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ABSTRACT

The determination of drainage networks and drainage basins is one of the more tedious
yet important uses of topographic maps, and geographic information systems are now used
extensively as a manual aid to facilitate that task. However, the wide availability of digital
elevation maps has stimulated attempts to automate the process even further.

In this paper, the problems that arose in earlier programs to map drainage systems
are analyzed in detail. An expert system called the Drainage Network Extraction System
(DNESYS) is described which uses both local operators and global reasoning to extract
drainage networks and ridge lines. A stream representation called a parameterized directed
graph (PDG) is constructed to model a drainage system. The construction of a model
begins with an initial pixel labeling procedure. Then a network tracing and property
measurement procedure converts the 2-D low-level labeling information into a symbolic
database for high-level processing. By applying Dempster-Shafer evidence theory, evidence
collection and uncertain reasoning are performed against the DNESYS knowledge-base that
contains the drainage system model and the organized expert knowledge. By discarding
erroneous information and supplying missing information, DNESYS produces a complete
PDG which can be converted into the final drainage system.







1 INTRODUCTION

Digital elevation maps are one of the most valuable earth resource data sources because
topographic information is basic to so many aspects of earth science and because so many
other variables, including slope, aspect, drainage, and solar insolation, can be derived from
the elevation matrix. In recent years the increasing popularity and utility of geographic
information systems (GISs) and the availability of accurate and detailed elevation data for
selected regions within the United States has focused new interest upon the use of digital

elevation data.

Two fypes of digital elevation models (DEMs) are commonly available. One is 7.5-
minute DEM data which are produced by the U. S. Geological Survey (USGS). They
correspond in coverage to standard 1:24,000-scale 7.5- x 7.3-minute quadrangles with a
spatial resolution of 30m x 30m. The other is 1:250,000-scale DEM data which are pro-
duced by the Defense Mapping Agency (DMA). They correspond in coverage to 1° x 1°
“blocks (one half of standard USGS 1:250,000-scale 1° x 2° quadrangles). The spatial resolu-
tion for this type of DEM data is approximately 90m in the north-south axis and a variable
dimension (approximately 90m at the equator to 60m at 50° latitude) in the east-west axis
due to convergence of the meridians. The vertical accuracy of these two types of DEMs
depends on the accuracy of the source data from which the DEMs were derived [1].

The problem of delineating drainage basins may be approached by first solving the
problem of determining the drainage network. Then the drainage network and the ridge
lines may be used to determine the corresponding basins. The usual method for deriving
the drainage network is to trace or digitize streams as recorded on topographic maps.
This is not always practical, especially if detailed data are required for a large region, due
to the problems in handling and matching data from large numbers of large-scale maps.
In addition, conventional cartographic representations of the drainage network are not
always satisfactory in the context of a GIS. Drainage information derived from the stream
network on topographic maps may be incomplete due to arbitrary definitions of streams,
omission of the smallest branches of the drainage network, inconsistencies in interpretation
by cartographers, and effects of cartographic generalization.

As a result there may be good reasons to abandon traditional cartographic repre-
sentations of drainage networks in favor of interpretations of digital elevation data. Once
stream channels have been identified within the digital data, many of their most important
characteristics, including size, channel length, gradient, and sinuosity, can be calculated.
The major problem is to derive the drainage network from the topographic information
accurately and efficiently. In principle, the task is straightforward — water drains from
high elevation to low along channels that are connected to one another according to well-
defined rules. Exceptions are so rare or so easily recognized that they do not influence the
usefulness of a successful technique.




The problem is not quite so easy in practice. The sampling of topography by the
digital elevation data generates ambiguities, including artificial pits and ridges. Additional
errors may be artifacts of the digitization process used to derive the digital elevations from
the source maps or photogrammetric models. Due to noise and quantization errors, true
valley points may be obscured completely. Streams that flow through narrow gorges may
appear to cross ridgelines. In smooth terrain or when a stream passes through a body of
water, local features lose their coherence and cannot be traced easily. A practical method

of identifying stream channels must be capable of recogmzing and resolving such problems.

Most previous efforts to derive drainage information from digital elevation data have
used a moving window to derive information concerning the configuration of the land
surface within a local neighborhood. For example, the notable techniques proposed by
O’Callaghan and Mark [2] and Jenson [3] are based on low level pixel labeling by using
a local operator and subsequent pixel grouping according to local criterea. Using a local
operator, O'Callaghan and Mark first label the drainage direction for each pixel. Then they
carry out an iterative computation of drainage accumulation values. In each iteration, each
pixel is relabeled with a weighted sum of the drainage accumulation values of neighboring
pixels that drain into that pixel. Then the dramage channels are labeled according to the
accumulation values which are greater than the user-specified threshold. Jenson uses a 3x3
pixel window to label so-called drainage pizels by searching for local minima between two
of its non-adjacent neighbors. Minima are located in any of 12 configurations within the
3 x 3 window. Then, based on local criteria, a drainage basin linkage is established from
the resulting drainage label map given user-specified distance and elevation thresholds.

Although such approaches produce a satisfactory approximation of portions of a
drainage system, we have found that they do not yield a reasonable representation of
drainage systems considered as a whole. The deficiencies in these techniques are the fol-
lowing:

« The extracted drainage networks are broken into disconnected segments because the
gaps between them may be quite large. It would exceed the ability of these algorithms
to establish linkages between spatially separated segments.

« Some stream segments may erroneously be merged with others, even when separated
by & ridge line or a saddle point. Local techniques may not be able to reject these
kinds of mislabelings.

o A single extracted segment may have two opposing elevation slopes within the seg-
ment. This means that the segment has two conflicting flow directions along its
length.
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Figure 1. The DNESYS system diggram.

o Stream segments may be so thick that the exact stream locations cannot be deter-
mined.

In this paper, an expert system called the Drainage Network Extraction System
(DNESYS) (Figure 1) is presented. DNESYS uses both local operators and global reason-
ing to extract the drainage networks and ridge lines from the DEMs by merging lower level
structures into globally consistent networks. Unlike other techniques, the DNESYS system
organizes the initial labels directly into more global abstractions called segments without a
pixel-by-pixel grouping process. The system views these as the drainage primitives which
are more reliable than individual pixels for the grouping and reasoning process later oxn.
An attribute vector containing all factors that participate in the reasoning process is as-
signed to each segment. After that, a hypothesis generator proposes links between pairs
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of spatially related segments. For each pair of segments, N, predicates are evaluated to
produce an Np-ary evidence vector for asserting a new segment or rejecting it. Finally,
all segments with monotonically decreasing elevations are connected to their stream tree,
which is a hierarchical data structure used to represent a portion of the stream network.
The roots of all the stream trees correspond with segments that intersect the edge of the
DEM and carry water out of the map area. Since there are many segments and many trees,
all segments are uniquely labeled by their segment numbers and tree numbers. DNESYS
also extracts topographic ridge lines as part of the reasoning process.

The DNESYS system was developed at the Spatial Data Analysis Laboratory at
Virginia Polytechnic Institute and State University. The system consists of three separate
parts: low-level primitive labeling and attribute vector measurement, high-level spatial
reasoning, and an interface between these two parts. This interface includes a set of special
procedures to construct the PROLOG database and to convert the PROLOG database
back into a 2-dimensional image. These low-level procedures are written in RATFOR

“and are implemented as GIPSY (the General Image Processing System i4]) commands.
The high-level expert is written in PROLOG to carry out the uncertainty reasoning. The
interface is designed to construct a PROLOG data base automatically with an intermediate
representation of all useful spatial information about drainage primitives, which the high-
level expert can access efficiently to determine relevant events.

In the remainder of this paper, DNESYS is analyzed and described in four parts.
The model of drainage networks used in the DNESYS system will be given n Section 2.
Section 3 describes the low-level processing which extracts the drainage primitives for the
high level reasoning. Then, at the high level stage, the evidence collection method and
the uncertainty reasoning algorithm are analyzed in Section 4. Section 5 presents the data
structure and control. Finally, the experimental results produced by running the DNESYS
on DEMs are shown in Section 6.



2 THE MODEL OF DRAINAGE NETWORKS

The principal topographical features on which drainage networks are based are called
valley segments. A valley segment is a connected chain of pixels which are local minima in
the direction normal to the segment. Hydrographically, a drainage network consists of all
valley segments on which runoff is sufficiently concentrated and through which the flow is
downhill. These are called stream segments. Valley segments and stream segments differ
in that valley segments are measured features whereas stream segments are components
of an actual drainage network. Due to soil porosity, geologic structure, slope, and climatic
conditions, many relatively large and deep valleys contain no definite stream channel.
These are still included m the network determined by DNESYS. A single unbranched
stream segment may have one open end which may be considered to be its flow source.
However, its other end must connect to other channels which drain the water that it
collects.

In DNESYS, the model of a drainage system is a parameterized directed graph (PDG)
deduced from the DEM’s data. The graph is, in fact, a set of loop-free stream trees, and
the parameters are the attributes associated with each stream segment. The nodes of the
graph are either source nodes to which no other stream segments connect, sink nodes which
are on the edge of the DEM, or fork nodes where stream segments merge together. Water
flow direction is assumed to be from the source nodes toward the sink nodes. The total
flow into a node must equal the flow out from the node (flow conservation). IN degree
and OUT degree are used to describe the connectivity of a node. Source nodes have IN
degree zero and OUT degree one. For fork and sink nodes, the IN degree is equal to the
number of directly connected branches which have negative end-elevation slopes, and the
OUT degree is equal to the number of directly connected branches which have positive
end-elevation slopes. Any node with zero OUT degree is a sink node. The branches of the
the PDG are the stream segments, and the reasoning process will determine which valley
segments are stream segments and which are not. The parameters associated with each
stream segment include length, drainage direction, and the elevation slope of the segment.

Stream segments have the following properties:
1. The width i.s only one picture element.
2. The length is arbitrary.
3. The elevation values along it decrease monotonically in the flow direction.
4. There is no fork point on the segment between its endpoints.

5. The elevation value of any point on the segment is a local minimum point of the
stream segment cross section.

—_ 5 —




Any branch which does not satisfy above five conditions is called an inconsistent
branch in the PDG. A graph with any inconsistent branch is an #ncomplete PDG. For
example, a valley segment between two adjacent nodes but with conflicting flow directions
is an inconsistent branch in that graph, since it does not satisfy Condition 3. It must be
split into several consistent branches by inserting nodes at suitable points on the segment
so that all five conditions are satisfied. Since the inserted nodes will have either zero OUT
degree or zero IN degree, linkages to other branches must be located. A graph with a sink
node occurring anywhere except on the map edge is also called an incomplete PDG since
sink nodes don’t make sense except at the physical edges of the DEM where valleys are
discontinuous.

When the reasoning process begins, each branch consists of a source node and a sink
node, and sinks and sources are joined as the merging process progresses. However, in
some cases global evidence will cause sinks and sources 0 be connected even though that
is not supported by local evidence. The the direction of a branch of the PDG is the flow
direction, i.e. the the direction of decreasing elevation along that segment.

Branching angle is another important issue in reasoning about the structure of a
drainage network. The angular relationships among segments incident at a node are de-
termined by drainage slopes mear the node; the angles between inward flowing streams
are usually less than 90 degrees [5,6]. In the literature there are two principal theoretical
models for determining branching angle from slope—the Hortonian model [7} and the Min-
imum Power model [8]. From the theoretical point of view, Roy found that both angular
geometry models are based upon the optimality principle, which implies that the drainage
system must “perform its task” with maximal efficiency and minimum cost [9]. Because
both models yield similar theoretical angles and because the Hortonian model is stmpler
to implement, DNESYS uses the Hortonian model as part of its knowledge base.

Under the assumption that overland flow on the valley slopes follows the line of
steepest gradient, Horton’s model hypothesizes that

cosf = g—:, (2.1)

where ¢ is the angle between the line of overland fiow and the receiving stream, S, is the
stream gradient, and S, is the ground slope. For the case that a receiving stream is joined
by & single tributary stream, Horton modified his model to

So

= (2.2)

cosf =

where 6 is the junction angle, So is the gradient of receiving stream, and §; is the gradient
of tributary stream as in Figure 2. Usually, 5; > So. However, when two streams merge
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Fi‘gure 2. The stream branching model (Hortonian model}.

with nearly equal gradient, i.e. S = S’o, this model will erroneously predict a zero junction
angle [10]. Nevertheless, this model clearly states that the junction angle 6 must vary
within a range of 0 < # < 90 degrees. This is true for most practical cases.

In DNESYS, an incomplete parameterized graph with sink nodes, source nodes, and
possibly inconsistent branches is obtained from low-level processing. The graph consists
of many disjoint trees, and it is the function of the high-level reasoning process to make
mergers of trees and to split branches in order to remove inconsistencies due to conflicting
flow directions.




3 LOW LEVEL PROCESSING
3.1 Initial Drainage Point Marking

This section begins with a description of the process for determining the initial label-
ings of candidate pixels for valley segments as well as for ridges by using an extension of
Jenson’s procedure. These pixels are either V-shaped or A-shaped depending on the shape
of their local elevation profiles. The size of the local neighborhood operator used to label
these pixels depends upon the resolution of the DEMs. Generally, the finer the resolution,
the larger the operator. However, if the resolution is extremely coarse, the minimum size
3 x 3 operator must be used to enable the operator to extract meaningful topographic fea-
tures. These masks are logical operators instead of approximation operators to avoid the
risk of making any unforeseen local interpretations.

There are two differences from Jenson's method for defining the operator because
DNESYS's grouping and linking algorithms are based on different information. One dif-
ference is that instead of resampling the DEM’s data according to a coarser resolution grid
when the DEM resolution is very fine, the operator itself is extended to a size greater than
3 % 3. The other is that the DNESYS operator considers only 4 symmetric cross sections
instead of using an additional 8 asymmetric cross sections. That is, the operator detects
valley points and pits (or ridge points and peaks) when they are centered on the operator
and run in diagonal, vertical, or horizontal directions. This improves efficiency and reduces
the risk of ambiguous labeling.

Let the size of the general operator be 3N x 3N, where N = 1,2,3,... as shown in Figure
3. Let E(m,n) be the pixel elevation value at the position (m,n),1 <m,n <3N, within the
operator. Define a new 3x 3 operator Z consisting of § N x N operative units of the original
operator. Then the operative unit Z(i,j) is defined by

T T»

Z{i,7) = % S>> E(m,n) (3.1)

m=s n=t

where s= (i~ )N +1, Ty =iN, t=( - )N+1, T =jN,i=1,2,3,and j=1,2,3.

Thus, a central unit 2(2,2) is & V-shaped unit if and only if any one of the following
conditions is satisfied:

Z(1,1) > 2(2,2) and 2(2,2) < Z(3,3)
Z(1,2) > 2(2,2) and 2(2,2) < Z(3,2)
2(1,3) > 2(2,2) and Z(2,2) < Z(3,1)
2(2,1) > 2(2,2) and Z(2,2) < Z(2,3)

Z(2,2) is an A-shaped unit if and only if any one of the following conditions is satisfied:



Z(1,1) < 2(2,2) and 2(2,2) > Z(3,3)
Z(1,2) < 2(2,2) and 2(2,2) > 2Z(3,2)
7(1,3) < 2(2,2) and Z(2,2) > Z(3,1)
Z(2,1) < Z(2,2) and Z(2,2) > Z(2,3)

All N x N pixels within the unit Z(2,2) are labeled with the same label as that of
unit Z(2,2). Thus, the local configuration of topography is based upon averages of the
pixels within each operative unit. By using the Z-operator, separate V-maps and A-maps
are produced. The V-map by itsclf does not contain sufficient information for identifying
valley segments. Since adjacent minima might not be minima in the same direction, some
V-shaped pixels must be initially labeled as ambiguous until the valley orientation can be
determined. Worse, a particular pixel can be labeled as V-shaped in one cross section,
and simultaneously A-shaped in the normal direction. This is a saddle point which further
confuses the labeling of valleys and ridges because the valley slopes downward from both
sides of the saddle point.

Operative Unit
N=2

Figure 3. 8 x 3 operator with 2 x 2 operafive unil.

After low level pixel labeling, instead of using a pixel by pixel grouping procedure, an
A-map masked thinning method is applied to get better valley segments from the V-map.
All V-shaped pixels on the V-map which overlap with A-shaped pixels on the A-map are
identified as saddle points and are removed from the V-map. Disregarding any drainage
property, the thinning algorithm based on that of Arcelli and Sanniti [11} is used. It treats
the V-map as a binary picture and thins the V-label figure down to a one-pixel-thick
line drawing without destroying the original shape information. As a result, the thinned
line corresponds approximately to the bottom line of the valley, and ambiguous pixels are
removed. At the completion of this step, all valley segments in the resulting map will
satisfy the following three conditions:



1. All segments have a width of one pixel.
2. All segments mark V-shaped topographic features.
3. No segments cross ridge lines.

These segments are much more useful as primitives for grouping than primitives based
on V-shaped pixels alone. However, at this point these may still have pits, conflicting flow
directions, and other ambiguities. Resolution of these problems will be left to the high
level expert. The output of this stage consists of three images: two symbolic images store
the valley segments and ridge segments, and one numeric image is used to store elevation
values along these segments. All other pixels in these images are set to zero.

3.2 Network Tracing and Property Measuring

TABLE 1

The link patterns

type code pattern type code pattern
1 —— 11 —0
2 | A
3 '11’ 13 -
4 \n\ 14 El/
: — | N
6 :< 16 No—
7 é,__ 17 —r:/
8 Ny 18 /5 _
: ! ¥y N
10 >3 20 —a_

A special tracing algorithm is used to measure the set of spatial properties of each
valley segment. Each valley segment has two endpoints; an endpoint is called open if it
is not shared by other segments, and it is called a fork point if it is. Fork points are
points where valley segments merge to form trees. For implementation efficiency, a doubly
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linked chain of pixels is generated for each segment according to twenty predefined linking
patterns as in Table 1.

Meanwhile, all fork points in trees are detected (see Table 2), and all sources and
sinks of tree branches are marked. These three tasks are done in one pass. A bidirectional
linked chain is a sequence of pixels along a valley segment in which each pixel between its
endpoints has pointers to its two neighbors. Bidirectional linked chains facilitate the net-
work tracing process since the tracing sequence for the pixels in different segments may be
different. The bidirectional linked chains, the fork points, and the open endpoints provide
a clear guide for tracing and measuring all spatial information for segments sirnultaneously.

TABLE 2

The fork patterns

type code pattern ‘ type code pattern
T I
2 >< 11 %,_
3 /!3— 12 \:<
4 \’f/ 13 b
: A %
& >3— 15 _§
[ [~ | =
* LA 7 |
8 \?— iB /;:(

The network tracing process illustrated in Figure 4 is the following:
1. Scan the image from top to bottom, line by line.

2. ¥ an open endpoint is encountered, the scanning process is interrupted, and a tracing
and measuring process is initiated to follow the bidirectional link codes.

3. Record the segment length, positions, elevations, and tangent directions for all seg-
ment pixels and compute the elevation slopes, mean curvatures, end directions, and
mean elevations for both ends of each segment. Assign the segment label and tree



label for the traced segment. This process terminates when a fork pomnt or an open
endpoint is reached. All pixels which have been traced are set to zero.

4. I a fork point is found, push the fork position onto a fork stack. Search the next
untraced branch leaving the fork point in clockwise order.

5. If an open endpoint is encountered, then check the fork stack. If it is not empty, pop
the stack and start tracing a new segment from the popped position by repeating Step
3 to Step 5. If the fork stack is empty, then the whole tree in the network has been
completely traced. Continue scanning with Step 1.

Starting point

» segment 1

-.scan line

segment 3

segment 8

segment &

-

2 .
segment 2
\6 f

segment 5

Tree (i) segment 7

Figure 4. The tracing order.

After the whole image has been scanned, the output file contains all the spatial information
for each segment. All segments have their own unique labels.
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4 EVIDENCE COLLECTION AND UNCERTAINTY
REASONING

Reasoning about a drainage system at a high level requires that DNESYS have the
ability to handle uncertainty. Uncertainty is caused both by imprecise data and by impre-
cision in the rules used for extracting the drainage networks. In the reasoning process, the
evidence from the observed data is often incomplete or conflicting; some rules are based
simply on intuitive knowledge. Therefore, there are no simple measures or rules for decid-
ing how a pair of broken segments should be connected or how an inconsistent segment
should be split. To reason with uncertainty and to resolve possible conflicts in the data
produced by the low-level measurements, DNESYS applies evidential reasoning to these
problems.

Evidential reasoning is a collection of inference techniques for reasoning with uncertain
information. Among others, Dempster-Shafer evidence theory {12}, Shortliffe’s certainty
factor [13,14], Zadeh’s fuzzy set theory {15,16], and Bayesian updating methods [17] are
well-known. An evidential reasoning system is used to construct a global representation
‘using partial representations, each of which demonstrates local consistency. Thus, it can
simultaneously form and evaluate alternative hypotheses. An interpretation of a portion
of a drainage network depends not only on each individual piece of evidence but also on
interactions among various pieces of evidence. Then the problem becomes one of multicri-
teria optimization. To solve it requires consideration of all the evidence from each partial
representation and utilization of higher level knowledge to resolve conflicts.

4.1 Evidence Collection

A set of functions are designed to extract specific partial evidence in support of all
hypotheses that are generated. The output of the feature extractors are inputs to a set of
tests which are organized as a procedural part of the knowledge base of the expert system.
These tests are made at higher-level processing stages. The test results are used as inputs
to the process of reasoning with uncertainty, which is discussed later. Let 7, 7,...,7s be
the set of tests. The following are the tests made on the low-level spatial features in the

PROLOG database.

Distance Test r: This test provides support for the connection of two segments based
upon proximity of their endpoints. Let F(z;,y) and P;(z;,v;) be endpoints of two arbitrary
segments; then the geometric distance between P and P; is given by the usual Euclidean
distance '

D= \/lzi - 22 + lys — il (a1)




Given a threshold, T3, then

S true, 1f D < Ty,
1= false, otherwise.

Curvature Similarity Test r: Since most stream segments are locally smoothly con-
nected, this test is for confirming this property. Let CVi and CV; be the mean curvatures
of the endpoints of two candidate segments and let T> be a threshold. Then CV; 1s defined

as
1 <1 — by '
;= — ———— 4.2
CVi==3 (4.2)

where (6;: — f;2) is the local measure of change of the orientation of the tangent vector and
AS; is the change in arc length corresponding to above angle changes. Thus

— i if |CV1 — CVa| < Ty;
27 ] folse, otherwise.

Segment Length Test 3: The system assigns higher credibility to longer segments. All
isolated valley points are ignored. Let L; be the lengths of two distinct segments and let
Ty be the test threshold. Then

= TTUE L >Ts fori=1,2
37 % false, otherwise.

Elevation Slope Test r: This test is to confirm that if the stream flow directions of two
segments are consistent, then the signs of the elevation slopes at the nearest endpoints of
these two segments should be opposite according to the reference direction. The positive
reference direction is defined as the direction from the center of the segment toward the
endpoint. The elevation slope of the endpoint is calculated from the end section of valley
segment. Then let ES, and ES, be the elevation slopes at the ends of the valley segment.

., = | true, if (BS; > 0 and ES, < 0) or (ES; <0 and ES; > 0);
7 false, otherwise.

Elevation Similarity Test 7: This test is to confirm that the mean elevation difference
between the endpoints of two mergable segments does not exceed a threshold value, given
the search distance. Let ME, and ME, be the mean elevations in a local neighborhood
near the ends of the segments, let Ts be the threshold for this test, and let 8 and 3; be
the predicates
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B =ES; <0 and ES>» >0 and 0 < (ME; — MEs) < T;
Bz =ES; >0 and ES, <0 and 0 < (ME;,— ME) < Ts.

Then

o = { true, if B = true or By = true;
® 7\ false, otherwise.

Forward Elevation Test rs: This test 1s based on the knowledge that the elevation
slope does not usually change rapidly in a local neighborhood. Therefore if a segment
is extrapolated toward another endpoint based on its slope, there should not be a large
disparity between the actual elevation and extrapolated elevation at that endpoint. Let
EE; and EE, be the elevations at the ends of two valley segments, let ES, and ES, be the
corresponding elevation slopes, let D be the Euclidean distance between these two ends,
and let 7; be the test threshold.

o= true, if ]EEl(l + ES;[D) - EEgl <Ty or |EEy(1+ ES; D)~ EE,| < Tg;
8= 1 false, otherwise. '

Orientation Test 7;: Since local curvatures of valley segments tend to be low, one would
expect that a segment connecting the endpoints of two disjoint segments would not intro-
duce sharp local curvatures. Therefore r, compares the orientations at segment endpoints
and the orientation of a segment between them. The smaller the orientation differences,
the higher the probability that the endpoints should be merged. The following three angle
differences completely specify the geometric orientation and transition properties of three
joined segments.

Let P and P, be the endpoints of two distinct segments. Let 6; be the direction of
PPy, 6, be the angle of the tangent vector to the flow direction at P, and let ¢, be the
angle of the tangent vector to the flow direction at P, as in Figure 5. Then the orientation
test checks the orientation of the line PP, with respect o these orientations. Specifically,

= irue, l'f I93 — 92| < T and |93 - Bll < Torn a.nd |91 — 92} < T73,
| false, otherwise.

where T4y, Tre, and Tys are the thresholds for this test.

Ridge Intersection Test rs: This test is for checking for a ridge crossing in the gap
between the endpoints of two distinct segments. Let R be any ridge line. Let Py(z;, ) and
Pji(zj,y;) be the endpoints of two distinct segments. Then the straight line AP is defined
by the slope ' :
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Figure 5. The angles in orieniation fest.

Ay
y= L (e )ty
where z; <z <25, 1 Ly <yj, Ay=y — ¥, and Ar=z; - z;.

= | true, if P,P; does not intersect R;
87 | false, otherwise.

4.2 The Inference Process

DNESYS maps the evidence that is extracted from the observed data into a Boolean
logic set by using the functions r,7s,..,7s. In general, each  is a function of a data
vector Z; and a parameter vector T;, that is, 5 = f;(Z;,Ti). In the case of 1 < i < 7, the
parameters are all thresholds which are determined in one of two ways — from training
data or by experts. An individual hypothesis is supported according to the success of
its corresponding tests. Each r is merely a contribution to the overall support, and the
influence of 7 on hypothesis A is determined either by a conditional probability p(hin) or
by experts subjectively. DNESYS interprets this probability as evidential strength or as a
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degree of confirmation. An inference network that propagates evidence strength can then
be constructed.

Let » be a hypothesis, let =,..,7s be the evidence for that hypothesis, and let
p(h|7y), ....p(h|ms) be the evidence strengths. Then the inference network is illustrated in
Figure 6. Note that several of the 7, may logically conflict, but other » may still verify the
hypothesis. Thus, the rule format should not have the simple form

CONDITION 1 AND CONDITION 2 AND ., .CONWDITION K ACTIONS

Instead, DNESYS chooses a belief function which is able to synthesize all partial repre-
sentations of evidence and to achieve the multicriteria optimization. DNESYS accumulates
partial supports from different evidence iteratively throughout the inference network. The
reasoning system in DNESYS can be directed by the Dempster-Shafer evidence theory,
which is an extension of the more common Bayesian probability analysis [12].

Decision
Maker

Figure 6. The inference network.

A frame of discernment © in the D-S model is defined as the set of all different
possibilites under consideration. It is so named to emphasize the epistemic nature of the
set of possibilities ® that is determined and meaningful, dependent on our knowledge.
In DNESYS a frame of discernment ©, for producing a complete PDG, comnsists of the
following exhaustive and mutually exclusive subsets:

1. A source node is connected to a sink node.

2. A source node remains open (ie, not connected to a sink node).



3. A source node is backward merged to a sink point which splits an inconsistent branch
( with a V-shaped elevation profile ) into two consistent branches.

4. A sink node is forward merged to a source point which splits an.inconsistent branch
( with a A-shaped elevation profile ) into two consistent branches.

5. A sink node is located at the boundary of the map and remains open.

Fach subset of ® corresponds to a hypothesis. Frame of discernment © delimits a
sample space which contains all possible linking hypotheses, only one of which 1is true at
any one time. The evidence provided by each test 7; is represented as a basic probability
assignment {bpa) over the hypotheses discerned by a frame ©. The bpa, in fact, is a gener-
alization of a probability mass distribution (or m-function) which represents the impact of
each distinet piece of evidence on the subsets of a frame ©. It is denoted by m and must
satisfy the following conditions:

(o< m(A)<1forallA CO
(2)m(é) =0
(3) ZAQG m(4) =1

The initial bpa’s in DNESYS are provided by the p(h|n) determined by each test
described above.

Thus, for an event A of the frame of discernment ©, we can calculate the belief
function, the plausibility function (defined below), uncertainty, and the combination of
belief functions. These quantitatively characterize the hypothesis A.

The belief function, denoted Bel, is the sum of the beliefs committed exactly to every
subset of A by m. That is

Bel(A) = Z m(B),

BCA

where A is any other subset of © and Bel(4) measures the degree of belief in the hypothesis
A

The plausibility function, denoted P, is the maximum extent to which one may believe
event A. That is

PA)=1-Bel(A% = > m(B),
BrnA#é



where Bel(4°) is the support for negation of A or the doubt on A. Note that 1 — Bel{4°) is
not the same as Bel(4) since evidence partially in favor of a event A does not necessarily
mean that the evidence is partially in favor of its negation. In the Dempster-Shafer model,
Bel(A) < 1— Bel(4°). This avoids the Bayesian restriction that requires P(A) = 1— P(A°).

One of the advantages of Dempster-Shafer model is that it allows the representation
of uncertainty as well as the representation of ignorance. The amount of uncertainty with
respect to a hypothesis A given the evidence can be represented as the interval of the
Bel(A) and PI(4), ie, [Bel(A),1— Bel(A%)]. The degree of ignorance for a hypothesis A is the
difference PI(A) — Bel(A).

Dempster’s rule provides a way to combine the support for a hypothesis A based on
multiple bodies of evidence. Let Bely, Bel and my,m2 be two belief functions and their
corresponding bpa's, respectively. Then the bpe m of the new belief function Bel can be
calculated as the orthogonal sum of m; and m;:

m('A) = Ewnv—Aml(X)mﬂ(Y) .
-2 i may LAFES

T Lexny=m¢

where X and Y are individually varied over all subsets of ©. Applying Dempster’s rule,
DNESYS pools the multiple bodies of evidence obtained from the different tests to get
new belief functions. Finally, a single hypothesis among others is selected, if and only
if the belief function has a maximum value which is greater than a threshold specified
in the knowledge base. When there are no remaining inconsistencies, the complete PDG
" contains the results of the reasoning process. Global consistency is achieved for two reasons:
individual segments are consistent with one another and with ridge segments, and the PDG
structure itself precludes the formation of global loops among the valley segments.
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5 DATA STRUCTURE AND CONTROL MECHANISM

The high-level expert of DNESYS consists three major parts: the database, the knowl-
edge base, and the inference procedures. Since the database written in PROLOG is ac-
cessed so frequently, the performance of DNESYS is critically dependent upon its data
structures and its control mechanisms. Special efforts are required to make PROLOG’s
symbolic data structures work efficiently with multiband 2-D data arrays. The immediate
dificulty is that of locating the spatially related valiey segments which need to participate
in each deduction. The data structure must be so designed that the time spent making
deductions about spatially unrelated evidence is minimized.

5.1 The Data Structure and the Database

In the DNESYS database, all valley segments and ridge segments are structured as
hierarchical lists. These lists are treated as PROLOG fact rules asserted in the system
database. This database consists the following components:

1. an invertible index
2. the drainage primitive data
3. the intermediate data generated by the reasoning process.

To access all relevant events efficiently, an inverted indexing method is used for the
spatial information. The DEM coordinate space is partitioned into blocks, and for each
block an endpoint index is constructed for those segments having endpoints in that block.
While a hierachical partitioning method such as quadtrees can be used, in this work only
a single level of partitioning was used. In addition to the endpoint index, a space spanning
index is used to indicate which blocks are spanned by each segment. The space spanning
index is useful for the ridge intersection test and for the merging that may occur when an
inconsistent segment is split. This method of indexing makes it possible to locate spatially
related segments quickly and reject unrelated events at an early stage.

The index table is a linear list of elements. Each element has the form

((INDEX
*NODE-TYPE {SR: source node, SN: sink node, IN: inconsistant node}
*INDEX-TYPE {l: spanning index, 0: open-end index}
*SEARCH-FLAG {1: done, 0: to be tested}
*END-TYPE {1: start point, 0: end point}
*HORIZONTAL-INDEX
*VERTICAL-INDEX
*SEGMENT-NUMBER-IN-TREE
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*TREE-NUMBER))

Each open endpoint of a segment has one index element with *INDEX-TYPE=0.
However, each indexing element with *INDEX-TYPE=1 corresponds to one block which
the segment spanned. For example, if a segment spans N blocks, then there will be N
index elements for that segment. By using the PROLOG matching mechanism, it is easy
to locate the interesting indices given both of the segment number and the tree number.
On the other hand, it is easy to locate all spatially related segment numbers and tree
numbers by specifying both vertical and horizontal index numbers. It is efficient because
the whole search and matching process involves only indices and not the segment data.

The data structure for drainage primitives includes four parts: a unique segment label,
a segment parameter list, a list of sample points at each end, and an extended segment
chain code which includes the elevation and direction. The data structure has the form

( ( SEGMENT-NUMBER *s
TREE-NUMBER . *4
( (START-TYPE *sp)
(STOP-TYPE *tp)
(SEGMENT-LENGTH *s])
(START-MEAN-ELEVATION *sme)
(STOP-MEAN-ELEVATION *tme)
(START-ELEVATION *se)
(STOP-ELEVATION *te)
(START-MEAN-CURVATURE *smc)
(STOP-MEAN-CURVATURE *tmc)
(START-ELEVATION-SLOPE *ses)
(STOP-ELEVATION-SLOPE *tes)
(START-DIRECTION *sd)
(STOP-DIRECTION *td)
)
((START-SAMPLING-POINTS *x11 *yl1 *x12 *y12)
(STOP-SAMPLING-POINTS *x21 *y21 *x22 *y22)
) .
((COMPOSED-SEGMENT-TRAIN-CODE
(POINT 1 *x
*y
*elevation
*direction
POINT 2 *x
*y
*elevation
*direction
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POINT N *x
*y
*elevation
*direction)
))
))

This database contains all the information required to reconstruct a raster image after
reasoning has been completed. The data structure for drainage primitives including valley
lines and ridge lines is a two-level hierarchical list. As soon as the segment number and the
tree number have been chosen in the deduction process, any one of the three elements in the
first-level list can be moved to a global area called the blackboard [18]. Then according
to the END-TYPE in the index, corresponding elements in the second-level list can be
asserted as the independent fact rules with their own predicates in the blackboard. Thus
these data are temporarily shared by the hypothesis generation and verification processes.
They are erased immediately from the blackboard before the data for another segment are
moved in.

The knowledge base consists of a test name list, a threshold table, a table of evidence
strengths (bpa) for confirmed or unconfirmed s, a spatial search distance, and inference
procedures. The test name list contains the symbolic names for 7, ...,7v. Through this list,
DNESYS specifies how many tests and which tests should be carried out in the system.
The threshold table contains all threshold values 73,..,Tw for their corresponding tests.
According to this table, DNESYS maps the evidence that is extracted from the observed
data into a Boolean logic set. The table of bpas contains the evidential strengths, p(hin).
The spatial search distance provides an upper limit to the spatial neighborhood involved
when the algorithm focuses attention on & particular segment. This distance specifies how
many neighboring blocks should be searched to generate hypotheses. Finally, the inference
procedures are used to implement the evidential reasoning using the D-S model. The basic
data structure in the knowledge base is the frame [19]. Each frame has a set of associated
slots, which are empty buffers that will hold particular types of information. Some of these
are filled with the corresponding values assigned by experts or obtained from training data,
and the rest are filled as the the reasoning process takes place. Through the knowledge base
frames, the user can specify or modify the knowledge base freely except for the inference
network, which is relatively fixed.

5.2 The Control Mechanism in the High-level Expert

The main controller in the high level expert of DNESYS is based upon the database
and knowledge base structures just described and consists of the following parts:
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1. the spatial relevancy finder

2. the hypothesis generator

3. the evidence pooler

4. the decision maker or hypothesis selector

The spatial relevancy finder performs the task of focusing attention. First, it selects
an open node (either a source node or a sink node) by searching an indexing clement
which has zero values both in the search flag and in the index-type flag in the index.
As soon as the finder picks up an element, the search flag in its index element is set to
1. This indicates that the node has been examined and may be subsequently skipped in
the top-down selection process. Thus, the segment number, tree number, node type, and
spatial indices of the node in horizontal and vertical directions are obtained from the index
element simultaneously. Second, the finder calculates all possible search indices which fall
in a search radius specified in the knowledge base. As a result, a search index list is
generated which contains all N index pairs spatially related to the selected segment.

For all N index pairs returned by the search, the hypothesis generator uses the search
index list to generate hypotheses one by one. There are five types of hypotheses which
form the frame of discernment described in Section 4. For each pair of indices in the
list, the hypothesis generator promptly picks up the corresponding segment number and
tree number from the index. However, only the node which belongs to the tree number
that differs from the one selected by the relevancy finder is accepted. This prevents the
generation of any loops in the PDG. The data for these two selected nodes participating
in the hypothesis are brought to the blackboard by decomposing the hierarchical data list
from the database. The resultant data formats in the blackboard are separate fact rules
labeled by their parameter names. By consulting the test name list in the knowledge base,
the tests described previously are computed. All the parameters concerned with a test are
accessed, and then the corresponding rules are erased from the blackboard.

Next, the evidence extractor determines the Boolean values of 71,72, ..., T8 @ccording to
the threshold values imbedded in the knowledge base for each test. Then the initial bpas,
p(hin}, are extracted from the knowledge base by table look-up. These values are treated as
the evidence strength and are propagated into the built-in inference network. This is done
by filling an evidence frame which contains the evidence names and the corresponding slots
for the evidence strengths. For each hypothesis, a belief function which accumulates all
the evidence can be computed recursively from the evidence frame following the inference
network. Finally, N belief functions are calculated for N hypotheses generated according
to the N pairs of indices. These are put into a hypothesis frame for hypothesis selection.
The decision maker or the hypothesis selector examines that frame to find the maximum
belief function value and compares it to a threshold specified in the knowledge base. A
hypothesis is accepted if and only if its belief function is above the threshold and if its
value is maximal among the alternatives. The other hypotheses are rejected. The selected
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hypothesis invokes a curve fitting procedure to generate the digitization of a link between
the endpomts of two stream segments. After that, the relevancy finder will pick up the next
open node by searching the inverted index downward from the current position. Then the
controller will repeat. the above processes, until the inverted index is exhausted. A complete
drainage PDG and its corresponding drainage networks can now be produced.

5.3 Curve Interpolation

If a hypothesis is selected that requires reconnections among the valley segments, then
the next problem is to determine how the connections should be made at the pixel level.
One way 1s to extend the end of one segment toward the other pixel by pixel. However, it
is easy to become lost in the middle if the gap is wide, if the information in the gap is very
ambiguous, or if there is missing information in the gap due to occlusion. To overcome
this difficulty, the DNESYS system uses a parametric cubic spline to connect segments
smoothly by maintaining continuous curvature at segment endpoints.

The expression of a single parametric cubic spline segment e, in terms of arc length
S, 1s given by

alS) = i B;5?

i=]1

= B1S°+ B,S + B3S5? + B,5°

(5.3.1)

where 0< S5 < Snae-

Let a(5:) = a and e(Sit1) = exs1, where S; and Sy, are two adjacent point values
within the range of parameter S. Then «f is the value of the first derivative of a(S) with
respect to S at § = 5, efc.. Four equations can be obtained by taking derivatives of
Equation (5.3.1) with respect to § and setting S = S; and § = Sp.; respectively.

ﬂ(SISJ;=O)=(xk:B1
&(S = Skt1) = eps1 = Br + BsSeyn + BaSE,, + BaSh,,
(S=5 =0)=a;,=DB;

Q’l(s = Sk+1) = &;H_I = B2 + 2B35k+1 -+ 3B4S§+1

The coefficient vectors B; are then solved from above equations:
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(5.3.2.a)

(5.3.2.5)

(5.3.2.¢)

(5.3.2.d)

Given N data points through which the curve must pass, to generate the curve position
vector e;(S), 1 <i < N, we need to know the tangent vector «;. In DNESYS, two points at
the end of each segment are chosen for fitting the interpolating cubic as shown in Figure

7.

segment 1

C - segment 2

Figure 7. Control poinis in the curve fitting.

By using the natural end condition, d*je|/dS? = 0 [20], we have
1, 3for—«
ai+§a2 - 5( 252 1)

. ; 3
Saai -+ 2(5'3 -+ Sg)ﬂfz + Sotry = S—Zgg(szz(ag, - ag) + Sg(ag — al))

54&5 + 2(53 + 5'4)0:5 + 536:1 = m(Sg(a.; - &3) + Sﬁ(ﬂta —_ az))

(5.3.3.a)
(5.3.3.8)

(5.3.3.¢)



2ah +4e) = 5%(0:4 - ag). (5.3.3.d)

The above system can be written in matrix form as

Cea' = B, (5.3.4)

where C is a 4 x 4 matrix, e is a 4 x 1 variable matrix, and B is a 4 x 1 matrix. Then the
matrix equation can be solved for o by matrix inversion. Substituting o' into Equation
(5.3.1), one obtains the coefficient matrix B. Thus, the cubic spline segment is specified
by
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where 0< 5 < Spy1 and 1 <k <3,
5.4 Verification

Curve a is a continuous curve superimposed on a discrete sampling grid. By tracing
this curve, grid points near the curve are marked as component pixels for a new discrete
segment connecting the endpoints of the original segments. Since most drainage networks
are locally smooth, the fitted curve tends to be close to the shape of the true stream
segment. A problem that arises from the computation of the spline independent of external
constraints is that the generated curve may overlap with a few ridge points. This may
occur if the resolution of the original DEM data is too coarse, if the generated curve
bridges segments near the flow sources, or if the gap between the two segments is too
wide. In fact, the real drainage network paiterns are often more variable than those of the
abstract model in our knowledge base. This is not surprising since natural streams are not
so smooth and well behaved as the model.

The overlap problem can be solved by adding a verification stage to the reasoning
process. PBach hypothesis that has been selected by high level reasoning is verified by
evidential reasoning at the pixel level under the guidance of the high level results. A belief
function is computed for each pixel near those that are inserted as well as for those on all
the selected valley segments.
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The belief function selects between exactly two hypotheses for each selected pixel-
stream or no stream, and the stream paths are corrected based on the results. If a ridge
line intersects a valley segment, the entire segment may be removed. The evidence for the
verification stage consists of:

1. The high—level reasoning results.
2. The V-shaped map.
‘3. The A-shaped map.

4. The flow-direction map.

5. The elevation data.

A pixel is verified as a component of a drainage network if its belief value 1s higher than
a preset threshold. The hypothesis verification at the low level provides an opportunity to
correct errors made at higher levels, and final decisions are based on reasoning both at high
levels and at low levels. The reasoning process in the verification stage 1s similar to the
high level reasoning process, and the details are omitted here due to space considerations.
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6 EXPERIMENTAL RESULTS

Two sets of DEM data with different resolutions from the Stanardsville, Virginia
and the Hamburg, Virginia USGS 7.5 minute topographic quadrangles were used in our
experiments. The data for the Stanardsville area were derived by manual digitization of
elevations at the centers of 200 meter grid cells, referenced to the UTM grid system, as
shown on USGS 7.5 minute quadrangles. The data for the Hamburg area were collected
as a digital elevation model (DEM) by the U.S. Geological Survey [1]. The 7.5 minute
DEMs represent digital elevations for areas corresponding to USGS 7.5 minute quadrangles
published at 1:24,000. Each DEM represents the earth’s topography as a regular array of
data referenced to the UTM grid system. Elevations for this grid are derived either by
manual or automated compilation of stereo aerial photography at a scale of about 1:80,000.
Values derived from the stereo models are then processed to represent elevations on the
terrain spaced at intervals of about 30 meters. Each value is an infeger represenfing
topographic elevation in meters.

6.1 High Level Reasoning Results

In the first data set, peaks of the Blue Ridge mountains occupy the northwestern cor-
ner of the Stanardsville quadrangle, with drainage to the southeast to the upper piedmont
surface through South River and Conway River. This drainage forms a dendritic pattern,
with relatively steep channel gradients in the mountains, and relatively low gradients once
the streams reach the dissected piedmont surface.

The original DEM data of size 70 by 55 pixels are shown in Figure 8.a. The topo-
graphic features plotted from the DEM data are shown in Figure 8.b. The V-map which
contains the possible valley points marked by the V-shaped operator is shown in Figure
9.a. The A-map which contains possible ridge points marked by A-shaped operator is
shown in Figure 9.b. From these two maps, it can be seen that the topography contains
pits, saddle points (where valleys and ridges intersect), isolated stream segments, and other
ambiguities. Figure 9.c shows the valley segment map after applying the A-map masked
thinning algorithm. All the segments in this map satisfy the conditions described in Sec-
tion 3.1. However, this map also contains inconsistent segments. An incomplete drainage
parameterized directed graph is constructed from the this map by the network tracing and
property measuring algorithm described in Section 3.2.

The statistics of this incomplete PDG are as following:

Number of drainage trees: 26

Number of drainage trees not terminated on the boundaries: 11
Number of stream branches: 106

Number of inconsistent branches: 3
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Figure 8. (a) The original DEM data. Size: 70 x 55. (b) The surface plotied from the DEM in (a).

Number of inconsistent node_s: 92 .

DNESYS then performed the spatial reasoning on the incomplete drainage graph. All
inconsistent nodes and branches were examined and removed, and a complete drainage
PDG was obtained. The resulting map produced by the high-level expert i1s shown in
Figure 9.d.

The statistics for the resulting PDG are:

Number of drainage trees: 10 7

Number of trees not terminated on boundaries: 0
Number of branches: 100

Number of inconsistent nodes: 0

Number of inconsistent branches: 0 _

Number of curves generated: 15 |

This result shows considerable improvement compared with the result obtained from
low-level labeling shown in Figure 9.a. The only difficulty is a segment A that is introduced
by a noise point. It will be shown later that this is removed when ridges are taken into
account. The number of drainage trees which do not terminate on the boundaries are
reduced from 11 to 0, and all nodes are consistent. The drainage network that is generated
is consistent with the model of drainage networks described in Section 2 and therefore has
the structure of a real drainage network. In particular, it is also comparable to the ground
truth data in Figure 10.a. This ground truth was interpreted manually from the blue line
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(b)

(c) (@)

Figure 9. (a) The V-shaped map for Figure 8.a. (b} The A-shaped map for Figure 8.a. {c) The valley
segment map for Figure 8.a. (d) The drainage network after reasoning.

drainage network of a USGS topographic map with a much finer resolution. The extracted
drainage networks with the ridge lines are shown together in Figure 10.b.

The same improvements are obtained from the second set of test data. A 175 x 186
pixel region from the northeast quarter of the Hamburg, VA. quadrangle was tested using
DNESYS (Figure 11.a). Topographic features plotted from this DEM data are shown in
Figure 11.D.

The same low-level processing operations and the same inference procedures were
applied to these test data. The parameters in the knowledge base, however, were slightly
modified according to the geographic features in this area. The valley segment map that
resulted from the low-level processing is shown in Figure 12.a. An initial PDG was deduced
from this map by DNESYS.

The statistics for the initial PDG are:



!kl
4
%

L]
J%!
T
i
[ |
-
A

1

d
e
'. L)
ol

) H'_"ll.g (A

(a) | (b)

Figure 10. (a) The ground truth data

for Figure 8.a. (b} The ertracted drainage network (dark) with ridge
lines (light).

() ®)

Figure 11. (a) The DEM of the second test area.

Stze: 175 x 186. (b) The surface plotted from the DEM in
(a).

Number of drainage trees: 198

Number of drainage trees not terminated on boundaries: 180
Number of source nodes: 233

Number of inconsistent nodes: 168
Nunber of inconsistent branches: 21.
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The statistics for the resulting PDG are:

Number of drainage trees: 24

Number of drainage trees not terminated on boundaries: 8
Number of source nodes: 124

Number of inconsistent nodes: 8

Number of inconsistent branches: 3.

(b)

(c)

Figure 12. {a) The valley segment map of the second test area. (6} The corresponding reasoning result. (c)
The ground truth date for Figure 11.a.



The map corresponding to the resulting PDG is shown in Figure 12.b. From the
comparision of the statistics of PDGs and the comparision of the extracted drainage map
with the ground truth data (Figure 12.¢), we see that DN ESYS also works well for the finer
resolution data. The number of drainage trees which do not terminate on the boundaries

The statistics of the mitial PDG are:

Number of drainage trees: 168 ;
Number of drainage trees not terminated on boundaries: 153

Number of source nodes: 189
Number of inconsistent nodes: 148

e




Number of inconsistent branches: 16.
The valley segment map that corresponds to the initial PDQG is shown in Figure 14.a.
The statistics of the resulting PDC are:

Number of drainage trees: 19

Number of drainage trees not terminated on boundaries: 6
Number of source nodes: 84

Number of inconsistent nodes: 6

Number of inconsistent branches: 1.

(a) (b)

(c)

Figure 14. (o} The valley segment map of the third test area. {b) The corresponding reasoning result. (c)
The ground iruth data for Figure 13.a.
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The drainage network afier reasoning by DNESYS is shown in Figure 14.b, The
ground truth data for thig map is shown in Figure 14.c. The experimental resulis again
demonstrate substantia] improvement. The number of drainage trees which do not ter-
minate on boundaries are reduced from 153 to 6. The number of Inconsistent nodes are
reduced from 148 to 6. The number of inconsistent branches are reduced from 16 to 1, a
very significant improvement.

6.2 Comparison with Farlier Methods

1. Jenson’s operator is sensitive to the data, resolution.

2. Due to noise, quantization errors, and insufficient accuracy in the raw data, some
drainage features are not directly supported by the local features of the raw data.

(& | (b)

PFigure 15. (a,)_ The dminage cells labeled by Jenson’s operator without filtering. Black: drainage cells, White:
others. (b) The drainage cells lgbeled by Jenson’s operator with g Gaussian filter. Black: drainage cells,
White: others. .

— 35 —



6.3 Results after Verification and Reinterpretation

It has been shown that high level reasoning significantly reduces the errors inherent
in low level operators. The errors remaining after high level reagsoning are relatively minor
and may be categorized by comparing the extracted drainage networks with ground truth
data. These errors include:

1. A few isolated segments, which are counted as trees which do not terminate on bound-
aries, are not connected to the overall system. These errors often. oceur in regions of
low topographic slope where it is difficult to determine the correct drainage direction
due to the lack of sufficient evidence.

2. A few true stream segments incorrectly connected to one another. These are counted
as 1nconsistent branches.

3. A few interpreted segments that intersect ridge points. This is caused by the curve
fitting algorithm explained in Section 5. However, the ridge points from the low-level
labeling, especially the isolated one, are not always reliable.

The results can be further improved by adding the verification stage discussed in
Section 5.4 and then making a second pass through the high level reasoning stage of
DNESYS. The verification stage produces a new set of valley segments that replaces those
from the V-shaped map that were used in the first pass. :

To demonstrate the effectiveness of verification, the upper left portion of the second
test area of Figure 11.a was processed further. The results are shown in Figure 16. The
reinterpreted drainage networks are more accurate than the hypothesized ones and reveal
more detail than the digital ground truth data in Figure 12.c. However, by detailed exam-
ination of corresponding topographic maps, almost all the additional details are confirmed
to be extensions of stream segments into the valleys at their headwaters. To check this,
Figure 16.d shows the extensions of the blue line stream map into the valleys, and the
match is extremely good.

6.4 Drainage Basin Labeling

Earlier it was asserted that the drainage network was fundamental to the determi-
nation of the drainage basins. To confirm this a simple algorithm was tested for labeling
the drainage basins using the network from Figure 16.c. The algorithm is a drainage tree
thickening algorithm that is used to grow the drainage basins outward from the streams
while maintaining the maximum possible consistency with the ridge line fragments that
are located between the branches of the drainage trees: Basin labels are propagated from
labeled pixels to adjacent pixels with higher elevations. The basins for the streams leaving
the image area are shown in different colors in Figure 17. '
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(b)
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Figure 16. (o) The low-level labeling. (b) The high-

level hypotheses. {¢) The networks after verification and
reinterpretation. (d) The ground truth mep.



Figure 17. Drainage basins with drainege network (while) and ridge line fragments (black).



7 SUMMARY AND CONCLUSIONS

Significant problems are associated with the use of local point operators for extract-
ing drainage systems from DEM data. Performance can be dramatically improved by
making use of spatial reasoning. The DNESYS system described here is capable of per-
forming this task at a high level based on organized expert knowledge. It is able to cope
with broken stream segments, misconnected stream segments, conflicting flow directions,
and other defects which usually result from the low-level labeling process. A drainage
parameterized graph (PDG) is constructed to mode] the drainage networks. The initial
drainage point marking and network tracing using spatial relation measuring provides an
incomplete drainage parameterized graph for the uncertainty reasoning. By a hypothesis
generation and verification process, the system produces a complete drainage parameter-
ized directed graph (PDG) by discarding erroneous information and supplying missing
information based the drainage system model. The experimental results show that this
expert system performs extremely well. Some additional useful features of the DNESYS
system are: '

1. it is trainable and the knowledge base is easy to modify;

2. 1t has the flexibility for the user to choose the desired reasoning object—the specific
segment, the specific tree, the specific subarea, or the entire database after it has been
constructed from the low-level processing results;

3. it can be used as a system for direct acquisition of drainage systems from DEM maps
for use in a geographic information system. The results from the DNESYS system
are both in 2-D map format and in database format with all required attributes and
distinet labels;

4. the principles, algorithms, and data structures used in the DNESYS system may be
extended to other line reasoning systems and shape completion systems, which are
important components of computer vision systems.

9. results register to the original elevation data and will have the same resolution as the
original data. Therefore the results can be superimposed on the original elevation
data,
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