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(ABSTRACT)

An equation for predicting the strength of wood beams with tension end notches

(TEN) was derived using a critical fillet hoop stress (CFHS) theory. The equation is a

simplified description of the results of hu ndreds of finite element (FE) analyses of TEN

beams with varied geometries ( total of 690 configurations). lt accounts for the effects

of loading type and beam and notch geometry variables, such as beam height, frac-

tional notch depth, radlus and notch location. The effect of span-to·depth ratio is im-

plicitly incorporated in the formulation of the model. Notched beam strength is

represented by a material parameter, K, which was found to be related to specific

gravity. A simple equation for predicting K from specific gravity was derived from

experimental results.

The CFHS equation ls applicable to both filleted and sharp·cornered notches. An ef-

fective radlus, R,, which models the effect of a sharp·cornered notch, was determined

and confirmed for two wood materials. A method of determining R, for other materi-

als was established. The CFHS equation was compared with other models and notch

equatlons currently recommended in design codes and significant differences were

noted. Chief among them is the sensitivity of notched beam strength to notch location

( or the ratio M/V). This is not currently considered by “notch factor"-based design

equaüons.
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Stiffness of TEN wood beams was experlmentally found to be lnfluenced by fractlonal

notch depth and notch location, M/V. The effect of end notchlng on beam stlffness

has not been seriously addressed before and theoretical analysis does not predict the

reductlon.
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1. Introduction

1.1 General

Wood is one of the earliest and most popular structural materials known to man. But

rapid technological developments and advances in other materials ( e.g. concrete,

steel, aluminum, plastics and other composites) have seriously affected the position

of wood in the engineering market place. Wood is often taken for granted and re-

search on improving structural use of wood has not received adequate attention. ln

the last decade, greater understanding of wood properties has improved timber de·

sign technology to some extent. Some obvious needs, however, remain to be ad-

dressed.

ln the United States, Peterson (1983) observed that only modest improvements in

residential building methods were made in the last 50 years or so. Many years ago,

Huddleston (undated) made a similar remark in Australia. Present day designers and

engineers may feel the same disappointment if they encounter work on notches in

wood beams. Current design codes and standards in many parts ofthe world provide

1. Introduction 1
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very limited guidance on notch effects. Most recommendations are based on results

_ from limited tests performed by Scholten (1935) more than 50 years ago.

Wood beams are notched in construction to bring top surfaces (e.g. floors, roofs) to

desired levels, allow for necessary clearance and/or fit support or framing connection

conditions. Notches are cut in pallet stringers for access by forklift, hand trucks or

by robot pickers in automated storage and retrieval systems ( McLain 1988). ln most

of these cases, notching is planned. But, there are also cases where notches occur

unintentionally. Sometimes, unplanned but practical, on-site modifications during

construction lead to notching ·- a common example is accomodating piping installa-

tions and ductwork ( Breyer 1988; Mettem 1986).

Whatever is gained in convenience and practicality is given up in strength of the

notched member. This is well known and recognized ( Scholten 1935; Stieda 1964)

but not completely understood nor quantified. Beam strength is severely decreased

over that expected due to effective net section reduction because of stress concen-

trations at the notch root. Because of the complex interaction of stresses involved

and limited practical research findings, most building codes, standards and design

guides recommend avoiding notches ( USDA 1987; NFPA 1986; AITC 1985; Mettem

1986; CSA 1989). Some design formulae are given subject to many restrictions ( e.g.

geometric). ln most cases, engineers and designers who find specific need(s) for

notches in wood beams are left on their own in making important design decisions (
l

Breyer 1988).

1. Introduction 2
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1.2 Research Basis and Slgnlficance

A fundamental problem for analysts is the lack of any practical means of estimating

the magnitude of complex stresses at a notch root in an orthotropic wood beam; this

is coupled with an ignorance of the critical stress level that initiates failure of the

beam. Gerhardt (1984a,b) successfully modeled stresses in pallet stringers with

filleted tension interior notches using a hybrid finite element (FE) model. He found

that failure was initiated when a critical hoop stress ls reached on the notch fillet. He

proposed a simple equation to predict this critical hoop stress from geometric and

material property parameters. Later investigation by Abou—Ghaida and Gopu (1984)

confirmed Gerhardt's work for tension interior notches and supported the hoop stress

criterion advanced by the latter. Zalph (1989) tested the general applicability of the

theory for a wide range of notch geometric cases on the interior tension face of full-

size wood beams using eight experimental materials. He successfully developed a

closed-form equation that predicts the flexure strength of these notched beams.

The critical hoop stress criterion, originally developed for interior notched beams, i.e.

pallet stringers, has not been extended to the end-notch case; Abou-Ghaida and Gopu

(1984) found that Gerhardt's (1984a) equation seriously underestimates the hoop

stress in end-notched beams. This research addresses the reformulation of

Gerhardt's (1984a) equation for applicability to the tension end notch (TEN) case. V

Quantifying the effect of end notches in wood beams in terms of strength and stiffness

will enhance design confidence and increase reliability and safety in use, decreasing

risk of economic loss or human injury.

1. Introduction 3
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lmproving design options for englneers and designers using wood as a structural
material will improve its competitive standing in the construction market. To do so,

timber design technology will have to keep pace with the needs dictated by modern

concepts and conditions.

1.3 Objectives

The overall objective is to develop accurate and practical design recommendations

for TEN wood beams. Specific sub-objectives are to:

• develop a theoretical closed-form prediction equation for the maximum hoop

stress in a TEN wood beam considering notch, beam, loading and material vari-

ables,

• experimentally assess the validity of the critical hoop stress theory to modeling

the failure phenomenon in TEN wood beams,

• formulate a practical design equation for filleted and sharp-cornered TEN wood

beams.

1.4 Overview

Gerhardt’s (1984a) finite element (FE) program was used in an extensive numerical

analysis of the effects of various variables that define a TEN wood beam on the max-

imum hoop stress, e.g. beam height, fractional notch depth, fillet radius, notch length

1. Introduction 4l



and location and material elastic properties. The FE formulation assumes plane

stress conditions and a material that is linear elastic, orthotropic and free of s|ope—

of-grain. A closed—form equation sensitive to a wide range of the identified variables

was developed. Prediction accuracy and simplicity of form were key considerations

in the selection of this equation.

Based on the theoretical results, an experimental program was designed to test the

hypotheses that the critical hoop stress theory is valid in predicting failure of TEN

wood beams and that the critical hoop stress is a practically obtainable material pa-

rameter independent of notch, beam and loading geometries. Two materials, repres-

enting anatomically different hardwood and softwood species groups, were
l

mechanically tested in full-size bending. The experimental study was conducted

without an explicit consideration in the design of the effects of loading rate and du-

ration, moisture content, temperature and other service and environmental factors

on the strength of TEN beams.

Experimental and theoretical results were combined to determine the critical hoop

stress levels in the failure process of TEN wood beams. Standard material properties

( specific gravity, block shear strength and perpendicular-to-grain tensile strength)

were used to predict these critical hoop stress levels. A simple equation involving

specific gravity was derived to predict the critical strength of a notched beam mate-

rial. An effective radius was determined to model sharp-cornered notches for two

materials. As a side study, the effect of TEN on beam stiffness was evaluated using

deflection data from beam tests before and after notching of selected beams.

1.Introduction5



The derlved expression for predlcting the strength of TEN wood beams was compared

with other models and notch equations currently recommended in design codes.

Application scope and Iimitations related to its proper use were ldentified.
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2.0 Literature Review

2.1 General

Wood beams are notched in different ways, usually to suit different needs. The sim-

plest and most common are sharp-cornered notches. Filleted notches are commonly

found in pallet stringers. Tapered and beveled notches are used to minimize the

stress concentrations occurring at the notch root. Nomenclature for TEN wood beams

are shown in Fig. 2.1.

The term “stress concentration factor" (SCF) is usually used to describe the weak-

ening effect of notches in various materials. Richards (1974) defines SCF as “the ratio

of the maximum stress at the notch to the stress in a parallel-sided beam with the

same depth as the net depth of the notched beam".

2.0 Literature Review 7
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Figure 2.1. Nomenclature for tension end notches: (a) tapered, (b) filleted.
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2.2 Notch effects on wood beams

Most work on notch effects has assumed material isotropy. This is not surprising

considering the relative ease of analysis associated with uniformity of properties in

all directions. Well documented results have been compiled in reference guides.

Most of these findings do not, however, apply to wood because of its anisotropic na-

ture. This anisotropy causes 6 clearly different stress distribution at discontinuities

than that observed in isotropic materials and requires 6 modified analytical approach.

2.2.1 Geometry

Scholten (1935) found that end-notched wood beams, governed in strength by hori-

zontal shear, are weaker than prismatic beams with depth equal to the net depth of

the notched beam. Stieda (1964) cites similar results of Kollmann’s tests on wood

beams governed in strength by flexure. These results point to stress concentratio_ns

at the notch root that contribute to strength reduction above that caused by effective

cross-section reduction. Failure was observed to be caused by the combined action

of shear parallel and tension perpendicular to grain at the reentrant corners of the

notch ( Scholten 1935; Stieda 1964). Murphy (1986) discovered this effect to be par-

ticularly severe for large glued-laminated (glulam) beams with tension interior

notches. Gustafsson (1988) confirmed the same beam height effect on end-notched

dimension lumber. Scholten (1935) also found that these stress concentrations are

relieved to some extent by tapering the notch ( as in Fig. 2.16). Gerhardt (19846) and

Zalph (1989) found similar stress relief for filleted interior notches ( as in Fig. 2.1b).

2. Literature Review 9



Later work of Stieda (1966) on lnterlor notches showed that the stress concentrations
are a function of notch geometry, beam geometry, and some material properties.

Gerhardt (1984a) and Zalph (1989) confirmed the influences of these factors and
added the influence of loading conditions. Notch depth was observed to strongly in-
fluence the beam’s strength capacity, i.e. deeper notches produce larger SCF’s (
Stieda 1966; Gerhardt 1984a; Zalph 1989). Stieda (1966) and Murphy (1978) observed
notch length effect on beam strength from small clear specimen tests. They found
that beams with wide notches are stronger than those with narrow slit notches.

However, Zalph’s (1989) limited full-size bending tests of two lumber species did not

show this effect. For TEN beams, Abou-Ghaida and Gopu (1984) analytically deter-

mined a strong notch length influence on strength.

2.2.2 Other factors

Stieda (1966) observed that notch failure in kiln-dried material occurs at a lower per-

centage of clear wood strength than that for green material. He tested notched beams

of Western hemlock ( Tsuga heterophylla) and Western balsam fir ( Abies grandis).

For dry small clear specimens, crack initiation at the notch often triggered a sudden

cross·graln failure that led to collapse. For green material, crack initiation allowed

only a small load reduction and the notched beam continued to support load again

after a gradual peeling of the bottom part of the beam, i.e. acting as a prismatic beam

with net depth, h,. Zalph (1989), however, observed opposite failure trends on full-

size tests. He found that dry notched beams of Southern yellow pine ( Pinus spp.),

yellow poplar ( Liriodendron tulipifera), red oak ( Quercus spp.), spruce ( Picea spp.)

and Douglas fir ( Pseudotsuga menziesii (Mirb.) Franco) sustained extended crack
growth after crack initiation while green beams of Southern yellow pine, yellow

2. Literature Review 10



poplar and hard maple ( Acer spp.) failed at or right after crack Initiation. The

moisture content (MC) effect still needs to be established. The effect of temperature

on notched beam strength has not been investigated in the literature.

Stieda (1966) also reports that based on Kollmann’s experiment, notches have a large

effect on a beam’s impact strength. For extended loading, limited tests showed

smaller strength reduction for beams with tension interior notches than unnotched

beams ( Leicester 1974; Madsen 1975). The duration-of-load (DOL) study by Krebs

et al. (1984) on dry notched spruce beams, however, gave results compatible with

the "Madison curve" ( Wood 1951). Wet notched beams were found to have signif-

icantly shorter times to failure than dry materials ( Krebs et al. 1984). lt is also evi-

dent that there is currently no consensus on the influence of rate of loading and DOL

on the strength of notched beams.

Based on limited tests of mixed Australian species, Leicester (1974) suspected that

the overall effects of variation in slope of grain, density, DOL and moisture content

on strength of notched wood beams are different than their effects on unnotched

beam strength. No other experimental work, however, has confirmed these tenden-

cies. He later suggested additional investigations on these topics ( Leicester 1985).

In the absence of established data, the effects of environmental, service and loading

factors when taken into account in the calculation of notched beam strength were

assumed to be the same with those for unnotched members in the different codes

reviewed next.

2. Literature Review 11
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2.3 Current Design Guldance

Building codes and standards provide guidance to engineers and designers In solv-

ing common problems. They offer recommendations based on known results of ln-

vestigatlons and/or field experience. A review of different codes and standards in

selected parts of the world provides some hints for the basis of notched beam design

guldance.

2.3.1 North American design standards

The United States has a number of similar timber design guides. Most codes are

based entirely or in part on the National Design Specification (NDS) for Wood Con-

struction, prepared by the National Forest Products Association ( NFPA 1986). The

American Institute of Timber Construction (AITC), an industrial association of man-

ufacturers and fabricators, publishes the Timber Construction Manual (TCM) ( AITC

1985). The US Department of Agriculture (USDA) compiles recommendations of the

Forest Products Laboratory (FPL) and other research Institutions in the Wood Hand-

book ( USDA 1987).

The TCM ( AITC 1985) gives an empirical equation for shear stress in a square-

cornered end notch

3V, hfv [2.18]

where f, = horizontal shear stress,

V, = shear force at support,

2. Literature Review 12
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b = beam width,

h = beam height,

h, = net beam height at notch = (h-D),

D = notch depth.

In calculating V,, TCM allows that Ioads within distance h, from the face of the support

_ may be neglected. It limits the ratio of notch depth to beam depth ( D/h or ¢> in Fig.

2.1) to 1:10 and does not recommend notching at supports of large glulam beams. The

given formula is recommended only for “smaIler wood members" ( AITC 1985),

without further specification. The gross shear strength can be alternatively expressed

in terms ofthe ratio of notch depth to beam height, ¢>

EYE- = r„, (1 - 41)*. [2.1b]2bh

The NDS ( NFPA 1986) states that end notches do not directly affect the flexural
Y

strength of the beam and gives equation [2.1a] as a formula to check shear capacity.

Use restrictions, however, differ with those of TCM. NDS ( NFPA 1986) states :

Where members are notched at the ends, the notch depth shall het exeeed one-fourth the beam
depth. The tension side of the sawn lumber bending members of 4 inch or greater nominal
thickness shall not be notched, except at ends of members.

The 1955 edition of the Wood Handbook (22) acknowledges that equation [2.1a] is

based on SchoIten’s (1935) work. The 1974 edition ( USDA 1974) is surprlsingly silent

on this. The latest edition ( USDA 1987) presents a new general formula based on

Murphy’s (1979) fracture mechanics approach. The equation is described as a “con-

servative criterion for crack initiation" ( USDA 1987) and is given as:

1 [2.2]
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where M = bendlng moment,

V = vertical shear force,

b,h = same as in Eq. [2.1a],

A,B = coefficlents ( for values, refer to Fig. 2.2).

The values of A and B are species·dependent ( USDA 1987) and are derived from

conservative estimates of critical stress intensity factors for Modes I and II fracture (

Murphy 1978). This equation in its present form, however, cannot be directly used in

design without some modification.

The Wood Handbook ( USDA 1987) agrees with TCM ( AITC 1985) in recommending

avoiding notches in large beams because of a disproportionate reduction in strength

but gives no specific guidance on the matter. NDS ( NFPC 1986) and TCM ( AITC 1985)

echo Scholten’s (1935) findings in recommending gradually tapered notches to re-

duce stress concentrations. However, there are no answers to the important

questions of “How much?" and “What is the effect?".

Another recommendation is to provide mechanical reinforcement such as full

threaded lag bolts to a square·cornered notch to resist the tendency to split ( AITC

1985; Breyer 1988). But some caution is necessary in using reinforcements. Reeves

(1973) found that for tension interior notches in pallet stringers, nail reinforcing (

countersunk) caused considerable checking of the stringer adjacent to the base. And

while nail reinforcing increased the immediate flexural strength of green stringers,

the advantages were eventually lost when the stringers seasoned.
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Figure 2.2. Coefficients (A and B) for equation [2.2]: From Wood Handbook (
USDA 1987). )
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The Canadian Standard limit states design format CAN3-086.1-M89 ( CSA 1989) does

2 not recommend notching of wood beams. When it cannot be avoided, the following

equation for sawn Iumber is given

3V, 2
EE? = 0.90(f„§) KZV (1 —¢>) [2.3]

where V, = shear resistance,

f, = specified material shear strength, _

C = adjustment factor for DOL, system, service condition

and treatment,

KZ, = size factor in shear.

This equation is recommended only for cases where dr S 0.25. A closer look will re-

veal that equation [2.3] is just a sophisticated adjustment of equation [2.1b], which is

Scholten’s (1935) equation. Values for KZ, are tabulated in the Canadian code for

visually stress-graded Iumber. This size factor is dropped for glulam beams with

volume, V < 2.0 m°. The design equation becomes complicated for V > 2.0 m°.

2.3.2 European design standards

European countries have their own independent design standards but these are not

discussed individually here. Rather the focus is on the code draft of the Common

Unified Rules for Timber Structures for the European Communities ( EUROCODE

5)issuedby the Commission of the European Communities (CEC). The latest codedraftis

based on studies within Working Commission W18 ( Timber Structures) of the j

International Council for Building Research Studies and Documentation (CIB), partic· I
I
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ularly on the 1983 CIB Structural Tlmber Design Code ( Crublle et al. 1988).

EUROCODE 5 serves as an alternative set of deslgn rules for CEC member countries.

For sharp-cornered rectangular TEN, the gross shear strength ls evaluated as

3V,gt; S f„,[(l—¢>)(1—2<l>)] [24]

for beam volume, V S 0.10 m°, and

3Vr 0.10 m3 im 1

where fw = material shear strength adjusted with appropriate

modification factors,

L = beam span,

for glulam beams with volume, V > 0.10 m° ( Crublle et al. 1988). Note the addition

of volume effect and span-to-depth ratio for large glulam beams.

The earlier draft of EUROCODE 5 ( Crubile et al. 1985) recommended a design

equation which was essentlally equation [2.1b] for V S0.10 m° . Most European na-

tional codes use the same equation, e.g. United Kingdom, Norway and Sweden (

Mettem 1986; Larsen 1975). The earlier report for CIB-W18 ( Mohler 1978) recom-

mended the form

3V,—···— S f„[(1—d>)(1—2-8¢>)]- [2-6]2bh
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Based on these developments, lt would seem that equation [2.4] ls a compromise

between the earlier drafts of EUROCODE 5 and CIB-W18. No explanatlon nor refer-

ence literature for the changes were provided.

Certain provisions are given for the design of tapered TEN’s in various European

country codes although different treatment of the tapering effect is oftentimes con-

fusing.

2.3.3 Pacific design standards

Only two countries, Japan and Australia, are considered in this review.

The Architecture Institute ofJapan (1974), providing guidance and commentary on the

Japanese Timber Code, presents this equation ( using the nomenclature given in Fig.

2.1)

a-E-/L $f(1—¢>)2 [27]bh "
'

where oz = coefficient, for rectangular notch— 3/2

for circular notch-·--—-· 4/3.

The above equation is recommended for cases where d1 < 0.50. lt differs with

equation [2.1b] only with the guidance on circular notches. The code recognizes the

stress relief caused by the fillet but does not provide application and limitation de-

tails. The basis of the 12.5 percent shear strength increase provided by the fillet is

not stated. The Japanese code is silent on tapered end notches.
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The Australian Tlmber Engineering Code AS1720.1-1988 ( SAA 1988) provides a gen-

eral lnteraction equatlon for rectangular and tapered notches on the beam tension

face in the form:

fb + 4fs S gw FS] [2.8]

_ . . . _ 6Mwhere f, — nominal maximum bendmg stress — Fg; ,
. . _ Sv. 'f, — nominal maximum shear stress — 2bh. ,

F,) = permissible shear stress for joint details calculated by

adjusting the basic working stress for joint details for DOL,

seasoning, temperature and Iateral stability,

gw = notch angle constant to account for tapered notches (see Table 2.1).

lt is further recommended that “defects shall not be permitted within 150 mm of the

notch roots of critical beams, i.e. non·load-sharing beams". Equation [2.8] was de-

veloped by using the theory of linear elastic fracture mechanics (LEFM) and test data

of some Australian species ( Leicester 1974; Barrett 1981; Leicester and Poynter

1979). lt can be noted from Table 2.1 that the effects of beam height, h, and notch

depth, D, do not interact in equation [2.8] but are applied separately depending on the

¢>-value. Over a large range of da ( ¢>>0.10), D does not appear in the expression ex-

cept through its effect on the net section.

2.4 Experimental and Theoretical Development

Based on the review of current design guidance for TEN wood beams, it is evident

that there are basically two methods of estimating strength, namely by “notch

factor" and by linear elastic fracture mechanics (LEFM). The development and evo-

2. Literature Revlew 19l



Table 2.1. Angle factor gw versus notch slope (from SAA 1988).

Notch slope g„
a/D da > 0.10 ¢> < 0.10

0 9.0/ h°·“ 3.2/D°·"

2 9.0/ h°·°’ 4.2/D°·°°
4 9.0/h°·" 5.2/D°·*°

Note: D and h are to be stated in milllmeters.
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lution of these two approaches leading to present recommendations are now traced

and other related works reviewed.

2.4.1 Traditional methods of analysis

2.4.1.1 "Notch Factor"

All design equations using a "notch factor" can be traced to Scholten’s (1935) ex-

perimental work. The resulting empirical equation is strictly applicable only to the

case covered by the experiment- sharp-cornered end notches on beams with un-

supported span to depth ratio of 12 or less. No theoretical analysis was presented.

This leaves room for speculation as to the extent of effects of notch geometry, notch

location and/or material properties on the beam strength.

Current code recommendations using the "notch factor" approach assume different

forms as shown in equations [2.1], [2.3], [2.4], [2.5], [2.6] and [2.7]. Design methods for

unnotched wood members have improved in recent years because of increased

understanding of the behavior of wood material and wood structural systems. The

Canadian design equation for shear resistance of prismatic beams ( CSA 1989), for

example, now incorporates modification factors for treatment, system and size. New

developments such as these were also applied to the basic "notch factor" equation

( Scholten 1935), where the stress concentration at the notch root is crudely approxl-

mated by the ratio h/h,. For tapered notches, the stress relief was accounted for by

a "notch factor" adjustment consisting of different combinations of the geometric

variables a, D and h ( see Fig.2.1 for nomenclature). The strength adjustmentformmay

have evolved from a combination of local experience and some Iogicalinterpo-2.
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latlon, resulting in the differences observed ln various codes ( Larsen 1975; Crublle

et al. 1988). lt should be remembered, however, that no matter how elegantly well

adjusted, a notch factor equation based on Scholten’s equation is also subject to its

many Iimitations.

2.4.1.2 Orthotroplc elastlclty approach

Stresses around the notch have been experimentally studied and calculated in dif-

ferent ways. ln stress analysis of wood beams, the Iongitudinal, radial and tangential

axes of the wood are considered as three orthonormal axes of elastic symmetry (

Stieda 1966; Goodman and Bodig 1970). Orthotroplc elastic theory was the basis for

early theoretical work in analyzing stresses in wood. Green and Taylor (1939) nu-

merically calculated fundamental stress functions of generalized plane stress sys-

tems of anisotropic plates. This foundational work started a series of papers ( Green

and Taylor 1942, 1945a, b) investigating stress systems on this type of materials with

discontinuities, e.g. circular holes, elliptical, square and triangular holes, using elas-

tic constants from spruce and oak. They forwarded approximate failure prediction

models but acknowledged incomplete understanding of failure action under complex

stresses.Reviewing other works, Richards (1974) states:
Because of the increased complexity of the problem, notches of other than hyperbolic or semi-
circular shapes have not received much theoretical attention for the orthotropic case, nor has
there been adequate theoretical treatment of a beam or tension specimen of orthotropic mate-
rial with a notch on only one edge.

Stieda (1964) experimentally investigated stresses around a notch by the photostress

method. ln this and later work ( Stieda 1966), he also used closed form orthotropic

elastic solutions and estimated SCF’s from tests on different wood species. He found

a general stress distribution pattern around a hole on the neutral axis similar to that
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calculated by Green and Taylor. He also concluded that there ls a llmiting radius be-

low which a constant SCF is reached and that the SCF approach gives better results

when applied to beam shear strength than to its bending strength.

Woeste (1972) compared Stieda’s (1966) experimentally observed stresses in the vl-

Ä cinity of a notch with predicted stresses using the Rizzo-Shippy lntegral Formula (

Rizzo and Shippy 1970) for plane orthotropic elasticity problems ( computer program

EL1a). The predicted stresses differ from those observed by Stieda (1966) by 23 to

37 percent. The Rizzo-Shippy formulation is a unified method of approximate solution

based on Betti-Somigliana methods of integration differing from FE and finite differ-

ence procedures in that “approximatlons take place only on the boundaries of the

domains" ( Woeste 1972). Using the same method in the determination of stress

concentrations around holes and notches in glulam wood beams, Woeste (1972) ob-

served differences ranging from 3.6 to 63.6 percent between the experimental and the
l

predicted results. The use of this method thus depends on the level of accuracy de-

sired in stress prediction of notched wood beams.

Goodman and Bodig (1970) state that there is disparlty between the actual behavior

of wood and that predicted by idealized orthotropic elastic behavior because of the

nonhomogeneous, layered structure of wood and influence of its shear moduli and

Poisson’s ratios. They proposed an adjustment to orthotropic elasticity theory for

wood which was also mentioned by Palka and Holmes (1973). Goodman and Bodig

(1970), at the time of their investigation, expressed optimism that accurate modeling

could be achieved through the use of FE methods. However, without rapid sophisti-
0

cated analysis techniques, direct use of stresses and SCF’s at the vicinity of notch is
Ä

impractical for design. Hooley and Hibbert (1967) and Stieda (1966) express the need Ä
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for establlshlng the stress—strain relatlonshlp beyond the elastlc limit as well as fall-

ure criteria under comblned stresses ln wood.

The use of a “notch factor" to guide designers and engineers seems a simple expe-

dient until a more rational method is developed for predicting strength of notched

wood beams.

2.4.1.3 Fracture mechanics approach

Fracture mechanics ls a branch of study which deals with the 'failure phenomena of

materials by crack extenslon" ( Wu 1967). Material crack growth due to an inherent

or induced flaw which leads to fracture is of concern. Notches in wood, as pointed

out earlier, create discontinuities. Leicester (1969) showed the applicability of linear

fracture mechanics to notched wood beams. X

The LEFM theory assumes that the stress level in the material indefinitely increases

in the vicinity of the crack tip ( Patton-Mallory and Cramer 1987). While this can not

be completely true for any material, stress calculations according to the theory are

valid outside the region around the crack tip and gives acceptably small errors (

Porter 1964) for seasoned wood. LEFM criteria are the basis for equation [2.8] result-

ing from research developments in Australia, the earliest code adoption using this

theory ( Leicester 1974; Barrett 1981).

Fracture computations usually take one of two approaches: (i) a stress-intensity fac-

tor (SIF), K, criterion or (ii) a strain energy release rate, G, criterion. The former is

most often used by researchers in wood fracture. Unlike with isotropic materials,

there is no closed-form solution available for the computation of K in anisotropic
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materials ( Patton-Mallory and Cramer 1987). Hence, most workers have used FE
modeling to estimate K in notched wood beams ( e.g. Walsh 1972; Mall et al. 1983;

Lum and Foschl 1988).

Murphy (1978) used a transformed theoretical SIF approach and an experimental

program to establish a relationship between failure loads of small clear rectangular-

notched beams and that of slit-notched beams. This work forms the basis of equation

[2.2] adopted by the Wood Handbook ( USDA 1987). See Appendix A. Work by Mall

et al. (1983) failed to confirm the linear mixed mode criterion used by Murphy ( 1979)

and Leicester (1974). The latter’s work formed the initial basis for the recommen-

dations in the Australian Code (1988). For eastern red spruce ( Picea rubens), Mall

et al. (1983) accepted the nonlinear criterion proposed by Wu (1967) for balsa (

Ochroma Iagopus Sw,). In a later work, Murphy (1986) successfully used Wu’s mixed

mode criterion to conservatively predict strength of large Douglas fir glulam beams

with slits and rectangular notches.

These developments reflect a lack of understanding in a fracture mechanics mixed

mode criterion for wood. lf Wu’s criterion is accepted as a general trend for a wide

range of species, then equations [2.2] and [2.8] may not be the most efficient for de-

sign of notched wood beams. Further, there are other inherent problems in applying

fracture mechanics to wood design problem, McLain (1988) states, “WhiIe fracture

mechanics has great potential for some applications the analyses use some fun-

damental assumptions which cannot be justified for wood in many failure modes".

The measurement of Mode l and Mode ll fracture toughness values K,c and K„c, re-

spectively, alone is not in order yet. (See Fig. 2.3 for displacement modes). A com-

prehensive review by Patton-Mallory and Cramer (1987) shows that the fractureI

2. Literature Review 25I



toughness ls dependent on molsture content (MC), specific gravity (SG), specimen

n geometry and size, strain rate, type of test and temperature. However, a standard-

ized test procedure for measuring fracture toughness has not been developed. This

results in an apparent large variability in critical SIF values within species and be-

tween test methods. The Australians avoided this problem by relating fracture

toughness to readily obtainable properties of wood, such as density, shear block

strength and bending strength ( Leicester 1974, 1985; Leicester and Poynter 1979).

This explains the reason why equation [2.8] from the Australian Code (1988) is devoid

of any fracture parameters. Equation [2.8] neglects the stress relief due to filleted

notches because, according to Leicester (1985), drilled holes or fillets at notch roots

do “not appear to have a significant effect on fracture strength". Theoretical and ex-

perimental investigations of Abou—Ghaida and Gopu (1984), Gerhardt (1984a) and

Zalph (1989) have shown, however, a fillet effect on notched beam strength of some

materials.

Gustafsson (1988) theoretically derived a closed·form expression for the strength of

notched wood beams using fracture mechanics energy balance consideration ( G-

criterion). The equation is applicable to predicting the strength of beams with

notches, cutouts or cracks anywhere along the tension face and is given as

S ./3Ee [2.9]Ex S Gxy h

where fb, f, = as defined in equation [2.8], l

¤¤ = ( 1 · ¢>>.
G, = material dependent fracture energy for splitting along

the grain.2. Literature Review 26
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Consldering gross bending and shear stresses and using the nomenclature in the

present work, it can be alternatively expressed as

-1 g [2.10]un (1 -8) 100 ¢>) Gxy *1

Similar to the SIF approach ( K~criterion), the strain energy release rate approach

requires a failure criterion. Unfortunately, there is no established mixed mode crite-

rion for this approach ( Masuda 1988). The difficulty in mixed mode problems is that

energy contributions corresponding to each fracture mode are cross-influenced and

so, are hard to separate ( Sih et al. 1965). The material dependent fracture energy,

GC in equation [2.10] is actually caused by the combined action of shear stress and

tension stress perpendicular to grain. Gustafsson (1988) assumed that “the actual

mixed mode fracture energy is equal to the fracture energy in pure tensile splitting

perpendicular to grain, GC = G,_y" . He also provided a modified equation for small

ordinary beams to account for the non-zero length of the fracture region. Equation

[2.10] was derived consistent with the linear fracture assumption of zero or negligible

size fracture region ( Gustafsson 1988), which may be appropriate for large beams.

To account for initial cracks and knots at the notch root, he proposed an effective

width (b') adjustment on beam geometry and elastic parameters in his equation.

Gustafsson (1988) found good agreement between his theoretical equation and ex-

perimental results of 21 notched beams of Pinus sylvestris L,. He also compared

V strength predicted by equation [2.9] with experimental results from eightothersources.

Strength was conservatively predicted in five of these sources. It was

notclear,though, how he computed or estimated GC, and GC from these sources.l
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2.4.2 Hoop stress criterion

Gerhardt’s (1984a) work on pallet strlngers led him to the problem of filleted notches.

Principles of LEFM could not be applied because of the assumption of a sharp crack

that can not be justifiably assumed for filleted notches. No publications were found

· on the analysis of filleted notches by LEFM although the recently proposed "finite

small area theory" ( Masuda 1988) shows some promise. lt is a unified theory of

LEFM and von Mises’s criterion supposedly applicable for notched problems with or

without cracks, e.g. filleted notches. Theoretical refinements, however, are still being

worked out ( Masuda 1988).

Gerhardt (1983, 1984a,b) developed a special hybrid finite element for the notched

region and modeled other parts of the stringer with cubic isoparametric plane ele-

ments patterned after Taylor (1977). The hybrid FE enabled him to model exactly the
E

shape and stress-free conditions of the discontinuity while maintaining the assumed

stress and displacement fields and satisfying all governing elasticity equations. The

hybrid element can be used to “calculate stresses or stress intensity factors

atothergeometric discontinuities in plane-loaded anisotropic materials" ( Gerhardt

1984b).

An extensive experimental program of mechanical tests of 600 ful|—size, green red oak

beams with various notch geometries and loading conditions was conducted by

Gerhardt (1984a). His experimental results of notched beam strength and stiffness

verified the theoretical trends earlier established. A most significant finding is that the

maximum hoop stress (6„_,„,„) along the fillet surface governs failure and that o,,_,„„„ can

be directly computed by the hybrid fillet element.
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Fillet hoop stress, 6,,_, , ls the “non—zero principal stress acting on the free surface of
a filleted notch corner at an angle 0 from the horizontal" ( Zalph 1989). See Fig. 2.4.
While the stress distribution along the fillet is very complicated, 6„_, can be resolved

into simple stress components:

(I) along the grain (6,,),

(ii) perpendicular to grain (6,), and

(iii) shear (13,).

However, the locations of maximum stress components 6, and 1,,, along the fillet are

distinct ( Gerhardt 1984a). Generally, the location of maximum hoop stress (6„_„,„) is

even different from those of the stress components 6, and 1-,,. The locations and

magnitude of these stresses are affected by elastic —property ratlos, loading condi—

tions, notch depth and fillet radii. Derivation of a generalized beam strength predic-

tion based on these complexities is currently impractical. Some elastic property data

are not available ( McLain 1988). Combining available stress distribution information

with an Interaction equation such as proposed by Norris (1962) will lead to very

complex equations. Accuracy of this method may even be questionable because

Norris (1962) recommends further experimental verification of his proposed inter-

action equation, i.e. need for "tests imposing combined tensile stress in two dl-

rections and shear".

Without explicit consideration of actual stress component Interaction in the critical

fillet region and investigating hoop stress alone, Gerhardt (1984a) found that 6,,_„,_,„

generally occurred at 0 = 82 to 90 degrees and can be expressed for all loading

conditions as
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Figure 2.4. Fillet hoop stress in notched wood beam
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where M, V = resultant bending moment and shear, respectively at point

where 6,,,,,,,,, occurs,

f,(¢>), f,(¢>) = dimensionless functions of ¢>.

This equation resembles the forms of equatlons [2.2], [2.8] and [2.10], which were

developed by LEFM theory ( Murphy 1978; Leicester 1974; Gustafsson 1988), but has

a relative advantage in that it neatly avoids the unresolved combined stress failure

criterion.

Using his experimental results, Gerhardt (1984a) simplified the combined bending

and shear equation to

= ———·1——— + (1 13¢> + 030)
[2.12]

—1.26¢> + 1 M ' '

where K,,,, = B o,,_,,,„, = critical material property,

B = coefficient dependent on assumed elastic properties

for the range 0.267 < tb < 0.667. The K„,,, value for any species can be experimentally

determined at one notch depth and is hypothesized as a material property, inde-

pendent of notch geometry and loading conditions. However, like other properties of

wood, K,,,, may be influenced by anatomical, environmental and other factors ( Zalph

1989).

Mechanical tests failed to show any practical influence of fillet radius on hoop stress

in the range 0.50 < r < 1.0 inch. There was significant difference between the re-

sponse of beams with filleted notches and that of unfilleted notches (i.e. r = 0) (

Gerhardt 1984a). Recent work ( Zalph 1989) supports the principle of a Iimiting radius

at which stress no longer increases as radius approaches zero ( Stieda 1966). This
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ls lmportant because lt supports the valldlty of using the hoop stress crlterlon in the

analysis of sharp—cornered notches.

Abou-Ghaida and Gopu (1984) investigating stress concentrations in notched wood

beams used an orthotropic isoparametric FE model throughout the beam utilizing a l

very fine mesh layout in the notch region. They verified the accuracy of Gerhardt’s

FE model. The authors hailed it as “a signiflcant improvement over the current pro-

cedure". However, they found that Gerhardt’s (1984a) closed·form equation is not

applicable to predict the strength of end-notched beams. Other significant findings

include that

(i) notching (either tension or compression) influences the shear stress dis-

tribution only at beam sections less than 4 to 5 times the notch depth, D,

from the corner of notch.

(ii) for end notches, the distance between the support and the notch corners (

L„ in Fig. 2.1) significantly influences the stress concentrations at the fillet.

Zalph (1989) reformulated Gerhardt’s (1984a) equation for general applicability to

tension interior notches. A closed-form equation for this notch case was developed

from theoretical analyses of 879 notch configurations. A total of 860 full-size notched

beams comprising eight wood materials were experimentally tested ( Zalph 1989).

The beam depth was not studied experimentally. He observed that the proportional

limit (PL) load did not have any consistent relationship with the crack initiation load

and so, did not analyze PL load any further. The theoretical model ( Gerhardt 1984a)

used is strictly valid only before crack initiation ( Zalph 1989), but was also found to

estimate failure loads with reasonable accuracy; Gerhardt (1984a) used ultimate mo-

ments while Zalph (1989) used the level of first major drop in load ( 2 2 percent).
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Previous work ( Stleda 1966; Murphy 1978) considered PL load as the crack Initiation

or Initial failure load for dry material.

The simple prediction equation developed by Zalph (1989) requires a single material

parameter, ic, which was found to be significantly independent of notch, beam and

loading geometries and related to perpendicular-to-grain tensile strength and specific

gravity of a wood species.
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3. Finite Element Modeling

3.1 Overview

This research focuses on the hypothesis that a crack·initiated mode of failure in a

tension end—notched (TEN) wood beam is a result of the maximum hoop stress at the

notch root exceeding some critical stress level . This is an extension of Gerhardt's

(1984a) critical hoop stress theory. lt is further hypothesized that ( Gerhardt 1984a)

6M 6V°n,max = *1 + (gg) *2 [3-*]

where ohm = maximum hoop stress at critical notch root,

f, = moment term apparent stress concentration factor,

fz = shear term apparent stress concentration factor.

This may be normalized and rearranged to yield

[32]“
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where ShCF = normalized hoop stress or “Shear Concentration Factor". Calcu-
lation of ShCF provides a way to estimate the TEN influence on a beam's load ca-
pacüy.

The moment and shear functions, f, and fz, are expected to contain terms related to
some or all ofthe following: beam span (L), depth (h), notch depth (D), fillet radius (R),T
notch length (L„), loading condition (M/V), and material properties.

Finite element (FE) analysis was used to develop a set of theoretical f, and f, terms
for a wide range of beam, loading and notch geometries. FE modeling allows ana-
lyses of a wide number of different cases with much less time and expense than

would be needed for an experimental program covering the same range of variables.

A deterministic FE model also provides results that may be approximated using sim-
plified closed-form equations. However, these benefits hold only if the underlying
theory used in the FE formulation is valid for the physical problem on hand. lt is,

therefore, one of the objectives of this work to validate the applicability of Gerhardt’s

(1984a) critical hoop stress theory to modeling the failure phenomenon in wood
l

beams with tension end notch (TEN).

3.2 Finite Element Model

An end-notched wood beam is characterized by its span (L), beam width (b) and

depth (h), notch depth (D), fillet radius (R), notch length (L„), loading condition (M/V)

and elastic parameters. See Fig 3.1. Gerhardt’s (1983, 1984a and b) FE program (

slightly modified by Zalph 1989) was used to model beams with different combina-
tions of these parameters. All analyses were run on an IBM 3090 using the VS
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FORTRAN 2.0 compller. A single output file- contalnlng the hoop stresses, 6,,, , glven I
at 1° increments from 0° to 90° with respect to the horizontal axis, the maximum

hoopstress,6,,,,,,,,, its angle of occurrenoe, 8,,,,,,, the maximum displacement and its node
I

location-- was received from the program. AII other output files were suppressed after

initial verification that the program was running correctly.
I

3.2.1 Element Characteristics I
The end-notched wood beam was modeled using cubic isoparametricquadrilateralplane

elements except at the notch root which was modeled with a planar hybrid fillet

element. See Fig. 3.1. Note the exploitation of symmetry. Characteristic details of

these elements were published by Gerhardt (1983, 1984a and b). User input guide-

lines and a users guide to the program for calculating 6,,,, are described by Zalph

(1989).
I

The cubic isoparametric quadrilateral element was used to model the beam parts

other than the notch region because of convenience. A mesh generator for TEN

beams ( Zalph 1989) incorporating this element was already in place. The interested

reader is referred to Zalph (1989) for further details.

3.2.2 Assumptions of the Model

ln this work, the following basic assumptions were made for general applicability of

results: (a) plane stress loading, (b) orthotropic linear elastic material, with (c) prin-

cipal material axes aligned with beam axes ( i.e., no slope-of-grain). The FE model

was formulated using standard assumptions for linear elasticity. I
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Flgure 3.1. FE model of wood beam wlth TEN.
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1

3.3 Material Properties

3.3.1 influence of Elastic Properties on 5hCF

1
The f, and f, terms in equation [3.2] are expected to be related to the orthotroplc

elastic constants assumed in the FE analysis. For study purposes, it was most con-

venient to express the effect of these constants separately fromnother variables as

f1 = #1 F1
3.3f2 = #2 F2 [ ]

where ,11,,;,12 = material parameters which are solely functions of the designated

elastic properties

F,,F, = beam and notch geometry functions independent of material

properties.

This division of material and geometric influences on maximum hoop stress ls central

to simplification of any closed form equation for ShCF and must be tested. Note that

this assumptlon precludes any explicit interaction between geometry and material

properties.

Elastic properties may be described by the Young’s moduli, E, shear moduli, G, and 11
Poisson's ratios, v. For orthotroplc materials ( where x corresponds to the |ongitudi· 1

1
nal axis and y to a transverse axis - radial and tangential properties assumed equal), 1

I

the ratlos E,/Ey and E,]G,,„ have been shown to influence beam displacements and 1

stresses using Gerhardt’s (1984a) model. Changing orthotropy ratlos changes the re- 1

sulting ratlos of Iongitudinal to transverse tensile stress and tensile to shear stress, 1
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thus, affectlng the location and magnitude of the maximum hoop stress, o„_„,„ ( 3
Gerhardt1984a).1

A preliminary study was made on the effect of the orthotropy ratlos onnormalizedhoop

stress or ShCF. Ten different combinations of E,/Ey and E,/G,„ were used in FE 3
analysis of a single end-notched beam geometry. Scatter plot of ShCF against ( 3
Ex/G„)/(E,/Ey) shows that for a certain E,/Ey value, variability is most affected by ( 3
E,/G„/)/(E,/Ey), which can be simply stated as Ey/G,,y. This indicates that when selecting 3
levels of E,/Ey and E,/G,„, the Ey/G,„ ratio must be considered. This is especially

im-portantfor the shear-dominated end-notched beams where the shear-term factor fz is 3
more sensitive to the elastic properties than, the moment-term factor f, (Gerhardt1984a,

Zalph 1989). This is a distinction between this study and that of Zalph(1989).3.3.2

Selection of Material Property Sets
3i

The regression equations provided by Bodig and Goodman (1973) for predicting

elastic parameters yield a good ballpark range for the elastic properties of most

commercially important species. These regressions were determined using avail-

able elastic properties of species grown all over the world and from an extensive

testing program of a wide range of material densities and species in North America.

Using these equations for hardwood and softwood species with a density range of
3

0.30 to 0.75 g/cm°, material elastic property (EP) sets A, B, and C were selected ( Ta- l
bie 3.1). The EP sets have Ey/G„ ratlos of 0.846, 1.00 and 1.286, respectively. Set

Bwasdesignated as a base set by Zalph (1989) and represents a set of midrange 3

properties. To extend the Ey/G,,„ ratio for the base E,/E, = 17 set and cover other 3

possible materials, EP sets D and E with Ey/G„ ratlos of 0.647 and 1.588, respectlvely, 3

I
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Figure 3.2. Scatter plot of normallzed hoop stress agalnst a combination ol
elastic property ratlos
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IIwere added. The actual chosen value of E, for an EP set ln Table 3.1 did not affect the Inormallzed hoop stress across EPsets.The
Poisson’s ratio, vw, was set at 0.40, the average value for combined hardwood 1

and softwood data from Bodig and Goodman’s (1973) study. Gerhardt (1984a)foundthat

vw had a negligible influence on calculated stresses and displacements.

3.4 Geometry Variables for FE Analysis

3.4.1 Effective Radius

Linear elasticity theory predicts for a sharp notched beam ( i.e., R = O) that 6,„_„,„ =

oo. This is not practically possible. It has already been established that there is an

effective limit radius at which the notch stress concentration factor becomes constant
( Stieda 1966) or the hoop stress ceases to increase ( Zalph 1989). These findings

justify the use of Gerhardt’s hybrid fillet element to model the notch root of a sharp

cornered notch. lt is significant because most, if not all , practical cases of wood

beams with TEN are sharp cornered. Finding an effective radius, R,, generally appli-

cable to all species would tremendously simplify both the FE analysis and the ex-

perimental work.

Preliminary experimental bending tests were performed on a total of 47 pairs of

end·notched beams of various species ( Fig.3.3). Table 3.2 presents summary results

of the tests. Paired t-tests ( also called “matched samples t—test" or “dependent

samples t·test") were performed on average shear strengths ( computed by equation
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Table 3.1. Elastlc property (EP) sets consldered In the FE analysls ol TEN IL wood b•ams.Polsson'• ratlo was constant at0.40.I
II
I
I

I
Orthotropy Ratlos E

Deslgnatlon
EL EL
G G

A G11~E13 11 13 0.846 1.3

B G17-E17 17 17 1.000 1.7

C G27-E21 27 21 1.286 1.7

D G11—E17 11 17 0.647 1.7

E G27·E17 27 17 1.588 1.7
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[2.1] ) for R=0 (case A) and R =0.25 ln. ( case B). From these results, it seemsthatR,

< 0.25 in. for dry D. fir and Y. poplar and R, 2 0.25 in. for dry red oak. Zalph (1989) :

reported for interior-notched beams that R, < 0.25 in. for dry Southern yellow

pine(SYP),dry red oak, dry fir and green Y. poplar ( average R,=0.21 in. for thefourspecies,

V/M =0). His findings on dry red oak contradict the preliminary testresultsof

beams with TEN. Note, however, that Zalph’s work was with interior notches E
where the moment term is dominant and shear may be less important than withtheTEN

case. E
1

There are several ways to establish an effective radius, R,. One is to conduct an ex- :

tensive experimental program for a wide range of notch geometries and species.

Agraphicalrelationship between breaking ( crack initiation) load and radius could b

identify a Iimiting radius equivalent to that of a sharp notch. A conservative R, value

applicable to most commercially important species can be selected. This approach,

however, is impractical considering the requirements of time, effort and money. An-

other possible method is to establish an equation that accurately predicts the
i

FE-determined critical stress of filleted notched beams of widely varying geometry.

Using this equation, a critical material parameter that signals crack initiation can be

defined. With a broad, but limited test program of sharp-cornered TEN beams and

counterpart filleted TEN beams (this time with fixed R), back-calculation will yield an

effective R,. This approach was selected for this work because of its practicality. It

hinges, however, on the validity of the theoretical strength prediction equation, the 1
confirmation of which is the main object of thiswork.l

l
l
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Figure 3.3. Set up for preliminary mechanical tests of beams with TEN to de- Ltermine the radlus effect L
L
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Table 3.2. Summary ol prellmlnary bendlng test results to determlne the ra-
dlus effect for beams wlth TEN ( see Flg. 3.2 for set up).

NOICTI M€8|'l Shéaf Stféltglh, T: P
'

dl-¢¤Q*h• Case A Case B tjeläzM/V (ln-) (R = 0) (R = 0.25 111.)

2.75 0. 111 0 616 994
Y. poplar 10 834 1257
R. oak 6 1093 1107

’
Based on Scho|ten’s (1935) equatlonf =

-2y- -*1-26(11-0) (11-0)
’ Ho:f„,(A) = f„(B)

" - significant at 5% level
ns · non·signlflcant

I
I



I
3.4.2 Loading Effect 1

1

Z
Different loading types ( e.g., center—point, uniform, etc.) that yield the same ratio of

1
applied shear (V) to applied moment (M) at the location ofthe notch root are assumed 1
to generate the same o,,_,„„ in equation [3.1]. In other words, any effect due to loading 1
type is accounted for solely by the ratio M/V. For this work, M/V was chosen rather 1
than Za|ph’s V/M since lt does not become undefined at the support and because 1

M/V = notch length, L„, for concentrated loading. Appendix B gives other ex-
1

pressions describing M/V by some notch and beam dimensions for selected loading

types. 1

At the support, moment is zero ( M=0) and only shear is present. This a common

case in construction. Figure 3.4a shows, however, that the distance between notch

root and the concentrated reaction at the support, L„, rarely becomes truly zero. This

is a fortunate observation because Gerhardt’s FE formulation cannot handle a the·

oretical case of L„ = 0. Placing a support at the node on one end of the hybrid fillet
1

element creates a complex interaction between compressive stresses at the support

and the ( tensile) hoop stress along the fillet arc ( Fig. 3.4b). The program is also un-

reliable if there is a very small distance between these points ( e.g., L„ = 0.20 in,).

ln actual case, for a notch flush with the face of the support, L„ or M/V would assume

a value a little less than half ofthe support width when the beam is loaded ( Fig.3.4a).
1

The L„ value in this situation will depend on the beam’s span-to-depth ratio. Consid· 1
ering a 2 in.—wide support, L„=M/V = 1.0 in. would be appropriate to model a nomi— 1
nally pure shear case. 1

1
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Figure 3.4. Practical and theoretical illustration of an almost pure shear casebeam with TEN
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Zalph (1989) reconfirmed Gerhardt’s (1984a) flndlng that, for lnterlor—notchedwoodbeams,

a,,_,„,, ls linearly related to M and V. Zalph (1989) normalized aFE-basedby

the gross-section nominal bending stress and found it to be linearly related toV/M.This

was a key basis of his final formulation . A similar approach would work forTENlf

the same relationship extends to very high V/M ratlos ( i.e., notch root is near the E
support, equivalent to low M/V ratio in this work). To explore this, FE-based ShCF's

were computed for beams using a single material EP set ( G11-E13) and two geom-

etries ( h = 3.5 in., da = 0.314, R = 0.1875 and 0.50 in,). Seven different levels of M/V

in the range 0.50 to 11.0 in. were employed. The results shown in Fig 3.5 indicate that

a„_„,,„ is a linear function of M/V and that the approach using equation [3.2] ls not

contradicted. But the anomalous behavior of ShCF at M/V=0.50 in. for the beam with
l

R=0.50 in. is evident and the reliability of ShCF calculation for this case may be

questionable. Although this behavior is less evident for the beam with R=0.1875 in.

( and possibly for the sharp-cornered TEN case with R, if this trend is consistent),

M/V= 1.0 in. was chosen to model a TEN at the support. Complete data are in Ap-

pendix C.

3.4.3 Beam Size Effect

Theoretical analysis by linear elastic fracture mechanics and experimental data show

an effect of beam height, h, on the strength of notched wood beams ( Leicester 1969;

Murphy 1986; Gustafsson 1988). Similar results should be found with the critical hoop

stress theory. Using Leicester (1969) and Gustafsson’s (1988) fracture strength-size

relationships for beams of different heights, then

3. Finite Element Medellng 49

5



I

I

I
I
I
I

28 _, I
P ex" I

26 '/V
. _/

¤¤ I _„"
/'’

M G. _/22 "· = v _.··'
2° ‘//' {__,

x' „„°”'
18I

/'16 For R = 0.1875In.ShCF
= 2.93 + 2.12 (MN) /·' _,/

ShCF (r' = 0.999) ,' _,/
1¤1 /, ff,

I"! '/I

12A 6/ For R=0.50 in.
/7* ,/ ShCF = 2.25 + 1.47 (MN)

10 /•' _,/I (r' = 0.994)
I’

'I·8 fl ,/'¤

„i /6L •‘
Ndj2

"0 2 u 6 6 10 12
M
V (ln.)

Flgure 3.5. Relatlonshlp between normallzed hoop stress, ShCF, and MIV.

3. Flnlte Element Modeling 50

II



S1 h, ,1(E:) =
<·¤:>whereS, , S, = hoop stresses corresponding to beam heights h, , h,,

,1 = exponent accounting for the beam height effect on stress.

Computed hoop stresses for beams with the material set G11-E13 and geometry: R

= 0.163 in., L„ or M/V = 0.50 in., h = 2.0 and 9.50 in. and 3 levels of da (or ratio D/h)

were substituted in equation [3.4]. These yielded ,1-values of 0.532, 0.393 and 0.321 for

¢>·values of 0.10, 0.314 and 0.50, respectively. Complete data are in Appendix C.

Leicester (1969) found ,1 to range from 0.33 to 0.50. While Gustafsson (1988) proposed
,1 = 0.50 for simplicity, he acknowledged that a more accurate prediction is achieved

using a little more complex relationship than equation [3.4]. Zalph (1989) showed that

the height effect for the moment term factor, f,, is different from that for the shear term

factor, f,. Keeping the height effect in these separate terms provides a more accurate

treatment of the beam size effect than applying a single factor to a combined ex-

pression of the moment and shear terms. Note that this height effect is not related to

brittle failure-related size or volume effects.

On beam width, Leicester and Poynter (1979) reported that, “some pilot studies failed

to reveal any measurable effect of thickness ( or width) on fracture stress". Equation

[2.5], recommended in EUROCODE 5 (1988) for shear calculation in notched wood

beams, reflects a volume effect for a glulam beam more than 0.10 m° in volume. lf

beam length and depth are kept constant, this would suggest a width effect on

notched beam strength. Hirai and Sawada (1980) found a beam width effect on max-

imum nominal bending stresses of notched Picea glehnii dimension lumber for shal-

low notches, ¢> S 0.20. The width influence was not found with deeper notches, They
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l
l

provlded possible explanatlons for this effect based on fracture mechanlcs and sta- l

tistical strength theory. This effect, however, is not considered in this workbecauseof

the planar FE formulatlon of the critical hoop stress theory.3

3.4.4 Span-to-depth Ratio {

It is generally assumed that notched beams fall in shear at the notch. Other modes

of failure may dominate, however, depending on the beam span-to-depth (L/h) ratio.

McLain (1989) evaluated the current NDS bending design criteria for three materials

( Southern pine Iumber, S-P-F Iumber and Southern pine glulam) with L/h ranging

from 10 to 26. He used equation [2.1a] as the shear criterlon and found that it governs

in design for L/h values less than or equal to 12 and 17 for notched glulam and Iumber

materials, respectively ( small 43 case). Either bending or deflection governs in design

for higher L/h ratlos. Additional details are given in Appendix D. The present shear

criterlon may not be accurate but does give an indication of the L/h ratlos to consider

for FE study. Zalph (1989) found in his FE analysis that, for L/h range of 6.7 to 12.6,

changes in his actual factors f, and f, were negligible. For this reason, he did not in-

clude span or L/h ratio in his predictive equations for f, and fz. On the basis of these

results, L/h was not considered as a predictor variable for the FE analysis of wood

beams with TEN. Span, L, was fixed at 42 in. for all h. However, this does not mean

that L/h ls unimportant for assessing beam strength and/or stiffness since failure at

·

the notch may not governdesign.l

l

3
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3.5 Experimental Design of FE Analyses

Beam geometry in the FE analysis was described by variable height, h, a fixed span,

L, and a unit width. Notch geometry was defined by variable fillet radius, R and vari-

able notch factor ¢> ( ratio D/h). Notch length, L„, identifies the location of the notch

root. For center—point loading, L„ is equivalent to the applied moment to shear ratio

(M/V). This loading type was selected for convenience. In practice, the FE mesh

generator set the concentrated load P such that 6V/bh was equal to unity; hence,

ShCF is numerically equal to the o,,_„,„ determined by the FE program.

The use of M/V to define loading geometry allows omission of L„ in the notch geom-

etry description. Combinations of elastic parameters selected in section 3.2.2 and

given in Table 3.1 are categorical variables used to describe material effects. Al-

though the study did not include span—to-depth, L/h, as a predictor variable, it covered

cases for L/h ranging from 3.91 to 12.00.

A full factorlal experiment was performed using the variables given in Table 3.3. With

each material set, six geometric cases were not analyzed because R> D. This gave

a total of 138 ShCF values per material set and a grand total of 690 notched beams

analyzed nu merically. These results are tabulated in Appendix E.
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1
Table 3.3. Experlmental design ol FE study :

1
1
I1

Varlable Levels No. of I
Levels :

11
h (in.) 3.50, 4.71, 7.125, 10.75 4 :

zb 0.10, 0.35, 0.52, 0.60 4
I

R (in.) 0.1875, 0.344, 0.50 3

M/V (in.) 1.0, 6.5, 12.0 3

material A, B, C, D, E ( see Table 3.1) 5

beam width, b = 1.0 in. beam span, L = 42 in.
notch length, L, = M/V beam length = 48 in.
loading : center-point

1
1
1
1
I

1
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3.6 Derivation of Closed-form Equations 1

l

3.6.1 Approach 1l
l

lt is not practical to use Gerhardt’s ( 1983, 1984a and b) FE program as a design or

analysis aid to determine the critical hoop stress of a specific notched wood beam

geometry. A closed-form equation which considers all relevant variables is a good

alternative if it has reasonable accuracy for a range of practical cases.

Equation [3.2] is used to derive a closed-form expression for ShCF. Rearranging into

a general linear form

ShCF = A + B [3.5]

where A = intercept = fz [ EP set, tb, R, h]

B = slope = (-1%) f, [EP set, ¢>, R, h] .

A linear regression analysis using ShCF and M/V as dependent and independent

variables, respectively, was made for all combinations of ¢>, R and h for each material

set. Forty six values of A and B were obtained for each EP set ( 4Hx4¢>x3R - 2 = 46;

there were two geometric cases where R > D at this stage). The shear term factor,

fz, is equal to A while the moment term factor is computed as f, = B h.

Results of all linear regression analyses of ShCF by M/V using equation [3.5] con-

firmed the preliminary linearity results described in section 3.4.2 and shown in Fig.

3.4. The worst fit had a coefficient of determination, r*=0.988; about 80 percent of all 1

linear relations between ShCF and M/V in all EP sets had rz > 0.999. The analysesl
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1
1
1

considered cases from a shear-domlnated case close to the support ( M/V= 1.00 ln.) i
1

to a moment-dominated case ( M/V= 12.0

ln,).Therelationships between the stress concentration factors ( f, and f,) determined E
1

from equation [3.5] and the notch and geometric variables were graphically examlned “

for two EP sets, A and B. Typical plots are shown in Figs. 3.6 and 3.7. In all plots, the

parallel nature ofthe lines for the two EP sets substantiates the initial assumption that

material invariant functions F, and F, can be derived. Material factors 11, and p,, that

account for the observed difference between material sets, were calibrated relative

to a baseline EP set, selected as G17·E17 ( set B), where p, and u, are unity and

f,,f, = F,,F, . Geometric functions F, and F, were statistically fitted by least

squares method using the beam and notch geometric variables as predictors. With

c|osed·form expressions for geometric factors (F, , F,) and numerical values of mate-

rial factors (pl, , p,), then maximum hoop stress or ShCF may be estimated.

Substitution of equation [3.3] into equation [3.2] gives

°n, M 1#1 F1 T + #2 F2 · [36]
bh

Rearranging terms,

"¤·¤·==·¤ 6V M. L .*2
#1 #1 F2]' [3]]

_ Uh,max — fz-LetK— #1 andy- #1,
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i
l.§)L = _.............L<;..._. _ [3.8]bh M 1F2 (V) TT F #2 F2

which is now in a form convenient for prediction of a critical shear value for a notched

beam. This form assumes that p is a single constant for all EP sets. K is an exper-

imentally determined material constant for a species. A similar approach worked

well for interior-notched wood beam ( Zalph 1989). The validity of this approach for

TEN is assessed in this work.

3.6.2 Forms of F1 and F2

Form A. From a host of functional forms, Zalph (1989) obtained the following best·fit

functions for interior-notched beams

1F1 = [3.9]Co + C1¢ + CAT)

c, R c, c,F2 = ¢¤ ¢> (T) h [3-19]

where C,,, C, , C, and C, are coefficients derived from statistical fitting, independent

of material property. This was a natural starting point for finding best·fit forms of F,

and F, for wood beams with TEN. Two reasons are obvious. First, both works used

Gerhardt’s (1984a) critical hoop stress theory. Second, both works share the same

underlying assumptions in deriving a cIosed—form prediction equation.
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Form B. Llnear models and nonlinear models that are lntrlnslcally llnear, by suitable

transformation of variables, were also fitted with the TEN data. These are shown ln

Table 3.4. ln performing these, some functions that did not work for Zalph (1989)

were tried once again, but this time using TEN data.

Form C. Strictly nonlinear models presented in Table 3.5 were also explored.

Zalph (1989) used a Central Composite Design ( CCD) in his FE study. ln many cases,

a CCD experiment is very efficient, time- and effort—wise. A Iimitation, however, is its

applicability to second order interactions only ( i.e., it does not discern effects like

D"R/h, D*R*h, etc.) ( Myers 1976).

The full factorial design used here is capable of discerning higher-order effects. Third

order effects such as R*D/h and R*h/d may be expressed as second order inter-

actions R'¢> and R/¢> in a response surface experimental study originally designed

with variable ¢> ( ¢> =D/h). The levels of study variables for this work are given in Ta-

ble 3.3. With Form B, the variable X, ( j= 1,k) could take any one of these original and

combination variables. Four different sets of nine variables ( k=9) each were fitted

to each equation given in Table 3.4. The capability of the full factorial design to dis-

cern effects higher than second order was also useful in fitting Form C equations (

Table 3.5) with TEN data.

3.6.3 Regression Fitting and Evaluation

All forms of F, and F, given in the previous section were fitted to the TEN data of the

baseline EP set G17—E17 ( with 46 values of f, and f, from regression of equation [3.5];
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Table 3.4. General forms of linear and nonllnear models ( Form B) fltted wlth
tenslon end·notched wood beam data.

Form B Models

F = CO + C,X, + CQX2 +...+ Ckxk

F, = Co ><$‘ ><§2 ><§= ><E·

or CO exp ( C, X, + C2X2 +...+ Ckxk)

where X, = predictor variables (j=1,k)
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Table 3.5. Strlctly nonllnear models (Form C) fltted wlth tenslon end·notched
‘

wood beam data. I
1
1
I
1
1

FormCMode|s I
I
I• Fori = 1,2 I

F, = co + c,1=z°= + c2o°·1«°· 1
FI = (co + c,R°= + c2¤°·) n°= I

• For F2 only
RF2 =CoF2

= c20°1R°2n°= + c,,¢»
F2 = CODC‘RC°hC° + 0,, ¢>2
F2 = CODC1 R°= h°= + c,._4>°·
F2 = coqsi RC1 + c2o°=n°·
F2 = c2¢>°1R°= + c20°·1«°¤
F2 = (c2o°·R°= + c2o°·) n°=
F2 = CO ¢C1RC2 h(C3+C4¢)

F2 = COF

I
I
I
I
I
I
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recall that for thls EP set f,,f, = F,,F,). Forms B ( Table 3.4) are Ilnearlzable by trans- I

formation of either the predictor variables ( X,) or the response variables ( F,). As
’

such, any linear regression procedure in the Statistical Analysis System (SAS) soft-
!

ware ( SAS Institute 1985) is applicable for least squares analysis using theseforms.Using

PROC RSQUARE ( with Cp·statistics), the 10 best subsets for 1-variable model
i

were obtained for each fu nctional form, 10 best subsets for 2-variable model, 10 best

subsets for 3-variable model, and so on. Several practical and promising models

were selected for further examination. These selected models were analyzed using

the SAS procedure PROC GLM ( SAS Institute 1985) and their residual plots were

visually evaluated.

l Forms A and C were fitted to TEN data using the iterative Marquardt algorithm in

procedure PROC NLIN ( SAS Institute 1985). The residuals were plotted and visually

evaluated.

Residuals are the differences between actual data and the values predicted by a re-

gression equation. lt could be thought of as “the observed errors if the model is cor-

rect" ( Draper and Smith 1981). Assumptions on these errors are: (a) independence,

(b) zero mean, (c) constant variance, and (d) normal distribution. Denial of any of

these assumptions is an indication of incorrect fit. These assumptions were checked

using the following residual plots:

• overall plot - this is a frequency plot of all the residuals and was used to visually

evaluate the residual mean and distribution.
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• plot of residual vs. predlcted value - was used to evaluate if the varlance was

constant over the range of predlcted values and if there is error in analysis or

inadequacy of model.

• plots of residual vs. independent variables - were used to determine if the varl-

g ance was constant over the range of an independent variable or if there is error

in the fitted model.

Most models failed the residual evaluation process. For those that did not fail, relative

prediction error was computed for every observatlon as FERR = ( actual -

predlcted)/(actual) x 100%. The mean FERR was calculated and the overall FERR

distribution was plotted for visual evaluation. The results of this evaluation process

were given greater importance over other criteria because the functions will be pri-

marily used for prediction purposes.

3.6.4 Best fits for F1 and F2

Two functions for the moment term factor, F,, were further considered. Function co-

efficients were calculated using three methods: (i) regular least-squares estimates

of transformed variables, (ii) weighted least-squares estimates ( i.e. weighted on do)

of transformed variables, and (iii) non—linear approximation of coefficients of

untransformed variables using the Marquardt algorithm in PROC NLIN (SAS Institute

1985). The mean and standard deviation of FERR were calculated and compared be-

tween estimation methods. The set of coefficients that gave the best prediction for

each equation was adopted.
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The form of Za|ph’s (1989) F, was found to be one of the two best fit moment

termfunctions.With coefficlents obtained from the NLIN procedure, it ls expressed as I

1 = [311] ,F 1 I
0.159 — 0.213d> + 0.187( -6-) g

Equation [3.11] yields an FERR mean of 1% on the overprediction side and a standard

deviation of 8.2%. Maximum overprediction of actual values is 25.3% and maximum

underprediction ls 11.8%.

The other F, function is an extension of equation [3.11]. With coefficlents obtained

from weighted least-squares estimates, it is given as

1F, = [3.12]
0.161 — 0.218¢> + 0105(B-) + 0.015(-Z-)

”

Mean FERR is 0.2% and standard deviation is 5.2%. This equation overpredicts the

actual values by as much as 11.5% and underpredicts by a maximum of 11.7%.

At this stage, a comparison of equations [3.11] and [3.12] shows that the additional

term R/45 in the denominator of the latter provided a tighter distribution of FERR about

zero than the former. The maximum underprediction errors in both equations, how-

ever, are essentially the same.

For the shear term factor, the best fit function was

F2 = co 4>Q RQ n‘°=·+°·‘*>. [3.13]I
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An h·¢ dependence was observed in Fig. 3.7 which shows that the relationship be-

tween F, and h varies with different levels of eb. Recall also that, in the initial lnvestl-

gation of the height effect on hoop stress, the l·values in equatlon [3.4] were

dependent on ab-values ( see section 3.4.3). With coefficients estimated by PROC NLIN

from all the geometric data, equatlon [3.13] overpredicted the actual values by over

13% in 2 cases. This occured for the cases where tb = 0.10, R = 0.1875 in. and h

= 4.71 and 7.125 in. ( overprediction of 13.4 and 15.2%, respectively). Underpre-

diction by over 11% occured in 2 cases where d> = 0.10, h = 10.75 in. and R = 0.344

and 0.50 in. ( underprediction of 11.3 and 11.4%, respectively). FERR’s for all other

geometry cases, however, fall within the tight range of $5.9% of mean zero. Based

I on this, the FERR distribution was judged to be excellent.

The FE study covered cases of ¢> = 0.10, 0.35, 0.52 and 0.60. The data were, therefore,

weighted heavily for cases of ¢> > 0.35. The fitted F, model revealed this effect as

evidenced by the occurrence of maximum overprediction and underprediction errors

in cases where d>=0.50. Since very deep notches may not be of greatest practical

importance, the data for da =0.60 were excluded to allow estimation of coefficients on

the remaining data set. Recalculating FERR for all data ( including ¢=0.60) using

these modified coefficients, it was found that the maximum range of overprediction

and underprediction errors was reduced by about 1% at both ends. With these ad-

justed coefficients, the geometric shear term factor is, thus, proposed as

F23.
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3.6.5 Delineating material effects I

The material factors y, and y, for different EP sets were computed from actualvaluesof
f, and f, resulting from the regression of equation [3.5]. The material factor was

generally expressed as

y — Ä- or r - r [315]1] fm 1] /*1] 1,6 ·

where i = 1,2 ( designatlons correspondlng to moment-term and shear·term,

respectively),

j = material EP sets A, C, D, E,

B = baseline EP set ( G17-E17) where y, , y, = 1.0.

For each EP set, y, was determined using the REG procedure in SAS ( SAS Institute

1985) for a linear regression with no intercept. It has the form

Y = 8 X [3.16]

where a is the slope of the line equivalent to y, in equation [3.15]. Factors y, andy,

were obtained from 46 pairs of f, and f,. Figure 3.8 shows a typical regression fit

where the slope is the material factor y, for EP set A (G11-E13). The ratio y

=wascomputed for each EP set and tabulated in Table 3.6. Results show that y is not

constant across EP sets but is predicted resonably well by a linear expression in-

volving the orthotropy ratio E,/G,] . Because E,/G,„ is not always known and applica-

bility to all EP sets is desired, y ls conservatively set as 1.12. Since y is a multiplier

to the shear term ( see equation [3.8] ), its effect would be minimal or negligible for

moment-domlnated cases, but would provide additional safety in some materials for
shear-dominated cases, e.g. notch root at or close to the support.
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Table 3.6. Materlal factors callbrated from the basellne EP set G17-E17 ( from
46 observatlone).

Orthotropy Ratlos Materlal Factor P'_e_
dlcted

G #1
A 11 13 0.846 0.915 0.818 0.894 0.894
B 17 17 1.000 1.000 1.000 1.000 1.006
C 27 21 1.286 1.112 1.246 1.121 1.118
D 11 17 0.647 0.930 0.939 1.010 1.006
E 27 17 1.588 1.110 1.150 1.036 1.006

Note:
’

From pp = 0.530 + 0.028 (E,/G,„) ; ( coeff. of determlnatlon, r’=0.971)

3. Flnlte Element Modellng 68



I

30

28

26
.

24 ·

22

2° 1,, -= 0.915f,_,
A

S.E.E. = 0.0018 ¤ —‘
18 _
18

·

f‘·^ 14 _.
. .

12 ' '

10 Z'
‘

6 .
Ä: ·

4 g
‘ I

2

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

im

Figure 3.8. Resulting regresslon line for EP set A (G11-E13) in determlnlng p,
using equation 3.17.
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3.7 Evaluatlon ol Closed·form Equatlons I
‘ II

I
I

3.7.1 Prediction accuracy I

I
The FE·based expressions for f, and f, are substituted into equatlon [3.2]. Because two I
alternative models for F, were considered, there were two alternative prediction

equations for ShCF:

61,,max
_hIi

16V' 1 1; v n( bh 0.159 0.213q‘>+0.187( D )

and

¤„,„„ax _h[16V‘ 1 _ 3_ g_ v 11
< bh 0.161 0.218¢>+0.105( D )+0.015( (7) )

in
#2 1.46446712 R—0.418h(O.847—0.316¢•)where

,u, and p., for different EP sets are those given in Table 3.6. These two equations

were used to compute predicted ShCF’s for all geometries considered in the FE

study. The predicted values were compared to actual ShCF’s obtained from FE

analysis ( 138 comparisons per EP set). Relative prediction error was computed as

ShCFERR = ( actual - predicted) / ( actual) x 100%. Results are tabulated in Table
13.7. 1
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Table 3.7. Comparatlve ShCF predlctlon errors between equatlons [3.17] and l[3.18].

i
1

Relatlve Predlctlon Error, ShCFERR
(%)Std.D€Vi_ Maximum Maximum

aüon Overpre· Underpre·
ductlon dnctson

A 3.17 0.67 4.84 12.75 13.92
3.18 0.32 4.26 8.69 13.27

B 3.17 0.66 4.79 15.18 11.91
3.18 0.30 3.66 8.38 11.22

C 3.17 0.58 5.26 17.02 12.483.18 0.23 3.65 10.72 8.10
D 3.17 0.54 5.29 15.60 14.83

3.18 0.17 4.51 8.81 16.36
E 3.17 0.40 5.62 18.86 12.23

3.18 0.06 4.18 17.86 7.85

Note: ' Positive sign means on the side of underprediction
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Note that the right hand side of equatlons [3.17] and [3.18] are statistical estimates l

and, therefore, actually include an error term ( omitted in the given expressions) ;
earller identifled as residuals. A standard method of evaluating the accuracy of

sta-tisticalfits is to investigate these residuals. In this study, however, it is more helpful

to look at the prediction error, ShCFERR, more closely in the same manner as resi-
i

duals were evaluated in section 3.6.3.

An overall ShCFERR plot was obtained and visually examined for each EP set using

both equations. ShCFERR’s were also plotted against the predicted values and the

different geometrlc variables. The overall ShCFERR plot for equatlon [3.18] was

judged slightly superior to that for equatlon [3.17] in that the mean is closer to zero

and the standard deviation is smaller for the former. The plots of ShCFERR against

predicted values in the two equatlons showed different scatter trends but similar

variance. ( Note that observatlons for an equatlon were generally consistent across

EP sets in all these plots.) Relevant observations for plots of ShCFERR against ge-

ometric variables were:

• against dz — in both equatlons, largest ShCFERR variance occured for shallow

notches, i.e., ¢> = 0.10,

• against D ( an interaction term, D=¢>h) - in both equatlons, scatter plot of

ShCFERR’s did not show systematic trend nor unequal variance over the range

of D,

• against h - ShCFERR’s for equatlon [3.17] revealed a slight curvilinear trend

against h, thus, underpredicting most cases for h= 3.50 in.; ShCFERR’s for
equatlon [3.18] did not show systematic trend nor highly unequal variance.

3. Finite Element Medellng 72



I

• aganst R - for cases where R = 0.50 ln., ShCFERR’s for equation [3.17] have

slightly larger variance than those from equation [3.18]; the opposite, however,

was true for R = 0.1875 in. cases,

• against M/V - in both equations, the smallest variance was for cases nearest the

support, i.e., M/V = 1.0 in., although for EP set D, ShCFERR m‘eans were on the

side of underprediction.

At this point, reasonable accuracy could be claimed for both equations. Prediction

confidence for shear-dominated cases was enhanced by the low ShCFERR variance

for M/V = 1.0 in. cases in both equations. Equation [3.18] generally provided better

prediction accuracy. For sharp—cornered TEN wood beams ( i.e., R = 0 which is the-

oretically R = R,), however, equation [3.17] showed better potential because of low

ShCFERR variance for smaller R-values. Considering the practical applicabilty to

these notch cases and the simplicity ofthe Iatter prediction form, equation [3.17] was

judged the best selection overall.

3.7.2 Applicability

lt is helpful to note the notch geometries for which the cIosed—form expression was

derived so that the scope and limitations of its possible applications can be defined.

Theoretical analyses covered TEN beams with L/h from 3.91 to 12.0. Short and deep

beams, known to be critical in shear, were therefore considered in the formulation.

The percentage of cases for which this is true can be computed by setting the mo-

ment and shear terms in equation [3.1] to have equal contributions to a,,_,,,„. ln [

equationform3.
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I6M 6Vf1 = f2 [3.19] I

° I

Substituting values for M and V for center-point loading, it yields I
I

P P
1

6(L¤<¤¤>?) 61 ?) I
f1
T

= fz [3.20] I
I

Solving for the notch distance from the support for which the M.-term and the V·term ;
areequal,I

L — lg- h 3 21 I
n(eq) " f1

[ -

]Thiswas computed for each geometry and then compared to its actual L,,. If actual

L,, > Lw), then M-term dominates; otherwise, V-term dominates. lt was found that

V·term actually dominated in 34% of all cases studied ( 234 out of 690) and M-term

dominated for the remaining 66%. This indicates that the closed-form expression for

calculating 6,,,,,,,, for TEN beams would possibly be applicable also for notches any-

where on the tension side except where V is zero.

3.8 Summary of Key Findings

A total of 690 TEN wood beam cases were analyzed using Gerhardt's (1984b) FE pro-

gram. The five material elastic property sets in this study covered a wide range of

commercially important species in the world. Practical ranges of notch length, L,,, or
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notch location, M/V, fractional notch depth, cb, beam height, h, and flllet radlus, R,

were used to calculate normalized hoop stresses in TEN wood beams. With the ex-

ception of beam width, b, and s|ope—of-grain, all relevant variables that geometrically

define a TEN wood beam were considered in this study.

A simplified closed-form equation for predicting maximum hoop stress, o,,_„,„, in TEN

wood beams was derived. Values predicted by the equation showed good accuracy

with the actual FE o,,_„,„ for a wide range of practical cases. lt is now possible to de-

termine the critical hoop stress of a specific notched wood beam geometry without

resorting to the use of Gerhardt’s (1984b) FE program.
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4. Experimental Procedure Q
Jll

4.1 Overview

The objective of the experimental plan was to test the critical fillet hoop stress (CFHS)

theory for predicting the strength of wood beams with a practical range of TEN con-

figurations. Specifically, the hypotheses were that

• geometric and material effects are separable, i.e. the material strength parame-

ter, K, is geometry-independent,

• the material strength parameter, K, is related to other standard material proper-

ties such as specific gravity, block shear strength and/or perpendicular—to-grain

tensile strength, and

• sharp-cornered notches can be practically modeled as filleted with an effective

radius, R,.
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The major effort was to determine K·values for filleted TEN beams of two species to E
test the geometry-independence of K. Small clear shear and tenslonperpendicular-to·grain

specimens were taken from almost every filleted TEN beam. These clear !
strength properties, specific gravity (SG) and moisture content (MC) were deter· E
mined. The physical and mechanical properties were used to predict K and test

thesecondhypothesis. To determine an effective radius, R,. a limited set of TEN geom- E
etries for filleted ( R=O.25 in.) and sharp-cornered ( R=0) cases were tested. E
Equation [3.17] developed in the previous chapter was used to calculate R,. El

A sub—study which evaluated the effect of TEN on the stiffness of wood beams was

also conducted.

l
4.2 Materials

Two materials were selected to represent anatomically different softwood and

hardwood species groups: Southern yellow pine (SYP) and yellow poplar (YP). Fig.

4.1 shows anatomical cross-sections of these species. Southern yellow pine was se-

lected because of relative wide anatomical variability in the species group ( Panshin

and de Zeeuw 1980); this was reflected in high coefficient of variation (C.V.) of

Zalph’s (1989) material strength parameter, ic, for tenslon interior notched beams.

Besides, it is widely available and is commonly used in the US construction industry.

Yellow poplar, although not commonly used in the construction industry, gave Zalph

(1989) the lowest C.V. for the rc-values in his study.

All SYP materials were purchased kiln-dried from the Iumber yard of TimberTruss in
Salem, Virginia. Best boards with minimum defects were selected from bunks of No.
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Figure 4.1. Anatomical cross-sections of test materials (from Panshin and de
Zeeuw 1980): (a) Southern yellow pine, (b) Yellow poplar
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2 grade 2 x 8 ln. x 10 ft. and 2 x 10 ln. x 10 ft. lumber. Bendlng specimens measuring
1.5 x 3.5 x 48 in. and 1.5 x 9 x 48 in. were cut in Brooks Forest Products Center from

the nominal 2 x 8 ln. and 2 x 10 in. materials, respectively. Most of the boards in its

final dimensions were free of defects. None had defects in the notch

area.Almostall of the YP materials were purchased kiln-dried from a mill in Natural Bridge,

Virginia. A similar process of careful selection was employed to obtain nearly clear

2 x 10 in. x 8 ft. pieces. Full-size bending specimens measuring 1.5 x 3.5 x 47 in. and

1.5 x 3.5 x 47 in. were cut from the 2 x 10 in. boards. For the sharp-cornered TEN beam

study, 15 pieces of 1.5 x 3.5 x 48 in. lumber were taken from the excess YP material

of Zalph’s (1989) study.

All boards, except those from Zalph, were end-coated with Anchorseal on both ends

when cut to final dimensions to prevent the development of end checks. This was

done even though the specimens were notched and tested within two weeks of being

cut to final dimensions.

4.3 Filleted TEN Study

4.3.1 Experimental design

All variables considered in the FE study were also considered in this main study. The

variables are: beam height, h, fractional notch depth, da, radius, R, notch location,

M/V, and material. A randomized complete block design was used with geometry

V8l'lélbl@S COl1l3lll€d lll 8 block and each block representing a species group. The
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levels of the experimental variables are given in Table 4.1. Notch location, M/V,

wasmeasuredfrom the center of a 2 in.-wide aluminum block support. Thus, a notch

atthesupport has M/V= 1.0 in.,
{

Originally, four replicates were prepared per cell. Two out of the sixteen cells

perblock,however, received from 6 to 9 additional samples per cell from thesharp-cornered

TEN study. This increased the total number of bending tests performed

onfilletedTEN beams from 128 to 158 ( 2Rx2hx2¢>x2M/Vx2sp.x4 + 30 = 128 + 30 =
I

158).

Beam width, b, was kept constant at approximately 1.5 in.. Beam span, L, was main-

tained at 42 in.; this gave span-to-depth ratlos of 12.0 and 4.7 for h of 3.5 and 9 in.,

respectively.

4.3.2 Specimen Preparation

Filleted notches were cut out using essentially the same notch machining techniques

employed by Zalph (1989). An overview ofthe notching process on a 3.5in-deep beam

is described. A work bed made of plywood and tempered hardboard with a top and

right end stops for a 3.5in.-deep beam is clamped firmly to a workbench. A specimen

is placed against the stops and marked for support location. A notch template ( also

made of plywood and tempered hardboard and shaped out to guide a router to cut

R=0.25 in. or 0.50 in. notch) is appropriately positioned on the top surface of the

specimen and firmly clamped. A notch less than 1 in. in depth is cut by progressive

passes of a 1.5 horsepower router using a two-flute carbide bit until the final dimen-

SlOl‘lS GTS 3Chl€V€d. Notches deeper than 1 in. are first roughed out using a
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Table 4.1. Experimental design of filleted TEN study : randomlzed complete F
block design g

i
Variable Levels No.
ofLevelsh

(in.) 3.50, 9.002da

0.20, 0.502R
(in.) 0.25, 0.50 2 F

M/V (in.) 1.0, 10.0

2beamwidth, b = 1.5 in. loading : center—point
beam span, L = 42 in. L/h range :4.67, 12.0
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1.125in.·dlameter carbide-tipped Forstner bit ln a handheld drill. Two partly overlap-

ping drilled holes are necessary to rough cut the notch for the ¢>=0.50 case. The

notch is finished by the router guided by the notch template. A bandsaw was used to

carefully cut remaining material between the top of the filleted notch and the end of

the board. Fig. 4.2 shows a filleted notch cut in this manner.

A similar process was used to cut a 9ln.—deep beam except that the rough cut was

made using a bandsaw instead of a handheld drill.

4.4 Sharp-cornered TEN study

4.4.1 Experimental design

ln this study, the notch location, M/V, and fractional notch depth, tp, were kept con-

stant at 1.0 in. and 0.50, respectively. Most TEN cases in construction have M/V

around 1.0 in., Zalph (1989) did not find any conclusive evidence of ¢>-effect on the

value of R,.
l

Using SYP and YP materials, the following geometry variables were studied:

variable levels

n (an.) 3.5, 9.0
R (in.) 0 , 0.25

The number of specimens per cell varied depending on the availability of materials.

A total of 33 sharp-cornered TEN beams for SYP ( 18 for h=3.5 in. and 15 for h=9.0

in.) and 25 for YP ( 16 for h=3.5 in. and 9 for h=9.0 in.) were prepared. The filleted
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TEN counterparts ( total of 44) were taken from two cells that correspond to the same

geometry for each species in the filleted TEN study.

4.4.2 Specimen preparation

All filleted notches were cut as described in section 4.3.2. Fabrication of the sharp

notch in beams with h=3.5 in. differed from that with h=9.0 in. specimens. All

beams were marked for support and notch locations. A rough outline ofthe notch was

sketched. For 3.5in.-deep beams, the bottom edge was also marked for notch lo-

cation. This mark and the notch outline served as a guide to cut the material within

l the outline using a radial arm saw. The beam was then clamped to a template made

from solid lumber with a plywood and tempered hardboard panel composite on top

which was cut out to guide the router during machining. The specimen was posi-

tioned such that the edge of the beam where the notch would be cut is in full and firm

contact with the template’s composite top. A router bit aligned with the depth di-

mension of the beam was moved along the thickness dimension, acting as an end

mill and providing a sharp-cornered notch. Theoretically, the radius of this notch is

approximately equal to the radius of the carbide cutting tip. A typical notch cut is

shown in Fig. 4.3.

For 9.0in.-deep beams, a guide-and-stop set-up on a bandsaw was used to cut a uni-

form sharp-cornered notch configuration for all beams ( SYP and YP materials). ln this

case, the notch radius is approximately equal to the radius of the cutting tip of

thebandsaw blade.
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4.5 Bending Tests

All bending tests were conducted using a servohydraulic testing machine by Material

Test System (MTS) under deformation control. Beam span was 42 in,. In all cases,

the load was applied continuously at the center- the same loading configuration with

the FE studies-- at a constant rate of motion of the crosshead of 0.10 in./min,. For

3.5in.-deep beams, a bearing block with contact radius of 8 in. was used. A bearing

block with 22 in. contact radius was used for 9.0in.-deep beams. See Figs. 4.4 and

4.5. Notice in Fig. 4.5 that Iateral support at the midspan was provided to restrict

Iateral deflection. The support was designed to allow vertical movement with mini-

mum frictional restraint.

Load-deflection (P-A) curves were obtained for each test using an X-Y plotter. The

Y-axis plotted load as sensed by the machine load cell and the X—axis recorded the

deflection sensed by a linear variable differential transformer (LVDT). The LVDT was

attached at midspan of a Iightweight deflection yoke ( shown in Figs. 4.4 and 4.5).

Support at the notched end was adjusted for each combination of h and ¢> so that all

test beams were level before load application. A 2 in.-wide aluminum bearing block

was placed at the supports to minimize compression. The blocks were attached to

tubular steel supports which were free to roll, thus minimizing axial constraint.
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4.6 Stiffness Determination Before Notching

Beam stiffness was measured and calculated for selected specimens before

notching. Sixteen defect-free boards for the filleted TEN study were separated for

each species. These boards were subjected to a flatwise, center-point bending load

over a 42 in. span. Deflection rate was maintained at 0.50 in./min. on the MTS

servohydraulic testing machine. From the P-A curve, stiffness ( P/A) values were

measured and recorded for each beam. The beams were properly labeled and dis-

tributed to the experimental block identified in the filleted TEN study ( section 4.4.1).

Experimental results of Gerhardt (1984a) showed that the stiffness of wood beams

with tension interior notches was unaffected by notch fillet radius, R. The same was

assumed to hold for TEN. Two beams were assigned for each cell with R = 0.25 in. and

the following parameters:

variable levels

h (in.) 3.5, 9.0

M/V(in.) 1.0, 10.0

da 0.20, 0.50

species SYP, YP

True modulus of elasticity ( E,_„„) was calculated from the P/A-values. Flatwise bend-

ing was used to measure E,_„„ because subjecting a beam with low l./h ratio ( e.g. 4.67

for beam with h=9.0 in.) to edgewise bending may cause damage to the beams. This

may influence the measurement of notch strength and affect the results of the main

study. E,_„„ was adjusted to an equivalent Emg, as discussed in section 5.5.
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4.7 Determinatlon of Other MaterialProperties4.7.1

Moisture content and specific gravity E

An MC·SG specimen was cut from all tested beams that failed at the notch ( 61sam-ples

per species). Samples were taken from the vicinity of the notch ( area withina3

in. radius from the notch root, see Fig 4.6). Knots, pitch pockets and other

ana-tomicaldeviatlons were avoided. I

Moisture content was calculated from green and oven-dry weights of the specimen.

Specific gravity was calculated from oven-dry weight and volume measurements.

Volume was measured by water immersion, Method B of ASTM D2395-83 ( American

Society for Testing and Materials 1988).

The SYP materials had an average MC and SG of 11.42% and 0.54, respectively; the

YP materials averaged 7.72% and 0.50, respectively.

4.7.2 Block shear strength

Shear block samples were cut from test beams at one of three locations shown in Fig

4.6. Cracks, knots and other defects were avoided. A total of 49 samples for SYP and

51 for YP were obtained.

Block shear strength was determined according to the procedure given in ASTM D143

( American Society for Testing and Materials 1988) except for the specimen size and

the ring orientation. Tests on samples with variable ring orientation and 2 x 1.5 in.

4. Experimental Procedure 90



1‘
(ai

. A,.' V Wi
lb)

=
3

Figure 4.6. Sampling |ocation(s) for determination of physical and mechanical
properties: (a) moisture content-specific gravity, (b) shear block,
and (c) tension perpendicu|ar—to—grain
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é
cross sections were conducted instead of the standard ring orientations and 2 x 2 ln.
cross sections stipulated by ASTM D143. These deviations were dictated by the na-

ture and properties of full-size materials. Bendtsen and Porter (1978) evaluated the

effect of size deviation and found no significant differences between standard

andundersizedsamples. Block shear strength results reported herein were deemed ac-

ceptable for predlcting K, neglecting the effect of variable ring orientation. El

4.7.3 Perpendicular-to-grain tensile (TPERP) strength

Tension perpendicular-to-grain (TPERP) samples were taken from near the same lo-

cation where the shear block samples were obtained ( see Fig 4.6). The deviations

of ring orientation and size from the standard samples were, therefore, carried over

to the TPERP samples and were similar to those of the shear block samples. A total
» of 49 samples for SYP and 50 for YP were obtained.

Apart from the deviations just stated, the procedure given in ASTM D143 was used to

obtain TPERP. Barrett (1974) and Barrett et al. (1975) found a strength-size relation-

ship for TPERP but it ls currently unquantified for SYP and YP. The obtained TPERP

values were, therefore, used in the analyses of results of this study without applying

any adjustment factor to these values to correct for the size effect, or any effect of ring

orientation.

l
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5. Results andDiscussion5.1

Notched Beam Strength

5.1.1 The material parameter, K
i

The material strength parameter, K, was calculated using

GV: M 1¤<· — (—t;).·)[ 6 (v) 1.- + #6] M
where i = load level, PL for proportional limit

MAJ for major load drop (25%)

MAX for maximum load

p = 1.12 (fixed value from Table 3.6)

F10.159- 0.2164) + O.187(B—)
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F2lndividualcalculated K—values from the main study ( filleted TEN beams) are found in

Appendix F. Summary statistics, classified by M/V, are given in Table 5.1.

Since the CFHS theory assumes linear elasticity, the theoretical model is strictly ap-

plicable only to notched beam behavior within the proportional limit (PL) range. If

crack initiation (Cl) occurs within this range, then the Cl load is regarded as that

causing the fillet hoop stress to exceed a critical stress level at the notch root. This

is fundamental to the CFHS theory. Material behavior beyond either the PL or the Cl

may be unreliably modeled by the FE model since assumptions are not strictly met.

Zalph (1989) found no consistent relationship between PL and Cl loads in his work

on tension interior notches. He thus considered the load at Cl for all his analysis and

did not further analyze that at PL. Stieda (1966), however, associated PL load with

Cl or initial failure load noting that the two loads always coincided in experimental

tests of small beams (1 x 1 x 16 in.) with three dry softwood materials. Murphy (1978)

also considered PL load as “failure load because it corresponds to crack initiation

that precedes visible opening". He tested dry Douglas fir 1 x 1 x 16 in. materials.

The actual notch root CI load is difficult to measure directly and accurately. Load at

the first audible crack may be recorded but without a visible crack at the notch, crack

initiation may have occurred elsewhere in the beam. ln most TEN cases, the visible

Cl load was observed in the load-deflection (P-A) curve to coincide with the load at

major drop (MAJ) which is the point where load drops by 5% or more. For a few
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Table 5.1. Summary statlstlcs of calculated K from experiment

MN L L, -—
Sp•=¤¤¤=‘ LLLL) Lgöel Mean sie. Devl· c.v.*

(psl)

atlonSYP1.00 PL 38 5884 141824.09M
AJ 39 10342 2516 24.33 E

MAX 38 10984 2715
24.7210.00PL 30 13895 469333.77M

AJ 30 18316 5340 29.16 i
L MAX 30 22476 8091 36.00

YP 1.00 PL 34 7072 2061 29.14
MAJ 34 1 1035 3033 27.49
MAX 33 12084 3230 26.73

10.00 PL 31 14417 4187 29.04
MAJ 32 21830 3960 18.14
MAX 31 27181 8843 32.53

’
The average moisture content of SYP material was 11.42‘% and that of YP material

was 7.72%.
’

C.V.- coefficient of variation, C.V. = (std. deviation)/(mean) x 100%
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beams, the MAJ load occurred at PL, but for most others, lt occurred beyond

PL.Figure5.1 shows typical P-A curves for wood beams withTEN.The

definition of MAJ load and the experimental observations on itsoccurrencequalify
it as the “true" failure load. In general, beam behavior after the MAJ load

isunpredlctable.For TEN cases with h=3.5O in., PM, = P„,„, for 81% of SYP and92%of

YP beams. For cases with h=9.0 in., this is true only for 38% of SYP and 31%ofYP
beams. Beams that continued to bear load after the major load drop acted as

prismatic beams with effective depths either 2 or $ to h, at the notch (see Fig. 2.1).

These effective depths were observed to be controlled in the failure process by slope

of grain. Km, was dropped from subsequent analyses because commercial lumber

has a high variation of grain angle and there is no assurance that a net section will

remain after the MAJ load. These observations on the maximum load-carrying ca-

pacity of notched beams were consistent with those of Stieda (1966), Hirai and

Sawada (1979) and Murphy (1986).

Failure load is therefore defined as PM, and failure strength as KM,. Table 5.1 shows

lower coefficient of variation (C.V.) for KM, than for KP, in most cases. This suggests

that the CFHS-based TEN equation predicts KM, as well as it predicts KP,. Zalph

(1989) explained this as follows ( he considered major load drop as 22%):

For crack extension some small distance from the critical fillet, the applied loading and notch
depth ( or net section) are about the same as for uncracked fillet. lt is reasonable to expect that
the crack extension load in this region is roughly proportional to the crack initiation load. This
is why the model can predict that first major (2%) drop in |oad...

Most of the variability in KM, was due to the effect of widely varying ring angle ori-

entation of notched beam specimens. Fig. 5.2 shows SYP shear block specimens with

representative cross-sections from fuI|—slze notched bending specimens from which

the block specimens were obtained.
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Figure 5.1. Schematic diagram of typical |oad·deflection curves from tests of
TEN wood beams-- 1 for most cases with h=3.5 in. and 2 for most
cases with h=9.0 in.: (a) proportional limit, (b) major drop, and (c)
maximum load
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I

5.1.2 Evaluation of geometry effect 1
I
II

The TEN equation based on CFHS theory assumes that geometric and material effects ,

are separable, i.e. K is a purely material property and is geometry-independent. I
I

A
There are several ways to test this hypothesis. One is the traditional approach of

statistical hypothesis testing. ln this case,

HO: Iß1— ßz) 2ö

H1: Iß, — ß2I<ö [5.2]

where H0 = null hypothesis

H1 = alternative hypothesis, the condition that a researcher intends to

show/prove

ß,, ß, = true mean K’s of notch geometries 1 and 2, respectively

— 6 = practical value within which notched beam strength differences are

deemed acceptable; i.e. a realistic standard deviation for notched

beam strength.

The alternative hypothesis, H1 states that the absolute difference between mean K’s

of different geometries is less than some value 6. There are 16 cells in the random-

ized complete block design experiment ( filleted TEN study), each one representing .

a unique geometry combination. The statistical test may be administered by com-

paring all cells or by comparing between cell groups, i.e. collapsing data for M/V and

R or MV and H or M/V and de and so on. The null hypothesis, Ho, is rejected ( Palettas

1989) when
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C, < < C,[5.3]Si

8;
where Q = , /—,i- + -5;-

c, = i„„_,__ — -::5;
C, = t,,,_, + 2%-

K-,,K, = sample means
8,, 8, = sample standard devlatlons

n,, n, = sample sizes

t,„__ = t-statistic corresponding to df and a

df = degree of freedom, n, + n, — 2

ix = probability of Type l error

The power of a statistlcal procedure is the probability of rejecting Howhen it is false.

The power of this procedure was estimated using actual experimental data, setting

6=0.20K and a=5%, and assuming an actual difference between K's as 0.806 or

0.16K. lt was found that, even if cells are collapsed into two comparing groups to in-

crease the sample sizes, the procedure has very low power because of high vari-

ances within groups. The available experimental results were not sufficient to make

any conclusive statement because of low sample size and high variance.

Another way of investigating the geometry effect on K is through graphical repre-

sentation of results; one method is to compare cumulative frequency distributions of

cell groups. lf there is no effect ( i.e. geometry and material effects are separable),

then the cumulative frequency distributions for K of different geometry sets should

be on top of each other, essentially showing the same curve. ln using a graphical
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method such as this, trends and differences are easily seen through a total data pic-

ture.

Figures 5.3, 5.4 and 5.5 show oumulative frequency distributions for K,,,,„_, of YP mate-

rial classified by M/V and h, M/V and ¢», and M/V and R, respectively. lt is evident

from these plots that the effect of geometry variables h, ¢> and R were very small

compared to the effect of M/V, except for the noticeable difference between curves

for R in M/V= 10.0 in. case in Fig. 5.4. This may be a real R-effect or just a manifes-

tation of the sample's variability. The same general trends on h, ¢>, R and M/V effectsll were observed with the SYP material. When the K's are grouped only by M/V, as in

Figs. 5.6 and 5.7, the differences are seen more clearly. Except for the M/V effect, the

CFHS theory is apparently adequate in dealing with the effects of other geometry

variables on K.

5.1.3 Investigation of geometry dependence

* Let normalized shear, V"= V/bh . This variable provides a means to compare this

work with that of other researchers and to show sensitivity of V" to geometry

changes. The geometry factors identified in the left-most two columns of Table 5.2

were fixed for each row. The remaining geometry factor ( with subheadings A, B, C

and D) was changed to one value from a base; the corresponding change in V" is

noted as a ratio to the base V". For example, as M/V changed from 10.0 in. to 1.0 in.

( subheading A), with h fixed at 3.5 in. and da at 0.50, the mean experimental V" for

SYP beams increased by 2.90 times. As R changed from 0.50 in. to 0.25 in. ( sub-

heading D), h fixed at 9.0 in. and M/V at 10.0 in., the mean experimental V" for YP

beams increased 1.05 times. lt should be noted that these experimental multiplication
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Flgure 5.3. Cumulative frequency distrlbutlons of KM J for YP, classlfled by
M/V and beam heIght,h: (a) M/V= 1.0 In., lau) M/V= 10.0 In.
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factors ( or sample mean V" ratios) are just estimates of the true ( or population)

mean V" ratios of the material. Accuracy of the estimates is dependent on sample

sizes and variance. These sample mean ratlos, however, provide a basis for com-

parison with those predicted by theoretical models.

In a similar manner, the theoretical sensitivity of V" to geometry changes was calcu-

lated from several models. Using the CFHS theory, K and KC were fixed for both TEN

and Zalph (1989) equations and V"’s calculated for the selected geometry changes.

This was also done with LEFl\/l—based models, Gustafsson (1988) and Australian code

(1988) equations.

Table 5.2 shows that for a change in M/V ( subheading A), ratios from theoretical

models varied substantially from the experimental ratios, with the exception of those

from the Australian equation. For other geometry changes ( subheading B for h,

subheading C for ¢>, and subheading D for R), the ratios from most theoretical models

were reasonably close to those from the experimental results. The TEN equation, in

particular, gave ratios similar to those from experiment, thus, supporting the obser-

vations made on plots by cumulative frequency distribution in Figs. 5.3 to 5.5 regard-

ing the TEN equation’s treatment of the effects of d>, h and R.

Consistent differences between expectation and reality were associated with the

variable M/V. lt is interesting to note that the increase in V" resulting from a change

of M/V from 10.0 in. ( away from the support) to 1.0 in. ( very close to the support)

was overestimated by both CFHS—based models and the LEFM model based on strain

energy release rate criterion ( i.e. Gustafsson equation). ln other words, the actual

change in V“ of a TEN wood beam when the notch is varied from a location far from

the support to one very close to the support is considerably less than what most
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Table 5.2. Sensltlvlty of normallzed shear capacity to single geometry changes
( at MAJ)

V" multlpllcatlon factor ( at MAJ) as one geometry variable
lschangedF"‘°°

G°°"‘°"’ cn-ns Theory LEFM rnsurw
sYP YP TEN E sus Aus

(A) from M1v=10.0 In. to M1v=1.0 in.
0.20 — · 4.54 5.41 3.70 2.13
0.50 2.90 2.67 5.00 6.06 4.35 2.13

0.20 1.23 1.06 2.25 2.06 2.27 1.47
0.50 1.61 1.57 2.70 2.25 2.63 1.47

M/V (ln.) (B) from h=3.5 ln. to h=9.0 In.

0.64 0.81 0.73 0.49 0.78 0.71
1.28 1.37 1.41 1.30 1.27 1.02

Mzv (ln.) (c) from 4>= 0.20 to ¢=o.60
1.00 · · 0.52 0.48 0.45 0.62
10.00 0.42 0.46 0.44 0.44 0.39 0.62

1.00 0.46 0.65 0.61 0.53 0.48 0.62
10.00 0.36 0.41 0.50 0.48 0.41 0.62

E Miv (in.) (0) from R= 0.60 in. 16 R1= 0.25 an.
1.00 0.98 1.44 1.34 1.36
10.00 0.88 1.14 1.35 1.30
1.00 1.14 1.34 1.30 1.40

10.00 1.26 1.05 1.22 1.26

‘
Gus - Gustafsson (1988) ; Aus - Australian Standard (1988)
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theoretical equatlons would predlct. The Australian equation, based on LEFM stress

· intensity factor criterion, seemed to have accou nted for this M/V effect fairly well.

For notches very close to the support, the stress field due to combined shear and

bending interacts with the stress field due to compression over the support. Appar-

ently, theory based on transverse orthotropic linear elastic assumptions does not

accurately model this situation. When these complex stress interactions occur very

near the support, the deviation between assumed simplified boundary conditions and

the actual support condition may further compou nd modeling errors. Other than these

thoughts, the systematic difference between experimental and theoretical results for

the case of TEN beams with M/V= 1.0 in. (when the results for the M/V= 10.0 in. case

agree) is baffling.

5.1.4 Adjustment of prediction equation

The prediction equation in its original form seems to be valid at this point for notch

roots located where the moment to shear ratio, M/V, is greater than or equal to 10.0

in., For the case of TEN at the support ( modeied here as having M/V=1.0 in.), K’s

are distributed as shown in Figs. 5.3 to 5.7. Similar distributions for M/V= 10.0 in. are

found to the right of those for M/V= 1.0 in,. One way to use the prediction equation

for notches at the support is to apply an adjustment factor which, in effect, shifts the

strength distribution. This would keep prediction simplicity and the need for only one

material strength parameter, K, for TEN wood beams.

Figure 5.8 graphically shows how two separate strength distributions are combined.

Probability denslty functions PDF1 and PDF2 are shown for the two cumulative dis-
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tribution functions CDF1 and CDF2, respectively. The means are separated by a dis-

tance KA. For consistency with Zalph (1989), whose rc ls equivalent to the TEN

strength data at M/V= 10.0 in. ( i.e. rc =.· K,), any adjustment should be applied to the

strength data at M/V= 1.0 in. (K,). To shift the entire distribution of CDF1 ( or PDF1)

without increasing the variance, KA is simply added to all values in this distribution.

Thus, adjusted K = K, = K, + KA. This can be applied by shitting at the mean

K or at the lower 5% exclusion limit (L5EL) of K.

From unadjusted experimental results for SYP and YP materials ( CDF’s are shown

in Figs. 5.5 and 5.6), KA at PL was computed from mean experimental K’s to be 8011

and 7345 psi, respectively. A fixed value of 7700 psi was used to adjust all K,,,’s for

M/V=1.0 in. case. Similarly, KA at MAJ was computed and found to be 7974 and

10795 psi for SYP and YP, respectively. A fixed value of 9400 psi was added to all

K,,A_,’s for M/V= 1.0 in. case. The adjusted set ot strength distribution for YP at MAJ

is shown in Fig. 5.9 with a fitted 3-parameter Weibull distribution. The probability (

p-value) that the observed Chi·square test statistic would result if the distribution

were not, in fact, a 3-parameter Weibull was 0.16. The p—value arising from fitting a

3-parameter lognormal distribution was 0.55. With SYP materials, however, p-values

arising from Chi·square tests were greater than 0.85 for both distributions. The reason

for the seemingly poor fits for either Weibull or lognormal distribution is the slightly

bimodal nature of the adjusted KMA, which shows in Fig. 5.9. This is essentially the

result ot averaging the adjustment factor KA for the two different species and using

this average value to adjust both strength sets. This is a possible indication ot one

of two things: (1) KA is different for hardwood and softwood species groups, or (2)

KA ls different for every species. This cannot be experimentally tested, however, from
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Figure 5.8. Adjustment process to shift distribution
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this work. Pending further verlficatlon of KA for other species, the fixed value of9400l

psi is retalned for adjusting K„A,’s of TEN beams with M/V= 1.0 in.,l

5.2 Determination of Effective Radius

This sub-study was limited to the case where M/V= 1.0 in. and ¢> =0.50. Most beams

( whether sharp-cornered, R =0, or filleted, R =0.25 in., notches) failed in the manner
represented by P-A curve 1 shown in Fig. 5.1, i.e. major load drop coinciding with the

maximum load. Normalized shear (V") values calculated from experimental results

for sharp-cornered and filleted notches were compared via a one-way t-test with Ho:

V",=„_„, = Vgm,. The results are presented in Table 5.3. With a= 5%, the null hy-

pothesis is rejected for most cases. One exception is for SYP with h=9.0 in., This

rejection is due to the high variance in V", despite seemingly dissimilar mean values.

This means that a bigger sample size is necessary for this particular case to increase

the chance of reaching a correct decision.

An effective radius to model sharp-cornered TEN cases was computed using the ad-

justed TEN prediction equation. The equation was simplified as follows

- E;
V" [6.4]

1 v n ” 2

where K, = K — KA ; all other terms are defined in equation [5.1].

Let l
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Table 5.3. Results ol one-way t-test for normallzed shear, R=0 vs R=0.25 ln.,
MlV=1.0 ln. and ¢>=0.50

Level Mean SM t—obs
(psl) Dev.

SYP 3.50 PL 0.00 18 110 26 2.250 0.0164
_ 0.25 11 129 16

MAJ 0.00 18 183 41 5.415 0.0000
0.25 12 259 _32

9.00 PL 0.00 15 91 43 1.195 0.1216
0.25 12 108 25

MAJ 0.00 15 132 50 1.282 0.1058
0.25 12 153 30

YP 3.50 PL 0.00 16 123 24 2.184 0.0195
0.25 10 141 11

MAJ 0.00 16 163 45 2.876 0.0042
0.25 10 230 74

9.00 PL 0.00 9 105 23 2.447 0.0128
0.25 10 147 46

. MAJ 0.00 9 132 30 1.889 0.0381
0.25 10 169 51

‘
p - probability that the_observed gtest statistic would result if the means were not,

in fact, the same; ( Ho : V('{.,„_„, = V{;,„))
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1 J
Q = '*""""""""""""""" [5-5] ·

1 V h 2

and substitute to equation [5.4],

- EVN = -é·L Q [5.6]

The normalized shear ratlos of filleted and sharp-cornered notches were computed

as

_ E1

T QR-
:-hj-—‘ = T-—-——-· [5.7]
V(R=0.25) ;_

Q6 (R=O.25)

Rearranging,

T/[‘R=0)gRe = 9(R=0_25) [5.8]
V(R=O.25)

Everything on the right hand side of equation [5.8] is known : the bracketed term is

a ratio of experimental results and g,„=„_,,, is computed using equation [5.5], with

nominal values of h, da and D with R=0.25 in,. The computed value of 9,,, was

equated with equation [5.5] ( value for p and forms of F, and F, were substituted)

1-

R + L64 ¢)O.712 R-0.418 h(o.6-17-o.s164>)
0.159- 0.213dJ + 0.187(·Ö—)

5. Results and Discussion 115



All variables are known except R. The calculated radius becomes R, which lsthe·

theoretical effective ratlo to model sharp-cornered notches. Results of iterative cal- I

culation of equation [5.9] are summarized in Table 5.4. Minimum calculated R, was

0.091 in. for both specles. In all cases, 0.091 S R, S 0.173. It may be sufficient to use

R,=0.080 in. to model sharp-cornered notches for all specles because R, does not

indicate any specles dependence and this proposed value is thought to provide

enough margin for possible R, variation caused by mean V" variation.

Zalph (1989) conducted a preliminary study determining R, for tension interior

notches. His limited results suggest a value of 0.175 in. for dry SYP and 0.004 in. for

green YP beams with ¢> =0.51, M/V= 10.0 in. and h =3.5 in,. R, for dry SYP compares

closely with present results ( 0.16 in. at PL, and 0.09 in. at MAJ) but that for green YP

was anomalously low. He qualified that these results are “equivocal due to small

sample sizes ( 6 for SYP and 4 for YP) and high variability".

Zalph (1989) hinted at a possible linear dependence of R, on h when he investigated

the condition of equivalence of his model with that of Gustafsson (1988). He was not

able to verify this experimentally because his tests were limited to a single level of

h. Results of the present sub-study ( Table 5.4) do not indicate any organized de-

pendence of R, on h.

5.3 Comparisons With Other Models

The normalized shear, V", predicted by the TEN equation was compared with that

predicted by other models. These predictions are overlaid with experimental results.

V" was calculated using a general equation
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Table 5.4. Eflectlve radlus, R', to model sharp-cornered end nolches,derlvedfor
M/V= 1.0 ln. and ¢>= 0.50 by equatlon[5.9]{

{

(nsf) lpsll
%=@=” L·”·“ a aß ‘
SYP 3.50 PL 110 0.1084 129 0.1275 0.159

MAJ 183 0.0903 259 0.1275 0.091
9.00 PL 91 0.0855 108 0.1012 0.159

MAJ 132 0.0872 153 0.1012 0.168

YP 3.50 PL 123 0.1115 141 0.1275 0.173
MAJ 163 0.0904 230 0.1275 0.091

9.00 PL 105 0.0723 147 0.1012 0.101
MAJ 132 0.0790 169 0.1012 0.128
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v" = EYE = ————J‘iH'———- [5.10][ A (J"-) J- + 6]V h

where MATL, A and B are defined as shown in Table 5.5. ln effect all of the different

models have been cast into a single form to facilitate comparison. Note that they de-

generate to their original form described in Chapter 2.

5.3.1. Filleted Notches

Equations by Gerhardt (1984a) and Zalph (1989) have been proposed for predicting

the strength of filleted notches. Both are based on CFHS theory and derived for the

case of tension interior notches. Zalph (l989) showed that his model is consistent with

Gerhardt’s but also deals with additional variables R and h. He also confirmed the

applicability of his equation on eight materials, in contrast to one material for

Gerhardt. Consequently, Zalph’s equation was chosen for comparison with the TEN

equation. The intended applications for the Zalph (1989) and the TEN equation are

different but both share the same underlying assumptions in derivatlon. The formu-

lation was based on the linear relationship between M/V ( or V/M for Zalph) and

normalized hoop stress ShCF ( or MCF for Zalph). Another is the separation of the

material effects, p, and p2 , from the geometric functions F, and F2, respectively. Zalph

(1989) formulated ic as %·, which is also the material strength in the present work

( i.e. K= ic).

The filleted notch equation can be generally stated as
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RMA, KA [6.11]

where KA = 0 for all cases in Zalph equation

= 0 for notches with M/V 2 10.0 in. in TEN equation

' = 9400 psi for notches with M/V < 10.0 in. in TEN equation

Both the TEN and the Zalph equations essentially predict the same notched beam

material strength parameter. A basic difference is that Zalph derived F, and F, from

theoretical cases where moment always dominated ( M > > V). In the TEN work, F,

and F, were theoretically derived from notch cases where moment dominated in 66%

of the cases and shear dominated in 34%. This explains why the F,’s from both

studies are almost the same while the F,’s are slightly different. Another difference

is the treatment of ll. Zalph (1989) fixed p as unity for all materials while a conserva-

' tive ;l=1.12 was fixed for the TEN. Figure 5.10 shows that the two models predict

essentially similar trends for M/V= 10.0 in,. ( The ordinate scale was maintained the

same with that in Fig 5.11 for easy graphical comparison.) Agreement with the plot-

ted SYP experimental quantities is excellent. But the theoretical linear relationship

between M/V and normalized hoop stress is at odds with experimental results. Con-

sequently, there are substantial differences betweeen the adjusted TEN equation and

Zalph equation for M/V= 1.0 in. as seen clearly in Figure 5.11. Plotted SYP exper-

imental quantities were predicted accurately by the adjusted TEN equation. Similar

results are found with YP material.

In summary, the Zalph and TEN equations can be used interchangeably for filleted

TEN’s with M/V ratio of 10.0 in. or greater. The adjusted TEN equation provides ac-
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Figure 5.10. Normalized shear capacity (at MAJ) against fractional notch depth
for SYP beam with filleted notch: KMAJ=18300 psi, R=0.25 in.,
M/V= 10.0 in.
( NOTE 2 Ordinate scale is the same as that in Fig. 5.11 for easy
graphical comparison.)
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lE
curate prediction for M/V < 10.0 in,. The Zalph equation seriously overestimatesthe~

normalized shear (V") capacity of these cases.

5.3.2 Sharp-cornered notches

Two basic approaches are used in the strength prediction of sharp-cornered notches

: (1) notch factor, and (2) LEFM theory. The notch factor approach is the most used

by current codes and deals solely with the effect of da. The use of LEFM theory, on

the other hand, allows consideration of other variables, such as h and notch location,
L„ ( L„= M/V for center-point Ioaded, simply supported beam). Equation comparisons

are shown in Table 5.5.

The Australian equation ( SAA 1988) given in section 2.3 was chosen to represent

stress intensity factor, K·criterion, approach in LEFM analysis. Gustafsson (1988) used

a strain energy release rate, G-criterion, approach based on the same LEFM as-sumptions. _
Figure 5.12 graphically compares the influence of ¢> with the different models for

notched beams with h=9.0 in. and M/V= 1.0 in,. For the TEN equation, effective ra-

dius, R,, was set at 0.08 in,. All experimental values for sharp-cornered notches (

R =0) were for ¢> =0.50. The experimenal values plotted for d2 =0.20 were for R =0.25

in., These points for filleted notches were plotted to get a feel of the experimental

trend for TEN cases with qb < 0.50. Actual V" values for sharp-cornered notches with

cb =0.20 should be slightly less than those plotted for filleted notches in Fig. 5.12. For

the NDS and the Australian equations, shear stress Fv for dry SYP was set as 1380

psi ( Wood Handbook 1987). The NDS ( NFPA 1986) equation is recommended for
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li
short deep beams. Figure 5.12 ls a plot for TEN beams with span-to-depth (L/h) ratio

of 4.67. lt is clear from Fig. 5.12 that the NDS, Australian and Gustafsson equatlons

overpredict the normalized shear capacity of TEN’s at the support ( i.e. M/V = 1.0

in.), Only the adjusted TEN equation provided good prediction as it shows a con-

servative fit with SYP results. This may be attributed to R, which was conservatively

fixed at 0.08 in., Similar observations were made for h =3.50 in. and in all equivalent

plots for the YP material.

To investigate what happens at M/V =10.0 in., theoretlcal prediction curves were

plotted as shown in Fig. 5.13. The NDS equation was unchanged because it does not

account for any effect of notch location. Prediction curves for the Australian,

Gustafsson and TEN equatlons are shifted downwards relative to Fig. 5.12. The TEN

equation provided the most conservative prediction. Experimental trend is unknown

because no tests were made for sharp-cornered notches at M/V= 10.0 in,. Consider-
'

ing the good prediction exhibited by the TEN equation for filleted notches at

M/V= 10.0 in. ( e.g. Fig. 5.10), however, its reliability for the sharp-cornered case may

also be justified.

Note that although the Australian equation seemed to have accounted for the M/V

effect as shown in Table 5.2 and discussed in section 5.1.3, Figs. 5.12 and 5.13 show

that its V" prediction is an overestimate of actual value.

5.4 Relationship Between K and Other Material Properties

To relate K with other material properties ( SG, block shear strength (S) and

perpendicular—to-grain tensile strength (T) ), several linear and nonlinear models
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were investigated. The nonlinear models were confined to those that are llnearlzable
i

by transformation of either response or predictor variables. The models had the form

similar to those investigated in the FE study shown in Table 3.4. A full model, con-

taining all three material properties as predictor variables, and its subsets were fitted

to a separate data of SYP and YP using individual specimen values. Since the objec-

tive is to predict K from readily known material properties, the evaluation of the

models followed the procedure described in the derivation of the theoretical closed-

form equation ( section 3.7). The relative prediction error was computed as KPERR

= ( actual - predicted) / (actual) x 100%.

Difficulty was encountered in selecting the best prediction equation because none of

the equation forms investigated stood out in prediction accuracy. The best model

among the selection has the form

KMAJ = Co X? Xgz [5-12]

where X, and X, are predictor variables and C, , C, and C2 are coefficients given in

Table 5.6. The table also gives statistics of KPERR. The mean KPERR in most models

is close to zero but the range of maximum overprediction and underprediction per-

cent error is large in the two species, especially in SYP. Addition of either S or T in

a model already containing SG did not provide any substantial prediction improve-

ment of K„,,_,. The coefficient estimate of additional predictors was non-significant.

The simplest form practical for adoption is that containing only one variable. The

model involving SG only has a maximum overprediction error of 69% and maximum

underprediction error of 33% for SYP, and maximum overprediction of 39% and

maximum underprediction of 19% for YP. The strength prediction errors that were not
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E
accounted by SG may be attrlbuted to differing ring orientatlon and grain angle

char-acteristicsof the notched beams. I

The range of prediction errors for the model involving either S or T only was similar

to that for the model with SG only. The wide margin of prediction error for these

strength property models can be explained by the nature of standard ASTM clear

specimen tests ( American Society of Testing and Materials 1988). In block shear test,

eccentric loading of the specimen causes failure due to a complex combination of

shear and normal stresses and not due to pure shear stress ( Bodig and Jayne 1982).

In tension perpendicular-to-grain test, the specimen is subjected to a nonuniform

stress distribution which is considered to be uniform in strength calculation of T (

Bodig and Jayne 1982). Because the calculated experimental S and T values were

not the accurate shear strength and tensile strength perpendicular-to-grain of the

material, respectively, the prediction accuracy for K using either one of the strength

variables as predictor was not as expected.

The form of the prediction equation for K involving SG only is consistent with that

used for predicting the other strength properties of wood ( Armstrong et al. 1984) and

is, therefore, the one proposed in predicting K. This allows a simple and practical

way of designing wood beams with TEN.

5.5 influence of TEN on Beam Stiffness

From the flatwise stiffness ( P/A) measurements of unnotched boards described in

section 4.6, the true modulus of elasticity, Em,. , for each board was calculated as

5. Results and Discussion 128



II

-äQ
w

w
w

d
o—

vw
ow

·;§
$

¤
g

ww
w

w
w

w
ww

ww
\

--
NQ

w
w

v
v

w
o

2,E
§ä~

w—
NN

ÄN
dd

NN
xE

w
G

O
d

v
v
v

w
w

_
ä

g
9

vä
vw

PO
Q

P
N

N
·

“
d

d
'w

d
d

d
d

d
d

Q
22%

ww
E

v
ww

w
v

ww
*1

1.
2

···
O

S
9

2
—

”
m

o
v

w
c

m
w

ww
E

P
o

Ew
wö

ww
ww

ww
=

-8
·

P
V

P
?

M
CD

O
C')

O
C')

S'
L

E
N

P
N

P
N

P
N

P
N

P

o
o

1-
.2

E
ä

d
vw

O
N

-
d

w
o

v
ä

~
3w

ww
ww

ww
ww

1
-Q

N
O

N
P

P
O

°
II

II
II

II
z2§

C
g

wg
ww

.9
W

I
I

I
I

I
I
H

g

3
E

2:6
E

9
In

I
N

Q

wi
u

g
äß

2
E

6
33

33
33

33
$3

—
OO

OO
PO

P
P

G
3

2
.

E
§°·

§
"’

-
EE

¤
Q

N
*
*
*
3

‘·’
¤

33
ww

E8
—··3

öw
°'

=_-
gd)

v-
v
w

PQ_,
P

N
O

_Q„.
P

P
("JN

W
2°

¤
°%€’

3
S

°3
NO

ww
w

ww
w

E
O

¤
w

w
v
v

v
;

v
v

v
;

C9
Q

cn
w

o
m

2
m

a
m

>
2

>&
>&

>&
>&

>&
kä

A
w

w
w

w
w

N
·‘*'>

2
écö

Ü
w

w
Q

~¤N
>(

(D
(D

F"
O

0
•e

g
>

'
w

w
5

.

R••u|t•and
Dlscusslon

*29



1

- 2. ....6* 2 2 2 [5.13]

__ . . bh°where I — moment of1nert1a,7—é—-
% = assumed orthotropic ratio

= 13for SYP (from Bodig and Goodman 1973)

= 14 for YP (from Wood Handbook 1987).

The true moduius of elasticity for edgewise test is

Et,edge = (U Et,1iat [544]

where oo is an empirically determined adjustment factor, which is dependent on a

number of factors, e.g. species, MC, grade, size. Because of lack of reliable empirical

data on SYP and YP materials, co was assumed as unity. The equivalent stiffness for

edgewise test of the unnotched board was then calculated as

48 (E ) (I)(‘2EÄ‘)—·~ = im

1.Whenthe boards were notched and destructively tested, stiffness values were

measured and recorded as (P/A),, . To determine the change in stiffness of a board

before and after notching, the ratio of edgewise stiffness after notching, (P/A)„, and

adjusted edgewise stiffness before notching, (P/A)„„, was calculated. Using the for-

muia for calculating apparent moduius of elasticity (E,) (which is the form used in

engineering design) the ratio is written as
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_E_ 48 (Ea) (Ieft)
A n L3··——··—— = —·——···—··—* 5.16L 48 <8.> ui 3 3
A un L3

which simplifies to

(3:)—·——·— = ——— 5.17P (l)
un

where I,„ is the effective moment of inertia for the TEN beam of the geometry from

which (P/A), was measured ( not necessarily equivalent to that corresponding to net

section).

_ Table 5.7 presents the calculated stiffness ratios for SYP and YP materials using
IO

equation [5.17]. Practically, (1-3-) $ 1.0. A ratio of 1.0 means that notching did not af-

fect the stiffness of the beam. A ratio greater than 1.0 is anomalous because the mo-
3

ment of inertia of a board is not Iogically increased by notching. The ratios for the 9

in.-deep SYP beams in Table 5.7 are therefore questionable. ( This set of data also

exhibited high variability of V" during the determination of R,.) The possible cause

of this anomaly could be one or a combination of some or all of the following: (1)

incorrect assumption for the value of w in equation [5.14], (2) incorrect assumption

of E/G for SYP, (3) inaccuracy of the equation for calculating E, ( the form of equation

[5.13]), which was derived from a strain energy analysis of an orthotropic material.

The other stiffness ratios for both SYP and YP materials show a definite influence of
TEN on beam stiffness which seemed to be largely caused by fractlonal notch depth,

d>, and notch location M/V. Any specific relationship of these factors can be estab-
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1
llshed by testlng notched beams with additional levels of da and M/V variables. This

was not attempted because of very limited data.

5.6 Practical lmplications of Results

5.6.1 Commentary on code recommendations

At this point, lt would be helpful to evaluate the current code recommendations dl-

rectly related to the results of the present work. The review of current design guid-

ance in section 2.3 provides the background in this evaluation.

5.6.1.1 “Notch factor" equation _

All 3.5 in.-deep TEN beams with 45 =0.20., L/h = 12 and M/V= 1.0 in. did not fall at the

notch; the 9.0 in.-deep beams with q5=0.20, L/h=4.67 and M/V= 1.0 in. failed at the

notch. TCM ( AITC 1986) recommends equation [2.1] for TEN’s with ¢> S 0.10 and only

for “smaIler wood members". The NDS ( NFPA 1986) recommends equation [2.1] for

TEN’s with d> S 0.25 and especially for beams with low L/h although no specific

guidance on this is provided. The new Canadian code ( CSA 1989) advises the same

llmitation on gb as that given in NDS. The Japanese code ( Architecture Institute of

Japan 1974) allows the use of equation [2.1] for cases where d> < 0.50. The British

timber code ( Ozelton and Baird 1976; Mettem 1986) permits no special calculations

for a beam under uniform loading with h < 10.0 ln. , (M/V) < L/4 and ¢> < 0.125.

For other notch cases, equation [2.1] is used. EUROCODE 5 ( Crubile et al. 1988) does

not put limitation on qö for the use of a similar equation.
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Table 5.7. Approxlmate stlllness ratlos between a notched and an unnotched
I

beam, (Iujl)

S l4* (un.) "°° °°

1.00 SYP 0.99 1.33
YP 0.94 1.01

10.00 SYP 0.90 1.12
YP 0.88 0.93 ·

1.00 SYP 0.95 1.24
YP 0.90 0.87

10.00 SYP 0.54 0.62
YP 0.53 0.53
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Flg. 5.12 shows that the “notch factor" equation seriously overestlmates normalized

shear, V", for beams with ¢>=0.20 ( and ¢>=0.50), L/h=4.67 and M/V= 1.0 in.. This

equation has been in North American codes for more than 3 decades and has been

adopted by other countries probably because of the absence of any catastrophic fail-

ure arising from its use. Considering the safety factor of 4.1 when designing for shear

and the very conservative limitations imposed by TCM on the use of equation [2.1],

safety of previous uses of the equation can now be understood. Experimental results

show that flexure rather than notch failure governs for cases with ¢> $ 0.20, M/V= 1.0

in. and L/h 2 12. The NDS recommendation also allows the use of equation [2.1] for

most cases where notch failure does not actually govern. The absence of a specific

guldance on limitations based on L/h makes this scenario possible. For all other

cases where notch failure actually governs, the use of equation [2.1] becomes very

risky ( e.g. Japanese code and British code recommendations) as seen in Fig. 5.12.

It is difficult to comment on the exclusion recommendations of the British code be-

cause of the different loading conditions between the case given in the code and the

experimental range in this work.

For TEN locations away from the support, e.g. M/V= 10 in., Fig. 5.13 shows that the

“notch factor" equation is nonconservative in predicting V"-capacity of a notched

beam. Thus, code recommendations limiting its use for “notches at the ends of the

beams" ( interpreted as lVl/V=1.0 in. case) are a good way to avoid misapplication

of the equation.

5.6.1.2 LEFM equation

5. Results and Discussion 134



l
The Australian code ( SAA 1988) ls the only code that has formally adopted an LEFM

equation in the design of notched beams. Table 2.1, providing values for angle factor

gw ln equation [2.8], shows that the effects of h and D do not lnteract in the equation

but are applied separately depending on the tb-value, i.e. only D ls applied for cases

with ¢> values < 0.10 in. and only h is applied for cases with ¢> > 0.10. Figure 5.12

shows how this specification changes the prediction curve of equation [2.8]. lt also

shows that given a fixed material shear strength for TEN beams with h=9.0 in.,

L/h =4.67 and M/V= 1.0 in., its prediction curve is more conservative than that of the

"notch factor" equation only in the range 0.05 < ¢> <0.30. V" capacity was consist-

ently overestimated for a practical range of ¢>—values. The Australian and "notch

factor" equations gave different prediction curves, however, for M/V=10.0 in. as

shown in Fig. 5.13. lt is also noticeable in this figure that the shape of the curve for

equation [2.8] looks like a combination of the curves for "notch factor" equation and

Gustafsson or TEN equation.

5.6.1.3 Stlffness

Commenting on the effect of notching on beam stiffness, Ozelton and Baird (1976)

stated in their timber design manual based on the British code that, “DefIection will

hardly be affected, as it is a function of the summation of EI". Design codes and

standards do not specifically address the effect of notching on beam stiffness. The-

oretical results of FE study by Abou-Ghaida and Gopu (1984) on the effect of end

notching on beam stiffness corroborated the statement of Ozelton and Baird. The

former reasoned out that "the loss of section at the end region does not, for all

practical purposes, alter the angle change (M/EI) diagram for the member" ( Abou-

Ghaida and Gopu 1984). Experimental results given in Table 5.6, however, suggest
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that some conslderatlon should be given to deflection of TEN beams with highvaluesof

da andM/V.5.6.2

Application of TEN equation fordesignThe

analyses of results and comparisons with other models show that the TEN

equation provides the best prediction accuracy of normalized shear capacity of SYP

and YP materials with TEN. The equation is applicable to sharp—cornered and filleted

end notches. lt accurately handles the effects of beam height, h, fractional notch

depth, d>, notch location ( equivalent to M/V for center-point loaded, simply supported

beam) and radius, R, for filleted notches on notched beam strength. The effect of L/h

is implicitly accounted for in the derived expression. Considering the wide range of

elastic ratlos included in the theoretical derivation of the equation, the TEN equation

may extend to all wood materials. Its applicability has been confirmed with two ana-

tomically different materials. ( Comments on current Iimitations are discussed in the

next section.)

lt is suggested that TEN’s located to fit the support condition be treated to have an

M/V-value at least equal to 1.0 in. With the current formulation, the equation is con-

servative for cases 1.0 in. < M/V < 10.0 in. because ofthe fixed recommended value

of KA for M/V < 10.0 in., ( The most conservative case would be that with M/V at

around 9.9 in.,)

Successful application of this equation hinges on the availability of allowable values

of K for the most important commercial species. Tabulated values would be most

helpful to engineers and designers. One method of establishing these values is by
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collecting a random sample of notched beams from a given population, e.g. species.

K is determined by destructive testing of a beam with the notch located at M/V210.0

in. because this was the basis of K defined in this work. All other notch and beam

geometry variables can be arbitrarily selected but should be varied for wide applica-

bility and smoothing of any minor effects. With adequate sample size, appropriate
K statistical properties of the K distribution can be determined. An allowable value can

be established for each species by modlfying the lower 5% exclusion limit (L5EL),

similar to current practice for deriving allowable unit stresses of visually graded

structural Iumber ( Bodig and Jayne 1982). Alternatively, the designer can select a

tabulated SG—value for his material and directly calculate K from equation [5.1]. The

accuracy of the K estimate depends on the accuracy of the SG—value. A more reliable

estimate of K is obtained from a measure of the SG of an individual piece of Iumber

or the component in question. This approach is similar to the concept of nondestruc-

· tive testing, assigning strength values to individual pieces of Iumber to enhance the

efficient use of materials.

Finally, simple and practical enhancement to the basic TEN equation, as verified by

research, should increase the reliability of its use in many applications, i.e. by quan-

tifying the effects of load duration, service environment and the associated changes

in it and other relevant design factors.

5.6.3 Limitations

The adjusted TEN equation was derived without considering any effect of beam width

( or thickness), b, on strength. The CFHS theory was based on planar FE formulation
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and a constant beam wldth of 1.5 in. was maintained in the experiment. lts accuracy

for TEN beams with h > 9.0 in. was not experimentally verified.

The adjustment factor, KA, used to calibrate TEN cases with M/V= 1.0 in. was derived

for two species. This factor may, however, be species-dependent. Pending verifica-

tion for other species, the recommended KA only applies for the two materials tested

in this work. Actual KA for notch roots with 1.0 in. < M/V < 10.0 in. is unknown. The

relationship between KA and M/V was not investigated but is a critical next step.

The TEN equation should apply to a wide variety of load types, requiring only accurate

calculations of the moment, M, and shear, V, at the notch root. lt is limited, however,

to statically applied Ioads ( normal load duration). The effects of high-rate and long-

duration Ioads were not addressed. ·

Other support conditions different than the simply supported case that was theore-

tically analyzed and experimentally tested in this work may cause varied stress

interactions especially when the notch is located close to the support. The adjustment

factor may also change.

Applicability of present results is limited to dry SYP and YP TEN beams in a constant

temperature environment. The influence of different material and environmental con-

ditions on K is unquantified. Also, K is a measure of the strength of beams with

notches located in a defect-free region of the material. How this measure of notched

beam strength changes in the presence of serious anatomical deviations such as

knots and compression wood is unknown.
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5.6.4 Future research

A natural way to determine potential topics for future work is to look at present limi-

tations of what has been done. The limitations of the TEN model, dlscussed in the

previous section, provide wide areas of possible research. Selection of a specific

topic for further investigation is just a matter of prioritizing needs.

It is felt that the most urgent need is the establishment of allowable K—values, along

with a verlfication of KA, for commercially important species in the construction in-

dustry. The relationship of KA with M/V should be established for the efficient use

of the proposed equation for notch cases with 1.0 in. < M/V < 10.0 in,. This exercise

is mostly experimental in nature and is relatively straightforward. Another exper-

imental activity is the evaluation of the TEN equation for applicability to large glulam

beams ( i.e. h > 9.0 in.), Other topics of practical importance include designing a

simple method to determine the effect of end notching on beam stiffness and quan-

tifying the effect of notch tapering on beam strength.

Additional theoretical work is needed to understand the interaction of stresses at

notches located very near to or at the support. Knowing the sensitivity of these

stresses to different support conditions might possibly shed light on the real cause

of deviation of experimental results from theoretical predictions made by orthotropic

linear elastic models.
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6. Summary and Conclusions

An equation for predicting the strength of wood beams with tension end notches

(TEN) has been developed based on Gerhardt’s (1984a,b) critical fillet hoop stress

(CFHS) theory. The equation is a simplified description of the results of hundreds of

finite element (FE) analyses of TEN beams with varied geometries ( total of 690 con-

figurations). lt accounts for the effects of loading type and beam and notch geometry

variables, such as beam height, fractional notch depth, radius and notch location. The

effect of span-to-depth ratio is implicitly incorporated in the formulation ofthe model.

Notched beam strength is represented by a material parameter, K, which was found

to be related to specific gravity. A simple equation for predicting K from specific

gravity was derived from experimental results.

The notched beam expression is applicable to both filleted and sharp-cornered

notches. An effective radius, R,, is used to model a sharp-cornered notch (R :0); R,

was determined and confirmed for two materials. A method of determining R, for

other materials was established.
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The FE model used ln this study was inadequate when modeling the complex inter-

action of stresses at notch roots at or very near the support. The CFHS theory and the

linear elastic fracture mechanics (LEFM) approach based on strain energy release

rate criterion showed consistently similar strength prediction trends for many cases,

including notches at or very near the support. The TEN equation was adjusted to

correct the inadequacy of the FE model by an experimentally determined additive

factor KA. With this adjustment, the TEN equation provided accurate predictions ofthe

normalized shear capacity of TEN beams over a wide range of geometry. The TEN

equation was compared with other models and notch equations currently recom-

mended in design codes and significant differences were noted. Chief among them

is the sensitivity of notched beam strength to notch location ( or the ratio M/V). This

is not currently considered by “notch factor"-based design equations.

Stiffness of TEN wood beams was reduced by end notching in some cases. The

magnitude of reduction was heavily influenced by notch geometry variables d> and

M/V. No relationship was established because of limited data. This experimental

finding is important because the effect of end notching on beam stiffness has not

been seriously addressed before and theoretical analysis does not predict the re-

duction.
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Appendix A. Equation [2.2] coefficients

Sample computation of coefficients A and B using equation [2.2] for Douglas fir,
notch case where ¢>=(DIh)= 0.33. From Zahn (1988).

Equation [2.2] may be expressed as

M 3B V ‘· l^·‘l
Using Murphy’s (1988) combined transformed SIF failure criterion,

-3- + EL = 1 [A 2]Klc Kllc •

where Ü,, Ü,, = effective SIF’s on the imminent fracture plane

Ü, = 0.12 K, + 0.82 K,,

Ü,, = 0.24 K, + 0.47 K,,
K,„, K,,c = critical mode I, II SlF’s

K,, = 170 psi ,/in.

K,,c = 1140 psi ,/in. from lower 5% excluslon limit for D. flr.
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After substitution and simplification,

——K' + ——K" — 1 [A31091 191
— ' ]

7M 1.03V

Further substitution and simplification gives

7 M 1.03 V
1091 (bhß/2) + 191 (bhw?)

— 1' [A'4]

Equating equations [A.1] and [A.4], one gets

A = 0.0010693, and B = 0.003595.
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E Appendix B. Expressions for MN for common

loading types

B.1 Center-point loading

P.

Ln
I

I
L

IP — .
V- dlagram -5 2

o

M = % 1
M- dlagram 0

M
T = LM
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B.2 Two-point loading

.*1 .*12 2

L„ °

x

.l12

V- diagram
0

M _ PL„_
2

M- diagram 0

I

MV = L¤
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B.3 Multlple concentrated Ioadlng

I2 ni I2 2 ni 26 6 6 6 6 6

XI I I II I I IB. I3 I II I
V·dlagram 0

I I I III I I I I II I I
M- dlagram 0

M PLn + -5 X
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B.4 Uniform Ioadlug

W

L

V- dlagram 0M

_ L L — Ln
‘ V

_ “ L — 2Ln
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Appendix C. Results of preliminary substudies

C.1 Loading Effect

Material EP set A : G11·E13 ( see Table 3.1 for details of material properties)
Beam height, h : 3.5 in.
Fractional notch depth, qb : 0.314 (or D= 1.10 in.)

R M/V ShCF 0‘
(in.) (in.) (deg.)

0.1875 0.5 4.44 81.0
1.0 4.97 82.0
2.0 7.06 83.0
4.0 11.10 84.0
6.0 15.44 84.0

10.0 24.20 84.0
11.0 26.40 84.0

0.500 0.5 3.93 86.0
1.0 3.48 82.0
2.0 4.77 83.0
4.0 7.78 84.0
6.0 10.89 84.0

10.0 17.10 85.0
11.0 18.68 85.0

‘
angle from the horizontal where a,,_„,„ ( or max ShCF) occured

l
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C.2 Beam Helght Effect
Material EP set A :G11-E13
Notch location, M/V : 0.50 in.
Radius, R :0.163 in.

d> h ShCF Ä
(in.)

0.10 2.0 1.99 0.532
9.5 4.56

0.314 2.0 4.17 0.393
9.5 7.69

0.50 2.0 5.97 0.321
9.5 9.84

Appendix C. Results of preliminary substudies 156



E

Appendix D. Evaluation of NDS design criteria

NDS design criteria for center·point Ioaded, slmply supported TEN beams ( NFPA
1986) :

• bending

wL26( 8 )
fb =
T

S (LDF) FV [DÄ]

• shear

8%*) .1 = ———— ———— g (l.0l=)l= [0.2]° 2*8** (1 -462 “

• deflection

A — 6 Jg- g —ä [0 6]‘ 384 EI k ‘
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Using recommended values for lumber and glulam materials from NDS and solvingl
for äl-, McLain (1989) obtalned the following maximum lk? ratlos where shear, eq.

[D.2], governs:

4 wood k in QÖ
material [D.3] 0.0’ 0.10 0.20 0.30 0.40 0.50

So. pine lumber 240 15 19 21 25 > 26 > 26
S-19, No. 2
J &P 360 15 17 19 21 25 >26

SPF lumber 240 14 17 22 25 >26 >26
S-19, No. 2
J & P 360 14 17 19 22 >26 >26

So. pine glulam 180 10 12 16 19 23 26
· SP22F—V5

dry 240 10 12 14 16 19 23

360 10 12 15 18 21 25

‘
unnotched beam
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Appendix E. Calculated ShCF’s from FE analysis

The following ShCF values for the listed notch geometrles were computed using
Gerhardt’s (1984b) FE program. Material EP sets are represented as follows :

Matl EP set

1 A: G11·E13

2 B: G17·E17

3 C: G27-E21

4 D: G11—E17

5 E: G27-E17

The columns in the tabulation are identifled in this headlng:

Matl Obs. Cell M/V R h ¢> ShCF
No. (in.) (in.) (in.)
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1 1 1 1 0.1875 3.5 0.1 2.4567
1 2 1 6.5 0.1875 3.5 0.1 8.4143
1 3 1 12 0.1875 3.5 0.1 14.7715
1 4 2 1 0.344 3.5 0.1 2.1162
1 5 2 6.5 0.344 3.5 0.1 6.9464
1 6 2 12 0.344 3.5 0.1 12.2212
1 7 4 1 0.1875 3.5 0.35 5.3733
1 8 4 6.5 0.1875 3.5 0.35 18.1561
1 9 4 12 0.1875 3.5 0.35 31.4493
1 10 5 1 0.344 3.5 0.35 4.3277
1 11 5 6.5 0.344 3.5 0.35 14.5299
1 12 5 12 0.344 3.5 0.35 25.2641
1 13 6 1 0.5 3.5 0.35 3.7435
1 14 6 6.5 0.5 3.5 0.35 12.7998
1 15 6 12 0.5 3.5 0.35 22.2326
1 16 7 1 0.1875 3.5 0.52 7.6052
1 17 7 6.5 0.1875 3.5 0.52 29.1083
1 18 7 12 0.1875 3.5 0.52 51.0687
1 19 8 1 0.344 3.5 0.52 6.0498
1 20 8 6.5 0.344 3.5 0.52 23.2851
1 21 8 12 0.344 3.5 0.52 41.0093
1 22 9 1 0.5 3.5 0.52 5.2437
1 23 9 6.5 0.5 3.5 0.52 20.5015
1 24 9 12 0.5 3.5 0.52 36.1762
1 25 10 1 0.1875 3.5 0.6 9.3077
1 26 10 6.5 0.1875 3.5 0.6 38.8358
1 27 10 12 0.1875 3.5 0.6 68.7501
1 28 11 1 0.344 3.5 0.6 7.4091
1 29 11 6.5 0.344 3.5 0.6 31.1965
1 30 11 12 0.344 3.5 0.6 55.4679
1 31 12 1 0.5 3.5 0.6 6.4571
1 32 12 6.5 0.5 3.5 0.6 27.6005
1 33 12 12 0.5 3.5 0.6 49.0651
1 34 13 1 0.1875 4.71 0.1 2.5022
1 35 13 6.5 0.1875 4.71 0.1 7.2153
1 36 13 12 0.1875 4.71 0.1 12.459
1 37 14 1 0.344 4.71 0.1 2.1535
1 38 14 6.5 0.344 4.71 0.1 5.8925
1 39 14 12 0.344 4.71 0.1 10.211
1 40 16 1 0.1875 4.71 0.35 5.559
1 41 16 6.5 0.1875 4.71 0.35 15.8463
1 42 16 12 0.1875 4.71 0.35 26.9245
1 43 17 1 0.344 4.71 0.35 4.4682
1 44 17 6.5 0.344 4.71 0.35 12.592
1 45 17 12 0.344 4.71 0.35 21.4995
1 46 18 1 0.5 4.71 0.35 3.8387
1 47 18 6.5 0.5 4.71 0.35 11.0471
1 48 18 12 0.5 4.71 0.35 18.8331
1 49 19 1 0.1875 4.71 0.52 7.7044
1 50 19 6.5 0.1875 4.71 0.52 25.1857
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1 51 19 12 0.1875 4.71 0.52 43.4338 4
1 52 20 1 0.344 4.71 0.52 6.101

. 1 53 20 6.5 0.344 4.71 0.52 19.9587
1 54 20 12 0.344 4.71 0.52 34.5981
1 55 21 1 0.5 4.71 0.52 5.2449
1 56 21 6.5 0.5 4.71 0.52 17.5023
1 57 21 12 0.5 4.71 0.52 30.3661
1 58 22 1 0.1875 4.71 0.6 9.2409
1 59 22 6.5 0.1875 4.71 0.6 33.3348
1 60 22 12 0.1875 4.71 0.6 58.1327
1 61 23 1 0.344 4.71 0.6 7.3044
1 62 23 6.5 0.344 4.71 0.6 26.513
1 63 23 12 0.344 4.71 0.6 46.4551
1 64 24 1 0.5 4.71 0.6 6.2853
1 65 24 6.5 0.5 4.71 0.6 23.2611
1 66 24 12 0.5 4.71 0.6 40.8019
1 67 25 1 0.1875 7.125 0.1 2.884
1 68 25 6.5 0.1875 7.125 0.1 6.1869
1 69 25 12 0.1875 7.125 0.1 10.2118
1 70 26 1 0.344 7.125 0.1 2.4715
1 71 26 6.5 0.344 7.125 0.1 4.9898
1 72 26 12 0.344 7.125 0.1 8.2924
1 73 27 1 0.5 7.125 0.1 2.1201
1 74 27 6.5 0.5 7.125 0.1 4.5249
1 75 27 12 0.5 7.125 0.1 7.3317
1 76 28 1 0.1875 7.125 0.35 6.1624
1 77 28 6.5 0.1875 7.125 0.35 13.7103
1 78 28 12 0.1875 7.125 0.35 22.1872
1 79 29 1 0.344 7.125 0.35 4.9412
1 80 29 6.5 0.344 7.125 0.35 10.7625
1 81 29 12 0.344 7.125 0.35 17.5446
1 82 30 1 0.5 7.125 0.35 4.2137
1 83 30 6.5 0.5 7.125 0.35 9.4215
1 84 30 12 0.5 7.125 0.35 15.2474
1 85 31 1 0.1875 7.125 0.52 8.308
1 86 31 6.5 0.1875 7.125 0.52 21.2855
1 87 31 12 0.1875 7.125 0.52 35.3469
1 88 32 1 0.344 7.125 0.52 6.5477
1 89 32 6.5 0.344 7.125 0.52 16.6517
1 90 32 12 0.344 7.125 0.52 27.8943
1 91 33 1 0.5 7.125 0.52 5.5651
1 92 33 6.5 0.5 7.125 0.52 14.4838
1 93 33 12 0.5 7.125 0.52 24.2748
1 94 34 1 0.1875 7.125 0.6 9.725
1 95 34 6.5 0.1875 7.125 0.6 27.7145
1 96 34 12 0.1875 7.125 0.6 46.8834
1 97 35 1 0.344 7.125 0.6 7.6342
1 98 35 6.5 0.344 7.125 0.6 21.7335
1 99 35 12 0.344 7.125 0.6 37.0785
1 100 36 1 0.5 7.125 0.6 6.4985
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1 101 36 6.5 0.5 7.125 0.6 18.9307
1 102 36 12 0.5 7.125 0.6 32.3555
1 103 37 1 0.1875 10.75 0.1 3.8768
1 104 37 6.5 0.1875 10.75 0.1 6.0829
1 105 37 12 0.1875 10.75 0.1 8.7507
1 106 38 1 0.344 10.75 0.1 3.3404
1 107 38 6.5 0.344 10.75 0.1 4.8533
1 108 38 12 0.344 10.75 0.1 7.0405
1 109 39 1 0.5 10.75 0.1 2.853
1 110 39 6.5 0.5 10.75 0.1 4.4235
1 111 39 12 0.5 10.75 0.1 6.1957
1 112 40 1 0.1875 10.75 0.35 7.4851
1 113 40 6.5 0.1875 10.75 0.35 12.7955
1 114 40 12 0.1875 10.75 0.35 18.0609
1 115 41 1 0.344 10.75 0.35 6.0013
1 116 41 6.5 0.344 10.75 0.35 9.9247
1 117 41 12 0.344 10.75 0.35 14.1942
1 118 42 1 0.5 10.75 0.35 5.0608
1 119 42 6.5 0.5 10.75 0.35 8.6946
1 120 42 12 0.5 10.75 0.35 12.1502
1 121 43 1 0.1875 10.75 0.52 9.6149
1 122 43 6.5 0.1875 10.75 0.52 19.0308
1 123 43 12 0.1875 10.75 0.52 28.9104
1 124 44 1 0.344 10.75 0.52 7.5638
1 125 44 6.5 0.344 10.75 0.52 14.7049
1 126 44 12 0.344 10.75 0.52 22.665
1 127 45 1 0.5 10.75 0.52 6.3653
1 128 45 6.5 0.5 10.75 0.52 12.7643
1 129 45 12 0.5 10.75 0.52 19.5574
1 130 46 1 0.1875 10.75 0.6 10.9215
1 131 46 6.5 0.1875 10.75 0.6 24.1786
1 132 46 12 0.1875 10.75 0.6 38.4225
1 133 47 1 0.344 10.75 0.6 8.5554
1 134 47 6.5 0.344 10.75 0.6 18.7424
1 135 47 12 0.344 10.75 0.6 30.1802
1 136 48 1 0.5 10.75 0.6 7.2131
1 137 48 6.5 0.5 10.75 0.6 16.2304
1 138 48 12 0.5 10.75 0.6 26.1312

2 1 1 1 0.1875 3.5 0.1 2.8321
2 2 1 6.5 0.1875 3.5 0.1 9.447
2 3 1 12 0.1875 3.5 0.1 16.4364
2 4 2 1 0.344 3.5 0.1 2.4034
2 5 2 6.5 0.344 3.5 0.1 7.7365
2 6 2 12 0.344 3.5 0.1 13.5065
2 7 4 1 0.1875 3.5 0.35 6.332
2 8 4 6.5 0.1875 3.5 0.35 20.4932
2 9 4 12 0.1875 3.5 0.35 35.1191
2 10 5 1 0.344 3.5 0.35 5.0799
2 11 5 6.5 0.344 3.5 0.35 16.4022

Appendlx E. Calculated ShCF’s from FE analysis 162



2 12 5 12 0.344 3.5 0.35 28.2473 {
2 13 6 1 0.5 3.5 0.35 4.3516 l
2 14 6 6.5 0.5 3.5 0.35 14.4578 {
2 15 6 12 0.5 3.5 0.35 24.8464
2 16 7 1 0.1875 3.5 0.52 8.9009
2 17 7 6.5 0.1875 3.5 0.52 32.635
2 18 7 12 0.1875 3.5 0.52 56.7798
2 19 8 1 0.344 3.5 0.52 7.0536
2 20 8 6.5 0.344 3.5 0.52 26.128
2 21 8 12 0.344 3.5 0.52 45.6838
2 22 9 1 0.5 3.5 0.52 6.0485
2 23 9 6.5 0.5 3.5 0.52 23.0404
2 24 9 12 0.5 3.5 0.52 40.3089
2 25 10 1 0.1875 3.5 0.6 10.8148
2 26 10 6.5 0.1875 3.5 0.6 43.3717
2 27 10 12 0.1875 3.5 0.6 76.2672
2 28 11 1 0.344 3.5 0.6 8.5766
2 29 11 6.5 0.344 3.5 0.6 34.8886
2 30 11 12 0.344 3.5 0.6 61.6179
2 31 12 1 0.5 3.5 0.6 7.4098
2 32 12 6.5 0.5 3.5 0.6 30.8732
2 33 12 12 0.5 3.5 0.6 54.5062
2 34 13 1 0.1875 4.71 0.1 2.8965
2 35 13 6.5 0.1875 4.71 0.1 8.1662
2 36 13 12 0.1875 4.71 0.1 13.948
2 37 14 1 0.344 4.71 0.1 2.4766
2 38 14 6.5 0.344 4.71 0.1 6.6532
2 39 14 12 0.344 4.71 0.1 11.4086
2 40 16 1 0.1875 4.71 0.35 6.5835
2 41 16 6.5 0.1875 4.71 0.35 18.0192
2 42 16 12 0.1875 4.71 0.35 30.1278
2 43 17 1 0.344 4.71 0.35 5.2697
2 44 17 6.5 0.344 4.71 0.35 14.3196
2 45 17 12 0.344 4.71 0.35 24.0863
2 46 18 1 0.5 4.71 0.35 4.4716
2 47 18 6.5 0.5 4.71 0.35 12.5721
2 48 18 12 0.5 4.71 0.35 21.1265
2 49 19 1 0.1875 4.71 0.52 9.0693
2 50 19 6.5 0.1875 4.71 0.52 28.3991
2 51 19 12 0.1875 4.71 0.52 48.3846
2 52 20 1 0.344 4.71 0.52 7.1494
2 53 20 6.5 0.344 4.71 0.52 22.5098
2 54 20

{
12 0.344 4.71 0.52 38.6025

2 55 21 1 0.5 4.71 0.52 6.0804
2 56 21 6.5 0.5 4.71 0.52 19.7562
2 57 21 12 0.5 4.71 0.52 33.9397
2 58 22 1 0.1875 4.71 0.6 10.8084
2 59 22 6.5 0.1875 4.71 0.6 37.3901
2 60 22 12 0.1875 4.71 0.6 64.5979
2 61 23 1 0.344 4.71 0.6 8.5049
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2 62 23 6.5 0.344 4.71 0.6 29.7574
2 63 23 12 0.344 4.71 0.6 51.7212
2 64 24 1 0.5 4.71 0.6 7.2322
2 65 24 6.5 0.5 4.71 0.6 26.146
2 66 24 12 0.5 4.71 0.6 45.5065
2 67 25 1 0.1875 7.125 0.1 3.3361
2 68 25 6.5 0.1875 7.125 0.1 7.0943
2 69 25 12 0.1875 7.125 0.1 11.5446
2 70 26 1 0.344 7.125 0.1 2.8798
2 71 26 6.5 0.344 7.125 0.1 5.7147
2 72 26 12 0.344 7.125 0.1 9.3609
2 73 27 1 0.5 7.125 0.1 2.4163
2 74 27 6.5 0.5 7.125 0.1 5.1793
2 75 27 12 0.5 7.125 0.1 8.2585
2 76 28 1 0.1875 7.125 0.35 7.3236
2 77 28 6.5 0.1875 7.125 0.35 15.7529
2 78 28 12 0.1875 7.125 0.35 24.6753
2 79 29 1 0.344 7.125 0.35 5.8432
2 80 29 6.5 0.344 7.125 0.35 12.3685
2 81 29 12 0.344 7.125 0.35 19.5338
2 82 30 1 0.5 7.125 0.35 4.9194
2 83 30 6.5 0.5 7.125 0.35 10.8429
2 84 30 12 0.5 7.125 0.35 17.0262
2 85 31 1 0.1875 7.125 0.52 9.8229
2 86 31 6.5 0.1875 7.125 0.52 24.2195
2 87 31 12 0.1875 7.125 0.52 39.2794
2 88 32 1 0.344 7.125 0.52 7.7065
2 89 32 6.5 0.344 7.125 0.52 18.9511
2 90 32 12 0.344 7.125 0.52 31.0609
2 91 33 1 0.5 7.125 0.52 6.4742
2 92 33 6.5 0.5 7.125 0.52 16.5042
2 93 33 12 0.5 7.125 0.52 27.0796
2 94 34 1 0.1875 7.125 0.6 11.4333
2 95 34 6.5 0.1875 7.125 0.6 31.3367
2 96 34 12 0.1875 7.125 0.6 52.1288
2 97 35 1 0.344 7.125 0.6 8.9356
2 98 35 6.5 0.344 7.125 0.6 24.5806
2 99 35 12 0.344 7.125 0.6 41.314
2 100 36 1 0.5 7.125 0.6 7.5228
2 101 36 6.5 0.5 7.125 0.6 21.4403
2 102 36 12 0.5 7.125 0.6 36.1078
2 103 37 1 0.1875 10.75 0.1 4.5814
2 104 37 6.5 0.1875 10.75 0.1 7.0691
2 105 37 12 0.1875 10.75 0.1 10.037
2 106 38 1 0.344 10.75 0.1 3.934
2 107 38 6.5 0.344 10.75 0.1 5.6356
2 108 38 12 0.344 10.75 0.1 8.0763
2 109 39 1 0.5 10.75 0.1 3.2839
2 110 39 6.5 0.5 10.75 0.1 5.1505
2 111 39 12 0.5 10.75 0.1 7.0987
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2 112 40 1 0.1875 10.75 0.35 8.8457
2 113 40 6.5 0.1875 10.75 0.35 14.6762
2 114 40 12 0.1875 10.75 0.35 19.9168
2 115 41 1 0.344 10.75 0.35 7.0673
2 116 41 6.5 0.344 10.75 0.35 11.382
2 117 41 12 0.344 10.75 0.35 15.6829
2 118 42 1 0.5 10.75 0.35 5.866
2 119 42 6.5 0.5 10.75 0.35 9.9879
2 120 42 12 0.5 10.75 0.35 13.4889
2 121 43 1 0.1875 10.75 0.52 11.3369‘ 2 122 43 6.5 0.1875 10.75 0.52 21.7138
2 123 43 12 0.1875 10.75 0.52 31.8345
2 124 44 1 0.344 10.75 0.52 8.8879
2 125 44 6.5 0.344 10.75 0.52 16.7885
2 126 44 12 0.344 10.75 0.52 25.0352
2 127 45 1 0.5 10.75 0.52 7.3818
2 128 45 6.5 0.5 10.75 0.52 14.6026
2 129 45 12 0.5 10.75 0.52 21.6733
2 130 46 1 0.1875 10.75 0.6 12.8495
2 131 46 6.5 0.1875 10.75 0.6 27.5184
2 132 46 12 0.1875 10.75 0.6 42.4453
2 133 47 1 0.344 10.75 0.6 10.0252
2 134 47 6.5 0.344 10.75 0.6 21.3501
2 135 47 12 ‘ 0.344 10.75 0.6 33.4349
2 136 48 1 0.5 10.75 0.6 8.3507
2 137 48 6.5 0.5 10.75 0.6 18.5173

_ 2 138 48 12 0.5 10.75 0.6 29.0323

3 1 1 1 0.1875 3.5 0.1 3.2744
3 2 1 6.5 0.1875 3.5 0.1 10.7924
3 3 1 12 0.1875 3.5 0.1 18.5895
3 4 2 1 0.344 3.5 0.1 2.7303
3 5 2 6.5 0.344 3.5 0.1 8.7883
3 6 2 12 0.344 3.5 0.1 15.211
3 7 4 1 0.1875 3.5 0.35 7.6456
3 8 4 6.5 0.1875 3.5 0.35 23.6734
3 9 4 12 0.1875 3.5 0.35 39.9105
3 10 5 1 0.344 3.5 0.35 6.1184
3 11 5 6.5 0.344 3.5 0.35 19.0089
3 12 5 12 0.344 3.5 0.35 32.2208
3 13 6 1 0.5 3.5 0.35 5.1877
3 14 6 6.5 0.5 3.5 0.35 16.7676
3 15 6 12 0.5 3.5 0.35 28.3556
3 16 7 1 0.1875 3.5 0.52 10.6982
3 17 7 6.5 0.1875 3.5 0.52 37.3915
3 18 7 12 0.1875 3.5 0.52 64.2236
3 19 8 1 0.344 3.5 0.52 8.465
3 20 8 6.5 0.344 3.5 0.52 30.0551
3 21 8 12 0.344 3.5 0.52 51.8976
3 22 9 1 0.5 3.5 0.52 7.1694
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3 23 9 6.5 0.5 3.5 0.52 26.5087
3 24 9 12 0.5 3.5 0.52 45.8553 25 10 1 0.1875 3.5 0.6 12.91553 26 10 6.5 0.1875 3.5 0.6 49.4195
3 27 10 12 0.1875 3.5 0.6 86.0088
3 28 11 1 0.344 3.5 0.6 10.23193 29 11 6.5 0.344 3.5 0.6 39.922
3 30 11 12 0.344 3.5 0.6 69.8243
3 31 12 1 0.5 3.5 0.6 8.75153 32 12 6.5 0.5 3.5 0.6 35.3199
3 33 12 12 0.5 3.5 0.6 61.935
3 34 13 1 0.1875 4.71 0.1 3.3704
3 35 13 6.5 0.1875 4.71 0.1 9.3975
3 36 13 12 0.1875 4.71 0.1 15.8689
3 37 14 1 0.344 4.71 0.1 2.8637
3 38 14 6.5 0.344 4.71 0.1 7.6744
3 39 14 12 0.344 4.71 0.1 13.0401
3 40 16 1 0.1875 4.71 0.35 7.9669
3 41 16 6.5 0.1875 4.71 0.35 20.9997
3 42 16 12 0.1875 4.71 0.35 34.2468
3 43 17 1 0.344 4.71 0.35 6.3551
3 44 17 6.5 0.344 4.71 0.35 16.7437
3 45 17 12 0.344 4.71 0.35 27.48583 46 18 1 0.5 4.71 0.35 5.3281
3 47 18 6.5 0.5 4.71 0.35 14.7142
3 48 18 12 0.5 4.71 0.35 ' 24.1429
3 49 19 1 0.1875 4.71 0.52 10.9352
3 50 19 6.5 0.1875 4.71 0.52 32.7916
3 51 19 12 0.1875 4.71 0.52 54.811
3 52 20 1 0.344 4.71 0.52 8.6051
3 53 20 6.5 0.344 4.71 0.52 26.091
3 54 20 12 0.344 4.71 0.52 43.9324
3 55 21 1 0.5 4.71 0.52 7.2425
3 56 21 6.5 0.5 4.71 0.52 22.908
3 57 21 12 0.5 4.71 0.52 38.6687
3 58 22 1 0.1875 4.71 0.6 12.9564

_ 3 59 22 6.5 0.1875 4.71 0.6 42.8849
3 60 22 12 0.1875 4.71 0.6 73.0243
3 61 23 1 0.344 4.71 0.6 10.1809
3 62 23 6.5 0.344 4.71 0.6 34.269
3 63 23 12 0.344 4.71 0.6 58.74153 64 24 1 0.5 4.71 0.6 8.54
3 65 24 6.5 0.5 4.71 0.6 30.1359
3 66 24 12 0.5 4.71 0.6 51.7414
3 67 25 1 0.1875 7.125 0.1 3.9151
3 68 25 6.5 0.1875 7.125 0.1 8.2517
3 69 25 12 0.1875 7.125 0.1 13.2838
3 70 26 1 0.344 7.125 0.1 3.3621
3 71 26 6.5 0.344 7.125 0.1 6.6654
3 72 26 12 0.344 7.125 0.1 10.8167
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3 73 27 1 0.5 7.125 0.1 2.7257
3 74 27 6.5 0.5 7.125 0.1 6.0365
3 75 27 12 0.5 7.125 0.1 9.5321
3 76 28 1 0.1875 7.125 0.35 8.8565
3 77 28 6.5 0.1875 7.125 0.35 18.4759
3 78 28 12 0.1875 7.125 0.35 27.8165
3 79 29 1 0.344 7.125 0.35 7.0387
3 80 29 6.5 0.344 7.125 0.35 14.5745
3 81 29 12 0.344 7.125 0.35 22.1312
3 82 30 1 0.5 7.125 0.35 5.8241
3 83 30 6.5 0.5 7.125 0.35 12.7903
3 84 30 12 0.5 7.125 0.35 19.3414
3 85 31 1 0.1875 7.125 0.52 11.8569
3 86 31 6.5 0.1875 7.125 0.52 28.1714
3 87 31 12 0.1875 7.125 0.52 44.2812
3 88 32 1 0.344 7.125 0.52 9.2974
3 89 32 6.5 0.344 7.125 0.52 22.2013
3 90 32 12 0.344 7.125 0.52 35.2742
3 91 33 1 0.5 7.125 0.52 7.6852
3 92 33 6.5 0.5 7.125 0.52 19.3372
3 93 33 12 0.5 7.125 0.52 30.7615
3 94 34 1 0.1875 7.125 0.6 13.7407
3 95 34 6.5 0.1875 7.125 0.6 36.2603
3 96 34 12 0.1875 7.125 0.6 58.8755
3 97 35 1 0.344 7.125 0.6 10.7393
3 98 35 6.5 0.344 7.125 0.6 28.6521
3 99 35 12 0.344 7.125 0.6 47.0028
3 100 36 1 0.5 7.125 0.6 8.9052
3 101 36 6.5 0.5 7.125 0.6 24.9735
3 102 36 12 0.5 7.125 0.6 41.0697
3 103 37 1 0.1875 10.75 0.1 5.4457
3 104 37 6.5 0.1875 10.75 0.1 8.3524
3 105 37 12 0.1875 10.75 0.1 11.8345
3 106 38 1 0.344 10.75 0.1 4.6746
3 107 38 6.5 0.344 10.75 0.1 6.6983
3 108 38 12 0.344 10.75 0.1 9.597
3 109 39 1 0.5 10.75 0.1 3.7697
3 110 39 6.5 0.5 10.75 0.1 6.1313
3 111 39 12 0.5 10.75 0.1 8.3936
3 112 40 1 0.1875 10.75 0.35 10.5597
3 113 40 6.5 0.1875 10.75 0.35 17.0465
3 114 40 12 0.1875 10.75 0.35 22.4634
3 115 41 1 0.344 10.75 0.35 8.397
3 116 41 6.5 0.344 10.75 0.35 13.2781
3 117 41 12 0.344 10.75 0.35 17.7802
3 118 42 1 0.5 10.75 0.35 6.8235
3 119 42 6.5 0.5 10.75 0.35 11.6836
3 120 42 12 0.5 10.75 0.35 15.3728
3 121 43 1 0.1875 10.75 0.52 13.5462
3 122 43 6.5 0.1875 10.75 0.52 25. 1494
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3 123 43 12 0.1875 10.75 0.52 35.682
3 124 44 1 0.344 10.75 0.52 10.5788

. 3 125 44 6.5 0.344 10.75 0.52 19.5431
3 126 44 12 0.344 10.75 0.52 28.2147
3 127 45 1 0.5 10.75 0.52 8.6449
3 128 45 6.5 0.5 10.75 0.52 17.0637
3 129 45 12 0.5 10.75 0.52 24.5141
3 130 46 1 0.1875 10.75 0.6 15.3681
3 131 46 6.5 0.1875 10.75 0.6 31.882
3 132 46 12 0.1875 10.75 0.6 47.629
3 133 47 1 0.344 10.75 0.6 11.9713
3 134 47 6.5 0.344 10.75 0.6 24.9261
3 135 47 12 0.344 10.75 0.6 37.7929
3 136 48 1 0.5 10.75 0.6 9.8104
3 137 48 6.5 0.5 10.75 0.6 21.6486
3 138 48 12 0.5 10.75 0.6 32.8579

4 1 1 1 0.1875 3.5 0.1 2.7288
4 2 1 6.5 0.1875 3.5 0.1 8.6617
4 3 1 12 0.1875 3.5 0.1 15.1829
4 4 2 1 0.344 3.5 0.1 2.2998
4 5 2 6.5 0.344 3.5 0.1 7.1627
4 6 2 12 0.344 3.5 0.1 12.5747
4 7 4 1 0.1875 3.5 0.35 5.8542
4 8 4 6.5 0.1875 3.5 0.35 18.8145
4 9 4 12 0.1875 3.5 0.35 32.5359
4 10 S 1 0.344 3.5 0.35 4.6546
4 11 5 6.5 0.344 3.5 0.35 15.0125
4 12 5 12 0.344 3.5 0.35 26.057
4 13 6 1 0.5 3.5 0.35 4.0261
4 14 6 6.5 0.5 3.5 0.35 13.1817
4 15 6 12 0.5 3.5 0.35 22.8572
4 16 7 1 0.1875 3.5 0.52 8.2148
4 17 7 6.5 0.1875 3.5 0.52 30.1643
4 18 7 12 0.1875 3.5 0.52 52.8251
4 19 8 1 0.344 3.5 0.52 6.4707
4 20 8 6.5 0.344 3.5 0.52 24.0445
4 21 8 12 0.344 3.5 0.52 42.2719
4 22 9 1 0.5 3.5 0.52 5.5998
4 23 9 6.5 0.5 3.5 0.52 21.103
4 24 9 12 0.5 3.5 0.52 37.147
4 25 10 1 0.1875 3.5 0.6 9.9937
4 26 10 6.5 0.1875 3.5 0.6 40.2078
4 27 10 12 0.1875 3.5 0.6 71.0569
4 28 11 1 0.344 3.5 0.6 7.8804
4 29 11 6.5 0.344 3.5 0.6 32.1734
4 30 11 12 0.344 3.5 0.6 57.0552
4 31 12 1 0.5 3.5 0.6 6.8558
4 32 12 6.5 0.5 3.5 0.6 28.3404
4 33 12 12 0.6 3.5 0.6 50.3176

Appendix E. Calculated ShCF’s from FE analysis 168



4 34 13 1 0.1875 4.71 0.1 2.83694 35 13 6.5 0.1875 4.71 0.1 7.4694 36 13 12 0.1875 4.71 0.1 12.86574 37 14 1 0.344 4.71 0.1 2.36124 38 14 6.5 0.344 4.71 0.1 6.08834 39 14 12 0.344 4.71 0.1 10.51784 40 16 1 0.1875 4.71 0.35 6.13174 41 16 6.5 0.1875 4.71 0.35 16.48914 42 16 12 0.1875 4.71 0.35 27.96484 43 17 1 0.344 4.71 0.35 4.85534 44 17 6.5 0.344 4.71 0.35 13.06014 45 17 12 0.344 4.71 0.35 22.26184 46 18 1 0.5 4.71 0.35 4.17114 47 18 6.5 0.5 4.71 0.35 11.41264 48 18 12 0.5 4.71 0.35 19.45034 49 19 1 0.1875 4.71 0.52 8.42444 50 19 6.5 0.1875 4.71 0.52 26.20644 51 19 12 0.1875 4.71 0.52 45.06714 52 20 1 0.344 4.71 0.52 6.596
4 53 20 6.5 0.344 4.71 0.52 20.6788
4 54 20 12 0.344 4.71 0.52 35.7788
4 55 21 1 0.5 4.71 0.52 5.66484 56 21 6.5 0.5 4.71 0.52 18.06594 57 21 12 0.5 4.71 0.52 31.323
4 58 22 1 0.1875 4.71 0.6 10.04884 59 22 6.5 0.1875 4.71 0.6 34.63074 60 22 12 0.1875 4.71 0.6 60.24864 61 23 1 0.344 4.71 0.6 7.8624 62 23 6.5 0.344 . 4.71 0.6 27.43314 63 23 12 0.344 4.71 0.6 47.9748
4 64 24 1 0.5 4.71 0.6 6.75284 65 24 6.5 0.5 4.71 0.6 23.9725
4 66 24 12 0.5 4.71 0.6 42.0112
4 67 25 1 0.1875 7.125 0.1 3.3599
4 68 25 6.5 0.1875 7.125 0.1 6.5382
4 69 25 12 0.1875 7.125 0.1 10.6468
4 70 26 1 0.344 7.125 0.1 2.7972
4 71 26 6.5 0.344 7.125 0.1 5.2665
4 72 26 12 0.344 7.125 0.1 8.6149
4 73 27 1 0.5 7.125 0.1 2.4094
4 74 27 6.5 0.5 7.125 0.1 4.7308
4 75 27 12 0.5 7.125 0.1 7.6014 76 28 1 0.1875 7.125 0.35 6.9421
4 77 28 6.5 0.1875 7.125 0.35 14.4378
4 78 28 12 0.1875 7.125 0.35 23.18524 79 29 1 0.344 7.125 0.35 5.4618
4 80 29 6.5 0.344 7.125 0.35 11.3073
4 81 29 12 0.344 7.125 0.35 18.272
4 82 30 1 0.5 7.125 0.35 4.662
4 83 30 6.5 0.5 7.125 0.35 9.842
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4 84 30 12 0.5 7.125 0.35 15.8239
4 85 31 1 0.1875 7.125 0.52 9.2412
4 86 31 6.5 0.1875 7.125 0.52 22.3178
4 87 31 12 0.1875 7.125 0.52 36.9058
4 88 32 1 0.344 7.125 0.52 7.1761
4 89 32 6.5 0.344 7.125 0.52 17.4031
4 90 32 12 0.344 7.125 0.52 28.9985
4 91 33 1 0.5 7.125 0.52 6.1048
4 92 33 6.5 0.5 7.125 0.52 15.0755
4 93 33 12 0.5 7.125 0.52 25.1741
4 94 34 1 0.1875 7.125 0.6 10.753
4 95 34 6.5 0.1875 7.125 0.6 28.9875
4 96 34 12 0.1875 7.125 0.6 48.862
4 97 35 1 0.344 7.125 0.6 8.3313
4 98 35 6.5 0.344 7.125 0.6 22.6519
4 99 35 12 0.344 7.125 0.6 38.482
4 100 36 1 0.5 7.125 0.6 7.0951
4 101 36 6.5 0.5 7.125 0.6 19.643
4 102 36 12 0.5 7.125 0.6 33.504
4 103 37 1 0.1875 10.75 0.1 4.7375
4 104 37 6.5 0.1875 10.75 0.1 6.6357
4 105 37 12 0.1875 10.75 0.1 9.1358
4 106 38 1 0.344 10.75 0.1 3.9076
4 107 38 6.5 0.344 10.75 0.1 5.2948
4 108 38 12 0.344 10.75 0.1 7.3345
4 109 39 1 0.5 10.75 0.1 3.3486
4 110 39 6.5 0.5 10.75 0.1 4.758
4 111 39 12 0.5 10.75 0.1 6.4387
4 112 40 1 0.1875 10.75 0.35 8.6746
4 113 40 6.5 0.1875 10.75 0.35 13.7093
4 114 40 12 0.1875 10.75 0.35 18.7452
4 115 41 1 0.344 10.75 0.35 6.8042
4 116 41 6.5 0.344 10.75 0.35 10.6219
4 117 41 12 0.344 10.75 0.35 14.7023
4 118 42 1 0.5 10.75 0.35 5.7513
4 119 42 6.5 0.5 10.75 0.35 9.2433
4 120 42 12 0.5 10.75 0.35 12.5398
4 121 43 1 0.1875 10.75 0.52 10.9343
4 122 43 6.5 0.1875 10.75 0.52 20.2002
4 123 43 12 0.1875 10.75 0.52 30.1314
4 124 44 1 0.344 10.75 0.52 8.4621
4 125 44 6.5 0.344 10.75 0.52 15.5782
4 126 44 A 12 0.344 10.75 0.52 23.5747
4 127 45 1 0.5 10.75 0.52 7.1295
4 128 45 6.5 0.5 10.75 0.52 13.4508
4 129 45 12 0.5 10.75 0.52 20.2678
4 130 46 1 0.1875 10.75 0.6 12.3152
4 131 46 6.5 0.1875 10.75 0.6 25.5448
4 132 46 12 0.1875 10.75 0.6 40.121
4 133 47 1 0.344 10.75 0.6 9.5013
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4 134 47 6.5 0.344 10.75 0.6 19.7466
4 135 47 12 0.344 10.75 0.6 31.4209
4 136 48 1 0.5 10.75 0.6 8.0183
4 137 48 6.5 0.5 10.75 0.6 17.0208
4 138 48 12 0.5 10.75 0.6 27.1221

5 1 1 1 0.1875 3.5 0.1 3.0406
5 2 1 6.5 0.1875 3.5 0.1 10.7065
5 3 1 12 0.1875 3.5 0.1 18.4647
5 4 2 1 0.344 3.5 0.1 2.5614
5 5 2 6.5 0.344 3.5 0.1 8.6056
5 6 2 12 0.344 3.5 0.1 14.9335
5 7 4 1 0.1875 3.5 0.35 7.2796
5 8 4 6.5 0.1875 3.5 0.35 23.3645
5 9 4 12 0.1875 3.5 0.35 39.4145
5 10 5 1 0.344 3.5 0.35 5.8651
5 11 5 6.5 0.344 3.5 0.35 18.7139
5 12 5 12 0.344 3.5 0.35 31.7621
5 13 6 1 0.5 3.5 0.35 4.9933
5 14 6 6.5 0.5 3.5 0.35 16.5615
5 15 6 12 0.5 3.5 0.35 28.0056
5 16 7 1 0.1875 3.5 0.52 10.2644
5 17 7 6.5 0.1875 3.5 0.52 36.9089
5 18 7 12 0.1875 3.5 0.52 63.4406
5 19 8 1 0.344 3.5 0.52 8.161
5 20 8 6.5 0.344 3.5 0.52 29.6134
5 21 8 12 0.344 3.5 0.52 51.2224
5 22 9 1 0.5 3.5 0.52 6.9493
5 23 9 6.5 0.5 3.5 0.52 26.2149
5 24 9 12 0.5 3.5 0.52 45.3701
5 25 10 1 0.1875 3.5 0.6 12.4492
5 26 10 6.5 0.1875 3.5 0.6 48.807
5 27 10 12 0.1875 3.5 0.6 85.0014
5 28 11 1 0.344 3.5 0.6 9.9051
5 29 11 6.5 0.344 3.5 0.6 39.3704
5 30 11 12 0.344 3.5 0.6 69.0242
5 31 12 1 0.5 3.5 0.6 8.5141
5 32 12 6.5 0.5 3.5 0.6 34.9987
5 33 12 12 0.5 3.5 0.6 61.3216
5 34 13 1 0.1875 4.71 0.1 3.0711
5 35 13 6.5 0.1875 4.71 0.1 9.2807
S 36 13 12 0.1875 4.71 0.1 15.709
5 37 14 1 0.344 4.71 0.1 2.6675
5 38 14 6.5 0.344 4.71 0.1 7.5217
5 39 14 12 0.344 4.71 0.1 12.8307
5 40 16 1 0.1875 4.71 0.35 7.5095
5 41 16 6.5 0.1875 4.71 0.35 20.6793
5 42 16 12 0.1875 4.71 0.35 33.7575
5 43 17 1 0.344 4.71 0.35 6.0457
5 44 17 6.5 0.344 4.71 0.35 16.4375
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5 45 17 12 0.344 4.71 0.35 27.0358
5 46 18 1 0.5 4.71 0.35 5.0978
5 47 18 6.5 0.5 4.71 0.35 14.5167
5 48 18 12 0.5 4.71 0.35 23.7869
5 49 19 1 0.1875 4.71 0.52 10.3908
5 50 19 6.5 0.1875 4.71 0.52 32.3044
5 51 19 12 0.1875 4.71 0.52 54.0502
5 52 20 1 0.344 4.71 0.52 8.2297
5 53 20 6.5 0.344 4.71 0.52 25.6455
5 54 20 12 0.344 4.71 0.52 43.2484‘ 5 55 21 1 0.5 4.71 0.52 6.9602
5 56 21 6.5 0.5 4.71 0.52 22.6101
5 57 21 12 0.5 4.71 0.52 38.1404
5 58 22 1 0.1875 4.71 0.6 12.3673
5 59 22 6.5 0.1875 4.71 0.6 42.273
5 60 22 12 0.1875 4.71 0.6 72.0501
5 61 23 1 0.344 4.71 0.6 9.772
5 62 23 6.5 0.344 4.71 0.6 33.7182
5 63 23 12 0.344 4.71 0.6 57.8723
5 64 24 1 0.5 4.71 0.6 8.2472
5 65 24 6.5 0.5 4.71 0.6 29.7748
5 66 24 12 0.5 4.71 0.6 51.1287
5 67 25 1 0.1875 7.125 0.1 3.4456
5 68 25 6.5 0.1875 7.125 0.1 8.0478
5 69 25 12 0.1875 7.125 0.1 13.0595
5 70 26 1 0.344 7.125 0.1 3.0651
5 71 26 6.5 0.344 7.125 0.1 6.4514U 5 72 26 12 0.344 7.125 0.1 10.6019
5 73 27 1 0.5 7.125 0.1 2.5087
5 74 27 6.5 0.5 7.125 0.1 5.9336
5 75 27 12 0.5 7.125 0.1 9.3728
5 76 28 1 0.1875 7.125 0.35 8.2081
5 77 28 6.5 0.1875 7.125 0.35 18.086
5 78 28 12 0.1875 7.125 0.35 27.3572
5 79 29 1 0.344 7.125 0.35 6.5977
5 80 29 6.5 0.344 7.125 0.35 14.1825
5 81 29 12 0.344 7.125 0.35 21.676
5 82 30 1 0.5 7.125 0.35 5.4993
5 83 30 6.5 0.5 7.125 0.35 12.5578
5 84 30 12 0.5 7.125 0.35 19.0167
5 85 31 1 0.1875 7.125 0.52 11.1086
5 86 31 6.5 0.1875 7.125 0.52 27.6403
5 87 31 12 0.1875 7.125 0.52 43.5664
5 88 32 1 0.344 7.125 0.52 8.7742
5 89 32 6.5 0.344 7.125 0.52 21.6694
5 90 32 12 0.344 7.125 0.52 34.5613
5 91 33 1 0.5 7.125 0.52 7.3059
5 92 33 6.5 0.5 7.125 0.52 19.0224
5 93 33 12 0.5 7.125 0.52 30.2526
5 94 34 1 0.1875 7.125 0.6 12.9352

Appendlx E. Calculated ShCF’s from FE analysis 172



5 95 34 6.5 0.1875 7.125 0.6 35.6196
5 96 34 12 0.1875 7.125 0.6 57.9485
5 97 35 1 0.344 7.125 0.6 10.1685
5 98 35 6.5 0.344 7.125 0.6 28.0124
5 99 35 12 0.344 7.125 0.6 46.0805
5 100 36 1 0.5 7.125 0.6 8.497
5 101 36 6.5 0.5 7.125 0.6 24.5936
5 102 36 12 0.5 7.125 0.6 40.414
5 103 37 1 0.1875 10.75 0.1 4.6341
5 104 37 6.5 0.1875 10.75 0.1 7.9296
5 105 37 12 0.1875 10.75 0.1 11.5525
5 106 38 1 0.344 10.75 0.1 4.0874
5 107 38 6.5 0.344 10.75 0.1 6.2448
5 108 38 12 0.344 10.75 0.1 9.2531
5 109 39 1 0.5 10.75 0.1 3.3703
5 110 39 6.5 0.5 10.75 0.1 5.8887
5 111 39 12 0.5 10.75 0.1 8.1854
5 112 40 1 0.1875 10.75 0.35 9.5686
5 113 40 6.5 0.1875 10.75 0.35 16.5203
5 114 40 12 0.1875 10.75 0.35 22.1293
5 115 41 1 0.344 10.75 0.35 7.7312
5 116 41 6.5 0.344 10.75 0.35 12.7703
5 117 41 12 0.344 10.75 0.35 17.424
5 118 42 1 0.5 10.75 0.35 6.3285
5 119 42 6.5 0.5 10.75 0.35 11.3773
5 120 42 12 0.5 10.75 0.35 ° 15.1361
5 121 43 1 0.1875 10.75 0.52 12.4703
5 122 43 6.5 0.1875 10.75 0.52 24.5134
5 123 43 12 0.1875 10.75 0.52 35.1078
5 124 44 1 0.344 10.75 0.52 9.8679
5 125 44 6.5 0.344 10.75 0.52 18.9678
5 126 44 12 0.344 10.75 0.52 26.678
5 127 45 1 0.5 10.75 0.52 8.0995
5 128 45 6.5 0.5 10.75 0.52 16.6893
5 129 45 12 0.5 10.75 0.52 24.0987
5 130 46 1 0.1875 10.75 0.6 14.2391
5 131 46 6.5 0.1875 10.75 0.6 31.1467
5 132 46 12 0.1875 10.75 0.6 46.8305
5 133 47 1 0.344 10.75 0.6 11.1921
5 134 47 6.5 0.344 10.75 0.6 24.2086
5 135 47 12 0.344 10.75 0.6 36.9898
5 136 48 1 0.5 10.75 0.6 9.2323
5 137 48 6.5 0.5 10.75 0.6 21.2156
5 138 48 12 0.5 10.75 0.6 32.2826
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Appendix F. Calculated K’s from experiment

F.1 Southern yellow plne (SYP) : Load, P, and calculated strength parameter, K, at
MAJ using equation [3.17]

M/V R h D ¢> P K
(in.) (in.) (in.) (in.) (Ib) (psi)

10.0 0.25 3.51 0.672 0.191 2576 25316.88
10.0 0.25 3.52 0.673 0.191 2780 27367.45
10.0 0.25 3.52 0.667 0.190 2960 28985.11
10.0 0.25 3.5 0.636 0.182 2392 22592.58
1.0 0.25 3.5 1.716 0.490 2844 12407.43
1.0 0.25 3.53 1.751 0.496 3060 13403.55
1.0 0.25 3.5 1.727 0.493 2456 10713.8
1.0 0.25 3.53 1.815 0.514 3164 14306.5
1.0 0.25 3.51 1.788 0.509 2616 11694.07
1.0 0.25 3.52 1.799 0.511 2604 11805.47
1.0 0.25 3.52 1.818 0.516 2416 11008.43
1.0 0.25 3.5 1.801 0.514 2208 10207.55
1.0 0.25 3.52 1.815 0.515 3428 15694.02
1.0 0.25 3.51 1.78 0.507 2700 12011.03
1.0 0.25 3.48 1.783 0.512 2820 12873.29
1.0 0.25 3.51 1.804 0.514 2784 12405.36

10.0 0.25 3.52 1.762 0.501 1200 27086.37
10.0 0.25 3.54 1.717 0.485 764 16302.09
10.0 0.25 3.53 1.746 0.495 1180 25865.4
10.0 0.25 3.49 1.749 0.501 588 13382.46

10.0 0.5 3.52 0.713 0.203 1960 15005.83
10.0 0.5 3.52 0.721 0.205 2160 16124.82
10.0 0.5 3.53 0.711 0.201 1776 13141.53
10.0 0.5 3.52 0.688 0.195 1792 13120.11
1.0 0.5 3.5 1.759 0.503 3008 10273.26
1.0 0.5 3.52 1.749 0.497 2776 9145.683
1.0 0.5 3.52 1.745 0.496 2704 8830.436
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1.0 0.5 3.53 1.731 0.490 2288 7377.113
10.0 0.5 3.53 1.718 0.487 1024 16362.34
10.0 0.5 3.52 1.749 0.497 792 13240.95
10.0 0.5 3.52 1.777 0.505 824 14087.93
10.0 0.5 3.53 1.751 0.496 1240 20738.18

1.0 0.25 8.97 1.814 0.202 8240 10904.57
1.0 0.25 9.00 1.824 0.203 9320 12331.18
1.0 0.25 9.02 1.825 0.202 11840 15739.49
1.0 0.25 9.00 1.826 0.203 6680 8902.225

10.0 0.25 8.95 1.797 0.201 7660 22341.19
10.0 0.25 8.97 1.8 0.201 5340 15324.85
10.0 0.25 9.00 1.822 0.202 6400 18748.73
1.0 0.25 8.97 4.468 0.498 4730 10457.24
1.0 0.25 8.97 4.468 0.498 4990 10885.93
1.0 0.25 9.01 4.5 0.499 4220 9197.865
1.0 0.25 9.00 4.507 0.501 3800 8247.152
1.0 0.25 9.02 4.485 0.497 5300 11287.91
1.0 0.25 9.02 4.522 0.501 3000 6550.112
1.0 0.25 8.99 4.508 0.501 3395 7330.975
1.0 0.25 9.00 4.522 0.502 3620 7978.061
1.0 0.25 9.03 4.51 0.499 4145 9022.757
1.0 0.25 9.01 4.518 0.501 5632 12145.59
1.0 0.25 8.97 4.515 0.503 3250 7184.861
1.0 0.25 9.04 4.516 0.500 3730 8279.804

10.0 0.25 8.99 4.469 0.497 3070 17479.34
10.0 0.25 9.01 4.512 0.501 2790 15893.03
10.0 0.25 8.97 4.479 0.499 1930 11089.71

1.0 0.5 9.02 1.83 0.203 6580 6713.309
1.0 0.5 9.00 1.82 0.202 14560 14743.27
1.0 0.5 9.01 1.833 0.203 9220 9426.039

10.0 0.5 8.99 1.808 0.201 11480 26547
10.0 0.5 9.00 1.801 0.200 10240 23582.7
10.0 0.5 8.98 1.806 0.201 7560 17737.91
10.0 0.5 8.99 1.803 0.201 7620 17827.87
1.0 0.5 9.01 4.515 0.501 5740 9693.764
1.0 0.5 9.01 4.484 0.498 4000 6681.098
1.0 0.5 9.00 4.514 0.502 4940 8297.648
1.0 0.5 9.02 4.511 0.500 4290 7183.121

10.0 0.5 9.00 4.479 0.498 2680 12487.83
. 10.0 0.5 9.02 4.477 0.496 3200 14717.59

10.0 0.5 9.00 4.506 0.501 2510 11868.79
10.0 0.5 8.98 4.485 0.499 3200 15125.99
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F.2 Yellow poplar (YP) : Load, P, and calculated strength parameter, K, at MAJ using
equation [3.17]

M/V R h D ¢> P K
(in.) (in.) (in.) (in.) (Ib) (psi)

‘ 10.0 0.25 3.51 0.711 0.202 2536 25780.37
10.0 0.25 3.5 0.719 0.205 2412 25327.86
10.0 0.25 3.51 0.708 0.202 2580 26507.31
10.0 0.25 3.51 0.727 0.207 2872 29984.59
1.0 0.25 3.5 1.782 0.509 3268 14639.73
1.0 0.25 3.52 1.753 0.498 3200 13927.34
1.0 0.25 3.51 1.78 0.507 3688 16406.17
1.0 0.25 3.47 1.778 0.512 1560 7188.619
1.0 0.25 3.5 1.734 0.495 2436 10813.18
1.0 0.25 3.5 1.822 0.521 1456 6774.43
1.0 0.25 3.52 1.803 0.512 2004 9107.492
1.0 0.25 3.47 1.74 0.501 2352 10587.61
1.0 0.25 3.5 1.813 0.518 2936 13674.51
1.0 0.25 3.52 1.793 0.509 1536 6938.243

10.0 0.25 3.48 1.78 0.512 860 20313.94
10.0 0.25 3.49 1.78 0.510 968 22658.78
10.0 0.25 3.46 1.761 0.509 940 22217.87

· 10.0 0.25 3.49 1.778 0.510 978 23001.28

10.0 0.5 3.47 0.711 0.205 2076 15998.96
10.0 0.5 3.46 0.76 0.220 2064 16766.6
10.0 0.5 3.49 0.729 0.209 2996 23228.44
10.0 0.5 3.48 0.703 0.202 2224 16907.61
1.0 0.5 3.5 1.792 0.512 4600 15581.98
1.0 0.5 3.49 1.789 0.513 3104 10553.04
1.0 0.5 3.5 1.781 0.509 2896 9685.778

10.0 0.5 3.48 1.781 0.512 1144 20132.55
10.0 0.5 3.48 1.797 0.516 1116 20713.71
10.0 0.5 3.48 1.772 0.509 1300 22858.74
10.0 0.5 3.48 1.758 0.505 1578 27431.44

1.0 0.25 8.98 1.799 0.200 - —
1.0 0.25 9.00 1.79 0.199 12080 15815.1
1.0 0.25 8.91 1.813 0.204 9300 12385.39
1.0 0.25 9.01 1.816 0.202 7660 9967.708

10.0 0.25 8.99 1.825 0.203 8840 25288.95
10.0 0.25 8.96 1.81 0.202 9080 25842.61
10.0 0.25 8.97 1.81 0.202 7200 20722.26
10.0 0.25 8.97 1.829 0.204 8900 25586.33
1.0 0.25 8.95 4.501 0.503 6090 13209.27
1.0 0.25 8.97 4.49 0.501 5040 10956.64
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1.0 0.25 9.00 4.497 0.500 7050 15179.3
1.0 0.25 8.92 4.477 0.502 5930 12871.26
1.0 0.25 8.97 4.475 0.499 4190 9030.116
1.0 0.25 8.99 4.517 0.502 3360 7264.607
1.0 0.25 8.98 4.476 0.498 4860 10461.39
1.0 0.25 8.98 4.489 0.500 3990 8604.412
1.0 0.25 8.99 4.479 0.498 2790 6000.05
1.0 0.25 8.99 4.512 0.502 3170 6848.982

10.0 0.25 8.99 4.491 0.500 2900 16297.45
10.0 0.25 8.99 4.49 0.499 3680 20810.54
10.0 0.25 8.99 4.477 0.498 4840 27261.15
10.0 0.25 8.97 4.504 0.502 3550 20286.72

1.0 0.5 8.95 1.801 0.201 8120 8164.773
1.0 0.5 8.99 1.806 0.201 10380 10339.14” 1.0 0.5 8.98 1.824 0.203 8900 8867.279
1.0 0.5 9.00 1.793 0.199 10940 10839.96

10.0 0.5 8.99 1.804 0.201 10800 24943.21
. 10.0 0.5 8.94 1.815 0.203 9720 22594.10

10.0 0.5 8.98 1.81 0.202 9380 21603.7
10.0 0.5 8.93 1.814 0.203 8360 19464.06
1.0 0.5 8.98 4.499 0.501 8050 13352.88
1.0 0.5 9.00 4.53 0.503 8610 14305.56
1.0 0.5 8.98 4.5 0.501 9310 15445.09
1.0 0.5 8.98 4.509 0.502 5630 9413.576

10.0 0.5 8.97 4.487 0.500 4450 _ 20695.72
10.0 0.5 8.98 4.524 0.504 3100 14535.59
10.0 0.5 8.99 4.531 0.504 3890 18223.92
10.0 0.5 8.98 4.51 0.502 3120 14567.61
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