attention in recent years due to its prom-

ising advantages compared to classical machines. Building a functional quantum processor is

an ongoing effort that has enjoyed enormous advancements over the past few years. Several

different condensed matter platforms have been considered as potential candidates for this

purpose. This dissertation addresses some of the major challenges in two of the candidate

platforms: Quantum dots and topological insulators. We look at methods for achieving

high-performance optical control of quantum dots. We further utilize quantum dots special

ability to emit photons for specific quantum technology applications. We also address the

nuclear spin problem in these systems which is the main source of destruction of quantum

information and one of the main obstacles in building a quantum computer. This is followed

by the study of a similar problem in topological insulators: Addressing the interaction with

magnetic impurities of topological insulators. Included with each of these topics is a descrip-

tion of relevant experimental setups. As such, the studies presented in this dissertation pave

the way for a better understanding of the two major obstacles of hyperfine interactions and

the optical controllability of these platforms.
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Chapter 1

Introduction and overview

Quantum information processing and the physical realization of quantum computers in solid

state systems have gained considerable attention in recent years. In principle, a standard

quantum computer with a large enough of number of quantum bits (qubits) is capable of

tackling several tasks which are not possible using classical machines—the so-called quantum

advantage [11]. Simple quantum mechanical effects such as quantum superposition, quantum

measurement collapse, and quantum entanglement, enable several interesting applications

which are expected to outperform classical systems for certain tasks. One famous example

of such applications is the Shor algorithm for the factoring problem [12]. This dissertation is

mainly devoted to improving the physical realization of systems capable of such tasks. The

requirements for such physical implementations of quantum computers were set in 2000 by

DiVincenzo [13]:

1. Well characterized and scalable qubits.

2. Sufficently long decoherence time.

3. Initialization capability.

4. Universal set of quantum gates.

5. Measurement capability.

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

A well-characterized qubit, in its ideal form, is a two-level quantum system. Several differ-

ent quantum systems are considered for such realizations. A few examples include trapped

ions [14], superconducting circuits [15, 16], electrons and holes in semiconductor quantum

dots (QDs), nitrogen-vacancy (NV) centers in diamond [17], and non-Abelian anyon ex-

citations in quantum topological materials. [18]. Although in this dissertation the focus

is particularly on properties and challenges faced in III-V semiconductors and topological

insulators, some universal concepts are shared across all platforms.

The two-level system that constitutes a qubit in Hilbert space Hq is described by the wave-

function |ψ⟩ = α |0⟩+β |1⟩, where |α|2+ |β|2 = 1. In most physical platforms, the qubit can

be initialized to one or two particular states. A quantum gate can be applied to change the

state of the qubit. This quantum gate corresponds to a unitary evolution operator U that

evolves the wavefunction of the qubit |ψ⟩. For instance, an X-rotation, refers to the imple-

mentation of the X̂ Pauli operator on the state of qubit: X̂ |ψ⟩ = α |1⟩+β |0⟩. Furthermore,

multi-qubit gates can also be devised; e.g., a Controlled-Z (CZ) gate is a two-qubit gate that

applies the Ẑ operator on the second qubit, depending on the state of the first qubit. Of

course, matrix representations can be associated with gate operations. For example,:

CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


, (1.1)

which acts on the full Hilbert space Hq1⊗Hq2. The performance of these gates is quantified

by the gate fidelity, which measures how close the implemented evolution operator is to

the intended quantum gate. Several factors may lower the fidelity of the operations, such

as interaction with the environment (e.g. a nuclear spin bath), leakage out of the Hilbert
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space of the system, etc. In this dissertation, we will study the challenges associated with

implementing qubit operations in condensed matter systems.

The thesis is structured as follows. In Chapter 2 a brief review of necessary concepts for

understanding the basics of semiconductor physics is presented. Once the basic tools become

available, we discuss the formation of self-assembled quantum dots and a specific type of

vertically stacked QDs known as coupled quantum dots or quantum dot molecules (QDMs).

In Chapter 3 we discuss some of the relevant recent advancements in using these systems for

quantum information processing and especially their role as sources of photon emission. We

discuss protocols of quantum control in these systems in Chapter 4. Chapter 5 is dedicated to

studying the main source of decoherence of quantum information in these systems: Hyperfine

interaction of the electron with its surrounding nuclear spin bath. We finally look at the

topological band theory and formation of topological insulators in Chapter 6 and study the

importance of hyperfine interactions in these systems with magnetic impurities.



Chapter 2

Basics of quantum spins in

semiconductor systems

Semiconductor QDs are zero-dimensional nanostructures capable of confining electrons and

holes with the precision of exactly a single charge. The confinement potential of these

structures leads to discrete atomic-like energy levels in these systems. While several systems

are available in forming these structures, such as gated dots [19], colloidal QDs [20], etc.,

in this thesis we solely focus on self-assembled quantum dots 1, that are formed through

epitaxial growth of two layers of semiconducting materials (III–V semiconductors for their

optical properties) with different lattice parameters, where the lower band gap semiconductor

is embedded in a higher band gap semiconductor. As a result of this band gap difference,

electronic confinement due to the band offsets appears. In much of the remaining work, we

consider InAs-based QDs embedded in GaAs.

2.1 Self-assembled quantum dots: Growth and charges

A growth mechanism of self-assembled quantum dots was developed as early as 1938 by Ivan

Nikolov Stranski and Lubomir Krastanov [21]. In this method, lattice-mismatched materials

1The terms ‘self-assembled QDs’ and ‘QDs’ are used interchangeably throughout the thesis. Unless it is
noted, QD will refer to a self-assembled quantum dot.

4
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are grown layer by layer, until at some critical thickness of the QD layer, self-assembled

islands appear spontaneously since the energy for island formation is lower than the strain

energy to keep the QD layer. InAs and GaAs have band gap energies of 0.43 eV and 1.52 eV,

respectively (at 4 K). Once the InAs layer is grown on top of the GaAs during the growth

process, due to 7.2% lattice mismatch of the two layers, a wetting layer is formed. The

strain between the two layers increases and the total energy is minimized by formation of

InAs islands (Fig. 2.1 (a)). An additional epitaxial layer of GaAs leads to three-dimensional

quantum confinement of the QD islands. This formation process occurs spontaneously, and

therefore the QD sizes and spatial positions are random. This strain-driven process leads

to breaking of the cubic symmetry of the system and the appearance of a non-zero electric

field gradient in the dot. This non-zero electric field may couple to the quadrupolar moment

of gallium and arsenic nuclei, which has important consequences that will be discussed in

detail in Chapter 5.

At this point, all the discretized valence energy states are filled and the conduction states are

empty (see Fig. 2.1 (b)). As in normal semiconductors, one can excite one of the electrons

from the valence band to an empty conduction band and create an electron-hole bound state.

This bound state is known as exciton (Fig. 2.3). These states are denoted by X±. We will

discuss the structure of hole states in detail in Section. 2.2.1.

In principle, one could use the ground state of the QD as a |0⟩ state and the excited exciton

as a |1⟩ state. This encoding is known as the exciton qubit [22, 23, 24]. This encoding is

particularly interesting since initialization of the qubit comes at a low cost: The ground

state of the QD is the |0⟩ state. Furthermore, single qubit operations of these qubits are

demonstrated in Ref. [22], and two-qubit gates are also demonstrated in Ref. [24]. However,

the gate fidelities are quite low due to fast recombination rates of the excitons [24]. Therefore,

it is preferable to instead use the long dephasing times of excess electrons in QDs. In the
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If p(n)is the n-photon number probability (see Box 1), then B = p(1) 
for p(1) >> p(n > 1). We use this metric here as it allows compari-
son of systems independent of the pulsed-operation rate or detector 
e"ciency. Together with the source repetition rate, the transmission 
of the optical network and detector e"ciencies, B determines the 
speed of quantum communications or computation protocols. For 
many practical implementations, an important #gure is the bright-
ness measured at the output of a single mode #bre, BSMF.

$e lower the brightness of a single-photon source, the poorer 
the system scaling. For instance, in the generation of n-manifold 
single photons, the probability scales with brightness to the power 
n. $e lack of scalable single-photon sources has become one of the 
major roadblocks in the development of quantum photonics. $is 
can be clearly seen in the measured photon production rates in the 
literature, which drop seven orders of magnitude between mega-
hertz rates22 for n = 1, to 0.1 Hz rates23 for n = 5, motivating many 
groups to fabricate inherently deterministic—and hence scalable—
single-photon sources.

Finally, depending on the application, various modal properties 
are desired. Some applications, such as quantum key distribution, 
can use a single source emitting single photons into orthogonal tem-
poral modes within the same spatial mode. Others, such as quan-
tum metrology, require a manifold single-photon source, with n 
orthogonal spatial modes, each containing a single photon within 

the same temporal mode. $e latter can be achieved by either using 
multiple single-photon sources or by demultiplexing a single source.

Single-photon sources
$e most common single-photon sources are based on nonlinear 
frequency conversion or on the spontaneous emission of single 
quantum emitters.

Spontaneous parametric down-conversion source. To date, the 
best-performing and most widely used sources have been based 
on nonlinear frequency conversion24. As such, they represent the 
benchmark for any new single-photon source technology. $ey are 
robust and operate at, or near, room temperature using frequency 
conversion, speci#cally down-conversion in a χ(2) media such as non-
linear crystals25,26 (Fig. 1a), or a χ(3) media such as glass, dilute atomic 
gases or silicon27,28. Here, χ(2) and χ(3) are the 2nd and 3rd  order sus-
ceptibilities of the medium, respectively. Pairs of down-converted 
photons are produced at a linear rate in the pump #eld intensity—
a process known as spontaneous parametric down-conversion 
(SPDC). $e process is non-deterministic: photon pairs are gener-
ated at random times. However, the conditions can be set so that the 
photons in the two down-converted modes are non-degenerate—in 
frequency, polarization or spatial mode—ensuring that they can be 
subsequently split deterministically. In such cases, the photons in 
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Figure 1 | Spontaneous parametric down-conversion (SPDC) and QD-based single-photon sources. a, Schematic of a SPDC source: a pulsed laser 
is sent to interact with a nonlinear crystal. The crystal temperature and angle are adjusted to obtain the phase-matching condition. Photon pairs are 
generated: one, the idler, can be used to herald the other, the signal. b, Measured g(2)(0) for a SPDC source as a function of brightness. The inset shows the 
measurement scheme: the correlation measurement on the signal is conditioned on the detection of a heralding event on the idler. c, Measured VHOM for 
a SPDC source as a function of brightness. The inset shows the measurement scheme: pairs of photons from the same down-conversion pairs are sent on 
the beamsplitter. d, Transmission electron microscopy of a single self-assembled InGaAs quantum dot. e, Schematic of the radiative cascade of carriers in 
a QD: electrons and holes created in the barrier relax in the QD through carrier collisions or interaction with phonons (grey arrows). Once in the QD, the 
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elaborated with the above techniques are suitable for optical
spin manipulation often carried out at a temperature of 4 K,
with the possibility for detailed spectroscopy up to a few tens
of Kelvin.

This review concentrates on the optical manipulation of
spin states. A very high degree of control over carrier-spin
states and the mesoscopic nuclear spin system is also
achieved in QDs defined by electrostatic potentials as sum-
marized by Hanson et al. (2007). The electron (not hole) spin
physics probed in these transport measurements at very low
temperature (100 mK) provide a powerful, complementary
approach (Petta et al., 2005; Bluhm et al., 2011; Takahashi
et al., 2011) to optical spectroscopy.

B. Addressing individual charge states

Controlling the charge state of QDs relies on the remark-
able possibility of doping semiconductor materials with
n-type or p-type impurities. In some cases the nonintentional
residual doping is sufficient to obtain singly charged QDs
(Akimov et al., 2002; Belhadj et al., 2009), see Fig. 3(c), but
usually a delta-doped layer is grown a few nanometers below
the QD layer with a density adjusted to reach the desired
average QD charge (Cortez et al., 2002; Greilich et al.,
2006b; Laurent et al., 2006). This modulation doping tech-
nique can be significantly improved by controlling the chemi-
cal potential of the QD electrons with an electric voltage
applied between the doped layer and a semitransparent top
contact (Drexler et al., 1994). In these charge-tunable struc-
tures a given QD is coupled to a reservoir of free carriers
(a heavily doped layer) through a tunnel barrier as in Fig. 3(a).
The energy levels of the QD can be adjusted with respect to

the Fermi level in the highly doped barrier, to vary determin-
istically the charge state with the precision of a single
elementary charge due to Coulomb blockade. This effect is
observed in micro-PL spectra by abrupt jumps of the
(charged) exciton emission energy when the gate voltage is
varied [see Fig. 3(b)] as a result of changes of the strong few
particle direct Coulomb terms (Warburton et al., 2000).

FIG. 2 (color online). (a) 1 !m! 1 !m atomic force microscopy
image of InAs dots on GaAs. (b) 40 nm! 34 nm cross-sectional
scanning-tunneling microscopy image of a GaAs dot in AlGaAs.
From Keizer et al., 2010. (c) Schematic energy level diagram for an
InAs QD in GaAs, where the growth axis is along the Oz direction.

FIG. 3 (color online). Sample A: (a) Scheme of InAs QDs em-
bedded into a charge-tunable device as in Warburton et al. (2000),
where for a voltage Vg1 applied to the top gate the electronic level of

the dot is above the Fermi energy of the highly n-doped back
contact. The QD contains no conduction electron. For a gate voltage
Vg2 the electronic level of the dot is now below the Fermi sea and an

electron can tunnel into the dot. (b) The charging of a single InAs
QD with electrons is accompanied by discrete jumps in the emission
energy when going from the neutral exciton X0 (one electron, one
hole) to the charged exciton X" (two electrons, one hole), etc. until
the wetting layer (WL) is charged. Sample B: (c) Left: Charge
fluctuations (a doping hole or electron tunnel into and out of the dot)
in nonintentionally doped dots allow the observation of neutral
excitons X0, charged excitons Xþ, and biexcitons 2X0 in photo-
luminescence (PL) spectra that are integrated over seconds, i.e.,
over times much longer than the charge fluctuation times (Belhadj
et al., 2009) Right: In addition to the fine structure, the emission
intensity of each transition as a function of optical excitation power
allows one to distinguish between different exciton complexes
containing two, three, or four optically generated charge carriers.

82 Bernhard Urbaszek et al.: Nuclear spin physics in quantum dots . . .
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(b)

Figure 2.1: (a) Transmission electron microscopy of self-assembled quantum dots (taken from
Ref. [1]), and (b) schematic energy level diagram of self-assembled quantum dots (taken from
Ref. [2]).
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Excitonic bound state

Figure 2.2: (a) A neutral QD with all-filled valence states and all-empty conduction states.
(b) Exciation of a single electron from the valence state to an empty conduction state by
creating a hole in valence state. The electron-hole bound state is called the exciton. Notice
that this is a single-particle schematic and does not reflect the many body interactions of
the system.

following section, we will charge these structures with one single electron.

The remarkable control over the exact number of charged particles inside a single QD is due

to the doping capability of semiconductor materials with n-type or p-type impurities which

allows controlling the chemical potential of the QD through an applied electric voltage. By

embedding the QD in a charge-tunable device, i.e., a heavily doped layer that performs

as a reservoir, energy levels of the dot can be adjusted with respect to the Fermi level of

this reservoir, and by lowering the energy level of the dot below the doped layer, a single

electron can tunnel into the dot and occupy the empty conduction state. In this scheme, the

two spin degrees of freedom of the electron can be encoded as qubit carriers: |0⟩ ≡ |↑⟩ and

|1⟩ ≡ |↓⟩. Just as in the case of a neutral QD, valence band electrons can be excited to other

unoccupied conduction states. These states are known as trion states and are composites of

the excess electron and the bound state of an excited electron and a hole.
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Figure 2.3: A neutral QD (left) vs a QD charged with a single electron (right). The two spin
degrees of freedom of the excess electron can be used as our qubit.

2.2 Electronic band structure and selection rules

In this section, we look at the structure of holes of valence states and derive the optical

selection rules of the system. Generally speaking, since the size of the QD is large enough

such that the system contains a large amount of lattice sites (∼ 105), much of our knowledge

from bulk semiconductor physics applies to the QD case as well. There are several well-

known methods for deriving semiconductor band structures such as single-band effective

mass, the k⃗.p⃗ method, and pseudopotential methods [25]. Here we will use the single-band

effective mass as it also helps to understand the level structure of the QDs as well. As

such, we will use the Luttinger Hamiltonian [26] to study the hole structure. It is helpful

to review some of the general concepts from zincblende semiconductor physics as QDs hold

the underlying symmetry of a semiconductor. The study of properties of semiconductors

is greatly simplified by using symmetries of the system and group theoretical methods.

The most basic symmetry of a crystal is its invariance under translations which is often

accompanied by further rotational and reflection symmetries.

The eigenstates of a particle in a periodic potential V (r⃗+ R⃗) = V (r⃗) are given by the Bloch

plane waves that are modulated by the periodicity of the crystal: Φk⃗(r⃗) = uk⃗(r⃗)e
ik⃗·r⃗ where
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uk⃗

(
r⃗ + R⃗ℓ

)
= uk⃗(r⃗), with R⃗ being the lattice vector of the crystal. k⃗ is called the wave

vector and corresponds to the crystal momentum, in the units h̄ ≡ c ≡ 1, which we will

take for the remainder of this thesis. The eigenvalues En,⃗k of Bloch wavefunctions from the

Schrödinger equation HΦn,⃗k = En,⃗kΦn,⃗k are known as the dispersion relation of the system,

where n is an integer number, denoting the band index. Due to periodicity of the system,

we may define the reciprocal lattice vector G⃗ with the relation R⃗.G⃗ = 2πm with m being an

integer. Therefore, the periodicity also dictates that Φn,G⃗+k⃗ = Φn,⃗k. However, we only focus

on the range of k⃗ that resides within the first Brillouin zone: The set of k⃗ that are closer to

the center k⃗ = 0 compared to all other reciprocal lattice points G⃗ ̸= 0.

2.2.1 Valence state structure: Light and Heavy holes

III-V semiconductors have zincblende structure and are direct band gap semiconductors;

the top of the valence band and the bottom of the conduction band occur at the same k⃗

value. In this case, this point is at k⃗ = 0 which is also known as the Γ point. Additionally,

the crystal structure of zincblende materials have face-centered cubic (often abbreviated fcc)

lattices. The knowledge of lattice structure of a crystal is crucial since the symmetry of the

Brillouin zone results from the symmetry of the crystal. While the translational symmetry

of the lattice allowed us to use the Bloch theorem, rotational and reflection symmetries of

the crystal will simplify the calculations of energy band structures. This is utilized by noting

that wavefunctions will transform according to the symmetry operations of the crystal. The

center of the Brillouin zone (Γ point) possesses the highest possible symmetry and its group

is isomorphic to the point group of the lattice. Therefore we can classify the wavefunctions

based on the symmetry operations of the crystal. As such, we will use group theory.

From a group theoretical point of view, the space group (i.e., the group that contains both
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{E}
{
3C2/3ÊC2

}
{6S4} {6σ/6Êσ} {8C3}

{
Ê
} {

6ÊS4

} {
8ÊC3

}
Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 −1 −1 1 1 −1 1
Γ3 2 2 0 0 −1 2 0 −1
Γ4 3 −1 −1 1 0 3 −1 0
Γ5 3 −1 1 −1 0 3 1 0
Γ6 2 0

√
2 0 1 −2 −

√
2 −1

Γ7 2 0 −
√
2 0 1 −2

√
2 −1

Γ8 4 0 0 0 −1 −4 0 1

Table 2.1: Character table of the double group of Td for the Γ point in zincblende structures.
The wavefunctions at the Γ point will transform according to the irreducible representations
of this group.

translational and rotational symmetries) of zincblende is T 2
d . Its point group is identical

to the point group of the tetrahedral point group Td with 24 elements: Identity, eight C3

operations, three C2 operations, six S4 operations, and six σ (reflection) operations. This is

valid when we ignore the spin of charge carriers. However, upon inclusion of spin and taking

the spin-orbit interaction into account, we will be dealing with the double cover group of

the crystal. The double cover group of zincblende structures has 24× 2 = 48 elements and

can be shown to fall into eight conjugacy classes. As such it will have eight irreducible

representations. We will use the notation Γi with i = 1, 2, 3, 4, 5, 6, 7, 8 to denote these

irreducible representations and the corresponding character table is shown in Table 2.1. The

wavefunctions at the Γ point always transform according to the irreducible representations

of the point group of the crystal which means that the Bloch functions of the Γ point can

be labeled according to the irreducible representations of Table 2.1.

Upon inspection of the double group characters, it can be verified that the valence bands are

in the Γ8 representation with four states and Γ7 with two states, while the lowest conduction

bands are in the Γ6 representation (see Fig. 2.4(a)). To see this we note that the conduction

bands correspond to s-type orbitals, with atomic orbital angular momentum ℓ = 0, and
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the corresponding valence bands are p-type with ℓ = 1 with three different values of mℓ =

0,±1. Taking the effects of spin-orbit interaction into account, the total angular momentum

J = ℓ + s should be conserved. This does not affect the conduction band since ℓ = 0.

However, this gives us the different possibilities of the valence band: We have two states

with total J = 1/2 with Jz = {+1/2,−1/2} (two-dimensional representations, so Γ7 or Γ6

symmetry, but it can be shown that it belongs to Γ7 [25]), and four states with J = 3/2

with Jz = {+3/2,+1/2,−1/2,−3/2} (four-dimensional representations, therefore it is Γ8

symmetry since this is the only four-dimensional irreducible representation). From here on,

we will always take the quantization axis to be along the growth in the z direction. As seen

from Fig. 2.4(a), Γ7 has much lower energy due to the spin-orbit effect (as such, it is referred

to as the split-off band) and therefore can be neglected. We only focus on the four states

from the Γ8 states. The Luttinger Hamiltonian for Γ8 states reads [25]:

HL =
1

2m

[(
γ1 +

5

2
γ2

)
k2 − 2γ3(k⃗ · J⃗)2 + 2 (γ3 − γ2)

∑
i

(kiJi)
2

]
, (2.1)

where parameters γi, i = 1, 2, 3 are dimensionless and are known as the Kohn-Luttinger para-

meters. In this form, the first two terms of the Hamiltonian above have spherical symmetry

and the cubic symmetry is represented by the last two terms. Writing this Hamiltonian in

a matrix form in the basis of {|Jz = 3/2⟩, |Jz = 1/2⟩, |Jz = −1/2⟩, |Jz = −3/2⟩}, we find,

HL =
1

2m0



P1 Q R 0

Q† P2 0 R

R† 0 P2 −Q

0 R† −Q† P1


, (2.2)
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where,

P1 = (γ1 − 2γ2) k
2
z + (γ1 + γ2)

(
k2x + k2y

)
, (2.3a)

P2 = (γ1 + 2γ2) k
2
z + (γ1 − γ2)

(
k2x + k2y

)
, (2.3b)

Q = −2
√
3γ3kz (kx − iky) , (2.3c)

R = −
√
3
[
γ2
(
k2x − k2y

)
− 2iγ3kxky

]
, (2.3d)

We can now find the effective masses. By assuming that the k⃗ vector points along the z axis,

HHH
L =

k2z
2m

(γ1 − 2γ2) for Jz = ±3/2,

HLH
L =

k2z
2m

(γ1 + 2γ2) for Jz = ±1/2.

We call these different types of valence band holes, the heavy holes (HHs), with Jz = ±3/2

and effective mass of mHH = m (γ1 − 2γ2)
−1, and light holes (LHs) with Jz = ±1/2 and

effective mass of mLH = m (γ1 + 2γ2)
−1.

Our calculations thus far have assumed the translational symmetry of a lattice with a periodic

potential. This symmetry in a QD is lowered by the confinement potential Vc(x, y, z) in

all three spatial directions. Since the characteristic length of this confinement potential

is large compared to the atomic scale, one can take the envelope function approximation

Ψ(r⃗) = Φk⃗=0(r⃗)F (r⃗), in which the wavefunction of each particle is the product of the Bloch

function Φk⃗=0(r⃗) (originating from the underlying semiconductor structure), and a slowly

varying envelope function F (r⃗), originating from the of the quantum-dot Hamiltonian. This

quantum confinement leads to the splitting of the hole states in QDs. Since in QDs the
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confinement size is much smaller compared to the lateral size, we consider the case of strong

quantum confinement Vc(z) along the z axis (growth direction), however, the conclusion does

not depend on this particular choice [25, 27]. In this case, the holes are described by the

Luttinger Hamiltonian HL from Eq. (2.2), subject to the confinement potential: 

Hh,QD = Vc(z) +HL. (2.4)

However, it is important to note that the spherical symmetry of the original problem from

Eq. (2.2) is now broken by the confinement of the QD. For the systematic treatment of the

problem with the envelop function approximation, one needs to replace the k⃗ of the Luttinger

Hamiltonian with operators [28], however, for the simplest case of achieving a qualitative

understanding of the valence states of a QD, we assume that the off-diagonal terms, i.e., Q

and R of the Luttinger Hamiltonian are negligible. This means that the Hamiltonian above

becomes:

Hh,QD = Vc(z) +
1

2m

[(
γ1 +

5

2
γ2

)
k2 − 2γ2

∑
i

(kiJi)
2

]
. (2.5)

We can now separate this problem into finding the effective masses along two separate

directions: One along the confinement (z) and one perpendicular to the confinement (⊥).

We find the effective masses mz
HH = m (γ1 − 2γ2)

−1 and mz
LH = m (γ1 + 2γ2)

−1 along the

confinement, and m⊥HH = m (γ1 + γ2)
−1 and m⊥LH = m (γ1 − γ2)−1 for the in-plane mo-

tion. We can also find the separation along the confinement between the HHs and LHs

to be ∆HH,LH = 2γ1k
2
z/m [25, 27]. By including the off-diagonal terms into the Luttinger

Hamiltonian, we find the effects of hole mixing; the Q term couples |±3/2⟩ states to |±1/2⟩

states, and the R term couples | ± 3/2⟩ to | ∓ 1/2⟩ states. This essentially means that hole
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JHH
z = ±3/2�8

JLH
z = ±1/2

�6

JLH
z = ±1/2

�7

Eg

Je
z = ±1/2

JHH
z = ±3/2
JLH
z = ±1/2

�HL,LL

Je
z = ±1/2

Eg

2

(a) (b)

Figure 2.4: (a) Band structure of bulk III-V semiconductors. (b) Effective masses of hole
states in a QD subject to strong confinement along the z (growth) axis.

spins are spinors that contains some contribution from all four of hole projections. Although,

it is often the case that one HH component is the dominant term so we denote them by the

notations |⇑⟩ and |⇓⟩. The overall compositions are

| ⇑⟩ = |+ 3/2⟩+ cLH |+ 1/2⟩+ c′LH | − 1/2⟩+ c̄| − 3/2⟩, (2.6)

| ⇓⟩ = | − 3/2⟩+ cLH | − 1/2⟩+ c′LH |+ 1/2⟩+ c̄|+ 3/2⟩, (2.7)

where c̄ ∼ cLH × c′LH , and coefficients cLH and cLH are very small numbers (less that 10%)

for InAs as are experimentally measured from the absorption spectroscopy [29, 30].

2.2.2 Optical selection rules

Using our knowledge about the structure of the holes we can now find the optical selection

rules of exciting QDs to higher energy states. The exciton and trion states that we discussed
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(a) (b)

Figure 2.5: Optical selection rules in QDs. In (a) a polarized light excites a single excess
electron into a new configuration with higher energy. The colors indicate how these different
states are denoted in the selection rules shown in (b) for the case of a spin up and σ+ light.
A similar process takes place for a spin down and σ− light.

in the previous section are achieved by shining a polarized light at the frequency of the

transition frequency of the QD. Since left-, and right-circularly polarized light carries angu-

lar momentum ℓ = ±1 (denoted by σ+ and σ− respectively), the conservation of angular

momentum from the ground states to exciton and trion states will dictate what configuration

of charges are possible.

As we discussed in the previous section, LH bands lie deeper compared to HH bands

(Fig. 2.4(b)). Therefore we only consider configurations with HHs, i.e., we assume the hole

states carry angular momentum of Jz = ±3/2. As such, by shining σ+ (σ−) on a neutral

QD with no initial angular momentum, only the bright excitons X+ = |↓⇑⟩ (X− = |↑⇓⟩)

are allowed. The two states with parallel spins, |↑⇑⟩ and |↓⇓⟩ (with total Jz being +2 and

-2, respectively), are known as dark excitons and are mainly optically inactive. They can

be either accessed through hole spin mixing (discussed below), or through radiative decay

of biexcitons; a bound state of two excitons [31]. 

The same principle applies to charged QDs. If the QD is charged with a spin up |↑⟩ (down |↓⟩)

electron then using σ+ (σ−) light we will have access to the bright trion states |T+⟩ = |↑↓⇑⟩
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(|T−⟩ = |↓↑⇓⟩). This process is depicted in Fig. 2.5. In Fig. 2.5(a) the process of shining light

on different initial configurations of a charged QD is shown. The secondary configurations

in (a) are the excited state charge configurations. We show these processes in a QD in

a short-hand notation used in (b), in which the corresponding configurations from (a) are

color-coded for the case of σ+. In terms of the hole mixing description of the previous section,

we can find the dipole matrix elements between the electron spin states and the trion states

as

⟨T ± |d · σ±| ± 1/2⟩ = 1, (2.8a)

⟨T ± |d · σ∓| ± 1/2⟩ ∼ cLH , (2.8b)

⟨T ∓ |d · σ∓| ± 1/2⟩ ∼ c′LH , (2.8c)

⟨T ∓ |d · σ±| ± 1/2⟩ ∼ c̄. (2.8d)

These selection rules have direct consequences on applications of QDs for quantum in-

formation processing. Applying certain quantum gates corresponds to transferring pop-

ulations from one state of the qubit to another; that is, an X gate corresponds to flip-

ping the spin of the QD. It is clear from the selection rules in the equations above that

the matrix elements from the opposite trions to the spin manifold are not strong enough

due to the smallness of the coefficients cLH , cLH , and c̄. Therefore the dominant selec-

tion rules are those shown in Fig. 2.5(b). The required selection rules for implementation

of quantum operations could be achieved by application of an in-plane external magnetic

fields perpendicular to the growth axis (z), the so-called Voigt geometry. Let us pick

the magnetic field to be along the x axis. In that case the spin states will have to be

the eigenstates of the X Pauli operator. As such the two electron ground states will be
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Figure 2.6: Optical selection rules in QDs with an in-plane external magnetic field, known
as the Voigt geometry. The lights are linearly polarized and using circularly polarized light
will lead to formation of Λ-systems.

|x⟩ =
√

1/2(|↑⟩ + |↓⟩) and |x̄⟩ =
√

1/2(|↑⟩ − |↓⟩). Correspondingly, the trion levels will be

|Tx⟩ =
√

1/2(|↓↑⟩ − |↑↓⟩)(|⇓⟩ + |⇑⟩) and |Tx̄⟩ =
√

1/2(|↓↑⟩ − |↑↓⟩)(|⇓⟩ − |⇑⟩). Now, upon

using linearly polarized light, that is πx =
√

1/2(σ+ + σ−) and πy =
√
1/2(σ+ − σ−), we

will have the transitions shown in Fig. 2.6 [32]. This means that if we pick one polarization

of the light, we will end up with a Λ-system. This Λ-system, upon using let us say, σ+,

will be the three-level system of {|Tx̄⟩, |x⟩ , |x̄⟩}. Thus, we can imagine that by transferring

the population through the auxiliary trion level in this Λ-system we can implement desired

quantum gates. Some potential schemes will be discussed in Chapter 4.

2.3 Quantum dot molecules

As we discussed in Section 2.1, the spatial position of QDs during epitaxial growth is random.

Moreover, each dot will have a slightly different band gap energy which means exciting more

than one dot at a time requires specific lasers focused on a particular dot. This clearly makes

the scalability argument of the DiVincenzo criterion impossible. In Ref. [33], Economou,

Doty et al. have proposed using a coupled pair of vertically stacked InAs QDs, known as

QDMs [34], to overcome this challenge. In the following, we look at the basic concept of
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Figure 5. Cross-sectional TEM images reveal stacking multiple of multi-
ple layers of QDs aligned through strain induced nucleation. Image S2
demonstrate the increase in QD sizes related to earlier nucleation in each
QDgrowth cycle, while image S1 indicates well-aligned partial cappedQDs
with similar sizes can be achieved. Reproduced with permission.[59] Copy-
right 1999, Elsevier.

distributions of g-factor, fine-structure splitting (FSS), and spec-
tral diffusion. In Section 7 we discuss a mechanism for tuning
g-factors in CQDs. FSS in neutral excitons originates from the
atomistic anisotropy in theGaAs zincblende structure, spin–orbit
interactions, and the electron–hole exchange interactions.[75] This
effect can be detrimental to generating entangled photon pairs
frombiexciton cascade and severalmethods have been conducted
to minimize the FSS, such as droplet epitaxy,[76] applying uniax-
ial strain,[77] and magnetic field.[78] Spectral diffusion originates
from the change of occupancies of the trap states around a QD.
Solutions to such a problem include reducing the amount of cur-
rent flowing through a single QD,[79] or using optical pumping to
overpopulate the charges in those states.[80] After presenting an
introduction and review of the band structure and single particle
states, we will discuss some of the results relevant to overcoming
the FSS and spectral inhomogeneities.

3. Band Structure

With the formation of a CQD, the addition of tunnel coupling
and the modification of structural and strain profiles necessi-
tates a review of the fundamental electronic properties and how
they relate to isolated, single QDs. In this section we will present
an introduction to the band structure of CQD. Many of the con-
cepts discussed here form the basis of the observations in lat-
ter sections. Beginning with the equilibrium strain distribution

in a given CQD nanostructure, this can be found by varying the
atomic displacements to minimize the total elastic energy. This
minimization is often performed numerically using the contin-
uum elasticity model, achieving a satisfactory description compa-
rable to atomistic valence force field methods with considerably
less computational complexity, and with a clear connection to
elasticity parameters measured accurately in bulk materials.[81–83]

Within the continuum elasticity model, the strain distribution is
defined as

!ij
(
r⃗
)
= 1
2

(
dui

(
r⃗
)

drj
+
duj

(
r⃗
)

dri

)
(1)

in terms of the atomic displacement field u⃗(r⃗), with derivatives
calculated as finite differences within a symmetrization scheme
averaging over each direction. With an InxGa1−xAs alloy compo-
sition distribution described by x(r⃗) (where x = 0(1) corresponds
to GaAs (InAs)), the total elastic energy to be minimized can be
expressed as[82]

Ee = ∫ dV
[1
2
C11

(
!2xx + !

2
yy + !

2
zz

)
+ 1
2
C44

(
!2yz + !

2
xz + !

2
xy

)

+C12

(
!yy!zz + !xx!zz + !xx!yy

)

− x
(
r⃗
) (

C11 + 2C12

) (
!xx + !yy + !zz

)
!0
]

(2)

where Cij are the components of the elastic stiffness ten-
sor and the last term accounts for the intrinsic strain !0 =
(aInAs − aGaAs)∕aGaAs due to mismatched lattice constants when
represented in the coordinates of the GaAs barrier. The elastic
stiffness varies with material, and can be linearly interpolated
with the composition as Cij(r⃗) = CGaAs

ij + x(r⃗)(CInAs
ij − CGaAs

ij ).
Due to the lack of inversion symmetry in InAs andGaAs, shear

strain induces a piezoelectric polarization field. Including linear
and quadratic contributions, this field can be expressed in the
case of zincblende lattices as[84–86]

P⃗
(
r⃗
)
= 2e14

⎛
⎜
⎜⎝
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!xz
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⎛
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)

!xz
(
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)
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⎟⎠

+ 4B156

⎛
⎜
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!xy!xz
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!xz!yz
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⎟
⎟⎠

(3)

where e14 andBijk are thematerial-dependent linear and quadratic
piezoelectric coefficients, respectively. From this polarization, the
piezoelectric charge distribution can be calculated using Gauss’s
law as #p(r⃗) = −∇⃗ ⋅ P⃗(r⃗), leading to a piezoelectric potential

Vp

(
r⃗
)
= 1
4$%0%r ∫ d3 r⃗′

#p
(
r⃗′
)

||r⃗ − r⃗′||
(4)

acting on bound charges.
Electronic excitations can be described using several ap-

proaches with varying degrees of complexity, including the
single-band effective mass approximation, multiband k⃗ ⋅ p⃗
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Figure 2.7: Six vertically stacked quantum dots. Taken from Ref. [3]

growth in these systems and their optical selection rules.

2.3.1 Growth procedure

QDMs are two vertically stacked pairs of InAs QDs, grown on top of each other. As discussed

in Section 2.1, the appearance of islands of QDs is random, therefore by simply growing two

layers of QDs, there is no guarantee that the dots will appear on top of each other. For

this purpose, the cap and flush method [3] is used; first, at low temperatures, InAs QDs are

grown, and then a partial cap of GaAs is grown. By raising the temperature the top of the

QD is desorbed and the dot is capped. This is followed by completing the growth of the

GaAs layer. In order to control the coupling of multiple layers of QDs, the strain of the first

layer, propagates through the capping layer to the surface as a result of the deformation of

the GaAs from the larger lattice constant InAs of the QD. The increase in lattice constant at

the surface creates the required nucleation site for a secondary QD in any following growth.

This process can be repeated multiple times without loss of vertical alignment with QDs.

Fig. 2.7, shows this process for six quantum dots grown on top of one another.
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2.3.2 Molecular states in QDMs

Single-particle bound states with electrons or holes can be isolated in QDMs with several

charge configurations. We label these states by QD occupancy with respect to the top and

bottom dots: (eBeT
hBhT

). The occupancies are determined by the Pauli exclusion principle such

that each orbital can be populated by a maximum of two charges. Excitonic bound states

can occur with charges within the same dot as direct excitons, or two opposite dots as indirect

excitons. We denote these two states as
(

0, ↑

0,⇓

)
being an example of a direct exciton and

(
↑, 0

0,⇓

)
being an example of an indirect exciton.

Electrons and holes in QDMs are coupled through the pairwise exchange interaction. Addi-

tionally, each pair of particles is coupled through the direct Coulomb interaction as well. The

multi-particle Hamiltonian of a QDM, by taking into account the single particle Hamiltonians

and the interaction among the charges in different dots, can be written as

H = He +Hh +HCoulomb +Hexchange (2.9)

The single-particle terms of the Hamiltonian read,

He +Hh =
∑
α

Eα
i nαi −

∑
αc

tα

(
c†αBσcαTσ + c†αBσcαTσ

)
. (2.10)

with α = (e, h), in each dot, i = (B, T ) and cαiσ

(
c†αiσ

)
being the annihilation (creation)

operators for localized single-particle states. The wavefunction overlap between QDs leads

to intrinsic interdot tunnel coupling −tα = ⟨B, σ |Hα|T, σ⟩. Hybridized wavefunctions as

symmetric and antisymmetric superpositions (|B, σ⟩α ± |T, σ⟩α) /
√
2, are formed by bringing

the tunnel coupled energy levels into resonance. In analogy with diatomic molecules, an

anticrossing pattern with the energy level splitting of ∆Eα = |2tα| occurs; hence the name
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QDMs. We model this anticrossing of the system as follows. We first need to understand

the tunneling resonances of QDMs in a external electric field applied in the growth direction.

Application of such electric fields allow to control the energy levels of QDs via quantum-

confined Stark effect [34]. For an electric field F , the resulting Stark shift is ∆Eα
i (F ) =

−piαF , where piα = qα⟨zi⟩ is the static dipole moment, α = {e, h} with qe,h = ∓e, and

i = (B, T ). Notice that due to the presence of a barrier between the two dots (with thickness

d), energy levels in separate QDs are shifted the most by the built-in interdot dipole p0 = ed.

As such indirect excitons have a strong energy dependence on applied electric fields since

they have electron and hole that are located in two separate QDs, while direct excitons have

a small electron-hole dipole moment since charges are located in the same dot, therefore

they have a weak energy dependence on applied external electric fields. The neutral exciton

Hamiltonian in the basis of direct and indirect excitons is

ĤX =

 E0 −tX

−tX E0 − edF

 (2.11)

with E0 being the exciton energy and tX the tunneling matrix element, determined by the

overlap of the hole wavefunctions in the two dots. It is important to note that the states

of QDMs continuously transform between atomic-like and molecular orbitals as a function

of the electric field F : At zero electric field the eigenvalues are E0 − tX and E0 + tX and

the corresponding eigenstates are the symmetric (bonding) and antisymmetric (antibond-

ing) combination of the direct and indirect excitons. On the contrary, for large electric

fields, the tunnel coupling is much smaller than the Stark shift (edF ) and the eigenvalues

of the Hamiltonian are the energies of the two basis states, direct and indirect exciton. The

anticrossing of these states is demonstrated in Fig. 2.8.
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Coherent tunneling between two InAs quantum dots forms delocalized molecular states. Using

magnetophotoluminescence spectroscopy we show that when holes tunnel through a thin barrier, the

lowest energy molecular state has bonding orbital character. However, as the thickness of the barrier

increases, the molecular ground state changes character from a bonding orbital to an antibonding orbital,

confirming recent theoretical predictions. We explain how the spin-orbit interaction causes this counter-

intuitive reversal by using a four-band k ! p model and atomistic calculations that account for strain.

DOI: 10.1103/PhysRevLett.102.047401 PACS numbers: 78.67.Hc, 78.20.Ls, 78.47."p, 78.55.Cr

Quantum dots have confined energy levels analogous to
ordinary atoms. Two quantum dots in close proximity can
be viewed as an artificial diatomic molecule when coherent
tunnel coupling leads to the formation of delocalized
states. The properties of such quantum-dot molecules
(QDMs) have been the focus of much research because
of potential applications in novel optoelectronic devices or
quantum information processing. In analogy with natural
diatomic molecules, one expects the lowest energy delo-
calized molecular state to have bonding orbital character.
However, recent theoretical studies have predicted that the
molecular ground state for a hole in an InAs QDM can have
antibonding character [1–3]. If verified by experiment, an
antibonding molecular ground state would provide a strik-
ing example of a novel property of artificial atoms that
cannot simply be explained as a rescaled version of the
physics of real atoms.

In this Letter we present the first experimental observa-
tion of an antibonding molecular ground state. We find that
the molecular ground state changes character from a bond-
ing orbital to an antibonding orbital as the thickness of the
barrier separating the two coupled quantum dots is in-
creased. Using a four-band k ! p model validated by atom-
istic calculations, we explain how this counterintuitive
result arises from the spin-orbit (SO) interaction.

We use magneto-optical spectroscopy to study QDMs
composed of two vertically stacked InAs=GaAs quantum
dots separated by a GaAs barrier. The two dots have differ-
ent size, composition, and strain, and therefore different
confined energy levels. As a result, the electron and hole
tend to localize in individual dots, as depicted in the left-
hand insets of Fig. 1. Delocalized molecular states are
formed by coherent tunneling [4] when an electric field
tunes the relative energies of confined states in the two dots
through resonance [5–7]. Either electron or hole tunneling
can be induced [8], but in this work we focus only on hole
tunneling. Because of the large inhomogeneous distribu-
tion of parameters in ensembles of QDMs, all spectroscopy
is performed on single QDMs.

Figure 1 shows the anticrossing of the neutral exciton
(X0) that results from coherent tunneling of a single hole
through a thin (2 nm) barrier while the electron remains
localized in the bottom dot. The tunneling of holes creates
molecular states that are the symmetric and antisymmetric
combinations of the two basis states where the hole is in
one dot or the other [9]. In analogy to real molecules, we
call the symmetric (nodeless) molecular state, which has an
enhanced wave function amplitude in the barrier, a bonding
state. The antisymmetric (noded) state has a suppressed
amplitude in the barrier and is called the antibonding state.
These molecular orbitals are depicted schematically by the
right-hand insets in Fig. 1. Intuitively one expects the
molecular ground state to have bonding orbital character
and the first excited molecular state to have antibonding
orbital character.
The formation of molecular orbitals at an anticrossing is

described by a simple Hamiltonian using an atomiclike
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FIG. 1 (color online). Photoluminescence (PL) measurement
of the electric field-induced anticrossing of X0 at zero magnetic
field for a sample with 2 nm barrier. ! indicates the anticrossing
energy gap. Insets: If the hole energy levels are out of resonance
(left) the hole is localized in one of the individual dots. When the
hole levels are tuned into resonance by the applied electric field,
coherent tunneling leads to the formation of bonding (bottom
right) and antibonding (upper right) molecular wave functions.
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Figure 2.8: Energies of observed photoluminescence lines for the neutral exciton show an
anticrossing as a function of applied electric field. Taken from Ref. [4].

2.3.3 Hole spin mixing in quantum dot molecules and scalable

structures

We now turn to the experimental observation of hole spin mixing in QDMs as reported in

Ref. [5]. As we discussed in Section 2.2.2, hole spin mixing between the HHs and LHs is

expected at transverse magnetic fields which results in the appearance of dark excitons in

optically measured spectra. However, in QDMs this phenomenon occurs in the absence of

transverse magnetic fields. In Fig. 2.9(b) both bright and dark (circled in green) excitons are

observed with no applied transverse magnetic fields. The appearance of the dark state signals

the coherent coupling of the direct dark and the indirect bright states which is equivalent to

having a superposition of the heavy and light hole spins. This hole spin mixing is due to the

spin-orbit interactions of the valence band that we discussed, and the symmetry breaking of

QDMs due to the misalignment of the two dots. As pointed out in Section 2.2.2, hole states

contain contributions of varying degree from all four heavy and light holes. In the case of a

QDM, the coupling of the LH between two QDs is very strong due to spin-orbit interactions
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Figure 18. a) Calculation of bright/dark exciton state energies of a CQD as a function of applied electric field. b) Experimental observation of both bright
and dark (circled) excitonic states with no applied magnetic field. c) Simulation of excitonic state energies demonstrating match to experimental data
when hole spin mixing term is added to the Hamiltonian. Adapted with permission.[71] Copyright 2010, American Physical Society.

is the coherent superposition of ⇑ and ⇓ hole spin projections.
Such a quantum state has allowed optical transitions to both log-
ical basis states, and thus enables lambda transitions without
application of a transversemagnetic field, thus preserving nonde-
structive readout capabilities. A detailed description of this phe-
nomena can be found in ref. [52]. Here we provide one example
of the evidence for hole spinmixing phenomena, briefly describe
its physical origin in the unique properties of the valence band,
and summarize the way hole spin mixing can be leveraged for
quantum technologies.
Figure 18a plots the calculated energy levels of the various spa-

tial configurations of electrons and holes for a single exciton in
a CQD pair. For the direct exciton, with electron and hole in the
same quantum dot, there are two states (bright and dark) that
are split in energy due to the difference in the spin exchange en-
ergy associated with parallel (dark) and antiparallel (bright) elec-
tron and hole spins. This splitting is well established in single
QDs. We note that only one of the two spin manifolds (electron
↓) is shown. The analogous states in which the electron is up (i.e.,
↑⇓ bright state, ↑⇑ dark state) are degenerate in energy with the
respective ↓ bright and dark states. In contrast, indirect exciton
states are degenerate in energy regardless of the bright/dark rel-
ative spin orientation because the spatial separation of the elec-
tron and hole results in a negligibly small spin exchange energy.
In Figure 18b, we show experimental data plotting the intensity
(color) and energy (y axis) of excitonic emission from a CQD as
a function of applied electric field (x axis). The two circles in-
dicate the observation of the dark excitonic states. Observation
of dark excitonic states is well established when transverse mag-
netic fields are applied, but the data presented in Figure 18b are
taken with no appliedmagnetic field. The dark states become vis-
ible because of a coherent coupling of the direct dark (e.g.,

(
↓, 0
⇓, 0

)
)

and indirect bright (e.g.,
(
↓, 0
0,⇑

)
) states. This is equivalent to the

formation of a coherent superposition of the (⇓, 0) and (0, ⇑)
states—the coherent mixing of two spin manifolds. Figure 18c
presents simulation data verifying that the experimental obser-
vations are reproduced with the addition of only a single hole

spin mixing term to the Hamiltonian describing the CQD.[71] De-
tailed descriptions of the experimental observation of this hole
spin mixing phenomena in both exciton and trion states can be
found in the literature.[71,106]

Hole spin mixing arises due to spin–orbit interactions within
the valence band and requires symmetry breaking. Detailed de-
scriptions of the origin of hole spinmixing and itsmagnitude un-
der varying conditions can be found in the literature.[193–195] The
key concepts are that hole spins in QDs must be considered as
spinors comprising both heavy and light components with ±3∕2
and ±1∕2 spin projections, respectively.[94] Every hole state con-
tains some contribution from all four of these hole spin projec-
tions, but the spinors describing the two ground states of the hole
in a QD are dominated by the contributions from the ±3∕2 com-
ponents. As a result, the heavy hole ±3∕2 nomenclature is typ-
ically used as a shorthand to denote the corresponding spinor.
In CQD, the coupling of the light hole components between two
QDs is much stronger than the coupling of heavy hole compo-
nents, as one would expect from an effective mass-based model
of tunneling. These light hole components of the spinors me-
diate both the emergence of antisymmetric molecular ground
states[96,188] and hole spin mixing. Specifically, the combination
of spin–orbit interactions and broken symmetry in the CQD pair
allow the light hole components to mediate the formation of a co-
herent superposition of two states in the two QDs whose spinors
are dominated by orthogonal heavy hole spin projections (i.e., ⇑
and ⇓).[71] The symmetry breaking originates in a misalignment
of the two QDs along the growth axis. This misalignment is not
unusual, but is typically small enough that hole spin mixing is
not observed.[71]

The existence of hole spin mixing has significant implications
for quantum technologies because it enables all-optical coherent
rotations between logical qubit basis states defined by orthogonal
heavy hole spin projections for a single hole in a single QD.[196]

Doty and Economou showed that the combination of hole spin
mixing and the use of indirect optical transitions provides a path-
way to scalable all-optical QIP without transverse magnetic fields
that prevent nondestructive readout.[106] The key elements of the

Adv. Quantum Technol. 2020, 3, 1900085 © 2019WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900085 (23 of 31)

Figure 2.9: (a) Theoretical model of bright and dark exciton energies of QDMs as a function
of external electric field. (b) The corresponding experimental observation in the absence of
in-plane magnetic fields. Taken from Ref. [5].

and misalignment of the two dots.

This spin hole mixing has been at the heart of the proposal by Economou et al. in Ref. [33]

as it enables arbitrary rotations between the qubit states defined by the two HHs (
(

0, 0

0,⇓

)
and

(
0, 0

0,⇑

)
) without the need for external magnetic fields. The spin mixing along with the

indirect optical transitions, provide a pathway to scalable QD-based systems: Although each

QD in the QDM has its own unique direct transition, the indirect transition can be tuned

into resonance with a cavity using local electric fields. In that sense, multiple QDMs can be

tuned with the same frequency of a single laser rather than having an individual laser tuned

to each QDM. The level structure and the selection rules of these hole spin qubit systems,

all based on indirect transitions of QDMs, are shown in Fig. 2.10(b).

The hole spin mixing enables an optical transition between the basis states and a superpos-
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Figure 2.10: (a) Schematic depiction of two coupled QDs grown vertically on top of one
another. (b) Optical selection rules from hole spin qubits in these systems.

ition state that contains both
(

0, ↑

0,⇑⇓

)
and

(
0, ↑

⇓,⇓

)
components. This Λ-system can be used to

perform rotations on the hole spin basis. Two transitions to
(

0, ↓

⇑,⇓

)
and

(
0, ↑

⇓,⇑

)
can be used

for selective readout since the optically excited states couple optically to only one of the

qubit states. We call these the cycling transitions since photon emission does not lead to

relaxation to the other hole basis state. However, the hole spin mixing also proves to be

problematic as two molecular states with close energy values are formed: The target |t⟩ and

the unwanted level |u⟩. These states have opposite molecular symmetries but both have the

same optical coupling to the qubit basis states. This will lead to off-resonant coupling of the

excitations and leakage out of the intended Hilbert space which is detrimental to the fidelity

of the quantum gates. We will develop quantum control techniques to improve the fidelities

of these gates in Chapter 4.



Chapter 3

Quantum information processing with

quantum dots

In this chapter, we first review the applications of self-assembled quantum dots for quantum

information processing, and in particular, their role as sources of single photon emission.

We review the emission properties of QDs and why they are ideal sources of single-photon

emission and we go over some of their applications for the generation of photonic graph states.

In Section 3.3.4, we end the chapter by presenting our results in the form of proposals for

the generation of photonic graph states from QDMs.

3.1 Quantum dots as sources of single-photon emission

An ideal single-photon source is defined as a source of photon emission that in response to

an external trigger emits a single-photon. This can be modeled as a two-level atomic-like

system with a ground state |g⟩ and an excited state |e⟩, shown in Fig. 3.1. By initially

putting the population in the ground state level, an optical or electrical excitation transfers

the population to the excited level. Through the decay of the system from the unstable

excited level a photon is spontaneously emitted. This process can be repeated for a string

of photons. In a sense, this process can be thought of as if the two-level system is used to

convert the coherent state of the light from the trigger pulse into a single-photon stream.

24
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Figure 3.1: An ideal source of single photons. A two-level system that can be excited through
an external trigger. Upon relaxation, a photon is emitted spontaneously.

The light trigger pulse used in this process is a combination of plane wave modes where

each mode is a quantized harmonic oscillator with polarization ε and frequency ω = |k|

(h̄ ≡ c ≡ 1). Defining n as the occupation number of a mode, we have
∑

k,ε,n ck,ε|n⟩k,ε.

The outcoming photon from the system, on the other hand, is a light field composed of

single-photon Fock states |1⟩k,ε, with n = 1.

Some important features of a good source of single-photon emission are:

• Indistinguishability: Two simultaneous incident photons on a two-input beam splitter

interfere such that both exit from a single output due to their Bose-Einstein stat-

istics [35]. Two purely indistinguishable photons will have a completely destructive

interference. An ideal source of single-photon emission will emit photons that are

completely indistinguishable. However, the transition frequency of the system (and

consequently the photons) can be affected by the dephasing and spectral diffusions of

the system [36]. The spectral fluctuations of the optical frequency of the emitter will

lead to distinguishability of successively emitted photons from the system.

• Wavelength: An ideal single-photon source should be a narrow linewidth emitter,

meaning that once the two-level transition frequency is driven on-resonance, it leads
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elaborated with the above techniques are suitable for optical
spin manipulation often carried out at a temperature of 4 K,
with the possibility for detailed spectroscopy up to a few tens
of Kelvin.

This review concentrates on the optical manipulation of
spin states. A very high degree of control over carrier-spin
states and the mesoscopic nuclear spin system is also
achieved in QDs defined by electrostatic potentials as sum-
marized by Hanson et al. (2007). The electron (not hole) spin
physics probed in these transport measurements at very low
temperature (100 mK) provide a powerful, complementary
approach (Petta et al., 2005; Bluhm et al., 2011; Takahashi
et al., 2011) to optical spectroscopy.

B. Addressing individual charge states

Controlling the charge state of QDs relies on the remark-
able possibility of doping semiconductor materials with
n-type or p-type impurities. In some cases the nonintentional
residual doping is sufficient to obtain singly charged QDs
(Akimov et al., 2002; Belhadj et al., 2009), see Fig. 3(c), but
usually a delta-doped layer is grown a few nanometers below
the QD layer with a density adjusted to reach the desired
average QD charge (Cortez et al., 2002; Greilich et al.,
2006b; Laurent et al., 2006). This modulation doping tech-
nique can be significantly improved by controlling the chemi-
cal potential of the QD electrons with an electric voltage
applied between the doped layer and a semitransparent top
contact (Drexler et al., 1994). In these charge-tunable struc-
tures a given QD is coupled to a reservoir of free carriers
(a heavily doped layer) through a tunnel barrier as in Fig. 3(a).
The energy levels of the QD can be adjusted with respect to

the Fermi level in the highly doped barrier, to vary determin-
istically the charge state with the precision of a single
elementary charge due to Coulomb blockade. This effect is
observed in micro-PL spectra by abrupt jumps of the
(charged) exciton emission energy when the gate voltage is
varied [see Fig. 3(b)] as a result of changes of the strong few
particle direct Coulomb terms (Warburton et al., 2000).

FIG. 2 (color online). (a) 1 !m! 1 !m atomic force microscopy
image of InAs dots on GaAs. (b) 40 nm! 34 nm cross-sectional
scanning-tunneling microscopy image of a GaAs dot in AlGaAs.
From Keizer et al., 2010. (c) Schematic energy level diagram for an
InAs QD in GaAs, where the growth axis is along the Oz direction.

FIG. 3 (color online). Sample A: (a) Scheme of InAs QDs em-
bedded into a charge-tunable device as in Warburton et al. (2000),
where for a voltage Vg1 applied to the top gate the electronic level of

the dot is above the Fermi energy of the highly n-doped back
contact. The QD contains no conduction electron. For a gate voltage
Vg2 the electronic level of the dot is now below the Fermi sea and an

electron can tunnel into the dot. (b) The charging of a single InAs
QD with electrons is accompanied by discrete jumps in the emission
energy when going from the neutral exciton X0 (one electron, one
hole) to the charged exciton X" (two electrons, one hole), etc. until
the wetting layer (WL) is charged. Sample B: (c) Left: Charge
fluctuations (a doping hole or electron tunnel into and out of the dot)
in nonintentionally doped dots allow the observation of neutral
excitons X0, charged excitons Xþ, and biexcitons 2X0 in photo-
luminescence (PL) spectra that are integrated over seconds, i.e.,
over times much longer than the charge fluctuation times (Belhadj
et al., 2009) Right: In addition to the fine structure, the emission
intensity of each transition as a function of optical excitation power
allows one to distinguish between different exciton complexes
containing two, three, or four optically generated charge carriers.
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Figure 3.2: Observed spectrum of resonant excitations of InAs/GaAs QD and the energy of
the emitted photon (taken from Ref. [2]).

to emission of a photon with a well-defined frequency.

• Emission rate: The emission rate of photons is determined by the inverse of their

spontaneous emission lifetime which depends on the refractive index of the medium,

transition frequency, and the transition dipole moment of the ground and excited

states.

All these features are consistent with the optical properties of self-assembled quantum dots.

They have a high emission rate (order of ns [36]), and a very narrow bandwidth of emit-

ted photons (see Fig. 3.2). The most advantageous aspect of these systems is the ease of

integrability with optical structures that can be grown around the same materials.

The emitted photons from QDs can be utilized as flying qubits over long distances due to

their lack of interaction with the environment. There are various ways to use different degrees

of freedom of photons for encoding information. The two methods that we will discuss in the

following sections are polarization (left- or right-handed), and time-bin (presence or absence)

encoding.
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3.2 Measurement-based quantum computation and quantum

networks

Due to the remarkable photon emission properties of QDs, they are one of the most-

investigated systems for photonic technologies [1, 36]. In this section, we look at some

of these technologies, namely the graph states and their generation protocols from QD-based

systems. Graph states can be used for implementation of both measurement-based quantum

computation (MBQC) [37] and also quantum networks [38, 39]. The idea behind MBQC

is to prepare a highly entangled system of qubits, and then perform single qubit adapt-

ive measurements (classical feed forwarding) to mimic the behavior of a quantum circuit

(where quantum computations are implemented by applying unitary operations rather than

measurements). Quantum networks, on the other hand, are a collection of several quantum

processors that are connected through quantum channels and can exchange quantum in-

formation for the purpose of quantum communication or distributed quantum computation.

Since these applications all require exchanging quantum information across at long distances

it is natural to do so using photons. In this section, we give a brief introduction to graph

state structures and then we follow up with protocols for the generation of photonic graph

states from QDs for applications in MBQC and quantum networks.

3.2.1 Graph states and cluster states

A graph state is a multi-qubit state represented by a graph where each vertex represents a

qubit and the edges between the qubits denote the entanglement between each pair. Graph

states can have either complex forms or much simpler structures. A cluster state is a specific

type of graph state where the graph is a d-dimensional lattice or array (Fig. 3.3(a) shows
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(a) (b)

FIG. 1. Graph states. Each vertex represents a qubit, and edges
represent entanglement between qubits. (a) Cluster state used for
measurement-based quantum computation [19], and (b) all-photonic
repeater state introduced in Ref. [17].

probabilistic, only about 10 photons have been entangled into
a graph state to date [28].

To address the challenge of constructing graph states in a
more efficient way, a scheme was proposed in Ref. [29] that
uses quantum emitters with a particular level structure and se-
lection rules, as shown in Fig. 2. By periodically pumping such
an emitter and collecting the emitted photons, certain types
of graph states can be obtained. For example, Greenberger-
Horne-Zeilinger (GHZ) states [30] can be generated by peri-
odic pumping alone, while applying unitary operations on the
emitter in-between pumping cycles can create one-dimensional
(1D) cluster states. A crucial possible advantage of this
approach is that in the limit of a very efficient photon emission
process, the protocol is essentially deterministic, assuming a
few more requirements are satisfied, such as long coherence
times in the ground state and the ability to perform unitary
operations between the ground states of the emitter. In a recent
breakthrough experiment [31], this protocol was used to create
a 1D linear photonic cluster state from a quantum dot (QD).

Because 1D cluster states are not universal for quantum
computing, it is essential to grow the cluster along a second
dimension. To generate more complex graphs such as a 2D
cluster state, additional capabilities are needed compared to
the 1D case. In Ref. [32], it was shown that using two emitters,

FIG. 2. Quantum emitter level structure needed to produce graph
states. Two ground states each separately couple to one excited state
via circularly polarized light of opposite polarization.

which can be controllably entangled through the use of a
controlled-Z (CZ) gate, a 2 × N cluster state can be generated.
To scale it up to an arbitrary sized N × N cluster state, N
emitters would be required, largely increasing the required
overhead and capabilities.

Recently, we have discovered that the scaling is dramati-
cally more favorable in the case of RGSs [33]. In particular,
we showed that an arbitrary-sized RGS can be generated using
only one emitter of the structure of Fig. 2 coupled to one
additional (ancilla) qubit, which in fact does not need to be
an emitter. These modest requirements bring the generation of
such states into an experimentally feasible regime with existing
quantum emitters and photonic circuit capabilities. What is
still required for an experimental generation of RGS states is
a detailed protocol taking into account the particular quantum
emitter’s constraints and capabilities.

In this paper, we address this problem by providing explicit
schemes for the generation of RGSs from NV centers in
diamond and from self-assembled QDs. Both these systems
are natural for the generation of graph states, as they have
the correct level diagram (Fig. 2), they can be integrated
with photonic elements, such as cavities [34–41] and waveg-
uides [42–46], and they have been used to demonstrate spin-
photon entanglement [47–51]. Our focus here is on exploiting
the capabilities of state-of-the-art systems and developing
recipes that can be readily adapted in the laboratory. In this
way, we hope to motivate experiments that demonstrate the
creation of small or modest-sized photonic graph states. Such
an experimental endeavor will help uncover challenges and
opportunities pertaining to entangled graph state generation
in these systems, which in turn will guide future theoretical
efforts.

This paper is organized as follows. In Sec. II, we define
graph states and briefly review their properties. In Sec. III
we review previous protocols for the generation of particular
types of graph states from quantum emitters. In Sec. IV we
develop protocols for the generation of RGSs from quantum
dots. We consider two tunnel-coupled QDs (“QD molecules”)
and present a protocol for the generation of a RGS with six
external arms. In Sec. V, we develop in detail a protocol for
the generation of a RGS from a NV center in diamond. The
electronic transitions of the NV are exploited for the generation
of the photonic graph states, while a nearby 13C nuclear spin
is utilized as the necessary ancilla qubit. We develop a CZ gate
between the electron and nuclear spins, as required for our
protocol, and show that it is both fast and of high fidelity, even
when the 13C happens to be several sites away from the NV.
Finally, Sec. VI provides a discussion and outlook.

II. GRAPH STATES

A graph state [19,20,52–56] is defined as the simultaneous
eigenstate (with eigenvalues equal to 1) of the stabilizer
generators

KG,a = Xa

∏

b∈V

Z
!ab

b , (1)

where G is a graph consisting of a set of vertices V connected
by edges according to the adjacency matrix !ab, a ∈ V is
one particular vertex, and Xa and Zb are single-qubit Pauli

085303-2

Figure 3.3: Examples of photonic graph states. (a) Cluster states used for MBQC and (b)
repeater graph states uesd in quantum networks.

shows a two-dimensional cluster state).

Rigorously speaking, the graph states correspond to the mathematical graph G = (V,E) with

the set of vertices V and the set of edges E. A constructive mathematical definition of graph

states can be given in terms of CZ gates. In this definition for the graph state represented

by graph G = (V,E), we first start by preparing all qubits in the |+⟩ ≡ (1/
√
2)(|0⟩ + |1⟩)

state, and then we apply a two-qubit CZ gate among each pair of qubits connected by an

edge:

|G⟩ =

( ∏
(a,b)∈E

CZab

)⊗
i∈V

|+⟩i . (3.1)

As an example, we construct the two-qubit and three-qubit graph states. We start with the

initial setup in which |ψ⟩ = |++⟩. Upon applying the CZ between the two qubits, we end

up with

|G⟩ = CZ |ψ⟩ = CZ |++⟩ ,

= CZ
[1
2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

]
,

=
1

2
(|00⟩+ |01⟩+ |10⟩ − |11⟩). (3.2)
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For the three-qubit linear cluster state we start with |ψ⟩ = |+++⟩. Upon applying the CZ

between each pair of connected qubits (i.e., vertices that are connected by an edge), we get

|G⟩ = CZ12 CZ23 |ψ⟩

= CZ12 CZ23

[ 1√
8
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩+ |111⟩)

]
=

1√
8
(|000⟩+ |001⟩+ |010⟩ − |011⟩+ |100⟩+ |101⟩ − |110⟩+ |111⟩).

(3.3)

Therefore, it can be summarized that a graph state is uniquely determined by a graph via

the following rules:

1. Each vertex corresponds to a qubit initialized in a |+⟩ state.

2. Each edge corresponds to a CZ gate between the two corresponding vertices.

3.3 Generation of cluster states from quantum dots

In this section, we look at the available protocols for the generation of cluster states from an

optically active system. We first look at the Lindner-Rudolph protocol [40] and the challenges

with that setup. We also look at an experimental implementation of this protocol. We then

look at some of the available alternatives and finally, we present a proposal in QDMs.

3.3.1 Lindner-Rudolph protocol

The Lindner-Rudolph (LR) protocol [40] is a method for the generation of cluster states

from optically active quantum emitters. The protocol can be implemented in QDs in the
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Figure 3.4: Left: The required level structure and selection rules, necessary for the pumping
process of the LR protocol for generation of linear cluster states from a quantum emitter
such as the self-assembled QDs. Right: The modified selection rules of a self-assembled
QD in transverse magnetic fields, necessary requirement for the control process of the LR
protocol.

absence of a perpendicular magnetic field that leaves us with the selection rules depicted in

Fig. 3.4(a) (Faraday geometry). In this setup, the qubit states are the spin states of the

electron in the Z basis (with Jz = ±1/2) and the excited states are the corresponding trions,

|⇑⟩ and |⇓⟩, which have a total Jz = ± 3/2. In this setup, there is no Zeeman splitting

between the qubit states and therefore the transitions have similar energies and are only

distinguishable via different polarizations of light; using σ± with Jz = ±1 excites one or the

other transition based on conservation of Jz. Only photons along the z axis are considered.

If the initial state of the source is |↑⟩ (|↓⟩), an excitation to the state |T+⟩ (|T−⟩) followed

by a spontaneous emission, results in the emission of a single right (left)-circularly polarized

photon σ+ (σ−) and leaves the source in the state |↑⟩ (|↓⟩).

The protocol is based on using a pulse that couples equally to both transitions. This could

happen if we send in a pulse in a superposition state, i.e., (1/
√
2)(σ++σ−) which causes the

processes described above to happen in superposition:

• Step 0 (initialization): The system is in the state |↑⟩+ |↓⟩.

• Step 1 (pump): Upon excitation with linearly polarized light, now the system is in the
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state |T+⟩+ |T−⟩.

• Step 2 (emission): The trion superposition will spontaneously decay to the electron

state almost instantaneously, by emitting a single photon. The possible transitions

for this singe photon are |T+⟩ → |↑⟩ |σ+⟩ and |T−⟩ → |↓⟩ |σ−⟩. However, since both

paths take place simultaneously, the state of the emitted photon and spin will be

|↑⟩ |σ+⟩+ |↓⟩ |σ−⟩.

As it can be imagined, repeating this protocol multiple times will lead to several photons

entangled with the emitter in the same manner:

|↑⟩ |σ+
1 ⟩ |σ+

2 ⟩ |σ+
3 ⟩ ...+ |↓⟩ |σ−1 ⟩ |σ−2 ⟩ |σ−3 ⟩ ...,

which upon spin encoding |↑⟩ ≡ |0⟩, |↓⟩ ≡ |1⟩, and polarization encoding |σ+⟩ ≡ |0⟩,

|σ−⟩ ≡ |1⟩, corresponds to what is known as a GHZ state [41]:

|GHZ⟩ ∼ |000...⟩+ |111...⟩ . (3.4)

These states are represented by so-called star graphs in which one vertex is coupled to all

others. Here, the central vertex is the emitter, while the others are photons. To produce

cluster states, we modify step 2 above with a Hadamard-like gate which rotates the spin

within the qubit subspace between each pumping. The original idea by Lindner and Rudolph

was to use a π/2 rotation about the Y -axis, which corresponds to the unitary exp(−iY π/4).

To see how this works, let us imagine we already have the first photon emitted and the

system in step 2 is in the state,
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|↑⟩ |σ+
1 ⟩+ |↓⟩ |σ−1 ⟩ .

Applying the rotation makes the spin state evolve to

(|↑⟩+ |↓⟩) |σ+
1 ⟩+ (− |↑⟩+ |↓⟩) |σ−1 ⟩ .

Now repeating the pump process leads to a second photon emission and the two photons

and the electron spin will end up in the state

(|↑⟩ |σ+
2 ⟩+ |↓⟩ |σ−2 ⟩) |σ+

1 ⟩+ (− |↑⟩ |σ+
2 ⟩+ |↓⟩ |σ−2 ⟩) |σ−1 ⟩). (3.5)

This, followed by another π/2 rotation of the spin, leads to

|G⟩ ∼ (|↑⟩+ |↓⟩) |σ+
2 σ

+
1 ⟩+ (− |↑⟩+ |↓⟩) |σ−2 σ+

1 ⟩

−(|↑⟩+ |↓⟩) |σ+
2 σ
−
1 ⟩+ (− |↑⟩+ |↓⟩) |σ−2 σ−1 ⟩

= |↑ σ+
2 σ

+
1 ⟩+ |↓ σ+

2 σ
+
1 ⟩ − |↑ σ−2 σ+

1 ⟩+ |↓ σ−2 σ+
1 ⟩

− |↑ σ+
2 σ
−
1 ⟩− |↓ σ+

2 σ
−
1 ⟩ − |↑ σ−2 σ−1 ⟩+ |↓ σ−2 σ−1 ⟩ . (3.6)

Now if we use the encodings |σ+⟩ ≡ |0⟩ and |σ−⟩ ≡ − |1⟩, we can see that the state above

corresponds to

|G⟩ ∼ |000⟩+ |001⟩+ |010⟩ − |011⟩+ |100⟩+ |101⟩ − |110⟩+ |111⟩ , (3.7)

which is exactly the three-qubit linear cluster state from Eq. 3.3. Repeating this protocol

will produce a continuous chain of photons in an entangled linear cluster state.
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The exp(−iY π/4) rotation of the procedure is a Hadamard-like gate; in fact a more system-

atic way to think about the LR proposal is that it is an alternation between optical pumping

and applications of this Hadamard-like gate. A generalization of this Hadamard-like gate

is [42]

H ′ =
1√
2

 eiθ1 ei(θ1+ϕ)

ei(θ2−ϕ) −eiθ2

 . (3.8)

For the maximally entangled state we will require θ2 = θ1 = ϕ = 0. In the original LR pro-

tocol, the implementation of the Y -rotation is suggested through application of an external

magnetic field in the Y direction: The idea is to allow the spin to precess in the so-called

Voigt geometry (i.e., in the presence of a transverse magnetic field, Fig. 3.4(b)) in order to

perform the spin rotation; for a Larmor frequency of ωB, the desired rotation is achieved

with the cycle Tcycle = π/2ωB. This could be problematic in the case of single QDs because

the Voigt field will remove the Faraday selection rules since in a Voigt geometry both vertical

and diagonal transitions are present.

3.3.2 Experimental demonstration of a one-dimensional cluster

state

Schwartz et al., demonstrated an experimental implementation of the LR protocol in self-

assembled quantum dots in 2016 [6]. In this experiment they used the dark excitons

(see Section 2.2.2) as their qubit states (in terms of Fig. 3.4, |q+⟩ ≡ |↑⇑⟩ = |+2⟩, and

|q−⟩ ≡ |↓⇓⟩ = |−2⟩) and their transitions to the biexciton (in terms of Fig. 3.4, |T+⟩ ≡ |+3⟩,

and |T−⟩ ≡ |−3⟩) levels to create the required level structure of the LR protocol. They suc-

cessfully showed the entanglement between the dark exciton qubit and a string of photons
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The above cycle is now repeated: reexcitation
(27, 28) to the BiE state, recombination of the
second BiE, and timed precession associated
with the G

^
gate. This results in a second photon,

whose polarization state is entangled with that
of the first photon and the spin of the remain-
ing DE, yielding the tripartite state

jyDE−2−1i¼ðjþZi½ðjR2i − jL2iÞjR1i þ iðjR2iþ jL2iÞjL1i&

þj−Zi½−iðjR2iþ jL2iÞjR1iþ ðjR2i − jL2iÞjL1i&Þ=2
ffiffiffi
2

p

ð2Þ

Repetition of the reexcitation-emission and sub-
sequent precession cycle generates a 1D string
of polarization-entangled photons in a cluster
state, as shown in the equivalent circuit diagram
of Fig. 1D. We have realized the above protocol
in which the cycles were implemented with fi-
delity of 0.81 to the ideal cycle described above.

Considerations in practical realizations
of the protocol using the dark exciton
as entangler
The DE has many advantages as an entangler
for sequential generation of entangled photons.
It exhibits a long lifetime (∼1000 nsec) and a
long coherence time (T '

2 ∼ 100 nsec) (28). In ad-
dition, the DE spin state can be deterministically
written in a coherent state using one single short
optical pulse (28, 29) and can be reset (i.e., emp-
tied from the QD) using fast all-optical means
(32). Furthermore, the DE to BiE excitation reso-
nance occurs at a higher energy than the BiE to
DEmain emission resonance (SM, section 3), there-
by facilitating accurate background-free single-
photon detection. In addition, the generated cluster
state is unaffected by the coherence of the photons’
wave packets (22).
Despite these advantages, several types of

imperfections must be considered. The dom-

inant imperfection originates from the finite
BiE radiative lifetime, trad ≃ 0:33 nsec (28). Be-
cause the DE and BiE precess during the emis-
sion process, the purity of the polarization state
of the photons is reduced (22). Another type of
imperfection is the decoherence of the DE spin
during its precession, resulting from the hyper-
fine interaction between the DE and nuclear
spins in the semiconductor (22). Therefore, to
ensure generation of a high-quality cluster state,
three important parameters should be kept
small: the ratio between the BiE radiative time
trad and the DE and BiE precession times TDE

and TBiE, and the ratio between the DE pre-
cession time and its decoherence time T '

2 . In
our system, trad=TDE ∼ trad=TBiE ∼ 0:1 and TDE=
T '
2 ∼ 0:04. Because all these parameters are

much less than unity, the implemented proto-
col has high fidelity to the ideal one, as we
now show.

Demonstrating an entangled
cluster state

The demonstration that our device generates
an entangled multiphoton cluster state is done
in two complementary steps. First, we deter-
mine the nonunitary process map acting in each
cycle of the protocol, which replaces the C

^

NOT
and G

^
unitary gates of Fig. 1D. The process

map is a linear map from the initial DE qubit’s
space to the space of two qubits comprising
the DE and the newly emitted photon. It fully
characterizes the evolution of the system in
each cycle of the protocol, thereby completely
determining the multiphoton state after any
given number of cycles. Then, we verify that
the three-qubit state, consisting of the DE and
two sequentially emitted photons, generated
by applying two cycles of our protocol is a gen-
uine three-qubit entangled state. We also quan-
tify the degree of entanglement between each
of the three pairs of qubits.
To measure the process map, we perform

quantum process tomography. We first initial-
ize the DE in four different states, jyinit

DE i ¼ jþXi,
j−Xi, j−Y i, and jþZi. The states are defined in
Fig. 1B. In reality, the initialization is in a
partially mixed state (SM, section 4). For each
DE initialization, we apply one cycle of the
protocol and perform correlation measurements
between the resulting emitted photon polar-
ization and the DE spin. In these correlation
measurements, we project the emitted photon
on the polarization states jHi, jV i, jDi, and jRi,
while making projective measurements of the
DE’s spin state. For the DE projective mea-
surements, we apply either a right- or a left-
hand circularly polarized p-area pulse at the
end of the cycle. Due to the optical selection
rules (Fig. 1C), this pulse deterministically ex-
cites either the jþZi or the j−Zi DE to the BiE,
respectively. Detection of an emitted photon
after this excitation projects the DE spin on the
states jþZi or j−Zi at the time of the pulse. To
project the DE onto the spin states j−Y i or
jþY i at the end of the cycle, we rotate the DE state
by delaying the pulse a quarter of a precession
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Fig. 1. Schematic description
of the cluster-state generator.
(A) The QD containing a DE in
a microcavity. The optical axis
(indicated by a blue arrow for in-
coming laser light and a magenta
arrow for outgoing emitted light)
is parallel to the QD symmetry
axis. (B) Bloch sphere representation of the DE spin and photon polarization qubits. Red and blue
define the bases for the DE and photon states, respectively. (C) The DE states (jT2i ¼ jTZi), BiE states
(jT3i), and optical transition rules between the states. Upward arrows represent resonant excitation.
Downward arrows represent photon emission. The gray circular arrows represent precession of the DE
and BiE states. (D) The sequence of transitions required to generate a cluster state. The green arrow
represents the initialization pulse that generates a DE in spin eigenstate. Repeated timed excitations of
the DE to the BiE (blue arrows) result in repeated emission of single photons (magenta arrows). Correct
interpulse spacing results in an entangled cluster state. The lower panel is a circuit representation of the
resulting 1D cluster state (22). Each horizontal line represents a qubit.The uppermost line represents the
DE, and the lines below represent timed ordered emitted photons. j0i and j1i represent DE spin and
photon polarization states. DE initialization is represented by the gate U

^
, and photons are initialized in the

fiducial state j0i. The timed DE precession is represented by the single-qubit gate G
^
, and excitation-

emission is represented by a C
^

NOT gate (vertical line) between the DE and the emitted photon. The area
enclosed in the dashed box represents one unitary cycle in the ideal protocol.
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averaging over the measurement outcomes) gives

N
LE

1,2 = 0.245. (S18)

Figure S9. (A) [(B)] The measured two-photon density matrices obtained by polarization tomography of the two emitted photons
conditioned on detecting the third photon, following a right [left] hand circularly polarized DE projection pulse, 3/4 of a precession
period after the second converting pulse. This detection, therefore projects the DE on the |+Zi [|�Zi] state.
(C) [(D)] The measured two-photon density matrix as in A [B], but this time, the circularly polarized DE projection pulse is timed
1/2 a precession period after the second conversion pulse. This way the DE is projected on the |�Y i [|+Y i] state. In all cases
the DE is initialized in the |�Xi state, and the first photon is displayed in the circular polarization basis. The second photon in A
and B is displayed in the rectilinear polarization basis and in C and D in the linear diagonal polarization basis. The fidelities to
Bell-states (|V Ri� |HLi)/

p
2 in A and to (|V Li+ |HRi)/

p
2 in B are 0.730±0.060 and 0.722±0.054, respectively. The fidelities to

the pure states |RBi in C and |LDi in D are 0.633±0.037 and 0.681±0.048, respectively.

8.2 DE–Photon Entanglement
A direct measurement of the density matrix of the DE and the emitted photon after application of a single cycle of the protocol
requires full state tomography of both qubits. However, projections of the DE on the states |±Xi, which are required for full
tomography, are not straightforward and require additional resources. Fortunately, projective measurements on the |±Zi and
|±Y i bases are sufficient to provide a lower bound (51) on the fidelity between the DE-photon density matrix and the maximally
entangled state of two qubits,

|yiDE�1 =
⇥�
|+Zi� i |�Zi

�
|R1i�

�
|�Zi� i |+Zi

�
|L1i

⇤�
2. (S19)

The fidelity between the DE-photon density matrix, r̂(DE�1) and the state |yiDE�1 is defined as

F
�
r̂(DE�1), |yihy|DE�1

�
= DE�1hy| r̂(DE�1) |yiDE�1 . (S20)

The lower bound on F can be written as (51)

F
�
r̂(DE�1), |yihy|DE�1

�
�
�
F1 +F2

�
/2. (S21)

where F1 and F2 are defined as

F1 = r(DE�1)
ZB,ZB +r(DE�1)

�ZD,�ZD �2
q

r(DE�1)
ZD,ZD ·r(DE�1)

�ZB,�ZB, (S22)

and

F2 = r(DE�1)
Y L,Y L +r(DE�1)

�Y R,�Y R �
�
r(DE�1)

Y R,Y R +r(DE�1)
�Y L,�Y L

�
. (S23)
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Figure 3.5: Deterministic generation of entangled cluster states by Schwartz et al. [6]. The
left figure shows the selection rules between the dark exciton states (|±2⟩) and their corres-
ponding excited states, the biexcitons (|±3⟩). The right figure shows the experimental data
of the resulting density matrix of the emitted photon and the qubit (dark exciton) which
corresponds to an entangled state. Both figures are taken from Ref. [6].

that were generated from this system (see Fig. 3.5). The control part of the LR protocol

was implemented here by the precession of the dark excitons (about 3 ns [31]). The num-

ber of entangled of photons in this experiment was limited due to the fact that the qubit

states are excited states and therefore have relatively short lifetimes, and furthermore, the

nuclear environment may lead to dephasing effects. The protocol that we will introduce in

Section 3.3.4 will overcome both of these issues.

3.3.3 Time-bin protocols

To overcome the control issues of the LR protocol, in Ref. [43] Lee et al. proposed to start in a

Voigt geometry and selectively enhance one of the transitions to the trion states (highlighted

blue transition in Fig. 3.4(b)) by placing the QD in a cavity and encoding the photons in

time-bins of emission from this transition. Time-bin encoding, as opposed to the polarization
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encoding that we used in the previous section (i.e., |σ+⟩ ≡ |0⟩, |σ−⟩ ≡ |1⟩), encodes the

quantum bits in terms of presence and absence of photon, where |0⟩ (|1⟩) represents the

absence (presence) of a photon in a time bin. This proposal significantly improves the

controllability process of the LR protocol but it is not fully deterministic as there is a non-

zero probability of emission from the unenhanced transition. Comparing this strategy to the

LR protocol we find a competition between emission and control: Spin control works best

in a Voigt geometry with a three-level Λ-system to enable the coherent control, but it is not

optimal for the emission of photons since a trion would spontaneously emit a photon through

the spin up or down transitions. On the other hand, the Faraday geometry is suitable for

good photon emission but the spin control implementation is complicated.

3.3.4 Generation of cluster states from quantum dot molecules

In this section, we present protocols for generating photonic cluster states using the features

and selection rules of QDMs introduced in Section 2.3. An important feature is the fact

that the hole spins states are intrinsically split without the use of an external magnetic field

due to hole mixing. Furthermore, using hole spin qubits naturally removes the difficulty of

nuclear spin interactions due to their p-like orbitals. The full control scheme of QDMs is

depicted in Fig. 2.10, where the Λ-type system in the middle is used to manipulate the spin

state, and the two external arms (cycling transitions) are used for readout. We will make

use of these selection rules for different strategies given in the following.

For the implementation of a LR-like protocol, we use the readout arms. A fundamental

difference between the actual LR proposal and the QDMs is that in the LR scheme, the

two transitions have the same energy, that is, the only way to distinguish the photons is

through their polarization. In the QDMs (and similarly, QDs with the Voigt geometry) the
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two available transitions do not have the same energy.

Alternatively, we may consider the protocol that corresponds to the time-bin protocol dis-

cussed in Section 3.3.3 for QDs. In this case let us consider the cycling transition with σ−

to be the corresponding enhanced transition for the time-bin protocol. Here
(

0, 0

0,⇑

)
≡ |0⟩ and(

0, 0

0,⇓

)
= |1⟩. In the following steps of the protocol we will use |h⟩ ≡

(
0, 0

0,⇑

)
and |h̄⟩ ≡

(
0, 0

0,⇓

)
,

to denote the two hole states. The time-bin protocol will be as follows:

• Step 0: We initialize the system by putting the population in
(

0, 0

0,⇑

)
state and then

create a superposition state |+⟩ = (1/
√
2)(|h⟩ + |h̄⟩) by performing a π/2 rotation

through the Λ-system.

• Step 1: Then we drive the σ− cycling transition. This creates the first time bin in the

form of

1√
2
(|h⟩ |0τ=1⟩+ |h̄⟩ |1τ=1⟩), (3.9)

where the τ subscript denote the first time bin.

• Step 2: In order to create a time-bin photon in the opposite state, now we need to flip

the spin. We perform RY (iπ) = exp(iY π/2). This results in the state

1√
2
(|h̄⟩ |0τ=1⟩ − |h⟩ |1τ=1⟩). (3.10)

• Step 3: Now again we drive the same σ+ cycling transition, to get

1√
2
(|h̄⟩ |0τ=11τ=2⟩ − |h⟩ |1τ=10τ=2⟩). (3.11)

• Step 4: Another spin flip, similar to the previous step, leads to
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1√
2
(−|h⟩ |0τ=11τ=2⟩+ |h̄⟩ |1τ=10τ=2⟩).

• Step 5: Repeating these steps three more times leaves us with

1√
2
(|h̄⟩ |0τ=11τ=20τ=31τ=40τ=51τ=6⟩ − |h⟩ |1τ=10τ=21τ=30τ=41τ=50τ=6⟩).

• Step 6: The final step is to measure out the spin part. If the spin is in |−⟩, and we

take photon in an odd numbered time-bin to be a logical 1 and a photon in an even

numbered time-bin as a logical 0 we get the GHZ state

1√
2
(|000⟩+ |111⟩).

Up to this point we have only used the cycling transitions to produce GHZ states. It is

straight forward to expand this protocol and apply extra rotations in between the steps

above to get linear cluster states [43].

As seen so far, the level structure of the QDMs provides us with several advantages in

implementing the time-bin protocol, both compared to the LR protocol, and also to the

time-bin protocol with individual QDs:

1. External magnetic field and Voigt geometry: In the original LR proposal a

weak perpendicular magnetic field is introduced to implement the Hadamard gates

(Y -rotations). But this could be problematic since the LR protocol requires Faraday-

like selection rules and it is not clear how much the weak magnetic field will affect

the selection rules. In QDMs, however, none of this would be a problem due to the

intrinsic splittings of the hole states in the absence of an external magnetic field.
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2. Implementation of rotations: In the original time-bin protocol it is proposed to use

the same Λ-system used for the time-bin photons to implement the necessary rotations

for the protocol. It is not clear how the transfer of populations and spontaneous

emission from the system would affect the procedure (the leakage to the other spin

state). In QDMs these rotations are implemented through the independent Λ-system

that does not participate in the rest of the time-bin protocol and is solely used for

rotations. Put another way, QDMs have the advantage of using cycling transitions

specifically for the time-bin protocol qubit generation and the Λ-system for rotations,

while the original proposal needs to use one single Λ-system for both purposes.

3. Cavity enhancement of a single transition: In the original time-bin protocol

the enhancement of a particular transition of the Λ-system (highlighted transition

Fig. 3.4(b)) is required (while both transitions of the Λ-system have the same selection

rules). This enhancement requirement is eased in QDMs since we instead use the

cycling transitions, which have opposite polarizations. Therefore it is less costly to

produce the time-bins in QDMs.

In other words, in QDMs, we have the best of both worlds: A Λ-system that implements

the rotations, and cycling transitions even at zero magnetic field that emit photons. In a

way, it is as if we have Faraday transitions for optical pumping and Voigt transitions for spin

control.

As one would expect, though, no advantages come for free: As we discussed in Section 2.3, the

Λ-system in QDMs has two closely spaced excited levels |t⟩ and |u⟩ that will be problematic

for implementation of quantum gates. The off-resonant coupling to the excited level will

cause phase errors which hurt the fidelity of our gates. In the following chapter we develop

a method for implementing the desired gates while battling the off-resonant coupling to
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unwanted levels.



Chapter 4

High-fidelity control in Λ-systems

with leakage

In this chapter we provide a quantum control method for Λ-systems with leakage. While the

treatment presented here is generic and applicable to any optically active system, we bear in

mind the application to the Λ-systems of the QDMs. The work presented in this section is

partially based on preprint the ‘Ultrafast high-fidelity control of Λ-systems in the presence

of unwanted transitions’ by Arian Vezvaee, Eva Takou, Paul Hilaire,  Matthew Doty, and

Sophia E. Economou.

4.1 Motivation

Quantum information processing requires the manipulation of qubits via fast gates with high

fidelities. Qubits are formed when a particular two-level subspace is chosen from a larger

Hilbert space of a physical system. In specific cases, energy levels outside of the qubit sub-

space are used for auxiliary transfer of population within the qubit subspace. An important

class of such setups are Λ-type systems that appear at the heart of several optically active

systems such as QDs [44, 45, 46, 47, 48], nitrogen–vacancy (NV) centers [49, 50, 51], and

trapped ions [52, 53, 54, 55]. Successful manipulation of Λ-systems in these optical devices

is the key step to performing either quantum information processing, or enabling sources

40
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Figure 4.1: Schematic depiction of a general Λ-type system with leakage. The qubit is
defined in the subspace of the two lower levels {|0⟩ , |1⟩}. The coherent control is done
through driving the transitions to the auxiliary target level |t⟩ (with the detuning δ) which
is separated from the unwanted level |u⟩ by the splitting ε. The off-resonant coupling to
the unwanted level will cause low fidelities. We present resolutions for this problem by
introducing a modification to the pulse and the detuning of the system.

of single-photon emission for both linear optical quantum computing [56] and quantum

communications [57, 58]. Consequently, various methods for manipulation of Λ-systems

and their variations have been studied extensively as an important tool in quantum op-

tics [59, 60, 61, 62, 63, 64]. However, in most systems a bare three-level Λ-system is merely

an idealization; perfect isolation and manipulation of a dissociated part of the Hilbert space is

almost infeasible [65]. Unintended interactions with other levels cause unwanted leakage out

of the three-level subspace that is detrimental to the performance of quantum gates [33, 66].

The effect of these off-resonant unwanted couplings is intensified when the extra levels are

closely spaced in energy with the auxiliary state.

The issue of interactions with unwanted levels can be dealt with in several forms. For

instance, in superconducting qubits it is resolved by intentionally driving the harmful trans-

ition [67]. The same approach has been shown to be applicable to NV centers as well [68]. Ma-

chine learning has also been used recently to optimize the performance of quantum gates [69].

Furthermore, there also exist frameworks that involve adiabatic removal of the leakage from

the system [70, 71, 72, 73, 74]. A recent example of such adiabatic methods is the Magnus
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expansion [75]. Another well-known adiabatic method is Derivative Removal by Adiabatic

Gates (DRAG) which has been widely established as a powerful tool in dealing with un-

wanted dynamics and leakage cancellations [76, 77, 78]. The underlying mechanism behind

DRAG allows one to infer additional control elements that oppose the leakage. For instance,

such extra elements could be in the form of a second control pulse that drives the same target

transition, leading to cancellation of the leakage to unwanted levels. The DRAG approach

was originally proposed in superconducting devices where the qubits are encoded in the form

of a two-level system in the energy spectrum of an anharmonic oscillator. Since its proposal,

DRAG has been extensively studied over the past decade for implementations in supercon-

ducting devices [79, 80] and several DRAG-inspired methods have been developed [81].

In this chapter we develop a novel DRAG-based leakage cancellation framework relevant for

systems with Λ-type selection rules, where the auxiliary (target) excited state is separated

from an unwanted excited level (Fig. 4.1) by a small energy splitting. We present an ultrafast

solution in the form of additional control elements that oppose the leakage and remove the

need for impractical narrow-band pulses that have gate times that far exceed the quantum

emitter lifetime. The chapter is structured as follows. In Section 4.2 we present the system

under consideration and give an overview of Coherent Population Trapping (CPT) [63], which

is a quantum optical tool that enables implementation of arbitrary rotations in an idealized

version of Λ-systems. In Section 4.3 we discuss the DRAG methodology and develop a new

formalism that resolves the leakage issue of Λ-systems and leads to high-fidelity rotations.

We conclude in Section 4.4, and the subsequent sections contain details of the DRAG analysis

for an arbitrary axis of rotation under the CPT framework.
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Figure 4.2: Fidelity of an X-, and equivalently a Y -rotation by π, RX/Y (π), in terms of
the dimensionless parameter σ/ε. Here, σ is the bandwidth of the sech pulse and ε is the
splitting between the unwanted and target levels. The fidelities are shown for different
values of η that determines the composition of the target and unwanted levels. Without any
corrective measures, reasonable fidelities required for quantum information processing are
only achievable by using extremely narrow bandwidth pulses.
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4.2 Overview of the system

In an ideal CPT scheme the transitions of a perfectly isolated Λ-system are driven using

two drive fields. When the drive fields interfere destructively the population is trapped into

a dark state. This phenomenon depends on the drive parameters, which also define the

transformation of the qubit states to the CPT (dark-bright) frame; in this frame, the dark

state is completely decoupled from the dynamics of the system. Essentially, the three-level

problem reduces to a two-level system where transitions are driven between the auxiliary

excited state and the bright state. Combining CPT together with sech pulse envelopes we

can design arbitrary single qubit rotations about any axis, as explained in Ref. [46]. We

leave the technical details of the CPT framework and the sech-pulse control to Section 4.5.

The system under consideration is depicted in Fig. 4.1; a collection of four states where the

qubit is encoded in the two lower levels {|0⟩ , |1⟩} and either of the two excited levels may

be used as an auxiliary level for the qubit control. In contrast to the ideal CPT scheme,

the extra excited level introduces competing transitions that cause leakage out of the three-

level subsystem. Our goal is to perform the control of the qubit states using the auxiliary

(target) level while avoiding the detrimental effect of the unwanted transition. In this work

we use the lower excited level to be our target, and denote its energy splitting from the

upper unwanted level with ε. We further choose the frequency of the control pulses to be

smaller than the transition frequency of the target transitions (i.e. negative detuning, δ);

this choice minimizes the leakage to the unwanted level. However, the analysis we present

in this work will be exactly the same if we swap the definition of the unwanted and target

levels and change the sign of the detuning. We also assume that the two excited states, |t⟩

and |u⟩, are superpositions of two basis states |b0⟩ and |b1⟩: |t⟩ = sin(η)|b1⟩ − cos(η)|b0⟩ and

|u⟩ = cos(η)|b1⟩+ sin(η)|b0⟩.



4.2. OVERVIEW OF THE SYSTEM 45

We consider the case where the two Λ-transitions are distinct and thus, each transition is

driven by a single drive field [E0(t) or E1(t)], as shown in Fig. 4.1. This can be satisfied by

either polarization selection rules or energy separation of the ground states. In the former

case, the orthogonality of the two transition dipoles ensures that each transition couples to a

single drive. In the latter case, sufficient energy separation of the ground-state levels implies

that the off-resonant couplings of the drive fields to the opposite Λ-transitions average out.

In the following we first consider the case of distinct couplings to the drive fields, where

|0⟩ couples only to |b0⟩ with Rabi frequency Ω0(t) ≡ − sin(η)d0,b0E0, and |1⟩ couples only

to |b1⟩ with Rabi frequency Ω1(t) ≡ cos(η)d1,b1E1. This choice translates into couplings

to the unwanted level given by λ0 (for the |0⟩ ↔ |u⟩ transition driven by E0) and λ1 (for

the |1⟩ ↔ |u⟩ transition driven by E1) that are inversely related: λ0 ≡ tan(η) = −1/λ1.

However, the formalism we develop is general and not restricted by the composition of the

excited states. We keep this relation among the dipole elements implicit and discuss how

our framework can be applied to the case of bare coupling to target and unwanted (i.e., in

the absence of any basis states) in Section 4.4.

As shown in Fig. 4.2, the presence of an unwanted transition leads to low gate fidelities when

the bandwidth of the pulses is not extremely narrow. One solution to preserve selectivity

and ensure high-fidelity gates is to use extremely long pulses. Nevertheless, this is an im-

practical approach as the operations need to performed well within the coherence times. In

all relevant solid state emitters, long gates suffer from spontaneous emission. Spontaneous

emission generally occurs on very fast timescales (e.g., ∼ one ns in QDs [82] and 10 ns in

NV centers [83]), implying that high-fidelity gates require pulses much shorter than these

timescales. In this work we develop a formalism that deals with the issue of leakage without

trading off the duration of the gates for selectivity, ensuring operations performed within

the coherence times. We will show how to implement fast and leakage-protected gates by
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Figure 4.3: Selection rules in the dressed basis of CPT in the case of equal couplings, i.e.,
η = π/4. In this case the problem reduces to two dissociated two-levels (bright and target,
and dark and unwanted), each subject to a transitionless pulse.

modifying the pulse shape and the static detuning of the drive fields.

4.3 DRAG formalism with coherent population trap-

ping

The presence of an additional excited state induces leakage outside of the Λ-subspace, which

in the dressed (CPT) frame translates into error transitions that link the bright and dark

states to the unwanted |u⟩ level. In an ideal Λ-system, one would drive the target transitions

with the fields Eℓ(t) = Ωℓ,o(t) (ℓ = 0, 1) (and static detuning δ) to implement the desired gate

operation. To resolve the leakage we modulate the original pulses. We consider an additional

corrective drive Ωl,c(t) (for each of the two fields), phase detuned from the original by π/2;

we further set the frequency to be the same as that of the original drive, hence reducing the

experimental overhead of an additional pulse. From here on we will use the letters o and c

to refer to any subsequent parameters of these two drive fields.

The total fields of the system are Eℓ(t) = Ωℓ,o(t) cos(ωℓ,dt) + Ωℓ,c(t) sin(ωℓ,dt) for ℓ = 0, 1,
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which in the rotating wave approximation (RWA) are equivalent to Eℓ(t) = exp(−iωdt)(Ωℓ,o(t)+

iΩℓ,c(t)) + c.c.. Under RWA, the dimensionless Hamiltonian in the CPT frame is given by

(see Section 4.5)

H̄CPT,ωd =
1

x
Πu + (δ̄/2)(ΠB +ΠD +Πt)

+
1

2
√
2

{
− i(Ω̄0,c − Ω̄1,c)|t⟩⟨D|

+ (2Ω̄o − i(Ω̄0,c + Ω̄1,c))|t⟩⟨B|

+ (Ω̄o(λ0 − λ1) + i(λ1Ω̄1,c − λ0Ω̄0,c))|u⟩⟨D|

+ (Ω̄o(λ0 + λ1)− i(λ1Ω̄1,c + λ0Ω̄0,c))|u⟩⟨B|

+ h.c.
}
. (4.1)

where Πm ≡ |m⟩ ⟨m| and we have introduced the adiabatic parameter x = 1/(ε tg). The

dimensionless form is obtained by multiplying all quantities by the gate time tg [78]: Ō(t) =

tgO(t) for O ∈ {Ωo,Ωj,c, δ}. We have set the two Rabi frequencies of the target transitions

(i.e. |0⟩ ↔ |t⟩ and |1⟩ ↔ |t⟩) to be equal, that is Ω0 = Ω1, such that we satisfy the

transformation for implementing X (or equivalently Y, up to a phase between the two drives)

gates. The coupling strengths to the unwanted level, |u⟩, are scaled to the target transition

strengths by the parameters λ0 and λ1 and satisfy the relation λ0 ≡ tan(η) = −1/λ1. For

η = π/4 the bright-unwanted transition vanishes leading to the dressed frame selection rules

shown in Fig. 4.3 1. On the other hand, if η ̸= π/4 we have an additional leakage transition

to consider.

We now outline the development of our new DRAG technique applicable to Λ-type structures

to mitigate all leakage transitions. Previous formulations of the DRAG method have focused

on cancelling out leakage errors in a ladder-type system (e.g. transmon) that occur between

1Notice that this happens regardless of presence or absence of the corrective drives.
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consecutive energy levels. However, the formalism is not directly applicable to Λ-systems.

The complexity in this case increases as the qubit control is performed indirectly via the

excited auxiliary level. As we will discuss shortly, we will also need to develop additional

tools to accompany our modified DRAG method and ensure improvement of our control

scheme.

The DRAG method relies on adiabatic frame transformations from which analytic counter-

diabatic corrections to the driving fields can be derived [81]. DRAG introduces a new frame

where the solution to the leakage issue translates into a set of constraints imposed on the

Hamiltonian of this frame. The DRAG frame Hamiltonian generated by the transformation

A(t) = e−iS(t) is:

HDRAG = A†(t)HA(t) + iȦ†(t)A(t), (4.2)

where H is the Hamiltonian in the original frame (in this work, we start from the CPT frame,

such that H ≡ H̄CPT,ωd
). The operator S(t) can be any arbitrary Hermitian operator,

but needs to respect the boundary conditions of the transformation. That is, the frame

transformation has to vanish at the beginning and end of the pulse [A(t) = A(tg) = 1], such

that the ideal gate we wish to design remains the same in both the CPT and DRAG frames.

Besides this restriction, S(t) can be an arbitrary Hermitian operator that aims to decouple

the desired evolution from the leakage subspace. The generality of S(t) would in principle

generate a wide range of counterdiabatic corrections. However, extracting such closed-form

expressions is infeasible for our four-level system (as the pulses do not vary slowly in time)

and hence, we turn to a perturbative expansion of the transformation. To that end, in this

work we utilize the Schrieffer-Wolff (SW) transformation [84] and its perturbative expansion.

Our goal is to constraint the DRAG-frame Hamiltonian such that it implements our target
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evolution. To this end, we define a target Hamiltonian, capable of performing arbitrary

rotations within the qubit (dark-bright) subspace,

HCPT
target(t) =

1

2

∑
i=o,c

hi(t)σ
i
B,t +

1

2
hz(t) (ΠB − Πt) , (4.3)

where hi(t) and hz(t) are arbitrary control fields, and to to indicate the matrix elements

for the generic transition |m⟩ ←→ |n⟩, we have defined σℓ
m,n ≡ eiβ |n⟩ ⟨m| + e−iβ |m⟩ ⟨n| with

β = 0 for ℓ = o, and β = π/2 for ℓ = c. Here we pick the hi(t) to be sech pulses within the

bright and target subspace, and hz(t) corresponds to the detuning. Contrary to the target

Hamiltonian, our DRAG frame Hamiltonian includes the error transitions to the unwanted

level |u⟩. To ensure that the DRAG frame Hamiltonian implements the intended operation

as dictated by HCPT
target, we impose the following constraints:

Tr[HDRAG(t)σ
i
B,t] = hi(t), (4.4)

Tr[HDRAG(t) (ΠB − Πt)] = hz(t),

where i ∈ {o, c}. Additionally, to enforce decoupling from the unwanted subspace in the new

Hamiltonian, we impose the following constraints:

Tr[HDRAG(t)σ
i
D,u] = 0,

Tr[HDRAG(t)σ
i
B,u] = 0, (4.5)

Tr[HDRAG(t)σ
i
t,u] = 0,

where i ∈ {o, c}. Note that from the Hamiltonian (4.1), for the transition σD,t (i.e., the
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Figure 4.4: Gate error comparison in terms of the dimensionless parameter σ/ε for the
original pulse (solid) and DRAG solution (dotted) for (a) π/2 and (b) π rotation about
the X or Y axis. Bottom panels show the required modification that accompanies the
corrective pulses in each case. The colors correspond to different weight distributions of
the basis states in the target and unwanted levels |t⟩ = sin(η) |b1⟩ − cos(η) |b0⟩ and |u⟩ =
cos(η) |b1⟩+ sin(η) |b0⟩.

transition from dark state to target), the decoupling condition is trivially satisfied only if we

pick Ω0,c = Ω1,c. The constraints can be solved consistently by expanding the control fields

of the DRAG Hamiltonian and the Hermitian operator S(t) with respect to the adiabatic

parameter x to several orders. The technical details of the derivation for our corrective fields

can be found in Section 4.6.

To the first order of expansion, the simplest solution which respects the boundary conditions

of the transformation that satisfies the constraints is
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Ωo(t) = (
√
2 + δ

(λ0 + λ1)
2

4
√
2 ε

)Ω(t), (4.6)

Ω0,c(t) = Ω1,c(t) =

√
2

8ε
(λ0 + λ1)

2Ω̇(t). (4.7)

These solutions are capable of reducing the unintended couplings of the bright-excited sub-

space to the unwanted level. In the original DRAG framework one would use these modified

pulses and expect improvement of the fidelities of quantum gates. However, our scheme

relies on the indirect control of the qubit states via the auxiliary target state. The diagonal

constraint that we impose in Eq. (4.4) does not lead to a global phase among all states: It

imposes an identical phase between bright and excited states, but it does not ensure the same

phase with the dark state. As such, we need to investigate the form of the first-order DRAG

Hamiltonian to infer this phase error between the dark and bright states. Restricting our

attention to the Λ-system subspace, we find that the first-order DRAG frame Hamiltonian

in the basis {|D⟩ , |B⟩ , |t⟩} is given by (see Section 4.6):

H
(1)
DRAG =


−1

8
(λ0 − λ1)2Ω2 1

8
(−λ20 + λ21) Ω

2 0

1
8
(−λ20 + λ21) Ω

2 − 1
16
(λ0 + λ1)

2Ω2 0

0 0 − 1
16
(λ0 + λ1)

2Ω2

 . (4.8)

Notice that the Hamiltonian above is in the DRAG frame, and is enforced to have no leakage,

therefore there is no dependence on the splitting, and the value of detuning is fixed for

this Hamiltonian from the constraints of Eq. (4.4). However, note that the bright and

target states follow the same phase evolution, as dictated by the common diagonal element

−1/16(λ0 + λ1)
2Ω2. Our qubit states, on the other hand, are composed of the dark and
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bright states, which up to the first-order (i.e ignoring the off-diagonal elements of H(1)
DRAG)

evolve with a different phase. Effectively, this implies that the DRAG corrections reduce

the leakage to the unwanted level at the cost of inducing a relative phase between the qubit

states. This is an immediate consequence of the fact that we counteract leakage indirectly;

in the DRAG frame we design a target Hamiltonian that involves transitions between the

bright and target levels.

For λ0 = −λ1 (i.e., η ≈ π/4) Eq. (4.8) takes an interesting form. In this case, both diagonal

and off-diagonal elements of H(1)
DRAG vanish (except the diagonal entry of the dark state).

The vanishing of the latter implies that in this first-order DRAG frame the higher-order

single-qubit rotation errors induced in the qubit subspace are zero. Nevertheless, the dark

state evolves with a different phase relative to the bright-target subspace. This phase error

can be easily compensated for through a static detuning modification, i.e. a change of the

frequency of the driving pulses. Surprisingly enough, at the same time, the corrections to

the pulses vanish such that no pulse modification is required to correct the errors.

Let us highlight the procedure for finding the required detuning modification when the

unwanted couplings satisfy the condition λ0 = −λ1. First, we redefine the Hamiltonian by

subtracting from all diagonal entries the ΠD element and thus, transferring a time-dependent

phase evolution into the bright-target subspace (while ensuring zero phase-evolution of the

dark state). We denote the ideal evolution operator that corresponds to H(0)
DRAG as U0; this

is the analytically solvable time evolution operator. Our total Hamiltonian (up to the first

order), HDRAG = H
(0)
DRAG+H

(1)
DRAG, evolves with a time evolution given by U(t) = U0(t)U(t)

′,

and satisfies the Schrödinger equation:

iU̇0U
′ + iU0U̇

′ = (H
(0)
D +H

(1)
D )U0U

′, (4.9)
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which reduces to:

iU̇ ′ = (U †0H
(1)
DRAGU0)U

′. (4.10)

U ′ is the evolution operator of H(1)
DRAG in the interaction picture of H(0)

DRAG. In the bright-

target subspace, H(1)
DRAG ∝ f(t)1, where f(t) is the function that defines the relative phase

shift between the dark and bright states. Solving the Schrödinger equation we find that the

induced phase shift is given by θ = −2λ2σ/ε. Hence, in order to remove the θ-shift from the

target evolution we modify the detuning as:

δ′ = σ/ tan
(
ϕ+ θ

2

)
, (4.11)

where ϕ is the (analytically known) rotation angle we wish to perform. For the general

case where λ0 ̸= −λ1, we follow a similar procedure where we ignore the off-diagonal entries

of H(1)
DRAG. We find that the induced phase is θ = −(λ20 + λ21 − 6λ0λ1)σ/(4ε), and can be

accounted for, by modifying the detuning according to Eq. (4.11).

The detuning modification together with Eqs. (4.7) and (4.6) complete our full set of solu-

tions to the pulses. The final pulse shapes will depend on the specific details of the system

such as the excited states splitting and the weight of the basis states that form the target

and unwanted levels. In Fig. 4.5 we depict the sech pulse envelopes for one specific choice

of parameters.

We quantify the performance of the gates by averaging over all input states existing in the

Hilbert space. Bowdrey et al. showed that this measure of gate fidelity can be computed by

averaging over the fidelities of the six cardinal pure states [85]:
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Figure 4.5: An example of pulse shapes for a system with η = π/3 and splitting of
ε = 80 µeV. The sech pulse (in blue) is Ω(t) = σ sech(σ(t− tg)), and its derivative cor-
rective solution (in orange) modulated with the splitting and the couplings is Ω(t) =
(λ0 + λ1)

2(1/ε) d
dt
σ sech(σ(t− tg)). The bandwidth is taken to be σ = 0.02 meV.

Fi =
1

6

∑
j=±x,±y,±z

Tr
[
UidealρjU

†
idealUi(ρj)

]
. (4.12)

Here, ρj’s are the six cardinal states on the Bloch sphere and Ui(ρj) is the evolution of the

axial vectors under the actual evolution of the system with i being either the original or

DRAG solutions. We demonstrate the performance of our solutions in Figure 4.4, which

shows the fidelity of RX/Y (π) and RX/Y (π/2) gates, in terms of the dimensionless parameter

σ/ε, where σ is the bandwidth of the sech pulse and ε is the splitting between the target

and unwanted levels. We have considered various cases of couplings to the unwanted level:

η = {π/3, π/4, π/5} in the top panel of Fig. 4.4. The bottom panel shows the required

modification of the detuning. As illustrated, the strength of the unwanted couplings plays a

major role in our framework.

In Fig. 4.6 we show the fidelity of the RX/Y (π) gate with respect to the ratio of weights

of basis states that determine the coupling strengths. We define the gate improvement as
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the ratio of the original gate error to the gate error using the corrective fields. The largest

improvement (up to 2 orders of magnitude) occurs for the case of η = π/4 which corresponds

to equal weights of basis states (tan(η) = 1). This can be traced back to the formation of dark

and bright states; for λ0 ̸= −λ1 the total Hilbert space of the four levels becomes dissociated.

Specifically, according to the CPT Hamiltonian of Eq. (4.1) when λ0 = −λ1, we have two

decoupled two-level systems; the dark-unwanted and the bright-target one. Each two level

system is subject to a sech pulse driving. For a single two-level system, the population can

be mapped back to the ground state at the end of the evolution if the Rabi frequency is fixed

to be equal to the bandwidth of the pulse (see Section 4.5). At the end of the pulse, the

target evolution generates a relative phase (rotation angle) between the two states. For the

two dissociated two-level systems, it is clear that the transitionless pulse condition cannot

be satisfied for both. However, approximately, each subsystem evolves with a different phase

which we take into account with our detuning modification approach. At the same time, the

DRAG framework verifies this behavior and suggests that no pulse modulation (at least, to

the first order) is required to improve the fidelity of this special case of couplings.

4.4 Discussion and Conclusion

In this work we developed a framework for high-fidelity control of Λ-systems with unwanted

transitions by modulating the pulse shape and slight modification of the detuning. We in-

ferred the form these elements by performing a DRAG analysis on the CPT transformed

Hamiltonian of the system, and decoupling the unwanted optical elements of the system

from this frame. The pulse modulation that we presented was in the form of a corrective

modification Ωℓ,c(t) to the original pulse Ωℓ,o(t) that drives each transition ℓ of the system.

However, it should be noted that this solution is not unique; we have made specific choices
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Figure 4.6: Gate improvement for an X-rotation by π, RX(π), using a corrective pulse Ωc(t)
in terms of the dimensionless parameter (1/2π)σ/ε and the parameter η which indicates the
ratio between the strengths of couplings to the unwanted level |λ1/λ0| in |t⟩ = sin(η) |b1⟩ −
cos(η) |b0⟩ and |u⟩ = cos(η) |b1⟩ + sin(η) |b0⟩. The best improvements come when the value
of the two couplings are close to each other, i.e., η = π/4.
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on the generative parameters of the DRAG frame, in deriving our DRAG solutions (see

Section 4.6 for details of the derivations). These generative elements are the free parameters

of the system and can be set to arbitrary values as long as they satisfy the DRAG trans-

formation condition S(1)(tg) = S(1)(0) = 0. Therefore one can choose different generative

elements for alternative DRAG solutions based on the system and the experimental needs.

Furthermore, in the text we discussed the implementation ofX-, and Y -rotations. To achieve

universal control of the qubit system, we also require implementations of Z-rotations. This

can be done through the same control scheme we discussed in this work by driving only a

single transition of the Λ-system with a sech pulse [45]. Therefore our formalism applies in

the same manner and to perform high-fidelity Z-rotations, all we need to do is to apply our

pulse modulation to the single pulse that drives the single transition of Λ-system.

This pulse modification can be implemented by using a beam splitter on the original drive,

modulating one part of the drive to acquire the appropriate π/2 phase difference and shape,

and the rejoining both parts to carry the effect of the correction. We have shown the pulse

shapes in Fig. 4.5. The corrective pulse is inversely proportional to the splitting ε and

the coupling to the unwanted level for that transition (Eq. (4.7)). For smaller splittings

correction pulse becomes more comparable to the original pulse. Furthermore, as opposed

to the original DRAG framework that requires time-dependent detunings, our formalism

require only a slight modification of a static detuning, lowering the experimental overhead

of chirped detunings.

Finally we comment on the choice of basis states that constructed our target and unwanted

levels that we discussed in Section 4.2. The exact same analysis presented in this work can

be done in the case of a target and unwanted level which have bare couplings to the two qubit

states. In that case we can set the couplings to the target state to unity and take the coupling

to the unwanted to be proportional to λ0 and λ1 as the bare coupling; Rabi frequencies of
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the target transitions are Ω0(t) ≡ d0,tE0 and Ω1(t) ≡ d1,tE1, and the Rabi frequencies of the

unwanted transitions are λ0Ω0(t) and λ1Ω1(t). It can be seen that such formulation leads

to the same Hamiltonian of Eq. (4.1), except that λ0 and λ1 are independent of each other.

Therefore the presented analysis will still hold with the same set of DRAG solutions that we

have found.

The version of DRAG we have tailored to case of a Λ-system with a fourth unwanted level is

general and can be applied to other possible selection rules in other optically driven systems,

such as color centers (e.g., the NV center in diamond), trapped ions, etc. For instance, an

application of our framework is in scalable QDMs introduced in Ref. [33]. In these systems

the indirect transitions of each QMD can be set to a particular frequency using local electric

fields and therefore DRAG modified drives can be applied to several QDMs. However, each

QDM might have a different splitting compared to other ones and the DRAG solutions

we have are specific to a single Λ-system with a particular splitting. Although applying a

modified drive will improve all qubits, but it will not necessarily yield to the best possible

fidelity. However, generally speaking, developing a version of the presented framework for

different systems with distinct characteristics could be a potential future direction.

4.5 Coherent population trapping

In this section we present mathematical details of the CPT framework. Two-level systems

subject to a sech pulse with Rabi frequency Ω and bandwidth σ, can be solved analytic-

ally [86] and the solutions are in the form of hypergeometric functions. For the case of

Ω/σ ∈ N, these pulses are transitionless [45], i.e., after the passage of the pulse the popu-

lation will always return to the ground state with the ground state acquiring a non-trivial

phase ϕ through the process. For the specific case of Ω = σ, the Hamiltonian of a generic
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two-level system driven by a sech pulse in the rotating frame is

H =

 δ/2 Ω(t)

Ω(t) −δ/2

 , (4.13)

where Ω(t) = σ sech(σ(t− tg/2)) and the gate time is tg = n/σ, with n being a positive

real number. For this system the unitary evolution operator at the end of the gate is

U = diag(e−iϕ, eiϕ), where the phase is given by:

ϕ = 2 arctan(σ/δo) + δtg/2. (4.14)

In the CPT scheme the transitions of the system are excited using a drive field like,

E0f0(t)e
iω0t + eiαE1f1(t)e

iω1t + h.c.

For identical temporal envelopes and detunings, with Rabi frequencies Ω0(t) and Ω1(t), the

transformation of the original qubit states to the bright and dark states is:

|D⟩
|B⟩

 =

 cos θ
2

−eiα sin θ
2

e−iα sin θ
2

cos θ
2


|0⟩
|1⟩

 , (4.15)

where sin θ
2

= Ω0/Ωeff, cos θ
2

= Ω1/Ωeff, and Ω2
eff = Ω2

0 + Ω2
1. In the CPT frame, the

transition matrix elements between the target and the dark state vanishes and the bright

and target state will have the matrix element defined by the effective Rabi frequency:

Vt,B = Ωefff(t)e
−iδt. For the case of both drives using a sech temporal envelope, i.e.,

f0(t) = f1(t) = sech(σt), the transitionless pulse with Ωeff = σ will induce the relative

phase ϕ between the bright and dark states which translates to a rotation in the sub-



60 CHAPTER 4. HIGH-FIDELITY CONTROL IN Λ-SYSTEMS WITH LEAKAGE

space of |D⟩ and |B⟩. Therefore, by varying the drive parameters we can set the unitary

transformation of Eq. (4.15) to transform our original qubit states to the desired states

in the CPT frame, effectively enabling the rotation about an arbitrary axis of rotation

n̂ = (sin θ cosα, sin θ sinα, cos θ): Rn(ϕ) = eiϕn̂.σ⃗.

The CPT framework can be applied to the case of Λ-system with leakage in a similar way.

However, there will be additional transitions from the bright and dark state to the unwanted

level. We set θ = π/2 and α = 0, and in the lab frame of non-ideal system with leakage, for

the case of equal detunings, δ, the Hamiltonian in the interaction frame after the RWA can

be written as

Hint =
1

2
ei(δ−ε)t{λ0Ω0|u⟩⟨0|+ λ1Ω1|u⟩⟨1|}+

1

2

∑
j=0,1

eiδtΩj|t⟩⟨j|+ h.c. (4.16)

The CPT transformation for an X-rotation amounts to having both Rabi freqcuencies to be

equal: Ωo(t) = Ω0(t) = Ω1(t). Such a CPT transformation turns this Hamiltonian into

HCPT =
eiδt√
2
Ωo|t⟩⟨B|+

ei(δ−ε)t

2
√
2

{
Ωo(λ0 − λ1)|u⟩⟨D|+ Ωo(λ0 + λ1)|u⟩⟨B|

}
+ h.c. (4.17)

We proceed by removing the oscillatory parts of the CPT Hamiltonian by going to a rotating

frame. We do this using the frame transformation

diag
[
ei(δ/2)t, ei(δ/2)t, e−i(δ/2)t, ei(−δ/2+ε)t

]
. (4.18)
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Upon this transformation we arrive at the Hamiltonian

HCPT,ωd = (δ/2)(ΠD +ΠB − Πt − Πu) + εΠu

+
1

2
√
2

{
2Ωo|t⟩⟨B|+ Ωo(λ0 − λ1)|u⟩⟨D|

+Ωo(λ0 + λ1)|u⟩⟨B|+ h.c.
}
. (4.19)

4.6 Mathematical derivation of DRAG solutions

In this section we derive the DRAG solutions presented in Eqs. (4.7). To that end we

first need to expand the control fields of the DRAG frame Hamiltonian with respect to the

adiabatic parameter x:

H
(n)
DRAG(t) = H

(n)
extra(t) + H̄(n)(t) + i[S(n+1)(t),Πu], (4.20)

where Hextra is generated by the lower orders of the transformation and is usually a nontrivial

expression, and,

H̄CPT,ωd(t) =
1

x
Πu +

∞∑
n=0

xnH̄(n)(t). (4.21)

Notice that this expansion essentially means that the constrains in Eqs. (4.4) and (4.5), and

consequently the control fields hi(t) and hz(t) should be made perturbative with respect to

the order of this expansion as well. Furthermore, for a d-dimensional system the general

form of the S(t) can be written as
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S(t) =
∑
i

si,z(t)Πi +
∑
i=o,c

∑
m<n

si,m,n(t)σ
i
m,n. (4.22)

The zeroth-, first- and second-order expressions are as follows [78]:

H
(0)
extra(t) = 0 (4.23)

H
(1)
extra(t) = i[S(1)(t), H(0)(t)]− [S(1)(t), [S(1)(t),Πu]]/2− Ṡ(1)(t). (4.24)

H
(2)
extra(t) = i[S(2)(t), H(0)(t)] + i[S(1)(t), H(1)(t)]− [S(1)(t), [S(1)(t), H(0)(t)]]/2

−[S(1)(t), [S(2)(t),Πu]]/2− [S(2)(t), [S(1)(t),Πu]]/2

−i[S(1)(t), [S(1)(t), [S(1)(t),Πu]]]/6 + i[Ṡ(1)(t), S(1)(t)]/2− Ṡ(2)(t). (4.25)

Using Eqs. (4.20) and (4.23), we can solve for the constrains in Eqs. (4.4) and (4.5) to obtain

the appropriate control elements in terms of different orders of the parameter x. The control

constraints of (4.4) turn into

√
2 Ω̄(n)

o = h(n)o − Tr[H(n)
extra(t)σ

o
B,t],√

1/2 (Ω̄
(n)
0,c + Ω̄

(n)
1,c ) = h(n)c − Tr[H(n)

extra(t)σ
c
B,t], (4.26)

3

2
δ̄(n)(t) = h(n)z (t)− Tr[H(n)

extra(t) (ΠB − Πt)].
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The decoupling constraints of (4.5) turn into

s
(n+1)
c,D,u = −1

2
Tr[H(n)

extra(t)σ
o
D,u] +

1

2
√
2
(λ1 − λ0)Ω̄(n)

o ,

s
(n+1)
o,D,u = +

1

2
Tr[H(n)

extra(t)σ
c
D,u]−

1

2
√
2
(λ1Ω̄

(n)
1,c − λ0Ω̄

(n)
0,c ),

s
(n+1)
c,B,u = −1

2
Tr[H(n)

extra(t)σ
o
B,u]−

1

2
√
2
(λ1 + λ0)Ω̄

(n)
o ,

s
(n+1)
o,B,u = +

1

2
Tr[H(n)

extra(t)σ
c
B,u]−

1

2
√
2
(λ1Ω̄

(n)
1,c + λ0Ω̄

(n)
0,c ),

s
(n+1)
c,t,u = −1

2
Tr[H(n)

extra(t)σ
o
t,u],

s
(n+1)
o,t,u = +

1

2
Tr[H(n)

extra(t)σ
c
t,u]. (4.27)

From these constraints, first we set the zero-order solutions. In order to make the CPT

framework into the desired form within the bright and target subspace, from Eqs. (4.26)

with n = 0, we find that we need to set h(0)i (t) = 2tgΩ(t) where Ω(t) = σ sech(σt), h(0)i,c (t) = 0

for i = 0, 1, and h(0)z (t) = (3/2)tgδ, and as before we set the higher orders to zero. Using the

fact that H(0)
extra(t) = 0, we find

Ωo(t) =
√
2Ω(t), Ω0,c(t) = Ω1,c(t) = 0. (4.28)

The only nonzero first-order generator elements from Eqs. (4.27) are s
(1)
c,D,u = 1

2
(λ0 −

λ1)tgΩ(t), and s
(1)
c,B,u = 1

2
(λ0 + λ1)tgΩ(t). These two constraints assure prevention of

leakage from dark and bright states to the unwanted level, respectively. Using these results

along with H(1)
extra = 0 will provide us with the first-order correction equations:
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√
2Ω̄(1)

o = 2ṡ
(1)
o,B,t + 2δs

(1)
c,B,t, (4.29)

1√
2
(Ω̄

(1)
0,c + Ω̄

(1)
1,c) = 2

(
ṡ
(1)
c,B,t + Ωtg(s

(1)
z,D − s

(1)
z,B)− δs

(1)
o,B,t

)
,

s
(1)
c,B,t =

Ωtg

16
√
2
(λ0 + λ1)

2 + ṡ
(1)
z,D − ṡ

(1)
z,B.

In practice one may find the corrective measures by just using the first-order constraint

S(1)(0) = S(1)(tg) = 0, however, as we show in the following, although the higher orders

will satisfy the decoupling constraints, but the dark-to-target and dark-to-bright constraints

cannot be satisfied simultaneously. Nevertheless, we find the corrections to the original

pulse as follows. To seek the simplest solution which satisfies the S(1)(0) = S(1)(tg) = 0,

we pick the free parameters s(1)z,i ’s and s
(1)
o,B,t all equal to zero. For two identical corrective

drive elements, i.e. Ω̄
(1)
0,c = Ω̄

(1)
1,c = Ω̄

(1)
c , by using the third equation in the first two, we find

the pulses given in Eqs. (4.7). Using these solutions and the choices we made above for

the generative elements of S(t), in the expansion (4.20) (notice that we will need to utilize

H
(2)
extra(t) since we will need to set the values of S(2)) will lead to the first-order form of the

DRAG Hamiltonian H(1)
DRAG(t) given in Eq. (4.8).



Chapter 5

Nuclear spin problem in quantum

dots

The trapped electron in a QD interacts with a bath of ∼ 105 nuclear spins [2] through the

contact hyperfine (HF) interaction. So far for the scalable QDM systems and generation of

cluster states from these systems, we have considered hole spin qubits. As we discussed in

Chapter 2, hole spins have p-like orbitals with dumbbell shapes. The HF contact interaction

vanishes due to the node in the p-like orbitals of the holes. But for electron spins with s-like

orbitals, the HF interaction is quite important. Furthermore, as we discussed in Section 2.1,

inhomogeneous electric field gradients are present in QDs due to the strain-driven growth

process. These electric field gradients couple to the quadrupolar moment of nuclear spins

and affect the dynamics of the system.

This chapter is dedicated to the study of these effects in QDs. The work presented in this

chapter is based on “Driven dynamics of a quantum dot electron spin coupled to a bath of

higher-spin nuclei” by Arian Vezvaee, Girish Sharma, Sophia E. Economou, and Edwin

Barnes [87].

65
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5.1 The nuclear spin problem

As we discussed in previous chapters, spins trapped in QDs are under intense investigation for

a variety of quantum information applications, including quantum information processing,

quantum communication, and quantum transduction [9, 88, 89, 90]. The relatively long

coherence times, fast controllability [45, 91, 92], and good photon emission properties of

these systems [1, 36, 93, 94] make them promising candidates for achieving high-quality spin-

photon interfaces and for producing large-scale multi-photon entangled states [68, 95, 96, 97].

While optically controlled quantum dot spins offer a wide range of technological possibilities,

HF interactions between the confined spin and its surrounding nuclear spin bath have been a

major impediment. This interaction is the main source of decoherence in these systems, and

it also causes spectral wandering and inhomogeneities in quantum dot ensembles, aspects

that have been researched extensively over the past two decades [2, 98, 98, 99, 100, 100, 101,

102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131]. However, many works have shown that

the state of the bath, and consequently its deleterious effects, can be influenced by driving

the electron spin. For example, several experiments have shown that driving can generate

dynamic nuclear polarization (DNP), an effect that has been observed in self-assembled

QDs [29, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143] and also in other systems

such as gated QDs [144, 145, 146, 147], quantum wires [148] and in bulk materials [149],

findings that have been supported by a number of theory works [150, 151, 152, 153, 154,

155, 156, 157, 158, 159, 160, 161, 162]. In self-assembled QDs, it has been shown that DNP

can survive on the order of minutes due to the suppression of nuclear spin diffusion caused

by strain-induced quadrupolar interactions [163, 164, 165]. An important example of DNP

in self-assembled QDs is the mode-locking experiments of Refs. [132, 133, 134, 135, 136, 137,

138], where an ensemble of QD electron spins becomes synchronized with a periodic train
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of optical pulses as a consequence of DNP. Continuous-wave laser driving of the electron

has been shown to create DNP in QDs as well, leading to interesting phenomena such as

the line-dragging effect, i.e. the locking of an optical QD transition to the frequency of the

laser [29, 141, 142, 154, 166]. Owing to the long coherence times of nuclear spins, DNP has

been proposed for applications such as quantum memories [167, 168], which has recently

been demonstrated experimentally [169, 170].

Although most of the fully quantum mechanical theoretical treatments of the HF decoher-

ence problem allow for nuclei with spin greater than 1/2 [102, 103, 104], studies of the driven,

HF-induced generation of DNP have mostly focused on spin 1/2 nuclei to reduce the compu-

tational complexity of the problem [133, 150, 151, 159, 160, 171]. The latter works typically

rely on either stochastic equations or rate equations to solve for the nuclear polarization

distribution. While solving the feedback problem for spin 1/2 nuclear baths can yield qualit-

ative insights about DNP experiments, the quantitative accuracy of such models is limited by

the fact that the most commonly studied semiconductor QDs are in materials such as InAs

or GaAs, which contain nuclei of spin I > 1/2. In addition to artificially reducing the size

of the bath Hilbert space, assuming spin 1/2 nuclei also ignores effects such as quadrupolar

interactions, which are only present for I > 1/2. There do exist a few theoretical works that

allow for I > 1/2 [98, 117, 152]. Specifically, Huang and Hu [98] studied DNP arising from

hyperfine interactions with the spin 3/2 arsenic nuclei in InGaAs by making use of Fermi’s

golden rule; however, only qualitative agreement with experiment was achieved due to the

need to introduce phenomenological parameters. Yang and Sham [152] presented a general

framework for nuclei of arbitrary total spin by unifying the stochastic and rate-equation ap-

proaches. In this work they focused on a drift feedback loop (which allows for a possible bias

in nuclear spin-flip processes) and obtained a Fokker-Planck equation for the polarization of

the bath. Although this framework captures line-dragging and other DNP phenomena seen in
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experiments, it has only been established for continuous-wave driving, and so it is not imme-

diately applicable to experiments with periodic driving such as the mode-locking experiments

of Refs. [132, 133, 134, 135, 136, 137, 138]. Theoretical works that have specifically focused

on mode-locking type experiments have either assumed I = 1/2 nuclear baths [150, 151]

or utilized semiclassical methods [172, 173, 174, 175, 176, 177, 178]. While semiclassical

approaches have been successful in reproducing qualitative features seen in experiments in-

cluding dynamic nuclear polarization and mode-locking, it remains an outstanding challenge

to develop a more quantitatively accurate description of the driven electron-nuclear spin sys-

tem. Unlike in the case of nuclear-spin-induced decoherence, where semiclassical treatments

have been shown to agree well with quantum mechanical ones [157, 179, 180, 181], similar

comparisons in the context of optically driven DNP have revealed significant quantitative

differences [173].

In this chapter, we develop a quantum, non-perturbative framework to solve the dynamics

of an optically driven electron spin coupled to a bath of I > 1/2 nuclear spins. We focus

on DNP feedback mechanisms that arise from driving the electron with a periodic train of

optical pulses while it is subject to hyperfine interactions with a nuclear spin bath, as in

the mode-locking experiments [132, 133, 134, 135, 136, 137, 138]. Here, we also consider the

effect of quadrupolar interactions. To compute DNP and its effect on the evolution of the

electron spin, we use an approach based on dynamical maps and kinetic equations introduced

in Refs. [150, 151], but, importantly, here we generalize the formalism to higher nuclear spin

and treat the problem non-perturbatively, unlike in these earlier works. Our framework

provides a self-consistent description of the feedback loop between the driven electron and

DNP.

We compute the nuclear spin polarization distribution and its influence on the electron spin

evolution for spin 1 and spin 3/2 baths and compare the results to the I = 1/2 case. Our
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approach is able to treat bath sizes of up to thousands of nuclear spins in the I = 1/2 and

I = 1 cases, and up to several hundred spins in the I = 3/2 case. Although evidence of

mode-locking is seen in all three cases, we find that quadrupolar interactions act to suppress

mode-locking for I > 1/2, especially when the angle between the principal strain axis and

the applied magnetic field is large. We also find that while HF interactions can produce

a significant bath polarization that grows linearly with the number of nuclei for I > 1/2,

quadrupolar interactions work to counteract this buildup of DNP. We further show that the

relative importance of quadrupolar effects grows as the magnitude of the applied magnetic

field is increased. The competition between HF and quadrupolar interactions imprints clear

signatures in the steady-state electron spin evolution, providing an experimental tool to

measure the strength of quadrupolar couplings in a QD. Our results show that accounting

for higher nuclear spin is important not only for quantitative accuracy, but also for capturing

important qualitative features of the DNP process in driven QD systems.

The following sections are structured as follows. In Sec. 5.2, we describe the system and

Hamiltonian. In Sec. 5.3, we lay out the theoretical approach in detail for arbitrary nuc-

lear spin I and construct the equations that govern DNP for I = 1/2, 1, and 3/2 nuclear

spin baths. We present an analytical solution for the steady-state nuclear spin polarization

distribution for I = 1/2. In Sec. 5.4, we numerically compute steady-state polarization dis-

tributions for I = 1 and 3/2 and compare the results to the I = 1/2 solution for various

parameter choices. We also study the effect of DNP on the electron spin evolution. We

conclude in Sec. 5.5.
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Figure 5.1: The relevant level structure in the mode-locking experiments. |x⟩ and |x̄⟩ are the
electron spin states along the optical axis. These states are coupled by an external magnetic
field along the z direction. Circularly polarized light excites the ground electron spin states
to excited trion levels |T ⟩ and |T̄ ⟩ with angular momentum projections +3/2 and −3/2,
respectively. The selection rules are such that each ground state couples to only one excited
state. The trion states decay via spontaneous emission with rate γe. In this work, we focus
on left-circularly polarized driving.

5.2 System and Hamiltonian

Our focus in this work is on QD experiments in which a single electron is periodically pumped

by a train of optical pulses [132, 133, 134, 135, 136, 137, 138, 182]. Each pulse excites the

electron to a trion state (a bound state of an electron and an exciton), which then decays

back to the electronic ground state manifold via spontaneous emission. The full Hamiltonian

of the nuclear spin bath and the driven electron is given by

H(t) = H0,e +H0,n +Hc(t) +Hres +HHF +HQ. (5.1)

Here, H0,e describes the electronic degrees of freedom in the QD in the absence of driving:

He,0 = ωeŜz + ωT̄ |T̄ ⟩⟨T̄ |, (5.2)
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where ωe is the electron spin Zeeman frequency, Ŝz is the spin operator in the electronic

ground space, and ωT̄ is the energy of the trion state |T̄ ⟩. We take the magnetic field to be

oriented along the z direction, while the optical axis lies in the x direction (see Fig. 5.1). We

neglect the second trion level |T ⟩ in H0,e because it is not excited by the laser polarization

we are considering. This driving is described by the Hamiltonian

Hc(t) = Ω(t)|x̄⟩⟨T̄ |+ h.c., (5.3)

where we assume the drive laser is left-circularly polarized (red arrow in Fig. 5.1) with

periodic temporal profile Ω(t+TR) = Ω(t), so that each pulse couples the electron spin state

|x̄⟩ to the trion state |T̄ ⟩. The latter decays via spontaneous emission with rate γe. This

process arises from interactions with a photonic bath, which is represented by the term Hres.

We do not give an explicit expression for this term as it is not needed in what follows. The

Zeeman splitting of the nuclear spins is given by H0,n = ωn

∑
i Î

i
z.

The HF interaction is given by the contact term:

HHF =
N∑
i=1

AiŜz Î
i
z +

N∑
i=1

Ai/2(Ŝ+Î
i
− + Ŝ−Î

i
+), (5.4)

where N is the number of nuclei that interact appreciably with the electron. The first term

is referred to as the Overhauser term, and it gives rise to an effective magnetic field seen

by the electron spin in the case of nonzero nuclear spin polarization. The second term

generates flip-flop interactions under which the electron spin flips with a nuclear spin. These

terms are responsible for transferring angular momentum from the electron onto the nuclei,

while the Overhauser term is the primary mechanism for feedback between the nuclear spin

polarization and the electron spin evolution. The HF couplings Ai are determined by the

magnitude of the electronic wavefunction at the location of the nuclear spin I i. However,
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on timescales short compared to N/A ∼ µs, where A is the total HF interaction energy, the

variations in these couplings do not significantly affect the electron spin evolution [183]. Here,

we focus on fast optical driving where the electron reaches a steady state over a timescale

of about 100 ns [151], which allows us to make the ‘box model’ approximation in which all

the HF couplings are taken equal: Ai = A ≡ A/N [183, 184]. Further comments about this

approximation are given in Sec. 5.5.

The quadrupolar interaction is given by [185, 186]

HQ =
N∑
i=1

νiQ
2

(
Î iz′

2 − I(I + 1)

3

)
. (5.5)

This interaction occurs due to the coupling of the nuclear quadrupole moment to electric field

gradients caused by strain in the semiconductor lattice, and it is only present for I > 1/2.

The presence of quadrupolar interactions has lead to striking phenomena in various types

of experiments conducted in QDs. A few examples include the anomalous Hanle effect [123]

and suppression of spin diffusion [121]. Line-dragging phenomena have also been associated

with the presence of quadrupolar interactions [141, 142, 152]. The coupling strength νQ is

referred to as the nuclear quadrupole resonance frequency, which is estimated to be around

2.8 MHz for As [121]. The quadrupole resonance frequency generally depends on the local

strain in the vicinity of each nuclear spin, and so it generally varies across the material.

Here, we assume that the strain remains roughly constant over the QD, and so we take all

the frequencies to be equal: νiQ = νQ. The operator Îz′ in Eq. (5.5) is the component of the

nuclear spin operator along the principal axis of the electric field gradient. Our focus will

be on the case of QDs with cylindrical symmetry in which the electric field gradient makes

an angle θ with the magnetic field. Therefore, we have Îz′ = Îz cos θ + Îx sin θ, which then
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gives [185]:

HQ =
νQ
2

N∑
i=1

[
(Î iz)

2 cos2 θ − I(I + 1)

3
+ (Î iz Î

i
x + Î ixÎ

i
z) sin θ cos θ + (Î ix)

2 sin2 θ
]
. (5.6)

When θ = 0, HQ creates non-uniform energy spacings between the nuclear spin levels. For

θ ̸= 0, HQ has the additional effect of driving ∆mI = ±1 and ∆mI = ±2 nuclear spin-flip

transitions, where mI is the eigenvalue of Îz. Notice that the rate for ∆mI = ±1 transitions

is maximal at θ = π/4, while the rate for ∆mI = ±2 transitions is largest for θ = π/2, which

is also the value of θ where the non-uniformity in the energy level spacings is zero. Thus,

we see that the role of HQ changes as θ varies from 0 to π/4, and from π/4 to π/2. Because

HQ is π-periodic in θ, it suffices to focus on the range 0 ≤ θ ≤ π/2.

In the case of I = 1/2 nuclei, the underlying physical mechanism behind the formation of

DNP can be understood as follows. Imagine that the electron spin starts in a pure (polarized)

state and the nuclear spins are in a totally mixed (unpolarized) state. The HF interaction

then transfers angular momentum from the electron onto the nuclei, creating DNP. In the

absence of driving, this would lead to only a modest nuclear spin polarization, and this

polarization would be short-lived because it would eventually be transferred back to the

electron via the HF interaction. However, the laser pulses periodically reset the electron

spin to a polarized state, enabling a net transfer of angular momentum from the laser,

through the electron, and onto the nuclei. This basic mechanism can also underlie DNP in

nuclear spin baths with I > 1/2, however it is unclear what role the quadrupolar interactions

play in this story. Answering this question is a main goal of this work.

It is worth noting that our Hamiltonian, Eq. (5.1), does not include inter-nuclear dipolar

interactions. In self-assembled QDs, these interactions are weak compared to the hyperfine

and quadrupolar interactions, and their main effect is to drive nuclear spin diffusion, which
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gradually causes the decay of DNP. It has been shown experimentally, however, that this

diffusion process is strongly suppressed in self-assembled QDs due to strain [163, 164, 165],

leading to diffusion times in excess of several minutes. This is longer than the timescale for

generating DNP (∼seconds [133]). For this reason, we neglect nuclear dipolar interactions

and diffusion in this work.

5.3 Nuclear spin-flip rates and kinetic equation

Before we describe our approach in detail, we first give an overview of the general strategy

and main ingredients. Our framework is summarized in Fig. 5.2. The overall strategy is

similar to that introduced in Refs. [150, 151]. However, significant modifications are needed

to allow for higher nuclear spin. Also, here we present a non-perturbative approach, whereas

Refs. [150, 151] relied on perturbation theory. Therefore, the theoretical model presented in

this section has overlap with, but supersedes, that of Refs. [150, 151]. Readers who are only

interested in the results and not the approach could skip ahead to Sec. 5.4.

We are dealing with a system that is both open and driven. An efficient way to treat non-

unitary evolution is to use dynamical maps [150, 151, 187, 188, 189]. In this approach, the

non-unitary evolution of a system from an initial state ρ to a final state ρ′ is implemented

by applying a set of operators and summing the results:

ρ′ =
∑
k

EkρE
†
k. (5.7)

The operators Ek are known as Kraus operators, and they constitute a generalization of

the usual unitary operators that evolve closed quantum systems to the case of non-unitary

evolution in open systems. The condition
∑

k E
†
kEk = 1 ensures that the trace of the
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of electronic

spin: S(1)

e

Joint evolution:

S(1)

e ⌦ Sn

Flip rates

wj
i : i ! j

Kinetic equation:

d
dt P(m) = K[P(m)]

Bath polarization

P(m)

Feedback

Adding a single
nuclear spin

Multinuclear
effects

Figure 5.2: Schematic depiction of the self-consistent formalism we use to model DNP with
feedback. We exploit a hierarchy of timescales to first solve for the joint evolution of the
electron coupled to a single nuclear spin. Under a Markovian approximation, the electron
spin state is reset after each drive period. The resulting nuclear spin evolution yields nuclear
spin-flip rates that are then fed into a kinetic equation governing the dynamics of the multi-
nuclear spin polarization distribution. The flip rates depend on the effective electron spin
precession frequency, including the Overhauser field contribution for self-consistency. The
solution to the kinetic equation is then used to update the electron steady state, closing the
feedback loop.
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density matrix is always unity. The advantage of Kraus operators is that they allow one to

incorporate effects due to the transient occupation of excited states using operators that live

purely in the ground space of the system. In the present problem, we use these operators

to describe the effect of each optical pulse on the electron spin state. The entire process

of optical excitation, subsequent decay, and rotation is captured by an appropriate set of

Kraus operators (given in Section 5.6) without having to explicitly include excited states or

a photonic bath into the formalism. The dynamical map description works well so long as

the population returns regularly to the electron spin ground states, as is the case for the

periodic driving used in the mode-locking experiments. These Kraus operators can then be

used to obtain the electron spin steady state in the absence of nuclei, as shown in Section 5.7.

Of course, we are interested in the case where the electron spin is coupled to a nuclear spin

bath through HF interactions while it is being driven. Under the condition that the electron

is being pumped fast enough (which indeed is the case for the mode-locking experiments [132,

133, 134, 135, 136, 137, 138]), the electron reaches its steady state on a much faster timescale

compared to the electron-nuclear interaction dynamics and the electron spin decoherence

time. This allows us to use a Markovian approximation in which we first solve for the driven

electron steady state and then incorporate the effects due to the electron-nuclear couplings

on top of this.

To bring the nuclei into the framework, we first solve for the joint evolution of one nuclear

spin coupled to the driven electron spin. Although the HF interaction generates unitary

dynamics, this is disrupted periodically by the pulses, and this in turn leads to an effective

non-unitary dynamical map for the nuclear spin that depends on the electron steady state

under the Markovian approximation. We extract nuclear spin-flip rates from this effective

nuclear spin evolution operator; these rates provide information about the movement of

population between the different nuclear spin levels.
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We calculate the steady state of the entire nuclear spin bath using a rate equation that

depends on the spin-flip rates obtained from the single-nucleus solution. A critical step is

that we build in self-consistent system-environment feedback by modifying the flip rates.

To understand this, we first need to describe the Overhauser effect [190], which is the main

feedback mechanism between the electron and nuclei. A polarized nuclear spin bath acts as an

effective magnetic field and therefore shifts the Zeeman frequency of the electron. However,

the interaction between the electron and the nuclear spin bath is reciprocal; not only will the

state of the electron change under the Overhauser field, but the nuclear spins will also be

affected by the Knight field [191], i.e., the effective magnetic field due to polarization of the

electron. The Knight field is given by the electron steady state spin vector, and so it enters

into the nuclear spin flip rates, as explained above. The electron steady state (and hence

the Knight field) in turn depends on the total magnetic field, which includes the Overhauser

field due to nuclear polarization. These interdependencies constitute a complete feedback

loop that must be treated self-consistently. We do this by making the nuclear spin-flip rates

depend on the net nuclear polarization of the bath. The steady-state of the rate equation

then gives the polarization distribution of the nuclear spin bath with feedback included.

Finally, we use this nuclear polarization distribution to perform the Overhauser shift on

the Zeeman frequency of the electron and update the nuclear-bath-averaged electron spin

steady-state self-consistently.

The framework we have just outlined can be thought of as a self-consistent dynamical mean-

field approach. In the remainder of this section, we use this approach to compute the

dynamical map for a single nuclear spin as well as the nuclear spin flip rates. We then

construct the kinetic equations that govern the dynamics of the full nuclear spin bath. Our

method is quite general and can be applied to baths of any nuclear spin. Here, we focus on

the cases I = 1/2, 1, and 3/2.
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5.3.1 Effective dynamical map for one nuclear spin

Given the electron spin steady state (Eq. (5.49)), we can proceed to construct an effective

dynamical map for a single nuclear spin. We do this by first constructing the evolution oper-

ator in the spin vector (SV) representation that describes the joint evolution of the electron

and nuclear spins over one driving period. We then apply the Markovian approximation and

reset the electron spin to its steady state at the end of the period. Tracing out the electron

then leaves an effective dynamical map for the nuclear spin.

To start, we must choose a basis of Hermitian matrices λ̂k of dimension 2I + 1, where

k = 1, . . . , (2I + 1)2, in order to define the nuclear SV. Unlike in the spin I = 1/2 case

considered in Refs. [150, 151], for I > 1/2 we have much more freedom in how to choose

this basis, and the choice we make can have a substantial impact on the complexity of the

analysis that follows. We choose the first 2I + 1 of these matrices to be diagonal, each with

a single nonzero component equal to one. The remaining 2I(2I + 1) matrices each have two

nonzero components, and these matrices are purely real or purely imaginary. For example,

in the case of I = 3/2, we have 16 basis matrices:

λ̂k,ab = δakδbk, k = 1 . . . 4,

λ̂5,ab =
1√
2
(δa1δb2 + δa2δb1), λ̂6,ab =

−i√
2
(δa1δb2 − δa2δb1), λ̂7,ab =

1√
2
(δa1δb3 + δa3δb1),

λ̂8,ab =
−i√
2
(δa1δb3 − δa3δb1), λ̂9,ab =

1√
2
(δa1δb4 + δa4δb1), λ̂10,ab =

−i√
2
(δa1δb4 − δa4δb1),

λ̂11,ab =
1√
2
(δa2δb3 + δa3δb2), λ̂12,ab =

−i√
2
(δa2δb3 − δa3δb2), λ̂13,ab =

1√
2
(δa2δb4 + δa4δb2),

λ̂14,ab =
−i√
2
(δa2δb4 − δa4δb2), λ̂15,ab =

1√
2
(δa3δb4 + δa4δb3), λ̂16,ab =

−i√
2
(δa3δb4 − δa4δb3).

(5.8)

These matrices are normalized such that Tr[λ̂jλ̂k] = δjk. Denoting the nuclear spin density
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matrix as ρn, the components of the nuclear SV Sn are then given by

Sn,k = Tr[ρnλk]. (5.9)

Note that the populations, ρn,ii, are the first four components of Sn. We will see that this

feature simplifies the process of computing flip rates.

Let us denote the density matrix that describes the total electron-nuclear spin state at the

beginning of a driving period by ϱ. We expand this in terms of an operator basis formed

from tensor products of the nuclear spin operators λ̂k with the electron spin Pauli matrices

σ̂j:

Ĝ(2I+1)2j+k = σ̂j ⊗ λ̂k, (5.10)

with j = 0, .., 3, k = 1, ..., (2I + 1)2, and where we define σ̂0 = 12×2. We use this set of

4(2I+1)2 operators as a basis for the SV of the joint system: Sℓ = Tr(ϱĜℓ). This SV evolves

over one driving period according to S ′ = YS, where the SV evolution operator Y is given

by

Yℓℓ′ =
1

2
Tr
[
ĜℓUĜℓ′U †

]
, (5.11)

where U = exp{−i(ωeŜz + ωnÎz + HN=1
HF + HN=1

Q )TR} describes the joint evolution of the

electron spin and single nuclear spin under precession and the HF and quadrupolar interac-

tions. At this point, we invoke the Markovian approximation: Because the electron reaches

its steady state, Sss
e , quickly compared to the timescales for nuclear spin and HF dynam-

ics, we reset the electron SV to its steady state value at the beginning/end of each period:

S = Sss
e ⊗ Sn. We then obtain an effective nuclear spin dynamical map, Yn, by acting with

the full evolution operator, Y , on the tensor product Sss
e ⊗Sn and reading off the coefficients
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of the components of the nuclear SV, Sn, from the resulting S ′:

Yn,jk =
d

dSn,k
[Y(Sss

e ⊗ Sn)]j . (5.12)

Here, j, k = 1, ..., (2I + 1)2, that is, we only retain the components of S ′ that correspond

to the basis operators Ĝk = 12×2 ⊗ λ̂k, i.e., the components that correspond to purely

nuclear spin degrees of freedom. Note that although the joint evolution operator Y describes

unitary evolution, the nuclear spin dynamical map, Yn, implements non-unitary evolution.

This non-unitarity is a consequence of the Markovian approximation, which is itself due to

the non-unitary driving of the electron spin.

5.3.2 Single-nucleus flip rates

We can use the nuclear spin dynamical map, Yn, that we found in the previous subsection to

find the flip rates for a single nuclear spin interacting with the electron spin. These flip rates

govern the movement of population from one nuclear spin state to another. Such processes

are described by the following kinetic equation:

dpm
dt

=
∑
n̸=m

wm
n pn −

∑
n̸=m

wn
mpm, (5.13)

where pm is the population of level m, and wm
n is the rate to flip from state n to m, which

in general differs from the rate to flip from m to n, wn
m. Which transitions are allowed

depends on the type of interactions present in the Hamiltonian. For instance, the HF flip-

flop terms only cause ∆mI = ±1 transitions, while the quadrupolar interaction also drives

∆mI = ±2 transitions. We can combine the rate equations (5.13) into a matrix equation.

We exemplify this in the I = 3/2 case, where we denote the four states |+3/2⟩, |+1/2⟩,
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Figure 5.3: Single-nucleus spin-flip rates for (a,b) I = 1/2, (c,d) I = 1, (e,f) I = 3/2 as
a function of the magnetization m of the nuclear spin bath. Flip rates are shown in (a),
(c), (e), while flip rate differences are shown in (b), (d), (f). The parameter values are
TR = 13.2 ns, NA = 10 GHz, N = 1000, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz,
q0 = 0.3, ϕ = −π/2. For (c-f), we set the quadrupolar parameters to νQ = 2.8 MHz and
θ = 0. Only the nonzero flip rates are shown.

|−1/2⟩, |−3/2⟩, by the shorthand {++,+,−,−−}. The matrix equation is then Ṗ =MP ,

where P = (p++, p+, p−, p−−), and

M =



−(w+

++ + w−++ + w−−++) w++

+ w++

− w++
−−

w+

++ −(w++

+ + w−+ + w−−+ ) w+

− w+

−−

w−++ w−+ −(w++

− + w+

− + w−−− ) w−−−

w−−++ w−−+ w−−− −(w+

−− + w−−− + w++
−−)


.

(5.14)

It is clear that this equation satisfies the condition that the sum of the components of the

probability vector P should be unity at all times. This is guaranteed by the property that

the sum of the rows ofM vanishes.

To determine the flip rates, we need to connect the generic kinetic equation, Eq. (5.13), to

the nuclear spin evolution operator, Eq. (5.12), derived earlier. This can be done by starting
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from the evolution over one driving period:

Sn(t+ TR) = YnSn(t). (5.15)

The fact that the nuclear spin evolution is much slower than the driving period TR allows

us to coarse-grain this equation to arrive at a continuous evolution equation:

d

dt
Sn =

1

TR
(Yn − 1)Sn. (5.16)

Because we have defined Sn such that its first four components are just the populations of

the nuclear spin states, we can identify this equation with Ṗ =MP and therefore read off

the flip-rate matrix components from the nuclear spin evolution matrix:

Mij =
1

TR
(Yn − 1)ij, i, j = 1...2I + 1. (5.17)

This allows us to read off the flip rates from the nuclear spin dynamical map. It is worth

noting that Yn contains not only terms that mix the populations of the different nuclear

spin levels but also terms that mix populations and nuclear spin coherences. Here, we are

neglecting the influence of the latter on the late-time populations. In numerical simulations,

we find that these terms have a negligible effect on the flip rates. Moreover, they will be

further suppressed by nuclear spin dephasing [92, 112], which happens quickly compared to

nuclear spin flips. This simplification allows us to obtain non-perturbative expressions for

the flip rates.

In the case of I = 1/2 nuclei, the flip rates can be obtained analytically following the above

procedure:

w± =
A2(1± Sss

e,z) sin2(TR
√

(ωe − ωn)2 + A2/2)

2TR[(ωe − ωn)2 + A2]
, (5.18)
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where we use the shorthand notation w+ ≡ w+1/2
−1/2 and w− ≡ w−1/2+1/2. Note that unlike in

Refs. [150, 151], here we did not have to resort to perturbation theory in the HF interaction

to obtain an analytical expression for the flip rates. The flip rates for I = 1 and I = 3/2

can also be obtained analytically in the case of zero quadrupolar coupling, νQ = 0. In this

case, there are four nonzero flip rates for I = 1:

w0
−1 =

A2(1 + Sss
e,z) sin2(TRΩ

(1)
− /2)

TR(Ω
(1)
− )2

,

w−10 =
A2(1− Sss

e,z) sin2(TRΩ
(1)
− /2)

TR(Ω
(1)
− )2

,

w+1
0 =

A2(1 + Sss
e,z) sin2(TRΩ

(1)
+ /2)

TR(Ω
(1)
+ )2

,

w0
+1 =

A2(1− Sss
e,z) sin2(TRΩ

(1)
+ /2)

TR(Ω
(1)
+ )2

, (5.19)

with

Ω
(1)
± =

√
(ωe − ωn)2 ± A(ωe − ωn) + 9A2/4, (5.20)
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while there are six nonzero flip rates for I = 3/2:

w++
+ =

3A2(1 + Sss
e,z) sin2(TRΩ

(3/2)
+1 /2)

2TR(Ω
(3/2)
+1 )2

,

w+
++ =

3A2(1− Sss
e,z) sin2(TRΩ

(3/2)
+1 /2)

2TR(Ω
(3/2)
+1 )2

,

w+
− =

A2(1 + Sss
e,z) sin2(TRΩ

(3/2)
0 /2)

TR(Ω
(3/2)
0 )2

,

w−+ =
A2(1− Sss

e,z) sin2(TRΩ
(3/2)
0 /2)

TR(Ω
(3/2)
0 )2

,

w−−− =
3A2(1 + Sss

e,z) sin2(TRΩ
(3/2)
−1 /2)

2TR(Ω
(3/2)
−1 )2

,

w−−− =
3A2(1− Sss

e,z) sin2(TRΩ
(3/2)
−1 /2)

2TR(Ω
(3/2)
−1 )2

, (5.21)

with

Ω(3/2)
η =

√
(ωe − ωn)2 + 2ηA(ωe − ωn) + 4A2. (5.22)

In the absence of quadrupolar interactions, only ∆mI = ±1 transitions (i.e., transitions

between adjacent spin levels) are allowed, as follows directly from the form of the HF flip-

flop interaction. When the quadrupolar coupling is nonzero, we can no longer obtain an

analytical expression for the flip rates, but these are still easily obtained numerically by

computing Yn for specific parameter values.

5.3.3 Multi-nuclear flip rates

We can convert the single-nucleus flip rates obtained above into multi-nuclear flip rates

by making them dependent on the magnetization of the entire nuclear spin bath. This

dependence comes from the Overhauser effect in which nuclear spin polarization acts as an
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Figure 5.4: Single-nucleus spin-flip rates as a function of nuclear spin bath magnetization m
for I = 1 and for different values of the quadrupolar angle θ. (a) Flip rate for the ∆mI = 1
transition |0⟩ → |+1⟩. (b) Flip rate difference for the |0⟩ ↔ |+1⟩ transitions. (c) Flip
rate for the ∆mI = 2 transition |−1⟩ → |+1⟩. The parameter values are TR = 13.2 ns,
NA = 10 GHz, N = 1000, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3,
ϕ = −π/2, νQ = 2.8 MHz.

effective magnetic field seen by the electron spin. We incorporate this effect by adding a

magnetization-dependent shift to the precession frequency of the electron:

wj
i (m) = wj

i (ωe → ωe0 +mA), (5.23)

where ωe0 denotes the contribution to the precession frequency due purely to the external

magnetic field, and where we use wj
i (m) to denote the rate to flip from state i to state j

in the presence of nuclear spin magnetization m. For nuclei of spin I, we can express this

magnetization in terms of occupation numbers, Nℓ, for each of the nuclear spin states:

m =
I∑

ℓ=−I

ℓ Nℓ. (5.24)

Fig. 5.3 shows the dependence of the flip rates on the net magnetization m for I = 1/2, 1,

and 3/2. In this figure, results for zero quadrupolar angle, θ = 0, are shown in the I > 1/2

cases. Even though the quadrupolar coupling is nonzero, νQ > 0, only ∆mI = ±1 transitions

are permitted in this case because when θ = 0, the only effect of the quadrupolar interaction

is to modify the energy splittings between nuclear spin levels, and so the selection rules are
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Figure 5.5: Single-nucleus spin-flip rates as a function of nuclear spin bath magnetization m
for I = 3/2 and for different values of the quadrupolar angle θ. (a) Flip rate for the ∆mI = 1
transition |−1/2⟩ → |+1/2⟩. (b) Flip rate for the ∆mI = 3 transition |−3/2⟩ → |+3/2⟩.
(c) Flip rate for the ∆mI = 1 transition |−3/2⟩ → |−1/2⟩. (d) Flip rate for the ∆mI = 2
transition |−3/2⟩ → |+1/2⟩. (e) Flip rate difference for the |−3/2⟩ ↔ |−1/2⟩ transitions.
(f) Flip rate difference for the |−3/2⟩ ↔ |+1/2⟩ transitions. The parameter values are
TR = 13.2 ns, NA = 10 GHz, N = 1000, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz,
q0 = 0.3, ϕ = −π/2, νQ = 2.8 MHz.

still determined solely by the HF interaction. We discuss the effect of nonzero θ below.

The salient features evident in Fig. 5.3 can be understood from the non-perturbative ex-

pressions for the flip rates given above. First of all, the flip rates are strongly peaked at

magnetization m ≈ −ωe0/A. In the spin 1/2 case, the precise location of the peak is the

value of m at which the argument of the sine in Eq. (5.18) vanishes since the flip rates

are essentially given by squared sinc functions. For low to moderate external magnetic field

strengths and large N , the terms involving ωn and A2 can be neglected, leaving m ≈ −ωe0/A.

Similar statements hold for I = 1 and I = 3/2 in the absence of quadrupolar effects, as is

clear from Eqs. (5.19) and (5.21). The fact that the flip rates are maximal at m ≈ −ωe0/A

can be understood from energy conservation: At these values, the effective Zeeman energy

of the electron is almost zero, and thus so is the energy mismatch between the electron and

nucleus. This in turn reduces the energy penalty for flip-flops, accelerating the transfer of
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polarization. Conversely, the overall decay of the flip rates away from m ≈ ωe0/A is due to

the HF interaction becoming inefficient at overcoming the large energy mismatch between

the electronic and nuclear spin splittings.

It is also evident in Fig. 5.3 that the flip rates vanish periodically as a function of m. The

periodicity is also controlled by the arguments of the sine functions in the flip rates. These

zeros correspond to values of ωe for which complete flip-flops between the electronic and

nuclear spins occur—polarization is transferred back and forth between the electron and

nucleus an integer number of times within a single drive period TR. Because there is no net

polarization transfer, the flip rate vanishes. For I > 1/2, the locations of these zeros depend

on which pair of adjacent spin levels we consider, although this dependence fades away in

the large N limit, where A→ 0. In the next section, we show that these flip-rate zeros play

a central role in the phenomenon of mode-locking.

Each pair of flip rates describing transitions between the same two spin levels are almost

equal [see panels (b), (d), (f) of Fig. 5.3]. As can be seen from Eqs. (5.18)-(5.21), the

differences of these flip rates are proportional to Sss
e,z(m), and this component of the electron

steady state is suppressed near m ≈ −ωe0/A because it is proportional to ωe (see Eq. (5.49)).

This is a reflection of the fact that when ωe = 0, the electron steady state becomes polarized

along the optical pulse axis (the x direction), where it is no longer affected by the pulses and

is thus stabilized. In the figure, we see that this combination of accelerated flip-flops and

the suppression of Sss
e,z(m) near m ≈ −ωe0/A results in flip rate differences that are more

than two orders of magnitude smaller than the flip rates themselves.

The effect of a nonzero quadrupolar angle θ on the flip rates is shown in Figs. 5.4 and 5.5 for

I = 1 and 3/2, respectively. In the case I = 1, it is evident that θ has a negligible effect on the

∆mI = ±1 flip rates. On the other hand, sufficiently large values of the angle, θ ≳ π/4, give

rise to ∆mI = ±2 transitions that are not otherwise present. Although the rates for these
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transitions are two orders of magnitude smaller than those of the ∆mI = ±1 transitions,

they are still large enough to affect the polarization distribution of the nuclear spin bath, as

we show in Sec. 5.4. Similar but somewhat more prominent effects are evident for I = 3/2

in Fig. 5.5. Here, larger values of θ produce small but noticeable changes in ∆mI = ±1 flip

rates, significant ∆mI = ±2 transition rates, and even ∆mI = ±3 transitions. A striking

feature evident in both Figs. 5.4 and 5.5 is that the flip rates for ∆mI = ±2 transitions

do not decay as m moves away from m = −ωe0/A. This is consistent with the fact that

spin flips caused by the quadrupolar interaction do not require the electron and nuclear spin

Zeeman energies to be equal. Unlike HF spin flips, quadrupolar spin flips depend weakly

on the bath magnetization. On the other hand, the ∆mI = ±3 flip rates are sensitive to

m (see Fig. 5.5(b)), because these arise from a higher-order process that combines HF and

quadrupolar spin flips.

5.3.4 Kinetic equations for multi-nuclear spin polarization distri-

butions

In this subsection, we use the flip rates obtained in the previous subsection to construct

kinetic rate equations that govern the evolution of the polarization distribution of the entire

nuclear spin bath. We do this for each of the three values of nuclear total spin I considered in

this work. Although the kinetic equation for I = 1/2 has been discussed in detail elsewhere

[150, 151], here we present an analytical solution to this equation that was not previously

known. The kinetic equations for I = 1 and 3/2 will be solved numerically in the next section

to obtain nuclear spin polarization distributions in these cases. Detailed comparisons of the

polarization distributions that result in all three cases for various parameter values are given

below in Sec. 5.4. In that section, these distributions are then used to compute the effect on

the electron spin evolution with and without quadrupolar interactions.
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Kinetic equation for spin I = 1/2 nuclei

The polarization of a spin 1/2 nuclear bath in a definite configuration with occupation num-

bers N+ and N− (the number of spins in the |+1/2⟩ and |−1/2⟩ states, respectively) is given

by m = (N+−N−)/2. The total number of spins is N = N+ +N−. Knowledge of the polar-

ization m is sufficient to determine the two occupation numbers, N+ and N−. This in turn

means that the probability of each bath configuration is equal to the polarization probability

distribution P (m). We may write down a kinetic equation governing the dynamics of this

distribution [150, 151]:

d

dt
P (m) = −

∑
±

[
w±(m)

N ∓ 2m

2

]
P (m)+

∑
±

w∓(m± 1)

[
N ± 2m

2
+ 1

]
P (m± 1). (5.25)

A close look at this kinetic equation reveals that the right-hand side is comprised of two

terms that are related to each other by shifting m→ m+ 1:

d

dt
P (m) = F (m+ 1)− F (m), (5.26)

where F (m) = w−(m)(m + N/2)P (m) − w+(m − 1)(−m + 1 + N/2)P (m − 1). Therefore,

in the steady state where dP (m)/dt = 0, we find F (m) = F (m + 1) = constant. Since we

must have P (N + 1) = 0, it follows that this constant is zero. The equation F (m) = 0 then

yields a two-term recursion relation [150, 151]:

P (m) =
N − 2m+ 2

N + 2m

w+(m− 1)

w−(m)
P (m− 1). (5.27)

This relation can easily be solved iteratively starting from an arbitrary value for P (−N)

and then imposing the normalization condition
∑

m P (m) = 1. This approach was used to

produce numerical results for the polarization distribution in Refs. [150, 151]. Notice that
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this procedure yields the unique steady state of the kinetic equation, Eq. (5.25). Because of

this uniqueness, the steady state must be stable. This is evident from the kinetic equation,

where a positive fluctuation that takes P (m) away from its steady-state value results in

dP (m)/dt < 0, which indicates that the steady state will be subsequently restored. An

analogous statement holds for a negative fluctuation as well. The kinetic equations for

I > 1/2 described below also possess this property.

Here, we obtain an analytical solution for P (m) by exploiting the explicit, non-perturbative

expressions we obtained for the flip rates in Eq. (5.18). First of all, an expression for P (m)

follows immediately from Eq. (5.27):

P (m) = N−1
m∏

k=1−N/2

N − 2k + 2

N + 2k

w+(k − 1)

w−(k)

=
N−1N !

(N/2 +m)!(N/2−m)!

m∏
k=1−N/2

w+(k − 1)

w−(k)
,

(5.28)

where N is a normalization factor. Next, we use the fact that the two flip rates only differ by

the sign in front of Sss
e,z(m), which leads to a cascade of cancellations between the numerator

and denominator in the product. We are left with

P (m) =
N−1

(N/2 +m)!(N/2−m)!

m∏
k=1−N/2

1 + Sss
e,z(k − 1)

1− Sss
e,z(k)

× (ωe0 − ωn + Am)2 + A2

sin2(TR
√

(ωe0 − ωn + Am)2 + A2/2)
, (5.29)

where we have absorbed additional constants into N . The first, combinatoric factor in P (m)

corresponds to a Gaussian-like envelope that quickly approaches a Gaussian as N increases:

[(N/2)!]2/[(N/2 +m)!(N/2 −m)!] → e−2m
2/N as N → ∞. The second factor in Eq. (5.29)
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produces sharp spikes at values of m that correspond to the zeros of the flip rates. These

values of m satisfy √
(ωe0 − ωn + Am)2 + A2 ≈ 2πp

TR
, (5.30)

where p is an integer. The concentration of probability near these special values of m

produces mode-locking: Nuclear polarization shifts the electron Zeeman frequency to val-

ues where HF flip-flops stop transferring polarization between the electronic and nuclear

spins. This happens because an integer number of flip-flops occur during each drive period.

Using that ωn ≪ ωe0 and assuming N is sufficiently large that A ≪ ωe0, these values

of m correspond to the electron precession becoming commensurate with the pulse train:

ωe = ωe0 + Am ≈ 2πp/TR, which is the primary signature of mode-locking seen in experi-

ments [132, 133, 134, 135, 136, 137, 138].

The middle factor (the product) in Eq. (5.29) is primarily responsible for the average mag-

netization of the nuclear spin bath, ⟨m⟩ =
∑

mmP (m). This factor is also where additional

pulse parameters such as the rotation angle ϕ and the residual ground state population q0

influence the polarization distribution. If ϕ is equal to 0 or π or if q0 is zero, then Sss
e,z(k) = 0

for all k, in which case the final factor in Eq. (5.29) reduces to 1. In this case, the combin-

atoric factor, which is centered about m = 0, ensures that the average magnetization will be

small, ⟨m⟩ ≈ 0. On the other hand, if ϕ ̸= 0 and the external magnetic field is sufficiently

large, then ⟨m⟩ can be significant, and its sign depends on the sign of ϕ and on the orient-

ation of the external field. If ϕ > 0, then Sss
e,z(m) is more often positive than negative for

m < −ωe0/A, which in turn means that 1 + Sss
e,z(m− 1)/1− Sss

e,z(m) is biased toward values

larger than 1, and so the product grows as m increases. Once m passes −ωe0/A, Sss
e,z(m) now

tends to more negative values, and the product shrinks as m increases. Thus, we see that for

ϕ > 0, the product in Eq. (5.29) is peaked at m ≈ −ωe0/A, and so the average magnetization

will lie between 0 and −ωe0/A. On the other hand, if ϕ < 0, then the same reasoning leads
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to the conclusion that the product in Eq. (5.29) has a dip at m ≈ −ωe0/A, and thus the net

magnetization is driven away from this point and will have a sign that coincides with that

of ωe0. These features are borne out in plots of Eq. (5.29), as shown below in Sec. 5.4.

Kinetic equation for spin I = 1 nuclei

Before we write down the kinetic equation for I = 1 nuclei, we first introduce the notation we

use to distinguish different bath configurations. We denote the occupation numbers of the

three spin states by N−1, N0, and N1. The bath polarization for a given configuration is then

m = +1×N1 +0×N0− 1×N−1. We see immediately that there is an important difference

compared to the I = 1/2 case considered above: The polarization does not uniquely specify

a configuration of the bath. For instance, in the case of two I = 1 spins with m = 0, we can

have either N1 = 1 = N−1 and N0 = 0 or N1 = 0 = N−1 and N0 = 2. This is in contrast

to the I = 1/2 case, where each value of m corresponds to a unique configuration. As

the number of spins increases, the number and orders of such “degeneracies” grow quickly.

Because the polarization does not uniquely specify a configuration, we must combine it with

one of the occupation numbers to uniquely label different configurations. We choose to use

N0 and express the probability of a given configuration by P (m,N0). Unlike in the spin 1/2

case, this quantity is now distinct from the polarization probability distribution; the latter is

obtained by summing over all possible values of N0 that are consistent with the given value

of m:

P (m) =
∑
N0

P (m,N0). (5.31)
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We can write down a kinetic equation for P (m,N0):

d

dt
P (m,N0) = F (m,N0) +G(m+ 1, N0 − 1)

−G(m,N0)− F (m+ 1, N0 + 1), (5.32)

where

F (m,N0) = −w−10 P (m,N0)N0 + w0
−1(m− 1)P (m− 1, N0 − 1)N−(m− 1, N0 − 1),

G(m,N0) = w0
1P (m,N0)N+(m,N0)− w1

0(m− 1)P (m− 1, N0 + 1)(N0 + 1). (5.33)

Here N±(m,N0) ≡ (1/2)(N±m−N0). In the kinetic equation above we have only considered

the ∆mI = ±1 transitions. Including transitions that change the angular momentum by

more than 1 (for instance due to quadrupolar interactions) leads to additional terms not

shown above. Such terms are illustrated for the case of I = 3/2 nuclei in the next section.

Returning to the spin 1 case, the steady state of the above kinetic equation,

F (m,N0)−G(m,N0) = F (m+ 1, N0 + 1)−G(m+ 1, N0 − 1), (5.34)

does not yield a recursion relation as in the I = 1/2 case. We solve this equation (and its

generalization for nonzero quadrupolar interactions) numerically in Sec. 5.4.

Kinetic equation for spin I = 3/2 nuclei

We again adopt the notation {++,+,−,−−} to label quantities associated with the four

spin quantum numbers mI = {+3/2,+1/2,−1/2,−3/2} of a spin 3/2 nucleus. For a nuclear

spin bath comprised of N = N++ +N+ +N− +N−− spins, the magnetization of the system

(Eq. (5.24)) is m = (3N++ + N+ − N− − 3N−−)/2. In the I = 3/2 case, we need two more
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quantities in addition to m to uniquely label different multi-spin configurations. We choose

these to be N++ and N−−. The remaining two occupation numbers are then determined by

these three quantities for a fixed total number of spins:

N+ =
1

2
(2m+N − 4N++ + 2N−−), (5.35)

N− =
1

2
(−2m+N + 2N++ − 4N−−). (5.36)

The probabilities P (m,N++ , N−−) that the nuclear spin bath is in the various configurations

labeled by m, N++ , and N−− obey the following set of kinetic equations:

d

dt
P (m,N++ , N−−) = F (m,N++ , N−−) +G(m,N++ , N−−) +H(m,N++ , N−−)

+I(m,N++ , N−−) + J(m,N++ , N−−)

−F (m+ 1, N++ + 1, N−−)−G(m+ 1, N++ , N−− − 1)−H(m+ 1, N++ , N−−)

−I(m− 2, N++ − 1, N−−)− J(m+ 2, N++ , N−− − 1), (5.37)
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where

F (m,N++ , N−−) = +w
++

+ (m− 1)P (m− 1, N++ − 1, N−−)N+(m− 1, N++ − 1, N−−)

−w+

++(m)P (m,N++ , N−−)N++ , (5.38)

G(m,N++ , N−−) = +w
−
−−(m− 1)P (m− 1, N++ , N−− + 1)(N−− + 1)

−w−−− (m)P (m,N++ , N−−)N−(m,N++ , N−−),

H(m,N++ , N−−) = +w
+

−(m− 1)P (m− 1, N++ , N−−)N−(m− 1, N++ , N−−)

−w−+ (m)P (m,N++ , N−−)N+(m,N++ , N−−), (5.39)

I(m,N++ , N−−) = +w
−
++(m+ 2)P (m+ 2, N++ + 1, N−−)(N++ + 1)

−w++

− (m)P (m,N++ , N−−)N−(m,N++ , N−−), (5.40)

J(m,N++ , N−−) = +w
+

−−(m− 2)P (m− 2, N++ , N−− + 1)(N−− + 1)

−w−−+ (m)P (m,N++ , N−−)N+(m,N++ , N−−). (5.41)

Here, we have included ∆mI = ±1 and ∆mI = ±2 transitions. Although ∆mI = ±3 trans-

itions cannot be directly driven by either the HF interaction or the quadrupolar interaction

to first order in their respective coupling strengths, they can potentially arise from higher-

order effects as we saw from the flip rates in Fig. 5.5. Now that we have the kinetic equations

governing the nuclear polarization, the next step is to solve them.
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Figure 5.6: Structure of the matrix R defining the linear system of equations governing the
steady-state solution of the multi-nuclear kinetic equation for spin I = 1 for (left) N = 3
spins and (right) N = 20 spins in the absence of quadrupolar interactions.
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Figure 5.7: Steady-state nuclear spin polarization distribution of a bath with N = 200
nuclear spins for (a) I = 1/2, (b) I = 1, and (c) I = 3/2. The parameter values are
TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3,
ϕ = −π/2, νQ = 2.8 MHz. In the case of I = 3/2 and I = 1 the quadrupolar angle is θ = 0.
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Figure 5.8: Extrapolation of the average nuclear spin bath polarization ⟨m⟩ to larger bath
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points are obtained by solving the respective kinetic equations, Eqs. (5.32) and (5.37). The
lines are linear fits. The parameter values are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz,
ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, ϕ = −π/2, νQ = 2.8 MHz, θ = 0.
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Figure 5.9: Steady-state nuclear spin polarization distribution of a bath with N = 150
nuclear spins for four different values of the quadrupolar angle θ for (a) I = 1 and (b) I = 3/2.
The parameter values are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz,
γe = 0.5 GHz, q0 = 0.3, ϕ = −π/2, νQ = 2.8 MHz.
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5.4 Nuclear polarization distribution and feedback

5.4.1 Steady-state polarization distributions

For I = 1 and I = 3/2, we solve the respective kinetic equations numerically to obtain

steady-state polarization distributions. This is done by first setting the time derivatives to

zero: d
dt
P (m,N++ , N−−) = 0. The resulting algebraic equations are then collected together

and written as a matrix R acting on a vector V of the probabilities P (m,N++ , N−−) such

that RV = 0. Thus, the steady-state polarization distribution is the unique null vector of

R. The matrix R depends on the Overhauser-shifted flip rates and occupation numbers for

each configuration. The linear dimension of this matrix is equal to the number of distinct

multi-spin configurations. For N spins of total spin I, the number of configurations is given

by the simplicial polytopic numbers
(
N+2I
2I

)
. For I = 1/2, 1, and 3/2, this gives N + 1,

(N + 1)(N + 2)/2, and (N + 1)(N + 2)(N + 3)/6, respectively. Therefore, in the case of

I = 1, we must compute the null vector of a matrix that grows quadratically with the

number of nuclei, while for I = 3/2, we must do the same for a matrix that grows like

N3. The matrix R is quite sparse in both cases (see Fig. 5.6), especially in the absence

of quadrupolar interactions. This allows us to employ the Arnoldi method to compute the

steady-state polarization distribution for hundreds of spins with I = 3/2 and thousands of

spins with I = 1.

Fig. 5.7 compares results for the steady-state nuclear spin polarization for N = 200 for

all three values of I. In the I > 1/2 cases, we set the quadrupolar angle to zero, θ = 0;

however, the nonzero quadrupolar interaction νQ > 0 still modifies the energy splittings

between the nuclear spin levels. In all three cases, the polarization distribution exhibits

multiple narrow peaks at values of m that correspond to the mode-locking frequencies, i.e.,

these values of m are such that ωe0 +Am = 2πp/TR where p is an integer (for an analytical
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derivation of the I = 1/2 case see Section 5.3.4). As discussed in Sec. 5.3.2, the flip rates

approximately vanish at these values of m. (Note that the spacing of the peaks in Fig. 5.7

is five times smaller than the spacing of the flip-rate zeros in Figs. 5.3, 5.4, and 5.5 because

this spacing is proportional to 1/A = N/A, and N is five times smaller in Fig. 5.7.) The

steady-state probabilities P (m,N++ , N−−) are largest at these magnetization values because

they are multiplied by nearly vanishing flip rates in the kinetic equations; the probabilities

must compensate for the smallness of the flip rates such that the product of the two is finite

and comparable to terms of similar size in the kinetic equations. This trend can be seen

explicitly from the analytical solution in the I = 1/2 case, Eq. (5.29), where it is evident

that P (m) depends inversely on the flip rates. In Fig. 5.7, we see that this also occurs for

I > 1/2. For all values of I, we can physically understand the formation of probability peaks

at flip-rate zeros as resulting from the fact that, at these magnetization values, the joint

electron-nuclear spin evolution under the HF interaction becomes commensurate with the

driving pulses. Consequently, the pulses do not cause a net polarization transfer between

the electron and nuclear spins. Thus, these values of the magnetization m provide a point of

stability in the electron-nuclear feedback mechanism. We also see from Fig. 5.7(a), and to

some degree from Fig. 5.7(b), that the polarization distribution is suppressed in the vicinity

of m = −ωe0/A (which corresponds to m = −10 for the parameters used in the figure). This

is due to the fact that the flip rates are largest near these magnetization values and therefore

drive population away from these values.

Another striking feature of the polarization distributions in Fig. 5.7 is that the distributions

for I > 1/2 exhibit broad envelopes in addition to the mode-locking peaks. This is a

consequence of the fact that there are multiple distinct flip rates for I > 1/2, as shown in

Eqs. (5.19) and (5.21). These flip rates oscillate with ωe at distinct frequencies that differ

from each other by an amount proportional to A. Therefore, they do not all vanish at
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the same values of ωe, dulling the sharpness of the mode-locking peaks. This effect becomes

diminished at larger N , because in this limit A decreases, and all the flip-rate zeros approach

the values of m at which ωe0+Am = 2πp/TR, where p is an integer, producing a more comb-

like distribution. The broadening of the distribution at smaller values of N is an important

feature that is missed when I = 1/2 spins are used to model I > 1/2 spin baths. In the

example of Fig. 5.7, we see that it also leads to an increase in the average magnetization ⟨m⟩

due to the enhanced weight of the distribution at positive magnetizations. This enhancement

is more pronounced for I = 3/2 compared to I = 1. Fig. 5.8 examines the behavior of ⟨m⟩

as a function of N . The points are obtained by solving the respective kinetic equations,

Eqs. (5.32) and (5.37). In the I = 1 case, it is possible to obtain results for much larger

bath sizes because the R matrix is much smaller in this case. For both I = 1 and I = 3/2,

the points are well described by a linear relationship between ⟨m⟩ and N , as shown in the

figure. We find that for the parameters considered and for large N , the average polarization

for I = 3/2 is approximately two times larger compared to that of an I = 1 bath, with the

net polarization in this case approaching 9%.

The effects of nonzero quadrupolar angle on the polarization distribution for I = 1, 3/2

are illustrated in Fig. 5.9. Here, we set N = 150, because nonzero θ reduces the sparsity

of the R matrix, making the numerical computation more intensive than before, especially

for I = 3/2. From Fig. 5.9(a), we see that for I = 1, nonzero θ leads to quantitative

changes in the heights of the mode-locking peaks, along with a slight redistribution of the

probability to negative magnetizations for intermediate values of θ. Similar behavior occurs

for I = 3/2, as shown in Fig. 5.9(b). The redistribution can be understood from the fact

that, in the absence of the HF interaction, the quadrupolar coupling produces a Gaussian

distribution centered around m = 0. This is discussed in more detail below. The fact that

this redistribution is strongest near θ = π/4 suggests that the ∆mI = ±1 quadrupolar-
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Figure 5.10: Steady-state nuclear spin polarization distribution of a bath with N = 1000
I = 1 nuclear spins for four different values of the quadrupolar angle θ. The other parameter
values are TR = 13.2 ns, NA = 10 GHz, ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz,
q0 = 0.3, ϕ = −π/2, νQ = 2.8 MHz.

driven transitions play an important role in this process. This effect constitutes another

way in which the quadrupolar interaction can make the DNP process for I > 1/2 depart

significantly from what is predicted for an I = 1/2 bath. Also notice that in both panels

of Fig. 5.9, the polarization distributions are still suppressed near m = −ωe0/A even for

θ > 0. This indicates that the HF contributions to the flip rates remain an important factor

in shaping the overall distribution.

Fig. 5.10 again shows the effect of nonzero θ for I = 1, but now for a bath of size N = 1000.

For θ = 0, there is a distinct comb-like structure that is the hallmark of mode-locking.

However, for θ > 0, this structure quickly disappears and is replaced by an almost Gaussian

distribution centered around zero magnetization. A Gaussian distribution is in fact what

occurs in the absence of the HF interaction, because the flip rates are then purely due to

the quadrupolar coupling, which means that they are independent of m and are equal for
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Figure 5.11: The average polarization ⟨m⟩ of a nuclear spin bath with N = 1000 nuclei of
total spin I = 1 for several values of the quadrupolar angle in the range of 0 ≤ θ ≤ π/2. The
inset color map shows the steady-state nuclear spin polarization distribution over the same
range of quadrupolar angles. The other parameter values are TR = 13.2 ns, NA = 10 GHz,
ωe0 = 0.5 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, ϕ = −π/2, νQ = 2.8 MHz.
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Figure 5.12: The feedback effect of nuclear spin polarization on the x component of the
electron spin steady state as a function of time over one drive period TR = 13.2 ns. (a)
N = 150 nuclei of spin I = 1/2, 1 and 3/2, and (b) N = 1000 nuclei of spin I = 1/2 and
1. The parameter values are NA = 10 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3,
ϕ = −π/2, νQ = 2.8 MHz.
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Figure 5.13: The feedback effect of N = 1000 I = 1 nuclear spins on the x component of
the electron spin steady state as a function of time over one drive period TR = 13.2 ns.
Here the quadrupolar angles θ = 0 and θ = π/2 are considered for different bare electron
Zeeman frequencies of (a) 0.5 GHz, (b) 2.45 GHz and (c) 15.19 GHz. The electron Zeeman
frequencies chosen for (b) and (c) correspond to the local minima shown in Fig. 5.14 and the
nuclear spin polarization distribution for (a) is shown in Fig. 5.10. The parameter values are
NA = 10 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, ϕ = −π/2, νQ = 2.8 MHz.
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∆mI > 0 and ∆mI < 0. This shows that the quadrupolar interaction plays a much more

important role compared to the HF interaction for the case considered in Fig. 5.10. This

is because the larger value of N corresponds to a reduction in the HF coupling A, and

hence in the magnitude of the flip rates (see Eq. (5.19)). This in turn increases the relative

importance of the quadrupolar interaction. This can be seen from Fig. 5.4, where it is

evident that as θ increases, the flip rate for the ∆mI = 2 transition quickly surpasses the

difference in the flip rates for the ∆mI = ±1 transitions. As a consequence, the probability

distribution is no longer sensitive to the detailed features of the ∆mI = ±1 transitions,

which are responsible for both the comb-like mode-locking structure and the suppression

near m = −ωe0/A. This shows that even small values of θ can have a dramatic effect on

the DNP process for large numbers of nuclei. This is quantified in Fig. 5.11, which shows

how the nuclear spin polarization distribution and average magnetization, ⟨m⟩, depend on

θ. The latter quickly decays with increasing θ. As is evident from the inset in Fig. 5.11, the

distribution itself exhibits mode-locking fringes at small θ that become blurred at larger θ.

The sensitivity of mode-locking to the quadrupolar interaction suggests that it could be used

as a diagnostic tool to estimate the quadrupolar coupling strength and angle in experiments.

This is further supported in the next section, where we show how the steady-state electron

spin vector in the presence of DNP feedback depends on the quadrupolar angle.

5.4.2 Feedback on electron spin

Once we obtain the steady-state polarization distribution of the nuclear spin bath, the final

step is to update the steady state of the electron by applying the Overhauser shift to the

Zeeman frequency:

S
ss

e,i(t, ωe0) =
∑
m

P (m)Sss
e,i(t, ωe0 +mA). (5.42)
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Figure 5.14: The effect of the I = 3/2 nuclear feedback on the x component of the steady-
state electron spin vector. The red filled circles indicate local minima of Sss

e,x (shown in gray)
for several values of the electron Zeeman frequency ωe0 without nuclear feedback. The other
points indicate the values of Sss

e,x(ωe0) at the same values of ωe0, but now with feedback
included as in Eq. (5.42). Results for four different values of the quadrupolar angle θ are
shown. Other parameter values are N = 150, TR = 13.2 ns, NA = 10 GHz, ωn = −0.5 MHz,
γe = 0.5 GHz, q0 = 0.3, ϕ = −π/2, νQ = 2.8 MHz.
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Figure 5.15: The nuclear spin polarization distributions corresponding to five of the electron
Zeeman frequency values from Fig. 5.14 for quadrupolar angles (a) θ = 0, (b) θ = π/8,
(c) θ = π/4, and (d) θ = π/2 for an I = 3/2 nuclear bath. Other parameter values are
N = 150, TR = 13.2 ns, NA = 10 GHz, ωn = −0.5 MHz, γe = 0.5 GHz, q0 = 0.3, ϕ = −π/2,
νQ = 2.8 MHz.
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Here the summation is over all possible values of m, and t is the time elapsed since the

last pulse. We obtain the time-evolved electron steady state by starting from the expression

for the steady state immediately after a pulse, Eq. (5.49), and evolving it under Larmor

precession with frequency ωe0 +mA for time t. Fig. 5.12 shows the resulting DNP-modified

electron steady state over one drive period for different species of nuclear spins. Fig. 5.12(a)

compares I = 1/2, 1 and 3/2 species for N = 150, where the two latter DNP distributions

are shown in Fig. 5.9 for θ = 0. Fig. 5.12(b) compares the cases I = 1/2 and 1 for N = 1000.

It is evident that the total spin of the nuclei can have a significant effect on the electron spin

precession in the steady state. Because the mode-locking effect is stronger in the spin 1/2

case (see Fig. 5.7), the electron spin precession is closer to a sinusoid due to the fact that

only a few discrete values of the Overhauser field contribute to the sum in Eq. (5.42). On

the other hand, for larger spin, the nuclear polarization distribution is broader, giving rise

to a beating in the electron spin vector over each driving period.

The role of quadrupolar interactions in the feedback is examined in Fig. 5.13, which shows the

resulting DNP-modified electron steady state over one drive period for six differentN = 1000,

I = 1 polarization distributions. Two of these are distributions shown in Fig. 5.10—the ones

corresponding to θ = 0 and θ = π/2. The modified steady states for these two cases are shown

in Fig. 5.13(a), where it is evident that a large quadrupolar angle suppresses oscillations,

both in the vicinity of the driving pulses and in the “echo” that occurs in the middle of the

drive period near t = TR/2, which is 6.6 ns for the chosen parameter values. Similar behavior

occurs for other values of the external magnetic field, as is demonstrated in Figs. 5.13(b),

(c). It should be noted that the amplitude of these oscillations are used to identify the

presence of mode-locking [132, 133, 134, 135, 136, 137, 138], and so the suppression of these

oscillations can provide an experimental indicator of substantial quadrupolar effects.

The electron steady state, Eq. (5.49), is a rapidly oscillatory function of the applied magnetic
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field. In Ref. [151], it was found using perturbation theory that for I = 1/2, nuclear feedback

suppresses the amplitudes of these oscillations. In particular, it was shown that the x

component of the electron steady-state SV approaches unity for all values of the external

magnetic field as a consequence of mode-locking: The SV becomes synchronized with the

pulses such that it lies parallel to the optical axis at the pulse times. Here, we examine how

this effect is modified by the presence of quadrupolar interactions. This is illustrated in the

case of I = 3/2 in Fig. 5.14, where we show the x-component of the electron steady state

immediately after a pulse, Sss
e,x, for ten different values of the electron Zeeman frequency

with and without feedback. We are primarily interested in the amplitude of the electron

steady-state oscillations, so we choose the ten different Zeeman frequencies that correspond

to minima of the oscillations in the absence of feedback (red dots in Fig. 5.14). To find how

the envelope of the electron spin oscillations is affected by the feedback process, we compute

the nuclear spin polarization distributions for each of these minima. These distributions

then alter the values of these minima according to Eq. (5.42) (with t = 0). As can be

seen from Fig. 5.14, the amplitude of the electron steady-state oscillations is suppressed

(i.e., the minima increase up toward unity) in the presence of DNP, and the degree of

this suppression varies weakly and nonmonotonically with the quadrupolar angle θ. To

understand this behavior better, in Fig. 5.15 we show the polarization distributions for five

of the minima from Fig. 5.14 for four different quadrupolar angles. It is clear that for all

values of θ, as the electron spin Zeeman frequency due to the external magnetic field, ωe0,

is increased, the polarization distributions gravitate toward m = 0. This is because larger

values of the electron Zeeman frequency suppress HF flip-flops, as the violation of energy

conservation becomes more pronounced in this case. This is why the θ = 0 curve in Fig. 5.14

monotonically decreases with increasing ωe0. On the other hand, quadrupole-induced nuclear

spin flips do not depend on the electron Zeeman frequency, and so these gradually begin

to dominate as both θ and ωe0 increase. This in turn causes the curves in Fig. 5.14 to
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become essentially independent of ωe0 as θ increases. This is another manifestation of how

quadrupolar interactions suppress mode-locking effects.

5.5 Conclusions

In this work, we developed a general theoretical framework to describe the dynamics of an

electron trapped in a self-assembled quantum dot that is driven by a periodic train of optical

pulses and coupled to a nuclear spin bath. Using a dynamical, self-consistent, mean-field

type approach, we calculated the steady-state dynamic nuclear polarization, as well as its

influence on the evolution of the electron spin. Our framework is non-perturbative, applies

to nuclei of arbitrary total spin I, and includes quadrupolar effects that arise for I > 1/2.

We showed that the phenomenon of mode-locking, or DNP-induced frequency-focusing, seen

in experiments [132, 133, 134, 135, 136, 137, 138] emerges naturally from our formalism.

It can be understood as originating from the structure of the rates for the electron and

nuclear spins to flip with one another under the hyperfine interaction. The flip rates vanish

when the effective electron precession frequency (including the DNP-driven Overhauser shift)

becomes commensurate with the optical pulse train, because in this case the pulses do not

interrupt the joint electron-nuclear evolution, and so no polarization is transferred from the

electron spin to the nuclei. The vanishing of the flip rates then leads to sharp peaks in the

nuclear polarization distribution at magnetization values that satisfy the commensurability

condition. Our exact result for the nuclear spin probability distribution in the I = 1/2 case

makes this connection explicit, since the distribution depends inversely on the flip rates. In

addition to mode-locking, we showed that hyperfine flip-flops also give rise to a net nuclear

spin polarization that appears to grow linearly with the number of nuclei.

It is worth considering how the mode-locking peaks determined by the commensurability
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condition (Eq. (5.30)) might be modified if we were to go beyond the box model and include

a distribution of hyperfine couplings. First we note that, for generic choices of the applied

magnetic field, only the nuclei that are closest to the center of the electronic wavefunction

contribute to mode-locking. This is because P (m) is concentrated near relatively small values

of m (for I = 1/2 this is due to the Gaussian-like factor in Eq. (5.29)), so the smallness of

the hyperfine couplings of the nuclei that are farther away cannot be compensated by larger

values of m to satisfy the commensurability condition. Small variations in the hyperfine

couplings of nuclei close to the center could be incorporated using a “wedding cake” model

in which the nuclei are separated into groupings defined by distinct values of the hyperfine

coupling. These groupings could be treated as smaller, independent spin baths, each with

its own mode-locking condition. Distinct but nearly-equal values of A will give rise to mode-

locking peaks at almost the same magnetization values m, and collectively these closely-

spaced peaks will form broader mode-locking features in P (m). The fact that clear signatures

of frequency-focusing are seen in experiments [132, 133, 134, 135, 136, 137, 138] suggests that

this broadening is a relatively small effect.

Our formalism includes not only hyperfine-driven phenomena, but also quadrupolar effects

that can arise for I > 1/2. We found that the importance of quadrupolar interactions

depends sensitively on the quadrupolar angle θ between the applied magnetic field and the

principal axis of strain in the dot. For θ < π/8, hyperfine interactions tend to dominate,

leading to clear signatures of mode-locking. However, for θ ≥ π/8, quadrupole-induced

nuclear spin flips begin to dominate, which leads to a suppression of mode-locking and a

reduction of the net nuclear polarization. We also showed that quadrupolar effects become

more pronounced when the applied magnetic field is increased, because hyperfine flip-flops

are suppressed by the increasingly large Zeeman energy mismatch between the electron and

nuclei. These effects are clearly visible in the nuclear spin polarization distributions for
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both I = 1 and I = 3/2, and they translate to experimentally detectable signatures that are

encoded in the presence or absence of electron spin oscillations in the steady state. Hyperfine

flip-flops lead to coherent oscillations in the vicinity of each pulse and halfway between pulses,

while quadrupolar interactions act to suppress these oscillations. These signatures offer a

potential method to measure the strength of quadrupolar interactions in quantum dots.

The framework we have presented constitutes an efficient, quantitative approach to describ-

ing the dynamics of a driven spin coupled to a spin bath. Going forward, it would be

interesting to see if some of the simplifying assumptions made here can be relaxed to en-

hance quantitative accuracy. For example, can we go beyond the box model limit and allow

for non-uniform hyperfine couplings, perhaps using a “wedding cake” model in which the

electronic wavefunction envelope is approximated by a piecewise-constant function? Such a

generalization would also allow for the inclusion of multiple nuclear species, which is relevant

for common semiconductor QD compounds such as InGaAs. It would also be interesting to

extend this method beyond the independent nuclei approximation, perhaps using a cluster-

based approach in which inter-nuclear interactions are included gradually within clusters of

increasing size [100, 192]. In terms of applications, our framework could be employed to

design driving protocols to achieve desired bath polarization states to either mitigate deco-

herence or utilize the bath as a quantum memory [167, 168, 169, 170]. Finally, we note that

the theory we developed is quite general and could be applied to other problems involving a

driven system coupled to a quantum bath.

5.6 Kraus operators for optical pumping of the electron

The existence of a hierarchy of timescales in mode-locking experiments allows us to first

solve for the electron spin dynamics without having to include nuclear spin effects. This is
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due to the fact that the nuclear spin dynamics are slow compared to those of the electron.

Given that the nuclear spins are the main source of decoherence for the electron, this means

we can also neglect electron spin decoherence effects. In addition, the optical pumping and

spontaneous emission are fast compared to the pulse period, γeTR ≫ 1, which ensures that

the excited population returns fully to the ground state before the next pulse comes. This

allows us to treat the evolution of the electron over each period in terms of a dynamical map

that acts only on the electron spin ground state subspace, as in Eq. (5.7).

The Kraus operators, Ek, that make up the dynamical map can be found by explicitly

computing the non-unitary part of the evolution for an arbitrary initial density matrix and

comparing the initial and final density matrices [151]. To compute the non-unitary part of

the evolution due to the sequence of pulses Hc(t), we only need the electronic parts of the

full Hamiltonian in Eq. (5.1): He(t) = H0,e +Hc(t). The fact that the pulse is much shorter

than the spin precession period allows us to ignore the precession during the action of the

pulse. Therefore |x̄⟩ and |T̄ ⟩ can be considered as an effective two-level system, where the

evolution operator due to the pulse in the |x⟩, |x̄⟩, |T̄ ⟩ basis is

Up =


1 0 0

0 ux̄x̄ −u∗T̄ x̄

0 uT̄ x̄ u∗x̄x̄

 . (5.43)

After the pulse, a fraction |uT̄ x̄|2 of the population remains in the trion state. We can describe

the decay of this population due to spontaneous emission using the Liouville-von Neumann

equation with appropriately chosen Lindblad operators L: ρ̇ = i[ρ,H0,e] + L(ρ), where the

first term includes the Larmor precession of the ground spin states during the decay. Solving

this equation for an arbitrary initial state then yields the following Kraus operators in the
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|x⟩, |x̄⟩ basis [151]:

E1 =

1 0

0 q

 , E2 =

0 a1

0 −a2

 , E3 =

0 0

0 κ

 , (5.44)

where q = ux̄x̄ ≡ qoe
iϕ, a1 = ωe

√
(1− q2o)/2(4γ2e + ω2

e), a2 = iγe
√
2
√

(1− q2o)/(4γ2e + ω2
e),

and κ =
√
1− q2o − a21 − |a2|2. These Kraus operators guarantee the unity of the trace of

the density matrix by satisfying
∑

k E
†
kEk = 1. The parameter qo quantifies the amount

of population remaining in the spin state |x̄⟩ after the pulse is applied, and ϕ is the angle

about the x axis by which the pulse rotates the electron spin. These two parameters can

be computed given a specific pulse shape, but in the following we leave these parameters

arbitrary. Note that these Kraus operators capture the evolution of the electronic spin

from the beginning of the pulse until a steady state is reached under the combined action

of precession and spontaneous emission. This steady state is reached on timescales large

compared to 1/γe.

5.7 Electron spin steady state

We can use the Kraus operators from above to compute the electron spin steady state.

Rather than work directly with the Kraus operators, it is more convenient to switch to the

spin vector (SV) representation, especially since finding the steady state requires applying

the Kraus operators an infinite number of times. In general, a SV S transforms under

non-unitary evolution as follows:

S ′ = Y S +K, (5.45)
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where Y is a matrix that generally both rotates and shrinks the SV, while K corresponds

to the non-unital part of the evolution (i.e., a loss or gain of population in the subspace

described by S). If K is nonzero, then a nontrivial steady state is possible. As shown in

Ref. [151], for spin 1/2 these quantities can be obtained from the Kraus operators using the

following formulas:

Ki =
1

2
Tr
∑
k

σ̂iEkE†k, (5.46)

Yij =
1

2
Tr
∑
k

σ̂iEkσ̂jE†k, (5.47)

where the σ̂i are Pauli matrices. In the case of the mode-locking experiment, the Kraus oper-

ators Ek evolve the electron spin over one period, that is, they include both the non-unitary

dynamics (Ek) generated by a pulse and also the unitary precession under the magnetic

field over time TR: Ek = Eke
−iωeTRŜz . In concatenating these two parts of the evolution in

this way, we are assuming that the drive period is much longer than the time it takes the

electron to reach a steady state following the pulse. This in turn requires TRγe ≫ 1, which

is typically satisfied in mode-locking experiments [132, 133, 134, 135, 136, 137, 138]. To find

the steady state, it is convenient to combine both Y and K into a single 4× 4 matrix:

Ye =



1 0 0 0

Kx Yxx Yxy Yxz

Ky Yyx Yyy Yyz

Kz Yzx Yzy Yzz


, (5.48)

where the evolution of the electron SV over one period is now given by S ′e = YeSe. Here, the

first component of the 4-component SV Se is always fixed to 1, while the remaining three
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components constitute the usual spin 1/2 SV. In this representation it is easy to see that

the steady state Sss
e = (1, Sss

e,x, S
ss
e,y, S

ss
e,z) is the eigenvector of 1 − Ye with eigenvalue zero.

Transforming the Kraus operators of Eq. (5.44) from the x basis to the z basis, plugging

the result into Eq. (5.48), and computing the null vector of Ye leads to the following steady

state electron SV [151]:

Sss
e,x = a1 (a1qo (qo − cosϕ) cos (ωeTR)− ia2 (qo cosϕ− 1) sin (ωeTR)− a1qo cosϕ+ a1)× C−1,

Sss
e,y = a1 (a1qo (cosϕ− qo) sin (ωeTR)− ia2 (qo cosϕ− 1) (cos (ωeTR)− 1))× C−1,

Sss
e,z = a1qo sinϕ (a1 sin (ωeTR)− ia2 (cos (ωeTR)− 1))× C−1, (5.49)

where

C =
(
a21 + q2o − 1

)
cos (ωeTR)− a1qo cosϕ[ia2 sin (ωeTR)

+a1 cos (ωeTR) + a1] + ia1a2 sin (ωeTR) +
(
a21 − 1

)
q2o + 1. (5.50)

These are the components of the electron SV immediately after each pulse. The steady state

at other times during the driving period can be obtained by rotating this vector about the

z axis by angle ωeTR (to account for the Larmor precession).



Chapter 6

Magnetic impurities in topological

insulators

Band theory is an effective tool for the categorization of several phases of matter. Two

common examples of such phases are the conducting states and the insulating states with

large energy gaps. A topological insulator (TI) is a special type of electronic material that

behaves as an insulator with a band gap in its bulk, but has protected conducting states on its

edges. In this chapter first, we will give a very brief introduction to the physical foundations

of TIs in Section 6.1. In Sections 6.2-6.12 (partial reprint of “Topological insulator ring with

magnetic impurities” by Arian Vezvaee, Antonio Russo, Sophia E. Economou, and Edwin

Barnes [193]), we will study the problem of HF interaction between magnetic impurities and

the edge states in a TI ring.

6.1 Topological band theory and Z2 topological insulat-

ors

The birth of TIs came about from applications of topology to the classification of different

insulators. The goal of this section is to classify topologically distinct Hamiltonians. The

key concept here is that if there is a boundary between two topologically distinct systems,

116
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Figure 6.1: The quantum Hall effect and the cyclotron (chiral) motion of electrons in the
bulk-left (along the edge-right).

somewhere along this boundary the topological invariant should change. Put another way,

if there are two intersecting insulators with two different topologies, along the boundary of

the two the energy gap should close, otherwise the two phases are identical. This closing of

the energy gap leads to the appearance of low-energy electronic states in the boundary of

the two materials. These gapless states can also be characterized and in fact, the topology

of the bulk materials is related to the topology of these gapless edge states as well [194].

This is known as the bulk-boundary correspondence. It is therefore necessary to study the

topological invariants of insulating systems. The simplest case of these topological invariants

first appeared in the quantum Hall effect [195, 196]. Semiclassically, we can understand the

origin of this effect by considering what happens to a two-dimensional electron gas when an

external magnetic field is applied (see Fig. 6.1). The electrons in the bulk of this system

precess due to the external magnetic and form Landau levels. At the boundary, however,

the electrons ‘bounce off’ of the edge of the sample and consequently, an electric field leads

to the drift of the cyclotron orbits, which in turn leads to a quantized Hall conductivity. We

will discuss the role of topology in this system in the following.
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6.1.1 The Chern invariant

In this section, we introduce the Chern invariant [197] and its physical meaning. Here, as in

Chapter 2, we assume a translation symmetry of the system that allows us to use the Bloch

theorem wavefunctions uk⃗(r⃗) and the corresponding Berry phase [198]: Due to the intrinsic

phase ambiguity of wavefunctions, Bloch states are invariant as,

uk⃗(r⃗)→ eiϕ(k⃗)uk⃗(r⃗). (6.1)

In analogy to electromagnetic gauge transformations one may define the Berry connection

A⃗ = −i u†
k⃗
(r⃗)∇k⃗ uk⃗(r⃗), (6.2)

which transforms as A⃗ → A⃗ +∇k⃗ϕ(k⃗). Notice that A⃗ is not gauge invariant. However, the

Berry phase (which can be thought of as the analog of the magnetic flux), is invariant for

any closed loop C:

∮
C

A⃗.dk⃗ =

∫
S

d2k⃗ ∇× A⃗, (6.3)

where we have assumed that k⃗ is two dimensional. The Berry phase is closely related the

Chern invariant: The Chern invariant is the total Berry phase in the Brillouin zone [7]:

ν =
1

2π

∫
d2k⃗∇× A⃗. (6.4)

The Chern invariants can explain the gapless conducting states at the interface of an integer

quantum Hall state with a vacuum. These states are protected from backscattering off of
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smooth disorders at the edge and are known as chiral modes, in the sense that they only

propagate in one direction. Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) showed

that the integer in the quantized Hall effect is in fact the Chern number ν [199]. In terms of

the topology of a quantum Hall state with n = 1 and a trivial insulator (vacuum) with n = 0,

it can be imagined that somewhere along the interface of the two, the band gap has to close

because the topological invariant has to change. The corresponding ‘gapless’ modes are the

chiral edge states. Therefore it can be concluded that quantum Hall systems with different

Chern numbers ν ∈ Z form different classes of insulators; the so-called Z classification.

We may revisit the bulk-boundary correspondence with the Chern number concept. If we

imagine a domain wall between two bulk insulators with differing Chern numbers νL and

νR, the bulk gap must vanish at the interface and the number of corresponding excitations

at the interface is the difference in Chern number νL − νR.

6.1.2 Z2 topological insulators

The quantum Hall systems are not invariant under time-reversal (TR) symmetry; the chiral

edge mode moves in a particular direction. This TR breaking led to an idea by Kane

and Mele in 2005 [200] to propose a quantum spin Hall insulator by taking two copies of a

quantum Hall system with opposite Chern number and chirality. This ensures the invariance

of the system under TR symmetry and in this model, the total Chern number will vanish

ν↓ = −ν↑ ∈ Z. The original idea was to implement this on two layers of honeycomb lattices

where the magnetic field of the quantum Hall effect is replaced by the spin-orbit interaction

between the two layers. However, the interaction between the two spin layers is ignored. In

a follow-up work [201], the same authors showed that in the presence of spin interactions a

topological distinction exists between even and odd insulators; i.e., all insulators with even
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invariant belong to the same class (known as the topologically trivial insulators), and all

insulators with odd invariant belong to another class (known as 2D topological insulators).

As such, this is known as the Z2 = Z/2Z classification.

The Z2 classification can be understood qualitatively in terms of Kramer’s theorem. The TR

symmetry operator for an electron with spin 1/2 is defined as T1/2 = iσyΘ where Θ is the

complex conjugation operator. It is trivial to see that T 2
1/2 = −1 for any spin 1/2 particle.

As a result, Kramer’s theorem states that all eigenstates of a TR invariant Hamiltonian (that

is [H, T1/2] = 0) are at least twofold degenerate. This can be proven by contradiction: Let

us consider a non-degenerate state |ψ⟩ for which T1/2|ψ⟩ = c|ψ⟩. Therefore we should have

T 2
1/2|ψ⟩ = |c|2|ψ⟩, which is contradictory since |c|2 ̸= −1.

To understand how the twofold degeneracy of Kramer’s theorem leads to the two classes

of trivial and topological insulators, it is helpful to consider Fig. 6.2 where two possible

electronic edge states of 2D TR invariant insulators, as a function of the crystal momentum

along the edge, are shown. Due to Kramer’s theorem, these edge states should be degenerate

at k⃗ = 0 and k⃗ = π/a (denoted by Γa and Γb in the figure) as these points are invariant

under TR. Between these two points, the degeneracy is lifted by the spin-orbit interaction.

Depending on how these states reconnect at TR invariant points, we can have trivial in-

sulators or topological insulators: If the reconnection is pairwise (Fig. 6.2(a)), the bands

intersect EF an even number of times and the edge states can be eliminated by pushing the

bound states away from the gap (a trivial insulator). If the reconnection is anti-pairwise

(Fig. 6.2(b)) the bands intersect EF an odd number of times and one cannot move away

from the edge states out of the gap (a topological insulator). The topological class of the

bulk band structure determines which of these scenarios takes place. Finally, from the bulk-

boundary correspondence, we can determine that since each intersection at point k is related

to −k by TR, the number of Kramers pairs of edge modes of the Z2 invariants across the
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Figure 6.2: Two possible reconnection scenarios of Kramer edge states for a TR invariant
insulator (only half of the Brillouin zone is shown since the other half is related through TR).
(a) Pairwise reconnection which leads to a trivial insulator. (b) Anti-pairwise reconnection
which leads to topological insulators. Figure taken from Ref. [7].

interface should be ∆ν mod 2.

6.1.3 Realization of 2D topological insulators in HgTe/CdTe

The original proposal for the realization of TIs was to use graphene. However, due to weak

spin-orbit coupling in graphene, attention was taken to materials with strong spin-orbit

couplings. Bernevig, Hughes, and Zhang (BHZ) [8] suggested a setup that involves a HgTe

layer sandwiched between two CdTe layers, which was later confirmed by König et al. [202].

The band structure of CdTe is similar to those discussed in Chapter 2; the conduction band

has Γ6 symmetry with s-type orbitals and the valence band has Γ8 symmetry with p-type

orbitals (as before, the split-off Γ7 band has much lower energy and is therefore ignored).

However, the HgTe layer has an inverted band structure: The p-like Γ8 levels have higher

energy than the s-like Γ6 levels (Fig. 6.3). BHZ showed that for HgTe thicknesses smaller

than a critical value (dc = 6.3 nm), the quantum well structure of HgTe/CdTe has a normal

band structure since CdTe will dominate. For d > dc the band structure will be inverted
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spontaneously broken at the edge. The stability
of the helical edge states has been confirmed in
extensive numerical calculations (13, 14). The
time-reversal property leads to the Z2 classifica-
tion (10) of the QSH state.

States of matter can be classified according
to their topological properties. For example,
the integer quantum Hall effect is characterized
by a topological integer n (15), which deter-
mines the quantized value of the Hall con-
ductance and the number of chiral edge states.
It is invariant under smooth distortions of the
Hamiltonian, as long as the energy gap does
not collapse. Similarly, the number of helical
edge states, defined modulo 2, of the QSH state
is also invariant under topologically smooth
distortions of the Hamiltonian. Therefore, the
QSH state is a topologically distinct new state
of matter, in the same sense as the charge
quantum Hall effect.

Unfortunately, the initial proposal of the
QSH in graphene (7) was later shown to be
unrealistic (16, 17), as the gap opened by the
spin-orbit interaction turns out to be extremely
small, on the order of 10−3 meV. There are also
no immediate experimental systems available
for the proposals in (8, 18). Here, we present
theoretical investigations of the type III semi-
conductor quantum wells, and we show that the
QSH state should be realized in the “inverted”
regime where the well thickness d is greater
than a certain critical thickness dc. On the basis
of general symmetry considerations and the
standard band perturbation theory for semi-
conductors, also called k · p theory (19), we
show that the electronic states near the Γ point
are described by the relativistic Dirac equation in
2 + 1 dimensions. At the quantum phase
transition at d = dc, the mass term in the Dirac
equation changes sign, leading to two distinct U
(1)-spin and Z2 topological numbers on either
side of the transition. Generally, knowledge of
electronic states near one point of the Brillouin
zone is insufficient to determine the topology of
the entire system; however, it does allow robust
and reliable predictions on the change of
topological quantum numbers. The fortunate
presence of a gap-closing transition in the HgTe-
CdTe quantum wells therefore makes our theoret-
ical prediction of the QSH state conclusive.

The potential importance of inverted band-
gap semiconductors such as HgTe for the spin
Hall effect was pointed out in (6, 9). The central
feature of the type III quantum wells is band
inversion: The barrier material (e.g., CdTe) has a
normal band progression, with the s-type Γ6

band lying above the p-type Γ8 band, and the
well material (HgTe) having an inverted band
progression whereby the Γ6 band lies below the
Γ8 band. In both of these materials, the gap is
smallest near the Γ point in the Brillouin zone
(Fig. 1). In our discussion we neglect the bulk
split-off Γ7 band, as it has negligible effects on
the band structure (20, 21). Therefore, we re-
strict ourselves to a six-band model, and we start

with the following six basic atomic states per
unit cell combined into a six-component spinor:

Y ¼ jΓ6, 1 2〉, jΓ6, −1
2〉, jΓ8, 3 2〉,=
!!"

jΓ8, 1 2〉, jΓ8, −1
2〉, jΓ8, −3

2〉=
#!!

ð1Þ

In quantum wells grown in the [001] direc-
tion, the cubic or spherical symmetry is broken
down to the axial rotation symmetry in the plane.
These six bands combine to form the spin-up
and spin-down (±) states of three quantum well
subbands: E1, H1, and L1 (21). The L1 subband
is separated from the other two (21), and we
neglect it, leaving an effective four-band model.
At the Γ point with in-plane momentum k|| =
0, mJ is still a good quantum number. At this
point the |E1, mJ〉 quantum well subband state
is formed from the linear combination of the
|Γ6, mJ = ±1 2= 〉 and |Γ8, mJ = ±1 2= 〉 states, while
the |H1, mJ〉 quantum well subband state is
formed from the |Γ8, mJ = ± 3

2= 〉 states. Away
from the Γ point, the E1 and H1 states can mix.
Because the |Γ6, mJ = ±1 2= 〉 state has even par-
ity, whereas the |Γ8, mJ = ±3

2= 〉 state has odd
parity under two-dimensional spatial reflection,
the coupling matrix element between these two
states must be an odd function of the in-plane
momentum k. From these symmetry consid-
erations, we deduce the general form of the ef-
fective Hamiltonian for the E1 and H1 states,
expressed in the basis of |E1, mJ = 1

2= 〉, |H1,
mJ = 3

2= 〉 and |E1,mJ = – 1
2= 〉, |H1,mJ = – 3

2= 〉:

Heff ðkx, kyÞ ¼
HðkÞ 0
0 H*ð−kÞ

$ %
,

HðkÞ ¼ eðkÞ þ diðkÞsi ð2Þ

where si are the Pauli matrices. The form of
H*(−k) in the lower block is determined from
time-reversal symmetry, and H*(−k) is uni-
tarily equivalent to H*(k) for this system (22).
If inversion symmetry and axial symmetry
around the growth axis are not broken, then
the interblock matrix elements vanish, as
presented.

We see that, to the lowest order in k, the
Hamiltonian matrix decomposes into 2 × 2
blocks. From the symmetry arguments given
above, we deduce that d3(k) is an even function
of k, whereas d1(k) and d2(k) are odd functions
of k. Therefore, we can generally expand them
in the following form:

d1 þ id2 ¼ Aðkx þ ikyÞ ≡ Akþ

d3 ¼ M − Bðk2x þ k2yÞ, eðkÞ ¼ C − Dðk2x þ k2yÞ
ð3Þ

where A, B, C, and D are expansion parameters
that depend on the heterostructure. The
Hamiltonian in the 2 × 2 subspace therefore
takes the form of the (2 + 1)-dimensional Dirac
Hamiltonian, plus an e(k) term that drops out
in the quantum Hall response. The most im-
portant quantity is the mass or gap parameter
M, which is the energy difference between the
E1 and H1 levels at the Γ point. The overall
constant C sets the zero of energy to be the
top of the valence band of bulk HgTe. In a
quantum well geometry, the band inversion in
HgTe necessarily leads to a level crossing at
some critical thickness dc of the HgTe layer.
For thickness d < dc (i.e., for a thin HgTe

Fig. 1. (A) Bulk energy
bands of HgTe and CdTe
near the G point. (B)
The CdTe-HgTe-CdTe
quantum well in the
normal regime E1 > H1
with d < dc and in the
inverted regime H1 >
E1 with d > dc. In this
and other figures, G8/H1
symmetry is indicated in
red and G6/E1 symmetry
is indicated in blue.
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Figure 6.3: (a) Band structure of bulk HgTe and CdTe. (b) The quantum well structure of
HgTe/CdTe in the normal (d < dc) regime and inverted (d > dc) regime. Figure taken from
Ref. [8].
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since HgTe will dominate. By varying the thickness of the HgTe layer the thickness of the

HgTe layer a phase transition between a trivial insulator and a topological insulator occurs

since the s and p bands will cross each other at dc without an avoided crossing, as a result

of which the energy gap closes.

6.2 Magnetic impurities and backscatterings: Motiva-

tion

We now turn to studying of the role magnetic impurities in TIs, starting from this section

to Section 6.12. The work presented in these sections are a partial reprint of “Topological

insulator ring with magnetic impurities” by Arian Vezvaee, Antonio Russo, Sophia E.

Economou, and Edwin Barnes [193].

As we discussed in the preceding section, TIs behave as insulators in the bulk while exhibiting

conducting helical surface or edge states [200, 201, 203]. TIs are invariant under TR sym-

metry, and their surface or edge states are topologically protected provided this symmetry

remains unbroken [200, 204, 205]. These states have spin and momentum locked orthogonally

to each other, and hence states of opposite momentum have opposite spin so that full backs-

cattering cannot occur without a spin-flipping mechanism [204]. One of the best known ex-

amples of TIs are HgTe quantum wells, first predicted by Bernevig, Hughes and Zhang [8] and

later confirmed in various experiments [202, 206, 207, 208]. However, imperfect conductance

has been measured in experiments performed on longer HgTe samples [202, 206, 209, 210],

suggesting that TR-violating scatterers such as intrinsic nuclear spins or magnetic impurities

may become important in such devices [10, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220].

Similar considerations are also relevant for 3D TI candidates such as Bi2Se3 [221, 222] and
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Sb2Te3 [221], which also include spinful nuclear isotopes and likely carry magnetic impurit-

ies as well [223]. Both theoretical and experimental evidence that spinful nuclei lead to not

only backscattering of helical modes but also dynamic nuclear polarization has also appeared

recently [215, 219, 224]. Despite this progress, it remains challenging to observe the precise

role of nuclear spins or magnetic impurities in experiments because of the numerous other

factors present in these devices.

In the remainder of the chapter, we investigate the impact of nuclear spins or magnetic im-

purities coupled to helical edge states in topological insulator nanorings. The introduction of

a magnetic flux threading the ring provides an additional control knob to facilitate the study

of the helical electron-impurity interaction. Quantum nanorings and disks have drawn a sig-

nificant amount of attention over the past decade [225, 226, 227, 228], in part because they

are ideal systems in which to study quantum interference phenomena such as the Aharonov-

Bohm (AB) effect [229, 230, 231, 232, 233] and other geometrical phase effects. Persistent

currents in quantum rings due to the AB effect [234] were soon proposed after the AB effect

itself and were confirmed experimentally [235]. Since then, persistent currents have been one

of the most active fields of research in this context [146, 236, 237, 238, 239, 240, 241, 242, 243].

Research on quantum rings is also expanding due to their various applications in spintronics.

A few examples include spin entanglement control [244], spin filtering [245], spin beam split-

ting [246] and spin current pumping [247]. Possible applications to quantum information

processing have also been proposed [248]. Additional applications are possible in rings pos-

sessing a significant spin-orbit interaction [249, 250, 251, 252], and this has in part motivated

recent investigations of TI quantum rings both theoretically [253] and experimentally [254].

Furthermore, ring-like distribution of helical edge states in the context of TI quantum dots

have been observed as well [255, 256]. The AB effect in such systems has been worked

out theoretically and observed experimentally in both 2D and 3D TIs [257, 258, 259, 260].
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The bound-state spectrum of clean 2D TI quantum rings based on the BHZ model of HgTe

quantum wells, in the presence of a magnetic field, has been calculated [261], but the effect

of a magnetic impurity on this spectrum remains an open problem.

Here, we calculate the spectrum of helical edge states on a 2D TI ring coupled to a nuclear

spin or magnetic impurity of arbitrary spin and with a magnetic flux threading the ring.

Using a generalized time-reversal symmetry under which both the electronic and impurity

spins are reversed, along with spin conservation, we derive a universal formula for the spec-

trum as a function of magnetic field that depends only on the amplitude of transmission

through the impurity. Thus our results apply for any spatial profile of the electron-impurity

interaction region. We show that the solution for an arbitrary-spin impurity can be built up

using solutions for spin 1/2 and spin 1 impurities, which we obtain explicitly. We show that,

in a certain energy regime, the spectrum becomes effectively independent of the magnetic

flux for sufficiently strong impurity coupling, leading to sizable energy gaps. In addition,

we calculate the entanglement entropy of the helical states as a function of magnetic field,

finding that the electronic and impurity spins become maximally entangled near the spectral

gaps.

The rest of the chapter is structured as follows. In Section 6.3 we describe the TI ring-

impurity model and discuss the symmetries present in this model and their consequences.

We show that a generalized version of time-reversal symmetry allows us to decompose the

model for an arbitrary-spin impurity into decoupled spin 1/2 and spin 1 sectors. Following

this result, we solve the scattering problem for these two special cases in Sections 6.4 and

6.5, respectively. In each case, we obtain a universal formula for the energy spectrum in

terms of the transmission amplitude. In Section 6.6, we discuss how our results generalize

to the case of several impurities on the ring. In Section 6.7, we calculate the spin current

and entanglement entropy of the system. In Section 6.8, we study the dependence of the
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spectrum on the ring geometry and impurity couplings and obtain approximate formulas for

energy bandwidths and gaps for a square impurity potential. The last three sections contain

additional technical details pertaining to our derivations.

6.3 Hamiltonian and symmetries

6.3.1 TI ring in a magnetic field

We take the non-interacting Hamiltonian on the ring to be the effective Hamiltonian for

ring-like TI quantum dot edge states, where the edge states are distributed near the dot

boundary [256]:

H0 = v0p̂yσz, (6.5)

where v0 is the Fermi velocity, p̂y is the (angular) momentum operator, and σz acts on

the spin subspace. The eigenstates of this Hamiltonian are spin-momentum locked plane

waves: ψ+ = eipyy |↑⟩, ψ− = e−ipyy |↓⟩, where for a ring of circumference d, the momenta are

quantized: py = 2πn/d. We model the interaction between the electron spin and an impurity

spin I as

HS,I = F (y)
[
AzσzIz + A⊥(σ−I+ + σ+I−)

]
, (6.6)

where we follow Ref. [10] and use an interaction that has been averaged over impurity spin

locations within the edge state. This interaction occurs over a finite region of width w on

the ring, with a specific spatial profile set by F (y), and we allow for the longitudinal and

transverse spin-spin coupling constants Az and A⊥ to be different. This interaction breaks

TR symmetry and provides a mechanism for backscattering that is assisted by electron-

impurity spin flip-flops generated by the transverse terms in Eq. (6.6).
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In the presence of an applied magnetic flux ΦB that threads the ring (see Fig. 6.4), the

momentum operator in Eq. (6.5) is shifted according to: p̂y → p̂y + pB, where pBd =

2πΦB/Φ0, where Φ0 is the magnetic flux quantum. This shift can be effectively undone by

introducing an ansatz for the eigenstate wavefunction that includes a global phase:

ψB(y) = e−ipByψ(y). (6.7)

Here, ψ(y) is a solution to the Hamiltonian without the vector potential, Eq. (6.5), but now

with a nontrivial boundary condition imposed on it as required to ensure single-valuedness

of the wavefunction, ψB(0) = ψB(d):

ψ(d) = eipBdψ(0) = e2πiΦB/Φ0ψ(0). (6.8)

The first equality resembles a Bloch constraint in one dimension, with d interpreted as the

lattice spacing and pB as the crystal momentum. Thus, we can treat the impurity scattering

problem with nonzero magnetic flux as though we are solving a Kronig-Penney model with

Hamiltonian H = H0+HS,I without magnetic flux. The magnetic flux dependence is restored

by replacing the crystal momentum by pB. This observation reflects the general connection

between the AB problem on a ring with a non-uniform potential and the Kronig-Penney

model [234, 262, 263]. We may thus think of the energy spectrum dependence on pB or ΦB

as an effective band structure.

6.3.2 Spin conservation and generalized time-reversal symmetry

Although TR symmetry is broken by the coupling to the impurity, Eq. (6.6), this interaction

does preserve a generalized time-reversal (GTR) symmetry that flips both the electronic and
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d

w

~B

4

Figure 6.4: A schematic illustration of a TI ring of circumference d with a single impurity of
width w. The edge states are indicated with arrows and the magnetic field associated with
the AB effect is localized inside the ring.

impurity spins. By exploiting this symmetry along with conservation of total spin, we can

achieve a better understanding of the boundary matching problem that we must solve in

order to obtain the energy spectrum. In fact, the consequences of these two symmetries

together lead to a universal result for the energy spectrum in terms of only one variable,

which we take to be the amplitude of transmission through the impurity.

The total Hamiltonian, H = H0+HS,I , commutes with the total spin operator Jz = Sz + Iz.

Thus, the total wavefunction describing both the electron and impurity breaks into sectors

labeled by Jz. Two of these sectors (the ones corresponding to maximum and minimum Jz)

are one-dimensional, while the rest are two-dimensional, as is illustrated in Fig. 6.5.

To understand the consequence of GTR, first note that this operation maps the electron-

impurity spin state |↑⟩ |n⟩ to |↓⟩ |−n⟩. The former state has Jz = n + 1/2, while the latter

has Jz = −n − 1/2, so we see that GTR mixes different total spin sectors. Importantly, it

mixes only these two sectors, so that the Hilbert space breaks up into “blocks”, where each
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Figure 6.5: Decomposition of the wavefunction into its sectors and blocks (here we suppress
the spatial dependence). |↑⟩ and |↓⟩ are electron spin states, and |n⟩ labels impurity spin
states. Two components with the same total spin Jz that form one sector are connected with
blue arrows. Red arrows show the components that mix under GTR. We see that the two
sectors Jz = n+ 1/2 and Jz = −n− 1/2 mix and form the block labeled by Jz = |n+ 1/2|.

block consists of two sectors of opposite Jz and thus can be labeled by |Jz| (Fig. 6.5) 1. Of

course, when Jz = 0 there is only a single sector in the block; this type of block only occurs

for half-integer-spin impurities. In terms of scattering eigenstates, GTR relates an eigenstate

incoming from one side of the impurity to an eigenstate incoming from the opposite side,

and it allows us to solve for these eigenstates by separately solving the matching problem in

each block. In the next two sections, we exploit this fact to derive general relations between

the reflection and transmission amplitudes for a single impurity. We then use these relations

to obtain a universal formula for the energy spectrum; we find that the same formula arises

in every block regardless of the value of |Jz|. Thus, the entire spectrum for an arbitrary-spin

impurity can be obtained from this formula after the transmission amplitudes in each sector

are calculated for a given interaction region profile F (y).

1This whole concept is similar to the BHZ model of HgTe quantum wells in which the two blocks of the
Hamiltonian are related through time-reversal [8]. Furthermore, similar spin conservation arguments arise
when we include spin-orbit interactions in this model [10, 261, 264], firstly obtained in Ref. [256].
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6.4 Spin-1/2 impurity

In this section, we solve the scattering problem for a single impurity with spin m = 1/2.

We begin with ansatz eigenstate wavefunctions on the left (L) and right (R) sides of the

interaction region:

ψL(y) = eipy



α

β

0

0


+ e−ipy



0

0

α′

β′


,

ψR(y) = eipy



α′′

β′′

0

0


+ e−ipy



0

0

α′′′

β′′′


. (6.9)

Here, the basis states for the spinors are (from top to bottom) |↑, 1/2⟩, |↑,−1/2⟩, |↓, 1/2⟩,

|↓,−1/2⟩, where the arrows denote the electron spin, and ±1/2 refers to the impurity spin.

The coefficients α and β specify the “initial” impurity spin state for an eigenstate incoming

from the left, while α′′′ and β′′′ give the initial impurity state for an eigenstate incoming from

the right. The remaining coefficients α′, β′, α′′, β′′ correspond to reflection or transmission

coefficients, depending on the direction from which the incident wave originates.

The standard approach to solving this type of scattering problem is to also solve for the

wavefunction inside the interaction region and to then enforce continuity of the wavefunction

at the boundaries of this region. Imposing the additional constraint, Eq. (6.8), generally gives

rise to a relation between the energy and the magnetic flux, leading to the effective band

structure E(ΦB).
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Figure 6.6: Scattering off a single impurity (depicted here as a square barrier, which is
assumed to carry nonzero spin I). Incident waves from the left (with coefficient A) and right
(with coefficient B) and their corresponding transmitted and reflected waves are shown.
We assume the impurity is in an eigenstate of Iz with eigenvalue |n| < I. Each arrow
corresponds to one component of the wavefunction (on left or right) with a particular spin
state. Combinations of these waves form the wavefunctions in Eq. (6.10).

Here, we describe a more economical approach to obtaining the energy spectrum that yields

a universal formula for arbitrary-spin impurities with the help of GTR symmetry. We first

demonstrate this for a spin 1/2 impurity and postpone discussion of larger spins to the next

section. First note that the wavefunction spinor components with Jz = ±1 do not mix with

each other or with any other components under the electron-impurity interaction, Eq. (6.6),

and simply acquire phase factors as a consequence of the impurity. These phases have no

bearing on the energy spectrum, and thus the |Jz| = 1 block can be safely neglected. (The

impact of GTR on these phases is discussed in Section 6.10.) We therefore focus only on the

Jz = 0 block. If our impurity scattering problem were formulated in an infinite 1D channel

instead of on a finite ring, then every left-incoming eigenstate would be degenerate with a

right-incoming state, and any superposition of these would also be an eigenstate. On the
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left and right side of the impurity barrier (see Fig. 6.6), we could then write

ψ(0) =

 A

r→A+ t←B

 , ψ(d) =

t→A+ r←B

B

 , (6.10)

where A and B are the coefficients of the left-incoming and right-incoming states in the

superposition, and we only keep the Jz = 0 wavefunction spinor components |↑,−1/2⟩ and

|↓, 1/2⟩. The subscript arrows on the reflection and transmission amplitudes indicate the

direction of the corresponding incoming wave. If we now return to the ring geometry by

identifying y = 0 and y = d and imposing the single-valuedness constraint, Eq. (6.8), then

we find that only one of these superpositions is a valid eigenstate, and the magnetic flux is

determined by the scattering amplitudes:

B/A =
1− r←r→ − t←t→ ±

√
(1− r←r→ + t←t→)2 − 4t←t→
2r←t←

, (6.11)

e2πiΦB/Φ0 =
1− r←r→ + t←t→ ±

√
(1− r←r→ + t←t→)2 − 4t←t→
2t←

. (6.12)

The two solutions distinguished by the sign in front of the square root correspond to currents

circulating in opposite directions around the ring, as we discuss further in Sec. 6.7. These two

solutions are degenerate and are related to each other by GTR symmetry. It is important to

note that Eq. (6.12) holds for any barrier shape F (y); the only assumption we have made is

that the barrier vanishes at y = 0 and y = d. Once the scattering amplitudes are obtained for

a given barrier shape, Eq. (6.12) can be used to obtain the corresponding energy spectrum.

In the absence of GTR or any other symmetry, the reflection and transmission amplitudes r→,

r←, t→, t← would all be independent of each other (aside from the normalization condition).

However, as explained in detail in Section 6.10, GTR symmetry imposes two relations among
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these amplitudes:

t← = t→ ≡ t ≡ |t|eiϕt , r→r← = (|t|2 − 1)e2iϕt . (6.13)

These relations dramatically simplify Eq. (6.12) and allow us to express the magnetic flux

in terms of only the transmission amplitude:

e2πiΦB/Φ0 = cosϕt/|t| ±
√

(cosϕt/|t|)2 − 1. (6.14)

Since the left-hand-side is a pure phase, the right-hand-side must also be a pure phase in

order for a solution to exist. This then leads to the following condition for a state to exist

at a given energy:

cos2 ϕt < |t|2. (6.15)

Energy ranges where t(E) violates this condition correspond to gaps in the spectrum. In

ranges where states exist, the two different branches of the square root in Eq. (6.14) simply

correspond to the fact that the energy is independent of the sign of the magnetic flux:

E(ΦB) = E(−ΦB). For reasons that will become clear in the next section, we refer to this

feature as a 2-fold “flux degeneracy”, i.e., the number of distinct values of the flux ΦB that

give rise to a state of a given energy E. Fig. 6.7(a) shows an example band structure obtained

from this formula for the case of a square barrier using typical experimental parameters. The

scattering amplitudes for the square barrier are derived in Section 6.11. One salient feature

of the spectrum is that band edges always occur at half-integer multiples of the flux quantum.

This generally holds for any spin 1/2 impurity regardless of couplings or potential shape and

follows directly from the band edge condition cosϕt = ±|t| and Eq. (6.14). We will see in

the next section that band edges can occur at other values of ΦB for higher-spin impurities.

The most striking consequence of the impurity is the occurrence of nearly flat bands in the

vicinity of E = −Az = −0.05 eV, with gaps of size 8 meV between them. We explain
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the origin of these bands and study their dependence on the impurity couplings and ring

geometry in Sec. 6.8. We further analyze the spectrum for a spin 1/2 impurity quantitatively

for a range of realistic device parameters in the same section.

The constraint in Eq. (6.15) can be visualized in terms of the complex t plane (Fig. 6.7(b)).

Scanning through values of the energy corresponds to tracing out a curve in this plane, and

whenever the curve enters one of the yellow regions, which indicate values of t that violate

Eq. (6.15), a gap occurs in the spectrum. Large loops give rise to dispersive bands, while

the flat bands correspond to loops concentrated close to the origin. If the parametric curve

tangentially touches the yellow region at Re[t] = ±1, then a band touching point appears

in the spectrum at ΦB = 0 or ±1/2. Such points can only occur at values of the energy for

which |t| = 1, i.e., for which the impurity is effectively transparent. We show in Sec. 6.8 that

a discrete set of energies satisfy this condition in the case of a square impurity barrier.

6.5 Arbitrary-spin impurity

In this section, we solve the scattering problem for an arbitrary-spin impurity by following

an approach that is similar to what we used for a spin 1/2 impurity in the previous section.

Since GTR symmetry allows us to solve the problem in each block of the Hilbert space

separately, we only need to solve the case of a spin 1 impurity to obtain the solution in the

general case. The spin 1 case has only one block consisting of two GTR-coupled sectors.

Impurities with larger integer spins will break into a series of blocks, all with the same

structure as the spin 1 case, allowing us to solve these cases in terms of multiple copies of

the spin 1 impurity solution. Moreover, half-integer spins will also reduce to one spin 1/2

block (with Jz = 0) and several spin 1 blocks (with Jz ̸= 0). As a result, we can solve the

problem for an arbitrary-spin impurity by combining the solutions for the spin 1/2 and spin
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Figure 6.7: (a) Energy spectrum (solid blue lines) as a function of magnetic flux for a spin
1/2 impurity with square potential. The dashed lines indicate the spectrum without the
impurity. (b) Parametric plot of the transmission amplitude as a function of energy. Yellow
regions indicate values where the condition cos2 ϕt < |t|2 does not hold and thus correspond
to gaps in the spectrum. Colored dots map certain energies of the energy spectrum to points
on the parametric plot. The parameters are d = 1000 Å, w = 130 Å, Az = A⊥ = 0.05 eV
[9], v0 = 2.4 eV Å [10].
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1 cases.

Out of the six components of the electron-impurity wavefunction for a spin 1 impurity, the

two with maximal |Jz| (i.e., Jz = ±3/2) are again decoupled from each other and from all

other components, while the remaining four components form the block with |Jz| = 1/2.

From now on we distinguish all variables of this block with ± signs to indicate the sector

to which it belongs according to the sign of Jz. As in the previous section, we consider left-

incoming waves in each sector with coefficients A± superposed with right-incoming waves

with coefficients B±. The analog of Eq. (6.10) becomes

ψ(0) =



A+

A−

r+→A
+ + t+←B

+

r−→A
− + t−←B

−


, ψ(d) =



t+→A
+ + r+←B

+

t−→A
− + r−←B

−

B+

B−


, (6.16)

where the basis states are now |↑, 0⟩, |↑,−1⟩, |↓, 1⟩, |↓, 0⟩. Since ψ(0) and ψ(d) are each

essentially just two copies of the analogous expressions in the spin 1/2 case, Eq. (6.10),

when we impose the single-valuedness condition, Eq. (6.8), we obtain two copies of the band

structure equation, Eq. (6.12), one for each sector labeled by ±.

We may again invoke GTR symmetry to simplify these expressions using relations between

the scattering amplitudes. However, since GTR now couples two distinct sectors, this process

is different from the spin 1/2 case, for which there was only a single sector. The details are

given in Section 6.12. The resulting relations among the amplitudes are as follows:

t+→ = t−←, t+← = t−→, r+→ = r−→, r+← = r−←,

|t±→| = |t±←| ≡ |t|, |r±→| = |r±←| ≡ |r|, |r|2 + |t|2 = 1,

(6.17)
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Figure 6.8: Spin 1 impurity. (a) Energy spectrum as a function of magnetic flux. Each of
the two total spin sectors yields a different state (distinguished by red and blue) at each
energy. (b) Zoom-in of the spectrum shown in (a) (upper panel) and the condition for states
to exist (lower panel). States occur at energies where the transmission amplitudes satisfy
| cosϕ◦t | < |t|. (c) Parametric plot of transmission amplitude t = |t|eiϕ◦t for the energy range
shown in (b). The colored dots indicate the corresponding energies shown in (b). The
parameters are d = 1000 Å, w = 130 Å, Az = A⊥ = 0.05 eV [9], v0 = 2.4 eV Å [10].
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and additionally we have

ϕ◦t± = ϕ◦r± + π/2, (6.18)

where we have defined,

ϕ◦x ≡ (ϕx→ + ϕx←)/2, for x = r±, t±, (6.19)

where ϕx→, ϕx← are the phases of the corresponding scattering amplitudes. It follows from

Eq. (6.17) that ϕ◦t+ = ϕ◦t− , which allows us to drop the sector labels ± in these quantities:

ϕ◦t+ = ϕ◦t− ≡ ϕ◦t . These relations allow us to simplify Eq. (6.12) down to the result

e
2πi

ΦB

Φ0 = e
i(ϕ

t±→
−ϕ

t±←
)/2
[
cosϕ◦t/|t| ±

√
(cosϕ◦t/|t|)2 − 1

]
. (6.20)

The overall phase factor in this expression depends on the sector as can be seen from

Eq. (6.17); the two phases in fact differ only by a sign: ϕt+→
− ϕt+←

= −(ϕt−→
− ϕt−←

). An

important consequence of the overall phase is that there is now a 4-fold flux degeneracy

instead of a 2-fold degeneracy like we have for a spin 1/2 impurity. This 4-fold degeneracy

comes from the two sectors and the two branches of the square root in Eq. (6.20). Be-

cause the overall phase differs by only a sign between the two sectors, it remains true that

E(−ΦB) = E(ΦB), or in other words the spectrum remains symmetric about ΦB = 0. An

example spectrum for a spin 1 impurity is shown in Fig. 6.8(a), where the additional degen-

eracy is evident. Also notice that, unlike in the spin 1/2 impurity case, the band edges can

occur at arbitrary values of the flux; this is due to the extra phase ei(ϕt±→
−ϕ

t±←
)/2 appearing

in Eq. (6.20). We also note that flat bands are again apparent in the region near E = −Az.

Also notice the similarity of Eq. (6.20) to Eq. (6.14). Aside from the overall phase factor,

the only other difference is that ϕt has been replaced by the average phase ϕ◦t . Eq. (6.14)

can be understood as a special case of Eq. (6.20) where the self-duality of the Jz = 0 sector
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GTR symmetry enforces t→ = t←, so that the overall phase factor in Eq. (6.20) vanishes,

and ϕ◦t reduces to ϕt.

All of our analysis here was based only on the fact that two sectors are mixed by GTR

symmetry (except when Jz = 0 where there is only one self-symmetric sector). This is true

for any value of Jz so that in fact Eq. (6.20) holds regardless of the spin of the impurity.

Thus we conclude that the flux degeneracy for an impurity of spin m is equal to twice the

number of distinct nontrivial sectors (i.e., those with |Jz| ̸= m+1/2), since each such sector

contributes two solutions corresponding to the two branches of the square root in Eq. (6.20).

Hence the flux degeneracy is 2(2m+ 1)− 2 = 4m.

Note that even though the spectrum formula, Eq. (6.20), holds regardless of the spin of the

impurity, the resulting energy spectra still depend sensitively on the spin and potential of

the impurity since these details strongly affect the transmission amplitudes (i.e., the t’s) that

enter this formula. These amplitudes are determined by diagonalizing of the Hamiltonian,

which depends on the impurity couplings and potential. As an example, consider a spin 3/2

impurity. In this case, there are three sectors (Jz = 0 and Jz = ±1), and each produces a

unique spectrum formula condition like Eq. (6.20). To obtain the spectrum, it is necessary

to diagonalize the total Hamiltonian in each of the two blocks (Jz = 0 and |Jz| = 1), extract

the transmission amplitudes, and plug them into Eq. (6.20).

6.6 Multiple impurities

To treat the case of N impurities on the ring, we can proceed in the same way as for a single

impurity. In particular, we can begin by writing down ansatz wavefunctions at y = 0 and

y = d, each of which now contains 2(2I + 1)N spinor components assuming each impurity

has the same total spin I. The Hilbert space again divides into sectors labeled by total
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Figure 6.9: Energy spectrum for two spin 1/2 impurities as a function of magnetic flux for
parameters d = 1000 Å, Az = 0.05 eV, A⊥ = 0.05 eV, w = 130 Å, and v0 = 2.4 eV Å.
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spin Jz, where now the dimensions of the sectors DJz depend on Jz. In each sector, we take

the ansatz wavefunctions to be superpositions of left-incoming and right-incoming states,

and we express these wavefunctions in terms of reflection and transmission coefficients as

in Eq. (6.18). We then apply the single-valuedness condition, Eq. (6.8), separately in each

sector. Doing so will yield a polynomial in e2πiΦB/Φ0 for each sector, where the order of

this polynomial is the dimension of that sector, DJz . As an example, consider N spin 1/2

impurities, for which the dimension of each sector is the binomial coefficient

DJz =

(
N + 1

Jz +
N+1
2

)
. (6.21)

For instance for N = 2, the number of states with Jz = +1/2 is
(
3
2

)
= 3, which means that

we have to solve a cubic equation in order to find the spectrum (recall that for one impurity,

the resulting polynomial was quadratic and led to Eq. (6.14)). As we add more impurities,

the order of this polynomial grows exponentially, and it quickly becomes necessary to solve

for the spectrum numerically. An example of a spectrum for two spin 1/2 impurities (both

with square potentials of equal size w and with equal couplings) computed in this way is

shown in Fig. 6.9. In this case, there is up to a six-fold flux degeneracy depending on the

energy. Unlike in the case of a single impurity, here the spectrum no longer exhibits flat

bands in the vicinity of E = −Az.

Notice that for several impurities on the ring a Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction mediated by impurities can lead to an indirect exchange among the impurities.

At low temperature this effect leads to ferromagnetic ordering of impurities [213, 214, 221,

265, 266, 267, 268, 269]. However, for our case, such RKKY couplings will be small due

to the mesoscopic separation between the impurities on the ring. For example, for two

impurities on the ring with circumference d = 1000 Åthe separation between between the

two impurities will be 500 Å. This will lead to an indirect exchange coupling between the
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two impurities in the order of 10−4− 10−5 eV [213, 214]. Since this coupling is much smaller

than the direct coupling between the impurities and the edge states (Az = A⊥ = 0.05 eV)

we can safely neglect this interaction.

6.7 Spin current and entanglement entropy

6.7.1 Probability and spin currents

In this section, we show that the symmetries of the TI ring-impurity system also lead to a

universal formula for the ratio of spin and probability currents. The probability current is

given by

jp = v0ψ(y)
†σzψ(y), (6.22)

while the spin current is

js = (v0/2)ψ(y)
†ψ(y). (6.23)

In the case of a spin 1/2 impurity, it is straightforward to find the ratio of these two quantities

using the wavefunction ansatzes in Eq. (6.10) in conjunction with the single-valuedness

condition, Eq. (6.8):

js = jp
1

2

|1− e2πiΦB/Φ0t|2 + |r|2

|1− e2πiΦB/Φ0t|2 − |r|2
. (6.24)

Note that this expression is independent of the coefficients A and B that we introduced in

Eq. (6.10). In this expression, e2πiΦB/Φ0 also depends on r and t, and therefore the right hand

side of the equation only depends on energy. For a spin 1 impurity (or more generally for

one block of a larger-spin impurity), a similar expression can be derived (see Section 6.12):

js = jp
1

2

|1− e2πiΦB/Φ0t+←|2 + |r|2

|1− e2πiΦB/Φ0t+←|2 − |r|2
. (6.25)



6.7. SPIN CURRENT AND ENTANGLEMENT ENTROPY 143

��������

0.0 0.2 0.4 0.6 0.8 1.0
1.0330

1.0335

1.0340

1.0345

1.0350

1.0355

1.0360

Entropy

Log[2]

E
ne
rg
y
(e
V
)

0 0.04 0.08 0.12
ΦB/Φ0

������� �� ������� ����������� ������� �������

Figure 6.10: Comparison of the energy spectrum (right) with the electron-impurity entan-
glement entropy (left) for a spin 1/2 impurity with square potential. Near the spectral gaps,
the entanglement reaches its maximum possible value of log 2. The parameters are d = 1000
Å, w = 130 Å, Az = A⊥ = 0.05 eV [9], v0 = 2.4 eV Å[10].

Although it appears that the right-hand side depends on the sector (i.e., on total spin Jz),

this is in fact not the case, as is shown in Section 6.12. Hence, the currents in both sectors

of the block are identical. A detailed discussion of spin current pumping in TIs can be found

in Ref. [270]. We are assuming that the magnetic field is fully localized inside the ring so

that there is no Zeeman interaction for either the electronic or impurity spins. It is readily

apparent from Eqs. (6.24) and (6.25) that the ratio of the currents can be controlled directly

by adjusting the magnetic flux.

6.7.2 Entanglement entropy of nuclear spin and electron

Next, we analyze the entanglement between the electron and impurity as a function of

magnetic flux. We can define a position-independent entanglement entropy between electron

and impurity spins in the following way. We begin by writing the TI ring-impurity eigenstates
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as

|Ψ⟩ =
∫
dy
∑
ij

ψij(y) |y, i, j⟩ , (6.26)

where the index i denotes the electron spin state and j the nuclear spin state. The full density

matrix is given by ρI,e = |Ψ⟩ ⟨Ψ|. After tracing out the electronic spin, ρI =
∑

i ⟨i| ρI,e |i⟩ ,

this quantity will only depend on the impurity spin and the electron position, which we

integrate out:

ρI =
∑
i

∫
dy
∑
j,j′

ψij(y)ψ̄ij′(y) |j⟩ ⟨j′| . (6.27)

Since the spin states |↑, 1/2⟩ and |↓,−1/2⟩ do not mix with other states, we drop them and

focus on the spin states in the Jz = 0 sector:

ρI =

∫ d

0
dy|ψ↑,−1/2|2 0

0
∫ d

0
dy|ψ↓,1/2|2

 . (6.28)

To simplify this result further, notice that the probability current can be written as,

(1/v0)jp = |ψ↑,−1/2|2 − |ψ↓,1/2|2, (6.29)

which should be constant over the entire ring. This in turn implies

(d/v0)jp =

∫ d

0

dy|ψ↑,−1/2|2 −
∫ d

0

dy|ψ↓,1/2|2. (6.30)

Using this equation and the fact that wavefunction is normalized (assuming the Jz = ±1

components are zero), we can write Eq. (6.28) as

ρI =
1

2

[
1 +

d

v0
jpσz

]
. (6.31)
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The probability current vanishes in the energy gaps, which therefore implies that the entan-

glement entropy, S = −TrρI log ρI , reaches its maximum value of log 2 at the band edges 2.

This finding is consistent with numerical results, as demonstrated in Fig. 6.10. One would

expect that the spectral gaps occur at values of the magnetic flux where the electronic and

impurity spins interact most strongly, and the fact that the entanglement is greatest near

these values is consistent with this picture.

6.8 Origin of flat bands and parameter dependence for

spin 1/2 impurity

In this section, we focus on the case of a single spin 1/2 impurity with a square potential,

and we investigate quantitatively how the spectrum depends on the system parameters. As

we discussed in Sections 6.4 and 6.5, the energy spectrum is completely determined by the

transmission amplitude t (see Eq. (6.14)). As we show in Section 6.11, for a square potential

this coefficient can be written as,

t(E) =
eiE(d−w)/v0v0q

v0q cos(qw)− i(Az + E) sin(qw) , (6.32)

where v0q =
√

(E + Az)2 − (A⊥)2. The magnitude of the transmission amplitude is minimal

at E = −Az, at which it assumes the value |t| = sech(wA⊥/v0). Thus, the transmission is

exponentially suppressed as the width w or height A⊥ of the impurity barrier are increased,

or as the electron velocity v0 is reduced. The dependence of |t| on A⊥ is demonstrated

in Fig. 6.11, where it is evident that |t| flattens out close to zero over a broad range of

energies that grows as A⊥ is increased. This behavior gives rise to the flat bands that occur

2At the band edges (from Eq. (6.15)), the current vanishes continuously as well.



146 CHAPTER 6. MAGNETIC IMPURITIES IN TOPOLOGICAL INSULATORS

-0.15 -0.10 -0.05 0.00 0.05
0.0

0.2

0.4

0.6

0.8

1.0

Energy (eV)

|t|

Figure 6.11: Magnitude of the transmission coefficient as a function of energy for a single
spin 1/2 impurity with square potential for several different values of A⊥. From top to
bottom: A⊥ = 0.025, 0.05, 0.075, 0.1 eV. The remaining parameters are d = 1000 Å, w = 130
Å, Az = 0.05 eV [9], v0 = 2.4 eV Å.

in the middle of Fig. 6.7(a). To see this, recall that the condition for a band to occur is

| cosϕt| < |t|, so that for |t| ≪ 1, the range of phases satisfying this condition becomes

very narrow. For physical parameters, ϕt is dominated by the kinematic term E(d− w)/v0,

which is why the parametric plot trajectories shown in Figs. 6.7(b) and 6.8(b) are nearly

circular. Here, we can use this observation to estimate the smallest bandwidth σE and the

largest band gap ∆E, which occur near E = −Az: σE ≈ 2v0/(d−w) arcsin
(
sech(wA⊥/v0)

)
,

∆E ≈ πv0/(d − w). Notice that σE depends sensitively on the impurity coupling while

∆E does not. For the typical experimental parameters used in Fig. 6.7, these quantities

evaluate to σE ≈ 0.7 meV and ∆E ≈ 8 meV, corresponding to the flat bands in the vicinity

of E = −0.05 eV in Fig. 6.7(a).

To further elucidate the dependence on system parameters, we show the energy spectrum

for several sets of parameters in Fig. 6.12. In Fig. 6.12(a), we increase the strength of the

impurity coupling by an order of magnitude relative to Fig. 6.7, where the most striking

consequence is that the bands for E < 0 become significantly flatter (σE ∼ 10−14 eV near
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Figure 6.12: Dependence of energy spectrum on ring geometry and impurity couplings for a
spin 1/2 impurity with square potential. The parameters are (a) d = 1000 Å, w = 130 Å,
Az = A⊥ = 0.05 eV (b) d = 1000 Å, w = 130 Å, Az = 0.03, A⊥ = 0.05 eV (c) d = 2000 Å,
w = 130 Å, Az = A⊥ = 0.05 eV and (d) d = 1000 Å, w = 200 Å, Az = A⊥ = 0.05 eV. In all
cases, v0 = 2.4 eV Å. For the larger ring circumference case shown in (c), the magnetic field
range spans several Brillouin zones.
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E = −Az = −0.5 eV in this case). Notice that the band gaps remain approximately the

same, as is consistent with our finding that these are insensitive to the impurity coupling. In

addition, the flat bands continue over a 1 eV range in this case, all the way down to E ≈ −1

eV, since now A⊥ = 0.5 eV.

In Fig. 6.12(b), we consider a situation in which Az ̸= A⊥. In particular, we keep A⊥ = 0.05

eV as in Fig. 6.7, but now reduce the longitudinal coupling to Az = 0.03 eV. This shifts the

flat band region upward in energy but does not affect σE or ∆E. An additional consequence

of Az ̸= A⊥ is that the behavior near E = 0 is modified. When Az = A⊥ and E = 0,

it follows from Eq. (6.32) that t = v0/(v0 − iA⊥w), which saturates the band condition

| cos(ϕt)| = |t|. Thus, E = 0 always corresponds to a band edge in the case of an isotropic

interaction, while this property is lost in the anisotropic case. This behavior is evident from

a comparison of Fig. 6.12(b) with the other panels of that figure.

Figs. 6.12(c),(d) show the dependence of the spectrum on the geometry of the ring. Increasing

the ring circumference changes the number of “Brillouin zones” that fit within a given range

of magnetic field, as shown in Fig. 6.12(c). Here, we increase the circumference by a factor

of 2 relative to Fig. 6.7, so that now two full Brillouin zones fit instead of only half of

one. In addition, the density of states increases by a factor of 2, as follows from the inverse

dependence of σE and ∆E on the circumference.

The spectra shown in Fig. 6.12 contain a number of very small gaps, raising the question

of whether the gaps ever close completely to form a Dirac point. As was mentioned in

Sec. 6.4, band touching points can arise if the band edge condition, | cosϕt| = |t|, and the

transparency condition, |t| = 1, are simultaneously satisfied. In the case of a square impurity

barrier, we see from Eq. (6.32) that |t| = 1 when q = nπ/w for arbitrary nonzero integer n,
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which corresponds to the following energies

E±n = −Az ±
√
(A⊥)2 + n2π2v20/w

2. (6.33)

At these energies, the transmission amplitude reduces to a pure phase:

t(E±n ) = ±eiE
±
n (d−w)/v0 . (6.34)

Notice that these energies are always guaranteed to lie within a band since | cosϕt| ≤ |t|

is automatically satisfied. Imposing the band edge condition, ϕt = mπ for integer m, then

leads to the following set of discrete values of the ring circumference for which Dirac points

appear in the spectrum:

d = w +mπv0/E
±
n . (6.35)

Any choice of m will yield a Dirac point at energy E±n . Although the particular form of

Eq. (6.35) only holds in the idealized case of a square impurity potential, an analogous

expression should arise for other potential shapes.

6.9 Conclusion

In conclusion, we analyzed the problem of a topological insulator ring in which the helical

edge states are coupled to magnetic impurities or spinful nuclei of arbitrary spin. This

interaction breaks time-reversal symmetry and enables the backscattering of electrons. We

considered the case where the ring is threaded by a magnetic flux, and we showed that

the energy spectrum as a function of this flux is given by a universal formula that depends

only on the amplitude of transmission through the impurity. We found that the impurity

can give rise to sizable spectral gaps and flat bands, and we calculated the gap sizes and
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bandwidths for a variety of experimentally relevant parameter regimes. We further showed

that the entanglement between the electronic and impurity spins is maximal near these gaps,

while at energies far away from these gaps, little entanglement develops, and the helical

edge states remain unaffected by the impurity. Our results can be tested with quantum

interference measurements in nanorings, providing a new approach to understanding the

role of magnetic impurities in topological insulator transport.

6.10 Generalized time-reversal relations for spin 1/2

impurities

GTR symmetry mixes eigenstates incoming from the left of the impurity with those incom-

ing from the right. In this section, we exploit this fact to obtain a simple expression for

the eigenstate spectrum in terms of the scattering transmission amplitude. This result is

universal in the sense that it does not depend on the spatial profile (barrier shape) of the

impurity or any other details of the system. We begin by supposing that the initial impurity

state is an eigenstate of Iz, and we write the wavefunctions in terms of the transmission

and reflection amplitudes. For example, we denote the left-incoming scattering eigenstate

with initial impurity state |−1/2⟩ by |ϕ(p)
→,−1/2⟩ (total Jz = 0 and momentum p). This state

corresponds to the A wave in Fig. 6.6. The state on each side of the impurity takes the form

(x denoting left side of the barrier and x′ the right side)

⟨x |ϕ(p)
→,−1/2⟩ =



0

eipx

r→e
−ipx

0


, ⟨x′ |ϕ(p)

→,−1/2⟩ =



0

t→e
ipx′

0

0


. (6.36)
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Similarly, for the B wave (incident from the right with the impurity initially in |1/2⟩) we

have,

⟨x |ϕ(p)
←,1/2⟩ =



0

0

t←e
−ipx

0


, ⟨x′ |ϕ(p)

←,1/2⟩ =



0

r←e
ipx′

e−ipx
′

0


. (6.37)

We also have an eigenstate corresponding to a left-incoming electron with the impurity

initially in state |1/2⟩:

⟨x |ϕ(p)
→,1/2⟩ =



eipx

0

0

0


, ⟨x′ |ϕ(p)

→,1/2⟩ =



P→eipx
′

0

0

0


, (6.38)

and similarly for |ϕ(p)
←,−1/2⟩ .

We define the TR operator as T1/2 = iσyΘ where Θ is the complex conjugation operator.

The corresponding operator for the GTR symmetry in the case of a spin 1/2 impurity is then

TGTR = T1/2 ⊗ T1/2. It is easy to see that TGTR |ϕ(p)
→,1/2⟩ must be proportional to |ϕ(p)

←,−1/2⟩ ,

from which we conclude that for “passing” states like Eq. (6.38),

P→ = P← ≡ P with |P|2 = 1. (6.39)

Applying TGTR on the two states with Jz = 0, Eqs. (6.36) and (6.37), we see that the resulting

state is a superposition of left-incoming and right-incoming states:

TGTR |ϕ(p)
→,−1/2⟩ = a0 |ϕ(p)

→,−1/2⟩+ b0 |ϕ(p)
←,1/2⟩ . (6.40)
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For instance, TGTR |ϕ(p)
→,−1/2⟩ corresponds to the following left-side and right-side wavefunc-

tions:

⟨x|TGTR |ϕ(p)
→,−1/2⟩ =



0

−r̄→eipx

−e−ipx

0


,

⟨x′|TGTR |ϕ(p)
→,−1/2⟩ =



0

0

−t̄→e−ipx
′

0


. (6.41)

Imposing Eq. (6.40) to the wavefunction on the left side of the barrier will give us one

equation per component. One of these equations implies that a0 = −r̄→. We do the same

on the right side, and the equation resulting from the third component implies b0 = −t̄→.

The remaining components (applied on both left and right) provide the following equations:

r̄→t→ + r←t̄→ = 0, (6.42)

|r→|2 + t←t̄→ = 1. (6.43)

Combining Eq. (6.43) with the current conservation condition, |r→|2 + |t→|2 = 1, we find

that the two transmission amplitudes must be equal:

t→ = t← ≡ t ≡ |t|eiϕt . (6.44)

Multiplying Eq. (6.42) by r→t and simplifying the result with the help of (6.43) and (6.44),
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we also find

r←r→ = (|t|2 − 1)e2iϕt . (6.45)

Eqs. (6.44) and (6.45) are used to derive the remarkably simple expression for the band

structure given in Eq. (6.14).

So far the only assumption we have made is that the Hamiltonian has GTR symmetry. If

the impurity potential also possesses inversion symmetry (as a result of which r→ = r← ≡

r ≡ |r|eiϕr 3), then Eq. (6.42) implies r̄t = −rt̄, which in turn leads to ϕt = ϕr + π/2. The

presence of this symmetry of course has no impact on Eq. (6.14), but it does simplify the

calculation of the wavefunction, for example in the case of a square barrier considered in

Section 6.11.

6.11 Transmission and reflection amplitudes for square

impurity barrier

In this section, we outline the general approach for finding reflection and transmission amp-

litudes for an arbitrary-spin impurity with square potential (i.e., F (y) = Θ(w/2 − |y|) in

Eq. (6.6)). We do this by decomposing the Hilbert space into sectors of total spin Jz and

by separately solving for the scattering amplitudes in each sector. To better understand the

structure of the Hamiltonian in each sector, we first consider the case of a spin 1/2 impurity.

Using a wavefunction ansatz that includes a chiral plane wave factor of the form eiqy, the

3Note that t→ = t← holds regardless.
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full Hamiltonian H = H0 +HS,I inside the interaction region is

H =



Az + qv0 0 0 0

0 qv0 − Az A⊥ 0

0 A⊥ −qv0 − Az 0

0 0 0 Az − qv0


. (6.46)

The middle block of this matrix corresponds to the Jz = 0 sector (M(Jz=0)) and the other

two states are |↑↑⟩ and |↓↓⟩, which do not couple to any other states and are irrelevant for

calculating scattering amplitudes. For a general impurity spin, H will be block diagonal

(when the basis states are grouped according to Jz), all of which are two-dimensional except

for the one-dimensional blocks corresponding to maximal |Jz|. Each two-dimensional block,

which we denote by M(Jz), will have an associated set of scattering amplitudes r←, r→, t←,

t→. The most general form of M(Jz) for arbitrary Jz is

M(Jz) =

qv0 − u−m0 h

h −qv0 − u+m0


= −u1 + (qv0 −m0)σz + hσx

= −u1 + [b cos θσz + b sin θσx], (6.47)

where we have definedcos θ

sin θ

 =
1

b

qv0 −m0

h

 and b2 = h2 + (qv0 −m0)
2. (6.48)
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The eigenvectors are cos θ/2

sin θ/2

 and

− sin θ/2

cos θ/2

 , (6.49)

and the eigenvalues are E = −u± b. We can solve for q in terms of energy,

q± = (1/v0)

(
m0 ±

√
(E + u)2 − h2

)
. (6.50)

Note that q and hence θ may be complex depending on the energy.

To obtain the scattering amplitudes, we need to match wavefunction ansatzes inside and

outside the impurity potential at the boundaries of the potential. Defining a = d − w, we

match the wavefunctions at y = a/2 and y = a/2 + w (see Fig. 6.6), where

ψ(0) =

 A

r→A+ t←B

 , ψ(d) =

t→A+ r←B

B

 . (6.51)

On the left side of the interaction region, this amounts to requiring

 Aeipa/2

(r→A+ t←B)e−ipa/2

 =

cos θ/2

sin θ/2

 c+ +

sin θ/2

cos θ/2

 c−, (6.52)

and on the right side,

(t→A+ r←B)e−ipa/2

Beipa/2

 =

cos θ/2

sin θ/2

 eiq+wc+ +

sin θ/2

cos θ/2

 eiq−wc−, (6.53)

where p = E/v0. These equations, combined with the single-valuedness condition (6.8),

allow us to eliminate A, B, and c± and to obtain the reflection and transmission amplitudes.
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As an example, for the case of spin 1/2 impurity where m0 = 0 and q± = ±q, we find

√
r←r→ = ieipa

sin θ sin qw
e−iqw cos2 θ/2− eiqw sin2 θ/2

, (6.54)

t← = t→ = eipa
cos θ

e−iqw cos2 θ/2− eiqw sin2 θ/2
. (6.55)

With some simple algebraic manipulations, we can transform this transmission amplitude to

the form of Eq. (6.32). In addition, we may write

|r|2 =
sin2(qw) sin2 θ

1− cos2(qw) sin2 θ
=

sin2(qw)

1 + cot2 θ − cos2(qw) ,

=

[
1 +

cot2 θ
sin2((h/v0)w cot θ)

]−1
, (6.56)

where we have used

sin θ = h

E + u
=

A⊥

E + Az
, (6.57)

where the first equality holds for any sector, while the second equality applies for Jz = 0.

Note that we can express all other variables in terms of this shifted (and dimensionless)

energy (E + u)/h. For example, we may rewrite the transmission amplitude as

t =
eiE(d−w)/v0v0q

v0q cos(qw)− i(Az + E) sin(qw) . (6.58)

6.12 Generalized time-reversal relations for spin 1 im-

purities

In this section, we derive the consequences of GTR symmetry in the case of a spin 1 impurity.

As explained in Section 6.3, the wavefunction decomposes into blocks spanned by basis states
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with the same absolute value of total spin |Jz|. As discussed in Sec. 6.5, the spectrum for an

arbitrary-spin impurity can be obtained by combining the solutions for spin 1/2 (obtained

in Sec. 6.4) and spin 1 impurities. In the case of a spin 1 impurity, the electron-impurity

Hilbert space divides into two trivial one-dimensional subspaces corresponding to the states

with Jz = ±3/2, and a four-dimensional block spanned by states with Jz = ±1/2. Following

the procedure of Section 6.10, we consider left-incoming and right-incoming states for which

the impurity is initially in an eigenstate of Iz. We label these states as e.g., |ϕ(p)
→,0⟩, which

represents an electron incoming from the left with momentum p and with the impurity

initially in state |0⟩. We write the wavefunctions for each of these states on the left-side (x)

and right-side (x′) of the impurity in terms of reflection and transmission amplitudes:

⟨x |ϕ(p)
→,0⟩ =



eipx

0

r+→e
−ipx

0


, ⟨x′ |ϕ(p)

→,0⟩ =



t+→e
ipx′

0

0

0


, (6.59)

⟨x |ϕ(p)
→,−1⟩ =



0

eipx

0

r−→e
−ipx


, ⟨x′ |ϕ(p)

→,−1⟩ =



0

t−→e
ipx′

0

0


, (6.60)

⟨x |ϕ(p)
←,1⟩ =



0

0

t+←e
−ipx

0


, ⟨x′ |ϕ(p)

←,1⟩ =



r+←e
ipx′

0

e−ipx
′

0


, (6.61)
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⟨x |ϕ(p)
←,0⟩ =



0

0

0

t−←e
−ipx


, ⟨x′ |ϕ(p)

←,0⟩ =



0

r−←e
ipx′

0

e−ipx
′


. (6.62)

Here, the basis states are |↑, 0⟩, |↑,−1⟩, |↓, 0⟩, |↓, 1⟩; we have left out the two “passing” states

|↑, 1⟩ and |↓,−1⟩ since the action of GTR on these will be identical to that for the passing

states in the spin 1/2 case treated in Section 6.10, namely the impurity-induced phases on

these states obey the relation P→ = P← = P .

In order to understand the action of GTR on these states, we must first generalize the

definition of the GTR operator introduced in Section 6.10 to the case of a spin 1 impurity.

We choose the following definition:

T1 =


0 0 1

0 −1 0

1 0 0

Θ, (6.63)

where Θ is again the complex conjugation operator. The GTR operator is then TGTR =

T1/2⊗T1. Acting with this operator on one of the states in Eqs. (6.59) - (6.62) yields a linear

combination of two of the other states. For example,

TGTR |ϕ(p)
→,0⟩ = a− |ϕ(p)

→,−1⟩+ b− |ϕ(p)
←,0⟩ , (6.64)

and

TGTR |ϕ(p)
→,−1⟩ = a+ |ϕ(p)

→,0⟩+ b+ |ϕ(p)
←,1⟩ . (6.65)

By acting on the other two states in a similar fashion, we get a total of four equations like

Eqs. (6.64) and (6.65), each of which yields two 4-component spinor equations when we
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restrict to the left- or right-side of the impurity. This gives a total of 32 complex equations,

16 of which are trivial, and 8 more can be used to solve for the 8 coefficients a−, b−, etc.

The remaining 8 complex equations constrain the scattering amplitudes and can be written

as

(i) 1 = t̄+→t
−
← + r̄+→r

−
→

(ii) t̄+→r
−
← = −r̄+→t−→

(iii) 1 = t̄−→t
+
← + r̄−→r

+
→

(iv) r̄−→t
+
→ = −t̄−→r+←

(v) t̄+←r
−
→ = −r̄+←t−←

(vi) 1 = t̄+←t
−
→ + r̄+←r

−
←

(vii) t̄−←r
+
→ = −r̄−←t+←

(viii) 1 = t̄−←t
+
→ + r̄−←r

+
←

Equations (i) and (ii) come from solving Eq. (6.64) on the left- and right-side of the impurity,

equations (iii) and (iv) come from solving Eq. (6.65), and equations (v), (vi) and (vii), (viii)

come from solving similar equations involving TGTR |ϕ←1⟩ and TGTR |ϕ←0⟩, respectively. An

instant consequence of these eight equations is,

|t−→| = |t+→| = |t+←| = |t−←| = |t|, (6.66)

|r−→| = |r+→| = |r+←| = |r−←| = |r|. (6.67)

Applying this constraint to equations (ii), (iv), (vi) and (viii) gives a relation between the
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phases. Adding the resulting equations from (ii) and (viii) gives

ϕt+←
− ϕt+→

= ϕt−→
− ϕt−←

, (6.68)

and adding the resulting equations from (vi) and (viii) gives

ϕr+→
− ϕr+←

= ϕr−→
− ϕr−←

. (6.69)

Furthermore, solving the all eight equations with the constraint that |t|2+ |r|2 = 1, provides

us with

ϕt−→
= ϕt+←

= ϕr−→
+ ϕr+←

− ϕt−←
+ π

ϕt−←
= ϕt+→

ϕr+→
= ϕr−→

ϕr−←
= ϕr+←

(6.70)

from which Eqs. (6.17) and (6.18) follow.

Now we proceed to derive Eq. (6.20) from the equation that results from imposing the

single-valuedness condition, Eq. (6.8), in each sector:

e2πiΦB/Φ0 =
1− r±←r±→ + t±←t

±
→ ±

√
(1− r±←r±→ + t±←t

±
→)

2 − 4t±←t
±
→

2t±←
. (6.71)

Here, the ± in front of the square root is independent from the sector labels ± labeling

the scattering amplitudes. Introducing the average amplitude phases as in Sec. 6.5, ϕ◦x =

(ϕx→ + ϕx←)/2 where x = r±, t±, we can rewrite the above expression using Eqs. (6.66),
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(6.67), (6.70):

e
2πi

ΦB

Φ0 = e
i(ϕ

t±→
−ϕ

t±←
)/2
[
cosϕ◦t/|t| ±

√
(cosϕ◦t/|t|)2 − 1

]
, (6.72)

where ϕ◦t+ = ϕ◦t− ≡ ϕ◦t . From Eq. (6.68) we see that the overall phase factor differs only by

a sign between the two sectors, ϕt+→
− ϕt+←

= −(ϕt−→
− ϕt−←

). Combined with the two possible

branches of the square root in Eq. (6.72), this therefore produces four distinct values of ΦB

for each value of the energy.

Next, we show how to derive the ratio of spin and probability currents given in Eq. (6.25).

First, we apply the single-valuedness condition, Eq. (6.8), to Eq. (6.18) to obtain a formula

for the wavefunction coefficients:

B±

A±
=

e2πi(ΦB/Φ0)±r±→
1− e2πi(ΦB/Φ0)±t±←

. (6.73)

Here, we have included the superscript ± on (ΦB/Φ0) as a reminder that we must use the

appropriate version of Eq. (6.72) corresponding to each sector. The spin current evaluates

to

(2/v0)js = ψ(y)†ψ(y) = |A+|2 + |r+→A+ + t+←B
+|2 + |A−|2 + |r−→A− + t−←B

−|2. (6.74)

Using Eq. (6.73) to eliminate B’s, this expression becomes

(2/v0)js = |A+|2
(
1 +

∣∣∣∣ r+→
1− e2πi(ΦB/Φ0)+t+←

∣∣∣∣2
)

+ |A−|2
(
1 +

∣∣∣∣ r−→
1− e2πi(ΦB/Φ0)−t−←

∣∣∣∣2
)
. (6.75)

From the constraint that we found on the magnitude of reflection coefficients we see that

|r+→|2 = |r−→|2. Furthermore, from Eq. (6.72) we observe that e2πi(ΦB/Φ0)+t+← = e2πi(ΦB/Φ0)−t−←

(again, since ϕ◦t+ = ϕ◦t− and that |t|’s are the same). As a result of this, the two quantities
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in parentheses in Eq. (6.76) are equal and can be factored out:

(2/v0)js = (|A+|2 + |A−|2)

(
1 +

∣∣∣∣ r+→
1− e2π2πi(ΦB/Φ0)+t+←

∣∣∣∣2
)
. (6.76)

We can write a very similar expression for jp which differs from this expression only in a

minus sign and also contains the same factor |A+|2 + |A−|2. Therefore in writing js/jp those

terms cancel out and we arrive at Eq. (6.25).



Chapter 7

Conclusion and outlook

The physical realization of a quantum computer with well-characterized qubits is a task that

requires considerable effort; overcoming decoherence and achieving high fidelity control of

the qubit are some of the main obstacles ahead of us. This thesis presents techniques and

approaches to obtain a better understanding and battling these problems in self-assembled

QDs and TIs. In the following I will summarize the work presented and discuss their potential

future directions.

In Chapter 3 we looked at optical control methods of of QDs and their potential as sources

of single photon emission. In Chapter 4, we developed a novel version of DRAG-assisted

control for battling unwanted off-resonant couplings in Λ-systems with unwanted levels. We

also showed how achieving such high-fidelity control allows for a protocol for generating

of photonic cluster states from a single QDM. In this thesis we focused on a single QDM,

however, as it was presented in Section 2.3, QDMs allow us for QD-based scalable structures.

A potential future direction to pursue, is developing similar DRAG methods, for a multi-

qubit system of QDMs. Furthermore, it is shown in Ref. [96], that by having a photon emitter

and an ancilla qubit, the photonic repeater graph states of Ref. [39], suitable for quantum

communication, can be produced. This requires designing of a CZ gate between the ancilla

and the qubit. A schematic of two QDMs in a cavity is shown in Fig. 7.1. Developing a

DRAG method for this system not only facilitates a two-qubit gate for a scalable QDM

system, but also enables generation of photonic repeater graph states as well.
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Figure 7.1: Two QDMs in cavity connected to the same cavity mode ωc. A future outlook
is to design a two-qubit gate between the two qubits.

In Chapter 5 we studied the problem of HF interaction between confined electrons with

their nuclear spin environment in a QD. HF interactions are the main source of decoherence

in QDs and the mode-locking technique of Ref. [132] is one of the established methods for

nuclei-induced frequency focusing of a QD ensemble. We studied the effects of higher nuclear

spin, relevant to actual experiments in these systems and showed the effects of quadrupolar

interactions on mode-locking experiments. In particular, we showed that mode-locking can

be used as a tool to diagnose the effects of quadrupolar interactions in QDs. As we showed,

HF interactions are the main driver behind mode-locking, while quadrupolar interactions are

destructive to mode-locking. A potential future direction is to find the limit at which the HF

flip-flop can be safely neglected, and moreover, can we go beyond the independent nuclear

spin assumption to include inter-nuclear interactions? Furthermore, one could develop a

similar formalism while including several species of nuclear spins.

In Chapter 6 we studied the effects of magnetic impurities in TIs. Most materials used for

TIs include spinful nuclei that lower the conductivity of the edge states by breaking the

TR symmetry. Our model of a TI ring with a magnetic impurity provides a novel tool for
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studying the role of impurities in TIs. Specifically, using the magnetic flux threading the

ring, the band structures of the system can be tuned to desirable schemes. The tunability

of the system paves a potential path for several TI ring-based spintronics applications.
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