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GENETICS
(ABSTRACT)

Mapping quantitative trait loci in outbred populations is important since development
of inbred lines in livestock species is usually not feasible. Traditional genetic mapping
methods, such as Least Squares and Maximum Likelihood, cannot fully accommodate complex
pedigree structures, and more sophisticated methods such as Bayesian analysis are very
demanding computationally. In this thesis, an altemative approach based on a Residual
Maximum Likelihood method for estimation of position and vaniance of one or two linked
QTLs and of additive polygenic and residual vanances is presented. The method is based on a
mixed linear model including polygenic and random QTL allelic effects. The variance-
covariance matrix of QTL allelic effects and its inverse is computed conditional on incomplete
information from multiple linked markers. The method is implemented using interval mapping

and a derivative-free algorithm, where the required coefficient matrix of the Mixed Model
Tgunticns s derived from a Reduced Animal Model. Simzlation swudies bazedon a
granddaughter design with 2000 sons, 20 sires and 9 ancestors were performed to evaluate
parameter estimation and power of QTL detection. Daughter Yield Deviations of sons were
simulated under three QTL models, a biallelic, a multiallelic (10 alleles), and a normal-effects
model. A linkage group of five or nine markers loc::: * 2n the sarne chromosome was
assumed, and genotypes were available on sons, sires and ancestors. Likelihood ratio statistics
were used to test for the presence of one or two linked QTLs. Parameters were estimated quite
accurately for all three QTL models, showing that the method is robust to the number of alleles

at the QTL. The effect of considering or ignoring relationships in the analyses did not have a

major impact on parameter estimates but reduced the power of QTL detection. In general,



power tended to decrease as the number of sons per sire, QTL contribution to additive genetic
variance, or distance between QTLs was reduced. The method allowed for detection of a single
QTL explaining 25% of the additive genetic variance, and for detection of two QTLs when
jointly they accounted for 50% or 12.5% of the additive genetic vaniance. Although the REML
analysis is an approximate method incorporating an expected covariance matrix of the QTL
effects conditional on marker information, it is a computationally less expensive alternative to
Bayesian analysis for accounting for the distribution of marker-QTL genotypes given marker
and phenotypic information. For the designs studied, parameters were estimated accurately

and QTLs mapped with satisfactory power.
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INTRODUCTION

Genetic progress in any population under artificial selection relies on the
availability of genetic variation and the identification of superior animals. In dairy cattle,
genetic improvement has been substantial (1-2% per year, Wiggans et al., 1988). Best
Linear Unbiased Prediction (BLUP) of breeding values with an animal model (Henderson,
1984) is the current method of choice for genetic evaluations in most countries. It is
based on the assumption of the additive infinitesimal gene model, meaning that the genetic
variation is controlled by a very large number of segregating additive loci each of which
has a small effect. Under this model and assuming no inbreeding, the proportion of the
additive genetic variance in offspring that can be explained by variance among parental
additive genetic values is only a quarter (a half for two parents). Therefore, half of the
additive genetic variance or the Mendelian segregation variance, remains unexplained.
Identification of allelic variants of genes that affect quantitative traits and can be traced
from parent to offspring may be used to more accurately assess genetic potential in
livestock species.

With the advent of new molecular genetics techniques, new methods for the
detection of highly polymorphic marker systems have been developed, and better saturated
genetic maps currently are becoming available for livestock species, especially for swine
and cattle (see Archibald et al., 1994 for a review). A genetic map shows the most likely

order of and distances between markers, estimated from the amount of recombination that



occurs between these loci in experimental crosses or reference families. With a sufficient
number of markers, linkage or synteny groups of markers can be formed and assigned to
chromosomes by means of physical maps. On a physical map, some of the markers,
known to be located on individual chromosomes, provide landmarks for location and
orientation of entire linkage groups. Markers will be in the same order on both the genetic
and physical maps.

Given the availability of marker maps, researchers have begun to perform linkage
analyses for detecting associations between marker loci and loci influencing quantitative
traits (QTL). Several statistical methods for linkage analysis in humans, domestic animals
and plants currently are being applied to map QTLs. Maximum likelihood, least squares
or (multiple) linear regression, and Bayesian approaches are the most commonly used.
Given the flexibility and widespread use of the Residual Maximum Likelihood (REML)
methodology, this thesis concentrates on developing a derivative-free REML approach to
map QTLs using multiple linked markers. Before defining more explicitly the objectives
of this dissertation, a general overview of the utilization of genetic markers, mapping

resources, and statistical methods for QTL mapping is presented.

Genetic Markers in Animal Breeding
A genetic marker is a polymorphic gene, or a DNA segment whose allelic variants
are inherited in Mendelian fashion. Structural differences at the genetic level can be

detected by the use of techniques such as restriction fragment length polymorphism



(RFLP) (Botstein et al., 1980), variable number of tandem repeats (VNTR) (Jeffreys et al,,
1985; Nakamura et al., 1987), polymerase chain reaction (PCR) (Saiki et al., 1988) and
random amplified polymorphic DNA (RAPD) (Williams et al., 1990).

Genetic markers can be used to identify QTLs controlling economically important
traits in farm species. This information is very useful for several reasons. First, knowing
the number of QTLs and the distribution of genetic effects at individual loci influencing the
traits will make it possible to employ more realistic models describing the sources of
phenotypic variation in traits and to increase response to selection. Second, it will provide
fundamental knowledge about gene actions and interactions (Haley et al., 1991).

The use of markers in animal breeding may permit acceleration of the rate of
genetic improvement via marker-assisted selection (MAS). Once loci with important
effects have been identified, MAS could be used in arriving at optimum breeding
decisions. Animals could be selected partially on the basis of marker genotypes in addition
to phenotypic data on themselves or their relatives, or by pre-selection of young animals
before collecting their own or progeny phenotypic data e.g. young bulls before entering
progeny testing (Mackinnon and Georges, 1995; Kashi et al., 1990). Moreover, marker
information can be used for parentage i2znti72ntinn 2valiiarion ofinhreeding astessment
of genetic distance, heterosis prediction, and possibly for introgression of genes of interest
into recipient populations (Hillel et al., 1992). Good examples of candidate genes for
introgression are the estrogen receptor (ESR) gene, with allelic variants identified between

and within several U.S., European and Chinese breeds of pigs (Rothchild et al., 1994), and



the FecB gene in sheep (Piper et al., 1985). Both major genes increase litter size in pigs

and sheep, respectively.
Even though the number and the distribution of genes controlling most

economically important traits is unknown, the use of genetic markers can allow us to trace
part of the Mendelian sampling variance associated with direct effects of large QTLs, with
effects of marker loci linked to single QTLs, or with clusters of QTLs with large
substitution effects (Dentine, 1990). Some important marker-QTL associations that have
been found in dairy cattle to date include the Chromo-Probe, a marker linked to a QTL
affecting milk, fat and protein yield in Holstein (Cowan et al., 1990); the Weaver gene in
Brown Swiss causing a lethal deficit when occurring in homozygous form but also
increasing milk production when in heterozygous state (Hoeschele and Meinert, 1990),
and five loci affecting milk production in selected populations (Georges et al., 1995).
Estimates of increases in rate of genetic improvement via MAS have been reported
in the range of 1% to 40% (Smith et al., 1991). However, most studies reported
estimates on the order of 0-10% (Kashi et al., 1990; Mackinnon and Georges, 1995;
Ruane and Colleau, 1995). Even though these figures look promising, several studies
have suggested the conflict of applying intense MAS selection on the short-term and long-
term genetic responses. Using the Fernando and Grossman model (1989), Ruane and
Coulleau (1995) compared the relative efficiency of MAS over conventional BLUP. A
single marked QTL and a large number of polygenes were simulated. They found that
MAS increased QTL responses relative to BLUP, but with lower polygenic responses.

Overall, the effect on total genetic response was slightly increased by MAS. In contrast to
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the previous studies, Gibson (1994) and Pong-Wong and Wooliams (1994), for a model
combining QTL and polygenic variances, reported that genotypic selection at the QTL
might lead to a rapid genetic response in early stages of selection with a negative effect in

the later generations due to a lower polygenic gain.

Mapping Resources in Cattle

Dairy Bull DNA Repository (DBDR)

With the purpose of intensifying the mapping of QTL associated with milk
production, milk composition, and health traits, in 1992 the DBDR was established (Da et
al, 1994). The DBDR currently is located at the University of Illinois at Urbana-
Champaign. In 1990, semen samples from 35 grandsires and 4,705 of their sons were
requested from several Al organizations. As of August 1995, nine North American Al
organizations have contributed a total of 65,743 semen samples from 3,366 bulls to the
DBDR. Semen samples from 17 of the 35 grandsires requested and from 1,910 of the

4,705 sons have been received. The total number of daughters of these sons having milk

production records exceeds half a million.

The Illinois Reference/Resource Families (IRRF)

The IRRF, created in 1991, were established with the aim of constructing a male-
specific linkage map and to map QTLs for growth traits in beef cattle. Nine paternal half-

sib families (459 offspring of 9 sires and 393 dams) have been genotyped. The breeds



included are Aberdeen Angus, Gelbvieh, Simmental. and South Devon. The genome
coverage is 1,975 centimorgans (cM), and the map consists of 269 loci (249
microsatellites and 20 structural genes). The average distance between contiguous loci is
9.73 cM, with 72.1% of the map intervals not exceeding 15 cM, and 4.9% of the intervals

not exceeding 25 cM (Ma et al., 1996).

The Cattle Gene Mapping Project (BovMaP )

The construction of physical and genetic maps of the bovine genome is being
carried out as an international collaboration. In Europe 32 laboratories are working on the
EU-funded BovMaP project, which is part of a larger international collaboration involving
laboratories in Australia, Africa, Israel, Japan, and the USA. A genetic map is being
constructed through the use of an international bovine reference panel (IBRP) of full sib
families which is distributed to participating laboratories through nodes in Australia
(Commonwealth Scientific and Industrial Research Organization, CSIRO, Brisbane),
Europe (Institut National de la Recherche Agronomique, INRA Jouy-en-Josas) and the
USA (Texas A&M University). Data are collated at the CSIRO, and summary databases
and information on cattle as well as on pig genomes are under development at the Roslin
Institute (pigs) and INRA at Jouy-en-Josas (cattle) through the EU GEMINI project.

Using an international reference panel of 295 individuals in full sibling pedigrees,
Barendese et al. (1994) developed a genetic linkage map for the bovine genome. Of the
202 DNA polymorphisms analyzed, 144 are microsatellites and 114 have been assigned to

the physical map. There are 171 loci linked to at least one other locus, and the average



genetic distance is 15 cM. Regarding the genome coverage, of the 29 pairs of autosomes,
24 have loci physically assigned to them, and new linkage groups are being added. The
202 genotyped loci represent an estimated 90% of the expected 2,800 cM length of the
male bovine genome.

Currently, the linkage map constructed using the IBRP consists of more than 400

markers (Lewin and Boling, 1994)

American Breeders Service (ABS) Global, Inc.

In 1994, ABS opened a DNA Research and Testing Laboratory. The new
laboratory acquired gene mapping technology and a marker genotype database from a
U.S. Holstein dairy cattle granddaughter design (GDD) with the purchase of Genmark.
The original Genmark GDD consisted of 14 sires with 1518 progeny-tested sons (33 to
208 sons per sire with an.average of 108) and more than 150,000 daughters (Georges et
al., 1995). A linkage map was constructed based on 159 markers with 138 markers
assigned to 27 linkage groups. These 27 linkage groups were in turn assigned to 24 of the
previously defined 29 autosomal synteny groups. The mean distance between loci equaled

14.8 cM, and the genome coverage was estimated to be about 66%.



Mapping Resources in Sheep

SheepBase

SheepBase is an informational database that includes mapped loci in sheep, and is
available on-line through the Internet (http://tetra.gig.usda.gov:8400/sheepgbase/
manager.html). Even though the sheep genome project is not as advanced as the cattle or
pig projects, great efforts are underway to achieve the goal of a 20cM map. Currently, the
ovine genome map consists of 235 loci mapped to 24 autosomal chromosomes and both
sex chromosomes, with no assignments to chromosomes 16 and 26 (Cockett and Jones,
1994).

Sheep reference families have been established in France, New Zealand and the
U.S. In France, two full-sib Booroola Merino families, with 18 and 28 offspring
respectively, have been produced. In New Zealand, reference familes include Texel,
Coopworth, Booroola, Merino/Romney and Perendale/Coopworth animals. In the U.S.,

the Meat Animal Research Center (MARC), Clay Center, Nebraska, has produced four

large half-sib families with 247 offspring. Current research is being focused on increasing
the map densitv, characterization of the callipyge gene (improved carcass characteristics),
search for closer markers for the spider lamb syndrome (semi-lethal congenital disorder)

gene and for the Booroola FecB gene (increased litter size) (Cockett and Jones, 1994).



Mapping Resources in Swine

Three linkage maps are currently available through three major independent
programs: the USDA-ARS linkage map with about 380, the Nordic map with 128, and the
PiGMaP map with 240 genes and markers. Combining all sources, the pig gene map
consists of about 700 genes and markers (Misfeldt and Jorgensen, 1994). PIGBASE is a
computer database that includes information on papers published about gene mapping in
the pig (http://www.ri.bbsrc.ac.uk/pigmap/pigbase/pigbase.html). It also includes genetic
and physical maps of the pig genome.

The strategy to develop genetic (linkage) maps is to exploit divergent genetic
breeds like the Chinese Meishan, the European Large White (Yorkshire), and the
European Wild Boar. Reference pedigrees are established, and take the form of three-
generational families, in which grandparents from genetically divergent breeds are crossed
to produce the parental (F1) generation. Then, intercrosses of F1s produce the F2
generation used for linkage mapping (Archibald et al., 1994). Examples of mapped QTLs
are regions of chromosome 4 that have been found to influence growth rate, fatness and
intestinal length, which have been identified in 2 Wild Roar / Large White cross
(Andersson et al., 1994). Fatness appears to be under the control of QTLs that map to the
proximal end of chromosome 4. The QTLs for intestinal length and growth rate (from

birth to 70 kg) are located distal to the "fatness" QTLs.



Methods for Detection and Mapping of QTL

Basic Approach and Development of Interval Mapping

Traditional approaches dealing with the detection and mapping of QTL were
restricted to the use of inbred lines. Early experimental designs (e.g., Sax, 1923; Soller
and Brody, 1976) for QTL detection involved the comparison of phenotypic means
between offspring of a heterozygous parent for a marker locus inheriting one or the other
alternative marker allele. The difference between these two means provides an estimate of
the gene substitution effect (o) (Falconer, 1989) at the marker. To test whether the effect
was significantly different from zero, a simple one-way ANOVA or linear regression
analysis was carried out. In 1989, Lander and Botstein pointed out the main drawbacks of
this method. If the marker is not the QTL, i.e. if there is incomplete linkage, the
substitution effect may be underestimated, more progeny may be required to detect a
given QTL effect, the most likely position of the QTL cannot be inferred, and with single
markers analyzed one at a time, power of detection against type I error decreases as the
number of tests increases. Therefore, Lander and Botstein (1989) proposed the use of
flanking markers in what they termed “interval mapping”. This method is based on the
assumption that there is only one segregating QTL on a chromosome of interest: however,
the method would not be optimal in the presence of linked QTL outside the interval.
Evidence for a QTL is obtained by computing the LOD (logarithm of the odds) score at
each position within the interval. The LOD score is a function of the size and position of

the QTL, and 1s defined as the log;e of the maximum likelihood value given the presence
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of a QTL over the maximum likelihood value given its absence in a particular interval. If
the LOD score exceeds a pre-specified threshold, a QTL is said to be present at that
particular position. By multiplying the LOD score by 2*log.(10) (= 4.605), it is possible
to express the LOD score as the equivalent and more familiar 2log, likelihood ratio test

statistic.

Classification of Gene Mapping Approaches

One criterion for grouping existing mapping methods is the type of QTL
parameters they estimate, QTL substitution effects (on means) or QTL variance
contributions.
Methods for estimating QTL Substitution Effects

In this group we can include ANOVA and simple linear regression (Dentine and
Cowan, 1990; Haley and Knott, 1992; Weller et al., 1990), multiple linear regression (e.g.,
Martinez and Curnow, 1992; Moreno-Gonzalez, 1992; Zeng, 1993), Maximum Likelihood

(ML) interval mapping postulating a biallelic QTL (e.g., Knott and Haley, 1992; Lander

and Botstein, 1989; Weller, 1986), or a combination of ML interval mapping and
regression on genotypes at other markers, termed composite interval mapping (Zeng,
1993, 1994). These methods have several drawbacks: (i) treating QTL gene effects as
fixed can lead to an over-estimation of the true gene substitution effect (Georges et al.,
1995; Hoeschele and VanRaden, 1993a,b; Smith and Simpson, 1986), (ii) they were
developed mainly for line crosses (originated from inbred lines or from outbred

populations) and, hence, are not suitable for application to outbred populations with
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complex pedigree structures, varying amount of information at the QTL, and incomplete
marker information (unknown marker linkage phases in the parents, uninformative
offspring). Advantages of the Least Squares design are that (i) it is computationally
inexpensive, allowing determination of empirical test statistic distributions via simulation
or data permutation (Churchil.l and Doerge, 1994), and (ii) it easily can be modified to
include multiple traits, multiple markers or QTLs and gene interactions. However, ML is

very demanding computationally.

Methods for estimating QTL variances

If QTL gene effects are treated as random rather than fixed, estimates would be
shrunken toward a prior mean more strongly for those QTLs mapped in smaller families
and with smaller true gene substitution effect. With methods treating QTL gene effects as
random, is possible to estimate not only the QTL effect and position, but also the QTL
variance contribution to the total genetic variance. Three methods that treat QTL gene
effects as random are Best Linear Unbiased Prediction (BLUP) of QTL effects (Fernando
and Grossman, 1989; Goddard, 1992; Hoeschele, 1993; van Arendonk et al., 1994),
Bayesian linkage analysis (Hoeschele et al., 1996; Hoeschele and VanRaden, 1993a,b),
and ML based on a mixed linear model (Xu and Atchley, 1995). In addition to allowing
estimation of QTL variance, these methods can accommodate more complex pedigree
structures (e.g., relationships among sires or among sons through dams) both in fitting
QTLs and polygenic effects. A major drawback is that computation can be very

expensive, as in the case of ML and Bayesian linkage analysis.
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BLUP has proven to be very advantageous in the estimation of breeding values, as
non-genetic effects, pedigree information and selection can be accounted for. Fernando
and Grossman (1989) showed how BLUP can be used to incorporate information on a
single marker locus to predict additive effects (v) at the marked QTL and residual
polygenic values (u). Goddar_d (1992) and van Arendonk et al. (1994) extended this
method to deal with multiple linked markers and QTL. The model of Goddard (1992) can
accommodate multiple linked marker loci with a single QTL in each marker interval, while
the model of van Arendonk et al. (1994) considers multiple unlinked marker loci, each of
which is linked to a single QTL. The original model of Fernando and Grossman (1989)
assumed that every individual in the population has been genotyped at the marker. Later
developments allowed for the inclusion of individuals without marker information
(Hoeschele, 1993; Wang et al., 1995) and for considerable reductions in the number of
equations by using a reduced animal model (RAM) (Cantet and Smith, 1991; Goddard,
1992), by including QTL equations only for genotyped animals and ancestors providing
relationships among genotyped animals (Hoeschele, 1993), or by estimating the sum of the
effects at several unlinked marked QTL (van Arendonk et al., 1994).

The BLUP method requires the computation of the inverse of the conditional
(co)variance matrix of the QTL allelic effects, given the marker data. In outbred
populations, marker data are not fully informative (e.g., parental origin of the marker
alleles is unknown, marker linkage phases of parents are unknown). Wang et al. (1995)
modified the method of Fernando and Grossman (1989) such that for computing the

(co)variance matrix given single marker information, assigning paternal and maternal
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origin to marker alleles was no longer required, and incomplete marker information was
accommodated (Wang et al., 1995).
In the methods of Cantet and Smith (1991), Fernando and Grossman (1989),

Goddard (1992), van Arendonk et al. (1994) and Wang et al. (1995), QTL effects are

linked directly to records, and the model parameters are 6., o, recombination rate

between a QTL and a marker, and the error variance, o>. Hoeschele (1993) proposed an
equivalent animal model linking records to breeding values (the sum of polygenic and QTL
effects) and linking QTL effects to breeding values though the relationship matrix.

One method for estimating dispersion parameters is Residual Maximum Likelihood
(REML), as suggested by Fernando and Grossman (1989) and used by van Arendonk et
al. (1994). However, van Arendonk et al. (1994) found that using a single marker
approach, the contribution of a QTL to additive genetic variance and its recombination

rate are not separately estimable from a half-sib design with REML.

Applying Gene-Mapping Research to Dairy Cattle

It may be assumed that in dairy cattle, MAS should be applied within the current
genetic evaluation systems (e.g. progeny testing, animal model evaluation). Any
methodology leading to its use will have to consider MAS as a tool integrated to
traditional selection strategies so that MAS can be cost-effective and acceptable to the
industry. Currently, it appears that there are two major ways of applying MAS in dairy

cattle populations:
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1. Via an animal model incorporating marker information in addition to production and

pedigree data. In this way it will be possible to predict breeding values by combining
phenotypic and marker information (Hoeschele, 1993). The animal models proposed
originally by Fernando and Grossman (1989) and Goddard (1989) are computationally
infeasible for populations of the size of the US dairy cattle herd. However, by using a
reduced animal model (RAM) (Cantet and Smith, 1991; Goddard, 1992) and by including
QTL gene effects only for genotyped animals and their tie ancestors (Hoeschele, 1993), a
large reduction in the number of equations can be achieved. Therefore, a methodological
basis has been established for incorporating marker information in genetic evaluation
systems.

Some important considerations before an animal model including marker data can
be applied routinely are (i) dispersion parameters, including QTLs variances and positions,
and polygenic variances will have to be estimated accurately, and (ii) investigation of
robustness to the use of incorrect estimates of map positions of markers and QTL,
additive genetic variance explained by the QTL, and number of alleles at the QTL have to
be conducted. A comparison between the accuracies of genetic evaluations obtained with

and without marker data is also necessary, including the case of falsely detected QTLs.

2. Use the marker information for pre-selection of young bulls before entering progeny
testing (Kashi et al., 1990; Mackinnon and Georges, 1995). Around 75% of the genetic
progress in dairy cattle populations originates from the selection of young bulls for testing

(Dentine, 1990). Any increase in the accuracy of selection at this stage could have a great
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impact on the rate of genetic improvement. Mackinnon and Georges (1995) proposed an
alternative scheme to that of Kashi et al. (1990), where the flow of marker information is
different. While Kashi et al. (1990) proposed pre-selecting young bulls based on marker
allelic effects inherited from elite grand sires to grandsons or a “top-down” approach,
Mackinnon and Georges (1995) proposed a “bottom-up” approach. In the latter, they
suggest that once the best young bulls are selected (the ones becoming the next generation
of bull sires) based on outstanding progeny-test evaluations, their daughters should be
genotyped for markers linked to known QTLs. Combining genotypic and phenotypic
information, it is then possible to identify young bulls heterozygous for the QTLs, if the
difference in mean milk production between daughters receiving alternative marker alleles
is greater than a pre-specified value. Then, the new generation of young bull progeny,
which are half-sibs to those daughters, will be selected prior to progeny testing if they
carry favorable marker alleles, using the number of favorable alleles or an index.

It is expected that in this way, each new generation of young bulls entering
progeny testing will be genetically superior to a corresponding group without pre-
selection of young bulls. This pre-selection scheme can make maximum use of
reproductive technologies such as multiple ovulation and embryo transfer (MOET). With
MOET, it will be possible to screen embryos, and increase or maintain the selection
intensity for bull dams. The main difference between the methods of Mackinnon and
Georges (1995) and Kashi et al. (1990) is that marker information becomes available at an
earlier stage in the former method, allowing exploitation of the Mendelian sampling

variance in full-sibs at a stage where there is not yet information in the conventional
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progeny-testing scheme. A substantial advantage of this strategy is that the progeny
testing scheme remains unaltered. Increases in genetic gains of 9%, 15% and 24%
compared to conventional progeny-testing scheme are possible if selection is based on 1,
2, and 5 marker loci, respectively. These figures correspond to an increase in the mean
value of the pre-selected bulls of .08, .13 and .21 phenotypic standard deviations,

compared to a not pre-selected group. In addition, the authors also state that it is an

economically feasible option.

Aim of this dissertation

The main objective of this dissertation is to develop a Residual Maximum
Likelithood approach based on a mixed linear model, including polygenic effects and
random QTL effects, to map QTL with multiple linked markers using a derivative-free
algorithm.

In Chapter 1, we address the problem of simultaneous estimation of the QTL
location, the proportion of the total additive variation associated with the QTL, and the
residual polygenic variance using flanking markers rather than single markers. A
granddaughter design, GDD, ignoring relationships among sires, is simulated under three
genetic models differing in the number of alleles at the QTL (2, 10, and 2 times the
number of sires). Assumptions are that sires are heterozygous at both marker loci, that
linkage phase is known, and that the marker haplotype for each son inherited from the sire
is perfectly known. The Derivative-Free Restricted Maximum Likelihood (REML)

package (Meyer, 1989) was modified to accomplish this objective.
17



In Chapters 2 and 3, we apply the theory of Wang et al. (1995) to compute the
(co)variance matrix among QTL effects allowing for relationships among sires, unknown
linkage phases in the sires, homozygosity of different markers for different sires, and sons
with unknown parental origin of marker alleles. Location of a single QTL and dispersion
parameters are estimated under the same three QTL models mentioned above. Robustness
of the analysis to the number of QTL alleles in the population also is investigated, as well
as the effect of ignoring relationships among sires. Power of detecting QTLs with
different variance contributions is quantified using a likelihood ratio test. For this purpose
we replaced the DFREML package with our own FORTRAN 77 program, Multiple QTLs
Residual Maximum Likelihood (MQREML).

In Chapter 4, the method is extended to accommodate two QTLs on the same
chromosome. Different tests for the presence of a single vs. two QTLs on a chromosome
are considered. Even though the method is applied to two QTLs, the extension is general
for fitting multiple QTL. The MQREML program is modified to include either 1 or 2
QTL in the analysis.

Based on: (i) the two alternative strategies mentioned before for the
implementation of MAS, (ii) the current availability of mapping populations, (i) the
dense cattle genome map, and (iv) the genetic evaluation system and progeny testing
schemes being used in dairy cattle populations, I consider this research an important
contribution to make MAS feasible in the near future.

Further research has been undertaken which is not included in this thesis. We have

participated in an International QTL Workshop at the annual meeting of the International
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Society for Animal Genetics in 1996 by analyzing simulated and real data with Least

Squares, REML and Bayesian methods. This work is described in Uimari et al. (1996).
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SUMMARY
A derivative-free Residual Maximum Likelihood analysis was developed to map a
QTL within a marker bracket and to simultaneously predict QTL effects and estimate
QTL, additive genetic, and residual variances. The analysis was applied to a simulated

granddaughter design typical for dairy cattle.

INTRODUCTION

Traditional methods for the mapping of Quantitative Trait Loci (QTL) include
linear regression or ANOVA (e.g., Weller et al., 1990; Dentine and Cowan, 1990) and
Maximum Likelihood (ML) (e.g., Lander and Botstein, 1989; Knott and Haley, 1992).
These methods treat QTL substitution effects (o) as fixed. Then, the o of identified QTL
are over-estimated, as predicted by Smith and Simpson (1986) and Hoeschele and
VanRaden (1993a,b), and as verified via simulation by Georges et al. (1994). In the
simulation, over-estimation increased with decreasing family size and decreasing true a.. If
QTL gene effects were treated as random rather than fixed, estimates would be shrunken
toward a prior mean more strongly for those QTL mapped in smaller families and with
smaller true c.

Two methods that treat QTL gene erfects as random are Best Linear Unbiased
Prediction (BLUP) of QTL effects (Fernando and Grossman, 1989; Goddard, 1992;
Hoeschele, 1993) and Bayesian linkage analysis (Hoeschele and VanRaden, 1993a,b;

Hoeschele, 1994). The former method can be viewed as a modification of linear
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regression assuming gene effects to be normally rather than uniformly distributed a priori.
The latter method can be viewed as a modification of ML assuming an exponential rather
than uniform prior distribution of o at biallelic QTL and incorporating a prior probability
of linkage depending on heritability.

Van Arendonk et al. (1993) found that the contribution of a QTL to additive
genetic variance and its recombination rate (r) with a single marker were not separately
estimable from a half-sib design in a BLUP/Residual ML (REML) analysis. Goddard
(1992) presented BLUP for multiple linked markers, but assumed location and variances
of QTL to be known. Here we show that QTL can be mapped and their variances
estimated simultaneously from half-sib designs, when marker intervals rather than

singletons are analyzed.

MATERIALS AND METHODS

The half-sib design considered here was a granddaughter design (GDD) consisting
of several sires with many progeny-tested sons. In a GDD, marker genotypes are available
on sires and sons, and phenotypes of sons are pre-adjusted daughter averages, termed

daughter yield deviations (dyd) (VanRaden and Wiggans, 1991). The linear mixed model
dvd, =x B+s, +e, [1]

was an animal model (AM) except that s; was half the son's breeding value, B was vector
of fixed effects, x, was a row i of design matrix X, and e was a residual. Model [1]

represents the AM incorporating marker data of Hoeschele (1993) (model H), where data
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are linked to breeding values instead of to polygenic and QTL effects in the equivalent
model of Fernando and Grossman (1989) and of Goddard (1992) (model FG-G). Hence,
vector s was augmented by those s effects of ancestors and by those QTL gene effects of
sons and ancestors needed to correctly account for additive genetic relationships among
sons.

Variance-covariance matrices were G = Var(s) and Var(e) = Do’ . Matrix D was
diagonal with element (1 - relprg;))/relpr;,, where relpr was reliability of a son's genetic
evaluations contributed by its progeny test. Relpr was computed by converting total rel to
total number of daughter equivalents (de), subtracting de due to parent average to obtain
de due to progeny test and converting these back to rel (VanRaden and Wiggans, 1991).
Var(G) was not the usual additive genetic relationship matrix times G2, but rather a
variance-covariance matrix of transmitting abilities and QTL gene effects in s, which
depended on the marker haplotypes of sons inherited from their sires. Var(G) was a

function of three parameters, ¢, r, or the recombination rate between the left marker
(assuming only one marker interval is considered) and the QTL, and o or the variance

due to the QTL.

These three parameters and 6. were estimated via REML by modifying the
DFREML package of Meyer (1989). Model [1] or model H was chosen over FG-G,
because it allowed using the single record - AM option of DFREML and because it
minimizes the number of QTL equations needed, which is important when many animals

without marker genotypes must be included in the analysis. Inclusion of such animals is
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necessary to provide relationship ties (ancestors) and to avoid selection biases, because in
areal GDD (Georges et al., 1994), many sons culled after progeny testing were not
genotyped due to unavailability of semen samples. The log likelihood was (in notation of
Meyer, 1989, p. 320 & p. 323)

logL = -5log/G| - .5(N-NF' - NR}log(c}) -. SloglC’| - Sy'Py/o} [2]
with log|C’| and y'Py evaluated using Gaussian elimination applied to augmented mixed
model equations (AMME) as shown in Meyer (1989).

The main modifications required in DFREML were the inclusion of D when
forming the AMME, the evaluation of G and of log|G| in each round of iteration using
the algorithm of Hoeschele (1993), and the augmentation and reparameterization of the
parameter list to include total narrow sense heritability h?, {vi, =1,q}, {r;, i=1,q}, and 0‘}25 ,

where v; is fraction of total additive genetic variance o explained by QTL i with position

r; within marker bracket. |

The DFREML analysis was used to demonstrate that QTL location and variance
are separately estimable from half-sib designs with a marker interval, although they are
confounded with a single marker (van Arendonk et al., 1993). This result was expected
because for a half-sib family and a marker interval, a reduced AM (RAM) requires fitting
two random marker effects representing [(1 - ry)/rm]ot and [ri/rm]ot (Goddard, 1992),

where r,, 1s marker recombination rate. However, for a single marker a RAM requires
fitting only one marker effect, m = (1 - 2r)a, indicating that r and o are not separately
estimable.
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RESULTS AND DISCUSSION
A GDD was simulated which contained 20 sires with 50 sons each. One biallelic
QTL was simulated inside a marker interval, with gene frequency of .5 and o equal to one
additive genetic standard deviation. Trait heritability was h*= 0.3, and ratio of QTL to
total additive genetic variance was v2'= .1. Value of r, was 0.165 and r; was 0.052. The
dyd were generated assuming constant relpr of .7. Marker haplotype inherited from the

sire was known for each son. For dyd, true parameter values were h’=0.7, v’= 0.1, 6’ =

355., and r; = 0.052; estimates were 0.721, 0.097, 421, and 0.04, and these were obtained
with very different sets of starting values, using the Simplex algorithm of DFREML. The
point was to verify estimability of all parameters with a half-sib design and marker bracket,
not to evaluate accuracy achievable with existing designs at this stage.

Future work will expand this analysis to the simultaneous mapping of several QTL
in different intervals and on flanks (chromosomal ends not bracketed by markers), as well
as to the estimation of QTL variances by a Bayesian approach with an informative prior
distribution of QTL variances rather than by REML with a uniform prior. A comparison
of this empirical BLUP analysis with the Bayesian analysis of Hoeschele and VanRaden
(1993a,b) and of Hoeschele (1994) and ML interval mapping will be conducted with

simulated GDDs.
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APPENDIX TO CHAPTER 1

This appendix is intended to present and discuss details of the method, simulation
and results not presented in Grignola, Hoeschele and Meyer (1994) due to the page limit
constraint.

Simulation. A granddaugther design consisting of 20 sires, 50 sons per sire and 50
daughters per son was considered. Three different QTL models, the biallelic, multiallelic
and normal-effects models, were studied. Absence of selection and inbreeding was
assumed.

Biallelic model: 2 QTL alleles with gene frequency p = 0.5. Sire QTL genotypes, QQ,
Qq, qQ, and qq, were generated according to Hardy-Weinberg equilibrium with
probabilities p’, p(1-p), (1-p)p and (1-p)?, respectively. Sire QTL allelic effects, vE. =a,
with k = 1,2 identifying the two sire alleles and | = 1,2 their corresponding allelic effects,
were assigned according to his genotype and the corresponding additive effect of each

allele, being the difference between homozygous 2a. = 26,. The QTL allelic variance

according to Falconer (1989) was
53 = Z pkai
k
and the QTL allelic variance expressed as a fraction of the total additive genetic variance
(v} was v* = .25 or v* = 0.0625

Multiallelic model: Same as the biallelic model, but considering 10 QTL alleles with

equal gene frequencies. In this model, the maximum gene substitution effect was defined
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as in the biallelic situation, and v* = 0.102 which corresponded to a v* = 0.25 in the
biallelic model.
Normal-effects QTL model: The number of QTL alleles was twice the number of base

animals (sires). The sire QTL allelic effects were drawn from a normal distribution as

vE ~ N(O,ci), k=12, and v2=10.25 or v} = 0.0625. With 20 unrelated sires, there
were 40 QTL alleles.

For all models, the genetic value of a son was determined by the inheritance of his
paternal QTL allele, with probability depending on his marker paternal haplotype, a QTL

allele from the dam sampled according to the population gene frequency, and a residual

polygenic effect, u, normally distributed with mean 0 and variance c’. The phenotype

was simulated by adding a normally distributed residual with mean 0 and variance c? .

Variance-covariance matrix of transmitting abilities and QTL gene effects (v)
Consider a single marker bracket with a QTL inside,

1 1 1
M, v, M;
|

M} v M2

S

<--r---><--rp----> 1} = recombination QTL-left marker

< Im > = recombination between markers

Then, by assuming no interference between crossovers (Haldane, 1919), r, can be
calculated from the equality r, = r; + 1, - 2r1,. For the two marker loci, a sire will

produce four types of gametes with frequencies and expected QTL effects as shown in
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Table 1. Double recombination was considered when computing the expected QTL
effects for each haplotype, while Goddard (1992) used approximate means assuming
double recombination equal to zero.

Table 1. Frequencies and Expectations of Marker Haplotypes

Haplotype | Frequency | . Expectation
11 5 (1-rm) (1-n) vl + () vi,
12 5 () (1-t) tfrn v! +1i/rm (1-12) V2,
21 S5 (rm) (1-1) i/t V. + 1/t (1 -11) V2,
22 5 (1-1y) (nrp) vi. + (1-nr) vi,

. Recurrence equations. In order to compute G for a simple GDD with unrelated sires,

the following recurrence equations for BV and QTL effects were considered

— ol 2 .2 2
asire - Vsire + vsire + usire Var(usire) - cSa - 20.v
— 1 2 _ 2 2
a,, =05, —05v,, ~-05v, +v,  +e, Var(e,)=075;-05c,
ko _ 1 2 k k oy _ 2 2) .2 —
vson —blvsire +b2vsire +eson Var(eson)_(l—bl —bl)cv’ k_1’2

where b, and b; are given explicitly in the last column of Table 1. Therefore, Var(G) was
a function of three parameters, total additive genetic variances’, r;, and ¢, which

needed to be estimated.

Results
Results in Table 2 indicate that the REML analysis converged to the same

estimates with very different starting values. This result also shows that with a half-sib
family design and a marker interval, r; and o can be estimated separately.
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Table 2. Convergence of Marker-DFREML estimation with different

starting values

Parameter | Start. value Estimate Start. value Estimate
h? 0.9 0.638 0.1 0.638
v 0.4 0.279 0.05 0.278
r 0.1 0.042 0.002 0.042
CH 200 542.65 1500 541.63
22log L -4331.32 -4331.32

The results for the biallelic model are presented in Table 3, where the true

parameter values were used as starting values for estimation. None of the parameters

were estimated very accurately, with h” and r; being underestimated, and v* and o? over-

estimated.

Table 3. Estimate and SE for h? v r,, and c? in a biallelic QTL
model (Mean estimates and SE from 45 replicates)

Parameter | True/Starting value Estimate SE
h’ 0.5 0.44 0.03
v? 0.25 031 0.02
r 0.052 0.027 0.004
o’ 750 884.99 53.97

In order to check accuracy of estimation with the marker-DFREML analysis, h

was estimated based on the same set of replicates, but by using a "standard" DFREML
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analysis without including marker information (Table 4). The same estimates were

obtained with both analyses. The main reason for the inaccurate estimation of h” and o

is the small design with only 20 sires. Another possible reason for the inaccuracy in
estimating h®, v?, 1y, and o2 is that the phenotypic data come from a mixture of normal
distributions of 3 genotypes, which may inflate the error variance, as well as cause the
inaccuracy in h? r, and v* as well. It must be remembered that DFREML analyses assume
normal distribution of the data; however, they are generally robust to deviation from
normality.

Table 4. Heritability (h?), additive (2 ) and error variance (o)

estimated with DFREML and marker-DFREML from data generated
with a biallelic QTL model. (Mean estimates and SE from 45 replicates)

Parameter | True value DFREML Marker-DFREML
h? 0.5 431+.03 0.441+.03
V2 0.25 - 0.31+.02
r 0.052 -- 0.027+.004
0': 750 651.97+£34.66 655.03+28.05
o’ 750 954.31+63.99 884.99+53.97

The estimates for the biallelic model with a smaller QTL variance (v’=.0625) are
shown in Table 5. Even though the parameters for this model were not estimated very
accurately, they were much closer to the true values. In this situation the mixture

distribution resembles more closely a normal distribution.
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good parameter estimates, it was very demanding for computing time in particular when

fitting two QTLs (Uimari and Hoeschele, 1996).

Therefore, Grignola et al. (1996a) developed a Residual Maximum Likelihood
method, using a deterministic, derivative-free algorithm, to map a single QTL. Hoeschele
et al. (1996) showed that this method can be considered as an approximation to the
Bayesian analysis fitting a normal-effects QTL model. In the normal-effects QTL model
postulated by the REML analysis, the vector of QTL allelic effects is random with a prior
normal distribution. The REML analysis builds on earlier work by Fernando and
Grossman (1989), Cantet and Smith (1991) and Goddard (1992) on Best Linear Unbiased
Prediction of QTL allelic effects by extending it to the estimation of QTL, polygenic, and

residual variance components and of QTL location.

Xu and Atchley (1995) performed interval mapping using Maximum Likelihood
based on a mixed model with random QTL effects, but these authors fitted additive
genotypic effects at the QTL, rather than allelic effects, with variance-covariance matrix
proportional to a matrix of proportions of alleles identical-by-descent, and assumed that
this matrix was known. Their analysis was applied to unrelated full-sib pairs. In order to
account for several QTLs on the same chromosome, Xu and Atchley (1995) used the idea
behind CIT and fitted variances at the two markers flanking the marker bracket for a QTL.
This approach, however, is less appropriate for multi-generational pedigrees, as effects

associated with marker alleles erode across generations due to recombination. It is also
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Table S. Estimates and SE for the parameters from REML
analysis of data generated with a biallelic QTL model (Mean
estimates and SE from 45 replicates)

Parameter

True/Starting value | Estimate SE
h? 0.5 0.455 0.03
v 0.0625 0.078 0.01
r 0.052 0.040 0.01
o’ 750 837.26 61.71

Results for the multiallelic model are presented in Table 6. An improvement in the

accuracy of estimation is observed due to an increase in the number of alleles from 2 to

10.

Table 6. Estimates and SE for the parameters from REML
analysis of data generated with a multiallelic QTL model (Mean
estimates and SE from 45 replicates)

Parameter | True/Starting value | Estimate SE
h? 0.5 0.524 0.03
v’ 0.102 0.113 0.008
I 0.052 0.078 0.006
o? 750 715.19 57.46

Results for the normal-QTL allelic effects model are presented in Tables 7 and 8,
for v> = 25 and .0625 respectively. Because this model is very similar to the model of

analysis (REML assumes normality), the parameters are estimated very accurately.
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Table 7. Estimates and SE for the parameters from REML
analysis of data generated with a normal-effects QTL model
(Mean estimates and SE from 45 replicates)

Parameter | True/Starting value | Estimate SE
h? 0.5 0.545 0.03
v? 0.25 0.249 0.02
I 0.052 0.053 0.004
c! 750 689.64 60.52

Table 8. Estimates and SE for the parameters from REML
analysis of data generated with a normal-allelic
QTL model (Mean estimates and SE from 45 replicates)

Parameter | True/Starting value | Estimate SE
h? 0.5 0.489 0.03
v 0.0625 0.074 0.007
r 0.052 0.053 0.008
o2 750 765.31 58.6

In summary, for the granddaughter design studied here, the REML analysis

showed to be robust to the number of alleles at the QTL, regarding estimation of position

and contribution to the QTL to the total additive variance, error variance and heritability.
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Abstract

A Residual Maximum Likelihood method, implemented with a derivative-free
algorithm, was derived for estimating position and variance contribution of a single QTL
together with additive polygenic and residual variance components. The method is based on a
mixed linear model including random polygenic effects and random QTL effects, assumed a
priori to be normally distributed. The method was developed for QTL mapping designs in
livestock, where phenotypic and marker data are available on a final generation of offspring,
and marker data are also available on the parents of the final offspring and on additional
ancestors. The coeflicient matrix of Mixed Model Equations, required in the derivative-free
algorithm, was derived from a Reduced Animal Model linking single records of final offspring
to parental polygenic and QTL effects. The variance-covariance matrix of QTL effects and its
inverse were computed conditional on incomplete information from multiple linked markers.
The inverse is computed efficiently for designs where each final offspring has a different dam
and sires of final offspring have many genotyped progeny such that their marker linkage phase
can be determined with a high degree of certainty. Linkage phases of ancestors of sires do not
need to be known. Testing for a QTL at any position in the marker linkage group is based on

the ratio of the likelihood estimating QTL variance to that with QTL variance set to zero.

Keywords: quantitative trait loci / residual maximum likelihood / mapping
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INTRODUCTION

Traditional methods for the statistical mapping of Quantitative Trait Loci (QTL)
include ANOVA and (multiple) linear regression (e.g., Cowan et al., 1990; Weller et al., 1990;
Haley et al., 1994; Zeng, 1994), Maximum Likelihood interval mapping (e.g., Lander and
Botstein, 1989; Knott and Haley, 1992), or a combination of ML and multiple regression
interval mapping (e.g., Zeng, 1994). These methods were developed mainly for line crossing
and, hence, cannot fully account for the more complex data structures of outcrossed
populations, e.g., data on several families with relationships across families, unknown linkage
phases in parents, unknown number of QTL alleles in the population, and varying amounts of
information on different QTLs or in different families. The gene effects near markers selected
based on a linkage test tend to be increasingly over-estimated with decreasing family size and
true effect (Georges et al., 1995). Random treatment of QTL effects would cause shrinkage of
estimates toward a prior mean in small families and for QTLs accounting only for a small

portion of genetic variance.

Fernando and Grossman (1989) derived Best Linear Unbiased Prediction (BLUP) of
QTL allelic effects, which are assumed to be normally distributed. For simple designs (e.g.
(grand)daughter designs with unrelated sires), BLUP reduces to random linear regression
(Goddard, 1992). Fernando and Grossman (1989) showed how to obtain BLUP estimates of
additive allelic effects (v) at a QTL linked to a single marker and of residual polygenic effects
(u), assuming that all individuals in a population are genotyped and that markers are fully

informative. Subsequent developments allowed for multiple linked markers with a QTL in
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each marker bracket (Goddard, 1992), multiple unlinked markers each associated with a QTL
(van Arendonk et al., 1994a), incomplete marker information (Hoeschele, 1993; van Arendonk
et al., 1994a; Wang et al., 1995), and for reductions in the number of equations by using a
reduced animal model (RAM) (Cantet and Smith, 1991; Goddard, 1992), by including QTL
gene effects only for genotyped animals and their tie ancestors (Hoeschele, 1993), or by
estimating the sum of the effects at several unlinked, marked QTL (van Arendonk et al.,
1994a). There are two linearly equivalent (Henderson, 1985) animal models incorporating
marker information, the first linking an individual's phenotype to both of its marked QTL allelic
effects and to its polygenic effect (Fernando and Grossman, 1989), and the other linking
phenotypes to the total additive effects and linking total additive effects to QTL effects via the
genetic covariance matrix (Hoeschele, 1993).

All methods described above are concerned with the prediction of genetic effects and
assume that the dispersion parameters are known. These parameters include the additive
polygenic vaniance, the variance contributed by a QTL, the QTL position, and the residual
variance. A first attempt to estimate these parameters by Residual Maximum Likelihood
(REML) methodology was undertaken by van Arendonk et al. (1994b) using a granddaughter
design with unrelated sires and a single marker. These authors found that for this situation,
QTL position and contribution to additive genetic variance were not separately estimable.
Grignola et al. (1994) showed that for the same type of design, these parameters were
estimable when performing interval mapping with flanking markers, with known linkage phases

in the sires, and no relationships among sires.
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Xu and Atchley (1995) performed interval mapping using Maximum Likelihood based
on a mixed model with random QTL effects, but these authors fitted one additive genetic effect
at the QTL rather than two allelic effects for each individual with variance-covariance matrix
equal to a matrix of proportions of alleles identical-by-descent shared by any two individuals at
the QTL and assuming that this matrix was known. These authors applied their analysis to full-
sib pairs that were unrelated.

In this paper, we (i) apply the theory of Wang et al. (1995) for a single marker to
compute the variance-covariance matrix among QTL effects conditional on incomplete
information from multiple linked markers, (ii) use this covariance matrix in the estimation of
position and variance contribution of a single QTL along with polygenic and residual variances
and in testing for QTL presence in a marker linkage group via REML with a derivative-free
algorithm, and (iit) include all known relationships between the parents (sires) of the final

offspring in the analysis.

METHODOLOGY

Mixed Linear Model

The animal model including polygenic and QTL effects of Fernando and Grossman

(1989) is:
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y=XB +Zu+ ZTv + e [1]
with
Var(u) = Aocl, Var(v) = Qo2, Var(e) = Ro?
where y is an Nx1 vector of phenotypes, B is vector of fixed effects, X is a design/covariate
matrix relating B to y, u is an nx1 vector of residual additive (polygenic) effects, Z is an
incidence matrix relating records in y to animals, v is a 2nx1 vector of QTL allelic effects, T is
an incidence matrix relating each animal to its two QTL alleles, e is vector of residuals, A is the
additive genetic relationship matrix, 6> is polygenic variance, QG s is the variance-covariance
matrix of the QTL allelic effects conditional on marker information, being Q a matrix of
probabilities of QTL alleles being identical by descent, o2 is half the additive genetic variance
explained by the QTL (also referred to as the QTL allelic variance), R is a known diagonal
matrix, and . is residual variance.

Matrix Q depends on one unknown parameter, the map position of the QTL relative to
the origin of the marker linkage group (dg). For notational convenience, this dependency is
suppressed in model [1] and below. Parameters related to the marker map (marker distances
and allele frequencies) are assumed to be known.

The model is parameterized in terms of the unknown parameters narrow sense
. oge 2_ 2 2 . 2 . . . 2 . . .
heritability (h° = ¢, /o) with o, being additive genetic and o, phenotypic variance, fraction
of the additive genetic variance explained by the QTL allelic variance or half of the additive

variance due to the QTL (v’ =62/c?), residual variance 7, and QTL location dq.
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Let there be phenotypes only on non-parents or final offspring which have single
records. Furthermore, recurrence equations linking u and v effects of non-parents (n) to those
of parents (p) are

u, = Wu, +m, v, = Fv  + ¢ (2]
where the matrix W consists of rows with zero, one or two elements equal to .5 for none, one
or two parents known, respectively, each row of the matrix F contains up to 4 nonzero
coefficients as explained below, and m and ¢ are the corresponding residual terms for u, and
v,, respectively. With single records, Z = I, where I is an identity matrix. Then, model [1] can

be rewritten as
y =XB+ Wu, + TFv, + m + Te + e [3]
Var(u,) = A,o:, Var(v,) = Q,0i, Var(m) = A,0%,
Var(e) = A,c!, Var(e) = Ro!
The Reduced Animal Model (RAM) is obtained from [3] by combining m and € into

the residual. Mixed model equations (MME) for the RAM (Cantet and Smith, 1991) can be

formed based on the RAM directly or by first forming MME based on [3] and subsequently

absorbing the equations in € and m. The resulting MME for the RAM are

XD, X XD,W XD,TF| B X'Duy
W'D,X WD,W WD,TF|u,|=| WDy,y [4]
FT'DuX FT'D,W FTD,TF]y, F'T'D.y
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where the matrix resulting from absorption is

1
D. = D, - D,(D, + A'k.)'D, = (D} + Auk—)“,

1
D, = R' - R'T(T'R'T + Alk,)'T'R" = (R + T'AVTT(—)",

v

It can be easily verified that matrix D, is diagonal even if A, is not, i.e., TA, T is always
diagonal. Inbreeding and unknown parental origin of marker alleles can give rise to some non-
zero off-diagonal elements in A, (Wang et al., 1995; Hoeschele, 1993). With D, diagonal,

matrix Dy 1s also diagonal; hence, the MME are easily computed.

REML Analysis

The REML analysis was performed by maximizing the likelihood of error contrasts
(LEC) (Patterson and Thompson, 1971) with respect to the parameters h’, v*, 67, and dq. The
LEC was obtained under the assumption of a joint multivariate normal distribution of y, u, and
v. For the full Animal Model (AM), the logarithm of the LEC (LLEC) can be expressed as

(Meyer, 1989)

LLECaum = logL(y;0) = const - .5log|G| - .5(N - NF - NR)logS? - .Slog|C| - .5y’Py G :

where

’

y'Py 1
N-NF and V = Var(y)c;—z

P=V'-VIXXVX)'X’v! § =
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where 0 is vector of parameters, G is variance-covariance matrix of the random effects (here, u

and v), NF = rank(X), NR = dimension(G), and C is coefficient matrix of the MME for the

AM (model [1] or [3]) re-parameterized to full rank and with o? factored out. The estimate of

o’ maximizes the likelihood for a given set of values for the other parameters (Graser et al.,
1987). The terms y'Py and log:|C| are computed as in Meyer (1989) via Gaussian elimination
applied to augmented MME, and log|G] is obtained as -log|G™!| with G™' computed directly. In
the following, it is shown how to compute the AM likelihood in [5] when working with MME
for the RAM.

When equation [5] is applied directly to the RAM, the result is
LLECram o -.510g|Ggay| - .SON - NF - NRgau) log(52)
- 5log|Cpay! - .5y'PyS? [6]
where all parts different from the AM LLEC are subscripted RAM. Let G be the variance-

covariance matrix of the genetic effects (u, v) of the parents and of the Mendelian sampling

effects for u and v of the non-parents or finals. Let G be partitioned accordingly. Then

G, 0

log|G"| = log = loglG;| + loglA™| [7]

A-]

where
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where A is block-diagonal with blocks of size < 2. Similarly, partition the coefficient matrix of

the MME for model [3], C, according to all other (1: B, u,, v,) and Mendelian sampling effects

(2: m, €). Then,

log|/C| = log|C,,| + log/C,, - Ci,C; Cul [8]
where Cy, is diagonal or blockdiagonal with blocks of size <2. Hence, the RAM LLEC can

easily be modified to yield the AM LLEC, or

LLECy % LLECgay - .SloglA| - .5log|Ca| + .S(NR - NRram)log(52)  [9]

where NR is total number of random genetic effects while NRgay is number of genetic effects
pertaining to parents.
The analysis was conducted in the form of interval mapping as in Xu and Atchley

(1995), where dg was fixed at a number of successive positions (every centimorgan) along the

chromosome, and at each position the likelihood was maximized with respect to h% v* and ci

Calculation of Q;' and A,

These matrices were computed by applying the theory presented in Wang et al. (1995)
to marker information consisting of multiple linked markers rather than single markers. At a
given QTL position, different markers were allowed to flank the QTL in different families due

to some parents being homozygous at the closest flanking markers.
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Notation. Let QF denote QTL allele k (k=1,2) in individual i and v}‘ the additive effect of this
allele. Let = denote identity by descent, let <= stand for "inherited from", let Gus,s represent the
marker information observed on the pedigree, and let M" denote a possible marker haplotype
(m) of individual i at the closest pair of marker loci bracketing the QTL for which the parent of
i is heterozygous. Furthermore, let M be a set of complete multi-locus marker genotypes for
the entire pedigree. Finally, p denotes parent (p=s,d), s sire, d dam, and L, denotes the linkage
phase of the alleles at the narrowest marker bracket for which parent p is heterozygous.
Variance-covariance matrix of v effects (. In the presence of missing marker data and/or
unknown linkage phases for parents, the variance-covariance matrix of the v effects is of the

form

Q.. = 2PUM| Ga) Qu [10]
where Qu is conditional on a particular set of multi-locus marker genotypes (M). Equation
[10] was given in Hoeschele (1993) and in Wang et al. (1995). The calculation of [10] is
computationally very demanding for large pedigree;. The probability of a QTL allele in
individual 1 being identical by descent (IBD) to a QTL allele in individual j (with j not being a
direct descendant of i) in general cannot be computed recursively using IBD probabilities
pertaining to the alleles in i and the parents of j when parental marker genotypes and/or linkage
phases are unknown (Wang et al., 1995), hence there is no simple method to compute the
inverse directly. A method for computing the inverse, which is more efficient than standard

inversion, was derived by Van Arendonk et al. (1994a).
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The variance-covariance matrix in [10] can, however, be computed by using Monte

Carlo. The Monte-Carlo approximation of [10] is

Q.. * Qu. [11]
where My is a particular realization of M from the probability distribution of M given Ges, and
S is sample size. Note that [1 1]- yields the exact variance-covariance matrix if sample size S is
large. Samples from this distribution can be obtained by Gibbs sampling, which was
implemented using blocking of the genotypes of parents and final offspring (finals) as in Janss
et al. (1995). For a half-sib design (daughter or granddaughter design) with large family sizes
(e.g., 50 to 100) and no relationships among final offspring (daughters or sons) through dams,
the linkage phases of the parents of final offspring are "known", as always or most frequently
(near 100%) the correct phase is sampled. Then, the inverse of the variance-covariance matrix
of the QTL effects can be computed exactly (up to Monte Carlo error due to use of [11]) as
follows. Equation [11] is employed to compute the sub-matrix pertaining to QTL effects of
parents of finals and ancestors using marker information on the entire pedigree including final
offspring. This sub-matrix is then inverted, and contributions of final offspring, computed with
known parental linkage phases, are added into the inverse. Note that in the RAM in [4],
offspring contributions appear in the least-squares part of the MME rather than in the inverse
variance-covariance matrix of the QTL effects.
Recurrence equations for v effects. Recurrence equations for the v effects of the finals were
required to compute the elements of F and A, in [4]. The general recurrence equation for a

QTL effect is
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vi = Pr(Qf = Q,|G,, )V’ +¢f [12]

=12

p=s.d

where

Pr(Q = Q|Gy) = D2 Pr(L,, M < p|G,,, )Pr(Q* = Q |M" < p,L,) [13]

Ly m

The most likely linkage phase is assumed to be the true phase for the parents of final offspring.
This assumption reduces the joint probability of parental linkage phase and offspring haplotype
in [13] to the probability of the marker haplotype of an offspring. This probability is computed
using the parental phase and the marker genotypes of an offspring at all linked markers.
Alternatively, [13] could be used when parental linkage phases are not known by computing
the joint probability of parent linkage phase and offspring haplotype for each interval as a
frequency count across all Gibbs cycles after burn-in, using information from the entire marker
linkage group and from all relatives in the pedigree. However, this approach would be only an
approximation to calculating the variance-covariance matrix and its inverse based on [10] for

the entire pedigree including the final offspring.

In[13], the Pr(Q = Q,|M!" <= p,L,) are ty; = (1-r)(1-rx)/(1-Ts) and tiz = rirg/

(1-rm) if M is a non-recombinant haplotype, or ty; = (1-r)rr/rv and t; = r(1-rr)/rv if M is
recombinant, where ry is recombination rate for the marker bracket, r;, (rr) is recombination
rate between the QTL and the left (right) marker, and Haldane's no interference map function is
employed. Here, we allow for double recombination while Goddard (1992) assumed it to be

ZEero.
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QTL alleles in final offspring are identified by parental origin, i.e. the two QTL alleles
in an offspring are distinguished as the allele inherited from the sire (s) and the allele coming
from the dam (d). This definition can be employed even if the parental origins of the alleles at
the flanking markers are unknown, but it can be used only in the final generation. For
illustration, consider a single parent p (here, p = s = sire) with genotype 12/12, linkage phase 1-
1, and the worst case of an offspring with genotype 12/12 (inheritance unknown at both
flanking markers). The possible marker haplotypes inherited from p are 1-1, 1-2, 2-1, and 2-2.

Then, if the QTL alleles in i are identified by the alleles at the left marker (1,2):

Vi=[Pr(l-l<=s)ty + Pr(1-2 = s)ty ] V. +[Pr(l-l< s)tip +Pr(1-2 = st ] V2
+[Pr(2-1= ) +Pr(2-2 e=5)] .5(v} +v2)+¢|
Vi2 = [PI' (2-1C S)tzz +Pr (2-2 << S)tlz ] V]s + [ Pr (2-1<: S)tzl +Pr (2—2 < S)tu ] Vz

+[Pr(l-le=s) +Pr(1-2 <) ] 5(v} +v2) +e?

whereas if the QTL alleles in i are identified by parental origin,
Vi‘ = [ Pr (1-1<: S)t“ +Pr (1-2 L nnd S)t21 +Pr (Z-IC S)tzz +Pr (2-2 <<= S)tlz ] V]s
H[ Pr(l-l1< )t +Pr(l-2 < s)tp + [Pr(2-1e= s)ty +Pr(2-2 <= s)tyy ] V2 + ¢

vi=5vi+5v] +€]
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Note that summing the v; and v; equations yields the same result for both QTL
identifications. Note also that the advantage of the identification by parental origin is that only v

is linked to the v-effects of the dam (d), instead of linking both v! and v} to the dam effects

required to include dam effects in the MME.

Hypothesis Test

The likelihood under the null hypothesis is evaluated at v* = 0. The distribution of the
likelihood ratio statistic is not known exactly, regardless of the method used to locate QTL
(Churchill and Doerge, 1994). For the null hypothesis postulating the absence of a QTL in a
particular interval rather than in the entire genome, Xu and Atchley (1995) found the
distribution to be between two chi-square distributions with degrees of freedom of one and
two, respectively. Several factors may influence the distribution of a test statistic for QTL
presence, e.g., the length of the genome, the marker density, the extent to which marker data
are missing, segregation distortion, and the distribution of the phenotypes. Self and Liang
(1987) derived analytical results for the asymptotic distribution of the likelihood ratio statistic
for cases where the true parameter value may be on the boundary of the parameter space.
However, with finite sample sizes and several factors influencing the distribution of the statistic,
it is questionable whether their results can be utilized in QTL mapping.

When analyzing real data, the threshold value for significance can be determined
empirically using data permutation (Churchill and Doerge, 1994). To obtain the threshold value

for a genome-wide search, on the order of 10,000 to 100,000 permutations are necessary. As
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these computations are unfeasible with the method presented here (see the companion paper by
Grignola et al., 1996), one may resort to estimating thresholds for a number of less stringent

significance levels and obtain the desired threshold by extrapolation (Uimari et al., 1996b).

CONCLUSIONS

The REML analysis described in this paper may be a useful alternative to other
methods for the statistical mapping of QTL. The REML method is generally known to be quite
robust to deviations from normality. When applied to QTL mapping, the REML analysis
requires fewer parametric assumptions than ML (e.g., Weller, 1986) and Bayesian analyses
(Thaller and Hoeschele, 1996a,b; Uimari et al., 1996a; Hoeschele et al., 1996) postulating a
biallelic QTL with unknown gene frequency and substitution effect.

While Xu and Atchley (1995) estimate QTL, polygenic and residual variances by ML,
we perform REML estimation. While REML should be preferred over ML in the presence of
many fixed effects relative to the number of observations (Patterson and Thompson, 1971), a
model for the analysis of QTL mapping experiments may only need to include an overall mean.
In this case, the difference between the ML and REML analyses is negligible.

As the true nature of QTLs is unknown, it is important to evaluate the performance of
this REML analysis and of other methods with data simulated under different genetic models
(e.g., biallelic and multiallelic QTL models). In a companion paper (Grignola et al., 1996), we

apply the REML analysis to granddaughter designs simulated with different models for the
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additive variance at the QTL. Hoeschele et al. (1996) apply Bayesian analyses based on biallelic
and multiallelic QTL models to data simulated under both models.

The REML analysis incorporates an expected variance-covariance matrix of the QTL
allelic effects, which is equal to a weighted average of variance-covariance matrices conditional
on all possible sets of multi-locus marker genotypes given the observed marker data.
Alternatively, Schork (1993) formulated a likelihood for a mixture distribution which is a
weighted average of REML likelihoods conditional on all possible sets of multi-locus marker
genotypes given the observed marker data. He pointed out, however, that simulation results
indicated that his modification may lead to a loss of power. In both approaches, the one
considered in this paper and in equivalent form by Xu and Atchley (1995), and the approach of
Schork (1993), probabilities of multi-locus marker genotypes are computed from the observed
marker information. However, if markers are linked to QTLs, phenotypes also contain
information about marker genotypes, and this information is ignored here (Van Arendonk,
personal communication). In this regard, the REML analysis can be viewed as an
approximation to the Bayesian analysis based on a multiallelic QTL model with QTL variance
and allelic effects having a prior normal distribution (Hoeschele et al., 1996). The Bayesian
analysis takes into account the joint distribution of the QTL and marker genotypes conditional
on the phenotypic information.

We are currently extending our REML analysis to account for multiple linked QTLs.
One way of approaching this problem was presented by Xu and Atchley (1995) and consisted
of fitting variances associated with next-to-flanking markers. Disadvantages of this approach

are that it is approximate, as effects associated with marker alleles identified within founders
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erode over generations, and that it requires many additional parameters when the marker
polymorphism is limited, causing the flanking and next-to-flanking markers to differ among
families.

Finally, we plan to extend the REML analysis to other designs (e.g., full-sib designs),
where the current computation of the inverse of the variance-covariance matrix becomes
approximate due to uncertain linkage phases in parents of final offspring, and to other ways of

computing this inverse exactly (e.g., Van Arendonk et al., 1994a).
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Abstract

Position and variance contribution of a single QTL together with additive polygenic
and residual variance components were estimated using a Residual Maximum Likelihood
method and a derivative-free algorithm. The variance-covariance matrix of QTL effects and its
inverse were computed conditional on incomplete information from multiple linked markers.
Simulation was employed to investigate the accuracy of parameter estimates and likelihood
ratio tests. The design was a granddaughter design with 2000 sons, 20 sires of sons and 9
ancestors of sires. Designs with 1000 and 600 sons were also investigated. Data were
simulated under three different genetic models for the QTL, a biallelic model, a multiallelic
model with 10 alleles at equal frequencies, and a model with normally and independently
distributed QTL allelic effects for base individuals. The trait analyzed was Daughter Yield
Dewiation or the daughter average adjusted for environmental effects and merits of mates of the
sons. Genotypes for five markers situated on the same chromosome were generated for all sons
and their ancestors. Data were analyzed with and without relationships among sires. Only small
differences between analyses with known, most likely, or unknown linkage phases in the
ancestors were detected. Parameters were estimated with good accuracy under all three
simulation models. The REML method was fairly robust to the number of alleles at the QTL

for the designs studied.

Keywords: quantitative trait loci / residual maximum likelihood / mapping / simulation /

granddaughter design
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INTRODUCTION

In a companion paper (Grignola et al., 1996), a Residual Maximum Likelihood
(REML) method was derived for estimating position and variance contribution of a single QTL
together with additive polygenic and residual variance components. The REML analysis was
implemented with a derivative-free algorithm. The method overcomes shortcomings of the
traditional methods of linear regression (e.g., Haley et al., 1994; Zeng, 1994) and Maximum
Likelihood (ML) interval mapping (e.g., Weller, 1986; Lander and Botstein, 1989; Knott and
Haley, 1992). ML and regression methods cannot fully account for the more complex data
structures of outcrossed populations, e.g. data on several families with relationships across
families, unknown linkage phases in parents, unknown number of QTL alleles in the
population, and varying amounts of data information on different QTLs or in different families.

The REML method is based on a mixed linear model including random polygenic
effects and random QTL effects. Polygenic effects represent the sum of the additive effects at
all loci not linked to the markers. The QTL allelic effects are assumed to have a prior normal
distribution with variance-covariance matrix conditional on information from multiple linked
markers. Because the true nature of the QTLs is unknown, 1.e. the number of alleles at a QTL
in the population studied is unknown, the robustness of the REML analysis to the number of
alleles at the QTL must be evaluated.

One of the main experimental designs for QTL mapping in livestock is the half-sib

design, used in cattle in the form of daughter or granddaughter designs (Weller, 1990).
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In this paper, we evaluate the accuracy of the REML analysis in QTL mapping using
granddaughter designs. The simulated designs resemble actual designs for the U.S. Holstein
population. Data are simulated under several genetic models differing in the number of QTL
alleles. The analysis is carried out with and without consideration of relationships among sires.
Here, we only present simulatign results. The analysis is described in detail in the companion

paper (Grignola et al., 1996).

SIMULATION

Design

The most frequently used design for mapping QTL in dairy cattle is the granddaughter
design (GDD), where marker genotypes are collected on sons and phenotypes on daughters of
the sons. A GDD was simulated with a pedigree structure resembling the real GDD of the US
public gene mapping project for dairy cattle based on the Dairy Bull DNA Repository (Da et
al., 1994). The simulated GDD consisted of 2000 sons, 20 sires, and 9 ancestors of the sires
(Figure 1), and is identical to the design used in the Bayesian linkage analyses of Thaller and
Hoeschele (1996a,b) and Uimari et al. (1996a). While this design had 100 sons per sire, designs

with only 50 or 30 sons per sire also were simulated.
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Figure 1: Pedigree of granddaughter design
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The phenotype simulated was Daughter Yield Deviation (DYD) of sons (VanRaden

and Wiggans, 1991). DYD is an average of the phenotypes of the daughters adjusted for

systematic environmental effects and genetic values of the daughter's dams. Total variance of
DYD equals Var(DYD) = 256 /R and can be factored into

Var(DYD) = 2562 +[(1-R)R]*.25c"
where R is reliability or squared accuracy of the son's estimated breeding value contributed by
its progeny test, and G is the additive genetic variance. In this factorization, the first
component is the variance among the sons' transmitting abilities or half of their additive genetic
values, and the second term is "residual variance" or the variance of the average dam and
Mendelian genetic effect of the daughters and the average environmental effect. Variance of
DYD can be rewritten as

Var(DYD) = 256 + w*o!
where w = (1-R)/R and 6’ = 250 . Therefore, when analyzing DYD with the weight w,

DYD has an expected heritability of .5, because the expected value of the estimate of c? is
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2562 . Hence, there is the option of treating heritability as known in the REML analysis when

phenotypic data are DYDs.

Marker and QTL genotypes were simulated according to Hardy-Weinberg frequencies
and the map positions of all loci. One linkage group was considered which consisted of five
marker loci and one QTL. Each marker locus had five alleles at equal frequencies, with the
exception of one design where each marker had only three alleles at equal frequencies. The
markers were spaced 20cM apart and, for the results presented here, the QTL was located in
interval 3 at ScM from the left marker (other QTL positions were simulated to verify that the
analysis was working properly).

Polygenic and QTL effects were simulated according to the pedigree in Figure 1. Data
were analyzed first (i) using full pedigree information, and alternatively (ii) assuming as is
common practice that the 20 sires in Figure 1 were unrelated. The QTL contribution to the
DYDs of sons was generated by sampling individual QTL allelic effects of daughters under -
each of the genetic models as described below. This sampling of QTL effects assures that DYD
of a heterozygous son or of a son with substantial difference in the additive effect of its two
QTL alleles has larger variance among daughters due to the QTL than a homozygous son or a

son with similar QTL allelic effects.

Genetic models
Three different genetic models were used to simulate data. Common to all models were

the parameters narrow sense heritability of individual phenotypes h> =3, phenotypic SD o, =
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100, and the order of loci and recombination rates among all loci. Under all three models,

phenotypes were simulated as

1 ni 1

DYDi = ;Zgij +ou e Var(ei) = —(.750% + 0'%)
ii= i
=l ny

where n; was the number of daughters of son i, g was the sum of the v effects in daughter j of

son i, u was a normally distributed polygenic effect, e was a normally distributed residual,
polygenic variance (G2 ) was equal to the difference between additive genetic variance (62)
and the variance explained by the QTL (26?%), and 6 was environmental variance. Number
of daughters per son was set to 50, corresponding to a Reliability (VanRaden and Wiggans,
1991) near .8. The ratio of the QTL allelic variance (2 ) to the additive genetic variance (o)

is denoted by v* below.

Model 1: Normal-effects rhodel. For each individual with both or one parent(s) unknown, both
or one QTL effect(s), respectively, were drawn from N(0, o). For the pedigree in Figure 1,
there were 32 distinct base alleles, and the QTL was treated as a locus with 32 distinct alleles in
passing on alleles to descendants. The parameter 62 was set to .256> or .0625c?, i.e., the
simulated QTL accounted for 50% (2v*=.5) or 12.5% (2v?=.125) of the total additive genetic

variance, respectively. In an additional simulation, v* was set to 0 to obtain the empirical

distribution of the test statistic under the null hypothesis.
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Model 2: Multiallelic model. The QTL had ten alleles with equal frequencies. For the biallelic
QTL with 2v* = .5 (see below), the difference among homozygotes was 2a = 20, being a the
genotypic value of one homozygote. For the multiallelic QTL, means of the ten homozygous
genotypes ranged from -G, to o, at equal intervals. Means of heterozygotes were calculated
assuming additive gene action. Given these means (m), additive effects of alleles were

determined as

j=10

a; = pzua,-
=1
where p; = p2=... = pio = p =.1. The vanance at the QTL was

=10
oan = 2viol = 2p ) ol
i=1

which yielded a value of 2v* = .204.

Model 3: Biallelic model. The QTL was biallelic with allele frequency of .5. The variance at
the QTL was

262 = 2vioi = 2p(1-p)a’
where for p =5 and 2v* = .5 or 2v* =125, QTL substitution effect a was determined and used

to compute the additive effects of the two QTL alleles as -pat and (1-p)a.

RESULTS

The REML analysis for single QTL mapping using all markers on a chromosome is

described in detail in the companion paper (Grignola et al., 1996). Analyses were performed
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with and without considering relationships among sires and with the marker linkage phases of
sires and ancestors known or unknown. For the designs considered here, the most probable
(more than 90%) linkage phase of the sires was always the true phase, but phase probabilities
calculated for the ancestors indicated more uncertainty about their true phases. When phases
were treated as unknown, the analysis employed equation [11] of Grignola et al. (1996) to
calculate the inverse of the variance-covariance matrix of the QTL effects of ancestors and
sires. Contributions from sons were calculated assuming that the most likely sire phases
equaled the true phases.

Analysis of a single data set took around eight minutes of computing time on an IBM
SP2 system with RS6000 390 and 590 nodes. In a preliminary investigation, the REML
analysis, using a derivative-free Simplex algorithm was started from very different initial values
for the parameters to verify convergence to the same estimates. As an example, a particular
data set simulated under the biallelic QTL model (2v* = .5) was analyzed using the two starting
value sets [.9, .45, .6,200.] and [.1, .05, .4, 1500.] for [h*, V?, do, 2 ] with the parameters
defined in Table 1. Parameter estimates and likelihood for the first starting value set were
.6380, .2790, .4434, 542.6, and -4331.3. Corresponding figures for the second starting value
set were .6380, .2780, .4440, 541.6, and -4331.3.

Figure 2 contains cumulative distribution functions with 90th percentiles of 2.706 and
4.605 for chi-square distributions with 1 and 2 degrees of freedom, respectively. The Figure
also contains an empirical distribution function with 90th percentile of 3.746 for the likelihood

ratio statistic from 1,000 replicates generated without a QTL. Xu and Atchley (1995) found
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the distribution to be close to the 2 df chi-square, while here the empirical distribution was in
between the 1 df and 2 df chi-square distributions and slightly closer to the 2 df distribution.

Parameter estimates and likelihood ratio statistics are defined in Table 1 and results are
presented in Tables 2 to 6. All results are based on 50 replicates. In Table 2, results for the
normal-effects QTL model wit}_1 2v? = 5 are presented. Several different analyses, described in
Table 2, were conducted. First, sires were simulated as unrelated and analyzed without
relationships. Then, relationships among sires were simulated according to Figure 1. In analyses
of these data, sires were treated as unrelated, treated as related with known marker linkage

phases (i.e., the true phases were used for all sires and ancestors), treated as related with the

Figure 2: Cumulative distribution functions with 90th percentiles for chi-square
distributions with 1 and 2 degrees of freedom, respectively, and empirical
cumulative distribution function with 90th percentile of the likelihood ratio
statistic from 1,000 replicates generated under the null hypothesis of no QTL.
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Table 1: Definition of model parameters and likelihood ratio

Symbol | Parameter

h? Narrow sense heritability

v Ratio of QTL to additive genetic variance

do QTL location in cMorgan

s Residual variance

LR Likelihood ratio test statistic = -2log[L(Hy:v’=0)/L(Ha:v*'0)]

Table 2. Means and their SE for the estimates of h%, v, do, and 52 and log likelihood

ratio for the normal-effects QTL model explaining 50% of the additive genetic
variance (50 replicates).

Parameter' | True Analysis I? Analysis IT* | Analysis V* | Analysis VI’
value | AnalysisI’ | Analysis IV? Analysis VII®

h? S 558 (037) | .558(.039) 541 (.037) | .494 (.034)
537 (.039) | .544 (.038) .S (fixed)

v 25 243 (.015) | .280(.015) 280 (.015) | .288(.016)
279 (.018) | .279(.015) 262 (.013)

do 4527 | 461 (.004) | .450 (.005) 449 (.005) | .444 (.005)
451 (.005) | .450 (.005) .449 (.005)

ol 750. 748. (75.) 767.4 (79.) 802.3 (79.) | 903.8(79.)
828. (86.) 798.1(79.) 759.1(5.1)

LR - 125.7(6.8) | 151.9(9.6) 151.7(9.6) | 127.8(7.8)
125.7(6.8) | 151.9(9.6) 151.5(9.6)

! Parameters and likelihood ratio are defined in Table 1.
? Analysis I: No relationships simulated, no relationships in analysis.
* Analysis IT: Relationships simulated, no relationships in analysis.

* Analysis III: Relationships simulated and used in analysis with known phases.

* Analysis IV: Relationships simulated and used in analysis with most likely phases.

% Analysis V: Relationships simulated and used in analysis with unknown phases.

7 Analysis VI: Relationships used in analysis and phases unknown; 3 alleles at markers.

® Analysis VII: Relationships used in analysis and phases unknown; h’ fixed at .5.
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most likely linkage phases used in place of the true phases, or treated as related with linkage
phases considered as unknown (by using equation [11] in Grignola et al. (1996)).

Accuracy of parameter estimates (Table 2) was slightly higher when sires were
simulated and analyzed as being unrelated (analysis I), compared to the case where sires were
simulated and analyzed as relatfed (analyses III to V). When sires were simulated related and
analyzed unrelated, the estimate of heritability was slightly lower and the likelihood ratio
statistic was lower than the corresponding values obtained with sires treated as related
(analyses II and IV). When sires were analyzed using relationships, treating the most likely
marker linkage phases of sires and ancestors as the true phases produced almést identical
parameter estimates and likelihood ratio statistics as considering linkage phases as unknown
(analyses III, IV, and V). Only small differences between analyses with known, most likely, or
unknown linkage phases are to be expected for a granddaughter design with marker
information on 100 sons per sire.

A further analysis (analysis VI in Table 2) was conducted on the same granddaughter
design except that markers had three alleles at equal frequencies rather than the five alleles
simulated for all other design variations. Parameter estimates were not noticeably affected by
the decline in marker polymorphism, but the average likelihood ratio statistic was reduced.

In the last analysis of Table 2 (VII), heritability was fixed at .5. Accuracy of estimates
of the QTL parameters and of residual variance was improved but the value of the likelihood
ratio statistic was almost unchanged.

Table 3 contains results for data sets generated with 2v? =125 and with relationships

among sires, and analyzed first by ignoring relationships among sires and secondly by
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accounting for relationships with linkage phases treated as unknown (equation [11] in Grignola
et al. (1996)). Analyses I and II in Table 3 were conducted for the granddaughter design with
100 sons per sire. The estimate of heritability and the likelihood ratio statistic were again lower

when relationships among sires were ignored. Expectedly,

Table 3. Means and their SE for the estimates of h, v*, do, and 2 and log

likelihood ratio for the normal-effects QTL model explaining 12.5%
of additive genetic variance (50 replicates).

Parameter' | True value | Analysis I Analysis II* | Analysis V°
Analysis I’ | Analysis IV® | Analysis VI’
h? 5 617(042) | .602(.042) | .538(.041)
559 (042) | .472(040) | 467 (.041)
v 0625 058 (.005) | .069 (.006) | .083 (.008)
063 (.006) | .095(011) | .112(.013)
do 4527 473 (016) | 435(016) | .507(.030)
434(017) | 467(020) | 526 (.030)
o2 750. 685.7(97) | 694.5(83.) 852.0 (95.)
810.2(98) | 994.6(88.) | 1033.8(99.)
LR - 2046 (1.9) | 10.42(1.0) | 6.56 (.74)
18.94(1.7) | 9.61(.89) 6.00 (.74)

' Parameters and likelihood ratio are defined in Table 1.
? Analysis I: Relationships simulated, 100 sons/sire, relationships in analysis.

* Analysis II: Relationships simulated, 100 sons/sire, no relationships in analysis.
4 Analysis III: Relationships simulated, 50 sons/sire, relationships in analysis.
5 Analysis IV: Relationships simulated, 50 sons/sire, no relationships in analysis.
¢ Analysis V: Relationships simulated, 30 sons/sire, relationships in analysis.
7 Analysis VI: Relationships simulated, 30 sons/sire, no relationships in analysis.

position of this smaller QTL was less accurately estimated, and the likelihood ratios were

considerably lower than those in Table 2. In the analyses of the granddaughter designs with
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only 50 (analyses III and IV) or 30 (analyses V and VI) sons, heritability estimates were also
lower when sires were treated as unrelated, and QTL variance contribution was over-
estimated. The differences between analyses with and without relationships, in the likelihood
ratio statistics were rather small for the designs with 30 and 50 sons, where the likelihood ratio
statistics were near the thresho!d values of 5.99 (.05 type-I error level) and 9.21 (.01 type-I
error level) when assuming a chi-square distribution with 2 degrees of freedom.

Figures 3 and 4 depict residual likelihood profiles for single replicates generated with
2v* = 5 and 2v* = 125, respectively, and obtained from analyses with relationships among
sires and with linkage phases of sires and ancestors treated as unknown. Both figures display
the marker positions, the most likely QTL location, and a confidence interval (CI) for the QTL
Figure 3: Likelihood profile for a single data set generated with 2v* = .5 (see

Table 1). Markers are located at 0cM, 20cM, 40cM, 60cM and 80cM. The QTL
is located at 45.27cM. Significance threshold for log likelihood ratio is 5.991 from
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position calculated by the LOD drop-off method of Lander and Botstein (1989). The limits of
this CI were found by determining the map position at either side of the most likely position,
where the LOD score had fallen by one unit (this calculation required converting natural
logarithms to base 10 logarithms). As pointed out earlier, information from all markers was
utilized, leading to smoother profiles (Knott and Haley, 1992; Georges et al., 1995) than the
original interval mapping method of Lander and Botstein (1989).

Figure 4: Likelihood profile for a single data set generated with 2v* = .125

(see Table 1). Markers are located at 0cM, 20cM, 40cM, 60cM and 80cM.

The QTL is located at 45.27cM. Significance threshold for log likelihood
ratio is 5.991 from (2 df, a=.05)
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Results for the multiallelic model (2v* = .204) are presented in Table 4. Again, data sets
were analyzed by first treating sires as unrelated and then by utilizing relationships among sires

with linkage phases of sires and ancestors treated as unknown. Parameters were estimated
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quite accurately, and likelihood ratios were significant and similar to those for the normal-

effects QTL model with 2v? = .125.

Table 4. Means and their SE for the estimates of b, V2, dg, and
o2 and log likelihood ratio for the multiallelic QTL model
explaining 20.2% of additive genetic variance (50 replicates).
Relationships among sires simulated, no relationships considered
in analysis or relationships used with unknown phases.

Parameter' | True value Estimate’ SE
h? S 5718 0443
5861 0420
Vv 102 1123 0103
.1086 .0083
do 4527 4404 .0080
4444 .0076
ol 750. 793.4 97.90
741.9 91.00
LR - 18.94 1.638
20.47 1.934

Parameters and likelihood ratio are defined in Table 1.
?First row: relationships in simulation and no relationships in analysis

Second row: relationships in simulation and in analysis with unknown linkage phase.
Results for the biallelic models with half of the homozygote difference equal to one
additive genetic SD (2v* = .5) or to one half of it (2v* = .125) are presented in Tables 5 and 6
respectively. For both tables, sires were related in the simulation, and data sets were analyzed
by ignoring relationships and by accounting for relationships with linkage phases unknown

(equation [11] in Grignola et al. (1996)). Ignoring relationships among sires again decreased

bl
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the estimate of heritability but increased the estimate of v2. The least accurate estimate of QTL
position was obtained under the biallelic model with 2v* = .125. Overall and at least when
relationships among sires were considered in the analyses, parameter estimates were not
noticeably inferior to those obtained under the corresponding normal-effects QTL models

(Table 2), and likelihood ratios for the biallelic and normal-effects models were similar.

Table 5. Means and their SE for the estimates of h’, v?, dg, and
o2 and log likelihood ratio for the biallelic QTL model explaining
50% of additive genetic variance (50 replicates). Relationships
among sires simulated, no relationships considered in analysis

or relationships used with unknown linkage phases.

Parameter' | True value Estimate® SE

h? 5 4688 0360
5387 0319

v 25 3042 0177
| 2565 0124

do 4527 4498 .0031
4478 .0032

o2 750. 981.1 82.46
770.4 68.39

LR - 145.3 5918
150.6 6.072

'Parameters and likelihood ratio are defined in Table 1.

?First row: relationships in simulation and no relationships in analysis
Second row: relationships in simulation and in analysis with unknown linkage phase.
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Table 6. Means and their SE for the estimates of h, v*, dg, and o2
and log likelihood ratio for the biallelic QTL model explaining
12.5% of additive genetic variance (50 replicates). Relationships
among sires simulated, no relationships considered in analysis

or relationships used with unknown linkage phases.

Parameter' | True value Estimate® SE
h? S 4789 0378
5069 0393
v 0625 0742 .0053
0713 .0049
do 4527 4304 0146
4284 0152
ol 750. 960.0 86.57
896.3 85.27
LR - 2233 1.754
2420 1.817

'Parameters and likelihood ratio are defined in Table 1.

*First row: relationships in simulation and no relationships in analysis
Second row: relationships in simulation and in analysis with unknown linkage phase.

Data under the biallelic QTL model were also simulated with a gene frequency of .2 for

two designs. For design I, true values were v?=.16, h’=.5, c2=750 and do=4527, and
estimated values v?=.1803 + .014, h’= 5525 + .05, c2=782.7£103.62 and do=.4467 £ .01.
For design II, true values were v?=.08, h’=5, 02 =750 and do=.4527, and estimated values

v?=.0454 + 0005, h*=.5429 + 0557, 02=850.1 £ 126.22 and do=4583 £ .0213.
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CONCLUSIONS

REML analysis based on a mixed linear model with random QTL allelic effects, having
a priori normal distribution, provided quite accurate estimates of QTL location and of the
variance components, in particular of the QTL variance contribution. Data were generated
under three different genetic models for the QTL, the biallelic, the multiallelic (ten alleles) and
the normal-effects (two effects per founder drawn from independent and identical normal
distributions) model. While the normal-effects model is very similar to the model of analysis
(REML requires the assumption of normality), the biallelic model with gene frequency p and
substitution effect o deviates the most from the model of analysis. In the biallelic model, 50%
of the individuals are expected to be homozygous for a gene frequency of p=.5, and variance

among daughters of a homozygous son is equal to p(1-p)o” + .75 42 + 2, while variance

among daughters of heterozygous sons is higher by .25a% Therefore, Thaller and Hoeschele
(19964a,b) and Uimari et al.. (1996a) fitted two different residual variances of DYD when
performing Bayesian analysis of linkage of a biallelic QTL.

Despite the discrepancies between the biallelic model and the model of analysis, the
REML analysis was quite robust to the number of alleles at the QTL, a result which is in
agreement with findings of Xu and Atchley (1995); i.e., polymorphism at the QTL did not
strongly affect parameter estimates or hypothesis tests. This finding confirms the usefulness of
the REML analysis as an alternative method of analysis which, although not non-parametric,

requires fewer parametric assumptions (number of QTL alleles and their frequencies) than
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Maximum Likelihood and Bayesian analyses based on biallelic QTL models. Furthermore,
REML is known in general to be quite robust to deviations from normality.

The REML analysis can be considered as an approximation to the Bayesian analysis of
Hoeschele et al. (1996) fitting a normal-effects QTL model. The Bayesian analysis has the
advantage of also being able to .ﬁt a biallelic model, but for the designs considered here, it does
not give more accurate parameter estimates than the REML analysis and requires several hours
of computing time. Although the REML analysis fitting a single QTL requires only around
eight minutes of CPU time, this requirement still prohibits the calculation of genome-wide
significance thresholds for this method using data permutation (Churchill and Doerge, 1994),
unless a number of less stringent significance levels are chosen to obtain threshold values and
these are used to extrapolate to the desired significance threshold (Uimari et al., 1996). Only
the Least-Squares method allows to directly compute genome-wide significance thresholds
from a large number of permutations (e.g., 10,000 to 100,000).

The power of the test likelihood ratio (LR) test was estimated as the number of
replicates with LR > 99th percentile from Chi-square with 2 df. The power was 1.00
irrespective of the QTL model when true v* = 25. The power was .87 and .97 when true v> =
.0625 for the normal-effects and biallelic QTL models, respectively. When the gene frequency
at the biallelic QTL model was set to p = .2, the power was 1.00 for with v’ = .16 and .60 for
Vi =04.

The REML analysis has been implemented in the FORTRAN program Multiple QTL
Residual Maximum Likelihood (MQREML), which is available from the authors upon request.

The program currently is being extended to fit two linked QTLs per chromosome, rather than
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using the approach of Xu and Atchley (1996) fitting the variances associated with the next-to-
flanking markers to account for additional, linked QTLs. Their approach is only approximate as
effects associated with marker alleles identified within founders erode over generations.
Furthermore, it requires many additional parameters when the marker polymorphism is limited,
causing the flanking and next-to-flanking markers to differ among families. In the near future,
the program will be extended to other designs (e.g., full-sibships within half-sibships), where
the current computation of the inverse of the variance-covariance matrix becomes approximate
due to uncertain linkage phases in parents of final offspring, and other ways of computing this

inverse exactly (e.g., van Arendonk et al., 1994) will be implemented.
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ABSTRACT

A Residual Maximum Likelihood method is presented for estimation of the
positions and variance contributions of two linked QTLs and of additive polygenic and
residual variance components. The method also provides tests for zero versus one QTLs
linked to a group of markers and for one versus two linked QTLs. A deterministic,
derivative-free algorithm is employed. The variance-covariance matrix of the allelic effects
at each QTL and its inverse is computed conditional on incomplete information from
multiple linked markers. Covariances between effects at different QTLs and between QTL
and polygenic effects are assumed to be zero. A simulation study was performed to
investigate parameter estimation and likelihood ratio tests. The design was a
granddaughter design with 2000 sons, 20 sires of sons and 9 ancestors of sires. Data were
simulated under a normal-effects and a biallelic model for variation at each QTL. The trait
analyzed was Daughter Yield Deviation or the son’s daughter average adjusted for
environmental effects and merits of mates. Genotypes at five or nine equally spaced
markers were generated for all sons and their ancestors. Two linked QTLs accounted
jointly for 50% or 25% of the additive genetic variance, and distance between QTLs
varied from 10cM to 40cM. Power of detecting a second QTL was at least .5 when
distance was 20cM and accounted for 50% of the additive variance, or 40cM and
accounted for 25% of the additive variance. QTL parameters were estimated quite

accurately except when QTLs were less than 20cM apart.
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INTRODUCTION

A variety of methods for the statistical mapping of Quantitative Trait Loci (QTL)
exist. While some methods analyze squared phenotypic differences of pairs related
individuals (e.g., Haseman and Elston, 1972; Gotz and Ollivier, 1994), most methods
analyze the individual phenotypes of pedigree members. The main methods applied to
livestock populations are Maximum Likelihood (ML) (e.g., Weller, 1986; Lander and
Botstein, 1989; Knott and Haley, 1992), Least-Squares as an approximation to ML (e.g.,
Weller et al., 1990; Haley et al., 1994; Zeng, 1994), and a combination of ML and LS
referred to as Composite Interval Mapping (CIT) (Zeng, 1994) or Multiple QTL Mapping
(MQM) (Jansen, 1993). These methods were developed mainly for line crossing and,
hence, cannot fully account for the more complex data structures of outcrossed
populations, e.g., data on several families with relationships across families, incomplete
marker information, unkﬁown number of QTL alleles in the population, and varying

amounts of data information on different QTLs or in different families.

Recently, Thaller and Hoeschele (1996a,b) and Uimari, Thaller and Hoeschele
(1996) implemented a Bayesian method for QTL mapping using single markers or all
markers on a chromosome, respectively, via Markov chain Monte Carlo algorithms and
applied the analyses to simulated granddaughter designs identical to those in the present
study. Hoeschele et al. (1996) showed that the Bayesian analysis can accommodate either
a biallelic or a normal-effects QTL model. While the Bayesian analysis was able to account

for pedigree relationships both at the QTL and for the polygenic component and gave
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good parameter estimates, it was very demanding for computing time in particular when

fitting two QTLs (Uimari and Hoeschele, 1996).

Therefore, Grignola et al. (1996a) developed a Residual Maximum Likelihood
method, using a deterministic, derivative-free algorithm, to map a single QTL. Hoeschele
et al. (1996) showed that this method can be considered as an approximation to the
Bayesian analysis fitting a normal-effects QTL model. In the normal-effects QTL model
postulated by the REML analysis, the vector of QTL allelic effects is random with a prior
normal distribution. The REML analysis builds on earlier work by Fernando and
Grossman (1989), Cantet and Smith (1991) and Goddard (1992) on Best Linear Unbiased
Prediction of QTL allelic effects by extending it to the estimation of QTL, polygenic, and

residual variance components and of QTL location.

Xu and Atchley (1995) performed interval mapping using Maximum Likelihood
based on a mixed model with random QTL effects, but these authors fitted additive
genotypic effects at the QTL, rather than allelic effects, with variance-covariance matrix
proportional to a matrix of proportions of alleles identical-by-descent, and assumed that
this matrix was known. Their analysis was applied to unrelated full-sib pairs. In order to
account for several QTLs on the same chromosome, Xu and Atchley (1995) used the idea
behind CIT and fitted variances at the two markers flanking the marker bracket for a QTL.
This approach, however, is less appropriate for multi-generational pedigrees, as effects

associated with marker alleles erode across generations due to recombination. It is also
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problematic for outbred populations, where incomplete marker information causes the

flanking and next-to-flanking markers to differ among families.

In this paper, we extend the REML method of Grignola et al. (1996) to the fitting
of multiple linked QTLs. While the extension is general for any number of linked QTLs,
we apply the method to simulated granddaughter designs by fitting either one or two

QTLs.

METHODOLOGY

Mixed Linear Model

The model is identical to that of Grignola et al. (1996a), except that it includes
effects at several (t) QTLs, and it can be written as:
t
y:XB+Zu+ZT(Zvi)+e [1]

1=1

with
Var(v) = Diag{Var(v)}, Var(v) = Qol,),
Var(u) = Ac}, Var(e) = Ro!?

where y is the vector of phenotypes, X is a design/covariate matrix, B is the vector of fixed
effects, Z is an incidence matrix relating records to individuals, u is the vector of residual
additive (polygenic) effects, T is an incidence matrix relating individuals to alleles, v; is the

vector of QTL allelic effects, e is the vector of residuals, A is the additive genetic
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relationship matrix, o’, is polygenic variance, Q.6 is the variance-covariance matrix of
the allelic effects at QTL i conditional on marker information, &, is the allelic variance at
QTL i (or half of the additive variance at QTL i), R is a known diagonal matrix, and . is
residual variance. Each matrix ; depends on one unknown parameter, the map position of
QTL i (d)). Parameters related to the marker map (marker positions and allele frequencies)
are assumed to be known. The model is parameterized in terms of the unknown
parameters heritability (#° = 0',,2/0;,2), fraction of the additive genetic variance explained by
the allelic effects at QTL i (', = &°y/0%as i=1,...,t), residual variance ¢, , and QTL map

locations d,,..., d, ..., d,.

A model equivalent to the animal model in [1] is (Grignola et al., 1996a):

t t
y=AXB + Wup + TY Fvoy + m + TY g, + e [2]

i=] i=1

Var(u,) = A,c;, Var(v,,)=Q,,0:, Var(m)=Ac,

u

Var(e,)=A,,02,, Var(e) =Ro!

where W has at most two non-zero elements equal to .5 in each row in columns pertaining
to the known parents of an individual, F; is a matrix with up to four non-zero elements per
row pertaining to the QTL effects of an individual’s parents (Wang et al., 1995; Grignola
et al., 1996a), Ap and @, are sub-matrices of A and Q, respectively, pertaining to all
animals that are parents, and m and & are Mendelian sampling terms for polygenic and
QTL effects, respectively, with covariance matrices as specified in equation [2]. While
Var(m) is diagonal, Var(g;) can have some off-diagonal elements in inbred populations

(Hoeschele, 1993; Wang et al., 1995).
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Note that models [1] and [2] are conditional on a set of QTL map positions (and
on marker positions which are assumed to be known). Dependent on the map positions are

the matrices (; in model [1] and the matrices F; and Q,, in model [2].

Note furthermore that models [1] and [2] assume zero covariances between effects
at different QTLs, and between polygenic and QTL effects. However, selection tends to

introduce negative covariances between QTLs (Bulmer, 1985).

A Reduced Animal Model (RAM) can be obtained from model [2] by combining
m, the & (i=1,...,t) and e into the residual. Mixed Model Equations (MME) can be formed
directly for the RAM, or by setting up the MME for model [2] and absorbing the

equations in m and the & (i=1,...,t). The resulting MME for the RAM and for t =2 QTLs

are:
X'DX X'DW X' DTF, X' DTF, b
W' DX W'DW+A;’ku W' DTF, W' DTF, u,
F'T'DX  F'T'DW  F,/T'DTF,+Q;\ k., F,'T' DTF, v |
F,'T'DX F,'T'DW F,'T' DTF, F,'T' DTF, +Qp(2) v | Voo
X' Dy
W' Dy
F,'T'Dy

where k, = ./, kyy = /Py, and

D=D,~-D,D,+D'k,)"D,, D,=D,-D,P(P'D,P+Dk )" P'D
D,=R’'-R'P(PR'P+D k)" P'R"
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Matrix D, which results from successive absorption of the Mendelian sampling terms for
the polygenic component and the QTLs, can be shown to be always diagonal and very
simple to compute, even when several (t > 2) QTLs are fitted. Let &, represent the
Mendelian sampling term pertaining to v effect k (k=1,2) of individual j at QTL i, and J,y
Mendelian sampling for the polygenic effect of j. Then, the element of D pertaining to

individual j (dj) is computed as follows:

d -+
For i=1 to i=t compute
x= (S + Sy )/ [y + Sy )dv + Sty S/
d,=d,-d’x
end
d;=d,-d’(l/d, + 6yk,)

where # is the j 'th diagonal element of R’

REML Analysis

The REML analysis was performed using interval mapping and a derivative-free
algorithm to maximize the likelihood for any given set of QTL positions, as described by
Grignola et al. (1996) for a single QTL model. The log residual likelihood for the animal
model was obtained by adding correction terms to the residual likelihood formed directly

from the RAM MME (Grignola et al., 1996a). The RAM residual likelihood is:
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Loy © —5108Gray| — .5(N = NF = NRy,, )Iog(5]) - .510g|Cp,,| — -5y' PyS}’
where ! = y'Py/(N - NF)

where N is number of phenotypic observations, NF is number of fixed effects, NRraus is
number of random genetic effects of the parents ((1+2t)*number of parents), Cruy is the
coefficient matrix in the left-hand-side of [3], P= V' - V' X(X’V'X)' X’V V =
Var(y)/o’., and Grayis block-'diagonal with blocks 4,0,” and Q) for i=1,...,t (see

also Meyer, 1989).

The RAM residual likelihood is modified to obtain the residual likelihood for the

animal model as follows (Grignola et al.. 1996):

Lys = Loay — SloglA™!| = .5C,y| + S(NR= NRp, )log(52)
where 4 is blockdiagonal with blocks 4, and 4. (i=1,...,t) from [2], Cx, is the part of the
MME for model [2] pertaining to m and & (i=1,...,t), and NR is total number of random

genetic effects ((1+2t)*number of animals) in the animal model.

The analysis is conducted in the form of interval mapping as in Grignola et al.
(1996b), except that now a t-dimensional search on a grid of combinations of positions of
the t QTLs must be performed, which is feasible for t=2. More precisely, map position (in
cM) of the first QTL (d;) is moved in steps of, e.g., 2cM from the first toward the last
marker position, and for any given d;, map position of the second QTL (d-) is moved from
d; cM + d,.in cM toward the last marker position, where d;, is the minimum distance
allowed between the QTLs (see Results). At each combination of d; and d; values, the

residual likelihood is maximized with respect to the parameters #°, v/ (i=1,...,t) and o,’.
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Matrices Q) , F; and A;, were calculated for each QTL as described in Grignola et

al.(1996).

Hypothesis Testing

The presence of one or two QTLs on the chromosome carrying the marker linkage
group is tested by first maximizing the likelihood under the one-QTL model and under a
model with no QTL fitted. Distribution of the likelihood ratio statistic for these two
models can be obtained via simulation or data permutation (Churchill and Doerge, 1994,
Grignola et al., 1996a,b; Uimari et al., 1996). If the likelihood ratio statistic indicates that
a QTL is present, then presence of a second QTL is tested by comparing the maximum
likelihood under the two-QTL model with (i) the maximum likelihood under the one-QTL
model, (ii) the likelihood maximized subject to variance at QTL 1 fixed at zero and
position of QTL 2 fixed at its ML estimate from the two-QTL model, and (iii) the
likelihood maximized subject to variance at QTL 2 fixed at zero and position of QTL 1
fixed at its ML estimate from the two-QTL model. The distribution of the likelihood ratio
statistics is not known, and obtaining it via data permutation would be difficult
computationally, as many permutations would need to be analyzed, and as the two-
dimensional search took 3-4 hours of run-time for the design described below. The
likelihood ratios corresponding to (ii) and (iii) above may have an asymptotic Chi-square
distribution with 1 degree of freedom (df) (if we assume that only the variance at one QTL
can vary), but to be on the conservative side, a 3 df Chi-square distribution may be

assumed (if we consider that the positions d; and d, and the variance at one QTL can
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vary). For genome-wide testing, the significance level also should be adjusted for the
number of independent tests performed (the number of chromosomes analyzed times the

number of independent traits).

SIMULATION

Design

The design simulated was a granddaughter design (GDD) as in the single QTL
study of Grignola et al. (1996b), where marker genotypes are available on sons and
phenotypes on daughters of the sons. The structure resembled the real GDD of the US
public gene mapping project for dairy cattle based on the Dairy Bull DNA Repository (Da

et al., 1994). The simulated GDD consisted of 2000 sons, 20 sires, and 9 ancestors of the

sires (Figure 1).

Figure 1: Pedigree of granddaughter design

Grandfather of Sire GS1 GIS2

1 T T

Father of sire  FS1 FS2 FS3 FS4 FS5 FSé FS7
| I | | I l I__l_[
rrrrrrrr ot

Sire S1S82S3S4S5 S6S7S8 S9S10S11S128S13 S14 S15 S16 S17 S18 S19 S20

The phenotype simulated was Daughter Yield Deviation (DYD) of sons

(VanRaden and Wiggans, 1991). DYD is an average of the phenotypes of the daughters
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adjusted for systematic environmental effects and genetic values of the daughter’s dams.

Total variance of DYD equals Var(DYD) = .250,° / R and can be factored into

Var(DYD) = .250,° + [(1-R)/R]*.250,°

where R is reliability or squared accuracy of the son’s estimated additive genetic effect or
breeding value, and o,’ is the additive genetic variance. In this factorization, the first
component is the variance among the sons’ transmitting abilities or half of their additive
genetic values, and the second term is “residual variance” or the variance of the average
dam and Mendelian genetic effect of the daughters and the average environmental effect.

As in Grignola et al. (1996b), variance of DYD is rewritten as

Var(DYD) = .250," + w*o,’
where w = (1-R)/R and o’ =.250°. Therefore, when analyzing DYD with weight w, DYD
has an expected heritability of .5, because the expected value of the estimate of ol is

.250,”. Hence, there is the option of treating heritability as known in the REML analysis

when phenotypic data are DYDs.

Marker and QTL genotypes were simulated according to Hardy-Weinberg frequencies
and the map positions of all loci. One linkage group was considered, which consisted of five or
nine marker loci and one or two QTLs. Each marker locus had five alleles at equal frequencies.
The markers were spaced 20cM or 10cM apart, and for the results presented here, the QTL
positions investigated were d; & d> =30cM (interval 2) & 70cM (interval 4) with S markers,

25cM (interval 2) & 55¢M (interval 3) with 5 markers, 30cM (interval 2) & 50cM (interval 3)
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with 5 markers, 35cM (interval 2) & 45cM (interval 3) with 5 markers, and 35¢M (interval 2)
& 45¢cM (interval 3) with 9 markers.

Polygenic and QTL effects were simulated according to the pedigree in Figure 1. Data
were analyzed by using the pedigree information on the sires. Note that in the simulation, no
linkage disequilibrium (across families) was generated, i.e., covariances between pairs of effects
at different QTLs or between QTL and polygenic effects were zero. Therefore, an additional
design was simulated where linkage disequilibrium was generated by simulating DYDs also for
sires, creating a larger number of sires and culling those sires with DYD lower than the 90"
percentile of the DYD distribution. QTL positions for this design were 30cM (interval 2) &
70cM (interval 3) with S markers, and the QTL model was the normal-effects model (see
below). Estimates of the simulated correlations (SE in parentheses), across 30 replicates, were
-.20 (.05), -.33 (.04), and -.32 (.04), between pairs of v effects at QTL 1 and QTL 2, between
pairs of v effects at QTL 1 and polygenic effects, and between pairs of v effects at QTL 2 and
polygenic effects, respectively. The effects of one or several generations of phenotypic

truncation selection on additive genetic variance in a finite locus model has been studied

analytically by Hospital and Chevalet (1996).

QTL models

Two different QTL models were used to simulate data. Under both models,

phenotypes were simulated as
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yi Ji
DYD, = n—zl: 2 lg,.]. +u,+e; Varle)= n_( 75sf +sf)
= e ;

3

-~

where n; was the number of daughters of son j, g;;x was the sum of the v effects in
daughter & of son j at QTL i, u; was a normally distributed polygenic effect, e; was a
normally distributed residual, polygenic variance (o,’) was equal to the difference between
additive genetic variance (o,?) and the variance explained by the QTL (25°), and &,” was
environmental variance. Number of daughters per son was set to 50, corresponding to a
Reliability (VanRaden and Wiggans, 1991) near .8. Narrow sense heritability of individual

phenotypes was h* = 3, and phenotypic SD was g, = 100 .

Note that the QTL contribution to the DYDs of sons was generated by sampling
individual QTL allelic effects of daughters under each of the two genetic models described
below. This sampling of QTL effects assures that DYD of a heterozygous son, or of a son
with substantial difference in the additive effects of the alleles at a QTL, has larger
variance among daughters due to the QTL than a homozygous son or a son with similar

QTL allelic effects.

Two different models were used to describe variation at the QTL, which are

identical to two of the models considered by Grignola et al. (1996b):

Normal-effects model. For each individual with both or one parent(s) unknown, both or
one effect(s) at QTL k (k=1,2) were drawn from N(0,,4°). For the pedigree in Figure 1,
there were 32 base alleles, and each QTL was treated as a locus with 32 distinct alleles in

passing on alleles to descendants. The parameter oy’ was set to .1250,° or .06250,°, i.e.,
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QTL k accounted for 25% (2vi° =.25) or 12.5% (2vi’ =.125) of the total additive genetic
variance, respectively. Consequently, the two QTLs accounted jointly for between 25%

and 50% of the additive genetic variance.

Biallelic model. Each QTL was biallelic with allele frequency p; = p, = p =.5. The

variance at QTL k was

202, = 2vlcl = 2p(l-p)al where forp = .5 and 2v,’ =.250r 2vP =.125, half the

v(k)

homozygote difference at QTL k, a,, and allelic variance o,4)° were determined.

RESULTS

The first group of designs studied contains two QTLs of equal effect explaining
jointly either 50% or 25% of the additive genetic variance. Parameters, likelihood ratio
statistics and power tests are defined in Table 1. The designs are described in Table 2 and

differ in the QTL positions and number of markers.

Overall, the QTL parameters were estimated quite accurately as in the single-QTL
model analysis of Grignola et al. (1996), except that empirical standard errors and biases

of QTL positions increased with decreasing true distance between the two QTLs.

Table 1: Definition of parameters and test statistics
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Parameter Definition

h? Narrow sense heritability

vi? Ratio of QTL allelic to additive genetic variance at QTL 1 (QTL allelic variance equals
half the additive variance due to the QTL)

v, Ratio of QTL to additive genetic variance at QTL 2

ol Residual variance

d Map position of QTL 1 in Morgan (for two-QTL model)

d; Map position of QTL 2 in Morgan (for two-QTL model)

d Map position of QTL in Morgan (for one-QTL model)

LRg Likelihood ratio statistic from the likelihood maximized under the two-QTL model and the
likelihood maximiZed under the two-QTL model subject to variance at QTL 2 fixed at zero
and position of QTL 1 fixed at its most likely value from the two-QTL model

LRp Likelihood ratio statistic from the likelihood maximized under the two-QTL model and the
likelihood maximized under the two-QTL model subject to variance at QTL 1 fixed at zero
and position of QTL 2 fixed at its most likely value from the two-QTL model

LRy Likelihood ratio statistic from the likelihood maximized under the two-QTL model and the
likelihood maximized under the one-QTL model

PWRa.42 Power of the test of one versus two QTLs estimated as number of replicates with both LRy
and LRy, > .99th percentile from Chi-square with 1 df or 3df

PWR4 Power of the test LR, estimated as number of replicates with LRy > .99th percentile from

Chi-square with | df or 3df

When the QTLs jointly explained 50% of the additive genetic variance, the true

QTL positions of 30cM & 70cM (design Ia) were estimated very accurately. For the true

QTL positions of 25cM & 55cM (design Ila) and 30cM & 50cM (design I11a), the

distance between the two QTLs was slightly over-estimated (i.e., the position of the first

QTL was slightly underestimated and the position of the other QTL slightly over-

estimated). This small bias may be due to the search algorithm which fits the second QTL

starting at a minimum distance of 10cM to the right of the first QTL. When analyzing

design IVa with true positions of 35¢cM & 45cM with the same minimum distance, the

distance between QTLs was greatly over-estimated. Therefore, the minimum distance

between QTLs was reduced to dmis = 2cM. However, parameter estimates and likelihood
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ratios remained unchanged, when the data were re-analyzed with dmia

number of markers was increased from S to 9, with the same QTL positions of

Table 2: Parameter estimates (SE in parentheses) and likelihood ratio statistics for

designs' with the normal-effects QTL model

= 2cM. When the

Parameter” Ia lia a IVa Va
Ib lib b IVb Vb
h? 574 (054) 570 (.046) .519 (.045) .589 (..051) 531 (.047)
551 (.053) 521 (.047) 591 (.056) .552 (.053) 596 (.054)
Vil 142 (012) 122 (012) .144 (016) .180 (.016) 152 (.019)
065 (.006) 072 (.010) 072 (.009) 088 (.010) 079 (.008)
vy .140 (011) 124 (013) 113 (014) .110 (.018) .147 (021)
069 (.008) 069 (.008) 068 (.010) 075 (018) 060 (.006)
o.’ 750.6 (108.0) 712.5 (87.38) 8195 (91.0) 7053 (102.6) 831.9 (109.1)
802.9 (115.4) 834.5 (102.1) 737.4 (120.5) 7932 (111.8) 714.5 (110.5)
d, 300 (.008) 224 (014) 279 (015) 324 (.021) 342 (013)
308 (018) 202 (.020) 282 (.020) 290 (.028) 290 (.021)
d, 702 (011) .554 (011) 559 (.019) 608 (.027) .501 (.019)
712 (011) .582 (.017) 566 (.021) 626 (.029) .504 (.020)
d 483 (.027) 416 (.020) 378 (014) 382 (.009) 409 (.006)
488 (.027) 385 (.028) 400 (.015) 386 (.024) 388 (.010)
LRy 43.254 (4.5) 30.684 (3.9) 21.250 (4.9) 27.771 (1.5) 18.641 (4.1)
12.390 (1.7) 18.475 (3.5) 11.382 (2.6) 12.425 (3.1) 10.384 (2.5)
LRy 44.550 (5.1) 36.586 (6.2) 29.095 (5.3) 59.256 (9.58) 30.915 (7.1)
16.080 (2.7) 15.402 (2.4) 13.873 2.7) 27.798 (4.3) 17.060 (4.1)
LRy 24.368 (2.7) 13.730 (1.5) 6.191 (.9) 10.878 (2.3) 3.959 (.6)
7.048 (1.2) 7.089 (1.1) 3.409 (.6) 3.835 (.51) 3.017 (4)
PWRy & | .97 93 | 83 70 | .50 27 | .57 37 | .27 17
50 17 | 40 27 {.30 10 | .20 00 |.13 .00
PWRy .97 .93 77 .60 .30 .10 43 .33 27 .00
37 A3 | 33 23 | .17 03 | .13 00 | .07 .00
1 Ia: d; = .3, d, = .7, 5 markers, v;° = v;* = .125
b: d; = .3, d; = .7, 5 markers, v;2 = v, = 0625
Ha: d, = .25, d, = .55, 5 markers, v,* = v;* = .125
Ib: d, = .25, d, = .55, 5 markers, v;* = v;° = .0625
la: d, = .3, d; = .5, 5 markers, v,2 = vf =.125
IIIb: d| = 3 d2 5 5 ﬂlarkefs V] —V2 .0625
IVa: d, = .35, d, = .45, 5 markers, v, —vz =.125

IVb: d; = .35, d; = .45, 5 markers, v. = vz = 0625
Va: d, = .35, d; = .45, 9 markers, v, —vz = 125
Vb: d, = .35, d, = .45, 9 markers, v;2 = v;> = 0625

2 Parameters and likelihood ratios are defined in Table 1

? First number using 99th percentile from 1 df Chi-square; second number using 99th percentile from 3 df Chi-

square.
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35¢M & 45cM, accuracy of the estimates of the QTL positions increased substantially,

and accuracy of the QTL variance contributions also improved.

When the QTLs accounted jointly for only 25% of the additive genetic variance,
precision of the estimates of QTL positions and variance contributions declined. However,
QTL parameters were still estimated quite well if the QTLs were at least 20cM apart. At
smaller QTL distances (designs IVb and Vb), QTL position estimates were biased with
QTL distance over-estimated, similar to but somewhat more pronounced than the biases

for designs [Va and Va with the larger QTLs.

When analyzing the designs in Table 2 with the single-QTL model, the most likely
QTL position was always somewhere in between the QTL positions estimated under the
two-QTL model. Averaged across replicates, the estimated QTL position was very near
the mean of the true positions. This result was expected, as both QTLs had equal variance

contributions and on average equally informative flanking markers.

The average values of the likelihood ratio statistics for testing between the single-
and two-QTL models declined expectedly with decreasing distance between the two
QTLs. For design IV, the average likelihood ratios were higher and more variable then for
design V, which had nine markers instead of five. The reason for this finding was the
occurrence of a few outlier values exceeding 100 for design [Va. Power of rejecting the
single-QTL model or detecting a second QTL based on requiring both LR4; and LRg> to
exceed the significance threshold was always higher than or equal to the power of the LRy

statistic. Use of LRy is, therefore, not recommended. For the test based on LRy4; and LRy,
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power declined expectedly with decreasing distance among QTLs and with decreasing true
QTL variance contribution. For joint QTL variance contribution of 50%, power was equal
to or higher than .5 when the QTL distance was at least 20cM (1 df chi-square threshold)
or 30cM (3 df chi-square). For joint QTL variance contribution of 25%, power of .5 was
achieved only for the 40cM distance between QTLs and the 1 df chi-square significance

threshold.

In Table 3, results for designs simulated under the biallelic QTL model are
presented. Except for the QTL model, these designs are identical to designs Ia,b and I1Ia,b
in Table 2. Parameters were estimated with an accuracy not noticeably lower than for the

normal-effects QTL model, an observation in agreement with the single-QTL study of

Table 3: Parameter estimates (SE in parentheses) and likelihood ratio statistics for
designs' with the biallelic QTL model

Parameter’ Ia b lia b

I 529 (045) 572 (042) 508 (039) 477 (049)
v 144 (012) 062 (.006) 118 (012) 086 (.020)
V.2 139 (.009) 070 (.008) 139 (015) 071 (.008)
5. BILL (9L6) | 7047 (903) 8143 (196) | 9676 (110.5)
d, 305 (.008) 269 (014) 267 (014) 278 (.020)
& 698 (.006) 683 (012) 522 (014) 561 (.022)
d 505 (.027) 487 (.029) 412 (014) 419 (.015)
LRy 37.813 (2.6) 17.337 (1.8) 26.662 (5.0) 12.239 (2.8)
LRy 39.845 (3.2) 16.774 (2.1) 19.363 (3.1) 12.252 (3.2)
LRy 24319 (2.3) 8.266 (.9) 7.640 (1.1) 2.176 (.3)
PWRdez} 1.00 971 63 40 .50 33 .03 .00
PWRy 57 93 .53 23 37 20 .03 .00

"a d, =3, d; =.7, 5 markers, vi= sz
Ib: d; = .3, d, =7, 5 markers, v;> = v;> = 0625

125

Ia: d, = .3,d, =5, 5 markers, v’ = v’ = 125

Ib: d, = .3, d; = .5, 5 markers, v,* = v,* = 0625
2 parameters and likelihood ratios are defined in Table 1.
? First number using 99th percentile from 1 df Chi-square; second number using 99th percentile from 3

df Chi-square.




Grignola et al. (1996b). Power of rejecting the single QTL hypothesis for the test based on
LRy; and LRy, was similar to that for the corresponding designs in Table 2 from the

normal-effects QTL model, or tended to be slightly higher.

The two-dimensional search required the evaluation of 630 QTL position
combinations for the chromosome of 80cM length with 2cM step size and dmin = 10cM.
Clock run-time of this analysis on a heavily used 21-processor IBM SP2 system was 3-4
hours for the two-QTL analyses, which likely would be reduced on a workstation
dedicated to this analysis, while run-time for the single-QTL analysis was at most only 10
minutes.

For the designs in Tables 2 and 3, the two QTLs had equal variance contributions.
Therefore, two additional designs with QTL positions of 30cM & 70cM and 30cM &

50cM, respectively, were simulated using the normal-effect QTL model, with QTL 1
explaining 25% and QTL 2 12.5% of the additive genetic variance. The average estimates
(with SE in parentheses) of QTL position from the single QTL analysis were .396 + .023
and .348 £ .010 for the 30cM & 70cM and 30cM & 50cM designs, respectively, being
closer to the first locus with the larger variance contribution. Estimated QTL positions
from the two-QTL analysis were 29.2 ¢tM * .8 and 69.9¢M = 1.0 for the 30cM & 70cM
design, and 24.2 +2. and 49. + 1.9 for the 30cM & 50cM design. Average v’ estimates
were .143 + .013 and .072 +.010 for the first design, and .126 + .019 and .087 + .012 for

the second design, respectively. For the 30cM & 70cM design, power was .77 £ .57 for
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the 1 (3) df chi-square threshold and the test based on LRy, and LRy,. For the 30cM &

50cM design, power was only .23 £ .10 for the same test.

When linkage disequilibrium was generated by phenotypic truncation selection of sires
for the design with QTL positions of 30cM and 70cM and joint QTL genetic variance
contribution of 50%, QTL parameters and their estimates clearly were affected. Heritability
was under-estimated (.213 + .020), and the v, (k=1,2) were over-estimated (.184 + .014, 211
+.014), except for QTL positions which were estimated accurately (.292 +.010, .696 = .007).
Power appeared to be reduced somewhat compared to the same design without selection, and
was estimated at .93 and .77 for the 1 and 3 df Chi-square distributions, respectively.

Reduction in power was probably due to the high estimate of error variance (1737.9 £ 55.3).

CONCLUSIONS

The REML analysis of Grignola et al. (1996a), based on a mixed linear model with

random and normally distributed QTL allelic effects and conditional on information from
multiple linked markers, has been extended here to fit multiple linked QTLs. This
extension is necessary to eliminate biases in the estimates of the QTL parameters position
and variance, which occur when fitting a single QTL when other linked QTLs are present.
At this time, the analysis has been implemented for two QTLs on the same chromosome
using a two-dimensional search. When fitting more than two QTLs, a more efficient search
strategy may be required. However, given the sizes of QTL variances that are needed to
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detect a QTL, it seems rather unlikely that more than two QTLs would be detected on the
same chromosome. As likelihood maximizations at different position combinations are

independent of each other, use of multiple processors, if available, would be needed to

reduce run times substantially.

REML analysis under.the two-QTL model yielded fairly accurate parameter
estimates. Accuracy declined, in particular for QTL positions, with decreasing distance
between the two QTLs. As in the single QTL study, the REML analysis was robust to the
number of alleles at the QTLs, as there was little difference in parameter estimates and
likelihood ratio statistics between designs generated with the normal-effects and biallelic
QTL models. Previous linkage analyses (e.g., Knott and Haley, 1992; Haley et al., 1994)
lead to the conclusion that a minimum distance of 20cM was required between linked
QTLs for their separate detection. This result was confirmed in the present study for
QTLs jointly explaining 50% of the additive genetic variance. A larger distance was
required for QTLs jointly explaining only 25% of the additive genetic variance, to achieve

a power of at least .5.

For the one-QTL model, relationships between the REML analysis, the equivalent
method of Xu and Atchley (1995), the method of Schork (1993), and the Bayesian
analysis of Uimari et al. (1996) were discussed in Grignola et al. (1996a). The method of
Xu and Atchley (1995), fitting variances associated with the next-to-flanking markers to
account for additional linked QTLs would not have worked well for the designs studied

here. A first reason is the inclusion of ancestors of the sires in the analysis, as their method
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fits random effects associated with the marker alleles in founders which erode across
generations due to recombination. Another reason is the small number of families differing
in the flanking and next-to-flanking markers, resulting in too little information for

estimation of variances associated with the next-to-flanking markers in the method of Xu

and Atchley (1995).

For testing the single- versus the two-QTL model, the test obtained from the
likelihood maximized under the two-QTL model and the likelihoods maximized subject to
the same positions and with either QTL variance contribution set to zero is a more
appropriate and powerful criterion for detecting a second QTL on the same chromosome
than the ratio derived from the maximized likelihoods under the single- and two-QTL

models, respectively.

If there is linkage disequilibrium due to selection, QTL positions still will be
estimated accurately while variance estimates and power may be affected. Accounting for

disequilibrium in the analysis should be investigated.

Finally, the two-QTL analysis was applied to data generated with a single QTL
explaining 50% of additive genetic variance and situated at 45 cM. Average estimates of QTL
positions were 45.4 + 0.4 cM from the single QTL analysis and 30.9 + 3.2 cM and 56.3 £2.2
cM from the two-QTL analysis. Average estimates of QTL allelic variance as a fraction of
additive genetic variance (v°) were .279 + .017 from the single-QTL analysis and .147 £ .027
and .139 = .021 from the two-QTL analysis. Power of the test, or frequency of replicates with

both LRy; and LRy; significant was .03 (.00) for the 1 (3) df Chi-square distribution, hence the
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correct decision of not rejecting the single-QTL hypothesis was made most of the time or

always.

Given the minimum distances reported here to detect two QTLs explaining jointly

50% of the additive variance (20cM) or 25% of the additive genetic variance (40cM) with

a power of at least 50%, it seems unlikely that it will be possible to discriminate between

higher numbers of linked QTLs based on data from livestock QTL mapping experiments.
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SUMMARY AND CONCLUSIONS
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Statistical gene mapping methods including Least Squares (LS) and Maximum
Likelihood (ML), were developed for line crossing and are unable to handle complex
pedigree structures (e.g., relationships among families in an outbred population). ML and
Bayesian methods can account for these type of pedigree structure, but they are highly
demanding of computing time. Therefore, the aim of this dissertation research was to
develop a Residual Maximum Likelihood (REML) approach based on a mixed linear
model including polygenic effects and random QTL effects to map QTLs with multiple
linked markers in outbred populations. The REML analysis can be considered as an
approximation to the Bayesian analysis fitting a normal-effects QTL model with QTL
variances having a normal distribution. The REML method can accommodate any
pedigree structure, and is intermediate in computational requirements compared to the LS
(low) and ML and Bayesian methods (high).

In Chapter 1, a half-sib design in the form of a granddaughter design (GDD),
consisting of 20 unrelated sires with 50 sons each was simulated. Marker genotypes were
available on sires and sons, and phenotypes on the daughters of the sons (50 daughters per
son). The trait analyzed was daughter yield deviation. A QTL located between two
markers was simulated, with each marker locus having five alleles. All sires were
heterozygous at both markers, and linkage phases of sires and paternal marker haplotypes
of sons were assumed to be known. Three different QTL models, assuming a biallelic,
multiallelic (10 alleles) and normal-effects QTL (number alleles equal to twice the number
of sires) were simulated. It was demonstrated that position and variance contribution of a

single QTL are separately estimable from half-sib designs using a marker bracket instead
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of a single marker. Regardless of the number of alleles at the QTL and the magnitude of
the QTL variance contribution to additive genetic variance (0.125, 0.5), the three QTL

models were able to estimate very accurately the parameters under consideration,

including heritability (h* = o / o} ), ratio of QTL allelic variance to additive genetic

variance (vV? = 62 /o), QTL position (dg), and residual variance (c2). However, a
slight improvement in the accuracy of estimation was observed as the number of alleles at
the QTL increased. This was expected since the normal-effects QTL and the model of the
REML analysis were very similar.

In Chapter 2, methodology for computing the variance-covariance matrix of the
QTL allelic effects given multiple linked markers, incomplete marker information, and
relationships among sires is presented. A REML method, using interval mapping with
likelihood maximizations every cM along the chromosome via a derivative-free algorithm
and a Reduced Animal Model is derived. A likelihood ratio test statistic (LR) was used to
test for the presence or absence of a QTL on the chromosome under study. The LR is
based on the maximum of the likelihood under the one-QTL model and under a model
with no QTL fitted. The distribution of the test statistic was investigated by simulation
and found to be between a 1 df and 2 df Chi-square distribution.

In Chapter 3, we performed a simulation study to investigate the methodology
described in Chapter 2. Marker genotypes were simulated for a chromosome length of
80cM with 5 marker loci forming four 20cM intervals. The same QTL models as in

Chapter 1 were considered, and the GDD consisted of 9 ancestors, 20 sires, 100 sons per
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sire and 50 daughters per son. Overall, QTL location and allelic variance were well
estimated under all three QTL models. For the GDD considered here and the normal-
effects QTL model with 2v?= 50%, the results indicated that use of the true, most likely
and unknown marker linkage phase in the sires affected neither the accuracy of the
parameter estimation nor the Likelihood Ratios (LR). Ignoring relationships among sires
or considering 3 alleles instead of 5 at each marker locus also did not affect accuracy of
parameter estimation; however, a decrease in the LR was observed. To further
investigate the effect of considering or ignoring relationships among sires on power of
QTL detection, GDDs with 100, 50 and 30 sons per sire and a QTL with a smaller
variance (2v* = 12.5) were simulated. The analysis was carried out by including or
ignoring relationships among sires. In all designs, ignoring relationships led to a decrease
in the heritability (h®) estimate and to an over-estimate of the QTL variance contribution
(v?), in particular for the smaller designs. As the design became smaller, the LR decreased
expectedly with or without use of relationships among sires However, superiority of the
power of the LR with relationships over the power of the LR without relationships did not
increase with decreasing size of the design.

Power calculations were carried out for the normal-effects and biallelic models
considering relationships among sires and unknown linkage phases. The power was 1.0
irrespective of the model when the QTL explained 50% of the total additive variance;
however, when the QTL explained only 12.5% of the total additive variance the poWer

dropped to .87 and .97 for the biallelic and normal-effects model, respectively. When the
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gene frequency in the biallelic model was fixed at p=.2, power was 1.0 and .60 if the QTL
variance contribution was .32 and .08 of the additive variance, respectively.

For the multiallelic QTL model explaining 20.4% of the additive variance, and the
biallelic QTL models explaining 50% and 12.5% of the additive genetic variance, location
and dispersion parameters were estimated accurately. As in the normal-effects QTL
model, ignoring relationships among sires increased v, and decreased the h® and LR. For
the three QTL models simulated, and for otherwise identical designs and analyses,
parameter estimates and LRs were very similar. Therefore, it can be concluded that the
REML analysis is quite robust to the type of polymorphism at the QTL.

In Chapter 4, the REML method was extended to accommodate several QTLs on
the same chromosome. The same GDD including relationships among sires as previously
described, and only the normal-effects QTL and biallelic QTL models were considered.
QTLs were simulated with equal variances (50% or 25% of the additive genetic variance
was explained jointly), unequal variances (25% and 12.5% for each QTL), and different
distances between QTLs (40, 30, 20 or 10 cM apart). Hypothesis testing was again based
on the likelihood ratio statistic. First, a test for the presence or absence of at least one
QTL was carried out as described in Chapter 2. If there was evidence for a single QTL,
presence of a second QTL was tested by comparing the maximum of the likelthood under
the two-QTL model with (a) the maximum of the likelihood under the one-QTL model
(LRy) and (b) the maximum of the likelihood subject to setting the variance of one QTL to-
zero and fixing the position of the other QTL at its maximum likelihood estimate from the

two-QTL model (LR4; and LRy4z). Power of the test requiring both LR4; and LRy, to be
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significant was estimated as the number of replicates where both LRy; and LRy, exceeded
the .99th percentile of the 1 df or 3 df Chi-square distribution.

As in the single QTL analysis, overall parameters were well estimated for all the
designs considered, except when the QTLs were 10 cM apart. In the latter case,
parameter estimation was improved by increasing the number of marker loci in the linkage
group from 5 to 9. In general, it can be concluded that as the distance between QTLs and
the contribution of the QTLs decreased, (i) bias and standard errors of position and QTL
variances increased, and (ii) power of detecting two QTLs based on LRy or LR4; and LRy,
decreased. Power of rejecting the single QTL model based on LRy; and LRy, was always
higher than power based on LRy, indicating that the former test should be preferred.
Finally, the effect of linkage disequilibrium generated by phenotypic truncation selection of
sires was studied. Results showed that the position of the two QTLs was estimated
accurately, however, heritability was underestimated, the QTL variance contribution over-
estimated, and the power appeared to be somewhat reduced, compared to the same design

without selection.

Main conclusions of this thesis
e The REML analysis using an expected variance-covariance matrix of random QTL
effects and relationships among sires in a large granddaughter design (20 sires and 100

sons/sire) allowed us to estimate quite accurately the QTL allelic variance(s) and

position(s).
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e A single QTL explaining at least 12.5% of the total additive variance can be detected
with a power of at least .87 for any of the genetic models considered here (biallelic,
multiallelic and normal-effects QTL models).

e Two QTLs explaining jointly 50 % or 25% of the total additive genetic variance, can
be detected with a power.equal to or greater than .50 if the minimum distance between
them is at least 20cM or 40cM respectively.

e The REML method proved to be robust to the number of alleles at the QTL.
However, decreased polymorphism at the marker loci decreased the power of QTL
detection.

e The REML method based on a Reduced Animal Model using a derivative-free

algorithm and interval mapping is computationally efficient.
Areas of further research include analysis of other designs (e.g. full sibs), extension

of the method to multiple trait analysis, consideration of unequal gene frequencies at the

marker loci, and accounting for the effect of linkage disequilibrium.
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