THE TOXICITY OF AMMONIA TO THE SUMMER FLOUNDER (PARALYCHTUS DENTATUS), ATLANTIC SILVERSIDE (MENIDIA MENIDIA), AND QUAHOG CLAM (MERCENARIA MERCENARIA)

Steve Starbuck

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

> Masters of Science in Civil and Environmental Engineering

> > Gregory D. Boardman, chair Andrea Dietrich David Bevan

> > > September 17, 1998 Blacksburg, Virginia

Keywords: ammonia, acute toxicity, chronic toxicity, salinity effects, Chesapeake Bay

THE TOXICITY OF AMMONIA TO THE SUMMER FLOUNDER (PARALYCHTUS DENTATUS), ATLANTIC SILVERSIDE (MENIDIA MENIDIA), AND QUAHOG CLAM (MERCENARIA MERCENARIA)

by

Steve Starbuck

Committee Chairman: Gregory D. Boardman Environmental Engineering

Abstract

The toxicity of ammonia has become an issue in recent years, especially in the Chesapeake Bay watershed. Currently, the EPA has set a chronic criterion of 0.035 mg/L (unionized ammonia). The chronic criterion is a four-day average concentration that cannot be exceeded more than once every three years. However, a lack of data exists on the toxicity of ammonia to saltwater organisms. Prior to this research, the chronic criterion was based on two saltwater and four freshwater organisms. This research was conducted to add additional data so more appropriate criteria may be set.

Two saltwater fish, the Summer Flounder (*Paralichthys dentatus*), and the Atlantic Silverside (*Menidia menidia*) and one invertebrate, the Quahog Clam (*Mercenaria mercenaria*) were tested for acute toxicity to ammonia. The acute tests performed on the Summer Flounder (2 months old) were 48 and 96-hour tests performed in both synthetic seawater and natural seawater. Seven-day chronic tests were also performed on the Summer Flounder using synthetic seawater. Both 48 and 96-hour acute tests were performed on the Atlantic Silverside (10-14 days old.) using natural seawater. Both 48 and 96-hour acute tests were performed on the Quahog Clam (5mm shell height) using synthetic seawater.

The 48-hour LC50s for the Summer Flounder in synthetic and natural seawater were 1.22 mg/L and 1.09 mg/L, respectively. The 96-hour LC50s for the Summer Flounder in synthetic and natural seawater were 1.07 mg/L and 0.889 mg/L, respectively. The 7-day chronic NOEC was 1.37 mg/L. The 48 and 96-hour LC50s for Atlantic Silverside in natural seawater were 1.52 mg/L and 1.18 mg/L, respectively. The 48 and 96-hour LC50s for Quahog Clam in synthetic seawater were 216 mg/L and 36.6 mg/L, respectively.

The acute-chronic ratio for the Summer Flounder was 2.27. The refined chronic criterion was 0.081 mg/L based on this research and the research of others. Summer Flounder were more sensitive to ammonia in natural seawater than synthetic seawater. However, Atlantic Silverside showed no difference in sensitivity.

Acknowledgments

The author would like to thank the many people who helped and supported him during the course of this research.

First, I thank Dr. Greg Boardman for his patient assistance and guidance throughout the course of this research and for helping me end up at Virginia Tech in the first place.

I would also like to thank Dr. Andrea Dietrich and Dr. David Bevan for serving on my committee and for helping me evaluate my research.

Special thanks go to my family for patiently supporting me during my time at Virginia Tech. Without your moral support I would not have been able to finish.

I am also grateful for the Commercial Fish and Shellfish Technologies (CFAST). Who provided me with the financial support as well as the motivation for this research.

Thanks also to Bob Lane of the Virginia Tech Seafood Research and Extension Center for helping me get the natural seawater samples from the Chesapeake Bay. Without your help, I would have never been able to even contemplate that part of the research.

Finally, I'd like to thank Olver Laboratories, Inc. and its employees for providing me with the facilities and training necessary for this research and for their friendships which I personally could not have done without. Specifically, Lawrence Hoffman, Susan Mirlohi, Dirk Amtower, Xiaoyun Li, Helen He, and Steve Slaughter.

Table of Contents

Ab	stract		page ii
Acknowledgements		iii	
Ta	ble of Cont	tents	iv
Lis	t of Figure	S	viii
Lis	t of Tables		ix
1.	Introducti	on	1
	1.1 Ammo	onia Issues in the Chesapeake Bay	1
	1.2 Ammo	onia in Recirculating Aquaculture	2
2.	Overview	of Ammonia in the Aquatic Environment	2
	2.1 The N	itrogen Cycle	2
	2.2 Ammo	onia Chemistry in Water	5
	2.2.1	рН	5
	2.2.2	Temperature	6
	2.2.3	Salinity	7
	2.2.4	Other Factors (Carbon Dioxide, Dissolved Oxygen, and	8
		Alkalinity)	
3.	Ammonia	Toxicity	9
	3.1 National Criteria		9
	3.1.1	Derivation of the Acute Criterion	10
	3.1.2	Derivation of the Chronic Criterion	12
	3.1.3	Regulatory implications of the acute and chronic criterion	13

	3.2 Route	s of Exposure and Mechanisms of Ammonia Toxicity	14
	3.2.1	Routes of Entry, Absorption, and Excretion	14
	3.2.2	Mechanisms of Action	15
4.	Previous	Toxicity Tests	16
	4.1 Acute	Toxicity Data in Freshwater and Saltwater Species	16
	4.1.1	Freshwater Fish and Invertebrates	17
	4.1.2	Saltwater Fish and Invertebrates	18
	4.2 Chron	ic Toxicity Data in Freshwater and Saltwater Species	20
	4.3 Comp	arisons with Freshwater and Saltwater Species	22
5.	Materials	and Methods	22
	5.1 Morpl	hology, taxonomy and life history of test organisms	23
	5.1.1	Quahog Clam	23
	5.1.2	Summer Flounder	24
	5.1.3	Atlantic Silverside	25
	5.2 Tests Performed		26
	5.2.1	Acute Tests	26
	5.2.2	Chronic Tests	26
	5.3 Data Analysis		27
	5.3.1	Acute Tests	27
	5.3.2	Chronic Tests	28
	5.3.3	Natural Water Tests	29
6.	Manuscript		32
	6.1 Introduction		34

6.2 Mater	6.2 Materials and Methods	
6.2.1	Organism source and care	37
6.2.2	Dilution Water	38
6.2.3	Experimental verification of ammonia dose	39
6.2.4	Test Conditions	39
6.2.5	pH Control	40
6.2.6	Statistical Analysis	40
6.3 Result	6.3 Results	
6.3.1	Acute Results	42
6.3.2	Salinity Results	44
6.3.3	Natural Seawater Testing Results	45
6.3.4	Chronic Results	45
6.4 Discus	6.4 Discussion	
6.4.1	Acute Testing and the Acute Criterion	46
6.4.2	Chronic Testing and the Chronic Criterion	48
6.5 Concl	usions	49
6.6 Manus	script References	50
7. Engineeri	ng Significance	64
References		65
Additional References		69
Appendix A	% Unionized Ammonia as a Function of pH, Temperature,	70
	and Salinity	
Appendix B	Results of Individual Tests	72

Appendix C	Results of ANOVA Analysis	76
Appendix D	Organism Suppliers	79
Vita		80

List of Figures

Figure 2.1	The Nitrogen Cycle	page 4
Figure 3.1	Schematic Representation of Derivation of the Acute and	9
	Chronic Criteria	
Figure 5.1	Adult Summer Flounder	24
Figure 5.2	Adult Atlantic Silverside	25
Figure 5.3	Flowchart for determination of the LC ₅₀ for multi-	30
	concentration acute toxicity tests	
Figure 5.4	Flowchart for Analysis of multi-concentration test data	31

List of Tables

Table 2.1	%-unionized ammonia at 25 [°] C at various pHs	page 6
Table 2.2	Ionization constants and %-unionized ammonia for	7
	several temperatures	
Table 2.3	Salinity Effects on %-unionized ammonia at 20°C and	7
	pH 8	
Table 3.1	Calculations for each of the terms to determine the acute	11
	criterion	
Table 3.2	Toxicity data of species used to determine saltwater	13
	chronic criterion	
Table 4.1	96-hour LC_{50} for various freshwater organisms	18
Table 4.2	Acute data for saltwater fish and invertebrates	19
Table 4.3	Chronic values for various saltwater and freshwater	21
	organisms	
Table 5.1	Acute Tests	26
Table 6.1	Summary of Test Conditions	56
Table 6.2	Acute Results of Synthetic Seawater Tests	58
Table 6.3	48-hour LC_{50} s and NOECs based on 6 replicates for the	59
	Atlantic Silverside (Menidia menidia) and three salinity	
	levels	
Table 6.4	α values determined by Anova single factor (significance	60
	α ≤0.05)	

Table 6.5	Natural seawater results compared with synthetic results	61
Table 6.6	Anova values of salinity tests compared to natural	62
	seawater tests for Atlantic Silverside	
Table 6.7	Chronic Results	63