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Abstract 
 
 

Many problems faced in the engineering world are computationally intensive. 

Filtering using FIR (Finite Impulse Response) filters is an example to that. This thesis 

discusses the implementation of a fast, reconfigurable, and scalable FIR (Finite Impulse 

Response) digital filter. Constant coefficient multipliers and a Fast FIFO implementation 

are also discussed in connection with the FIR filter. This filter is used in two of its 

structures: the direct-form and the lattice structure. The thesis describes several 

configurations that can be created with the different components available and reports the 

testing results of these configurations.   
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Chapter 1: Introduction 
 

Many problems faced in the engineering world are computationally intensive. 

These problems can be solved on general-purpose computers, Application Specific 

Integrated Circuits (ASICs), or Configurable Computing Machines (CCMs). In order to 

allow flexibility, a significant amount of the capabilities of the hardware in general-

purpose machines is lost, preventing the use of certain implementation optimizations. 

ASICs can implement all optimizations needed, but implementation is the final and 

irreversible step; no changes to the design can be made after implementation. CCMs offer 

a compromise, where all required optimizations can be implemented and the flexibility of 

change or reconfiguration is possible [1], [2].  

 

1.1 Thesis Contributions 

The main contributions of this thesis are based on developing a fast and 

reconfigurable FIR filter on a commercial configurable computing accelerator.  A lack of 

I/O speed in data entry and acquisition from the WILDFORCE board (discussed in 

Chapter 2) hinders running designs at higher speeds. A Fast FIFO was created that took 

advantage of the fast DMA accesses to the memory of the Processing Elements (PE) on 

the board. By providing new data paths this Fast FIFO allows implemented designs to run 

at higher speeds. The other difficulty in developing fast FIR filters is the area cost of the 

multipliers; constant multipliers were introduced in this phase. Because optimization of 

one of the coefficients helps in optimizing the multipliers, they can offer higher speeds 

and smaller area consumption.  
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This thesis compares and contrasts different hardware implementations of a FIR 

filter. The thesis studies an implementation that allows coefficients of the filter to be 

changed through the data path, using JHDL multipliers. This contrasts with an 

implementation that uses constant multipliers but requires full reconfiguration of the 

filter. These two implementations will also be provided in two structures of the FIR filter: 

the direct form and the lattice structures. Another comparison point is passing data 

through the filter using either the regular FIFOs or the Fast FIFO. 

 

1.2 FIR Filters 

Filtering using FIR (Finite Impulse Response) digital filters is a computationally 

intensive problem. If general-purpose computers are used to solve this problem, many of 

the hardware’s capabilities will not be used. However, designing a new ASIC for each 

response needed is expensive and time consuming. Having a filter implementation where 

the filter response can be reconfigured on the fly is very useful. FIR filters can be used in 

many applications such as wireless in-door channel modeling [2]. Another example is the 

use of the lattice structure of the FIR filter in digital speech processing and in 

implementing adaptive filters [3].  

This thesis studies the implementation of FIR filters on CCMs. The FIR filters 

discussed are implemented in the direct and lattice form. Two methods of reconfiguring 

the response of the filters are studied. The first is runtime, using information sent through 

the data path. The second makes use of constant coefficient multipliers; the response is 

changed with full synthesis of the design. 
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1.3 FPGA Boards  

FPGAs (Field Programmable Gate Arrays) placed on boards that interface them to 

PCs, is one type of architecture where the above-mentioned characteristics of CCMs are 

found. The WILDFORCE and SLAAC1 boards are two such boards. The WILDFORCE 

board contains five FPGAs, referred to as PEs (Processing Elements). A systolic bus 

connects four of these PEs (PE1 – PE4). Using the systolic bus, these four PEs can be 

used in a pipeline-like structure. The SLAAC1 board contains three PEs, which can also 

be used in a pipeline-like structure. Communication with the outside world, on both 

boards, is through FIFOs or through PE memory access [4], [5].  

The hardware WILDFORCE FIFO speed in communicating data is slow, 

especially when compared with the DMA mode of accessing memory. This thesis studies 

a method called the Fast FIFO which makes use of the DMA mode and provides an 

interface close to that of a FIFO. The Fast FIFO provides a significant increase in the 

speed of accessing data, at the price of using computational resources (PE0 and PE4) [4]. 

 

1.4 Multipliers and Area Consumption 

Limited space on FPGAs is a problem that should be addressed in most designs to 

be implemented. Multipliers consume a large amount of space. Multiplying the input data 

with coefficients in each tap is required in the FIR filter implementation. These 

coefficients do not change unless the response of the filter is to be modified. The 

infrequent change in the constants makes constant multipliers attractive for consideration. 

Much space can be saved by the use of constant multipliers, because knowing the 
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coefficients introduces many optimizations to the multiplier. The use of Booth’s 

algorithm and inverting the constant are two optimization techniques examined[6].  

The reported results manifest a significant increase in speed and decrease in area 

consumption.  

 

1.5 Thesis Organization 

Chapter 2 of this thesis provides the background material on which the following 

work is based. Chapter 3 introduces the constant coefficient multipliers that were created 

and then used in the implementation of the FIR filter. Chapter 4 explains the direct form 

and lattice implementations of the FIR filter and it also discusses data-path and re-

synthesis reconfiguration of the filter. Chapter 5 describes the Fast FIFO implementation 

and its uses. Chapter 6 describes how all the pieces integrate and reports the results of 

running the filter under various implementations. Chapter 7 concludes the work and 

provides future insight on further developments.  
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Chapter 2: Background 

Speech processing, adaptive filtering, and channel modeling are examples of 

applications where FIR filters are used [2], [3]. Filtering using a FIR filter is a 

computationally intensive task and typically requires floating point multiplication and 

addition.  

The following section provides the background used in the work to implement a 

fast reconfigurable FIR filter. Background material on the theory of the FIR filter, the 

constant coefficient multipliers, the WILDFORCE and the SLAAC-1 boards, and the 

ACS_API is provided.   

 

2.1 FIR Filters 

“Finite impulse response (FIR) filters have been referred to in the literature as 

moving average filter, transversal filters, and nonrecursive filters. [7]” The main 

attractive characteristics of this kind of filter are that it is stable and can be made to have 

an exact linear phase [7], [8]. Coefficient quantization does not affect the response of a 

filter with linear phase as severely as in other cases; the effect is only in magnitude as 

opposed to having the effect of the quantization in phase also [3]. 

 Direct-form, cascade-form, frequency-sampling and lattice structures are 

different forms of implementing the FIR filter in hardware, and are discussed in [3]. 

Direct-form and lattice are the two structures that are implemented in this thesis. The 

Direct-form was chosen for its simplicity. This form follows directly from the 

nonrecursive difference equation (discussed below). This simplicity renders debugging 

easier because all the intermediate values are easily followed, and the hardware needed to 
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implement the filter is straightforward. The lattice structure was chosen for its cascading 

capability; this structure can be viewed as basic units that can be “strung” together 

without any regard to the number of stages or the position of a certain unit in the whole 

structure.  

As its name implies, the Direct-Form structure follows exactly from the 

nonrecursive difference equation: 

 ( ) ( ) ( )knxkhny
M

k

−= ∑
−

=

1

0

         (1) 

 The structure is shown in Figure 1, which shows that there are M multiplications and M-

1 additions in this implementation. M is the number of stages; we see that the output of 

the filter is based on the weighted sum of the last M-1 values in addition to the current 

value (hence the M multiplications) [3].  

 

 

 

  

Figure 1 Direct-Form structure of an FIR filter (adapted from Figure7.1 [3]) 

 

The lattice filter is also derived from the nonrecursive difference formula, after 

some manipulation. In this case the response of the mth term, hm(0) = 1, hm(k) = αm(k), 

and k = 1,2,3,…,m. αm(0) was taken to be 1 for mathematical simplicity. With these 

changes, the formula for the filter becomes: 

( ) ( ) ( ) ( )∑
=

−+=
m

k
m knxknxny

1

α        (2) 

Z-1 Z-1 Z-1 Z-1 Z-1 

+ + + + + + 

x(n) 

y(n) 

h(0) h(1) h(2) h(3) h(4) h(M-2) h(M-1) 
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 The coefficient m, that denotes the number of stages in the filter is called the degree of 

the polynomial Am(z) representing the filter response; in this case 

 Am(z) = ( )∑
=

−+
m

k

k
m zk

1

1 α          (3) 

 If we consider an FIR filter where m = 1, then 

( ) ( ) ( ) ( )11 −+= nxnnxny α          (4) 

 If we call the coefficients of the lattice structure Km, then the lattice structure filter with 

the same response will have K1 = α1(1). The structure of such a lattice filter is shown in 

Figure 2 [3].  

 

 

 

 

Figure 2 Lattice structure FIR filter with one degree (adapted from Figure7.9 [3]) 

 

The above figure shows that f1(n) corresponds to equation (4) of the FIR filter of 

degree 1. Considering an FIR filter with m = 2; the response is: 

( ) ( ) ( ) ( ) ( ) ( )2211 22 −+−+= nxnxnxny αα        (5)  

To get a similar result we cascade two lattice stages to get the structure shown in Figure 3 

[3]. 

  

 

 

 

Z-1 

+ 

+ 

x(n) 

g0(n) 

f0(n) 

K1 

K1 

f1(n) = y(n) 

g1(n) 
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Figure 3 Lattice structure FIR filter with two stages (adapted from Figure 7.10 [3]) 

 

From the figure above we can deduce the following formulas: 

( ) ( ) ( )111 −+= nxKnxnf          (6) 

( ) ( ) ( )nxKnxng 11 1 +−=          (7) 

( ) ( ) ( ) ( )11212 −+== ngKnfnfny         (8) 

( ) ( ) ( )nfKngng 1212 1 +−=          (9) 

Putting equations (6) through (9) together, we end up with the following result: 

( ) ( ) ( ) ( ) ( )211 221 −+−++= nxKnxKKnxny        (10) 

This equation is the same as (5) with the following relationships between the α and K 

constants: 

 ( ) 22 2 K=α   ( ) ( )212 11 KK +=α        (11) 

The stages in the lattice structure can just be added until the required degree is 

established. Equations (8) and (9) can be generalized by substituting m for 2 and m-1 for 

1 in the subscripts [3]. 

 .  

g1(n) 

Z-1 

+ 

+ 

x(n) 

g0(n) 

f0(n) 

K1 

K1 

f1(n) 
+ 

+ Z-1 

K2 

K2 

g2(n) 

f2(n) = y(n) 
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2.2 Constant Coefficient Multipliers 

Implementing multipliers in hardware requires a significant amount of area; an 

example is the array multiplier (fixed point multiplier) used in the JHDL modgen. The 

area needed for the unpipelined version depends on the widths of the inputs, x and y, in 

the following formula:  ( )12/* += xyarea  [9]. This space can be an obstacle in 

creating certain designs if they do not fit on the chip or silicon that is to be used. If one 

coefficient that is to be multiplied is known or is going to be fixed for a long time, 

designing constant multipliers can help in creating hardware that saves in space and time, 

due to the optimizations gained from knowing one of the inputs [6]. 

The more 1’s present in the binary representation of the coefficient, the greater the 

number of additions that are needed to get the product. Booth’s algorithm reduces the 

number of additions by replacing any group of consecutive 1’s with a subtraction of the 

term corresponding to the least significant position of the 1’s from the term 

corresponding to the bit position that is one higher than the most significant 1. Figure 4 

displays the multiplication of 5 (0101) by 7 (0111), both with and without the use of 

Booth’s algorithm. 
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Figure 4 Multiplication using Booth’s Algorithm 

 

In the multiplication in Figure 4, Booth’s algorithm canceled one of the terms that 

was to be added. The number of ones in the sequence has no significance to Booth’s 

algorithm; more savings are attained with this method if there are more 1’s in consecutive 

positions [6]. 

Another technique can be derived from Booth’s algorithm, based on observing the 

results of the following example: if we have a series of three consecutive 1’s followed by 

another series of three consecutive 1’s, and separated by a 0 (1110111), then using usual 

multiplication will result in six terms to add. Using Booth’s algorithm on each of the 

series will result in four terms, two terms being created out of each series of consecutive 

1’s. Of these four terms, two are positive and two are negative. An important observation 

here is that the term constituting seven 1’s (1111111) is really the term (1110111) as 

mentioned above, with (1000) subtracted from it. Thus, the multiplication with (1110111) 

can be substituted with a multiplication with (1111111 – 1000). The multiplication with 

the (1111111) can be solved by Booth’s with two terms. Following the discussion above 

Without Booth’s algorithm: 
 0101     
 0111 
 0101 Term1: corresponds to the 1 in bit position 0 in (0111) 

01010    Term2: corresponds to the 1 in bit position 1 in (0111) 
        010100    Term3: corresponds to the 1 in bit position 2 in (0111) 
        100011 
With Booth’s algorithm: 
 0101 
 0111 
      1111011 Term1: 2’s compliment of (0101) corresponding to position 0  
      0101000 Term2: corresponds one bit higher than position 2 
      0100011 
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the whole multiplication can be resolved with the two terms from Booth’s and then 

subtracting (1000). Figure 5 gives an example of multiplying 85 (1010101) with 119 

(1110111). 

 

  

 

 

 

 

 

 

Figure 5 Multiplication using Booth’s Algorithm and the new technique 

  

2.3 Floating Point Format 

The floating-point representation used in this thesis is based on the IEEE 754 

standard [9]. The 32-bit format, shown in Figure 6, has one bit for the sign (s), eight bits 

for the exponent (e), and 23 bits for the mantissa (m). 

 

 

 

 

 

Figure 6 Floating Point Format (32 bits) 

 

Regular Multiplication  Booth’s New Technique 
 1010101  1010101  1010101 

  1110111  1110111  1110111 
 1010101        11111110101011        11111110101011 

                     10101010       1010101000        10101010000000 
        101010100        11101010110000        11110101011000 
    10101010000        10101010000000        10011110000011 
  101010100000        10011110000011       
1010101000000 

          10011110000011 
  
              6 Terms  4 Terms  3 Terms 

s  e      m  

  31   30  (8 bits)  23  22   (23 bits)                0 
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The value (v) of the floating-point is: 

( ) ( )mv es .121 127−−=            (12) 

There is a bias of 127 for the exponent in this 32-bit format. There is always a 1 at 

the most significant position of the mantissa. This 1 does not show in the representation; 

it is implicit. The floating-point number 0x3F800000 will be used as an example. Bit 31 

or s is zero in this number so we know that it is positive (-10 = 1). The exponent e = 0111 

1111 or 127, thus the ( )1272 −e  term evaluates to 20 = 1. The term m is all zeroes, so v = 

1*1*(1.0) = 1 [1], [2], [10].  

 

2.3.1 Floating Point Multiplication 

Multiplication for the floating-point representation is done in separate steps. The 

first step is to isolate each of the three parts of the representation alone. The resulting sign 

is the “xoring” of the signs of the two numbers to be multiplied. The exponents are 

added. The mantissas are multiplied, and the decimal point position is then modified to 

normalize the result; the value of the exponent sum is fixed to represent the change 

needed in the normalization [1], [11].  

 

2.3.2 Constant Coefficient Floating Point Multiplication 

Floating-point multipliers require a large amount of space when implemented in 

hardware. The fixed-point multiplier used to multiply the two mantissas is the most 

expensive part of the floating-point multiplier. The same discussion used for constant 

coefficient multipliers applies here, if one of the terms is fixed. Thus, using a constant 
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coefficient multiplier instead of a regular multiplier to multiply the mantissas can attain 

significant savings in the size of the floating-point multiplier. 

 

2.3 WILDFORCE Board 

The WILDFORCE is a product of Annapolis Micro Systems, Inc. This board 

holds five FPGAs (Field Programmable Gate Arrays) called Processing Elements (PE) 

and offers data communication between these five FPGAs and a controlling PC, usually 

referred to as the host [4].  

 

2.3.1 The WILDFORCE Board Architecture 

The WILDFORCE board constitutes five PEs, the first one is the control PE 

called CPE0. The other four are called PE1 up to PE4. Figure 7 shows how these PEs are 

placed on the board and the communication channels between them. 

 

 

 

 

 

 

 

Figure 7 WILDFORCE Board Layout 

 

For CPE0 to carry out its controlling tasks, it is provided with more connections 

to the communication channels on the board with respect to the other PEs. It has two 

PE1 PE2 

PE3 PE4 

CPE0 XBar 

FIFO 1 

36 bits 

2 bits 

FIFO 4 

FIFO 0 
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interfaces with the crossbar, as opposed to one on the other PEs, and it is connected to 

each PE with a two-bit control bus. Figure 7 shows the connections that were mentioned 

with respect to CPE0; it also shows that PE1 to PE4 are connected to each other through 

a 36 bits wide bus [4], [9].  

FIFOs are used to push data to the board and to pull them out. There are 3 FIFOs 

on the WILDFORCE board and they are connected to CPE0 (FIFO 0), PE1(FIFO 1), and 

PE4 (FIFO 4). FIFO 1 and FIFO 4 can be used as the end points of a computational path 

through the systolic bus and through four PEs. The FIFOs offer an easier way of pushing 

data to the board as compared with using memory. Using the FIFOs also saves on 

hardware needed to control addressing and capturing the data from the memory.  

 Each PE has its own separate memory that can be accessed by it and by the host 

program (discussed in the following subsection). DMA access is also available, this 

access provides very fast data transfer from the host program to the boards, as opposed to 

the FIFOs [4]. 

 The crossbar offers connections between all PEs. It can be configured to any 

setting that is needed. A configuration file sets the configuration of the crossbar, the can 

also be changed during execution. From Figure 7, it is seen that using this crossbar, any 

PE can be connected directly to any other PE. The delay inside the crossbar is two clock 

cycles. 

 

2.3.2 The Host Program 

 The host program runs on the local machine that controls the WILDFORCE 

board. This program makes use of the Application Programming Interface (API), which 
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is provided with the board. Controlling the FIFOs, clock speed, memories, and PEs are 

examples of the host program’s capability through the use of the API [4].  

 

2.4 SLAAC1 Board 

The SLAAC1 board was developed by ISI-East [5]. There are several versions of 

this board, the difference is mainly in the type of the FPGA chips that are found on the 

board. The SLAAC1-A holds a XC4085XL and two XC40150XL Xilinx chips, while the 

SLAAC1-V holds three Virtex 1000 Xilinx Chips. The following sections will discuss 

the board irrespective of which version is being used [5].  

 

2.4.1 SLAAC1 Board Architecture 

The SLAAC1 board holds 3 PEs: the control PE (PE 0), PE 1, and PE 2. Figure 8 

shows how the PEs are placed on the board and the communication channels between 

them. 

 

 

 

 

 

 

 

Figure 8 SLAAC1 Board Architecture 

 

PE1 PE2 

PE0 

72 bits 
68 bits 

2 bits FIFO A FIFO B 
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PE0 is the control Processing Element connected to the two other PEs through a 

two bit bus and a 72 bit data bus. This PE also takes care of data communication with the 

outside world through the FIFOs. FIFO A inputs data to the PE0 and through that to the 

other PEs, then PE0 takes care of writing to FIFO B, which pushes data to the host. PE0 

can also communicate with the PEs through the crossbar. PE1 and PE2 are identical; they 

are connected to each other through the 72-bit bus, the two-bit bus, and the crossbar. 

Each PE in the SLAAC1 has its own memory modules. The host program and the 

PE access these modules. The crossbar in the SLAAC1 has no configuration file, 

therefore the user specifies the connections to the crossbar and has to take care of 

contentions [5], [9].  

 

2.4.2 The Host Program 

 The host program runs on the local machine, and controls the SLAAC1 board.  

Using the API provided with the board, the host program controls the FIFOs, clock 

speed, memories. Thus the API provides the host program and the user with all control 

needed over the SLAAC1 board [5].  

 

2.5 ACS-API 

The Tower of Power (TOP) in Virginia Tech is a good example of a parallel 

Adaptive Computing System (ACS). This system constitutes sixteen Pentium II 

machines, each equipped with the WILDFORCE Board. The sixteen machines are 

connected to each other through an Ethernet and a Myrinet [12] network. Developing 

designs on systems like the TOP requires more work than implementing on only one 
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board. After creating the bit files that are to be downloaded on the PEs, the developer has 

to write network code to connect the boards together. This increase in work can prove to 

be tedious and time-consuming [13], [14].  

The ACS-API offers a way out of creating the network application code. This API  

offers a high level environment where the user does not have to worry about the network 

communication code. The user only has to specify a channel between two nodes (a node 

refers to a board in the case of the TOP). The API also offers calls that will configure the 

boards, create the connections between them, as well as send and receive data between 

the boards without intervention by the user. This environment proves to be very helpful 

in developing designs that need more than one board because the developer will create 

the hardware needed on one board and then use the API to control as many boards as 

needed [13]. 

Another advantage of the ACS-API is that it is independent of the hardware it 

controls. This is a real help when using different types of boards together, the 

WILDFORCE and the SLAAC1, for example. The channel object in the environment can 

act as a buffer for data that is moving from one board to the other; this way the user does 

not have to worry about creating flow control mechanisms between the boards in the case 

of a fast sender and a slow receiver.  
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Chapter 3: Constant Coefficient Multipliers 
 
 

The following chapter discusses the implementation of the constant coefficient 

multipliers on both the WILDFORCE [4] and the SLAAC1-V [5] boards. The theory 

behind this type of multipliers was discussed in Section 2.2. There are two types of 

multipliers implemented; both use Booth’s algorithm [6]. The first type, called the regular 

constant multiplier, uses Booth’s algorithm directly on the 1’s in the binary 

representation of the constant. The second type implemented is based on the New 

Technique that was introduced in Section 2.2, along with Booth’s algorithm. The details 

of both implementations will be provided along with area and speed results collected, 

comparing both types with the modgen multiplier of JHDL [9]. The modgen multiplier 

provided with JHDL, is a hand-crafted solution targeted to Xilinx FPGAs. 

 

3.1 Regular Constant Multiplier 

The implementation created for this multiplier is able to support different sizes for 

the exponent and the mantissa. The area and speed testing that will be shown is based on 

the IEEE format [10] where the exponent is 8 bits wide and the mantissa is 24 bits wide; 

only 23 bits of the mantissa are recorded because there is an implicit ‘1’ in the most 

significant position. Thus, the whole data word is 32 bits wide, counting the bit for the 

sign.  

The floating-point multiplication that is used with IEEE format consists of several 

steps as discussed in Section 2.3. The most time and area consuming step is the 

multiplication of the mantissas. This multiplication is the primary focus of this section 

and also where the regular constant multiplier is used. After determining the binary 
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representation of the constant to be used as the coefficient in the multiplier, the process 

begins by checking the positions of the 1’s in the representation. When there is a binary 1 

surrounded by two 0’s (010), it is counted as one term to be used in the overall addition 

operation. When there are two consecutive 1’s, they are counted as two separate terms. A 

string of more than two consecutive 1’s is dealt with using Booth’s algorithm resulting in 

two terms, one of which is positive and the other negative. With this implementation, any 

group of 1’s will end up being at most two terms in the overall addition that provides the 

product. 

The position of any bit that maps to a term determines the number of shifts that 

are needed so that the terms line up correctly in the addition step [6]. This is depicted in 

Figure 5. The terms that are derived from the binary representation are added with an 

adder tree. 

The terms that can exploit the benefits of Booth’s algorithm are aligned together. 

Given the nature of Booth’s algorithm, the number of subtractors required is half the 

number of terms that use Booth’s algorithm. The other terms are grouped in pairs and 

added together. The terms that are produced from the Booth’s algorithm terms are always 

positive because the positive term is always larger than the negative term. Thus, there 

will not be any subtractors in the adder tree at a level above the leaves. After acquiring 

the product of the mantissas from the adder tree, normalization takes place and the sum of 

the exponents is fixed to reflect the effect of the normalization. This process will end in 

the product of the two floating-point numbers. 

The structure of the adder tree offers a very good pipelining mechanism. Registers 

installed between the outputs of a stage and the inputs of the following stage provide one 
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clock cycle delay of the whole result. The implemented multipliers give the user the 

option of pipelining, as well as a choice in the number of stages in the pipeline. The fully 

pipelined case will occur when all the adders have a register at their output. The number 

of stages of the fully pipelined stage depends on the number of terms to be added. The 

terms form the leaves of a binary tree; therefore, the depth of the tree will be  

( ) rmsNumberOfTe2log  . 

Figure 9 shows an example adder tree of a regular constant multiplier with the 

constant coefficient set to 183, the binary representation of this number is (10110111). 

Approaching this representation right to left, the first three 1’s make use of Booth’s 

algorithm, the next three 1’s end up in three extra terms to be added. The terms are 

shifted versions of the number that is to be multiplied with the constant coefficient. 

Figure 9 shows the needed shifts. 

 

<< 3

<< 0

<< 4

<< 5

<< 7

-

+

+

+

 

 

Figure 9 Regular constant multiplier (const = 10110111) 
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3.2 Conversion Constant Multiplier 

The implementation of the conversion constant multiplier offers the capability of 

specifying the number of bits for the mantissa and the exponent for the floating-point 

representation. Using the same approach as with the regular constant multipliers, the 

results of area consumption and speed are reported for the multiplier. This multiplier has 

8 bits for the exponent and 24 bits for the mantissa (23 bits are actually saved because of 

the implicit 1 in the most significant bit), the same as the IEEE format [10].  

As discussed above, the most time consuming step in the floating-point 

multiplication is the multiplication of the mantissas. The following subsection will focus 

on this multiplication as it is done through the use of the conversion constant multiplier. 

The discussion to follow is based on the “new technique” which was explained in Section 

2.2. 

The multiplication is based on the binary representation of the constant 

coefficient. If the coefficient is being represented with n bits, it can be observed that this 

coefficient can be recreated by subtracting its 1’s complement from the largest number 

that can be represented with n bits, which is n 1’s. As an example, consider the 

coefficient 183 (10110111) used in the previous section. This coefficient requires at least 

eight bits to be represented, so consider n to be nine bits. The largest number that can be 

represented is 511 (111111111), and the 1’s complement of 183 (010110111) is 328 

(101001000). Then multiplication by the coefficient 183 can be substituted with a 

multiplication by (511 – 328). Because 511 is all 1’s, the use of Booth’s algorithm will 

result in two terms. The same approach used with 183 in the regular constant multiplier is 

used with 328. 
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 The same rules used in the preceding section regarding the use of Booth’s 

Algorithm and the bit-wise shifts are applied here. The first two terms are the two terms 

created from applying Booth’s on the coefficient 511. A tree of adders is now created 

based on the 1’s in the binary representation of 328 (101001000). There are three terms 

created from this representation based on the four 1’s, since there are no three or more 

consecutive 1’s. The result from the tree of adders will be subtracted from the result 

obtained from the first subtractor that represents the coefficient 511. The overall 

multiplier will have two subtractors outside the tree of adders, which will be created of 

two adders that will take care of summing the three terms. Figure 10 shows the structure 

of this multiplier with the bit-wise shifts needed at the different inputs. 

 

Figure 10 Conversion constant multiplier (const = 10110111) 

 

The structure of the multiplier in this case, as in the regular constant multiplier 
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stages. The implemented multiplier in this case offers same pipelining options as the 

regular multiplier. The fully pipelined version will be where all the outputs of the adders 

and subtractors have a register. The number of stages in the fully pipelined case depends 

on the number of terms to be added. With the conversion constant multiplier there is an 

extra stage added by the two subtractors needed to fulfill the conversion technique. The 

two subtractors in Figure 10 are the ones created by first implementing Booth’s algorithm 

on the all 1’s number and the second subtractor subtracts the result of the adder tree 

(based on the 1’s complement of the coefficient) from the result of the first subtractor. 

Thus, in this case, the depth of the stages will be  ( )  1log2 +rmsNumberOfTe , the 

NumberOfTerms in this case in the number of terms from the adder tree; that is, the 

number of terms from the 1’s complement of the constant coefficient. 

 

3.3 Implementation Statistics 

The results collected after synthesizing and running the multipliers on the 

WILDFORCE and on the SLAAC1-V boards are provided in the following section. Each 

set of results provided shows the fastest clock speed at which the multiplier runs along 

with the hardware resources used, as reported by the synthesis tools. Each set compares 

the different multipliers (regular constant coefficient, conversion constant coefficient, and 

the JHDL modgen multiplier) to each other, considering different constants. The three 

sets considered are: unpipelined and pipelined multipliers implemented on the 

WILDFORCE Board, and unpipelined and pipelined multipliers implemented on the 

SLAAC1-V board. 
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3.3.1 Unpipelined Multipliers Implemented on the WILDFORCE Board  

Table1 shows the sizes and the maximum clock speed for the unpipelined 

multipliers using the constants shown.  

The terms in the table will be explained in the following section. The XC4000 

signifies the Xilinx parts [15] used on the WILDFORCE board on which these 

multipliers have been implemented. The sign, exponent, and the mantissa show these 

values of the constants. The mantissa (binary) shows the binary format of the mantissa 

along with the implicit one in the most significant bit position. 

The highest speed column gives the highest clock cycle frequency of the 

WILDFORCE board for which the multipliers still give no errors in computing the 

product. The testing mechanism will be discussed later. The next four columns: CLB 

usage, FLOPS usage, 4-input LUT, and 3-input LUT are reported directly from the Xilinx 

synthesis tools. The last column, fixed multiplier # of terms, shows the number of terms 

that the constant coefficient multipliers have to add; this number is important since it 

reflects the depth of the tree of adders, discussed in Sections 3.1 and 3.2. 

To pick the constants to use in these tables, a function was created to estimate the 

size that would be needed in the implementation of the multiplier. The constant 

coefficient multipliers of the same type, regular or conversion, follow the same structure; 

the difference is in the number and the size of the adders needed to create the adder tree. 

Accounting for these two factors gives an estimate of the size of each multiplier in 

comparison with the same type of multiplier, but with a different constant. The function 

created was used on all the constants that can be created from the 23 bits of the mantissa. 

These numbers were sorted using Matlab [16], the constant creating the maximum size of 
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the regular constant coefficient multipler was picked. Then, from the same sorted array 

the constants whose sizes were in the ¼, ½, and ¾ positions of the array were picked.  

The conversion constant coefficient multipliers require more logic to be created, 

on average, than the regular constant coefficient multipliers. This extra requirement is 

due to the use of two extra terms, as discussed in Section 3.3. Due to this observation, the 

tables were created based on the sizes of the regular constant coefficient multipliers. The 

same constants are used to create the conversion constant coefficient 

multipliers. For each constant, the multiplier that uses the least area is utilized. To 

complete the tables, two extra values were added. The first value shows the maximum 

area that can be used after choosing the smaller of the two types. This constant is the 

value whose binary representation has no consecutive ones or zeros, and the 

representation starts and ends with ones, in the case of an odd number of bits in the 

mantissa. When the conversion technique is used on this value, the result is a 

representation of no consecutive ones or zeroes, with zeroes at the boundary. Even that 

the number of ones is less in the use of the conversion case, but the use of the conversion 

technique requires extra logic that balances out the decrease in the number of ones. The 

second value has no ones in the mantissa representation; the value used has 128 as the 

exponent so that the multiplier multiplies by two.  

The JHDL modgen multiplier is a multiplier that has two variable inputs, thus the 

size of the multiplier should be independent of the values that are multiplied. This is true 

in the case when the two inputs are left as variables, and the reported values of that case 

are shown at the bottom of the rows assigned for the JHDL modgen multiplier. In the 

case where one of the inputs to this multiplier is declared as a constant value, the 



 26

synthesis tools were able to introduce certain optimizations that reduced the size of the 

multiplier and increased the speed at which this multiplier could operate.  

A function was developed that estimates the size of the constant multipliers for 

every different constant, using this function the specific coefficients were picked to report 

the results that are shown below.  

The mantissa value of 6141659 is the constant that creates the greatest area 

consumption, when implemented in hardware, the CLB usage is 397 CLBs, the 

conversion constant multiplier for the same constant uses 250 CLBs. The JHDL modgen 

multiplier with two variable inputs uses 368 CLBs, while in the case of a constant input 

with a mantissa of 6141659, the CLB usage is 352. For these specific numbers, using the 

conversion constant multiplier is the best choice in saving area. For each constant the 

smaller between the regular and the conversion constant multipliers should be used to get 

good saving results. 

The maximum operating clock frequency is another important aspect to consider. 

For the mantissa value of 6141659, the regular constant multiplier can run at 18 MHz, 

while the conversion constant multiplier can operate at 25 MHz; both these numbers are a 

significant gain over the operating frequency of the JHDL multiplier which is 9 MHz 

using two variable inputs and also with 6141659 as the mantissa of a constant input.  

The number of terms that are to be added in the constant multipliers can give a 

good idea about the performance of the regular and the conversion versions of the 

constant multipliers with respect to each other. The regular constant multiplier has 

sixteen terms to add while the conversion multiplier has nine terms to add. 
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Another important constant to consider is the maximum constant multiplier that 

can be created while choosing the smaller of these two versions. In Table1, the constant 

that shows this case is 5592405. The area consumption of both versions of the constant 

multiplier is 330 CLBs (both add 13 terms), while that of the JHDL modgen with the 

same constant input is 344 CLBs. The savings in area consumption in this case are not 

significant. The highest speed at which this multiplier can run is 23 MHz using the 

regular version, while it is 22 MHz using the conversion type. The JHDL modgen runs at 

a maximum of 10 MHz. 

The numbers 6321838, 4255289, and 2097828 map respectively to the values that 

were picked to represent the ¾, ½, and ¼ positions in the sorted array of the estimated 

mulitplier sizes. Using the smaller of the two versions in each case still saves on the area 

used by the JHDL modgen multiplier; there is also a significant increase in the speed at 

which these multipliers can run. 

The constant that maps to multiplying by two, shows that the JHDL modgen 

multiplier uses the least area, 44 CLBs, while the area used is 54 CLBs for the regular 

constant multiplier and 149 CLBs for the conversion constant multiplier version. The 

WILDFORCE board can run the clock at a maximum of 50 MHz; both the regular and 

the JHDL modgen multipliers run at that speed, while the conversion type runs at 33 

MHz. 

 

3.3.2 Pipelined Multipliers Implemented on the WILDFORCE Board  

An important feature of these constant coefficient multipliers and of the JHDL 

modgen multiplier is the ability to be pipelined. Pipelining helps by increasing the value 
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of the highest rate at which the clock can be run [17]. Introducing delays between the 

stages of the adder tree pipelines the constant coefficient multipliers, thus useful 

pipelining is limited by the depth of the adder tree. The modgen JHDL multiplier offers a 

greater number of pipelining stages. To compare the different multipliers, the regular and 

the conversion constant multipliers are fully pipelined, and the number of stages created 

is reported. The JHDL multiplier is then pipelined the number of stages that is typically 

used in both the previous multipliers. The results for the pipelined multipliers are 

reported in Table 2. 

To create the pipelined version of the constant multipliers, the modgen adders of 

JHDL were used. The outputs of these adders can be registered without extra area cost. 

The limitation of these adders is that they only support 32-bit inputs and output. This 

problem was fixed by truncating every result in the adder tree to 32 bits; the lost accuracy 

is insignificant as will be discussed later. 

The extra column in Table 2 shows the number of pipelined stages. As can be 

seen from this table, the number of stages typically used is 4, this is the number of stages 

used in the JHDL modgen multiplier.  

In this implementation, the regular constant coefficient multiplier did not break at 

the speeds that can run on the WILDFORCE board. The conversion constant coefficient 

multiplier ran at 36 MHz in its worst case. When picking the smaller type for each 

constant the constant multipliers do not break on the WILDFORCE board. The JHDL 

multiplier with four pipelined stages did not break, only in the case when multiplying 

with the constant 2. The other cases operated between 32 and 40 MHz. When the JHDL 

multiplier was implemented with the two inputs variable, it operated at a maximum clock 
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rate of 27 MHz. In the reported cases above, the constant multipliers performed better for 

all case. 



 30

 

Highest Speed Fixed Multiplier
X 4000 Sign Exponent Mantissa Mantissa (Binary) (MHz) CLB Usage FLOPS Usage 4-input LUT 3-input LUT # Of Terms

0 127 6141659 1.10111011011011011011011 18 397 2 647 25 16
0 127 5592405 1.10101010101010101010101 23 330 2 521 25 13
0 127 6321838 1.11000000111011010101110 20 269 2 404 25 10

Regular 0 127 4255289 1.10000001110111000111001 25 252 2 372 25 9
0 127 2097828 1.01000000000001010100100 35 178 2 231 25 6
0 128 0 0 >= 50 54 2 54 3 1

0 127 6141659 1.10111011011011011011011 25 250 2 367 25 9
0 127 5592405 1.10101010101010101010101 22 330 2 518 25 13
0 127 6321838 1.11000000111011010101110 27 250 2 365 25 9

Conversion 0 127 4255289 1.10000001110111000111001 26 251 2 367 25 9
0 127 2097828 1.01000000000001010100100 19 288 2 437 25 11
0 128 0 0 33 149 2 176 25 4

0 127 6141659 1.10111011011011011011011 9 352 2 618 1
0 127 5592405 1.10101010101010101010101 10 344 2 610 3
0 127 6321838 1.11000000111011010101110 11 317 2 558 1

Jhdl 0 127 4255289 1.10000001110111000111001 9 323 2 570 1
0 127 2097828 1.01000000000001010100100 16 250 2 440 3
0 128 0 0 >= 50 44 2 80 3

Two variables, no constants 9 368 2 635 7

 

Table 1 Results of the unpipelined multipliers implemented on the WILDFORCE board 
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X 4000 Highest Speed Pipeline
(Pipelined) Sign Exponent Mantissa Mantissa (Binary) (MHz) CLB Usage FLOPS Usage 4-input LUT 3-input LUT Stages

0 127 6141659 1.10111011011011011011011 >= 50 344 407 475 26 4
0 127 5592405 1.10101010101010101010101 >= 50 322 396 427 48 4
0 127 6321838 1.11000000111011010101110 >= 50 261 267 296 40 4

Regular 0 127 4255289 1.10000001110111000111001 >= 50 269 307 295 59 4
0 127 2097828 1.01000000000001010100100 >= 50 195 180 211 41 3
0 128 0 0 >= 50 54 2 54 3 0

0 127 6141659 1.10111011011011011011011 >= 50 285 237 309 48 4
0 127 5592405 1.10101010101010101010101 36 368 385 430 63 5
0 127 6321838 1.11000000111011010101110 >= 50 285 228 299 48 4

Conversion 0 127 4255289 1.10000001110111000111001 44 282 226 296 49 4
0 127 2097828 1.01000000000001010100100 >= 50 339 330 355 73 5
0 128 0 0 >= 50 181 106 162 52 2

0 127 6141659 1.10111011011011011011011 32 376 216 645 43 4
0 127 5592405 1.10101010101010101010101 39 372 213 652 43 4
0 127 6321838 1.11000000111011010101110 39 362 212 621 42 4

Jhdl 0 127 4255289 1.10000001110111000111001 39 371 210 635 42 4
0 127 2097828 1.01000000000001010100100 40 342 207 589 42 4
0 128 0 0 >= 50 239 181 365 40 4

Two variables, no constants 27 386 223 657 51 4  
 

Table 2 Results of the pipelined multipliers implemented on the WILDFORCE board
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3.3.3 Unpipelined Multipliers Implemented on the SLAAC1-V Board  

The multipliers implemented on the WILDFORCE board gave a very good result 

after being pipelined. The next inquiry is, how these multipliers will perform on a Virtex 

chip. The unpipelined version of both the constant coefficient multipliers and of the 

JHDL modgen multiplier were implemented and tested on the SLAAC1-V board. This 

board uses the Virtex 1000 Xilinx chips as its Processing Elements (PEs). [5]  

Table 3 shows the results obtained; they are a bit different from the data reported 

for the WILDFORCE board. The area consumption in this case is measured in slices as 

opposed to CLBs in the case of the XC4000 PEs. The other hardware consumption data 

reported is the use of the 4-input LUTs, with the WILDFORCE there was also 3-input 

LUTs.  

The relationship between the area consumption results with respect to the 

different types of the multipliers is quite close to those reported in the case of the 

WILDFORCE board. The maximum slice usage of the regular constant coefficient 

multiplier is 327 for the 6141659 constant; the corresponding conversion multiplier size 

is 198, while the JHDL multiplier used 305 slices. The largest multiplier that can be 

created while choosing between the two constant coefficient multipliers (constant = 

5592405) uses 253 slices. The JHDL modgen multiplier uses 314 slices when both inputs 

are variable. When picking the smaller of the two types of constant multipliers, better 

area consumption in given in all reported cases.  

The real significant performance enhancement is in the highest clock speed at 

which the constant multipliers can run. The lowest speed reported on the constant 
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multipliers, while choosing the multiplier with the lower area consumption, is 52 MHz. 

The JHDL multiplier did not provide such a good result; it ran at 14 MHz when both 

inputs were variable and between 15 and 18 MHz for the other cases, excluding the case 

when multiplying by two where this multiplier did not break.  

 

3.3.4 Pipelined Multipliers Implemented on the SLAAC1-V Board  

The last implementation that will be discussed is that of the pipelined multipliers 

on the SLAAC1-V board. The area consumption in this case of the constant multipliers is 

larger than that of the JHDL multipliers because the modgen adders were not supported 

for the Virtex chips and thus regular adders were used. The registers used for pipelining 

were mapped to their own slices (without the use of placement tools) and thus more area 

was consumed. Table 4 shows the results collected, and follows directly from Table 3 on 

format it also follows the same discussion in Section 3.3.2 on the number of pipelined 

stages to use with the modgen multiplier. 

The results of the area consumption can be compared between the two types of 

constant multipliers. The largest regular constant multiplier (constant = 6141659) used 

848 slices, while the same constant needed 629 slices in the conversion constant 

multiplier. The largest multiplier that can be created while picking the smaller of the two 

types (constant = 5592405), consumes 748 slices with the regular multiplier and 835 with 

the conversion multiplier. The size of the JHDL modgen when both the inputs are 

variable is 411 slices. It can be seen that the registers did require a lot of space. 

The fastest clock speed results still show that the constant multipliers can work at 

higher speeds. All coefficients used with the regular constant multiplier resulted in logic 
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that did not break at the speeds at which the SLAAC1-V board can run. The conversion 

constant multiplier ran at the lowest speed of 80 MHz for the largest multiplier 

considered. The modgen multiplier had speeds between 57 and 61 MHz, excluding the 

case of multiplying by 2. The constant multipliers still provided operation at higher 

speeds even though they used more area on the chip. 

 

The results reported in the four tables show the improvement in area consumption 

and in high clock speed operation that the constant multipliers offer. This improvement is 

of use in the case where the multipliers in a design have a fixed coefficient or when the 

coefficients are constant for a long time.
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Highest Speed Fixed Multiplier
Virtex Sign Exponent Mantissa Mantissa (Binary) (MHz) Slice Usage 4-input LUT # Of Terms

0 127 6141659 1.10111011011011011011011 42 327 502 16
0 127 5592405 1.10101010101010101010101 50 252 405 13
0 127 6321838 1.11000000111011010101110 48 242 354 10

Regular 0 127 4255289 1.10000001110111000111001 51 231 321 9
0 127 2097828 1.01000000000001010100100 68 140 216 6
0 128 0 0 >= 147 56 87 1

0 127 6141659 1.10111011011011011011011 53 198 336 9
0 127 5592405 1.10101010101010101010101 48 253 435 13
0 127 6321838 1.11000000111011010101110 55 223 359 9

Conversion 0 127 4255289 1.10000001110111000111001 52 229 368 9
0 127 2097828 1.01000000000001010100100 43 260 413 11
0 128 0 0 87 140 253 4

0 127 6141659 1.10111011011011011011011 15 305 430
0 127 5592405 1.10101010101010101010101 15 305 334
0 127 6321838 1.11000000111011010101110 15 293 334

Jhdl 0 127 4255289 1.10000001110111000111001 16 305 310
0 127 2097828 1.01000000000001010100100 18 281 166
0 128 0 0 >=147 195 63

Two variables, no constants 14 314 618  

Table 3 Results of the unpipelined multipliers implemented on the SLAAC1-V board 
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Table 4 Results of the pipelined multipliers implemented on the SLAAC1-V board 

Virtex Highest Speed Pipeline Fixed Multiplier
(Pipelined) Sign Exponent Mantissa Mantissa (Binary) (MHz) Slice Usage 4-input LUT Stages # Of Terms

0 127 6141659 1.10111011011011011011011 >= 848 502 4 16
0 127 5592405 1.10101010101010101010101 >= 748 405 4 13
0 127 6321838 1.11000000111011010101110 >= 642 354 4 10

Regular 0 127 4255289 1.10000001110111000111001 >= 615 321 4 9
0 127 2097828 1.01000000000001010100100 >= 448 216 3 6
0 128 0 0 >= 147 200 87 0 1

0 127 6141659 1.10111011011011011011011 87 629 336 4 9
0 127 5592405 1.10101010101010101010101 80 835 435 5 13
0 127 6321838 1.11000000111011010101110 84 628 359 4 9

Conversion 0 127 4255289 1.10000001110111000111001 84 629 368 4 9
0 127 2097828 1.01000000000001010100100 87 755 413 5 11
0 128 0 0 >= 362 253 2 4

0 127 6141659 1.10111011011011011011011 57 394 430 4
0 127 5592405 1.10101010101010101010101 58 390 334 4
0 127 6321838 1.11000000111011010101110 62 375 334 4

Jhdl 0 127 4255289 1.10000001110111000111001 61 384 310 4
0 127 2097828 1.01000000000001010100100 61 355 166 4
0 128 0 0 >= 325 63 4

Two variables, no constants 58 411 618 4
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Chapter 4: FIR Filter Implementation 
 

This section describes in detail the FIR filter implementations that were 

considered, namely the direct-form and the lattice structures [3]. The two 

implementations mentioned above are reconfigurable. The reconfiguration was 

accomplished in two ways, through the data path and through re-synthesis and full 

reconfiguration of the PEs. Reconfiguration using the data path is real-time, where the 

new coefficients that are to be used in the taps of the filter are introduced into the data 

path. The tap records the new value and uses it as the multiplying coefficient. The 

multipliers used are the regular floating-point multipliers provided in the modgen 

package with JHDL. The drawback to these multipliers is that they are generic, and thus 

cannot take advantage of the fact that the coefficient in each tap may be fixed for a long 

time. If the coefficients do not change frequently, then the constant coefficient multipliers 

discussed in the previous chapter are well suited for the job. These multipliers offer 

enhancements in computational speeds and in chip area consumption. These multipliers 

have to be re-synthesized for each new coefficient. Thus, there will be time loss with 

respect to the generic multipliers when changing the response of the filter. The following 

subsections will discuss the implementation of each FIR format, irrespective of the 

multipliers used, and the processes by which to reconfigure the response of the filter 

when using the different multipliers. A final subsection will discuss the relative merits of 

each of the four resulting configurations of the FIR filter. 
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4.1 Direct-Form FIR Filter 

As discussed in Section 2.1, the direct-form FIR form follows directly from the 

non-recursive equation (1) governing the response of the filter. Figure1 shows the 

structure of this filter. The discussion in the following subsection deals with the 

implementation of the direct-form, irrespective of the multipliers used, after describing 

the mechanism by which the constants of the multipliers are set in the case of data-path 

reconfiguration. 

The data path that traverses PE1 through PE4 through the systolic bus on the 

WILDFORCE board was chosen for the hardware implementation on the FIR filter. Each 

PE can hold one or two taps, which will relay data to each other through the systolic bus. 

PE1 will get the input data from FIFO1; after processing this data, it will pass it to PE2. 

PE4 will get the data after it is processed in the data path; and then outputs it to FIFO4. 

With this structure, the host code provides data to FIFO1 to be processed and then 

retrieves the processed data from FIFO4. 

Each tap in this structure needs two inputs and two outputs as shown in Figure 11. 

Time multiplexing was used so that each path will use every other clock cycle on the 

systolic data bus because the PEs have only one input and one output to the bus. 

 

 

 

 

 

 

Figure 11 A single tap of the direct-form FIR filter [3] 
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Control bits were introduced at the top four bits of each word passing through the 

filter. These bits are used to differentiate between the different control and data words 

that will pass through the PEs. There are two types of valid data words which map to the 

two paths that need to be multiplexed into one path. The other control bits are used to 

either reset the different FSMs (Finite State Machines) used, declare that the words going 

in are valid or not, or to setup the coefficients in the case of data path reconfiguration. 

Table1 shows the different combinations of these control bits and what meaning they 

encode. 

Control Bits 30 29 28 Description 
  V R P   
 0 0 0 Invalid Data Mode 
 0 0 1 Invalid Program Mode 
 0 1 0   
 0 1 1 Reset Signal 
 1 0 0 Valid Mode (Original Data) 
 1 0 1 Valid Program Mode 
 1 1 0 Valid Data Mode (Accumulation Data) 
 1 1 1 Reset Signal 

Table 5 Control bits used in the filter design 

 

Bit 31 is tied directly to the fifoempty flag of PE1which is considered as another 

valid bit. Thus, whenever the FIFO is empty the words are considered invalid. This bit is 

also tied to the fifoalmostfull flag of PE4; this flag is sent back from PE4 to PE1 through 

the crossbar and gives the control needed so that no data is overwritten in PE4’s FIFO. 

The bits that are shown in Table1 are V-valid, R-Reset, and P-Program.  

Figure 12 shows the structure implemented on the PEs in the case of data-path 

reconfiguration. RegC takes care of saving the value of the coefficient for the multiplier 

and in resetting this value when needed. When the values inside the RegCs of the 
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different taps are to be changed, the Reset word is first sent through the board. This signal 

will reset the FSM (Finite State Machine) inside RegC to the initial case. The RegCs now 

start saving the new coefficients that are passed to them, each RegC uses the first valid 

coefficient it gets and then invalidates it. Thus, the first RegC will get the first coefficient 

and so on. 

Figure 13 shows the same implementation using the constant coefficient 

multipliers, so there is no need for RegC to hold the coefficient.  

 

 

 

 

 

 

 

Figure 12 Implemented structure of the direct-form FIR filter with regular multipliers 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 13 Implemented structure of the direct-form FIR Filter with constant coefficient multpiliers 
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The valid data mode words that go through the filter should always be passed as 

Original data (from Table1) first followed by Accumulation data. This order is important 

so that the intermediate accumulation result is attributed to the correct Original data. The 

“1 => 3” and the “3 => 1” modules are responsible for keeping the order of the two types 

of valid data.  

 

4.2 Lattice FIR Filter Structure 

The response of the lattice structure of the FIR filter was discussed in Chapter 2. 

Equations (6 & 7) describe the response of the first tap of the lattice structure, Equations 

(8 & 9) for the second stage follow in the same manner, with the following taps following 

a similar pattern. The hardware implementation of this type of filters is discussed next. 

Using the same approach as Section 4.1, the discussion will focus on the overall 

implementation, irrespective of the multipliers used, and then the differences between the 

two approaches will be pointed out. 

The process used in setting the coefficients when using the regular multipliers is 

the same that was used with the direct-form implementation. The same data path used in 

the direct-form filter is used with the lattice structure. The input data to the filter comes 

through FIFO1 to PE1, then the data traverses the systolic bus through the four PEs and 

the data is sent to the host program through FIFO4. In this structure each PE can hold an 

arbitrary number of taps of the FIR filter, as long as the design still fits on the chip.  

From Figures 2 and 3 it can be seen that there are two input and two output paths 

on each tap of the lattice structure; the same approach in the direct-form is used, where 

the two paths are multiplexed into one and the control bits are used to distinguish 
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between them. The two paths are the “f” data and the “g” data that are shown in Figures 2 

and 3 [3], thus each of these paths will use every other clock cycle on the systolic bus. 

The control bits are used to distinguish the different data types and indicate the 

validity of the data. These bits identify control words that deal with setting the 

coefficients when using the JHDL multipliers and resetting the filter, and the two types of 

data words that are used to represent the “f” and the “g” paths. The control bits are also 

used to declare if the words are valid or not. The following table shows the different 

combinations of these bits and their encoded meaning. 

Control Bits 30 29 28 Description 

 V R P   
 0 0 0 Invalid Data Mode 
 0 0 1 Invalid Program Mode 
 0 1 0   
 0 1 1 Reset Signal 
 1 0 0 Valid Mode ("f" Data) 
 1 0 1 Valid Program Mode 
 1 1 0 Valid Data Mode ("g" Data) 
 1 1 1 Reset Signal 

Table 6 Control bits used in the lattice structure FIR filter 

 
As in the direct-form implementation, bit 31 is used to also declare if the values 

are valid or not by being tied directly to the fifoempty flag of FIFO1. When the FIFO is 

empty, the data being read is invalid. This bit is also tied to the fifoalmostfull flag of PE4 

through the crossbar; this signal is needed so that no data is overwritten inside FIFO4. 

Also following from the previous structure, the bits are V for the valid control signal, R 

for the Reset signal, and P for distinguishing between program data and regular data.  

The forms of lattice structure implementation with the regular multipliers and the 

constant coefficient multipliers are shown in Figures 14 and 15 respectively. The 
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difference comes from the hardware that was used to store the coefficients for the JHDL 

multipliers.  

Figure 14 Implemented structure for the lattice structure with regular multipliers 

 

Figure 15 Implemented structure for the lattice structure with constant coefficient multipliers 
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implementation that is used on the PEs, the two data paths “f” and “g” will be 

multiplexed. With the correct control of the data that is entering the PE, the “f” and “g” 

values can be multiplied and added using the same multiplier and adder, thus saving a 

significant amount of area on the chip.  
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The individual modules in this implementation follow exactly from their 

counterparts in the direct-form structure except for the RegG, Mux Mult, and Mux Add.  

The “Mux Mult” and the “Mux Add” are two multiplexers that take care of sending the 

“f” and “g” data at the right time to the multiplier and adder, so that the output is the 

same as the one expected of the lattice-structure, while using only one multiplier and one 

adder.  

The “f” and the “g” data should be kept in the correct sequence, in the same 

manner that the Original and the Accumulated data had to be kept in sequence in the 

direct-form implementation. 

 
4.3 Implementation Results 

There are four different possible implementations that can be created of the FIR 

filter. These four implementations rise from first choosing which form to use, the direct-

form or the lattice structure. The second step is picking either the JHDL modgen 

multipliers or the constant coefficient multipliers. Another parameter to consider is the 

number of filter taps in each PE. 

When using the JHDL modgen multipliers, the two inputs to the multipliers are 

variable. This helps the FIR implementation (both the direct-form and the lattice 

structure) to be real-time reconfigurable. The process of this reconfiguration was 

discussed in Subsection 4.1 and 4.2, the reconfiguration process needs to send a reset 

signal followed by the coefficients that are to be used as the new constants of the filter. 

The time needed for that depends on the depth of the filter and on the number of 

pipelined stages used, thus it is the time needed for the values to pass through the logic of 

the filter. Another observation is that the new values to be filtered by the new filter 
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configuration need not be delayed after the coefficients are sent, so the delay is only the 

number of the values sent to reconfigure (each value needs one clock cycle to get to the 

input of the filter).  

The constant multipliers offer faster operating clock rates and smaller area, but 

the run-time reconfigurability is out of the question. To change the response of the filter 

the whole multipliers should be changed, synthesis will be needed after the code for the 

multipliers is changed. The process of changing the coefficients and resynthesizing is 

time consuming; the synthesis of four PEs for one board can take up to an hour with the 

conventional methods. The use of JBits [18] can help in this time consumption, the 

reconfiguration of one PE on the WILDFORCE will approximately require 190 ms, 

changing the response for the three PEs would take 3 * 190 ms. Throughput for each 

period T that includes a response change will be (T – 3*190) * maximum clock speed. 

When using the JHDL multipliers for the same time period, setting the response only 

takes three clock cycles which is negligible, so the throughput will be T* maximum clock 

speed with the JHDL multipliers. The larger throughput for each case of time of 

operation and maximum clock speed determines which multipliers to use with the FIR 

filter needed. 

  The JHDL modgen multipliers used in the FIR filter have two variable inputs 

and thus the size of these multipliers is not dependent on the values at the inputs. The 

area consumption of these filters and the maximum operating clock speed are reported in 

Table 7.  
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One Tap Per PE Two Taps Per PE Four Taps Per PE
Area Consumption Clock Speed Area Consumption Clock Speed Area Consumption

Direct-Form
JHDL Multipliers 1097 24 2231 20 4226

Direct-Form
Constant Multipliers 1055 27 2119 20 4083
Lattice Structure
JHDL Multipliers 1104 20 2207 17 4224
Lattice Structure
Constant Multipliers 1037 24 2074 18 4096  

Table 7 Implementation results for the different FIR filters 

 

Reporting the area consumption of the FIR filters using the constant multipliers is 

more complex. The size of the multipliers is dependent on the constant to be used for the 

multiplication. Another issue is that for each constant there are two versions of the 

constant multiplier (regular and conversion); they give the same result, but one version 

needs less area for each different constant. The reported values will be based on the 

constant that creates the average size of the minimum of both types of constant 

multipliers. After determining the sizes needed for each constant for both types, one of 

the values that create the median of the minimum is 26810 (1.0000110100010111010). 

After using this value in the implementation of the FIR filters, the area consumption 

results are reported in Table 7. 

In all implementations of the FIR filter, the JHDL multipliers were pipelined at 10 

stages and the constant multipliers were fully pipelined. Then, an extra delay was added 

to get to the 10 stages of the JHDL multipliers (this delay was not added while testing for 

area). With this setup, the speed at which the filters break is not limited by the 

multipliers. Table 7 reports the maximum speeds at which each of the filter 

implementations was able to run. 

 The implementations using the constant multipliers have a better clock speed 

performance since there is less logic in the implementation. The performance of the 
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multipliers was of no effect because the multipliers were shown to work at higher speeds 

with no errors, while being pipelined with fewer stages, results of Subsection 3.3. 

The constant multipliers proved to use less area and to run at higher speeds, 

reported results in Subsection 3.3. When these multipliers replace the JHDL modgen 

multipliers on the FIR filters, the area savings are not significant because of all the logic 

in the design.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 48

Chapter 5: Fast FIFO 

Data access on the WILDFORCE board can be accomplished by the use of the 

hardware FIFOs on PE0, PE1, and PE4 [4]. These FIFOs offer a method to get data on 

and off the board with flow-control. Consuming the CPU and having a slow data transfer 

rate are the two primary problems of the FIFOs on the WILDFORCE board. The 

WILDFORCE board offers the ability to access the memories of the PEs from the host 

program with and without DMA (Direct Memory Access). Using the memory as the main 

data interaction point adds to the complexity of the hardware, because addressing and 

memory bus handling must be integrated into the FPGA design. The Fast FIFO was 

developed to offer the same simple interface as the regular FIFOs along with the speed 

that can be attained by using DMA to the memories. The following sections will discuss 

the implementation and the results obtained from running the Fast FIFO [4].  

 

5.1 Fast FIFO Concept 

Data access to the memories of the PEs is faster than data access to the FIFOs, 

this fact is the main motivation behind creating the Fast FIFOs. To improve the speed that 

can be achieved on the data path from FIFO1 through the systolic bus to FIFO 4; the Fast 

FIFO uses the memory of PE0 as the primary temporary storage of data that is to be 

passed through the systolic bus. PE0’s job is to keep track of the size of the data chunks 

written to its memory and their position. When PE1 asks for data by asserting a control 

bit, PE0 supplies data through the crossbar. PE1 gets data as if it were coming from a 

regular FIFO; it does not have to worry about addressing or memory access. The data is 

processed in PE1, PE2, and PE3. PE4 in this case has to temporarily store the data in the 
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area that it has (inside the PE and not in PE4’s memory). When the storage space is full, 

PE4 stops PE0 from sending more data, and it moves the data stored to the memory and 

informs the host program of the size of the data in the memory. 

 

5.2 The Host Program 

The host program controls sending data to the board and retrieving it after it has 

been processed in the PEs. Passing data through the board using the Fast FIFO is done in 

blocks of 0 to 256 words. The host program moves the blocks of data through DMA 

access to the memory of PE0. The host code sends a “control” word to the regular FIFOs 

(FIFO 1) to notify PE0 of the new data block. The regular FIFOs were picked because the 

PE can check the fifoempty flag and determine if any new data is present. The “control” 

word that is written carries information about the size of the block and its position in 

PE0’s memory. Each “control” word gives information about one block of data. 

Retrieving the data is done in a similar manner. When PE4 has transferred a block 

to its memory, it notifies the host program by sending a regular FIFO word that contains 

the size of the block that has been written. PE4 writes the blocks to its memory 

consecutively, thus the host program should keep track of where it read last from PE4’s 

memory. The number of words in FIFO 4 reflects the number of blocks in PE4’s 

memory. With this information, the host program will be able to retrieve all processed 

data. 
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5.3 PE0 Implementation 

The job of PE0 is to read the data written to its memory by the host program. The 

whole process to be done in PE0 is controlled by a Finite State Machine (FSM). PE0 

checks the fifoempty flag of its regular FIFO, looking for new blocks written to its 

memory. Every word in the regular FIFO maps to a block that was placed in PE0’s 

memory in a location and of the size shown in the FIFO word itself. 

When PE0 finds that there is data for it to retrieve, it reads the amount of data 

written at the specified location. This data will be pushed to PE1 through the crossbar; 

PE1 has the capability to ask for data, thus if PE0 does not have an asserted flag that PE1 

needs data, it will stop pushing data and stop reading from its memory.  

The first job of the FSM is to read the “control” word from the regular FIFO. The 

size of the block is extracted from the control word and sent to PE4. This information is 

needed to control the temporary storage (to be discussed in the following subsection). 

PE0 can then start reading from the memory; there are two branches here, PE0 either has 

to read a single word or more than that. If a single word is to be read, it is read and 

pushed to PE1. PE0 waits to be “stalled” by PE4, announcing that the temporary storage 

in PE4 is full. PE0 waits again to be un-stalled, signaling that PE4 has finished writing 

from the temporary storage to its memory. The cycle starts again with PE0 checking the 

regular FIFO for new words. If PE0 is to read more than one word from memory, the 

basic process is the same, except that PE0 is waiting for multiple words instead of a 

single word and thus different clock cycles are to be controlled. 
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5.4 PE4 Implementation 

PE4 is responsible for grabbing the data that is passed to it from PE3, and then 

passing this data to memory and informing the host program of the size of the data that 

was received.  

The process that takes place in PE4 is controlled by two FSMs. The first step in 

the process is recording the size of the block to be sent. PE0 sends the size of the block to 

be read from its memory; PE4 stores this word. The implementation in PE4 contains a 

RAM that can hold up to 256 words for temporary storage. Using this RAM, PE4 starts 

storing the data that it receives through the data path (usually through PE3). This process 

is controlled by the first FSM (Write_1), which takes care of writing the correct amount 

of data into the temporary storage. After all data specified by PE0 are received by PE4, 

the FSM sends a Stall signal to PE0 that all data has been stored. This FSM signals the 

second FSM (Write_2) to start its work. Write_2 is responsible for sending the data in 

temporary storage to the memory of PE4. When all data is transferred, PE4 writes a word 

into the regular FIFO that contains information about the size of the block that is written 

in the memory. In this way, the host program knows that new data has been written, and 

can retrieve it. After the writing phase in PE4 is finished, it sends an “unstall” signal to 

PE0, so that the cycle can start again. 

 

5.5 Testing Results 

The Fast FIFO was compared to the regular FIFOs by sending the same amount of 

data through each and timing the process. In the case of the Fast FIFO, the host code 

dumped 256 blocks of 256 words each into the memory of PE0 and signaled PE0 by 
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Overall Timing Time Required (sec) Throuput (Mbytes/s)
Regular FIFOs 362.1673 6.90288

Fast FIFOs 118.5461 21.0888

Processor Timing Overall Time Processor Time Percentage
Regular FIFOs 394.7339 376.117 95.28%

Fast FIFOs 120.6576 47.71392 39.54%

sending control words to the regular FIFOs. The host code read the same values back 

from PE4’s memory after reading the control words from FIFO4; this process was 

repeated 10,000 times to decrease the significance of the error caused by the granularity 

of the timers. The same amount of data was passed through the regular FIFOs; the host 

code dumped the data into FIFO1 in chunks of 512 words each and then retrieved the 

data from FIFO4. 

Timing of these two transfers is done in two ways. The first method used was 

timing all the 10,000 runs so that the entire transfer was tested. The reading function is 

not called until FIFO 4 was almost full to save on time because reading and writing to the 

regular FIFOs were blocking calls.  

 

 

 

Table 8 Timing results for data passing through the FIFOs 

 

 

 

Table 9 Processor time consumption by the FIFOs 

 

Reading and writing to the FIFOs is done through the DMA FIFO read and write, 

so that less time is needed, as opposed to using the regular FIFO read and write. The 

results of the timings are reported in Table 8. the Fast FIFO has a throughput 3.055 times 

larger. The second timing method is aimed at testing the amount of work the processor is 

using in the actual reading and writing operations as opposed to the total time elapsed 
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during the process. To accomplish this timing, only the write and read functions are timed 

when they are called. The extra functions needed in timing slow the whole process by a 

fraction, thus the overall timing and the timing of the reading and writing will be reported 

in Table 9. The reported percentages show that using the regular FIFOs will render the 

processor unable to do other tasks, because most of the operating time is consumed by 

writing and reading. In the case of the Fast FIFO, the write and read functions require a 

much smaller fraction of the overall time and thus the processor will be able to have other 

tasks running while data is passed through the board.  
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Chapter 6: Integration and Testing Results 
 

 

Developing a fast, scalable, and reconfigurable FIR filter implementation is the 

goal of this thesis. This implementation can be created through the integration of the 

various techniques mentioned in the previous chapters. 

The different choices available for the FIR implementation create four different 

filter configurations. The filter can be either direct-form or lattice structure and it can use 

either the JHDL modgen multipliers or the constant coefficient multipliers. It can also 

have a tap or two on each PE of the WILDFORCE board (or more on new, larger 

FPGAs). The use of the constant multipliers creates a simpler logic implementation, as 

well as a higher operating frequency than the modgen multipliers. 

 The data input to the filter can be provided by the regular FIFOs that are provided 

by the WILDFORCE board, or through the use of the Fast FIFO. Operating the regular 

FIFOs in the DMA mode, and having only two registers in each PE to pass the data from 

the input to the output, had a transfer rate of 6.90288 Mbytes/sec as reported in 

subsection 5.5. The same implementation used with the Fast FIFO, had a transfer rate of 

21.0888 Mbytes/sec. Thus, having the Fast FIFO provide the input to the filter can 

improve the speed of the entire operation.  

The direct-form FIR filter was implemented with the constant coefficient 

multipliers and run under both the regular FIFOs and the Fast FIFO. The throughput 

through the use of the regular FIFOs was 5.89658 Mbytes/sec and through using the Fast 

FIFOs it was 19.287 Mbytes/sec. We can see that there is a loss of data rate from what 
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was reported before. This decrease is attributed to the pipeline stages in the adder and 

multiplier; these stages will use clock cycles to fill up before output data can be collected. 

 To create the best-case scenario, the Fast FIFO was used with the direct-form 

FIR filter with constant multipliers while implementing two taps in every PE. The 

throughput of this implementation is 17.865 Mbytes/s. Every two output words represent 

one output of the FIR filter (Original and Accumulation data). Each output of the FIR 

filter requires a multiplication and an addition, thus two floating-point operations in every 

tap. There are two floating-point operations every two clock cycles, or this can be 

reported as one floating-point operation every clock cycle. The throughput in words/sec 

is 17.865 Mbytes/s / 4 = 4.46625 Mwords/s. Each words goes through six taps, thus there 

are six floating point operations on each word every clock cycle; the overall output is 

26.7975 MFLOPS.  

The previous paragraphs showed how the throughput of the filter can be increased 

by using the constant multipliers and through the use of the Fast FIFO to input data and 

collect results at the output of the filter. The scalability issue is addressed by running the 

filters on multiple boards. The ACS_API is used to load the FIR filter implementation on 

several boards, and then to “tie up” these boards together to form a larger filter. The 

ACS_API can make use of the regular FIFOs and the Fast FIFO as means of input and 

output from the specific boards, then it relays the data between the boards. 
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Table 10 Results of implementation on multiple boards 

 

A decrease in the total throughput of the system is observed with Table 10.  Sub-

optimal performance as measured by the total throughput of the system is observed for 

implementations on multiple boards.  The abstraction layers of the ACS_API and the 

communication channels between the boards are the main source of this overhead. The 

ACS_API is still under construction; proper tuning of the implementation of the 

communication channels would significantly reduce the communication overhead. The 

best-case projected results of such an implementation are shown in Table 11. 

Table 11 Results of the optimistic implementation on multiple boards 

 

The SLAAC1-V board with the three Virtex chips offers a greater amount of 

resources and speed of operation as opposed to the WILDFORCE board. An 

implementation of the FIR filter on such a board would result in a much larger MFLOP 

count because of the faster operation and the extra number of taps that can be 

implemented in each PE. There are 2304 CLBs on the X400 chips on the WILDFORCE 

board, while there are 12,288 slices on the Virtex 1000 chips on the SLAAC1-V; 

         Throughput
Number of Boards Mbytes/sec MFLOPS

1 (without ACS_API) 17.865 26.7975
1 6.838 10.257
4 0.2798 1.6792
7 0.113 1.1866

         Throughput
Number of Boards Mbytes/sec MFLOPS

1 (without ACS_API) 17.865 26.7975
1 6.838 10.257
4 6.838 41.028
7 6.838 71.799
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approximately the Virtex chips can hold designs six times larger than the X4000 chips; 

then 12 taps of the FIR filter should fit on one chip. If the WILDFORCE boards in the 

Tower Of Power were to be substituted with SLAAC1-V boards will make implementing 

a 576 (16 boards * 3 chips * 12 taps) tap FIR filter possible.  

In the best-case operation, the PCI bus can be considered the limiting factor to the 

clock speed that the board can be used at. The SLAAC1-V has a 72-bit bus that runs at  

66 MHz,  this bus takes care of input and output, then this bus can provide 32 bits of 

input data at every clock cycle. Every PE can hold 12 taps, so there are 12 floating-point 

operations every clock cycle in each PE; this amounts to 792M floating-point operations 

(66M*12) on every PE per second. The SLAAC1-V holds three PEs; one of these PEs 

(X0) holds the PCI core, thus the board will be considered to hold two and a half PEs to 

implement the FIR filter, then there will be 792 * 2.5 = 1980 MFLOPS on each 

SLAAC1-V. In a best-case situation the ACS_API is considered to have negligible cost, 

then the SLAAC1-V Tower Of Power will reach 16 boards * 1980 MFLOPS (31680 

MFLOPS) with this implementation.  

The SLAAC1-V offers a 72-bit bus interface to the PEs, this bus can be used to 

input the Original and Accumulated data at the same time, then there will be no need to 

multiplex these two paths into the same bus any more; thus, area consumption on the PEs 

can be lowered due to removing the logic that took care of multiplexing. 
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Chapter 7: Conclusions 
 
 

The goal of this thesis is stated as developing a fast, scalable, and reconfigurable 

FIR filter implementation. Constant multipliers were created to increase the speed of 

operation and reduce the area used on the chip. The Fast FIFO was created to increase the 

speed of data communication between the board and the host program. These two 

implementation optimizations helped in reaching the 26.7579 MFLOPS that was 

recorded in running the optimized direct-form FIR filter. Reconfiguration of the filter 

response was implemented in two ways, either by sending the filter coefficients through 

the data path or through reconfiguration of the multipliers, when using the constant 

multipliers. The design is scalable in the sense that it can be implemented on multiple 

boards while using the ACS_API to connect the boards together.  

The Fast FIFO increased the data rate between the Host Program and the board 

with a factor of three. The Fast FIFO was also able to reduce the processor time needed 

during a transfer, the regular FIFOs required 95.28% of the processors time while the 

Fast FIFO only needed 39.54% of that time. The constant multipliers operated at a two 

fold higher speed than their JHDL counterparts, and required less area on the chip. 

One of the most primary limitations of the design is area consumption. The 

maximum number of taps that can be placed on a PE is two taps. The full implementation 

of the FIR filter was tested on the WILDFORCE board. The Virtex chips on the 

SLAAC1-V board can accommodate larger designs than the X4000 Xilinx chips on the 

WILDFORCE board. Implementing the FIR filters on the SLAAC1-V can give better 

results in terms of speed and number of computations. 
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In the operation of the Fast FIFO, PE0 sends the size of the block to PE4, the 

word that carries the size has to pass through the logic of PE1, PE2, and PE3. This 

requires that the designs on these three PEs recognize that this control word should be 

considered invalid. A better implementation would not require these PEs to worry about 

such control words. 

The constant multipliers use the modgen adders when there is a need for 

pipelining. The modgen adders can register their output without losing area on the chip. 

These adders do not operate for number representations larger than 32 bits and they are 

not mapped to work on the Virtex chips. Through the use of placement tools the regular 

adders can have a register at their output without extra area cost, implementing the 

constant multipliers with these tools will be of great benefit for the use of these 

multipliers on the Virtex chips. 
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