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Automatic Phoneme Recognition With Segmental Hidden Markov Models

Areg G. Baghdasaryan

(ABSTRACT)

A speaker independent continuous speech phoneme recognition and segmentation system

is presented. We discuss the training and recognition phases of the phoneme recognition sys-

tem as well as a detailed description of the integrated elements. The Hidden Markov Model

(HMM) based phoneme models are trained using the Baum-Welch re-estimation procedure.

Recognition and segmentation of the phonemes in the continuous speech is performed by a

Segmental Viterbi Search on a Segmental Ergodic HMM for the phoneme states.

We describe in detail the three phases of the phoneme joint recognition and segmentation

system. First, the extraction of the Mel-Frequency Cepstral Coefficients (MFCC) and the

corresponding Delta and Delta Log Power coefficients is described. Second, we describe

the operation of the Baum-Welch re-estimation procedure for the training of the phoneme

HMM models, including the K-Means and the Expectation-Maximization (EM) clustering

algorithms used for the initialization of the Baum-Welch algorithm. Additionally, we describe

the structural framework of - and the recognition procedure for - the ergodic Segmental HMM

for the phoneme segmentation and recognition. We include test and simulation results for

each of the individual systems integrated into the phoneme recognition system and finally

for the phoneme recognition/segmentation system as a whole.
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Chapter 1

Introduction

Communication is a vital part of everyday human life. Particularly, voice communication,

since it is the primary method of communication between humans and is defined by passing

verbal information from the speaker to the listener. There are other means of communication

between people, however the flow of information via speech is considered to be the fastest

and the most effective. Thus it is crucial to be able to obtain as much information as

possible from a speech signal. Due to the limited training data available, most of the large

vocabulary Automatic Speech Recognition (ASR) systems use several interconnected layers

of recognition for optimum performance. Phonemes are perhaps the most common sub-word

modules that are used in ASR systems. Thus, in this thesis we concentrate on the task of

phoneme recognition, which plays a key role in the recognition of continuous speech using

ASR systems.

1.1 Background on Speech Processing

The speech generated and perceived by people is a set of periodic variations of pressure

propagating through the air. These air vibrations are fueled by the human lungs. The

vocal tract subsystem of the human auditory system is responsible for the shaping and the

production of the actual sound. The human vocal tract consists of the pharynx, mouth, and

1
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nose cavities. The air generated by the lungs goes to the human glottis. This generated air

is responsible for the production of the vowels and voiced sounds and also generates a pulse

train for the vocal tract. A noise generated by the human glottis results in consonants or

unvoiced sounds [1].

Initially the variations in the air pressure are converted into an analog signal by the use

of a microphone or a telephone headset. Then the analog signal is converted into a digital

signal by the use of the analog to digital converter. An anti-aliasing low-pass filter is placed

directly before the digital sampled speech for the rejection of any would-be high-frequency

aliasing components, channel noise, and/or inter-channel interference. Ideally, the low-pass

anti-aliasing filter would have a cut-off frequency at half of the Nyquist frequency, which

corresponds to half of the sampling frequency.

Speech recognition refers to the extraction of verbal information from the speech utter-

ance. In other words, a speech recognition system takes the speech utterance as the input and

produces a text output that corresponds to the given speech. History of speech and speaker

recognition dates back to the 1870s when Alexander Graham Bell was experimenting with

speech in an effort to make human speech visible for people with hearing disabilities. He was

the first to experiment on how to convert the variations in the air pressure generated by the

human voice into electric signals. The development of speaker identification systems started

in the 1960s when scientists found that the characteristics of the human voice can be used

to uniquely identify the speaker. Speech recognition systems are widely used in the health

care industry, in military applications such as battle management and air traffic control, and

for telephone applications [2]. The performance of speech recognition systems depends on

several factors, such as the vocabulary size, the amount of training, and the computational

complexity of the system.

Automatic speech recognition systems have several unique and defining characteristics,

and are categorized into several different types. The speech recognition system can be either a

speaker independent or a speaker dependent system. The speaker dependent system is able to

reliably extract verbal information from a particular speaker, whose acoustic characteristics
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are recorded in a speech database. On the other hand, a speaker independent recognition

system is able to extract the verbal information from any speaker (whose acoustic data may

not be installed in the database). Speaker independent systems are computationally more

complex than speaker dependent systems, because of the need to recognize speech produced

by a speaker that is not prerecorded [3]. The recognition systems developed for this thesis

are speaker independent.

An Automatic Speech Recognition system can also be categorized as an isolated-word

recognition system or a continuous speech recognition system. In an isolated word recognition

system, there is a distinct pause - of about 200 ms - between the words in the spoken

utterance, thus a simple endpoint detection algorithm is sufficient for the segmentation of

the words. Thus, the recognition task of the isolated word recognition system is reduced to

an accurate segmentation of the words followed by single word recognition. On the other

hand, a continuous speech recognition system is responsible for recognizing a sequence of

words that are spoken without a pre-specified pause between the uttered words. Thus,

in a continuous speech recognition system the visible set of pauses between the words are

generated by the inter-word fricatives and gaps. The continuous speech recognition system

is generally more computationally complex than the isolated word recognition system. Also,

the performance of continuous speech recognition systems is generally degraded by the co-

articulation effects between the words. This thesis focuses on the recognition of a string of

phonemes in a continuous speech recognition system.

The speech recognition system can also be characterized by the size of the vocabulary

supported. There are three general ranges of vocabulary sizes: small, medium, and large

containing 1-99 words, 100-999, and more than 1000 words respectively. As the vocabulary

size increases, so does the memory size and the computational complexity of the speech

recognition system [3]. Both the computational complexity and the memory usage of the

recognition system are directly proportional to the vocabulary size. Generally the large

vocabulary automatic speech recognition systems use a layer of sub-word modules, such as

phonemes, to compensate for the lack of available training data [4]. Thus the recognition
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efforts in this thesis concentrate on the task of phoneme recognition.

The earliest speech recognition systems used the information in the speech signal, such

as the signal energy and the signal zero-crossing rate, in an attempt to recognize an isolated

word utterance. Each of the words in the dictionary had a set of parameters, generated from

the time domain speech signal. Then these parameters, of each word, were compared with

the set of parameters from the spoken utterance. Research has shown that the parameter

extraction in the time domain from the speech signal is not effective and does not produce

high recognition rates, since the speech signal typically has a high variability. Thus the speech

recognition task was classified under the pattern recognition task. Research in the 1970s has

shown that modeling of the vocal chamber and the pitch of the speaker can produce a

higher recognition rate. This was achieved using Linear Predictive Coding (LPC) [5]. Later,

the cepstral representation of the power spectrum of the speech signal was shown to lead

to good recognition results for the case of isolated word recognition. The Mel-Frequency

Cepstral Coefficients (originated by Paul Mermelstein [6]) are now generally used in ASR

systems as feature vectors representing a speech utterance. The feature extraction system

in our phoneme recognition system implementation uses the MFCC coefficients and their

corresponding Delta Coefficients, as detailed in the next chapter.

Modeling of the speech signal was later advanced by incorporating dynamic programming

techniques in the pattern recognition task. Dynamic Time Warping (DTW) is a technique

that was originally used to compensate for the speech variability in a spoken word in the

isolated-word recognition task. DTW basically stretches or compresses the time domain of

the feature vectors of the test speech signal to match the pre-existing templates of each word,

in the case of the isolated word recognition task. Later, statistical models gained popularity

for the task of isolated-word and continuous speech recognition. Because of the fact that

the speech signal is a non-stationary stochastic process, the statistical models for a speech

signal are becoming more effective for the recognition task. Perhaps the most widely used

statistical model for speech word units is the Hidden Markov Model (HMM). We incorporate

the HMM framework for the phoneme recognition task in this thesis.
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This thesis presents an implementation of a phoneme recognizer, which is modeled by

HMM. The phoneme recognizer plays a crucial role in the recognition task of a large vo-

cabulary automatic continuous speech recognition system. Traditional algorithms for the

segmentation and the recognition of the sub-word units are analyzed and a new set of algo-

rithms is implemented for the segmentation of the phoneme boundaries and the recognition of

the phoneme string. The algorithms proposed in this thesis integrate the phoneme duration

statistics and the phoneme transition statistics in the recognition system.



Chapter 2

Phoneme Recognition System

The first chapter provided a brief overview of background information about ASR systems

and their classification into the corresponding types based on their system properties. This

chapter discusses the overall topology and the functionality of the automatic phoneme recog-

nition system. In particular, this chapter shows the structure and the construction of the

feature vector generator, for training and recognition systems. We also provide an algorithm

for endpoint detection, which essentially determines the start and end points of a speech

utterance. In addition several practical considerations of the ASR system construction are

discussed.

2.1 Phoneme Recognition System Structure

Any pattern recognition and/or statistical inference system is comprised of two distinct

phases: the training phase and the recognition phase. The phoneme recognition system

implemented in this thesis consists of two layers of recognition. The first recognition layer

is responsible for analyzing a set of acoustic feature vectors and determining the likelihood

of the acoustic feature vector set being matched to a particular template. The second

recognition layer is responsible for determining the most likely sequence of the templates,

given the set of acoustic feature vectors that was extracted from the test speech utterance.

6



Areg G. Baghdasaryan Chapter 2. Phoneme Recognition System 7

The implementation of these two recognition layers forms the two interconnected subsystems

of the phoneme recognition system. The subsystem implementing the second layer uses the

subsystem of the first layer for determining the best sequence of the set of templates for the

given speech utterance. Each of these two subsystems has its own set of algorithms for the

corresponding training and recognition phases.

There are two smaller subsystems that are responsible for the feature vector extraction

and the endpoint detection of the speech utterance. These two subsystems are effectively

used by the first and second layer of the recognition and training processes. The feature

extraction phase is basically responsible for the generation of a set of compact feature vectors

that represent the distinguishing characteristics of the speech signal. The endpoint detection

system is responsible for the detection of the start and end samples of the speech utterance.

Figure 2.1 illustrates the dependency graph of the feature extraction, the endpoint detection

subsystems, and the training and recognition of the first and second layers.

Feature 
Extraction

Endpoint 
Detection

Layer 1
Training

Layer 1
Recognition

Layer 2
Training

Layer 2
Recognition

Recognized
Phoneme 
String

Digital Speech
Input

Automatic 
Phoneme
Recognition
System

Figure 2.1: Overview of the Automatic Phoneme Recognition System.

The goal of the Automatic Phoneme Recognition (APR) system is to take the speech

signal as its input and produce the text string of the phoneme sequence that corresponds to

the speech utterance, as shown in Figure 2.1. The training of the phoneme recognition system
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is a three step process. The training of the first and second layers is done separately. First,

the Feature Extraction system in Figure 2.1 is responsible for the extraction of the features

from a collection of speech utterances. Second, the first layer training process generates a

set of templates, each of which has a set of defining parameters. Finally, the second layer

training process extracts the transition information from the phonemes and their length

statistics from the speech database. After the training data has been generated, the feature

extraction system generates the feature vector set for a test utterance. Then the first and

second layer recognition systems together classify each of the feature vectors to one of the

corresponding templates (generated in the first layer training process in Figure 2.1). Finally

the system maps each of the templates to its corresponding phonemes and the second layer

recognition system outputs the sequence of phonemes that was recognized from the speech

signal.

The corpus of speech utterances for the training and testing (or recognition) was taken

from the TIMIT speech database. The TIMIT speech database is a acoustic-phonetic speech

corpus specifically designed for training and testing speaker and speech recognition systems.

This database was assembled by the National Institute of Standards and Technology (NIST)

sponsored by the Defense Advanced Research Projects Agency - Information Science and

Technology Office (DARPA-ISTO). The TIMIT database contains 6300 sentences, from

which 10 sentences are spoken by each of the 680 speakers from 8 major dialect regions

of the United States. The TIMIT database is divided into two categories: a training set

and a test set. The test set is comprised of speech utterances from 168 different speakers

and 1344 sentences. The test set amounts to 27 % of the whole TIMIT speech database.

The remaining 73 % of the TIMIT speech corpus is used for training the two layers of the

phoneme recognition system.

The training and recognition processes of the first layer extract the speech information

from the training and testing sets of the TIMIT database respectively and are illustrated in

Figure 2.2. The training process of the first layer makes an array of feature vector sets. Each

of these feature vector sets 1 · · ·N in Figure 2.2 pertains to a specific predefined template.
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The first layer training process then generates a set of parameters (specifically the HMM

parameters) for each of the predefined templates as shown in Figure 2.2. The task of the

first layer recognition system is to determine the template that has the highest likelihood of

being selected, given a feature vector set and the template set parameters as its input.

TIMIT

Test

Corpus

TIMIT

Train

Corpus

Feature

Extraction

Speech Utterance 1

Speech Utterance 2

Speech Utterance M

Feature Vector 1

Feature Vector 2

Feature Vector M

Layer 1

Training

Feature

Extraction

Feature Vector 1

Feature Vector K

Template 1

Parameters

Template N

Parameters

Prob. Feature Vector 1

Classified to Template 1

Prob. Feature Vector k

Classified to Template n

Template 2

Parameters

Layer 1 

Recognition

Speech Utterance 1

Speech Utterance 2

Speech Utterance K

Feature Vector 2

Figure 2.2: Topology of the first layer.

Figure 2.2 shows the stand-alone operation of the first layer. In the actual phoneme

recognition system, the operation of the first and second layer recognition processes are

interleaved. The second layer of the phoneme recognition system uses the first layer for

recognizing the phoneme set as well as determining the boundaries of each phoneme in the

input speech utterance. The training of the second layer provides statistical information

of the length of the phonemes for phoneme segmentation, and the transition probabilities

of phonemes for phoneme identification. Figure 2.3 illustrates the training and recognition
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aspects of the second layer.

Layer 2/1
Recognition

Layer 2 
Training

Phoneme
Length
Statistics

Phoneme
Transition
Probabilities

Phoneme String
Of  Utterance 1

Phoneme String
Of  utterance K

TIMIT
Test

Corpus

Feature
Extraction

Feature Vector 1

Feature Vector K

Speech Utterance 1

Speech Utterance 2

Speech Utterance K

Feature Vector 2

TIMIT
Train

Corpus

Phoneme Start/End 1

Phoneme Start/End 2

Phoneme Start/End M

Phoneme String
Of  Utterance 2

Figure 2.3: Topology of the second layer.

As seen from Figure 2.3, the combination of the first and second layer recognition systems

take (as input) the array of K feature vector sets (extracted from K speech utterances from

the TIMIT test corpus) as well as the phoneme length statistics and the phoneme transition

probabilities. The recognition system then produces a string of segmented phoneme sets for

each of the speech utterances extracted from the TIMIT test set. The training process of the

second layer essentially takes the input start and endpoints of each phoneme of each speech

utterance in the TIMIT training database and extracts the phoneme length statistics and the

phoneme transition probabilities. The phoneme length statistics consist of the means and

variances of the lengths corresponding to phonemes. Furthermore, the phoneme transition

probabilities are stored in a square matrix with each element corresponding to row a and
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column b representing the transition probability for a transition from the bth phoneme to the

ath phoneme.

The training and the recognition in the two layers of the automatic phoneme recognition

system used in this thesis is based on two HMM models. Those are the acoustic model and

the phoneme model. The acoustic model of speech models each individual phoneme based

on the feature vectors gathered from the TIMIT speech training database. The phoneme

model, on the other hand, enables the recognition system to look at the phoneme sequence as

a whole. Thus, the first and second layers of the phoneme recognition system are based on the

acoustic model and the phoneme model respectively. The HMM parameters in the acoustic

model represent the distinguishing characteristics of each phoneme, while the phoneme model

parameters represent the phoneme transitions and weights. We use the HMM to model the

speech because the production process of the English phonemes in speech is assumed to be

a discrete time-homogeneous Markov process [7]. Table 2.1 lists all the phonetic symbols in

the English language.
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Table 2.1: Phonetic symbols of the English language.

Phonetic Symbol Example Word(s) Phonetic Symbol Example Word(s)

Stops: Semivowels and Glides:

b Bee l Lay

d Day r Ray

g Gay w Way

p Pea y Yacht

t Tea hh Hay

k Key hv Ahead

dx Muddy, Dirty el Bottle

q Bat Vowels:

Affricates: iy Beet

jh Joke ih Bit

ch Choke eh Bet

Fricatives: ey Bait

s Sea ae Bat

sh She aa Bott

z Zone aw Bout

zh Azure ay Bite

f Fin ah But

th Thin ao Bought

v Van oy Boy

dh Then ow Boat

Nasals: uh Book

m Mom uw Boot

n Noon ux Toot

ng Sing er Bird

em Bottom ax About

en Button ix Debit

eng Washington axr Butter

nx Winner ax-h Suspect
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There is a set of phonemes that do not occur in the lexicon and are only hand-segmented

in the transcriptions of the TIMIT training and testing corpus. Table 2.2 lists these phonetic

symbols and their corresponding description.

Table 2.2: Phonetic symbols used in transcription only.

Symbol Description

bcl closure symbol for the stop b

dcl closure symbol for the stop d and jh

gcl closure symbol for the stop g

pcl closure symbol for the stop p

tck closure symbol for the stop t

kcl closure symbol for the stop k

tcl closure portion of ch

pau pause

epi epiphanic silence

In Table 2.2, the closure symbols for the stops are the closure intervals of the stops that

are distinguished from the stop release and the epiphanic silence is typically found between

a fricative and a semivowel or between a fricative and a nasal. Epiphanic silence can also

be found at the non-speech events at the beginning and the end of the speech signal. The

symbols listed in Tables 2.1 and 2.2 comprise the set of phonemes that are considered for the

phoneme recognition task. The actual set of phonemes are chosen according to their weights

after they have been extracted from the TIMIT training database.

The training data set used to train the two HMM models in the automatic phoneme

recognition system contains a collection of 4956 distinct speech utterances coming from 462

different speakers. Due to the number of speech utterances and the number of speakers

there is a significant variation in the pronunciation, length, and pitch of the phonemes. To

compensate for these variations, the lists of phonemes in Tables 2.1 and 2.2 are further

divided into subgroups.

There are two kinds of variations that our phoneme recognition system tries to com-
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pensate for: speaker variability and context variability. Speaker variability refers to the

variations in the phoneme characteristics that is generated by a training data set containing

a large number of speakers. Context variability, on the other hand, comes from a speaker

data set containing a large lexicon. Research has shown that there is a significant difference

in the pitch of the speech signal and the pronunciation of the phonemes when the speech

utterance comes from a male versus from a female. Thus it makes sense to train the different

phoneme models for males and for females [8] [9]. Also, research has shown that acoustic

characteristics of the phoneme depend on the following and the preceding phonemes [10].

In particular, the largest differences in phoneme characteristics have been observed between

phonemes preceded by a vowel and phonemes preceded by a non-vowel phoneme [11]. Thus,

the training data set is further clustered into phonemes that are preceded by a vowel and

phonemes that are preceded by a non-vowel in the speech utterances of the TIMIT training

corpus. The set of vowels is part of the list in Table 2.1.

2.2 Feature Vector Extraction

The Mel-Frequency Cepstral Coefficients (MFCC) of a speech signal are commonly used for

obtaining good recognition results in speech and speaker recognition tasks. The MFCC are

used extensively in the speech/speaker recognition literature for two reasons. Firstly, MFCC

have a low number of dimensions, which effectively avoids the curse of dimensionality for the

recognizers. Secondly, MFCC closely relate to the biology of the filtering performed in the

human ear. For these reasons we have included the MFCC extraction in our feature vector

extraction system. There is a total of eight steps involved in obtaining the MFCC feature

vector for a frame of speech. These steps are outlined below and shown in Figure 2.4.
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Figure 2.4: Feature Extraction System block diagram.

The steps in obtaining MFCC are the following.

1. Windowing the signal.

A frame of a signal is defined as a sequential (in time) aggregation of a sampled signal.

Thus the analog signal is first sampled (generally by means of an Analog to Digital

Converter) then windowed as expressed in the following equation:

xn(t) = w(t)s (nSF + t) for t = 0, 1, . . . , L− 1 n = 0, 1, . . . , N − 1 (2.1)

where s(t) is the sampled signal, n is the index for the particular frame, SF is the

frame step size (the number of samples between the start indexes of two consecutive

frames), L is the length of the window and N is the number of consecutive frames in

the speech utterance. For this thesis work the window function used is the Hamming

Window, for which w(t) is defined by:

w(t) = α− β cos

(
2π(t− 1)

L− 1

)
(2.2)

for two constants α = 0.54 and β = 0.46 [12]. Typically there is an overlap between

the length of the window and the start of the next frame. Thus the window length L

is generally greater than the frame step size SF .
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2. FFT of the windowed frame.

The Fast Fourier Transform of the frame in (2.1) is functionally equivalent to the

Discrete Fourier Transform of the windowed signal xn(t) for the n
th frame in (2.1), and

is given by:

Xn(m) =
L−1∑
t=0

xn(t) exp

(
−i2πmt

F

)
m = 0, 1, . . . , F − 1 (2.3)

where F is the length of the FFT vector (typically = 256) and m is the indexing

variable for the FFT. The FFT for the nth frame of the speech signal is denoted by

Xn(m).

3. Magnitude Squared of the frame FFT.

The Magnitude Squared of the complex signal Xn(m) in (2.3) associated with the nth

frame is given by:

|Xn(m)|2 = Xn(m)X ′
n(m) m = 0, 1, . . . , F − 1 (2.4)

The phase of the complex signal ̸ Xn(m) is discarded in this step, because it gener-

ally is considered not to contain any distinguishing information regarding the speech

signal. The human ear also discards the phase of the signal for the recognition and

identification tasks and uses the phase of a speech signal mainly for distinguishing the

location of the source of a speech signal.

4. Mel Warping of the FFT Magnitude.

This step of the MFCC transform process is primarily used to further reduce the

dimensionality of the feature vector. The Mel Warping step of the magnitude squared

signal |Xn(m)|2 in (2.4) applies a magnitude filter bank and averages the power in

each of the frequency bands of the signal |Xn(m)|2. Let fj(m) represent the weights of

filter j in the filter bank. The filter magnitudes of each filter fj(m) in the filter bank

correspond to a triangular filter [13]. Furthermore, the bandwidth of fj(m), defined by
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the low cutoff and the high cutoff frequency of the jth triangular filter overlaps with

its neighboring (j − 1)th and/or (j +1)th filter(s). The low and high cutoff frequencies

are distributed equally on the Mel-Scale. Let the function fmel = MEL(f) represent

the mapping between the regular frequency and the Mel frequency and this mapping

is given by:

fmel =MEL(f) = 2595 log

(
1 +

f

700

)
(2.5)

Figure 2.5 shows an example of the overlapping triangular filter bank weights dis-

tributed over the Mel scale on the frequency axis. Let m = MELbin(f) denote the

frequency bin m associated with the Mel frequency fmel. Also, let J denote the total

number of filters used in the filter bank and Fs represent the sampling frequency used

to acquire the speech utterance. Then the bandwidth of the jth filter in the filter bank,

in terms of the number of FFT bins, is given by:

Bwj =MEL−1
bin

(
Fs

J + 2
(j + 2)

)
−MEL−1

bin

(
Fs

J + 2
j

)
(2.6)

The average power for each filter in the filter bank is then given by:

Xj
n =

1

Bwj

Bwj∑
m=0

[
fj(m)

∣∣∣∣Xn

(
MEL−1

bin

(
Fs

J + 2
j

)
+m

)∣∣∣∣2
]

(2.7)

Typically |Xn(m)|2 is a vector of dimension 256 and this step generally reduces this

number to J = 35 dimensions by applying a filter bank containing 35 band-pass filters.
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Figure 2.5: Overlapping triangular filter bank weights with cutoff frequencies distributed on

the Mel frequency scale.

5. Logarithm of the Mel-Warped FFT magnitude squared signal.

The logarithm of the signal Xj
n in (2.7) is given by:

Ljn = lnXj
n (2.8)

6. Discrete Cosine Transform of the Log of Mel-Warped FFTmagnitude squared

signal.

This step of the MFCC transform further reduces the dimensionality of the feature

vector by generally eliminating dimensions 13 and higher, leaving a 12 dimensional

acoustic feature vector for each frame in the speech signal. The Discrete Cosine Trans-

form of the signal vector Ljn in (2.8) is given by:

xcn = C · Ljn (2.9)
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where the elements in the matrix C are defined as:

Cp,l =

√
2

Dmfcc

cos

(
πp

Dmfcc

(l − υ)

)
(2.10)

where the constant Dmfcc is the number of rows in the matrix C in (2.9). The variables

p and l are the indexing variables of the matrix C in (2.9) and υ = 0.5 is a constant.

Thus the matrix C is a Dmfcc× J matrix where the number of columns J corresponds

to the length of the vector Ln in (2.8) for each frame n (and is equal to the number of

filters used in the filter bank).

7. Cepstral Mean Subtraction.

In this step the mean of the feature vectors xcn is subtracted from each feature vector

in an effort of making the feature vectors more robust. This process is called Cepstral

Mean Subtraction (CMS) since we are subtracting the mean of the Cepstral coefficients

from the Cepstral coefficients. Thus the final MFCC coefficients are given by:

MFCCn = xcn −
∑N

n=1 x
c
n

N
· (2.11)

8. Calculating Deltas of the signal.

The Delta Coefficients of each frame in the speech signal also have dimension 12. These

coefficients are given by:

△MFCCn =

∑R
r=1 r · (MFCCn+r −MFCCn−r)

2
∑R

r=1 r
2

(2.12)

where R is a parameter, which has a value of 3 [14]. In the same manner the acceleration

parameters (not included in the feature vectors) are given by:

△an =

∑R
r=1 r · (△MFCCn+r −△MFCCn−r)

2
∑R

r=1 r
2

(2.13)

This step also computes the Delta Log Power coefficients, which is the result of the

Delta operation being applied to the sum of the log of the Mel-warped FFT magnitude
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squared signal (summed over all of its filter banks). Hence, one dimensional Log power

coefficients are given by:

LPn =
J∑
j=1

Ljn (2.14)

Delta Log Power coefficients are one dimensional coefficients and represent the change

in the log power of the speech signal. They are given by:

△LPn =

∑R
r=1 r · (LPn+r − LPn−r)

2
∑R

r=1 r
2

(2.15)

The final feature vector for each frame in the speech signal used in the phoneme recogni-

tion system (the output of the Feature Extraction system in Figure 2.1) is a 25 dimensional

feature vector comprised of the concatenation of the 12-D MFCC coefficients obtained in

step 7, the 12-D delta coefficients (2.12) and the 1-D delta log-power coefficient (2.15) (both

obtained in step 8). It is important to note the probability distributions of the speech signal

before and after the MFCC transformation (step 7). If the speech signal is modeled to have a

Gaussian distribution, then the Cepstral features are Rayleigh distributed, the Mel-Warped

Power Cepstral features (step 4) will be Chi-Square distributed and the log Cepstrum and

the MFCC features can be accurately modeled as a mixture of multivariate Gaussian distri-

butions [13]. This gives the advantage for modeling the MFCC domain signal as a Gaussian

Mixture Model (GMM).

2.3 Endpoint Detection

The Endpoint Detection system in Figure 2.1 is responsible for isolating the speech data

from the non-speech data in the speech utterance. The input and output of the Endpoint

Detection system is the speech signal and the truncated speech signal respectively. The

Endpoint Detection system effectively eliminates the non-speech signal from the beginning

and the end of the speech utterance in the TIMIT speech database. Thus the output of

the Endpoint Detection system contains only the speech signal. The endpoint detection
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algorithm implemented for the phoneme recognition system is a slight modification of the

algorithm proposed by Rabiner and Sambur [15].

The implemented endpoint detection algorithm extracts the endpoint of the speech ut-

terance based on two measures: the energy of the speech signal and the zero-crossing rate of

the speech signal. The endpoint of the signal is in first instance based on the energy of the

signal, which is the primary indicator of the start and finish points of the speech content,

since it is assumed that the noise energy in the speech signal is considerably lower than the

speech energy. However, the energy threshold gives a constrained measure of the endpoint

of the speech utterance because it does not take into account the distinction between voiced

and unvoiced speech. After the energy thresholds are set we compute the zero-crossing

rate over a certain interval where the energy of the speech signal is within the set energy

thresholds. The zero-crossing rate has been shown to provide a relatively good measure for

distinguishing between voiced and unvoiced speech [15].

The endpoint detection algorithm is implemented by first computing the energy approx-

imation of the signal for each speech sample in a 10 ms interval around each sample point.

Thus the energy approximation of the speech signal is given by,

E(t) =


∑t+SF /2

i=1 |s(i)| for 0 < t ≤ SF/2∑t+SF /2
i=t−SF /2

|s(i)| for SF/2 < t ≤ T − SF/2∑T
i=t−SF /2

|s(i)| for T − SF/2 < t ≤ T

(2.16)

where T is the number of sample points in the speech utterance, s(i) is the sampled speech

signal and SF is the frame step size as mentioned in Section 2.2. The energy thresholds

are computed based on the maximum and the minimum energy. There are two energy

thresholds that are being considered for the estimation of the speech utterance endpoints.

A lower energy threshold and an upper energy threshold. These are computed as follows:

ITL = min [0.03 · {max (E(n))−min (E(n))}+min (E(n)) , 4 ·min (E(n))] (2.17)

ITU = 5 · ITL (2.18)
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where ITL is the lower energy threshold and ITU is the upper energy threshold. The start

and end points of the speech utterance are estimated based on these two thresholds. The

start of the speech utterance is first approximated by finding the sample point s(t) having the

largest index t for which the energy E(t) is less than the energy of the first sample violating

the upper threshold ITU and greater than the energy of the first sample violating the lower

threshold ITL. Likewise, the end point of the speech utterance is first approximated by

finding the sample s(t) having the smallest index t for which the energy E(t) is greater than

the energy of the last sample violating the lower threshold ITL and smaller than the energy

of the last sample violating the upper energy threshold ITU . In summary the start and end

points are given by:

N1 = max
t

(
argmax

t
(E(t) < ITL)

)
∩
(
1, argmin

t
(E(t) > ITU)

)
(2.19)

N2 = min
t

(
argmax

t
(E(t) > ITU) , P

)
∩
(
argmin

t
(E(t) < ITL)

)
(2.20)

where, N1 is the initial approximation of the start point of the speech signal and N2 is the

initial approximation of the end point of the speech signal. The lower energy threshold

is always less than approximately three percent of the speech energy range. The upper

threshold is always less than approximately 15% of the energy range, since the lower energy

threshold is less than approximately 3% of the speech energy range and the upper energy

threshold is five times the lower energy threshold (as seen from (2.17) and (2.18)). This is

illustrated on a speech energy signal in Figure 2.6.
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Figure 2.6: Beginning and ending of the speech signal energy and the corresponding energy

thresholds.

The black and red lines in Figure 2.6 correspond to the upper and lower energy thresholds

respectively, while the green line in the top figure in Figure 2.6 represents the approximation

to the start point of the speech signal and the green line in the bottom figure in Figure

2.6 represents the approximation to the end point of the speech signal. The endpoint ap-

proximation of the speech signal based only on the energy of the signal is too constrained

since it doesn’t take into account the fricatives (especially the weak fricatives that have low

energies) at the beginning and end of a speech utterance. However it is safe to assume that

the speech signal is contained within the interval (N1, N2). Thus the endpoint detection

algorithm proceeds with examining the zero-crossing rates over a 50 ms interval before N1

and a 50 ms interval after N2. The final endpoints of the speech signal are determined based

on the number of times the zero-crossing threshold rate was violated within the interval of

examination before and after N1 and N2 respectively. The zero-crossing rates are determined

around a given point by counting the number of times the speech signal changes sign in an
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interval of 10 ms about the given point. Thus the zero-crossing rate is given by:

ZCR(t) =


∑t+SF /2

i=2 δ (sign (s(i− 1)) ̸= sign (s(i))) for 0 < t ≤ SF/2∑t+SF /2
i=t−SF /2

δ (sign (s(i− 1)) ̸= sign (s(i))) for SF/2 < t ≤ T − SF/2∑T
i=t−SF /2

δ (sign (s(i− 1)) ̸= sign (s(i))) for T − SF/2 < t ≤ T

(2.21)

where δ(A ̸= B) returns one if and only if A is not equal to B. Otherwise δ(A ̸= B) returns

zero. The threshold for the zero-crossing rate is computed by first gathering statistics on the

zero-crossing rate for silence. It is assumed that the first and the last 60 ms of speech will be

silence (or a small non-speech noise). The mean and standard deviation is computed for the

zero-crossing rates from sample S/2 to sample 5 ∗ S + S/2 and from sample T − 5 ∗ S − S/2

to sample T − S/2. The zero-crossing rate threshold is given by:

IZCT = min(105, ZCR + σZCR) (2.22)

where ZCR and σZCR are the mean and standard deviation of the zero-crossing rates re-

spectively for the small noise before and after the speech signal. Figure 2.7 shows the

zero-crossing rates for the speech signal and the corresponding threshold. From Figure 2.7

we see that the zero-crossing rate is relatively large for noise at the beginning and end of the

speech utterance and small for voiced speech. The red line in Figure 2.7 corresponds to the

zero-crossing rate threshold.
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Figure 2.7: Zero crossing rate plot and the corresponding zero-crossing rate threshold.

The final start and end points of the speech signal are determined based on the number

of times the zero-crossing rate ZCR(t) violates the zero-crossing threshold IZCT on the

50 ms interval before N1 and 50 ms interval after N2. If the number of the zero-crossing

rate threshold violations in the 50 ms interval before N1 is greater than 30 then the first

zero-crossing rate violation is picked as the start of the speech signal, otherwise the start

point of the speech remains N1. Likewise if the number of zero-crossing violations in the 50

ms interval after N2 is greater than 30 then the last zero-crossing rate violation is picked as

the end of the speech signal, otherwise the end sample of the speech remains N2. Figure 2.8

shows the result of the endpoint detection algorithm.
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Figure 2.8: Speech with its detected start and end points.



Chapter 3

Hidden Markov Models

The automatic phoneme recognition system implemented in this thesis is based on two contin-

uous Hidden Markov Models. The left-to-right HMM is used for detecting any distinguishing

characteristics in the acoustical structure of the phoneme. The ergodic Segmental HMM is

used for integrating the phoneme length statistics and the phoneme transition statistics in

the phoneme recognition task. This chapter discusses the training and recognition of the

HMM models and their application to phoneme recognition.

3.1 HMM Model Elements

The HMM models two stochastic processes: the observation sequence and the hidden state

sequence, and the relationship between these two processes. The observation sequence is

a set of event outcomes occurring in a sequential manner. For example, the sequence of

outcomes from an unfair coin tossing experiment or (for the case of speech) the sequence

of feature vectors generated by the feature extraction system for each time frame of speech.

However, the hidden state sequence can only be inferred by analyzing the statistics of the

observation sequence. For example, in an unfair coin tossing experiment, the observation

sequence would be the outcome of the coin tossing (heads of tails) and the hidden state

sequence would be the unfair coin being tossed (one of a number of unfair coins). For the

27
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case of speech, the hidden sequence is the sequence of phonemes spoken, which is inferred

from the sequence of feature vectors.

We now examine composition and structures of the HMM and its operation. The HMM

model represents a set of parameters describing the relationship between the observation

sequence and the hidden state sequence. At any given time an observation based on an

HMM can be labeled as being associated with one of the S discrete hidden states [1, 2, . . . , S].

The time index at any given time is represented by n and the random variable representing

the hidden state at time n is denoted by qn. The sequence of hidden states in a system

modeled with an HMM is assumed to be a stochastic Markov process. A stochastic process

is a first order Markov process if and only if the probability of a future state at any given

time depends only on its present state, i.e. on none of the past states. Thus,

P (qn+1|qn, qn−1, . . . , q1) = P (qn+1|qn) (3.1)

Since, in an HMM model, each of the states at a given time n can only be associated with

one of the S possible hidden states, there is a finite number of probability values possible for

the right hand side of (3.1). These probabilities are represented in a state transition matrix,

which is given by:

A =


P (qn = 1|qn−1 = 1) P (qn = 1|qn−1 = 2) · · · P (qn = 1|qn−1 = S)

P (qn = 2|qn−1 = 1) P (qn = 2|qn−1 = 2) · · · P (qn = 2|qn−1 = S)
...

...
...

P (qn = S|qn−1 = 1) P (qn = S|qn−1 = 2) · · · P (qn = S|qn−1 = S)

 (3.2)

Thus each of the elements in the state transition matrix A is denoted by aij and is given

by:

aij = P (qn = i|qn−1 = j) (3.3)

Since the elements in the state transition probability matrix represent probabilities of

events, they are non-negative numbers. Due to the fact that there is only one state transition

at a given time index the columns of A must sum to unity. Thus:

0 ≤ aij ≤ 1 ∀ i ∈ {1 : S}, ∀ j ∈ {1 : S} (3.4)
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and
S∑
i=1

aij = 1 (3.5)

Let the observation at time n be denoted as On. The HMM also models the probabilities

of the hidden states {qn}Nn=1 given the set of observations {On}Nn=1 . Let vn denote the

random variable representing the observation at time n. For a simple HMM there is a single

probability measure for the probability of the state given the observation at each time index

n. The probability of a observation vector given the hidden state qn at time index n is called

the emission probability and is given by:

bin = P (vn = On|qn = i) (3.6)

Also let B denote the set of emission probabilities given by:

B = {bin} for i = 1, 2, . . . , S (3.7)

Finally, the HMM models the probability of the first hidden state P (q1 = i) by the initial

state probabilities given by:

P (q1 = i) ≡ πi (3.8)

In summary, a system based on an HMM can be fully described by the initial state

probability vector πi, the state transition matrix A and the set of emission probability

distributions B. Thus an HMM model λ is represented by:

λ = (A,B, π) (3.9)

Let πn denote the vector of S probabilities of the hidden states at time index n. Thus:

πn =


P (qn = 1)

P (qn = 2)
...

P (qn = S)

 (3.10)

The state probability vector can also be written as:

πn = A · πn−1 = An−1 · π1 (3.11)

where π1 in (3.11) represents the initial probabilities of the hidden states.
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3.2 HMM Model Types

There is a number of different types of HMMs, each of which has its own unique characteris-

tics. These HMM models differ from each other based on two properties: the structure of the

HMM and the type of the emission probability density function. The emission probability

density function defines whether or not the emission probabilities are given by a probabil-

ity density function (of the observations) or a probability mass function of the quantized

observation regions. As a result, the emission probability density function defines if the ob-

servations follow a continuous or a discrete distribution. The structure of the HMM can be

defined by imposing constraints on the hidden state transition matrix A. There are two types

of HMM structures that are used in the phoneme recognition system, the left-to-right HMM

and the ergodic HMM. There is one other variation to the structure of one of the HMMs

used in this thesis which is called a Segmental HMM. The Segmental HMM generalizes the

left-to-right HMM by allowing multiple observations to be associated with a single hidden

state. All these types of HMM are described below.

3.2.1 Continuous vs. Discrete

HMMs can be divided into two distinct categories: continuous HMM and discrete HMM.

For the discrete HMM the observation at each time index n can only take on a finite number

of values. Thus the observation space is divided into a finite number of subspaces the union

of which is the observation space. With this, there are only a finite number of emission

probabilities for each hidden state. The quantization of the observation space is typically

carried out by means of Vector Quantization (VQ). The discrete HMM generally has the ad-

vantage of low computational complexity, but it may suffer from inaccurate results. Research

has shown that phoneme recognition systems modeled with continuous HMMs yield higher

recognition rates than phoneme recognition systems modeled with discrete HMMs [16]. Thus

we use the continuous HMM to model the set of English phonemes.

In a continuous HMM design the observations are assumed to be continuous. In other
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words there is no constraint on the values that the observations can take. The emission

probabilities, in this case, are defined by probability density functions (pdf). We have used

a Gaussian Mixture Model (GMM) to represent the emission probabilities for the HMM

model representing the first layer of the phoneme recognition system. In this model the

emission probabilities are defined by:

bOnqn = P (vn = On|qn = i) =
K∑
k=1

cikN(On;µik,Σik) (3.12)

where cik are the weights of each of the Gaussian pdf’s in the GMM, N(On;µik,Σik) denotes

a multivariate Gaussian pdf with mean vector µik, covariance matrix Σik and observation

On at time index n for hidden state i and mixture k. The corresponding probability of the

multivariate Gaussian is given by:

N(On;µik,Σik) =
1

(2π)D/2(det(Σik))(1/2)
e−((On−µik)TΣ−1

ik (On−µik))/2 (3.13)

where D is the dimensionality of the feature vectors (which in this thesis is 25). Since the

emission probabilities come from a pdf, the GMM mixture coefficients have to form a convex

combination, i.e. be nonnegative and satisfy the constraint:

K∑
k=1

cik = 1 (3.14)

3.2.2 Variations in HMM Structure

There are several types of HMMs that differ from each other based on the constraints on

the allowable transitions of the hidden states of the HMM. The two HMMs used in this

thesis (for the two layers of recognition) differ from each other structurally. The HMM

constructed for the recognition of the first layer is a left-to-right HMM. On the other hand,

the HMM constructed for the second layer of recognition is an ergodic HMM. In an ergodic

HMM there is no constraint on the direction of the transitions between the hidden states

and thus a transition may occur between any two hidden states. Thus all of the elements

in the state transition probability matrix may be nonzero. In the left-to-right HMM there
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is only one valid starting and ending hidden state and the transitions are only allowed from

the preceding hidden state (starting from the first valid state) to the current state in a left-

to-right fashion. Each element aij in the state transition probability matrix is nonzero only

for i = j or i = j + 1 for j = 1, 2, . . . , S (for diagonal and first superdiagonal).

The state transition probability matrix of an HMM can be represented graphically using

a directed graph model. In this graph model each node represents a hidden state and the

arrows represent allowable transitions between the hidden states (or nonzero entry in the

hidden state transition probability matrix ). Figure 3.1 shows the graph model for the state

transitions in a 4-state ergodic (Figure 3.1a.) and in a 4-state left-to-right HMM (Figure

3.1b.).

1 2

3 4

a) Ergodic HMM hidden state transition graph

b) Left-to-Right HMM hidden state transition graph

1 2 3 4

Figure 3.1: Ergodic and left-to-right HMM hidden state transition graphs.

As the top of Figure 3.1 illustrates, the ergodic HMM state transition graph is fully

connected and thus any transition between two hidden states is possible. The bottom of

Figure 3.1 shows the left-to-right HMM state transition structure, where each state can

either transition back to itself or to the state on its immediate right.
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The implementation of the second layer recognition system is based on a variant of the

ergodic HMM in Figure 3.1 and is called a Segmental HMM. The variation in the structure

of the HMM is a generalization of the probabilistic relationship between the observation

sequence and the hidden state sequence. The Segmental HMM allows a hidden state to

”produce” multiple observations. Thus the emission probabilities of each hidden state are

associated with several observations, as opposed to being associated with a single observation

in the case of a regular HMM. During the recognition phase of the Segmental HMM the

observation sequence is divided into segments and each segment of observations is related to

a single hidden state (hence the name Segmental HMM). Figure 3.2 illustrates the structure

of the Segmental HMM.

H1

O11 O12 O13

H2

O21 O22 O23

H3

O31 O32 O33

H1 H2 H3

H3

O31 O32 O33

Figure 3.2: Ergodic Segmental HMM hidden state transition and observation graph.

Figure 3.2 is an example of a 3-state ergodic Segmental HMM. As we see from Figure

3.2 the graph corresponding to the hidden states of the HMM is fully connected, indicating

that the HMM is an ergodic HMM. Also, every hidden state Figure 3.2 corresponds to a

left-to-right HMM model. As such, every hidden state in Figure 3.2 has multiple obser-

vations produced by its emission probability. The emission probabilities in this case are

defined over a multivariate probability density space where the dimensions of each emission

probability space depends on the number of observations assigned to a hidden state. The
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observation sequence is segmented and each segment is assigned to one hidden state during

the recognition phase of the Segmental HMM system. The Segmental HMMs - and their

applications to speech recognition tasks - are not new in the literature. Different forms and

types of Segmental HMMs have been applied to continuous syllable recognition [17], and to

glottal pulse segmentation from time domain speech signals [18]. Also a Segmental HMM

based on polynomial trajectories has been applied to continuous speech recognition [19].

More publications on the use of Segmental HMMs on speech recognition tasks can be found

here [20] [21]. However, the form and method of the application of the Segmental HMM

model topology to the task of phoneme sequence recognition is unique in this thesis.

3.2.3 Three basic problems of HMM

For any HMM type mentioned in the previous section, there are three basic problems that

must be solved during the training and recognition phases of the HMM. These three tasks

are:

1. Given the observation sequence O1, O2, . . . , ON and the model λ = (A,B, π) efficiently

compute the probability of the observation sequence given the model.

2. Given the observation sequence O1, O2, . . . , ON and the model λ = (A,B, π) efficiently

compute the sequence of hidden states of the model which maximizes the likelihood of

the observation sequence and the model.

3. Given the observation sequence O1, O2, . . . , ON adjust the model parameters of the

model λ = (A,B, π) to maximize the likelihood of the observation sequence and the

model.

The solution to the first problem is used during the training phase of the system, specif-

ically in the implementation of the training algorithm of the HMM in the first layer of

recognition. Problem one is efficiently solved by the Forward-Backward algorithm. The

solution to the second problem is used in the recognition of both HMMs in this thesis. The



Areg G. Baghdasaryan Chapter 3. Hidden Markov Models 35

second problem is efficiently solved by the Viterbi Search algorithm. The Viterbi Search

algorithm is similar to the Forward-Backward algorithm as will be seen, in Sections 3.3 and

3.4. The solution to the third problem is used in the training of the HMMs. There are several

good algorithms for the solution of problem three. The algorithm used in this thesis was

originally proposed by Baum and his colleagues and is called the Baum-Welch algorithm.

These algorithms are described in detail in the next sections. We start with the problem of

recognition and the solution to the second fundamental problem of HMM.

3.3 Viterbi Search Algorithm

The Viterbi Search algorithm presents an easy and efficient way of finding a single best

hidden state sequence for the given model and the observation sequence. The algorithm uses

Dynamic Programming to find the best ”path” in the search space of possible hidden state

sequences that produces the maximum likelihood of the observation set, given the hidden

state sequence and the HMM model. Dynamic Programming (DP) is essentially the process

of formulating the task in terms of a set of smaller tasks. The use of DP is generally more

efficient and effective than the naive methods because most of the time there is a degree of

redundancy in the smaller tasks, a redundancy that is removed when DP is used. There are

two types of DP approaches: bottom-up and top-down. The bottom-up method basically

stores the results of the subtasks, to be used later by other subtasks. The top-down approach,

on the other hand, formulates the main tasks as a set of recursive smaller computations. The

Viterbi Search algorithm takes advantage of the top-down method of DP as it basically finds

the most likely hidden state sequence by recursively finding the most likely hidden state

for each observation in the time line separately. The search space of the Viterbi Search

algorithm is the set of all possible combinations of hidden states for a given observation

sequence having length N (in the case of phoneme recognition N is the number of frames in

the speech signal and the observation sequence is the sequence of 25-D feature vectors for

each time frame). The search space of the Viterbi Search algorithm is, of course, constrained
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by the possible initial and final states of the HMM. An example of the space of possible

solutions and the solution ”path” is demonstrated in Figure 3.3.

Possible
Starting
States

Possible
Final
States

1 2 3 4 5 6 7

1

2

3

4

5

6

7

T-1 T

N-1
N

Frame Index

State
Index

Figure 3.3: A sample solution space of Viterbi paths and a sample solution of the Viterbi

Search algorithm.

As we see from Figure 3.3, the possible solutions for the hidden state sequence having

maximum likelihood is constrained by the set of possible starting states and a set of possible

final states. For the ergodic HMM this constraint does not exist since all the states are

valid starting and final states. However, for the left-to-right HMM there is only one valid

starting hidden state and one valid final hidden state. This constraint aids in the speed of

the Viterbi Search algorithm as will be apparent from the next few sections. The applica-

tion of the Viterbi Search algorithm to the Segmental HMM is different from that of the

regular HMM since the Segmental HMM is a generalization of the regular HMM. In the

case of the Segmental HMM, the Viterbi Search algorithm has two goals. The first goal is

to find a hidden state sequence that maximizes the likelihood of the observation sequence
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for a given model. The second goal is to find the hidden state sequence boundaries that

maximize the likelihood of the hidden state sequence (since there is a variable number of

observations integrated in the emission probability computation of a single hidden state in

a Segmental HMM). These two goals are accomplished simultaneously by the same top-to-

bottom DP based Viterbi Search algorithm. As a result of the additional second task of the

Viterbi Search algorithm for the Segmental HMM the solution space and the solution are

generalized versions of those illustrated in the example in Figure 3.3. Figure 3.4 shows an

example solution space and an example solution ”path” of the Viterbi Search algorithm for

the Segmental HMM.

Possible
Starting
States

Possible
Final
States

1 2 3 4 5 6 7

1
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3

4

5
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T-1 T

N-1
N

Frame Index

State
Index

Figure 3.4: A sample solution space and a sample solution of the Segmental Viterbi Search

algorithm.

Note the difference between the solution in Figure 3.3 and the solution in Figure 3.4.

The duration of each of the hidden states in Figure 3.3 is constant and corresponds to each

time frame in the speech signal. However, the duration of each hidden state of the solution
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in Figure 3.4 is variable as there is a variable number of time frames that corresponds

to a single hidden state in a Segmental HMM. In the next two sections of the thesis the

theoretical details of the Viterbi Search algorithm for the left-to-right HMM and for the

ergodic Segmental HMM are discussed.

3.3.1 Viterbi Search Algorithm for Left-Right HMM

We now discuss the Viterbi Search algorithm for the left-to-right HMM. LetQ = [q1, q2, . . . , qN ]

be the sequence of hidden states and O = [O1, O2, . . . , ON ] be the observation sequence. Let

the model λ be defined by the parameter set given in (3.9). The likelihood of the hidden

state sequence is the probability of the observation sequence and the sequence of hidden

states given the model λ (with the assumption that the observations are independent) as

shown below:

Lp = P (O,Q;λ) = πq1

N∏
n=2

aqn,qn−1 · bOn
qn (3.15)

where aqn,qn−1 are the transition probabilities from state qn−1 to state qn, b
On
qn is the emission

probability from hidden state qn to observation On and πq1 is the initial probability of the

first hidden state. For the left-to-right model πq1 has a value of 1 for the first state and 0

for all other states.

Equation (3.15) shows the likelihood of the hidden state sequence and the observation

sequence given the model. However, for a large N the likelihood Lp becomes very small, and

in many practical applications this leads to numerical instabilities, meaning the approach is

then prone to rounding errors. To eliminate the numerical instability problem the likelihood

measure in (3.15) is computed in terms of logarithms as shown below

L = log(Lp) = log (P (O,Q;λ)) = log(πq1) +
N∑
n=2

log(aqn,qn−1) +
N∑
n=2

log(bOn
qn ) (3.16)

Because of the fact that the logarithm function y = log(x) is a monotonically increasing

function of x for any value of x in the positive real space, maximizing Lp maximizes L and-

conversely-minimizing Lp will minimize L. The goal of the Viterbi Search algorithm (for the
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left-to-right HMM) is to find an optimum hidden state sequence Q, i.e. one that maximizes

the likelihood measure L. Thus

Q∗ = argmax
Q

(
log(πq1) +

N∑
n=2

log(aqn,qi−1
) +

N∑
n=2

log
(
bOn
qn

))
(3.17)

where Q∗ = [q∗1, q
∗
2, . . . , q

∗
N ] is the optimum hidden state sequence. Finding Q∗ in (3.17) di-

rectly is computationally complex and contains many redundant computations. The Viterbi

Search algorithm utilizes top-to-bottom DP to reduce the task of finding an optimum hidden

state sequence Q∗ according to (3.17) to a set of recursive functions. To illustrate this we

define a measure

δin = max
q1,q2,...,qn−1

log (P (q1, q2, . . . , qn−1, qn = i, O1, O2, . . . , On;λ)) (3.18)

where for each hidden state i at time index n, δin represents the maximum probability of the

hidden state sequence up to frame n and the hidden state i at frame n for the observation

sequence O1, O2, . . . , On given the model λ. Note that δiN is equivalent to maximizing the

criterion L given in (3.16). By induction we have:

δjn = max
i

(
δin−1 + log(aj,i)

)
+ log

(
bOn
j

)
(3.19)

Equation (3.19) is the essential recursive formulation that constitutes the core of the

Viterbi Search algorithm. The Viterbi Search algorithm also uses an indexing variable Ψi
n

for storing the hidden state sequence at time index n that has the highest likelihood. Now

that we have defined all the parameters of the Viterbi Search algorithm, the Viterbi Search

algorithm is outlined below.

1. Initialization:

δi1 = log(πi) + log(bO1
i ) (3.20)

Ψi
1 = 0 ∀ i; (3.21)

2. Recursion:

δjn = max
1≤i≤S

(
δin−1 + log(aj,i)

)
+ log(bOn

j ) for 2 ≤ n ≤ N ; 1 ≤ i ≤ S (3.22)
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Ψj
n = argmax

1≤i≤N

(
δin−1 + log(aj,i)

)
for 2 ≤ n ≤ N ; 1 ≤ i ≤ S (3.23)

3. Termination:

L∗ = max
1≤i≤S

(δiN) (3.24)

q∗T = argmax
1≤i≤S

(δiN) (3.25)

4. Backtracking:

q∗n = Ψ
q∗n+1

n+1 for n = N − 1, N − 2, . . . , 1 (3.26)

In (3.26) the sequence [q∗1, q
∗
2, . . . , q

∗
N ] represents the single most likely hidden state se-

quence and L∗ in (3.24) represents the likelihood of the most likely hidden state sequence.

The next section discusses the generalization of the Viterbi Search algorithm for Segmental

HMMs.

3.3.2 Viterbi Search Algorithm for Segmental Ergodic HMM

In the previous section the Viterbi Search algorithm for the left-to-right HMM was out-

lined. In this section we present a generalization of the Viterbi Search algorithm for use

with the segmental ergodic HMM and thus is called the Segmental Viterbi Search algorithm.

The Segmental Viterbi Search algorithm simultaneously finds the most likely sequence of

the hidden states and the most likely segmentation of the observation sequence to the hid-

den states, conditioned on several constraints. To illustrate the operation of the Segmental

Viterbi Search algorithm we first define the variables to be optimized and used in the al-

gorithm. Let the observation set be O = [o1, o2, . . . , oN ] , a sequence of hidden states is

denoted by Q = [q1, q2, . . . , qM ], and the corresponding sequence of most likely hidden states

by Q∗ = [q∗1, q
∗
2, . . . , q

∗
M ]. Note that the number of hidden states and the most likely hidden

states are different from the number of observations. This is because of the fact that - for a

Segmental HMM - there may be more than one observation that corresponds to a particular

hidden state.

The start and endpoints of each of the hidden states is represented by an array of start-

stop pairs Γ = [< F i
L, F

i
H >1, < F i

L, F
i
H >2, . . . , < F i

L, F
i
H >M ] where F i

L is the index of the



Areg G. Baghdasaryan Chapter 3. Hidden Markov Models 41

first (low) observation that corresponds to the state i and F i
H is the index of the last (high)

observation that corresponds to the state i. The start-stop pair < F i
L, F

i
H >n corresponds

to the first and last observation indices of the hidden state qn in the hidden state sequence.

Similarly, Γ∗ = [< F i
L, F

i
H >∗

1, < F i
L, F

i
H >∗

2, . . . , < F i
L, F

i
H >∗

M ] represents the start-stop

pairs for hidden states that belong to the most likely hidden state sequence. In the phoneme

recognition system, each of the hidden states in the Segmental HMM represents a phoneme

state, and as such, is bound to a length constraint having a minimum length and a maximum

length indicated by qi,min and qi,max respectively for hidden state i. The length of a phoneme

state is modeled as a Gaussian distribution and the quantities qi,min and qi,max are determined

by taking d1 and d2 standard deviations smaller and bigger than the mean of the phoneme

state length respectively. The phoneme state length statistics are learned during the training

of the Segmental HMM. The possible set of observations that can be spanned by each of

the hidden states is subject to two constraints and depends on the stop observation index of

the previous hidden state and the minimum and maximum length constraints of the hidden

state. Together these constraints provide a range for the possible starting points of the hidden

state. The first constraint determines the lower index of the possible starting observation

indices of the hidden state by allowing the first observation to be up to ρ observations prior

to the last observation of the previous hidden state. Likewise the upper index of the possible

observation points is allowed to be up to ρ points after the last observation index of the

previous hidden state. Each of the emission likelihoods and the start and endpoints of each

hidden state are determined from the possible range of observations that can belong to the

hidden state, subject to the two constraints. The range of valid observations that can belong

to a hidden state (based on the length constraint and the starting observation constraint) is

illustrated in Figure 3.5.
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Figure 3.5: Diagram outlining a set of observations that can be associated with a hidden

state in Segmental HMM.

As illustrated in Figure 3.5 the total number of valid observations that is needed for the

determination of start and end observation indices of the hidden state qn is 2ρ+ qn,max. The

lower limit of the valid observation sequence array for the hidden state qn is given by F n−1
H −ρ.

Likewise, the upper limit of the valid observation sequence array for the hidden state qn is

given by F n−1
H + ρ+ qn,max as shown in Figure 3.5. Two functions - defined by the wrappers

gi(L,H) and hi(L,H) - are used in the segmental Viterbi Search algorithm for determining

the emission probability of a given state i, and the first and the last indices of the hidden

state i respectively. Both of these functions take the lower and upper observation index limits

of the array of valid observations for state qn as their input (L and H respectively). The

function gi(L,H) returns the emission probability of the state i. Furthermore, the function

hi(L,H) returns the start-stop pair < F i
L, F

i
H > of the state i. Similar to the Viterbi Search

algorithm for the left-to-right HMM the Segmental Viterbi Search algorithm relies on the

computational advantages of top-down dynamic programming. As such, we need to define

the following quantity, that is used in the recursive process of the DP:

δin = max
q1,q2,...,qn−1

log
(
P (q1, q2, . . . , qn−1, qn = i, O1, O2, . . . , OFn

H
;λ)
)

(3.27)

where δin represents the maximum of the joint likelihood of all the possible hidden state
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sequence combinations q1, q2, . . . , qn−1 and their corresponding possible configurations of the

observation arrays (OFn
L
, OFn

L+1, . . . , OFn
H

for each hidden state qn) and the likelihood of

hidden state qn being i. By induction we have:

δjn = max
i

(
δin−1 + log(aj,i)

)
+ log

(
gj(F

n−1
H − α, F n−1

H + qj,max + β)
)

(3.28)

Equation (3.28) is used in the recursive process of the Segmental Viterbi Search algo-

rithm as the criterion on which the selection of the hidden state and its start-stop points

is based. The function gi(L,H) is used here as the emission likelihood of the hidden state,

given the range of valid observations OFn−1
H −ρ, OFn−1

H −ρ+1, . . . , OFn−1
H +qi,max+ρ

that can be as-

sociated with the hidden state i. There are two additional variables, used for indexing

and record keeping. The first one, Ψi
n, stores the label associated with the hidden state i

that maximizes the right hand side of (3.28) for all the possible S hidden states. Finally,

Ωi
n =< Ωi

L(n),Ω
i
H(n) > represents the start and stop observation indices that correspond to

Ψi
n. Now that all the variables used in the recursive formulation of the Segmental Viterbi

Search algorithm have been defined, the Segmental Viterbi Search algorithm is summarized.

1. Initialization:

δi1 = log(πi) + gi(0, qi,max + β) ∀ i; (qi,max + ρ) ≤ N (3.29)

Ψi
1 = 0 ∀ i; (qi,max + ρ) ≤ N (3.30)

Ωi
1 = hi(0, qi,max + ρ) ∀ i; (qi,max + ρ) ≤ N (3.31)

2. Recursion:

δjn = max
∀ i: (Ωi

H(n−1)+qi,max+ρ)≤N

(
δin−1 + log(aj,i)

)
+ gj(Ω

j
H(n− 1)− ρ,Ωj

H(n− 1) + qj,max + ρ)

∀n, j : (Ωj
H(n− 1) + qj,max + ρ) ≤ N

(3.32)

Ψj
n = argmax

∀ i: (Ωi
H(n−1)+qi,max+ρ)≤N

(
δin−1 + log(aj,i)

)
∀n, j : (Ωj

H(n− 1) + qj,max + ρ) ≤ N

(3.33)
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Ωj
n = hj(Ω

i
H(n− 1)− ρ,Ωi

H(n− 1) + qj,max + ρ) ∀n, j : (Ωj
H(n− 1) + qj,max + ρ) ≤ N

(3.34)

3. Termination:

L∗ = max
∀ i,n: (Ωi

H(n−1)+qi,max+ρ)≤N
(
δin
n
) (3.35)

Υ∗ = argmax
n:∀ i: (Ωi

H(n−1)+qi,max+ρ)≤N
(
δin
n
) (3.36)

q∗Υ∗ = argmax
i:∀n: (Ωi

H(n−1)+qi,max+ρ)≤N
(
δin
n
) (3.37)

4. Backtracking:

q∗n = Ψ
q∗n+1

n+1 for 1 ≤ n ≤ Υ∗ − 1 (3.38)

Γ∗
n = Ωq∗n

n for 1 ≤ n ≤ Υ∗ − 1 (3.39)

where L∗ represents the likelihood of the combination of the most likely hidden state sequence

and the most likely distribution of the observations into the hidden states. The number of

hidden states in the hidden state sequence varies and depends on the number of observations

that was selected during the computation of the emission probabilities of each of the hidden

states. Because of the variability in the lengths of the observation array assigned to each

of the hidden states, and the constraints imposed on the range of observations that can be

assigned to the hidden states, the most optimum hidden state sequence can consist of any

number of hidden states S, where S ranges from 1 to the length of the largest hidden state

sequence that can fit in the observation sequence (thus S has an upper limit of N , which

corresponds to the case of a regular HMM having assigned precisely one observation to each

hidden state). The likelihoods of the hidden state sequences having different lengths can

not be compared directly to each other because a hidden state sequence with bigger length

is bound to have less likelihood than a hidden state with a smaller length. This is because

the joint probability of the states in the hidden state sequence with larger size has larger

dimensionality than the joint probability of the states in the hidden state sequence that

has smaller length. For this reason (3.35),(3.36), and (3.37) normalize each hidden state
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likelihood in δin by the length of the hidden state sequence n. This normalization is valid

because each observation in a Viterbi path adds an equal amount of likelihood to the Viterbi

path likelihood. Thus the last hidden state index and its corresponding index of the most

likely hidden state is found by maximizing δin
n

in (3.35) and is given by q∗Υ∗ and Υ∗. In

(3.36) Υ∗ is the index of the last hidden state of the chosen hidden state sequence and q∗Υ∗ in

(3.37) is the corresponding last hidden state. The backtracking step in the Segmental Viterbi

Search algorithm is done in the same manner as in the regular Viterbi Search algorithm, but

starting with the last hidden state Υ∗ in the hidden state sequence.

Maximizing the per-state likelihoods δin
n

is not the most practical method for finding the

last state of the optimal hidden state sequence since the possibility of having the most likely

Viterbi path towards the beginning of the observation sequence is more likely than having

it towards the end. This method is referred to as the Scaled Viterbi Likelihood method of

finding the optimal hidden state sequence in this thesis. The simulations and analysis in the

next chapter show that only a small percentage of the observations are actually classified

to hidden states when the Scaled Viterbi Likelihood method is used. A more robust way of

finding the last hidden state of the most optimum hidden state sequence is to choose the

hidden state in Ψi
n that, after backtracking from state qn = i, contains the largest number

of hidden states maximizing δin1 over all the hidden states i, where 1 ≤ n1 ≤ n. Thus in the

actual implementation of the segmental Viterbi Search algorithm, during each computation

of the δin the algorithm also performs the backtracking step from state qn = i and stores

the number of states qn1 = i that maximized δin1 over all the hidden states i. Furthermore,

during the termination step, the segmental Viterbi Search algorithm chooses the state qn = i

that contains the largest number of hidden states maximizing δin1 over all the hidden states i.

This method of finding the optimum hidden state sequence is referred to as the Max Viterbi

Likelihood method in this thesis.

So far we have presented the application of the Viterbi Search algorithm to the Segmental

HMM. We now discuss the implementation of the functions gi(L,H) and hi(L,H). The

function gi(L,H) determines the maximum likelihood of the observation arrays ranging from



Areg G. Baghdasaryan Chapter 3. Hidden Markov Models 46

size qi,min to size qi,max, starting at the valid starting indices and being assigned to hidden state

i. As mentioned before, these observation arrays are part of the observation segment taken

from the observation sequence having lower and upper bounds L and H respectively. Let the

associated left-to-right HMMmodel of each of the hidden phoneme states be λi. The function

gi(L,H) basically computes the likelihood of the most likely configuration of the observation

array by sequentially running the Viterbi Search algorithm for all possible configurations of

the observation set (within the L and H bounds), given the observation array and the HMM

model λi. The likelihood of a particular configuration of the observation set is computed

by finding the likelihood of the most likely hidden state sequence (given the model λi), by

means of the regular Viterbi Search algorithm. Thus the function goes through each possible

starting point l where (F n−1
H − ρ) ≤ l ≤ F n−1

H + ρ) for the state qn = i and computes a set

of likelihoods of the most likely hidden state sequence for the model λi. Thus for each value

of l the function performs qi,max − qi,min Viterbi Search operations. For each of these Viterbi

Search operations, the selected observation sequence is Ok = [Ol, Ol+1, . . . , Ol+qi,min+k] where

0 ≤ k ≤ (qn,max− qn,min). Let L
l
k denote the normalized likelihood (normalized by the length

of the chosen observation sequence) of the most likely hidden state sequence for which the

observation sequence starts at index F n−1
H − ρ + l and stops at index F n−1

H + qn,min + k.

The Viterbi decoding process having the largest likelihood for the most likely hidden state

sequence is returned as the emission likelihood. Thus the function gi(L,H) returns

gi(L,H) = argmax
k,l

(Llk) (3.40)

Let I1 and I2 respectively be the starting and ending observation indexes of the observa-

tion array configuration yielding the largest likelihood. The function hi(L,H) records I1 as

the starting point of the hidden state qn given by:

F n
L = F n−1

H − ρ+ argmax
k,l

(Llk) (3.41)

The stop observation index of the hidden state is found by choosing the first observation

after I1 in the observation sequence for which the change in the Viterbi likelihood Llk exceeds
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a threshold τ . Thus the stop observation index is found to be:

F n
H = F n

L + qi,min +min
k

(|LF
n
L
k − L

Fn
L
k−1| > τ) for 2 ≤ k ≤ (qi,max − qi,min) (3.42)

and finally, the function hi(L,H) returns the pair < F n
L , F

n
H >.

The algorithms used for the recognition of the phonemes has been presented. The next

section of the thesis discusses the Baum-Welch algorithm, used in the estimation of the

left-to-right HMM Parameters.

3.4 Baum-Welch Re-estimation

The Baum-Welch algorithm is a special case of the Expectation Maximization (EM) al-

gorithm that is used for the estimation of the HMM parameters. Thus the task of the

Baum-Welch algorithm is to adjust the parameters of the HMM model (given an arbitrary

selection of the initial parameters) to maximize the likelihood of the observation sequences.

In the phoneme recognition system the Baum-Welch re-estimation algorithm is applied dur-

ing the training phase for the estimation of the left-to-right HMM model parameters for

each phoneme state. The left-to-right HMM model parameters, in turn, add distinguishing

characteristics to each of the phoneme states and are used in the recognition phase of the

phoneme recognition system. The estimated model parameters λi = (A,B, π) correspond

to each of the hidden phoneme states that are used in the segmental Viterbi Search al-

gorithm presented in the previous section. These left-to-right HMM parameters are used

during the determination of the emission probabilities during the segmental Viterbi search.

In other words, after the training of the left-to-right HMM parameters (by means of the

Baum-Welch algorithm) for each hidden phoneme state, the phoneme recognition system

uses those HMM parameters to determine the phoneme state that an observation sequence

most likely belongs to. A detailed description of the application of model parameters to

the segmentation and recognition of the phoneme states was presented in Section 3.3.2 of

this chapter (see the discussion of the implementation of the two functions gi(L,H) and

hi(L,H)). We now illustrate the training and estimation phase of the left-to-right HMM
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parameters (given the observation set pertaining to the HMM) using the Baum-Welch algo-

rithm. The Baum-Welch re-estimation algorithm is responsible for estimating four different

sets of parameters: the state transition matrix A (bound to the state transition constraints

of the left-to-right HMM), the weights, and the means and variances of the hidden state

Gaussian Mixture Models (used for the computation of the emission probabilities during the

Viterbi search). The initial state probability vector π (representing the initial weights of the

hidden states) is assumed to have one for the starting state and zeroes for the rest of the

states. The Baum-Welch re-estimation algorithm is an iterative two step algorithm. The

two steps in each of the iterations of the Baum-Welch algorithm are the Expectation step

and the Maximization step. Both of these steps are presented in detail later in this chapter

(Subsections 3.4.3 and 3.4.4). Since the Baum-Welch re-estimation algorithm is a particu-

lar form of the Expectation Maximization algorithm, the likelihood of the observation set

is guaranteed to converge (proof of which can be found elsewhere [22]). However, being a

particular case of the EM algorithm, the Baum-Welch algorithm is prone to get trapped at

a local maximum. Thus, ”good” initialization is crucial for the re-estimation performance

of the Baum-Welch Algorithm.

This section of the thesis is organized as follows. First we discuss the algorithms that

are used in this thesis for initializing the Baum-Welch algorithm. These are the K-Means

clustering and the corresponding Expectation Maximization algorithm that is applied to the

clustering task. Then we present the forward-backward algorithm which is used extensively

in the Baum-Welch algorithm. Finally we present the Expectation and the Maximization

steps of the Baum-Welch algorithm.

3.4.1 Initialization of the HMM Model

The EM algorithm generally provides good convergence under any initial guesses of the

HMM model parameters, however it is possible for the Baum-Welch algorithm to converge

to local maxima. As such, we use several techniques and algorithms for introducing a random

initialization scheme that provides good initial parameters for the Baum-Welch re-estimation.
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The HMM parameters that are initialized prior to the start of the Baum-Welch re-estimation

process are: the state transition matrix A, the weights cik, the means µik, and the covariances

Σik of the hidden state Gaussian Mixture Models for a hidden state i and mixture k. To

initialize these parameters we first assume that the hidden state transitions have the same

probability. Thus for the case of an S-state left-to-right HMM the elements aij in the

transition probability are: 1 for i = j = S, 0.5 for i = j and i = j + 1 and 0 for all other i

and j. The initial transition probability matrix is illustrated below:

A =



0.5 0 0 0 · · · 0

0.5 0.5 0 0 · · · 0

0 0.5 0.5 0 · · · 0

0 0 0.5 0.5 · · · 0

0 0 0 0.5 · · · 0
...

...
...

...
. . .

...

0 0 0 0 0.5 1


(3.43)

We then assume that occupancy of each of the states in the observation sequences are

equiprobable. To incorporate this assumption into the initialization process of the HMM

parameter set we equally and uniformly distribute the entire set of observation sequences,

comprising the total array of observation points O = [o1, o2, . . . , oN ], into S different arrays

of observations Oi = [o1, o2, . . . , oP i ] where P i is the size of each observation partition i,

1 ≤ i ≤ S and
∑
P i = N . Each of the observation arrays is used for the initialization of

the GMM parameters (the GMM weights, means, and covariances). Each of the observation

arrays Oi (for each state i) is clustered intoK different clusters. The initial GMM parameters

of each state i are the weights, the means, and the covariance matrixes, computed from these

clusters. Two types of clustering are performed for the generation of the GMM parameters:

hard clustering and soft clustering. The hard clustering is responsible for the clustering of

the data by minimizing the within cluster sum of squared errors (WCSSE) computed from

the Euclidian distances between the observation data-points and their corresponding cluster

centers. On the other hand, the soft clustering is responsible for clustering the data by
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maximizing the likelihood of the data points given the mixture parameters µik, Σik, and cik.

The clustering of the data for the initialization of GMM parameters of the HMM is done by

first applying a hard clustering algorithm, K-Means, and then a soft clustering algorithm, EM

Clustering, in a sequential order. The K-Means clustering is applied for finding the cluster

centers. With the cluster centers known, EM clustering is applied for the estimation of the

GMM parameters. The hard clustering is performed first to prevent errors from rounding

during the clustering operation. After hard clustering, a soft clustering method is applied

for more accurate clustering of the data coming from a GMM. The K-Means and the EM

Clustering algorithms are explained in greater detail in the three subsections below.

After the determination of the initial selection of the GMM parameters we randomize

these parameters R times. During each randomization procedure, the GMM parameters

(weights, means, and covariances) are randomized as follows:

ĉik = cik (3.44)

µ̂ik =
µik
2

+ rµik (3.45)

Σ̂ik =
Σik

2
+ rΣik (3.46)

where ĉik, µ̂ik, and Σ̂ik are the weights, means, and covariances used for each of the R random

initializations and r is a random variable uniformly distributed between 0 and 1. The Baum-

Welch algorithm is rerun for each of these R random initializations and the model parameter

set yielding the highest likelihood of the observation set is chosen as the final set of HMM

model parameters.

Initializing the K-Means Algorithm

The initialization of the K-Means algorithm plays a key role in the performance of the hard

clustering, because the K-Means algorithm is very similar to the Expectation Maximization

algorithm, and is prone to the possibility of being trapped in a local minimum. Thus a

good initialization procedure will give a significant advantage to the performance of the K-

Means algorithm. The paper by Douglas Steinley [23] provides an excellent review of the
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different initialization techniques used for the initialization of the K-means algorithm and

their corresponding tradeoffs. The algorithm used in this thesis for the initialization of the

cluster centers for the K-means algorithm is chosen to be a slightly modified version of the

MinMax, or Farthest First (FF) algorithm [24]. The Farthest First algorithm effectively

initializes the K-Means algorithm by choosing those data points as the means that cause the

cluster centers to be as far from each other as possible. This initialization choice ensures that

the centers of the clusters will come close to the global data mean during the iterations of

the K-Means clustering, and will maximize the between-cluster spread of the cluster centers.

The FF algorithm operates as follows. We first compute the global mean. After the

global mean has been computed the FF algorithm searches for the data point having the

greatest Euclidian distance from the global mean and assigns it as the first center. After the

first center has been chosen the FF algorithm chooses the next K−1 centers by searching for

data points in the observation array that are furthest from all the previously chosen centers.

The FF procedure is formally stated below:

1. Computing the Global Mean:

µi =
1

Pi

Pi∑
n=0

oin (3.47)

where µi is the global mean of the observation array Oi = [o1, o2, . . . , oP i ] and Pi is

the size of the observation array Oi corresponding to the hidden state i for which the

GMM parameters are being estimated.

2. Finding the First Center:

µ1 = argmax
Oi

D∑
j=1

(oin(j)− µi(j))
2 (3.48)

where µ1 is the first center and is one of the data points maximizing (3.48) and D is

the dimensionality of the observation set. The quantity oin(j) in (3.48) represents the

dimension j of the observation point at time index n generated from the hidden state

i.
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3. Finding the K − 1 Centers:

µk = argmax
Oi

min
l

D∑
j=1

(oin(j)− µl(j))
2 for 1 ≤ l ≤ k − 1 (3.49)

where µk is the kth center and 2 ≤ k ≤ K.

After the initialization of the K-Means algorithm we proceed by presenting the subsequent

steps of the K-Means algorithm in the next subsection.

K-Means Algorithm

The purpose of the K-Means algorithm in this thesis is to partition an observation data set

having size Pi into K observation sets such that the within cluster sum of squared error

is minimized (WCSSE). Let Θ = [Θ1,Θ2, . . . ,ΘK ] denote the partitioned observation sets.

The goal of the K-Means algorithm is to partition the observation data set that minimizes

the within cluster sum of squared error:

WCSSE =
K∑
k=1

∑
on∈Θk

(on − µk)
2 (3.50)

Minimizing WCSSE in (3.50) directly is an NP-Hard problem and thus not feasible for

any practical application. As such, the K-Means algorithm utilizes a technique similar to the

Expectation Maximization algorithm to find a partition set Θ and the corresponding cluster

means µi that minimizes the WCSSE in (3.50). The K-Means algorithm is an iterative two

step process. During the first step of the iteration each data point on in the observation

set is categorized into one of the K different clusters. After classifying each data point in

the data set to the cluster with its mean having the smallest Euclidian distance to the data

point, the means of all clusters are updated. The adjustment of the means of the clusters is

updated by computing the mean of each partition Θi. This process is repeated iteratively

until either the change in the WCSSE value is smaller than a chosen threshold, or until the

maximum permissable number of iterations is reached. The K-Means algorithm is formally

stated below:
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1. Initialization:

Initialize the centers of the clusters µi using any initialization method (in this case the

FF algorithm).

2. Assignment of data to cluster partitions:

Assign the data points to the cluster partition according to:

Θm
k (n) = on :

D∑
j=1

(on(j)− µmk (j))
2 ≤

D∑
j=1

(on(j)− µmk∗(j))
2 for 1 ≤ k∗ ≤ K and k∗ ̸= k

(3.51)

WCSSEm =
K∑
k=1

∑
on∈Θm

k

(on − µmk )
2 (3.52)

where D is the dimensionality of the data and the cluster centers and Θm
k (n) represents

the data point n in the kth partition during the iteration m. The size of each data

partition Θm
k is denoted by Pm

k .

3. Updating the means:

µm+1
k =

1

Pm
k

Pm
k∑

n=1

Θm
k (n) (3.53)

WCSSEm+1 =
K∑
k=1

∑
on∈Θm+1

k

(on − µm+1
k )2 (3.54)

Set m = m + 1 and then go back to step 2 if |WCSSEm+1 −WCSSEm| ≥ η and

m ≤ ϕ, where η is the convergence threshold and ϕ is the maximum number of iterations

permitted for the K-Means algorithm; otherwise stop.

We have presented the K-Means algorithm in this subsection. The next subsection dis-

cusses the EM Clustering algorithm.

EM Clustering Algorithm

The EM Clustering algorithm is used in this thesis for the computation of the GMM pa-

rameters associated with each hidden state in the left-to-right HMM. Similar to K-Means
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clustering, EM Clustering is an iterative two-step process having the Expectation step and

the Maximization step. However, unlike K-Means clustering, the cluster covariances and

weights are updated based on the likelihood of the data points being generated from a

particular mixture. The EM clustering algorithm is a soft clustering algorithm since the

membership of the observation data points to a mixture is defined by a likelihood measure

(as opposed to a direct membership classification as is the case in the K-Means algorithm).

Hence in the K-Means algorithm a data point is a member of a single cluster only, while in

EM the extent of membership in a cluster is a degree of membership. Thus the goal of EM

clustering is to choose the GMM mixture parameters that maximize the log likelihood of the

observation set given by:

L =
K∑
k=1

Pk∑
n=1

(log(ck) + log(P (on; θk))) (3.55)

where θk is the mixture parameter set which consists of the mixture mean µk and the mixture

covariance matrix Σk, and the mixture weight ck. Similar to the K-Means algorithm, the

GMM parameters have to be initialized for the EM Clustering algorithm. In this thesis, the

initialization of the GMM parameters is done by the K-Means algorithm. The centers of the

mixtures are computed by the K-Means algorithm, while the covariance matrices and the

mixture weights are obtained from each individual partition derived by the K-Means algo-

rithm. During the Expectation step of the iteration, the EM Clustering algorithm computes

membership probabilities P (ψn|on) where ψn denotes a random variable representing the

mixture that the data point on belongs to. The maximization step of the EM clustering it-

eration uses the updated membership probabilities to compute the weighted mean, weighted

covariance, and the cluster weights. This two step process is iteratively repeated until either

the change in the likelihood measure L given in (3.55) is below the threshold ηEM or the

number of permissable iterations ϕEM is exceeded. The EM clustering algorithm is formally

presented below while the full derivation of the EM clustering algorithm is shown in the

Appendix:

1. Initialization:
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Initialize the GMM parameters: the cluster weights, means, and covariance matrixes -

ck, µk, and Σk respectively - by the K-Means algorithm.

2. Expectation Step:

P (ψn = k|on)m =
cmk N(µ

m
k ,Σ

m
k , on)∑K

i=1 c
m
i N(µ

m
i ,Σ

m
i , on)

(3.56)

Lm =
K∑
k=1

Pk∑
n=1

(log(cmk ) + log(P (on; θ
m
k ))) (3.57)

3. Maximization Step:

µm+1
k =

∑Pi

n=1 P (ψn = k|on)mon∑Pi

n=1 P (ψn = k|on)m
(3.58)

Σm+1
k =

∑Pi

n=1 P (ψn = k|on)m(on − µk)(on − µk)
T∑Pi

n=1 P (ψn = k|on)m
(3.59)

cm+1
k =

1

Pi

Pi∑
n=1

P (ψn = k|on)m (3.60)

Lm+1 =
K∑
k=1

Pk∑
n=1

(
log(cm+1

k ) + log(P (on; θ
m+1
k ))

)
(3.61)

Set m = m + 1 then go to step 2 if |Lm+1 − Lm| ≥ ηEM and n ≤ ϕEM , where ηEM is

the convergence threshold and ϕEM is the maximum number of iterations permitted

for the EM Clustering algorithm; otherwise stop.

3.4.2 Forward-Backward Algorithms

In the previous section we have discussed the initialization of the Baum-Welch algorithm.

We now proceed with the presentation of the Baum-Welch Expectation Maximization algo-

rithm. The Forward-Backward procedure is an efficient method for computing the proba-

bility of the observation sequence given the left-to-right HMM model parameters. Consider

the observation sequence O = [O1, O2, . . . , ON ] and the corresponding hidden state sequence

Q = [q1, q2, . . . , qN ], each of which is labeled by one of the possible S hidden states. The
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parameter set of the HMM is given by λ = (A,B, π) where A is the state transition matrix,

B corresponds to the emission probabilities, and π is the initial hidden state weight vector.

The probability of the observation sequence O given a sequence of hidden states Q and the

assumption of independence between the observations, is given by:

P (O|Q;λ) =
N∏
n=1

P (On|qn;λ) =
N∏
n=1

bOn
qn (3.62)

where bOn
qn is as defined in (3.12) for a continuous left-to-right HMM. Similarly, the probability

of a hidden state sequence is given by:

P (Q;λ) = πq1

N∏
n=2

aqn,qn−1 (3.63)

The joint probability of the observations and the hidden states is given by the product

of the marginal probability of the states and the conditional probability of the observation

sequence and is represented as:

P (O,Q;λ) = P (O|Q;λ)P (Q;λ) = bO1
q1
πq1

(
N∏
n=2

bOn
qn aqn,qn−1

)
(3.64)

To obtain the marginal probability of the observation sequence, we sum the joint proba-

bility over all the possible hidden state sequences. Thus the marginal probability P (O;λ) is

given by:

P (O;λ) =
∑

q1,q2....,qN

P (O|Q;λ)P (Q;λ) =
∑

q1,q2....,qN

bO1
q1
πq1

(
N∏
n=2

bOn
qn aqn,qn−1

)
(3.65)

This process is computationally very expensive and does not take advantage of the

Markov assumption. Therefore the direct computation of P (O;λ) in (3.65) is also very

inefficient. The Forward-Backward algorithm provides an easy and efficient method for com-

puting the probability of the observation sequence. The Forward-Backward procedure takes

advantage of Dynamic Programming to formulate a recursive algorithm for the computation

of the observation likelihood. The detailed implementations of the forward and backward

probabilities - and how they contribute to the computation of the observation likelihood -

are given in the next two subsections respectively.
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Forward Probabilities

The forward probabilities are defined as the joint probability of the partial observation

sequence O1, O2, . . . , On and the event of the hidden state qn at time n being i, given the

HMM model parameters. Thus the forward probabilities αin are given by:

αin = P (O1, O2, . . . , On, qn = i;λ) (3.66)

Note that this probability measure is similar to δin in (3.27) and (3.18) with the difference

that the δin maximizes the hidden state sequence probability. Thus, as was seen in the

description of the Viterbi Search algorithms, the forward probabilities constitute the core

formulation of the DP approach to the task of computing the likelihood of the observation

sequence. The forward probabilities are computed as follows:

1. Initialization:

αi1 = πib
i
1 for 1 ≤ i ≤ S (3.67)

2. Induction Step:

αin+1 =
S∑
j=1

(aijα
j
n)b

i
n+1 for 1 ≤ n ≤ N − 1; for 1 ≤ i ≤ S (3.68)

3. Termination step:

P (O;λ) =
S∑
i=1

αiN (3.69)

Backward Probabilities

The backward probabilities are computed in a similar manner as the forward probabilities.

The difference between the computation of the forward and backward probabilities is that

the backward probabilities start the recursive process at the end of the sequence (unlike the

forward probabilities which are computed starting at the first observation). Similar to the

forward probabilities, the backward probabilities are given by:

βin = P (ON , ON−1, . . . , On, qn = i;λ) (3.70)
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The algorithm for computation of the backward probabilities is similar to that for the

forward probabilities and is given below:

1. Initialization:

βiT = 1 for 1 ≤ i ≤ S (3.71)

2. Induction Step:

βin =
S∑
j=1

(ajiβ
j
n+1b

j
n) for n = N − 1, N − 2, . . . , 1 for 1 ≤ i ≤ S (3.72)

Both the forward and backward probabilities are used extensively in the expectation and

maximization steps of the Baum-Welch algorithm presented in the next two sections.

3.4.3 Expectation Step

In the expectation step of the Baum-Welch re-estimation algorithm, several likelihood vari-

ables are computed and used for the re-estimation of the left-to-right HMM parameters

during the Maximization step. First we introduce a variable representing the probability of

the hidden state qn at time index n to be labeled as i and the hidden state qn+1 at time

n+ 1 to be labeled as j given the observation sequence and a prior assignment of the HMM

parameters λ. This probability is shown below:

ξ(i, j, n) = P (qn = i, qn+1 = j|O;λ) = P (qn = i, qn+1 = j, O;λ)

P (O;λ)
(3.73)

The probability ξ(i, j, n) in (3.73) can be written in terms of the forward probabilities,

backward probabilities, hidden state transition probabilities and the emission probabilities

as follows:

ξ(i, j, n) =
αinajib

j
n+1β

j
n+1∑S

i=1

∑S
j=1 α

i
najib

j
n+1β

j
n+1

(3.74)

where the numerator in (3.74) is simply the probability P (qn = i, qn+1 = j, O;λ) and the

denominator in (3.74) is the likelihood of the observation set P (O;λ). Let γ(i, n) represent
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the probability of the hidden state qn at time index n being labeled as i and we can then

write it in terms of the forward and backward probabilities as shown below

γ(i, n) =
αinβ

i
n+1∑S

i=1 α
i
nβ

i
n+1

=
P (qn = i, O;λ)

P (O;λ)
(3.75)

The probability γ(i, n) can also be obtained by simply marginalizing the probability

ξ(i, j, n) over the state j as shown below:

γ(i, n) =
S∑
j=1

ξ(i, j, n) (3.76)

Finally, we define the variable v(i, n, l), which represents the probability of the state qn

at the time index n having a label i and being generated by the mixture l from the set of K

mixtures in the GMM model for the hidden state, given the observation set and the HMM

model λ. This probability is given by:

v(i, n, l) =
αinβ

i
n+1∑S

i=1 α
i
nβ

i
n+1

cilN(µil,Σil, On)∑K
k=1 cikN(µik,Σik, On)

(3.77)

where cil, µil, and Σil represent the weight, mean vector, and the covariance matrix of the

state i and mixture l. Note that the first product term in (3.77) is recognized from (3.75)

to simply be the probability γ(i, n). The maximization step of the Baum-Welch algorithm

iteration uses the expected values of the aforementioned likelihoods for the re-estimation

of the parameters of the left-to-right HMM. The expected number of transitions from the

hidden state qi to the hidden state qj is given by:

E[ξ] =
N∑
n=1

ξ(i, j, n) (3.78)

Similarly the expected number of transitions from state i is given by:

E[γ] =
N∑
n=1

γ(i, n) (3.79)

The expected number of times the observations in the observation sequence will be gen-

erated from the mixture l in the hidden state i is given by:

E[v] =
N∑
n=1

v(i, n, l) (3.80)
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Finally, the variable

Ei[v] =
K∑
k=1

N∑
n=1

v(i, n, k) (3.81)

represents the expected number of times the observation will be generated from the hidden

state i. We now have all the variables needed for the computation of the HMM parameters

in the maximization step of a single Baum-Welch iteration.

3.4.4 Maximization Step

We now present the set of computations that is executed to update the left-to-right HMM

parameters, namely the hidden state transition probability matrix A and the GMM param-

eters: weights, mean vectors, and covariance matrixes cil, µil, and Σil respectively. Let the

observation sequence be denoted by O = [O1, O2, . . . , ON ] and the corresponding hidden

state be denoted by Q = [q1, q2, . . . , qN ] for a left-to-right HMM. For each transition from

state i to state j the transition probabilities are computed by dividing the expected number

of transitions from state i to state j by the expected number of transitions from state i.

Thus the updated transition probabilities are given by:

aij =
E[ξ]

E[γ]
=

∑N
n=1 ξ(i, j, n)∑N
n=1 γ(i, n)

(3.82)

Similarly the weights of the hidden state HMM are given by:

cil =
E[v]

Ei[v]
=

∑N
n=1 v(i, n, l)∑K

k=1

∑N
n=1 v(i, n, k)

(3.83)

where
∑N

n=1 v(i, n, l) is the expected number of times the observations will come from mixture

component l in the hidden state i and
∑K

k=1

∑N
n=1 v(i, n, k) is the expected number of times

the observations will be generated from hidden state i. The updated mean of the distribution

is given by the weighted time average of the observation data set, weighted by the likelihood

of the observations in the hidden state i being generated from the mixture component l.

Thus the mean vector of the GMM mixture l in the hidden state i is given by:

µil =

∑N
t=1(E[v])ot
E[v]

=

∑N
t=1

(∑N
n=1 v(i, n, l)

)
ot∑N

n=1 v(i, n, l)
(3.84)
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Finally, the covariance matrix is computed in the same manner (as the mean µil) and is

given by:

Σil =

∑N
t=1(E[v])(ot − µil)(ot − µil)

T

E[v]
(3.85)

=

∑N
t=1

(∑N
n=1 v(i, n, l)

)
(ot − µil)(ot − µil)

T∑N
n=1 v(i, n, l)

(3.86)

Since the Baum-Welch re-estimation algorithm is applied to a left-to-right HMM, the

initial weights π of the hidden states are one for the first state, and zero for the rest of

the states. Note that so far we have presented the equations for updating the parameters

of the left-to-right HMM using only one observation sequence. It has been shown that

the parameters of the HMM need to be adjusted based on multiple observation sets for

the phoneme recognition system, in order to diminish some of the effects of speech and

speaker variability. Since the numerators and the denominators of the update equations

are averages, we can incorporate multiple observation sequences by simply summing the

numerators and the denominators of the update equation for aij, cil, µil, and Σil in (3.82) to

(3.86) over all of the observation sequences. Let the entire set of P observation sequences be

denoted by O = [Ol1
1 , O

l2
2 , . . . , O

lP
P ] having a total length N of N =

∑P
i=1 li where O

li
i denotes

the observation sequence i heaving length li. Let the likelihood variables ξ(i, j, n), γ(i, n),

and v(i, n, l) computed in the expectation step of the Baum-Welch algorithm iteration be

denoted by ξm(i, j, n), γm(i, n), and vm(i, n, l) respectively for the observation sequence m.

The update equations for the Maximization step of the Baum-Welch iteration are given by:

aij =

∑P
m=1

∑N
n=1 ξ

m(i, j, n)∑P
m=1

∑N
n=1 γ

m(i, n)
(3.87)

cil =

∑P
m=1

∑N
n=1 v

m(i, n, l)∑P
m=1

∑K
k=1

∑N
n=1 v

m(i, n, k)
(3.88)

µil =

∑P
m=1

∑M
t=1

(∑N
n=1 v

m(i, n, l)
)
Olm
m (t)∑P

m=1

∑N
n=1 v

m(i, n, l)
(3.89)

Σil =

∑P
m=1

∑M
t=1

(∑N
n=1 v

m(i, n, l)
)
(Olm

m (t)− µil)(O
lm
m (t)− µil)

T∑P
m=1

∑M
n=1 v

m(i, n, l)
(3.90)
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3.5 Practical Issues with HMM

There are a few considerations that need to be addressed, particularly for the re-estimation

of the left-to-right HMM parameters, in order for the implementation of the training and

recognition of the HMM models of the phoneme recognition system to be feasible. From

(3.68) and (3.72) of the recursive algorithms for the computations of the forward and back-

ward probabilities we observe that the values of the forward and backward probabilities

converge exponentially to zero. In other words, for observation sequence length N the for-

ward and backward probabilities will be very close to zero. This, in turn, will introduce large

rounding errors during the implementation of the training system for the HMM parameters.

The rounding errors will be generated from the very small probabilities being rounded to

zero. This in turn will leave most of the forward and backward probabilities as zeroes, which

will severely degrade the performance of the Baum-Welch algorithm. To eliminate these

rounding errors, scaling of the forward and backward probabilities is necessary.

During the computation of the forward and backward probabilities, their values are scaled

by scaling coefficients that are not dependent on the hidden states i and are only dependent

on the time index n. The goal of these coefficients is to maintain the forward and backward

probabilities within the dynamic range of the processor used for the implementation of the

Baum-Welch re-estimation algorithm. After the computation of the HMM parameters, the

scaling coefficients of the forward and backward probabilities cancel each other. Thus the

HMM parameter estimation is not affected by the scaling coefficients. To illustrate this

point consider the re-estimation of the transition probabilities aij in terms of the forward

and backward probabilities:

aji =

∑N
n=1 α

i
najiβ

j
n+1b

j
n+1∑M

j=1

∑N
n=1 α

i
najiβ

j
n+1b

j
n+1

(3.91)

The scaling coefficients for the forward probabilities are chosen to be:

cn =
1∑M
i=1 α

i
n

(3.92)

which effectively ensures that the sum of the forward probabilities for time index n is unity.
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The scaling of the forward probabilities is performed as follows. First, each of the forward

probabilities αin for time index n is computed by the recursive formulation given in (3.68)

by using the scaled forward probability for time index n− 1 as shown below:

αin =
M∑
j=1

α̂jn−1aijb
i
n (3.93)

where âjn represents the scaled forward probability for state j at time index n. Second, the

forward probability computed in (3.93) is scaled by the scaling coefficient defined in (3.92)

and is given by:

âin =

∑M
j=1 α̂

j
n−1aijb

i
n∑M

i=1

∑M
j=1 α̂

j
n−1aijb

i
n

(3.94)

By induction we have:

âin−1 = (
n−1∏
k=1

ck)α
i
n−1 (3.95)

and, by substituting (3.95) into (3.94) we have:

α̂in =

∑M
j=1(

∏n−1
k=1 ck)α

i
n−1aijb

i
n∑M

i=1

∑M
j=1(

∏n−1
k=1 ck)α

i
n−1aijb

i
n

(3.96)

=
αin∑M
i=1 α

i
n

(3.97)

Equation (3.97) shows that scaling the forward coefficients in the recursive manner shown

in (3.93) (and as implemented for the Baum-Welch re-estimation algorithm) is theoretically

equivalent to computing the unscaled forward probabilities ain and then scaling them by the

scaling coefficients cn. The backward probabilities are scaled in the same manner as the

forward probabilities, however the scaling coefficients used for the scaling of the backward

probabilities at time index n are the same scaling coefficients used for scaling the forward

probabilities. Thus,

β̂in = cnβ
i
n (3.98)

Since the magnitudes of the forward and backward probabilities are comparable, scaling

the backward probabilities with the same scaling coefficients used for scaling the forward
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probabilities will be sufficient for maintaining the range of values of the backward prob-

abilities within practical bounds. Let Cn represent the scaling coefficient of the forward

probability αin at time index n and Dn represent the scaling coefficient of the backward

probability βin at time index n. The scaled forward and backward probabilities are given by:

α̂in = (
n∏
k=1

ck)α
i
n = Cnα

i
n (3.99)

β̂in+1 = (
N∏

k=n+1

ck)β
i
n+1 = Dn+1α

i
n (3.100)

The re-estimation equation for the transition probabilities using the scaled forward and

backward probabilities is given by:

aij =

∑N
n=1Cnα

i
naijDn+1b

j
n+1b

j
n+1∑M

j=1

∑N
n=1Cnα

i
naijDn+1b

j
n+1b

j
n+1

(3.101)

where the product CnDn+1 both in the numerator and denominator of (3.101) is given by:

CnDn+1 =
n∏
k=1

ck

N∏
k=n+1

ck = CT (3.102)

and does not depend on the time index n. As such, the scaling coefficients cancel and do not

have any contribution to the re-estimated transition probabilities. Similarly, the scaling of

the forward and backward coefficients does not affect the final result of the computation of

the variables ξ(i, j, n), γ(i, n), and v(i, n, l) in the Expectation step and the HMM parameters

cil, µil, and Σil in the Maximization step of the Baum-Welch re-estimation algorithm. The

only change that is reflected in the Baum-Welch algorithm from scaling the forward and

backward probabilities is the computation of the likelihood of the observation sequence

P (O;λ). After scaling the forward and backward probabilities, we can not simply sum the

forward probabilities at time index N to obtain the likelihood of the observation sequence

as we did in (3.69). However from (3.100) we can deduce the following:

(
N∏
n=1

cn)
S∑
i=1

αiN = CTP (O;λ) = 1 (3.103)
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Thus,

P (O;λ) =
1∏N

n=1 cn
(3.104)

The likelihood of the observation sequence as given in (3.104) is prone to numerical

overflows and instabilities for large N . Thus we compute the log likelihood of the observation

sequence given by:

log(P (O;λ)) = −
N∑
n=1

log(cn) (3.105)

Note that the forward and backward probabilities do not have to be scaled at each n

and can be scaled only for certain time indices as found necessary (for preventing numerical

rounding and overflow errors). For the time indices for which the scaling of the forward and

backward probabilities is not used, the scaling coefficient is simply 1 and the output is not

affected by the scaling coefficient. Furthermore the scaling coefficients can be chosen arbi-

trarily (while preventing numerical instabilities in the forward and backward probabilities),

and thus do not have to be limited by the expression for cn in (3.92). The only limiting

constraint for the choice of the scaling coefficients is that there can be only one scaling

coefficient at each time index n.

During the Baum-Welch re-estimation procedure, numerical instabilities can also be gen-

erated from having GMM and an observation sequence with high dimensionality D. Assum-

ing independence between each of the dimensions of the mixtures in the GMM, the variable

v(i, n, l) is given by:

v(i, n, l) =
αinβ

i
n+1∑M

i=1 α
i
nβ

i
n+1

cil
∏D

d=1 N(On;µik,Σik)∑K
k=1 cik

∏D
d=1 N(On;µik,Σik)

(3.106)

where D is the dimensionality of the feature vectors, and µild, σild, and On,d are the mean,

variance, and observation respectively for the state i mixture l and along the dimension d.

To eliminate the numerical instabilities from the high dimensionality D of the observation

data we scale each of the probabilities N(On;µik,Σik) by a scaling factor sjn that is dependent

on the time index n and the state j and is independent of the dimension index d and the

mixture component l. These constraints ensure that the scaling of the Gaussian probabilities
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will not affect the computation of the variable v(i, n, l). The scaling coefficient sjn is given

by:

sn =
1

med(N(On;µik,Σik))
for 1 ≤ d ≤ D, 1 ≤ l ≤ K, 1 ≤ i ≤ S (3.107)

where the function med(·) represents the median of a set.

The algorithms integrated in the phoneme recognition system were discussed in this

chapter. The next chapter presents the simulation analysis and validation of the functionality

of the algorithms discussed in this chapter. Furthermore, in the next chapter we discuss the

application of the algorithms discussed in this chapter to the task of phoneme recognition.



Chapter 4

Simulations, Tests, and Results

This chapter presents simulation and testing results of the algorithms discussed in the previ-

ous chapter. The set of simulations and test experiments illustrated in this chapter validate

the correct functionality and asses the performance of the two recognition layers (first and

second layer with left-to-right HMM and segmental ergodic HMM respectively) individually.

Particularly we present the performance of the K-Means clustering, EM Clustering, Baum-

Welch and Viterbi Search algorithms of the simple left-to-right HMM. We also present the

training and the Segmental Viterbi Search algorithm of the ergodic Segmental HMM and

finally the performance of the phoneme recognition system.

This chapter also presents one more algorithm that is used for validating the effectiveness

of the extracted feature vectors for each phoneme. The validation of the feature vector ex-

traction system assumes that the set of feature vectors generated from two different phonemes

with different acoustic properties will present two different clusters when visualized together.

For visualizing two sets of feature vectors (from two different phonemes) we need to scale

the dimensionality of the concatenated sets of feature vectors to two dimensions, since each

of the feature vectors extracted from the speech utterance is a 25 dimensional vector. The

dimensionality reduction of the data is performed by the Multidimensional Scaling (MDS) al-

gorithm. The goal of the MDS algorithm is to preserve the variance of the higher dimensional

feature vector data in the lower dimensional feature vector data.

67
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Section 1 of this chapter discusses and tests the MDS algorithm, Section 2 presents the

simulations to verify the performance of the K-Means and EM clustering algorithms, Section

3 and 4 present the simulations of the left-to-right HMM and the ergodic Segmental HMM

respectively. Finally, Section 5 presents the validation of the feature vector system as well as

the experimental design and the verification of the phoneme recognition system as a whole.

4.1 Multidimensional Scaling

Multidimensional Scaling refers to a set of techniques that is generally used for visualization

of the underlying structure of high dimensional data. The dimensionality reduction (or MDS)

techniques used on a high-dimensional data set can also effectively increase the performance

of a classifier by avoiding the curse of dimensionality. We use MDS for testing and verification

of the algorithms discussed in the previous chapter and of the feature extraction system. The

MDS verifies the correct functionality of an algorithm with high dimensional output data by

scaling the dimensionality of the output data. After the output of a system is scaled to two

dimensions, we are able to visualize the output of the system and compare it to the expected

output structure. The application of the MDS techniques to the validation of the algorithms

described in the previous chapters is included in the following sections of this chapter. We

now proceed with a discussion of the dimensionality reduction itself.

Depending on the application of the MDS and the nature of the original data, different

measures of similarity (or proximity between the higher and lower dimensional data) can be

applied. The dimensionality reduction used in this thesis is referred to as classical scaling

because of the fact that the similarity measure used in the MDS algorithm is exactly the

Euclidian Distance [25]. The algorithm used for the dimensionality reduction of high dimen-

sional data is the SMACOF (Scaling by MAjorizing a COmplicated Function). As the name

implies, the SMACOF algorithm is essentially based on the general concept of majorization

of a function. Before we proceed to the details of implementation of the SMACOF, we first

introduce the principle behind the majorization of a function.
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The principle of majorization is to construct an additional function that majorizes an

objective function. Suppose we have an objective function f(x) that needs to be minimized.

The analytical solution of the minimization of f(x) could be complicated and cumbersome.

Instead the majorization of f(x) recommends a surrogate function g(x, y) for all x:

g(x, y) ≥ f(x) (4.1)

where y is a fixed constant and is called the supporting point [25]. The surrogate function

g(x, y) is equal to the objective function f(x) when x = y. Thus,

g(y, y) = f(y) (4.2)

For a value of xmin = argminx g(x, y) the following inequality holds (known as the sand-

wich inequality):

f(xmin) ≤ g(xmin, y) ≤ g(y, y) = f(y) (4.3)

Majorization of the objective function is an iterative procedure and is carried out by the

following steps:

1. Initialize the fixed point y = yo

2. Find x(m) such that g(x(m), y) ≤ g(y, y)

3. If |f(y)− f(x(m))| < ϵ then stop. Otherwise, set y = x(m) and return to step 2.

This process is extended to the case of multidimensional reduction, as the sandwich

inequality in (4.3) holds. The objective function used in MDS for visualization and validation

in this thesis is the sum of squared distances, otherwise known as stress [25].

Let the input to the SMACOF algorithm be the high dimensional data represented by an

N×DH matrix Xin, where N is the total number of data points and DH is the dimensionality

of the input data. Similarly let the output data of the SMACOF algorithm be represented

by a N ×DL matrix Y where DL is the dimensionality of the lower dimensional data. The

SMACOF algorithm first constructs a square, N ×N distance matrix ∆ of all the distances
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ψij between the corresponding data points X
(i)
in and X

(j)
in (which is also hollow (ψii = 0) and

symmetrical). The goal of the SMACOF algorithm is to generate a set of lower dimensional

points X, whose N × N distance matrix Γ with its distance elements dij approximates the

distance matrix ∆. Thus, after the iterations of the SMACOF algorithm ∆ ≈ Γ, and the

corresponding distance matrix elements ψij and dij are given by:

ψij =

√√√√DH∑
d=1

(X
(i)
in (d)−X

(j)
in (d))2 (4.4)

dij =

√√√√ DL∑
d=1

(Xi(d)−Xj(d))2 (4.5)

The stress function to be minimized for the dimensionality reduction is formulated as

follows:

ν(X) =
N∑
i=1

N∑
j=1

wij(ψij − dij)
2 (4.6)

where, wij are the elements of an N ×N weight matrix which is assumed to be symmetric,

non-negative and hollow (wii = 0). Without loss of generality we assume:

N∑
i=1

N∑
j=1

wijψij = 1 (4.7)

The expanded form of (4.6) is given by:

ν(X) =
N∑
i=1

N∑
j=1

wijψ
2
ij +

N∑
i=1

N∑
j=1

wijd
2
ij − 2

N∑
i=1

N∑
j=1

wijψijdij (4.8)

ν
def
= η2ψ + η2d(X)− 2ρ(X) (4.9)

where, η2ψ is the first term in (4.9) and is assumed to be 1 by (4.7), η2d(X) is the second term

in (4.9) and is a quadratic convex function of X. Finally, ρ(X) corresponds to the third

term in (4.9) and is also a convex quadratic function of X with the resulting −2ρ(X) being

a concave quadratic function. Let us define a square N ×N matrix V with its corresponding

elements vij as,

vij =

 −wij ∀ i ̸= j∑N
j=1,i ̸=j wij ∀ i = j

(4.10)
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Then the quantity η2d(X) is reduced to η2d(X) = tr(X
′
V X). Furthermore, let us define a

square N ×N matrix B(X) with its corresponding elements bij as,

bij =


−wijψij

dij(X)
∀ i ̸= j, dij(X) > 0

0 ∀ i ̸= j dij(X) = 0∑N
j=1,i̸=j bij ∀ i = j

(4.11)

With this definition of the matrixB(X), the quantity ρ(X) reduces to ρ(X) = tr(X
′
B(X)X)

and consequently the stress function ν(X) becomes:

ν(X) = 1 + tr(X
′
V X)− 2tr(X

′
B(X)X) (4.12)

Similarly, let us define the matrix B(Y ) corresponding to the N×DL matrix Y consisting

of a set of DL dimensional vectors, whose elements bij are given by:

bij =


−wijψij

dij(Y )
∀ i ̸= j, dij(Y ) > 0

0 ∀ i ̸= j, dij(Y ) = 0∑N
j=1,i̸=j bij ∀ i = j

(4.13)

By the Cauchy-Schwartz inequality we can deduce that tr(X
′
B(X)X) ≥ tr(X

′
B(Y )Y )

[25]. We can consider Y to represent the fixed point in (4.2) (in this case a point y in (4.2)

is represented by a set of vectors), as such, the SMACOF algorithm majorizes the quadratic

function ρ(X) = tr(X
′
B(X)X) by a linear function tr(X

′
B(Y )Y ). The stress measure is

also majorized in the same manner as shown below.

ν(X) = 1 + tr(X
′
V X)− 2tr(X

′
B(X)X) (4.14)

≤ 1 + tr(X
′
V X)− 2tr(X

′
B(Y )Y ) = τ(X, Y ) (4.15)

where, τ(X,Y ) is a (simplified) quadratic function of X that majorizes the stress measure

ν(X). To find the minimum of the majorization function τ(X, Y ) we need to analytically

solve for X in the first partial derivative of τ(X, Y ) with respect to X. This is illustrated

below:

Xmin = X s.t.
∂τ(X,Y )

∂X
= 2V X − 2B(Y )Y = 0 (4.16)
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To solve (4.16) for Xmin, we first take the Moore-Penrose inverse V + of V . Xmin is then

given by:

Xmin = V +B(Y )Y (4.17)

The SMACOF algorithm implementation in this thesis uses the weights wij = 1 for all

i ̸= j. Thus the solution for Xmin reduces to Xmin ≈ N−1B(Y )Y . As mentioned before,

the majorization is an iterative procedure, whose steps iteratively find the optimal solution

Xmin. The monotone convergence of this iterative majorization procedure is guaranteed by

at least a linear convergence rate [25]. The iterative process of majorization formulated for

the task of dimensionality reduction is formally stated below:

1. Initialize the set of lower dimensional vectors given by the N ×DL matrix

Y = Xo and set m = 0:

The initial set of lower dimensional vectors Y - in this thesis - is simply generated by

taking the first DL dimensions of the higher dimensional data Xin.

2. Find X
(m+1)
min by the equation X

(m+1)
min = N−1B(Y (m))Y (m)

3. If |ν(X(m+1)
min )−ν(X(m)

min)| < ϵ or a certain number of iterations has been reached

then stop. Otherwise, set Y = X
(m+1)
min , m = m+ 1 and return to step 2.

We have discussed the application of the majorization to the MDS and the corresponding

SMACOF algorithm. Now we present the simulation and the verification of the functional-

ity of the MDS algorithm. The MDS is simulated by providing two 25 dimensional input

data to the SMACOF algorithm and plotting the corresponding 2 dimensional output data.

Both input data sets correspond to random data that is generated from multiple Gaussian

distributions with a set of predetermined means and covariance matrixes. The first input

25 dimensional data is generated randomly from 10 different Gaussian distributions. Means

and covariances of those Gaussian distributions are predetermined by randomly choosing

(from a uniform distribution) a set of mean vectors and covariance matrices from a given

range of values. Thus there is a maximum threshold for the values in the mean vectors and a
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separate maximum threshold chosen for the values in the covariance matrixes. Those thresh-

olds are 100 and 1750 respectively. The second input data was generated from 5 different

Gaussian distributions. Figures 4.1 and 4.2 show the 2 dimensional outputs of the SMACOF

algorithm (for the two 25 dimensional data sets) as well as the change in the stress in each

iteration. Tables 4.1 and 4.2 list all the test parameters that are used in the first and second

simulations of the MDS algorithm respectively.

Table 4.1: Parameters for the first MDS experiment (results shown in Figure 4.1)

Parameter Value Description

M 10 Number of clusters in the test data.

N 4000 Number of test data points.

Din 25 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the MDS algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take

Covariance Threshold 1750 Maximum possible value that an element in a covariance matrix can take
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Figure 4.1: MDS Scaled output and convergence of 25 dimensional input data with 10

clusters.
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Table 4.2: Parameters for the second MDS experiment (results shown in Figure 4.2)

Parameter Value Description

M 5 Number of clusters in the test data.

N 4000 Number of test data points.

Din 25 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the MDS algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take

Covariance Threshold 1750 Maximum possible value that an element in a covariance matrix can take
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Figure 4.2: Scaled output and convergence of 25 dimensional input data from 5 clusters.

The top plots in Figures 4.1 and 4.2 correspond to the 2 dimensional output of the

SMACOF algorithm at the end of 50 iterations. On the other hand, the bottom plots of

Figures 4.1 and 4.2 show the change in the stress values ν(X(m)) for the iteration index m.

As we see from the top plots of Figures 4.1 and 4.2, the number of clusters of the scaled

2 dimensional data is 10 and 5 respectively. This experiment shows that the underlying

structure of the high dimensional data is indeed preserved in the lower dimensional space.
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Furthermore, Figures 4.1 and 4.2 show that the two dimensional output data does not have an

elliptical pattern (as does 2 dimensional data generated according to a Normal distribution)

and is morphed. This is probably due to the fact that the output data has been projected

from a 25 dimensional space to a 2 dimensional space. As we see from the bottom plots

of Figures 4.1 and 4.2 the change in the stress values ν(X(m)) of the SMACOF algorithm

indeed decreases monotonically, as expected. Thus Figures 4.1 and 4.2 illustrate correct

functionality of the MDS using the SMACOF algorithm. The next section demonstrates the

simulation and test results of the clustering algorithms described in the previous chapter.

4.2 Simulation and Tests of Data Clustering

This section of the thesis presents the simulation, testing, and verification of the two clus-

tering algorithms discussed in the previous chapter, namely, K-Means clustering and EM

clustering. Numerous simulation data sets were clustered for the verification of the perfor-

mance of three tasks. First, the initialization of the K-Means algorithm was verified to have

the class centers (chosen as data points from the data set) to be as far apart from each other

as possible. Second, the functionality of the K-Means algorithm is illustrated by looking

at the positions of the final cluster centers after the convergence of the algorithm. Finally,

the functionality of the EM clustering algorithm is demonstrated by showing the final clus-

ter center and the shape and the orientation of the probability contours. The probability

contours provide one way to visualize the variance and the covariance parameters estimated

by the EM Clustering algorithm. The following subsections discuss the detailed experimen-

tal setup, testing, and simulation results for the K-Means and EM clustering algorithms

separately.

4.2.1 K-Means

The K-Means initialization and the K-Means algorithms are tested simultaneously in this

subsection. The input data generation for the K-Means algorithm was done in the same
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manner as for the MDS tests. The test data was generated randomly from a single or

multiple Normal distributions. The mean vectors and the covariance matrices of the Gaus-

sian distributions where randomly chosen from a uniform distribution, given the maximum

thresholds (for the values in the mean vectors and the covariance matrixes). The randomly

generated covariance matrices where multiplied by their corresponding transposes, result-

ing in a non-negative definite symmetric matrices. The maximum threshold for the mean

vectors and covariance matrices was chosen to be 100 and 20 respectively. The first test

data was two dimensional data generated from a single Gaussian. The number of clusters

K assigned to the K-Means clustering algorithm was 5. Table 4.3 lists all the parameters

used in this experimental setup for testing the K-Means algorithm. Figure 4.3 shows the

clustering results, while Figure 4.4 demonstrates the convergence of the centers (estimated

by the K-Means algorithm).

Table 4.3: Parameters for the first K-Means experiment (results shown in Figure 4.3)

Parameter Value Description

M 1 Number of clusters in the test data.

K 5 Number of clusters the test data is partitioned into.

N 10000 Number of test data points.

Din 2 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the scaled K-Means algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 20 Maximum possible value that an element in a covariance matrix can take.
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Figure 4.3: K-Means Initialization and K-Means algorithm result for 2 dimensional input

data from a single Gaussian and 5 estimated clusters.
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Figure 4.4: Convergence of the K-Means algorithm.
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The top plot of Figure 4.3 shows the two dimensional input data and the corresponding

initialized centers. We note that the centers are chosen from the data points in the input

data. The bottom plot of Figure 4.3 shows input data, the centers after 20 iterations of the

K-Means algorithm and the points that are classified to each cluster (based on the center

with the shortest Euclidian distance from each point). From the bottom plot in Figure 4.3

we see that the input data has been clustered into five different clusters and that the centers

of the clusters are within the input data. Also note from the bottom plot in Figure 4.3 that

the cluster at the mean of the input data (Cluster 3) occupies less area than the clusters at

the tails of the input data. This is because of the fact that the probability of a data point

being near the center of the input data is higher than it being near the tail of the input

data. Thus, data points in Cluster 3 are more densely distributed than in Clusters 1 and

2 in Figure 4.3. Figure 4.4 shows the change in the center locations during each iteration.

For each iteration, the change in the center locations is computed by first picking the cluster

center that had the highest change in value for each dimension. Then the change in the

center locations is computed by averaging these values over all the dimensions. As Figure

4.4 illustrates, the K-Means algorithm converges as the number of iterations increases.

The next input data set is a 25 dimensional input generated from a single Gaussian

distribution. The remaining parameters are left unchanged from the previous experimental

setup. Table 4.4 lists the configuration parameters and their values as used in this experi-

ment. Figure 4.5 shows the initialization of the K-Means algorithm with the corresponding

center locations and the clusters resulting after 40 iterations of the K-Means algorithm.
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Table 4.4: Parameters for the second K-Means experiment (results shown in Figure 4.5)

Parameter Value Description

M 1 Number of clusters in the test data.

K 5 Number of clusters the test data is partitioned into.

N 4000 Number of test data points.

Din 25 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the scaled K-Means algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 250 Maximum possible value that an element in a covariance matrix can take.

−150 −100 −50 0 50 100 150
−200

−100

0

100

200
25−D Data and Initial Centers

Dimension 1

D
im

en
si

on
 2

 

 

Data
Initial Centers

−150 −100 −50 0 50 100 150
−100

0

100

200
25−D Data and Cluster Centers

Dimension 1

D
im

en
si

on
 2

 

 Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Centers

Figure 4.5: K-Means Initialization and K-Means algorithm result for 25 dimensional input

data from a single Gaussian distribution and 5 estimated clusters.

Similar to Figure 4.3, the top part of Figure 4.5 shows the scaled data (scaled from 25

dimensions to 2 dimensions using the MDS algorithm described in the previous section) and

the results of the K-Means initialization algorithm. The bottom plot in Figure 4.5 illustrates

the corresponding scaled results of the K-Means algorithm. Note that the initial centers of
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the K-Means initialization algorithm seem no longer to be chosen from the input data. This

is because of the fact that due to the large number of data points, only a certain number of

data points (4000) out of the original input data set (10000 points) were randomly selected

with the 25 dimensional initial centers, then scaled (with the SMACOF algorithm) and

shown. Thus, the data points corresponding to the initial centers might not be included

in the random selection. Also note that the scaled data in Figure 4.5 is not morphed.

This is because the 25 dimensional input data was generated according to a single Normal

distribution only, and the MDS algorithm (with the Euclidian distance as the similarity

measure) preserves the variance of the higher dimensional data set. The bottom of Figure

4.5 illustrates the performance of the K-Means algorithm for a high dimensional input. The

observations made on Figure 4.3 are also valid here.

The next experimental setup has 2 dimensional input data generated from 10 different

Gaussian distributions. The number of clusters approximated for this input data was also

10. Table 4.5 lists the configuration parameters and values used in this K-Means algorithm

simulation. The top and bottom plots in Figure 4.6 show the results of the initialization of

the K-Means algorithm and the resulting K-Means centers after 20 iterations respectively.

Table 4.5: Parameters for the third K-Means experiment (results shown in Figure 4.6)

Parameter Value Description

M 10 Number of clusters in the test data.

K 10 Number of clusters the test data is partitioned into.

N 10000 Number of test data points.

Din 2 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the scaled K-Means algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 20 Maximum possible value that an element in a covariance matrix can take.
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Figure 4.6: K-Means Initialization and K-Means algorithm result for 2 dimensional input

data from 10 Gaussian distributions and 10 estimated cluster centers.

As we see from the results of the K-Means initialization algorithm from Figure 4.6 (top

plot) the 10 centers were chosen from 10 different data points. Note that these centers are

also chosen to be as far from each other as possible, encompassing the entire input data

set, as expected. The final centers of the K-Means algorithm (bottom plot of Figure 4.6)

match all 10 clusters. This figure shows the effective performance of the K-Means algorithm

and its corresponding initialization. However, as we can see from the bottom plot of Figure

4.6, the classification of the data points to their corresponding clusters based on the data

center nearest to each point (having smallest Euclidian distance) is not accurate. There

are several clusters, close to each other, that have the data points classified incorrectly in

Figure 4.6. This is because of the fact that the classification of the data points to their

corresponding classes does not take into account the covariance of each cluster. We will

demonstrate in the next section that the EM Clustering algorithm significantly increases the

correct classification of data points to their clusters due to it also estimating the covariances
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and weights of the clusters (weights are the number of data points classified to a cluster

divided by the total number of data points).

The final experimental setup performed for the K-Means algorithm has 25 dimensional

input data generated from a set of 5 Normal distributions. The number of cluster centers

estimated by the K-Means algorithm is also 5. Table 4.6 lists the configuration parameters

and values used in this K-Means algorithm simulation. The top and bottom plots of Figure

4.7 show the MDS scaled result of the K-Means initialization algorithm and the final scaled

cluster centers after 20 iterations of the K-Means algorithm.

Table 4.6: Parameters for the fourth K-Means experiment (results shown in Figure 4.7)

Parameter Value Description

M 5 Number of clusters in the test data.

K 5 Number of clusters the test data is partitioned into.

N 4000 Number of test data points.

Din 25 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the scaled K-Means algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 250 Maximum possible value that an element in a covariance matrix can take.
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Figure 4.7: K-Means Initialization and K-Means algorithm result for 25 dimensional input

data from 5 Gaussian distributions and 5 estimated cluster centers.

We observe in the bottom plot in Figure 4.7 that the clusters of the scaled input data

(coming from Normal distributions) are morphed (as expected) and the final class centers

are within each of the clusters. Also the input data points (that were selected for scaling)

were correctly classified, since the clusters are relatively far apart from each other. Figure 4.7

shows the effective performance of the K-Means initialization and the K-Means algorithm for

high dimensional data. In the next subsection of the thesis the experiments and simulations

of the EM Clustering algorithm are presented.

4.2.2 EM Clustering

The EM Clustering algorithm was tested in a similar fashion as the K-Means clustering algo-

rithm. The input data was generated according to a single or multiple multivariate Gaussian

distribution(s). The EM Clustering algorithm was initialized by the K-Means algorithm as

discussed in Section 3.4.1. The experimental results also show the probability contours of
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the Gaussian probability distributions, whose parameters (being the set of mean vectors and

covariance matrices) are estimated by the EM Clustering algorithm. The classification ad-

vantages of EM Clustering (or soft clustering) over K-Means clustering (or hard clustering)

are also noted in this subsection.

The first experimental setup has 2 dimensional input data randomly generated from 3

different Gaussian distributions. The EM clustering algorithm was performed on this input

data set for determining the means, covariances, and the weights of these 3 clusters. The

configuration parameters for this experiment are listed in Table 4.7, while the results of the

EM clustering algorithm are illustrated in Figure 4.8.

Table 4.7: Parameters for the first EM Clustering algorithm experiment (results shown in

Figure 4.8)

Parameter Value Description

M 3 Number of clusters in the test data.

K 3 Number of clusters the test data is partitioned into.

N 10000 Number of test data points.

Din 2 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the scaled K-Means algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 20 Maximum possible value that an element in a covariance matrix can take.
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Figure 4.8: EM clustering algorithm results for 2 dimensional input data from 3 Gaussian

distributions with estimated parameters for 3 Gaussian mixtures.

As we see from Figure 4.8 the three cluster centers, or cluster means, have been correctly

identified. The probability contours of Clusters 1 and 2 in Figure 4.8 follow the shape of the

input data. The probability contours of Cluster 3 in Figure 4.8 have the same shape as the

input data for that cluster, however the rotation of the probability contours is erroneous, since

the covariances between the data dimensions display approximation error for this cluster.

Thus, Figure 4.8 illustrates the performance of the EM Clustering algorithm on 3 cluster

input data. Figure 4.9 shows the change in the log-likelihood of the observation set for each

iteration of the EM clustering algorithm.
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Figure 4.9: Convergence of the EM algorithm for the three-cluster input data.

As observed in Figure 4.9, the likelihood of the observation set indeed converges. The

number of iterations sufficient for convergence of the EM algorithm was 2 in this case (the

values for iterations 2 through 4 are equal to zero). However, as we see later in this subsection,

low within-cluster variance delays the convergence of the EM Clustering algorithm.

The next experimental setup has input data set generated from 10 different Gaussian

distributions and the EM Clustering algorithm estimates the corresponding mean vectors,

covariance matrices, and weights for each of these 10 clusters (Normally distributed). This

simulation was performed in the same manner as in the previous EM Clustering algorithm

simulation, and the results were also posted in a similar manner as in Figure 4.8. Table

4.8 lists the parameters used for this test experiment of the EM clustering algorithm, while

Figure 4.10 demonstrates the performance of the EM clustering algorithm and shows the

corresponding cluster means and probability contours.
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Table 4.8: Parameters for the second EM Clustering algorithm experiment (results shown

in Figure 4.10)

Parameter Value Description

M 10 Number of clusters in the test data.

K 10 Number of clusters the test data is partitioned into.

N 10000 Number of test data points.

Din 2 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the scaled K-Means algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 20 Maximum possible value that an element in a covariance matrix can take.

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100
2−D Data and Cluster Centers

Dimension 1

D
im

en
si

on
 2

Figure 4.10: EM clustering algorithm results for 2 dimensional input data from 10 Gaussian

distributions with estimated parameters for 10 Gaussian mixtures.

As observed in Figure 4.10, all the means of the clusters were estimated correctly. Fur-

thermore, all of the probability contours have the same shape as their corresponding input

cluster data, however, some of the Gaussian probability contours have incorrect rotations
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due to the approximation errors in the Gaussian covariance matrixes. Also, note that even

though some of the clusters in Figure 4.10 overlap, the original classification of the points to

their corresponding clusters is performed correctly. This is due to the fact that the data is

classified to its class according to a probability measure. The classification performance com-

parison of the EM clustering algorithm and the K-Means clustering algorithm is illustrated

in the next set of simulations.

This experiment is conducted to specifically compare performance between the K-Means

clustering algorithm and the EM clustering algorithm. The input data used for the simulation

of the EM clustering algorithm is the same as the input data used in Figure 4.6. The input

data is randomly generated from 10 different Gaussian probabilities as shown in Figure 4.6.

The top of Figure 4.11 presents the cluster centers and the input data classification to the

classes after the convergence of the K-Means algorithm. On the other hand, the bottom

plot of Figure 4.11 shows the means, probability contours, and classification of the input

data points to the 10 clusters after the convergence of the EM clustering algorithm. The

configuration parameters for this experiment are listed in Table 4.5.
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Figure 4.11: Classification performance comparison of the K-Means and the EM algorithms.

As we see from the top plot in Figure 4.11, classification of the data points by the means

of the Euclidian distance results in classification errors between clusters that are close to

each other. On the other hand, the classification of input data in the bottom plot of Figure

4.11 is performed by assigning the class label with the highest probability to each of the

observed data points. The probability measure of the observation, given the cluster label, is

based on the mean, covariance, and weight of the class. Hence the classification of the data

to the clusters is more accurate after the convergence of the EM clustering algorithm, than

after the convergence of the K-Means algorithm, as illustrated in Figure 4.11.

The final experimental setup of the EM clustering algorithm simulation has 2 dimensional

input data generated from a single Gaussian distribution. However, there are 5 Gaussian

parameter sets estimated by the EM Clustering algorithm. Table 4.9 lists the configuration

parameters used for this experiment. Figure 4.12 demonstrates the cluster centers, probabil-

ity contours, and corresponding distributions of the data points to the clusters, while Figure

4.13 shows the convergence of the change in the observation likelihood of the EM clustering
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algorithm.

Table 4.9: Parameters for the final EM Clustering algorithm experiment (results shown in

Figure 4.12)

Parameter Value Description

M 1 Number of clusters in the test data.

K 5 Number of clusters the test data is partitioned into.

N 10000 Number of test data points.

Din 2 Dimensionality of the input test data.

Dout 2 Dimensionality of the output of the scaled K-Means algorithm.

Mean Threshold 100 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 20 Maximum possible value that an element in a covariance matrix can take.
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Figure 4.12: EM clustering algorithm results for 2 dimensional input data from a single

Gaussian distribution with estimated parameters for 5 Gaussian mixtures.
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Figure 4.13: Convergence of the EM algorithm for the five-cluster input data.

As we see from Figure 4.12, the estimated clusters, after the convergence of the EM

Clustering algorithm, are relatively close to each other. Thus, since the ratio of the cluster

covariance and the within-cluster variance is large, we expect more iterations to be required

for the convergence of the EM clustering algorithm than when the clusters are far apart

from each other (as is the case in Figure 4.8). Figure 4.13 shows that the convergence of

the EM Clustering algorithm is in fact slower (about 9 iterations) for given input data with

small within-cluster variance than the convergence of the EM algorithm given input data

with distinct clusters (as shown in Figure 4.9). The next section of the thesis presents the

simulation and test analysis of the simple left-to-right HMM.

4.3 Simulation and Tests of the Left-to-Right HMM

We present here the test process and the simulation results of the left-to-right HMM. The test

parameters of the left-to-right HMM (λ = (A,B, π)) are generated randomly. The GMM
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parameters cjk, µjk, Σjk (weights, mean vectors, and covariance matrices respectively for

state j and mixture k), used for the computation of the emission probabilities of the hidden

states are generated in the same manner as the GMM parameters for the EM Clustering

algorithm. The non-zero entries of the state transition matrix are chosen randomly from a

uniform distribution. The functionality of the HMM is verified by generating predetermined

sequence of hidden states and the corresponding set of observation sequences. After that,

the parameters of the left-to-right HMM are trained by the Baum-Welch algorithm, using

the generated observation data as training data. After the left-to-right HMM parameters

have been estimated, the Viterbi Search algorithm generates the most likely hidden state

sequence of the observation set, based on the trained HMM model. The performance of the

Baum-Welch and Viterbi Search algorithms are assessed by comparing the histograms of the

observations corresponding to the predetermined and the generated hidden states. The set of

GMM parameters regarding the emission probabilities of the hidden states is also compared

(by plotting the data points of a particular state, the means and the probability contours

of the predetermined and learned GMM parameters). The final performance assessment of

the Baum-Welch and Viterbi Search algorithms of the left-to-right HMM is the classification

rate. The classification rate of an HMM model is determined by comparing the estimated set

of hidden state sequences to the predetermined set of hidden state sequences. The correct

classification rate of the trained left-to-right HMM model is defined by the percentage of

the decoded hidden states (in a set of hidden state sequences) matching the predetermined

hidden states.

After the generation of the left-to-right HMM parameters λ = (A, cjk, µjk,Σjk, π), each

of the predetermined hidden state sequence and its corresponding training observation se-

quences are generated by the following procedure:

1. The state index j is initialized to 1 and the time index n is initialized to 1.

2. The unit interval [0 1] is partitioned according to cj. Then a random number

is generated on the interval [0 1] and the mixture k is selected according to

the partition whose subinterval boundaries contain the random number.
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3. The observation for time index n is generated from the Gaussian distribu-

tion having a mean vector µjk and a covariance matrix Σjk.

4. The state j is recorded as the predetermined hidden state at time index n.

5. The unit interval [0 1] is partitioned by selection of the partition boundaries

from the transition vector aji for 1 ≤ j ≤ S. A random number is generated

from a uniform distribution in the unit interval [0 1]. The next state j is

determined by choosing the state partition whose subinterval contains the

generated random number.

6. Increment the time index n to n+ 1.

7. If the time index n is greater then the maximum permissable time index

(20) or the last state of the left-to-right HMM is repeated the maximum

number of times (5), then stop. Otherwise go to step 2.

In an effort to decrease the time complexity of the learning and recognition systems,

independence of the individual dimensions in the feature vectors is assumed during the

Baum-Welch training and Viterbi Search of the feature vector set. The set of 2 dimensional

observation sequences of the first experiment is generated randomly according to the process

outlined above for a left-to-right HMM having 3 states and 5 mixtures in each state. The

two dimensions of the generated observation set are independent and thus have a covariance

matrix with off-diagonal elements of zero. The histograms of the states are smoothed by an

averaging filter in order to demonstrate the envelope of the probability of the observation

values in each of the 3 hidden states. Table 4.10 lists the HMM configuration parameters,

used for the generation of the test HMM models and their corresponding observation sets.

The value ”Speech Variance” in Table 4.10 indicates that the variance of each dimension in

the observation set is equal to the variance of the corresponding dimension of the speech

feature vector set (accumulated from the TIMIT database via the feature extraction system).
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Figure 4.14 shows the histograms of the observations in each of the 3 hidden states for both

the trained HMM model and the predetermined HMM model.

Table 4.10: Parameters for the first left-to-right HMM test simulation (results are in Figures

4.14 to 4.18)

Parameter Value Description

S 3 Number of HMM hidden states used.

M 5 Number of GMM mixtures for each of HMM hidden states.

N 1000 Number of left-to-right HMM test observation sequences.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 2 Dimensionality of the test observation data set.

Independent true True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold Speech Maximum possible value that an element in a covariance matrix can take.
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Figure 4.14: Observation histograms of the three hidden states of the test HMM (randomly

generated) and trained HMM models. The observation set is 2 dimensional data with inde-

pendent dimensions.

The three plots in Figure 4.14 correspond to the smoothed histograms of the first, second,

and third hidden states respectively. As we see from Figure 4.14, the histograms of the ob-

servations of the predetermined set of hidden state sequences and the estimated set of hidden

state sequences are fairly close to each other. This indicates that the 2 dimensional observa-

tions were, in fact, classified statistically correctly to their corresponding hidden states. The

recognition rate of this trained left-to-right HMM model was 87%, which indicates a fairly

low error rate (as expected from Figure 4.14). To further evaluate the performance of the

Baum-Welch training and Viterbi Search algorithms we look at the plots of the observation

data and the corresponding probability contours according to the predetermined and trained

GMM parameters. Figures 4.15, 4.16, and 4.17 illustrate the predetermined and guessed ob-

servation data set and the probability contours for the first, second, and third hidden states

respectively.
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Figure 4.15: Test and estimated observations and probability contours of hidden state 1.
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Figure 4.16: Test and estimated observations and probability contours of hidden state 2.
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Figure 4.17: Test and estimated observations and probability contours of hidden state 3.

As observed in Figures 4.15, 4.16, and 4.17, most of the test and estimated observations

for each of the three hidden states do overlap. Some of the probability contours of the test

GMM and estimated GMM parameters have the same shape and are fairly close to each

other, however some of the probability contours of the estimated GMM mixtures are within

the observation set, but do not overlap with the test GMM mixture probability contours.

This is most likely because the Baum-Welch re-estimation of the HMM parameters is an

extension of the EM algorithm to the left-to-right HMM model and thus is guaranteed to

converge to a local maximum (of the observation likelihood). Finally, we look at several

of the individual hidden state sequences to verify the functionality of the Baum-Welch and

Viterbi Search algorithms. Figure 4.18 shows the predetermined and estimated hidden states

of four observation sequences.
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Figure 4.18: Predetermined and estimated hidden state sequences for four observation se-

quences.

The blue line in Figure 4.18 corresponds to the predetermined hidden sequence and the

red line corresponds to the estimated hidden state sequence. As we see in Figure 4.18, all

the estimated and predetermined hidden state sequences start with state one (because of

the constraints on the state transition matrix A of the left-to-right HMM). Also note that

the first and the last hidden state sequences in Figure 4.18 have 20 time indices, because

the maximum allowable time index during the generation of the observation sequence is set

to 20. Furthermore, the middle two plots of Figure 4.18 contain hidden state sequences

whose length is less than 20, since the last state (state three) was repeated the maximum

allowable number of times (5 times). Finally, as we see in Figure 4.18, most of the estimated

hidden states correctly match the predetermined hidden states. Thus, Figures 4.14 to 4.18

demonstrate the performance of the Baum-Welch training and Viterbi Search algorithm

results, given the observation sequence set generated from a 3 state, 5 GMM mixtures per

hidden state, left-to-right HMM model.
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In the next experimental setup we analyze the performance of the Baum-Welch algorithm

and the Viterbi Search algorithm for a left-to-right HMM model that consists of 3 hidden

states, 5 GMM mixtures per hidden state and a generated 25 dimensional observation se-

quence set. Each of the dimensions in the observation data set is assumed to be independent;

as such the covariance matrixes of the predetermined GMM mixtures are diagonal matrixes.

The purpose of this experiment is to evaluate the performance of the Baum-Welch and Viterbi

Search algorithms for a 25 dimensional observation data set (since the speech feature vectors

are also 25 dimensional). The randomly generated left-to-right HMM model is compared

with the trained HMM model by comparing the smoothed histograms of the corresponding

observations for each hidden state. Table 4.11 lists the configuration parameters used in

this test simulation of the left-to-right HMM model training and recognition algorithms.

Figure 4.19 shows the histograms of the predetermined and estimated observation data for

the hidden states.

Table 4.11: Parameters for the second left-to-right HMM test simulation (results shown in

Figure 4.19)

Parameter Value Description

S 3 Number of HMM hidden states used.

M 5 Number of GMM mixtures for each of HMM hidden states.

N 1000 Number of left-to-right HMM test observation sequences.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 25 Dimensionality of the test observation data set.

Independent true True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold Speech Maximum possible value that an element in a covariance matrix can take.
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Figure 4.19: Observation histograms of the three hidden states of the test HMM (randomly

generated) and trained HMM models. The observation set is 25 dimensional data with

independent dimensions.

Similar to Figure 4.14, the three plots in Figure 4.19 correspond to the smoothed obser-

vation histograms of the first, second, and third hidden states. As we see in Figure 4.19,

the histograms of the observations corresponding to the predetermined hidden states and

the estimated hidden states match fairly closely. The evaluated classification rate of the

observations to their hidden states was 95.21 % (as expected from Figure 4.19). Figure 4.19

also shows that there is no significant change in the performance of the Baum-Welch and

Viterbi Search algorithms when the dimensionality of the observation data set is increased

from 2 dimensional to 25 dimensional.

The final experimental setup analyzes the performance of the Baum-Welch and the

Viterbi Search algorithms for a 25 dimensional observation sequence set, whose dimensions

are not independent. However, the Baum-Welch and Viterbi Search algorithms assume inde-

pendence between the dimensions of the observation sequence set. Thus the estimated GMM
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parameter set has diagonal covariance matrixes while the predetermined GMM parameter

set has covariance matrices containing non-zero off-diagonal elements for this experiment.

The predetermined HMM model is a 3 state left-to-right HMM model with 5 GMM mixtures

for each hidden state. The performance of the Baum-Welch re-estimation and Viterbi Search

algorithms is evaluated in the same manner as in the previous experiment (for the 25 dimen-

sional observation sequences set). Figure 4.20 shows the histograms of the predetermined

and estimated observation data corresponding to each of the three hidden states. Table 4.12

lists the experimental setup parameters used in the final test simulation of the left-to-right

HMM model training and recognition algorithms.

Table 4.12: Parameters for the final left-to-right HMM test simulation (results shown in

Figure 4.20)

Parameter Value Description

S 3 Number of HMM hidden states used.

M 5 Number of GMM mixtures for each of HMM hidden states.

N 1000 Number of left-to-right HMM test observation sequences.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 25 Dimensionality of the test observation data set.

Independent false True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold Speech Maximum possible value that an element in a covariance matrix can take.
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Figure 4.20: Observation histograms of the three hidden states of the test HMM (randomly

generated) and trained HMM models. The observation set is 25 dimensional data with

dependent dimensions.

As we see from Figure 4.20 there is a visible difference between the predetermined and

estimated (smoothed) observation histograms corresponding to the three hidden states. The

recorded classification rate of the hidden states of the trained left-to-right HMM model

was 47.54 %. From Figure 4.20 and the classification rate we conclude that the violation

of the independence assumption between the dimensions of the observation sequence can

cause a significant degradation in the performance of both Baum-Welch and Viterbi Search

algorithms. The next section presents simulation results of the performance of the Viterbi

Search regarding the combination of the simple left-to-right HMM and the Segmental HMM

topologies.
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4.4 Simulation and Tests of the Segmental HMM

This section of the report mainly analyzes the performance of the Segmental Viterbi Search

algorithm. Several tests are conducted to see the impact of the variation of some of the

parameters in the Segmental Viterbi Search algorithm on its performance. The model and

the observation sequence set of all of the tests performed for the validation of the Segmental

Viterbi Search algorithm were generated in the same manner. For each experimental setup

and test conducted, 10 left-to-right HMM models were randomly generated (in the same way

as in Section 4.3) according to the specified number of states, GMM mixture components,

dimensionality on the observation sequence sets and the independence assumptions of the

observation data. The 10 left-to-right HMMmodels were then trained using the Baum-Welch

re-estimation algorithm and the hidden state sequence for each of the observation sequence

sets in each HMM model was estimated. The hidden sequence used for the Segmental

Viterbi Search algorithm is denoted by the sequence of left-to-right HMM models. Thus

there are 10 possible hidden states used for testing in the ergodic Segmental HMM. Each

test observation sequence is generated in three steps. First, the sequence of hidden states (or

the sequence of left-to-right HMM models) is determined. Second, an observation sequence

for each HMM model in the hidden state sequence is generated. Finally, the observation

sequences of all the hidden states (of left-to-right HMM models) are concatenated to form

an observation sequence for testing the Segmental Viterbi Search algorithm. A set of such

observation sequences comprises the observation data used for testing the Segmental Viterbi

Search algorithm.

The goal of the Segmental Viterbi Search algorithm is to segment the observation se-

quence and to generate an optimum sequence of hidden states each of which represents

one of 10 left-to-right HMM models, given the left-to-right HMM parameters trained by

the Baum-Welch algorithm. The performance of the Segmental Viterbi Search algorithm

is assessed by looking at the histogram of the correct classification rates of the observation

sequences. A total of six separate experiments was conducted for performance evaluation

of the Segmental Viterbi Search algorithm. During these six tests, the variance of the ob-
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servation data set was varied, two different methods of choosing the optimum hidden state

sequence were tested, two of the segmentation parameters (parameters used for determining

the start and stop observation indices corresponding to the hidden states) were varied, and

the performance of the Segmental Viterbi Search algorithm was tested with the independence

assumption of the feature dimensions violated. These tests are described in detail below.

4.4.1 Test1: Small vs. Large Inter-Cluster Variance

The purpose of the first test is to compare the effects of observation data (with given GMM

parameters for the hidden states) with small inter-cluster variance with a data set with high

inter-cluster variance. Thus two different observation data sets where used for testing the

effect of large observation data cluster overlap on the classification rate of the Segmental

Viterbi Search. The first two dimensions of the observation data set are generated with

unit variance (and zero covariance, since the two dimensions of the observation data are

assumed to be independent). The corresponding variance of the second observation data

was set to the variances of the first two dimensions of the speech feature vector set. These

variances are 71.9501 and 17.7871 for the first and second dimensions (of the observation

data) respectively. The means of the observation data are chosen randomly from the range

of zero to the mean of the speech feature vectors for each dimension. Each of the two sets of

generated observation sequences contain 600 observation sequences. For this experimental

setup, the segment boundaries of the hidden states are known for the Segmental Viterbi

Search algorithm. When the segment boundaries of the hidden states are known, the task

of the Viterbi Search algorithm reduces to the classification of the within segment boundary

observation sequence to the corresponding hidden model. When the segment boundaries of

the hidden model sequence are not known, the two tasks of the Segmental Viterbi Search

remain finding the start/stop observation indices of each hidden state (i.e. left-to-right

HMM model) and estimating the corresponding sequence of hidden states. Table 4.13 lists

the Segmental HMM parameters used for the training and testing of the Segmental Viterbi

Search algorithm for this experiment, while Figure 4.21 illustrates the classification rates of
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the Segmental Viterbi Search algorithm for the two sets of observation data, with small and

large variances respectively. The value listed as ”Varies” for any of the parameters in the

experimental setup tables indicates that the parameter is varied in this experiment and the

results are recorded in the corresponding figures (listed in the table caption)

Table 4.13: Parameters for the first Segmental HMM test simulation (results shown in Figure

4.21)

Parameter Value Description

SHMM 10 Number of left-to-right HMM models used.

S 3 Number of HMM hidden states used per left-to-right HMM.

M 5 Number of GMM mixtures for each left-to-right HMM state.

N 1000 Number of left-to-right HMM test observation sequences.

NSeg 600 Number of Segmental HMM test observation sequences.

Nhs 40 Number of hidden states in a segmental hidden state sequence.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 2 Dimensionality of the test observation data set.

Independent true True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold Varies Maximum possible value that an element in a covariance matrix can take.

Method Max Method used for finding the optimum hidden state sequence.

2ρ 8 Range of observations used for possible hidden state start indexes.

τ 7 % Change in Viterbi likelihood for hidden state stop index.

Known Bounds true True if the segment boundaries are known. False otherwise.
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Figure 4.21: Comparison of the recognition results of the Segmental Viterbi Search algorithm

when the observation data has small versus large variance.

As seen in Figure 4.21 the variance of the observation data has a large effect on the

recognition rate of the Segmental Viterbi Search algorithm. The reported average classifi-

cation rate for the Viterbi Search on the first and second observation data sets (with small

and large inter-cluster variances respectively) was 96.16 % and 32.92 %. Since the variance

of the second data set was the variance corresponding to dimension one and two of all the

speech feature vectors, the speaker and speech variability yields a large variance. As we

will see in the next section, several measures were taken to decrease both the speaker and

speech variability of the phoneme observation data, however no significant improvements

were recorded.

4.4.2 Test2: Given vs. Unknown Hidden State Segment Boundaries

The purpose of the second test is to compare the performance of the Segmental Viterbi

Search algorithm under two different conditions. The recognition rate of the Segmental
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Viterbi Search algorithm is compared for the case when the segment boundaries of the

hidden states are given with the case where the segment boundaries of the hidden states are

unknown. The set of observation sequences for both cases consists of 600 two dimensional

observation sequences each. Table 4.14 lists all the parameters used in this experimental

setup. Figure 4.22 shows the histograms of the 600 recognition rates (correct classification

rates of each of the observation sequences) for both of these experimental setups.

Table 4.14: Parameters for the second Segmental HMM test simulation (results shown in

Figure 4.22)

Parameter Value Description

SHMM 10 Number of left-to-right HMM models used.

S 3 Number of HMM hidden states used per left-to-right HMM.

M 5 Number of GMM mixtures for each left-to-right HMM state.

N 1000 Number of left-to-right HMM test observation sequences.

NSeg 600 Number of Segmental HMM test observation sequences.

Nhs 40 Number of hidden states in a segmental hidden state sequence.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 2 Dimensionality of the test observation data set.

Independent true True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 1.5 Maximum possible value that an element in a covariance matrix can take.

Method Max Method used for finding the optimum hidden state sequence.

2ρ 8 Range of observations used for possible hidden state start indexes.

τ 7 % Change in Viterbi likelihood for hidden state stop index.

Known Bounds Varies True if the segment boundaries are known. False otherwise.
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Figure 4.22: Comparison of the Segmental Viterbi Search algorithm results between the case

where the segment boundaries are known versus being unknown.

As seen in Figure 4.22, there is a significant drop in the recognition rate when the start and

stop observation indices of the hidden state models are not known. The average classification

rate for the Segmental Viterbi Search algorithm with known start/stop indices was 96.16

% and the average classification rate with unknown hidden state segment boundaries was

62.23 %. From Figure 4.22 we deduce that the correct recognition of the hidden states

segment boundaries plays a key role in the classification rate of the Segmental Viterbi Search

algorithm. We proceed with the experimentation of the segment boundary constraint and

threshold parameters that contribute to the determination of the start and stop observation

indices of each of the hidden stat.

4.4.3 Test3: Variation of Range for Possible Observation Indices

In the third test setup we vary the range of the possible starting observation indices of each

hidden state qn, given the endpoint of the previous hidden state qn−1 (or 0 for n = 1). The



Areg G. Baghdasaryan Chapter 4. Simulations, Tests, and Results 109

range of the possible starting points of each hidden state is determined by the constant ρ

and was illustrated in Figure 3.5. We examine the recognition rates of the Segmental Viterbi

Search algorithm, given a set of 10 left-to-right HMM models, when varying the range of

the possible hidden state starting points denoted by constant integer 2ρ. The configuration

parameters for this experiment are listed in Table 4.15 and the experimental results are

shown in Figure 4.23.

Table 4.15: Parameters for the third Segmental HMM test simulation (results shown in

Figure 4.23)

Parameter Value Description

SHMM 10 Number of left-to-right HMM models used.

S 3 Number of HMM hidden states used per left-to-right HMM.

M 5 Number of GMM mixtures for each left-to-right HMM state.

N 1000 Number of left-to-right HMM test observation sequences.

NSeg 600 Number of Segmental HMM test observation sequences.

Nhs 40 Number of hidden states in a segmental hidden state sequence.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 2 Dimensionality of the test observation data set.

Independent true True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 1.5 Maximum possible value that an element in a covariance matrix can take.

Method 2 Method used for finding the optimum hidden state sequence.

2ρ Varies Range of observations used for possible hidden state start indexes.

τ 7 % Change in Viterbi likelihood for hidden state stop index.

Known Bounds false True if the segment boundaries are known. False otherwise.
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Figure 4.23: Recognition results for the Segmental Viterbi Search algorithm for varying range

of observations allocated for the possible hidden state starting points (before and after the

previous hidden state in the Segmental HMM).

Each of the points in Figure 4.23 corresponds to the mean of the recognition rates for 100

different observation sequences. As shown in Figure 4.23, the recognition rate peaks when

the range of the permissable observation indices that can be chosen to represent the start

observation of the hidden state qn (or left-to-right HMM model) is three to four observations

before and after the end of the previous hidden state qn−1. Intuitively, as the range of the

legal hidden state start observation indices increases, the chance of entirely skipping a hidden

state-and/or inaccurately picking a starting observation index for a hidden state increases.

On the other hand, as the range of permissable observation indices that can serve as a

starting point of a hidden state decreases the robustness of the Segmental Viterbi Search

algorithm also decreases. Thus, the concave plot in Figure 4.23 with a peak range for ρ is

intuitively expected.
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4.4.4 Test4: Effect of Threshold τ on the Recognition Rate

As mentioned in Section 3.3.2, the stopping point of the observation is computed by selecting

the first observation index that has a deviation from the likelihood of the most likely left-to-

right HMM hidden state sequence larger than a threshold percentage τ . This experimental

setup demonstrates the effect of different values of the threshold τ on the correct classification

rate of the Segmental Viterbi Search algorithm. The 10 left-to-right HMM model parameters

and the corresponding observation data sets (100 observation sequences used for each test

value of τ) were the same as in the previous experiment. The range of possible observation

indices 2ρ for hidden state qn given the last observation index of the previous hidden state

qn−1 was set to 6. Table 4.16 lists the parameters of the Segmental HMM used for this

simulation. Figure 4.23 illustrates the recognition rates of the Segmental Viterbi Decoding

algorithm for various values of the threshold τ .
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Figure 4.24: Recognition results for the Segmental Viterbi Search algorithm for varying

likelihood thresholds for determination of the stop observation indices of the hidden states

in a Segmental HMM.
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Table 4.16: Parameters for the fourth Segmental HMM test simulation (results shown in

Figure 4.24)

Parameter Value Description

SHMM 10 Number of left-to-right HMM models used.

S 3 Number of HMM hidden states used per left-to-right HMM.

M 5 Number of GMM mixtures for each left-to-right HMM state.

N 1000 Number of left-to-right HMM test observation sequences.

NSeg 600 Number of Segmental HMM test observation sequences.

Nhs 40 Number of hidden states in a segmental hidden state sequence.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 2 Dimensionality of the test observation data set.

Independent true True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 1.5 Maximum possible value that an element in a covariance matrix can take.

Method Max Method used for finding the optimum hidden state sequence.

2ρ 6 Range of observations used for possible hidden state start indexes.

τ Varies Change in Viterbi likelihood for hidden state stop index.

Known Bounds false True if the segment boundaries are known. False otherwise.

As for the previous test setup, each point in Figure 4.24 corresponds to the average

recognition rate over 100 observation sequences. As we see in Figure 4.24, the recognition

rate of the Segmental Viterbi Search algorithm is relatively large for values of τ ranging

from 10 % to 14 %. For subsequent experiments therefore, a value of τ was chosen to be

between 10 % to 14 %. This experiment concludes the simulations of all the parameters that

affect the determination of the hidden state segment boundaries. In the next test setup two

simulations are performed of two different methods for determining the sequence of hidden

states that would yield to the highest classification rate in the phoneme recognition system.
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4.4.5 Test5: Scaled vs. Max Viterbi Likelihood Method

As we have discussed in Section 3.3.2, there are two different methods that can be applied for

the determination of the optimum hidden state sequence with the Segmental Viterbi Search

algorithm. The Scaled Viterbi Likelihood method is the direct extension of the Viterbi Search

algorithm to the Segmental Viterbi Search algorithm. Hence, the Scaled Viterbi Likelihood

method determines the most likely hidden state sequence by selecting the Viterbi path from

the set of possible paths Ψ with the highest scaled log-likelihood δn
n
. While this method

results in the hidden state sequence with the highest normalized log-likelihood, simulations

show that it is not the most practical approach for using the Segmental Viterbi Search

algorithm for phoneme recognition. Intuitively this is due to the fact that a Viterbi path

ending at a hidden state with a low final hidden state index has a higher chance of being the

most likely Viterbi path than a path having a large final hidden state index. The Max Viterbi

Likelihood method of selecting the final hidden state sequence, is to choose the Viterbi path

that has the largest number of hidden states in the path maximizing the likelihood of the

hidden state qn at each hidden state index n. Since the recognition rate is determined by

the percentage of correctly classified observation points, out of the total number of classified

observation points, the classification rate of the Scaled Viterbi Likelihood method is expected

to be higher than the classification rate of the Max Viterbi Likelihood method. However,

simulations of the Scaled Viterbi Likelihood method show that only a few observations in

an observation sequence are classified since, chances are that, the index of the final state

yielding the most likely Viterbi path is small. On the other hand, most of the observations

in the observation sequence are classified when the Max Viterbi Likelihood method is used

(because of the nature of the objective function in the second hidden state sequence selection

method). Table 4.17 lists the Segmental HMM parameter set used in this experiment, while

Figure 4.25 shows a comparison of the recognition rates of the Segmental Viterbi Search

algorithms for the two methods.
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Table 4.17: Parameters for the fifth Segmental HMM test simulation (results are in Figures

4.25 to 4.27 )

Parameter Value Description

SHMM 10 Number of left-to-right HMM models used.

S 3 Number of HMM hidden states used per left-to-right HMM.

M 5 Number of GMM mixtures for each left-to-right HMM state.

N 1000 Number of left-to-right HMM test observation sequences.

NSeg 600 Number of Segmental HMM test observation sequences.

Nhs 40 Number of hidden states in a segmental hidden state sequence.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 2 Dimensionality of the test observation data set.

Independent true True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 1.5 Maximum possible value that an element in a covariance matrix can take.

Method Varies Method used for finding the optimum hidden state sequence.

2ρ 6 Range of observations used for possible hidden state start indexes.

τ 12 % Change in Viterbi likelihood for hidden state stop index.

Known Bounds false True if the segment boundaries are known. False otherwise.
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Figure 4.25: Comparison of Segmental Viterbi Search algorithm results for two methods of

the hidden state sequence selection: The Scaled Viterbi Likelihood and the Max Viterbi

Likelihood methods of selecting the Viterbi path as the hidden state sequence.

As seen in Figure 4.25 the classification rate of the observations to the corresponding

hidden states when the Scaled Viterbi Likelihood method was used is indeed lower than

the classification rate of the Segmental Viterbi Search algorithm when the Max Viterbi

Likelihood method was used, as expected. The mean classification rate for the Segmental

Viterbi Search algorithm using the Scaled Viterbi Likelihood and Max Viterbi Likelihood

hidden state sequence selection methods are 15.88 % and 62.23 % respectively. Figures

4.26 and 4.27 present two different sample hidden state sequences and the corresponding

estimated hidden state sequences produced by the Segmental Viterbi Search algorithm using

the Scaled Viterbi Likelihood and Max Viterbi Likelihood methods respectively.
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Figure 4.26: Known and estimated hidden state sequences when the Scaled Viterbi Likeli-

hood method was used to choose the final hidden state sequence.
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Figure 4.27: Known and estimated hidden state sequences when the Max Viterbi Likelihood

method was used to choose the final hidden state sequence.

As seen in Figure 4.26, only 2 of the 40 hidden states are classified. Thus, this method is

not practical for phoneme recognition (even though, 100 % of the points attempted for the

recognition was classified correctly). On the other hand, the hidden state sequence in Figure

4.27 shows a higher recognition rate (than that in Figure 4.26), and almost all the observation

points of the 40 hidden states (left-to-right HMM model observation sequences) in Figure

4.27 were classified. Thus Figures 4.26 and 4.27 show that the Max Viterbi Likelihood

hidden state sequence selection method results in a higher phoneme recognition rate than

the Scaled Viterbi Likelihood hidden state selection method. The phoneme recognition

system incorporates the Max Viterbi Likelihood hidden state sequence selection into the

Segmental Viterbi Search algorithm implementation.
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4.4.6 Test6: Effect of Dependence Between Observation Dimensions

The final experiment tests the effect of violating the assumption of independence between

the dimensions of the observation data set. The observation data set for this test experiment

consists of 600 observation sequences, each of which has 25 dimensional randomly generated

data. The set of GMM parameters pertaining to the 10 left-to-right HMM models have

covariance matrices equal to the covariance matrix of the 25 dimensional speech feature

vectors. Table 4.18 lists all the configuration parameters used in this experiment. Figure

4.28 illustrates the histogram of the recognition rates of the Segmental Viterbi Decoding

algorithm when the assumption of independence between the observation data dimensions

is violated.

Table 4.18: Parameters for the final Segmental HMM test simulation (results shown in Figure

4.28)

Parameter Value Description

SHMM 10 Number of left-to-right HMM models used.

S 3 Number of HMM hidden states used per left-to-right HMM.

M 5 Number of GMM mixtures for each left-to-right HMM state.

N 1000 Number of left-to-right HMM test observation sequences.

NSeg 600 Number of Segmental HMM test observation sequences.

Nhs 40 Number of hidden states in a segmental hidden state sequence.

Lobs 20 Maximum number of observations allowed in an observation sequence.

NUMLS 5 Repeated last state threshold for a left-to-right HMM.

D 25 Dimensionality of the test observation data set.

Independent false True for independent observation data set dimensions. False otherwise.

Mean Threshold 5 Maximum possible value that an element in a mean vector can take.

Covariance Threshold 1.5 Maximum possible value that an element in a covariance matrix can take.

Method Max Method used for finding the optimum hidden state sequence.

2ρ 6 Range of observations used for possible hidden state start indexes.

τ 12 % Change in Viterbi likelihood for hidden state stop index.

Known Bounds false True if the segment boundaries are known. False otherwise.
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Figure 4.28: Histogram of the recognition rates of the Segmental Viterbi Search algorithm

when the dimensions of the 25 dimensional observation set are dependent.

The mean recognition rate for this test simulation results shown in Figure 4.28 is 74.36 %.

Since there was no significant drop in the classification rate, in comparison with the results

obtained in the simulations of threshold variation (Test4 in Figure 4.24), we conclude that

the violation of the independence assumption between dimensions of the observation data

does not have a significant effect on the recognition rate of the Segmental Viterbi Search

algorithm. In the next section we present the experiments performed on the speech data

and a performance assessment of the automatic phoneme recognition system as a whole.

4.5 Simulation and Tests with the Speech Data

In this section we discuss the application of the algorithms presented in the previous chapter

to speech data. The simulation analysis and tests of the implemented phoneme recognition

system is also presented in this section. As we have seen in Test1 in Section 4.4.1, a large
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variance in the extracted feature vectors can have a big impact on the recognition rate of the

phoneme recognition system. Most of the variation in the extracted speech feature vectors

comes from the variation in the pronunciations of the phonemes in the speech utterance

and the variation in the voices of the speakers recorded in the TIMIT database. Variation

in the speech signal due to different pronunciations of the speech signal is called speech

variability. The variations in the speech feature vectors due to variations in the speakers’

voices is called speaker variability. Both of these variation sources can significantly degrade

the performance of the phoneme recognition system. Thus two measures are taken to reduce

the speech and speaker variabilities. From Tables 2.1 and 2.2 we see that there is a total

of 60 phonetic symbols that are present in the speech database. Every speech utterance

in the TIMIT database is hand segmented to a sequence of these phonetic symbols. To

alleviate speaker variability of the extracted feature vectors, each of these feature vectors is

categorized into one of two groups: phonetic symbols for male speakers and phonetic symbols

for female speakers. Separation of the training data into males and females is known to

reduce speaker variability, since there is a significant difference in the feature vectors (or in

voices) of male speakers and female speakers [26]. Furthermore, speech variability is reduced

by the introduction of context dependent phoneme states. The gathered feature vectors of

120 phonetic symbols (60 phonetic symbols for male speakers and 60 phonetic symbols for

female speakers) are further divided into two subgroups: phonetic symbols that are preceded

by a vowel and phonetic symbols that are preceded by a non-vowel. Table 2.1 contains a

list of English vowels. Any phonetic symbol that is not in the list of vowels in Table 2.1

is considered to be a non-vowel. Thus the feature vectors of phonetic symbols are divided

into four different groups: phonemes spoken by a male speaker and preceded by a vowel,

phonemes spoken by a female speaker and preceded by a vowel, phonemes spoken by a male

speaker and preceded by a non-vowel, phonemes spoken by a female speaker and preceded by

a non-vowel, for a total of 240 phonetic symbols. Separation of the phonemes into phonemes

that are preceded with a vowel or with a non-vowel is known to reduce speech variability in

the feature vectors [11]. The number of feature vectors that have been extracted from the
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hand segmented speech utterances for each of the 240 phonetic symbols varies. Some of the

phonetic symbols had fewer than 10 feature vectors extracted from the training set of the

TIMIT speech database. Thus some of the 240 phonetic states do not have enough training

data available to reasonably estimate the corresponding left-to-right HMM parameters (from

small experiments we have deduced that at least 150 observation sequences are needed for

effective parameter estimation). Thus for the implementation of the phoneme recognition

system, the top 130 phonetic symbols were chosen containing 130 largest data sizes sorted

from largest to smallest (5305 to 307 observation sequences respectively).

We present a set of simulations that scale the dimensionality of some of the 130 phonetic

features down to see the underlying structure of the phoneme feature vectors and to compare

different feature vectors for different phonemes. If the acoustic properties of two different

phonemes differ significantly from each other (such as vowels and stops listed in Table 2.1)

then we would expect to see a difference in the underlying structure of the phoneme data

set for these two phonemes. The down-scaling of the dimensionality of the phonetic feature

vector data set from 25 dimensional data to 2 dimensional data is performed by the MDS

algorithm (discussed in Section 4.1). To visualize and see if there is a difference in the

feature vectors between the two phonemes, the two 25 dimensional feature vector data sets

are concatenated and scaled simultaneously. A 25 × N1 and 25 × N2 matrix results into

25× (N1 +N2) martix after concatenation. Figure 4.29 presents a comparison of the vowel

”ax” and the stop ”b”, while Figure 4.30 visualizes the difference between the vowel ”ax-h”

and the nasal ”m” (which are all listed in Table 2.1).
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Figure 4.29: MDS Scaled feature vectors of the phonemes ax (a vowel) and b (a stop).

−80 −60 −40 −20 0 20 40 60
−40

−30

−20

−10

0

10

20

30

40

50
Overall Data for ax−h and m

First Dimension

S
ec

on
d 

D
im

en
si

on

 

 
ax−h Features
m Features

Figure 4.30: MDS Scaled feature vectors of the phonemes ax-h (a vowel) and m (a nasal).
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As seen in Figures 4.29 and 4.30, even though there is some overlap, there is generally a

clear difference between the scaled feature vectors of a vowel and the scaled feature vectors

of a stop and a nasal. Hence, Figures 4.29 and 4.30 show the effectiveness of the feature

extraction system and the choice of the extracted features. Once the features of all the

130 phonetic states have been extracted, the 130 left-to-right HMM model parameters have

been estimated by the Baum-Welch algorithm for each of the corresponding phoneme states.

These left-to-right HMM models are analogous to the 10 models used for testing the Seg-

mental Viterbi Search algorithm. After the estimation of each phoneme state HMM model

parameters, the recognition of these phoneme models is tested. For each of the 130 phoneme

states, twenty observation sequences (or feature vector sequences) have been selected from

the test set of the TIMIT database. For each of these observation sequences the HMM model

yielding the highest log-likelihood of the Viterbi Search, taken over all the log-likelihoods

computed from the Viterbi Searches of 130 phoneme HMM models, is labeled as the pho-

netic state associated with the observation sequence. The correct classification rate of the

phoneme HMM model is determined by the percentage of the correctly classified phonetic

states (out of 20 observation sequences). Table 4.19 lists the left-to-right HMM parameters

used in the classification of the observation sequences to the corresponding phonetic states,

while Figure 4.31 presents the histogram of the phonetic symbol classification rates.

Table 4.19: HMM parameters for the experiments of observation sequences to phonetic state

classification. (results shown in Figure 4.31)

Parameter Value Description

S 3 Number of HMM hidden states used.

M 5 Number of GMM mixtures for each of HMM hidden states.

N 20 Number of left-to-right HMM test observation sequences.

D 25 Dimensionality of the test observation data set.
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Figure 4.31: Histogram of the correct classification rates of the observation sequences to the

corresponding (1 of the 60) phonetic symbols.

The average phonetic model classification shown in Figure 4.31 was 54.5 %. Similar

classification rates of phoneme recognition systems have been reported [27] and [28]. T.

Niesler in [27] performed a set of tests for monophone and triphone classification on a set

of English, Afrikaans, and Xhosa phonemes, and reported about 42 % classification rate

reported. J. Park in [28] has reported 51.79 % to 72.58 % phoneme classification rate for

context independent phonemes. After the parameters of the 130 left-to-right HMM models

have been estimated, the length statistic of each phonetic state (phoneme state length means

and phoneme state length variances) is recorded (and is determined from the pre-segmented

speech utterances in the TIMIT training data). Furthermore, the hidden state (or phoneme)

transition matrix is also given by the percentage of transitions from a particular phoneme

p1 to another phoneme p2 (from the total number of transitions from phoneme p1). Thus

the transition matrix is a 60× 60 square matrix whose columns sum to unity (as described

in Section 3.1). Once we have all the trained parameters for the second layer of recognition,
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the phoneme recognition system is tested by applying 160 speech utterances as input to

the phoneme recognition system. The phoneme recognition system then processes these

speech utterances and for each of the speech utterance observations the system outputs

either one of the corresponding 60 phonetic states (listed in Tables 2.1 and 2.2), or a state −1

representing a before and after speech noise. The phoneme sequence recognition is performed

by the Segmental Viterbi Search algorithm, using the segmentation boundary parameters

maximizing the recognition rates (ρ = 3 and τ = 10), as presented in Tests 3 and 4 in Section

4.4. Each of the classified observations in the output of the speech utterance is also compared

to the hand-classified set of phonemes available in the test set of the TIMIT corpus. The

end of the speech signal is set to the last observation index of the estimated hidden state

sequences. Figure 4.32 shows a typical classification of the phoneme recognition system and

the hand segmented hidden states in the TIMIT database for one of the 160 tested speech

utterances.
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Figure 4.32: Example of an estimated and hand-segmented set of phoneme state sequences

(estimated by the Segmental Viterbi Search algorithm) for a speech utterance.
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As we see in Figure 4.32 the speech utterance starts and ends with the noise state (-1) for

both the estimated and test hidden phoneme state sequences. This particular example has

34.76 % classification rate of the observation samples to the corresponding phoneme states.

Table 4.20 lists the Segmental HMM parameters used in this experiment, while Figure 4.33

presents the histogram of the recognition rates of the phoneme recognition system tested for

160 speech utterances. In Table 4.20 the value ”Varies” for the parameter ”N” indicates that

the number of observation sequences available for the training of each of the 130 left-to-right

HMM parameters is not constant.

Table 4.20: Parameters for the Segmental HMM test simulation on the speech data (results

shown in Figure 4.33)

Parameter Value Description

SHMM 130 Number of left-to-right HMM models used.

S 3 Number of HMM hidden states used per left-to-right HMM.

M 5 Number of GMM mixtures for each left-to-right HMM state.

N Varies Number of left-to-right HMM test observation sequences.

D 25 Dimensionality of the test observation data set.

Method Max Method used for finding the optimum hidden state sequence.

2ρ 6 Range of observations used for possible hidden state start indexes.

τ 10 % Change in Viterbi likelihood for hidden state stop index.

Known Bounds false True if the segment boundaries are known. False otherwise.
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Figure 4.33: Histogram of the recognition rates of the phonetic symbol sequences (output of

the phoneme recognition system) for 160 speech utterances.

The average recognition rate of the phoneme recognition system was 35.41 % with a

minimum of 17.31 % and a maximum of 56.44 %. Phoneme sequence recognition systems

performing joint recognition and segmentation task have been implemented and published in

the literature [29, 30]. H. K. Kwan has implemented a phoneme recognition system applied

to the task of continuous digit recognition using a hybrid combination of Artificial Neural

Networks (ANN) and HMM [29]. The reported recognition rates ranged from 42.7 % to

91.7 %. The degradation in phoneme recognition rate is most likely due to the speaker and

speech variabilities present in the phoneme state feature vectors.

In the next chapter conclusions are drawn from the algorithms implemented and tested

in this thesis and several opportunities for improvements and future work.



Chapter 5

Conclusions and Future Work

The motivation for this research was to build a speaker independent phoneme recognition

system that can be effectively incorporated in large vocabulary automatic speech recognition

systems. The phoneme recognition system developed in this thesis incorporated phoneme

transition information and phoneme length statistics by using the Segmental Hidden Markov

model. In Chapter 1 a brief background was given on speech and speaker recognition and

the application of the phoneme recognition system. In Chapter 2 the interleaved systems

were presented that are involved in training and recognition of the phonetic data given in the

TIMIT database of speech. In Chapter 3 a detailed discussion of the algorithms implemented

for the training and testing of the phoneme recognition system was presented. The MFCC

and Delta MFCC feature vectors were extracted from the training and test data sets of

the TIMIT speech database. The Baum-Welch re-estimation algorithm was implemented

for the estimation of the left-to-right HMM parameters for each of the phonetic symbols.

The phoneme length and phoneme transition statistics were recorded. Finally, the phoneme

recognition system used the accumulated training data and the implemented Segmental

Viterbi Search algorithm (based on the Segmental Hidden Markov model) for the recognition

of the phoneme string in the speech utterances of the TIMIT test set. A set of experiments

and simulations that thoroughly test each of the algorithms described in Chapter 3 was

presented in Chapter 4.
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The recognition rate recorded for isolated phonemes (from a set of observation sequences

pertaining to each phoneme) was 54.5 % (shown in Chapter 4, Section 4.5). The recognition

rate for phoneme sequences in a continuous speech signal (after using the Segmental Viterbi

Search algorithm) was 35.41 %. From the tests conducted on the Segmental Viterbi Search

- as reported in Chapter 4 - we conclude that the highest factor in the degradation of the

phoneme recognition results is the high speech and speaker variability that is present in the

set of speech utterances in the TIMIT database. In the literature, several measures are taken

to further reduce speech and speaker variability in the training and test data. One typical

way of reducing the context variability in the speech signal is to incorporate a decision tree in

the context dependent diphone or triphone phoneme models [11,31,32]. This method presents

a way of grouping the extracted feature vectors into phonetic states (later to be converted

into phoneme HMM models). This grouping is based on the type of phoneme preceding

and following each phoneme. Thus each phoneme found in the training data set is grouped

to a context dependent phoneme group based on a series of questions about the phonemes

that precede and follow each phoneme. These questions are formed in decision tree(s) (for

phonemes prior and following the phoneme being grouped). To compensate for the lack of

training data available for the number of possible phoneme groupings applied, state tying

is incorporated [33]. Another technique for reduction of speech and speaker variability is

Successive State Splitting (SSS). The SSS algorithm is essentially a method of determining

the context dependent subgroups of the feature vectors of each phoneme [34, 35]. Thus the

SSS method and the preconstructed decision trees (according to the subgroups that yield

maximum likelihood of the observation data) distribute the feature vectors of each phoneme

into multiple different groups, which effectively have smaller speech variability (smaller than

that of the phoneme features). These methods can be applied to the training of the phoneme

left-to-right HMM models as future work.

There are also several alternative methods that have been researched for phoneme clas-

sification, such as Artificial Neural Networks (ANN) [36, 37] and Support Vector Machines

(SVMs) [38]. These classification methods can also be integrated into the Segmental HMM
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of the phoneme recognition system presented in this thesis as future work.
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Appendix A

Derivations

We present here the derivation of the Expectation Maximization (EM) formulation for esti-

mating the Maximum Likelihood (ML) parameter set of the Gaussian Mixture Model (GMM)

parameters. The general EM algorithm for finding the ML parameter set is discussed first,

followed by the application of the EM algorithm for the estimation of the GMM param-

eters (summerized in [39]). Assuming that the observation set O = [o1, o2, . . . , oN ] of N

observations is generated from an underlying probability density function P (O; Θ) given a

parameter set Θ we have:

P (O; Θ) =
N∏
n=1

P (on; Θ) (A.1)

Equation (A.1) is valid because the observations in O are assumed to be independent

and identically distributed. The goal of ML estimation is to find a parameter set Θ that

maximizes P (O; Θ) in (A.1). Thus ML estimation finds a parameter set Θ∗ such that,

Θ∗ = argmax
Θ

P (O; Θ) (A.2)

Most of the time finding Θ∗ directly is a cumbersome task. The EM algorithm provides

an iterative approach of finding Θ∗ instead. The EM algorithm assumes a set of N hidden

variables (not known directly from observations) Ψ = [ψ1, ψ2, . . . , ψN ] such that,

P (O,Ψ;Θ) = P (O|Ψ;Θ)P (O; Θ) (A.3)
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Let us define R(Θ,Θm−1) to be the expectation over the log likelihood of the hidden

random variable set log(P (O,Ψ;Θ)) given the observation set O and the parameter estimate

at the (m− 1)th iteration (of the EM algorithm), given by:

R(Θ,Θm−1) = EΨ[log(P (O,Ψ;Θ))|O; Θm−1] =

∫
ψ∈Υ

log(P (O,ψ; Θ))f(ψ|O; Θm−1)dψ

(A.4)

where f(ψ|O; Θm−1) is the marginal distribution of the hidden random variables ψ given the

observation set O and the parameter set of the (m− 1)th iteration Θm−1 and Υ is the space

of values that ψ can take on [39]. The E-step (or the Expectation step) of the EM algorithm

is the evaluation of R(Θ,Θm−1) in (A.4). The M-Step (or the Maximization step) of the

EM algorithm is then to find a parameter Θm at iteration m that maximizes the quantity

R(Θ,Θm−1). Thus,

Θm = argmax
Θ

R(Θ,Θm−1) (A.5)

Equations (A.4) and (A.5) summarize the Expectation and the Maximization steps of the

EM algorithm. We now proceed with the derivation of the EM algorithm for estimating the

ML parameters of the GMM. Since, in this case, the observations are assumed to be generated

from a GMM model, the probability of an observation P (O; Θ) (for a GMM parameter set

Θ) is given by:

P (on; Θ) =
K∑
k=1

ckN(on;µk,Σk) (A.6)

where K is the number of components in the GMM mixture, N(on;µk,Σk) is the Normal

probability given the mixture parameters µk and Σk for the kth mixture component in the

GMM, ck is the corresponding weight of the k
th GMMmixture component and Θ is the GMM

parameter set given by Θ = [c1, c2, . . . , cK , µ1, µ2, . . . , µK ,Σ1,Σ2, . . . ,ΣK ]. The Maximum

Likelihood parameter set Θ∗ maximizes the log likelihood of the observation set O, given the
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parameter set Θ and is given by:

Θ∗ = argmax
Θ

log

(
N∏
n=1

P (on; Θ)

)
(A.7)

= argmax
Θ

N∑
n=1

log

(
K∑
k=1

ckN(on;µk,Σk)

)
(A.8)

Finding Θ∗ directly from (A.8) is difficult and cumbersome. Instead, the EM algorithm

assumes the N hidden random variable set to be given by Ψ = [ψ1, ψ2, . . . , ψN ] to denote

the label of the mixture from which each of the observations on in the observation set O

was generated. Thus ψn can be one of K labels [1, 2, . . . , K]. The joint log likelihood

log(P (O,Ψ;Θ)) of the observation set and the hidden variable set, given the GMM parameter

set becomes

log (P (O,Ψ;Θ)) =
N∑
n=1

log (P (ψn)Pψn(on|ψn)) (A.9)

=
N∑
n=1

log (cψnN(on;µψn ,Σψn)) (A.10)

The marginal probability P (ψn|on; Θm−1) of the hidden variable set Ψ, given the obser-

vation set O and the GMM parameter set Θm−1 for iteration m− 1 is computed using Bayes

rule, given by:

P (ψn|on; Θm−1) =
cm−1
ψn

N(on;µ
m−1
ψn

,Σm−1
ψn

))

P (on; Θm−1)
(A.11)

=
cm−1
ψn

N(on;µ
m−1
ψn

,Σm−1
ψn

))∑K
k=1 c

m−1
k N(on;µ

m−1
k ,Σm−1

k )
(A.12)

and also

P (Ψ|O; Θm−1) =
N∏
n=1

P (ψn|on; Θm−1) (A.13)

The expectation step of the EM algorithm is responsible for the computation of the
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quantity R(Θ,Θm−1) which is given by:

R(Θ,Θm−1) = E[log(P (O,Ψ;Θ))|O; Θm−1] (A.14)

=
∑
ψ∈Υ

log(P (O,ψ; Θ))P (ψ|O; Θm−1) (A.15)

=
∑
ψ∈Υ

N∑
n=1

log(cψnN(on;µψn ,Σψn))
N∏
j=1

P (ψj|oj; Θm−1) (A.16)

=
∑
ψ∈Υ

N∑
n=1

K∑
k=1

δk,ψn log(ckN(on;µk,Σk))
N∏
j=1

P (ψn = k|oj; Θm−1) (A.17)

=
K∑
k=1

N∑
n=1

log(ckN(on;µk,Σk))P (ψn = k|on; Θm−1) (A.18)

Finally,

R(Θ,Θm−1) =
K∑
k=1

N∑
n=1

log(ck)P (ψn = k|on; Θm−1)+
K∑
k=1

N∑
n=1

log(N(on;µk,Σk))P (ψn = k|on; Θm−1)

(A.19)

During the Maximization step of the EM algorithm, the two terms of R(Θ,Θm−1) in

(A.19) are maximized separately, since the first term only depends on the parameters ck and

the second term only depends on the parameters θk to be maximized. To find the update

equation for ck in the maximization step we introduce the Lagrange multiplier λ with a

constraint
∑

k ck = 1. The parameter set ck is determined by solving the equation

∂

∂ck
(
K∑
k=1

N∑
n=1

log(ck)P (ψn = k|on; Θm−1) + λ(
∑
k

ck − 1)) = 0 (A.20)

or
K∑
k=1

1

ck
P (ψn = k|on; Θm−1) + λ = 0 (A.21)

If we sum both sides over k, we have λ = −N . Solving for ck gives us:

ck =
1

N

N∑
n=1

P (ψn = k|on; Θm−1) + λ = 0 (A.22)
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The second term for R(Θ,Θm−1) in (A.19) can be expanded to:

K∑
k=1

N∑
n=1

log(N(on;µk,Σk))P (ψn = k|on; Θm−1) = (A.23)

=
K∑
k=1

N∑
n=1

(−1

2
log(|Σk|)−

1

2
(on − µk)

TΣ−1
k (on − µk))p(k|on; Θm−1) (A.24)

Taking the derivative of the right hand side of (A.24) with respect to the mean µk and

equating it to zero we get:

N∑
n=1

Σ−1
k (on − µk)P (k|on; Θm−1) = 0 (A.25)

which is then solved for µk to find the updated means of the GMM mixtures. Thus µk is

given by:

µk =

∑N
n=1 onP (ψn = k|on; Θm−1)∑N
n=1 P (ψn = k|on; Θm−1)

(A.26)

Similarly, we can find the covariance matrix Σk by setting the derivative of the right hand

side of (A.24) with respect to Σ−1
k to zero. Thus the covariance matrix is found by solving

the following equation for Σk [39]:

N∑
n=1

P (ψn = k|on; Θm−1)(Σk − (on − µk)
T (on − µk)) = 0 (A.27)

After solving (A.27) for Σk we get:

Σk =

∑N
n=1 P (ψn = k|on; Θm−1)(on − µk)

T (on − µk)∑N
n=1 P (ψn = k|on; Θm−1)

(A.28)

In summary, the update equations for the weights, mean vectors, and the covariance

matrices in the Maximization step of the EM algorithm are given by:

µm+1
k =

∑N
n=1 onP (ψn = k|on; Θm)∑N
n=1 p(ψn = k|on; Θm)

(A.29)

Σm+1
k =

∑N
n=1 P (ψn = k|on; Θm)(on − µk)

T (on − µk)∑N
n=1 P (ψn = k|on; Θm)

(A.30)

cm+1
k =

1

N

N∑
n=1

P (ψn = k|on; Θm) (A.31)


