Emile Haddag

TR 93-02

January 21, 1993

DYNAMIC LOAD DISTRIBUTION OPTIMIZATION IN
HETEROGENEOUS MULTIPLE PROCESSOR SYSTEMS

Emile Haddad
Computer Science Department
Virginia Polytechnic Institute and State University
2990 Telestar Court, Falls Church, Virginia 22043,
Tel. (703)-4502156, (703) 6986023

Abstract

We examine the problem of optimizing the distribution of the m interacting modules of a
given workload on q parallel system wirh P heterogeneoys processors. Average-valued
parameters are used to model the intermodule coupling of the workload and its execution and
communication times on the diverse system Processors, We derive an analytical optimality
ghted combination of

criterion to minimize g multi-metric objective function representing a wej

eliminating idle wait-time and therefore representing the ideal load "balancing” on the
heterogeneous sysiem. The p - q least efficacions processors remain unengaged in workload

analytical approximations used in the optimization process. The analysis starts by assuming the
total load 1o be continuously partitionable, and then deriyes an integer-valued distribution from the
the optimal continuous-valyed solution. The optimization procedyre is highly effi cient, with Ofp)
and O(p2) computational complexities Jor the continuoys and integer-valyed solutions respectively.
The procedure can pe invoked dynamically to implement optimal load migration whenever the
benefit of redistribution ourweighs its cost. Updated procequre parameters can be efficiently
computed in a recursive manner during run-time. Repeated application of the dynamic procedure
tends to persistently correct the deviations from optimality resulting from averaging the load
parameters and from ignoring synchronization delays in workload time execution modeling.

Consider a computer workload consistin gofm interacting tasks or program modules, { M;} =
(M|, M,,.. Mpl.toberunona parallel processing System comprising p processing elements,
{P)= (P, P,, .. Pp}, by allocating to each P; a module assignment A, subset of { M;}. LetA =
(A, Ay, ... Ap) denote the vector of assignments over the P processors. The coupled module
pairs interact through the exchange of data, Supported by local resources when the modules reside
on the same processor and by shared system Tesources when the modules run on different
processors. Each processor computes its assignment of modules A;, carries out the internal
communication among them, and cooperates with other processors on the external communication
between A, and all other assignments.

1.1 Task assignment versus load distribution

expressed by the number of modules X allocated to processor P;. If we denote the Jogd
distribution of the m modules over the P processors by the vector x = (X{.X2,... Xp)=
(1Al 1A, .. JAp), the problem may be stated as follows: how to determine the load distribution

x*= (x1*x0%, . .. Xp*) which optimizes the appropriate objective function.

1.2 Deterministic versus random modeling

1. A uniformly partitioned and uniformly coupled deterministic workload of equal-sized modules
which exchange equal amounts of commumications data. Examples of this approach are found in

(8], [12], [14].

consider a nonuniform deterministic workload in which the size of the load modules can vary and
the module pairwise couplings, as represented by the existence and magnitude of intermodule
communications, can also vary. The analysis, however, uses only the average values of the
workload parameters, This approach is analogous to the one used for the random workload model
referred to above, except that we do not use the stochastic analytical formalism of that model. It
should be emphasized that the analysis and results of this paper can be adapted in a straightforward
manner to the random model found in [7]-[10], {13}, [23]. Our preference not to do so is primarily

mean”. By modeling the average behavior of the workload on the given system, the most we could
hope for is to derive approximate rule-of-thumb criteria or guidelines for “optimally” distributing
the load modules over the System processors. The accuracy of such criteria improves as the
deviation of the individual module parameters from their mean values decreases.

1.3 Optimization objectives

delays [7], [8].

This paper examines the load distribution problem in a heterogeneous multiple-processor
System . We adopt a multimetric objective function H(x) to be minimized, expressed in terms of
the load distribution vector X = (X1, Xg, .. -Xp), composed of a weighted combination of a

performance metric and three COSt metrics:

Converges to the targeted solution, they do not, in general, provide a closed-form analytical
criterion that relates the optimal solution to the problem parameters.
Alternatively, we may model the problem by relaxing the integer restriction on the load

distributions { X;} and allowing them to be continuous variables s tisfying the constraint XX, =m.

In this case, the number of possible distributions becomes infinit » and exhaustive enumeration for
optimization would not be feasible. We may, however, be able to derive a closed-form criterion
for the optimal solution using the methods of continuous analysis. Such a criterion would be
highly desirable because, in addition to providing the absolute optimal solution, it would provide
insight into the exact analytical dependence of the optimal distributions on the workload and system
parameters. The values of Xj thus obtained for the optimal load distribution may not be

integer-valued. If the given load modules are fragmentable into smaller tasks, one may attempt to

should not very objectionable if one is, in the first place, using average parameters to characterize
the load modules, including the parameters related to the "size" of a module,

In this paper we adopt such an approach, We start by allowing the load distributions to be
continuous variables, and derive a rather simple closed-form analytical criterion that specifies the

by the systems resource allocation policy. We then formulate simple procedures for obtaining
integer-valued distributions, to be derived from the idea] optimal solution if module fragmentation
is totally inadmissible,

L]

1.5 Load distribution as preliminary optimization

The load distribution problem as described above may be regarded as a preliminary
optimization step aimed at determining the optimal number of modules X; to be loaded on each

processor Pj, irrespective of the identity of such modules. This first-step optimization may then be

followed by further optimization, focusing on the selection of the specific x; modules, using any of

the other known techniques for optimal task assignment presented in the literature, The advantage
of carrying out such a preliminary optimization step is that the computational complexity of the
problem presented to the task assignment technique would be substantially reduced, since now the
number of modules to be assigned to each processor is predetermined and is no longer a variable of
the optimization procedure. This would be especially true if the load distribution prescribes
assigning zero load to some of the processors. In some cases, as we shall demonstrate later, no
further optimization would be required beyond the optimal load distribution prescribed by the
techniques of this paper. This would evidently be the case when the optimal load distribution
happens to be of the form (X1, X2, ... Xp) =(m, 0,...,0), viz. allocating all modules to one

processor.

1.6 Dynamic versus static load distribution

A static load distribution policy prescribes how the given m load modules should be initially
allocated to the p available processors. This is done once at the time of loading the modules for
execution on the given system. No further redistribution or migration of modules is allowed during
run-time. A dynamic load distribution policy, on the other hand, would allow the redistribution of
the load modules during the execution period, and specifies when and how should load migration
take place. This is normally implemented by monitoring the course of workload execution in real
time, and deciding whether load redistribution at some points would be "advantageous". The
decision is typically based on a policy that requires the benefit from redistribution to outweigh the
cost of migration, using some appropriate quantification of benefit and cost,

In this paper, we shall first develop a static load distribution criterion which can be used to
initially allocate the given modules over the available processors. The distribution minimizes the
objective function H(x) described in a previous section.We then extend the applicability of the
criterion to run-time, such that the optimal redistribution of the remaining (unexecuted) modules
can be determined for any specified time t during execution. The resulting dynamic strategy
stipulates that migration from the existing distribution to the optimal distribution is carried out only
if the resulting reduction in the objective function, i.e. benefit, exceeds the cost of implementing
the load redistribution. Although the static procedure can deal Wwith non-integer load distributions,
it is likely that a less costly dynamic implementation would result if preemption of partially
executed modules i.e. fractional modules, is execluded from redistribution in order to avoid the
relatively high overhead of context switching that would otherwise be entailed. We show that the
prescribed dynamic load distribution procedure can be efficiently implemented, and that its repeated
application during run-time would persistently correct the deviations from true optimality that arise

from using average load parameters instead of module-specific values, If greedily applied, the
dynamic procedure tends also to reduce the inaccuracies resultin g from ignoring synchronization
delays in the time modeling of the concurrent execution of the System processors, as well as from
ignoring partially-executed modules as candidates for load migration,

1.7 Organization of the paper

The remainder of the paper is organized as follows. Section 2 presents a computational model
of the workload based on a precedence graph representation of the load modules and their
interaction, and derives the expressions for the average values of the workload coupling
parameters. In Section 3 a discussion of the optimization "decision model" is presented, and
expressions are formulated for the components of the multi-faceted objective function H(x):
completion time, communication cost, resource utilization cost, and processor idle-time; and the
notion of processor efficacy is defined. Section 4 presents in detail the mathematical optimization
process for the continuous-valued load distributions, leading to the principal criterion which
specifies the optimal load distribution. This section also formulates procedures for obtaining
integer-valued load distributions. The dynamic load distribution strategy is elaborated in Section 5.
Conclusions and further research are discussed in section 6. The proofs for three lemmas used in
the mathematical optimization derivation are presented in the Appendix,

2. Workload and System Models

We assume that the interaction among the set of load modules M = {M;} is represented bya
noncyclic directed graph R = M,E)=({ M;}{ Ekg}). An edge Ekg represents an intermodule
communication from My to M, indicating a precedence constraint in the execution of the
corresponding modules, such that My, must complete execution before Mg can start. We assume
that an edge Ekg is unique, i.e. there is at most one edge from M; to Mg. If module M, happens to
send data to Mg more than once, all such communications can be lumped into a single equivalent
communication from M, to Mg.

We shall assume that the transfer of data form My, to M; as represented by the edge Eyg, is
modeled by the following mechanism in a loosely-coupled multiple processor system. If My and
M are assigned to the same processor, My generates during its execution the data Dy intended for
module Mg and stores it in a block of local memory. Subsequently, M, during its execution

retrieves the same data from local memory. If My and M. are assigned to different processors,
k g

My, generates during its execution the data Dy, intended for module M, and stores itin a block of

local memory. Afier the generation of Dy is completed, the data is transfered in a block, as an
interprocessor message, from the local memory of of the source processor to the local memory of
the destination processor, where it can be subsequently retrieved whenever the execution of M,
gets underway. We assume that this interprocessor transfer between local memories takes place
with no, or very little, involvement from the corresponding processors. A typical implementation
might use a direct memory access (DMA) mechanism to transfer the block of Dkg from local

memory to a communication buffer (sender), then via the interconnection network to a receiver
communication buffer at the destination processor, then to local memory by another DMA transfer.
The inter-buffer transfer implemented by the interprocesor communication protocol, as well as the
DMA transfers, require little, if any, time from the processors concerned. Therefore, we shall
assume that the communication tasks assigned to the processors involve only the writing and
reading of communication data to and from their local memories. In a tightly-coupled system with
global memory, the same considerations apply, except that now communications data are
exchanged via shared memory.

Let m = IMI and e = IE! be respectively the the total number of nodes and edges, which

correspond to the total number of modules and communications among them. Let Sj denote the

degree of Mj, viz the total number of edges connected to M;. Let § be the average value of §; over
all nodes:

Average number of communications per module = 8 = (Ejﬁj)/m = 2¢/m (O
where we have used the familiar relationship, Zjﬁj = 2e, applicable to any graph. Define the
workload coupling factor, denoted by A, as

workload coupling factor = A = §/(m-1) = 2¢/m(m-1) = e/fmm-1)2] , 0<A<1 (2)
Note that A is a factor representing the ratio of the average number of edges per node (8) to the
maximum possible value that 8 can ever have, namely (m-1), which would be the case if every

node were connected to all the other m-1 nodes. Hence A <1. Another interpretation of A is given
by the expression e/[m(m-1)/2] which is the ratio of the total number of edges to the maximum
possible number of edges, namely m(m-1)/2, which would be the case if R were fully connected.

Thus the factor A measures the overall average degree of interaction, or coupling, among the
modules of the workload. It should be noted that if we were to use the random workload model

found in [7]-[10], [13], [23], A would represent the probability t hat an edge exists between any
pair of nodes picked at random, i.e. the probability that an arbitrary node pair are coupled.

3. Optimization Decision Model

We now claborate on the objective function H(x), the minimization of which is the goal of the
optimization we are seeking. A load distribution X* = (x*, X2*, .. - Xp*) is said to be optimal if
H(x*) = miny H(x) 3
The function H(x) we propose is a linear combination of four functions t(x), ¢(x), u(x), and w(x);
representing respectively the workload completion time, the total communication cost, the total
resource utilization cost, and the total cost of wait-time for idied processors:
H(x) = di(x)+ d.C(x) + du(x) + dyw(x) ()]

where d;, d, dy, and dy, are non-negative constant multipliers. Each of the four component

" metrics represents a specific problem attribute, whose minimization is desirable. "The minimization

of each metric separately will generally result in four distinct optimal solutions x* corresponding to
the individual metrics. Alternatively, we seek a "compromise” solution by minimizing a weighted
sum of the various metrics. The weight coefficients can be chosen to reflect the relative importance
of each component as perceived for any particular situation. We now define each of the four
metrics in a precise fashion and derive an explicit expression for each in terms of the load
distribution x.

3.1. Workload completion time

The metric (x) stands for the workload completion rime.. We shall estimate the magnitude of
this metric by the total execution time of the busiest processor i.e. the processor with the largest

execution time:
t(x) = max;{ (r+3tx;} = max; {xy/a;} (6)

mean value of total time spent by processor P; per module computation

]
Rr
il

T, = mean value of total time spent by processor P; per intermodule communication
T; = 1;+01; = mean value of total time spent by processor P; per module execution

g = UT; = Y(r+8%;) = Efficacy of proéessor P, with respect to the given workload. (7

Recall from Section 2 the discussion on the modeling of the processor activity related 10

intermodule communication. During the execution of a module, a processor attends to an average
of & intermodule communications (graph edges), each requiring access to a data block in memory.

If we represent the average size of the data block by D, then t; represents the time processor P;

spends accessing D words in memory. Write-access (store) is needed for data to be sent to another
module (emanating edge), and read-access (retrieve) is needed for data received from another
module (incident edge). The total communication time spent by P; for every module assigned to it

is therefore 8t;, The parameter a;, which we describe as the “efficacy” of P; relative to the given

workload, depends on the processor speed, the memory speed, and the degree of workload

coupling as reflected in the parameters 1j, T;, and O respectively. In all subsequent analysis, we
shall assume, without loss of generality, that the set of system processors {P;}are indexed
according to the non-increasing values of their efficacies

H22 2. 22y, ®)

We have described t(x) as being an estimate , rather than an exact measure, of the workload
completion time because the busiest processor might experience synchronization delays. Such
Scheduling delays would occur if the processor happens to attempt starting the execution of a
module that needs communication data yet to be received from another processor. When
synchronization delays cannot be totally eliminated for the busiest processor by appropriate
scheduling, t(x) becomes an underestimate of the workload completion time,

3.2. Communication cost

We turn next to the metric c(x)which stands for the roral external communication cost incurred

during workload execution. The minimization of this cost metric has been an optimization goal in
many investigations of the load assignment/load distribution problem [7], [4], [17], [21]. Let ¢ be
the average cost incurred from the use of the communication network, (or more generally the
shared structure), for a single interprocessor data exchange between non-resident modules, For
any given load distribution x = (x,, X25...Xp), WE eXpress c(x) as:

C(x) = Noyx) = [(12)AZxi(m-x;)]c (9)
where Ney, is the total number of interprocessor communications for the given load distribution x.

To explain the expression for Nexi(x), consider the & edges connected to one of the xj modules
allocated to processor P;. The other ends of these edges are connected to a possible m-1 modules

of which x;-1 are internal to P; and the remaining m - 1 - (x;-1) = m - x; are external modules. Thus

10

the § edges are split into internal and external edges in the following ratios:

Internal edges per module 8(xi - DAm - 1) = A(x;- 1)

External edges per module = 8(m - xp)/(m - 1) = Mm - x;)
External edges for x; modules = Ax;(m - x;)

Total number of external edges = (1A Z;x;(m - x;)

The factor (1/2) is applied to the expression of Nexi(X) because every external edge is counted twice

when the summation over all i is carried out. Note that the above expression for Next(x) with A =1

gives the correct number of edges for a fully connected graph, which can be independently
verified. It should be emphasized again that the above expressions are identical with the
corresponding expressions obtained for the random workload model used in [71-[10], [13], [23];

with A representing the probability that an edge exists between any pair of nodes picked at random.

3.3. Resource utilization cost

We assume that a load module placed with processor P; incurs an average resource utilization
cost of u;. This cost might include such charges as the cost per module for cpu time and storage
at the site of processor P;. The consideration of this cost takes on a special significance when one

is dealing with heterogeneous systems, where the differences in processing and storage costs at the
various processor sites could be important factors influencing the decision of how to distribute the

total load. The total resource utilization cost for a given load distribution x is expressed as

u(x) = Ziugx; (11)
We shall assume that

U< Uy S-.-Sy (12)
Recalling the ordering of the processors according to the values of their efficacies {a;} indicated in
(8), the assumption in (11) implies that u; is smaller for a machine with a larger value of a;. This
may be justified by thinking of the parameter u; not as the cost per load module of "purchasing" the
storage and processing hardware of P; but rather as a "charge" for allocating storage space and cpu

time. We should emphasize that this assumption is being made in order to simplify the
presentation of a two-stage optimization procedure to be described next. This procedure still holds
and can be adapted to the cases where the assumption in (12) of ordering the values of uj is not

made.

11

3.4 Cost of idleness

For any given load distribution X, the job completion time is equal to the completion time of
the longest running processor t(x) = max{T;}, where is the execution time of processor P;. Any

other processor engaged in job execution that completes the execution of its load allocation X; in
time T; < t(x) has to remain idle for a period of time t(x) - T;. We are assuming that the system
resource allocation and scheduling policies preclude the utilization of an idle processor P; until the

completion time of all other processors engaged with it on the execution of a given workload.
Under such a policy, the wait-time period t(x) - T; represents wasted time for processor P;, to

which we attach a cost ((x) - Tpw;, where w; is a weight factor depending on the particular
processor. One expects wj to have higher values for the more powerful machines in the system,
representing higher penalty for their wasted idle tire, Thus, the total cost wi(x) of wasted time (or

wait-time) is expressed as

w(x) = Zie(xp[t(x) - Tilw; = Zie(xp[t(x) - (xi/ap]w; (13)
C(Xi) =0 for Xj= 0,
=1 forx;>0 (14)

Note that we have included the uniz- step function e(x;) as a multiplier in order to exclude the cost
for those processors, if any, that are allocated no load, xj = 0. Such processors are, in effect, nor

engaged with the other processors in the execution of the workload, and may therefore be utilized
for any other task.

It should be emphasized that the minimization of idle time in a heterogeneous system is
tantamount to Joad balancing in a homogeneous multiple-processor sytem, a topic which has been
extensively studied in the literature,

3.5 Objective function expression

Substituting the expressions for t(x), c(x), u(x), and w(x) from (6), (9), (11), and (13) into the
expression of H(x) in (4), we obtain

H(x) = dymax; {x;/a;} + deAZx;(m-x))]c/2 + dy2ux; + dy, Ze(xp)w;{max;{x/a;} - (xifa)] (15

where X stand for "summation over i from 1to p". In the next section, we shall examine the
problem of determining the optimal load distribution vectors x*= (x1*, x5%, . . .xp*) which
minimize H(x).

12

4. Optimal Load Distributions

Our goal is to find the load distribution vector x™= (x7*, x5*, .. .xp*), such that £x;* = m,

which minimizes H(x). Define D' as the domain of all feasible distributions i.e. the set of all x
such that Zx; = m:

D'(m,p) = { x: Integerx; 20, Lx;=m, i=1,2,...p}
Note that this implies 0 < x; < m. In the minimization procedure to be shortly described, we shall

first allow the load distributions x; to vary continuously over their domain [0 , m], and then show

how to obtain an integer-valued distribution. Accordingly, we define D(m,p) as
Dimp) ={x: %20, Zx;=m, i=1,2,...p}
Let the symbol € stand for "clement of". We are seeking all x* € D(m,p) such that
H(x*) = min,.pH(x) . X" eD(m,p)
(16) Define a new function F(x) as

F(x) = H(x) - dyw(x) = dmax;(xy/a;}+ d AZx;(m-xple2 + d Zux; (17)

We shall first determine the minimum of F(x) then show how this leads to the minimum of H(x).

4.1 Two-stage minimization procedure

Expanding and simplifying the expression in (17) by noting that x; = m and setting
max;{x;/a;} = t(x), we obtain
F(x) = dt(x) +d,Zujx; - AZx2 + Am? = dt(x) + G(x) + Am2 (18)
where we have intoduced the new constant parameter A and the function G(x) defined as

A= dAc2 , G = dZux; - AXx2 (19)
Our goal is to find the load distribution vector x* = (x;*, xp*, .. xp*), such that Zx;* = m,
which minimizes F(x):
F*= F(x*) = mingpF(x) = mingpldyt(x) + Gx) + Am2] , x*eD (20)
For a given fixed value of t, define D(t) as the following subset of D(m,p):
D@ = {x: %20, Zxj=m , max;{x/a;} =t, some givent} 21)

Thus, for a given value of completion time t, the set D(t) represents all the admissible load
distributions for which the completion time is equal to t. Note that the additional constraint

13

| max;{xy/a;} =t implies the following:

X;<at foralli, and xj=ajt forsome j=1 2D
Thus, fixing the value of t places an upper bound ajt on the load x; of processor P; . Thus, D(t) is
equivalently defined as

D@ = {x: 0sx;<at, Zx;=m , xj=ajt for some j =i } (22)
We shall carry out the minimization indicated in (20) in two stages. In the first stage we fix t and
find the minimum of F(x) over D(t), denoted by f(t): |
f(t) = minyepF(x) = mingeppldt + G(x)+ B] = dit + Am2 + mingep Gx) (23)
where the minimization is applied only to G(x) since the other terms are constant for a given fixed
value of t. In the second stage we minimize f(t) over all t
F*= min,f(t) (24)
The minimization in (24) should be carried over all admissible values of t. However, if we can
show that the minimum of f(t) can occur only for values of t belonging to an interval [t',t"], then
-we need to carry the minimization only over the specified interval. We find that this, in fact, is true
as stated in the following lemma.

Lemma 1. If f(t*) = min f(1) , then t* ¢ [ty . t1] where yy=m/a,, tp=m/(a)+a; + - - + ap)

The proof of the lemma is presented in the Appendix. In all the subsequent analysis we shall
restrict the domain of minimization of f(t) to the values of t in the interval [tp > 4l

We now determine the expression for f(t) in (23) as an explicir function of t:
f() = dit + mingppGx) +Am? = dt+g(t) + Am2 (25)
Where g(t) is the function of t defined as

g =mingp G(x) = minyepyp(dy Zujx; - AXx;2)
We shall determine the expression of g(v) explicitly in terms of t, which we then substitute in (25)
to obtain the expression of f(t) as an explicit function of t. We shall show that, for any given fixed

value of t, the minimum of the function G(x) over all x € D(t) is obtained for the specific load
distribution x =y = (31, %200,. . ., xp(t})
g(t) = minyepqy G(x) = Glw)
1w = (at,agt,..., apyt, m-E"War, 0,0, ... ,0) , anygivent (26)

where the notation Z" stands for "summation over i from 1 to n(t)" and where n(t), for any given
t, is defined as

n(t) = largest integer j such that m - Xjaitz 0

14

n(t)Emax{j:m-}jaitzo,anygivent} 27

I"® = "summation from 1 to n(t)"
Figure 1 shows the staircase variation of n(t) as a function of t over the interval (tp, ;1. Note that

the jump discontinuities of n(t) occur for every t =t = m/I¥a, with k=1, 2, . . p, at which points
the value of the function is equal to k:
n =k , nD=k-1 , t=m/Zky , k=1,2,...p (28)

where ti+ is any value such that t, < et Sty .

Recall from the definition of D(t) in (22) that xeD(t) implies x; < a;t for all i. Thus, for the

given completion time t, the load distribution x® which minimizes G(x), as expressed in (26),

gives each of the first n(t) processors its maximum load allocation ajt, and the remainder m-XPVa¢
is allocated to the next processor. Recall from (8) that the first n(t) processors are those with
highest n(t) valués of efficacy a;, viz. the n most "efficacious" processors, in our terminology. We
now formalize these results in the following Lemma, deferring the presentation of its proof to the
Appendix.

Lemma 2: For any given value of te[ty,t,], the value of g(t)is expressed as

gV = mingp) Gx) = Giv) = d,Zurio - AZ(gim)2 (29)
xw = (agt,aq,..., an(ot m—Z"(‘)ait ,0,0,...,0) (30
n(t) = max { j: m-Zat 20} (31)

and therefore the explicit expression of g(tyinterms of t is

80 = dZ"Ouiait - AZMO@02 + g (M-ZOayt) - A(m-Z0,02 (32)

The expression for g(t) in (32) results from substituting the cxpression for x(v from (30) into (29).
Substituting the expression of g(t) from (32) into (25), we obtain f(t) explicitly as a function of t:
f(0) = dy+g () +Am?= dyt+d, 2 Ouait - AZ"O(@)2 4+ dyu e (m-ZOay0) - A (m-Z"Wa;1)2 + Am?
Noting that t is fixed under the summations with resoect to i » and regrouping the terms, we have
f)) =-A[Z"0a2 + (Z"02)2]i2 + [dp+ d, TMOu.a.+ (2mA-d i,)2 On]t + [dyuygy,m]

We introduce the notation a(n(1)), b(n(n)), and c(n()) to represent the three terms in the square
brackets above:

f(t) = - a2 + bt + c(a@) (34)
a(n(®) = A[Z"0a2 + (25, 2] | b(aey) = [d, + d, 2" ua; + 2mA - dyung,,)Z0a] (35)

15

o
—_— W e ot . i o -
= - i
)
O el -
= L]]
4
= ——— ——— ——
— — - ——
~ =
_—
s____ >
b
i R e i U S -
”
. o
’ ™ _ =

f(t)

H

H

H

:

- . o . - -
e —— g
=

e e R ————
,

:

ot

:
:

f(t)

n(t)

te=m/Zxa;

t3

98]

Figurel. Variation of the functions n(t) and f(t) with t

: ¢(n(t)) = dyliy(ym (36)
From the definition of n(t) in (31) and the staircase function in Fig.1, we note that the value of n(t)

is piecewise constant over every interval of tof the form I = (rn/Zk”ai , m/Ekai] = (tgy | td

n()=k , forall telx=(ty &l 6 & =m/Z¥a; , k=1,2,...,p. (37)
Note that the values t; thus defined represent the values of t at which the function n(t) exhibits a
unit-jump discontinuity. Thus, the functions a{n()), b(n(f)), and c(n(s)) are also constant over each
interval I} and exhibit a stairecase variation over t.This leads to the interesting conclusion that the
function f(t) as expressed in (34), which seemed initially to have a rather complex expression, is in
fact a second degree polynomial over each of the intervals I, as shown in Figure 1. Since n(t) is

discontinuous at all ty, it follows that a(n(t)), b(n(t)), and c(n(v)) are also discontinuous functions of

t at the same points. We should emphasize that, despite these discontinuities, the function f(t) in
(34) is continuous . Tt so happens that the effects on f(t) of the discontinuities of a(n(t)), b(n(t)),
and c(n(t)) at the points ty cancel each other.To verify this fact, evaluate f+(t,) and £-(ty),

representing the values of f(t) as t approaches the point ty from the left and the right respectively,
and verify that f+(t) = f-(t). We formalize this result in the following Lemma, deferring the proof
to the Appendix.

Lemma 3: The function £(t) is continuous for all t in the domain [t , t;]

Recall that the expression for f(t) over each of the intervals Iy is a quadratic polynomial whose

graph is an inverted (convex) parabola, as shown in Figure 1. Hence, the minimum of (t) over

the closed interval I'y = [ty | ty] must occur at one of its end points:
mingepyf(t) = min{f(t) , fte1)) (38)

Finally, the absolute minimum of f(t) over the domain t € [ty , t;] is found by identifying the

minimum of all the interval minima:

minte[tp,tl]f(t) = mi_nk mintﬁl'kf(t) = mink{f(tk)} , k=1,2,..., P- (39)
Recall from (20) and (24) that min f(t) is the desired minimum value F* of the function F(x):

F* = mingg[p,u]f(0) = ming {f(n)} , k=1,2,...,p. (40)

The p values in the set {f(t;)} can be computed from the expression for f(t) in (34)-(36) in a
straightforward fashion, and the minimum value among them is the desired minimum of F(x). Let
q be a value of k for which f(ty) is equal to the minimum value:

16

qe(l,2,...,p) suchthat f(ty) = ming {f(,)} , k=1,2,...,p. (41)
The corresponding optimal load distribution is x(ty) corresponding to t =, as expressed in (30):
1o = (agt,at,...,ap0t, m-2"®at ,0,0,...,0) any given t
Recall from (37) that n(ty) = q and t,=m/Z%;, hence

n(ty) =q , m-Zdatg= m -Za; (m/Z%;) =m-m=0
and the optimal load distribution is
2ty E(altq,azt »ooea8gtg»0,0,0, ...,0) (42)
If there is more than one value of q satisfying (41), there would be a corresponding optimal

distribution as in (42) for each, all of which would give the same minimum value F*.
We now show that the optimal load distribution x(ty which minimizes F(x) also minimizes the

overall objective function H(x) = F(x) + d,w(x) by demonstratin g that w(x(tp) = 0, which is the
absolute minimum value that w(x) can have, Substituting the expression for x(tg) from (42) into
the expression for w(x) in (13), and recalling from (14) that e(xj) = 1 for x; > 0 and e(x;) = 0 for

xi =0, we obtain

witty) = Ze(xpwilt - (xi/a)} = 2 wilt, - (aity/ap] = 0 @3)

Thus Aty is the desired optimal load distribution which minimizes the objective function H(x).
- Note that this optimal distribution allocates the total load of m modules among a subset of the
system processors consisting of the q most efficacious processors in the system, with no load
assigned to the remaining p - q processors. Each processor Pjfori=1,2,...qgetsaload xj =

tqa; thatis directly proportional to its efficacy a;. The number q and the proportionality factor i
are readily found from the relationship f(tq) =ming {f(ty)} withk =1, 2, .. .p as indicated in (41),

where t = m/Ekai and f(t) is the function defined in (34). All q processors run for exactly the
Same execution time 4= xifa; = tgaifa; = tg » thus eliminating all idle wait-time. These conclusions
are recapitulated and formalized in the following procedure, which relates all parameters back to the
basic given parameters of the system.

4.2 Procedure : Optimal distribution

(1) Arrange the p processors of the system in the nondecreasing order of their efficacy :
ay2ay2...2a, where a;=1/r+81) , 8=2¢m (44)
(2) Determine the integer q <p and the value tq from the relationship
f(tq) = miny { (1) } y k=1,2...p 45)
where
e=m/Z¥a; , f(t) = -aky2 + by + ck), (46)
a(k) = d(c/DA[ZKa2 + (Zka)?] , b(k) = [d, + d ZKu;a; + (dcAm - dugkﬂ)qu] (47)
c(k) = dyuy,ym (48)
' (3) Determine the optimal load distribution as

1t = (tqa1. @, . -1 tag, 0,0, ...,0) m = 29 ¢ea; (49)
by allocating the entire load to the first q processors in proportion to their respective efficacies.

4.3 Integer-valued solution

The load allocations tga;, with Z9%ga;= m, prescribed by the optimal distribution are not in
general inéeger—valued. If module fragmentation is allowed, then one may wish to use partitioned
modules to fit the non-integer values of the optimal load allocations. Otherwise, one can derive an
integer-valued solution from among those integer-valued distributions that are "closest” to the
optimal x(ty) by rounding some of the values in the set { tqai} to their nearest lower or higher

integer value. Define [tqa;] and [tqail' as the rounded values of tga; :
[tyai]l =largest integer less than or equal to tqdi (50)

[tqa;]' = smallest integer greater than or equal to tqdi (51)
Let R be the set of all possible distributions of the m modules over the q processors such that x; is
equal to the lower or upper rounded value of g8
R={x=(x1,%, %Xq,0,...0): Zx;=m , x =[tgaj] or x; = [tga;l'} (52)
We shall choose our integer-valued solution, denoted xp,;,, as that element in the set R which
minimizes our objective function H(x) given in (15)
mingerH(X) = H* = H(X,;) . Xmin€R (53)

This requires an exhaustive enumeration of the elements comprising the set R and evaluating H(x)

18

for each. We can determine the total number of such distributions, [RI, as follows. Let d be the

integer equal to the excess of m over the summation of (tqail .
d=m- Zq[tqai] , O0<sd<g (54)

Thus, each distribution x € R is composed of d components of the form [tqai]' and the remaining
q - d components of the form [tqa;]. Hence, IRl is equal to the number of choices of d elements
from a set of g elements (repetition not allowed and order does not matter) :

Rl = (%) = ql/d!(g-d)! (55)
This number may be quite large, depending on the value of q and d, as shown in the following
tabulations forq =5and q =10

q=>5 d: 0 1 2 3 4
RI: 0 5 10 10 5

q=10 d: 0 1 2 3 4 5 6 71 8 9
IRI: 0 10 45 120 210 252 210 120 45 10

In those cases where the number of possible distributions in R happens to be large, an alternative
much less expensive procedure can be used. This is a greedy heuristic that is based on the
essential characteristic of the optimal distribution, namely that each load t48; is directly proportional
to the value of a;, We start by rounding each tqai down to [tga;] and determining the value of d
from (54). We want to choose the d processors that have to be given one extra module each. For
each processor P;, define the gain g; which results when its allocation is augmented from [tga;] to

[tqai]-f-l as

g = {tq- Itgal/ay} - {(tg+1)/a; -1y} = 2ty - tqailfe;) - 1/a (56)
where {tq- [tga;il/a;} and { (Itgail+1)fa; - tq) measure the deviations of [tq2i] and [tga;]+1 from true
optimality. Greediness dictates that we should choose the processors to be augmented as those
which have the largest values of g;. Thus, we arrange {gj} in decreasing order and pick the first d

elements in the array:

(&, 8. 8igw.... 8@, .. 8ig) » ZiwElg) 8ik) 2 Sitk+1) (57)
The desired integer-valued distribution is

Xj=[tgajl +1 for ie(im.i@...i@} , xj= ftga;] otherwise (58)
The time complexity of this procedure is O(q2) corresponding to the process of sorting the q
elements of {g;}. We shall illustrate the application of this procedure by a numerical example in

Section 4.5 which follows the next section.

19

4.4 Computational complexity and utilization

The effort needed to determine the optimal load distribution in any given situation is rather
minimal, especially when compared to the computationally intensive algorithms and heuristics for
optimizing task assignment that one finds in the literature. To use the procedure for a given
problem, we simply compute the p values in the set {f(ty)} as indicated in (46), idetntify their
minimum value which gives the values of q and tq as indicated in (45), and ailocate the m load
modules to the g most efficacious processors as indicated in (49), giving each a load tq2; in direct
proportion to its efficacy a; . This simplicity of the technique and the resulting low overhead of its
use derives from the fact that we are modeling the workload parameters in the mean. As such, the
technique must be viewed as an approximate rule-of-thumb criterion of optimality useful in guiding
load distribution. The criterion may be used alone or in conjuction with other more precise task
assignment techniques which take into account the parameters of the individual load modules. In
the latter case, the criterion at hand is used first to determine the optimal level of loading, i.e.
number of modules, that should be allocated to each processor. The task assignment technique is
then employed to specify the individual modules for each processor. The pay-off to be gained
from this strategy is the dramatic reduction of overhead resulting from running the task assignment
algorithm/heuristic with fixed processor load levels. In some cases, this reduction of overhead may
be as high as 100%. That would be the case when the application of the procedure results in a
value of q = 1, implying an optimal distribution that allocates all the load modules to the most
efficacious processor, thus rendering the running of the task assignment algorithm unnecessary.

4.5 Example

The following tabultaion for a numerical example illustrates the procedure for finding the
optimal subset of the given p =10 processors to be engaged in the execution of the given workload
of m = 55 modules and the apportionment of the total load among them. In the first row, the 10
processors are arranged in the decreasing order of their efficacies a;. For each value of k from 1 to

10; we compute t, = 55/ZXa; and the corresponding values of f(ty) as shown in rows 3 and 4. We
determine the smallest value of f(ty), namely 5.3 shown in boldface, which corresponds to k=7.
Thus the number of processors to be engaged in execution is q = 7, and the 55 modules are
apportioned among the first 7 processors in proportion to their efficacy, with t; = t; = 1.112 being
the proportionality factor (shown in boldface). The optimal loads tqdj = 1.1222; are shown in row

5. To find the integer number of modules for each engaged processor, we compute the value

20

a;: 10 9 8 7 6 5 4 4 3 3

k: 1 2 3 4 5 6 7 8 9 10
t = 55/ZKa; : 550 289 204 162 137 122 L122 1.4 098 093
f(t) : 85 63 94 92 78 82 53 96 71 81
tya; = 1.122a; : 1122 1098 898 785 673 561 449 0 0 0
g; -056 -089 119 101 077 044 -006
[tqai] or [tqai]': _ 3 10 9 8 7 6 4

ofd=m - Eq[tqai} =55 - 51 = 4, which means we have to round the load of 4 processors up to
[tq3;]' and round the load of the remaining 3 processors down to [tqai]. To make the selection, we

compute the values of g; as shown in row 6, and we select the 4 processors with largest values of

gi (shown in boldface) to be rounded up to [tqai]', as shown in the last row which lists number of

modules that should be allocated to each of the engaged processors.

S. Dynamic Load Distribution

The load distribution policy that we have formulated so far may be described as a static
strategy, to be invoked at the time of compiling or loading the given workload represented by the

graph R. Using the given problem parameters p, m, 8, A, r;, T,

5 8j 5 C, U5, dy, di, dyy; we were able
to determine an initial optimal distribution x*= (x*, x5*, ... xp"‘) of the m load modules over the
p available processors which minimizes the prescribed objective function H(x). If we assume that

load execution starts at time t = 0, each processor P; proceeds for t > 0 with the execution of its
load of x;* modules, progressively terminating them one by one until its load assignment execution
is completed. (The reader should distinguish the symbol t, used in this section to denote time as an
independent variable, from the symbol t of t(x) used in the previous sections to denote completion
time for the load distribution x). from We assume that the processor does not perform context
switching among the modules assigned to it, and that a module execution once started is taken to
completion with no interruption. During workload execution, the static load distribution policy
does not allow any load redistribution of the remaining unexecuted modules at any time t > 0. We
now describe a dynamic load distribution policy which allows such redistribution during workload
execution, with the aim of optimizing the remaining computation to be executed after any given
time t. By monitoring the state of the remaining computation at time t, a decision is made on

- 21

whether redistribution is warranted by comparing the benefit that would accrue from redistribution
to the cost of such redistribution, using some appropriately defined measures of benefit and cost.

3.1 The state of remaining computation

Let x(t) = (%100, x5(0), . .. Xp(®) represent the load distribution vector at time t, where X;(t)
denotes the number of unexecuted modules remaining on processor P; at time t. Thus, x;(0) = x;*,

and x;(t) is a decreasing function of time, with x;* - x;(t) representing the number of executed

modules (including the currently executing module) for P;. Let m(t) = Xx;() denote the total

number of unexecuted modules remaining on all processors at time t. Thus m(0) = m, and m() is a
decreasing function of time, with m - m(t) representing the total number of executed modules at

time t. Let R(t} = (M), E()) be the graph representing the remaining computation at time t, where

M() is the set of unexecuted load modules and E() is the set of unexecuted edges composed of
elements Ekg such that My and Mg are both in M(t). Thus M©)=M, E0)=E and M - M(,

E - E(1) represent the sets of executed modules and edges respectively, at time t. Note that E - E(t)
is the set of all edges in the initial graph R that are connected to the set of modules M- M(t). Thus,
we obtain R(t) from R by removing the modules M - M(y) and all edges connected to them. LetI =
{1,2,. ., j, .. m]} represent the set of subscripts indexing the modules M; of M, and let I(t) be the
subset of I corresponding to the subscripts of M(). Note that [l = IMi = m and I =l M)l = m(t).

Let I[E@) be denoted by e(f), and let Sj(t) dénote the degree of M; in R(t) for every j € I(t). We can
now define the average degree 8(1) and the workload coupling factor A(t) for the graph R(s) of the
remaining computation in a similar fashion to the earlier definitions of § and A given in (1) and (2)

8t = Average value of 8j(t) =(Z il Sj(t))/m(t) = 2e(5)/m(p) (60)

M = 30/[(m(® - D] = 2e@/my(m() - 1) (61)
Note that in our identification of "unexecuted” or "remaining" modules for a proceséor P;, we
have opted not to include the remaining computation of a partially executed module that may be
currently executing at time t. This is so because the dynamic load distribution policy that we shall
adopt will target for redistribution the remaining modules that have not started execution. By
deliberately excluding the modules currently executing on their respective processors from possible
migration to other processors, we avoid the the overhead cost of context switching which tends to
offset, or possibly negate, the benefit that might be obtained from such migration. Thus, in our
dynamic load redistribution strategy, to be described next, any currently executing module will stay
with its processor until completion.
We now represent the other parameters pertaining to the remaining computation R(t) in a

22

fashion similar to that used in defining the average number of unexecuted communictions per

module, 8(t), and the remaining workload coupling factor, A(9). The following are the relevant
parameters:

R(t) =remaining computation as defined above
P(® = number of system processors available at time t for R

Ti(= mean computation time spent by processor P; per module of R(1)

T;(t) = mean time spent by processor P; per intermodule communication of R

3 = (Zjal([)ﬁj(O))/m(t) = mean number of intermodule communications per module of R()
Tit) = v + 6'(t)1i(t) = mean execution time spent by processor P; per module of R¢)

4® = (e + 8'(t)’!:i (1)) = Efficacy of processor P; with respect to the workload of R(t)

Note first that have made the number of processors available for the remaining computation, p(), a
function of t. This number could be less than p if some of the initial set of processors received
zero load and were subsequently engaged with other tasks. Or p(t) may be larger than p if some of
the system processors were already engaged at the time of intitiating the workload at hand but were

freed later. Note also the introduction of the new parameter 8'(t) and compare it to the parameter
3(t) previously defined in (60). Whereas 8(t) represents the average number of unexecuted

communications per module of R(p), &'(t) represents the total number of communications that a
module in R(t) has to deal with, which includes reading from memory the communication data
received from previously executed modules that have been removed from R(). This is why in the

expression for 8'(t) we use d;(0) rather than ;0.

We are now ready to present the criterion for the optimal redistribution of the load
represented by the remaining computation Rt at time t. Al we have to do is apply the previously
established criterion of section 4.2 using the appropriate parameters for R(t) we have defined in this
section. We present the result as a procedure in the next section.

23

5.2 Procedure : Optimal redistribution

(1) Arrange the p() processors available at time t in the nondecreasing order of their efficacy :
()2 () 2.2 ayy() where ain) = U () + 8©T() , 8'®) =(Zj81(t)5j(0))/m(t)
(2) Determine the integer qt) <p() and the value tq® from the relationship

f(tq() = mimy { f(t(t)) } s k=1,2...p0

where
w® = m@/Ea® , f4o) = - atkROR + btk + o(tk) ,
a(tk) = de(c/OMO[Z)2 + (Tkai)?] |
b(tk) = [dy+d,Zxuait) + (dech®m@) - dyge,)Z¥a,0] , c(tk) = dyuy, ;m()
(3) Determine the optimal load distribution as

Wtg® = (tgar®, tgWa®, ..., tqWa®, 0, 0, ...,0) , m@=Zdtvayy
by allocating the entire load to the first q(t) processors in proportion to their respective efficacies.

Note that this dynamic redistribution procedure is identical to the static distribution procedure
we derived earlier, with all parameters now reflecting the state of the remaining computation R¢).

5.2 Redistribution policy

For any given t with a current distribution x(t) = (X1{t), X200, . . . Xp(t)) and Zixi{t) = myt), the

remaining m(t) unexecuted modules can be redistributed using the above dynamic allocation
procedure to obtain a new optimal distribution x*() = (x,*(®, X3*(©) ...xp* (1)) with Zx;* (1) = m(),

which minimizes the objective function H(x()). The redistribution from x(t) to x*(t) involves
transferring a certain number of modules and their data from their current processors to other
processors. This redistribution can be justified only if its cost does not exceed its benefit. We now
define metrics to assess the redistribution cost and benefit, and use them to formulate a simple
policy for deciding whether to go ahead with the module migration at any given time t. Let n(t)
denote the number of modﬁles that must be transferred to affect the redistribution from x(t) to x*@) :

n(t) = number of modules to be redistributed = (12)Z;1x;®) - x;*(®)|
The expression for n() is a direct consequence of the fact that .(xy(t) - x;*(t) = m@) - m() = 0. We

shall express the cost of redistribution as the sum of the cost of transferring the n(t) modules plus

~ A

the cost of transferring the communication data already received by each module from previously
executed modules:

Cost of transferring n(t) module = Chod® = kyn(
Cost of transferring communication data = Caaa® = kon®[8'(t) - 8(D)]

where k) and k; are proportionality/scale factors, and 8'(t) - 8(t) is the average number of
communication data received by a module in R(t) from already executed modules. Thus

Total cost of redistribution = C(f) = Cpyoq(® + Ciara® = kyne) + kzn(t)[a'(t) - &(n]
We shall measure the benefit of redistribution by the decrease in the value of the objective function
as a result of going from the current distribution x(t) to the optimal distribution x*(t):

Benefit of redistibution = AH(t) = H(x@) - Hx*®)
The value of the benefit at time t can be computed from the expression for H(x) in (15). Thus,
redistribution is carried out only if the benefit outweighs the cost , i.e. if

AH(t) > KC(t)

where K is a proportionality/scale factor chosen in some appropriate manner.

3.3 Frequency of redistribution and optimality

An important issue in the implementation of the dynamic distribution policy is the question of
how often should load redistribution be invoked. The procedure has been formulated such that it
can be invoked at any time t during workload execution. Assuming the cost of running the
procedure is not an issue, the utmost performance from employing this dynamic distribution
strategy is attained if the procedure is invoked greedily, i.e.whenever a processor completes the
execution of one module and before it begins the execution of another, at which time the value of
m(t) decrements by 1, and a new state of R(t) emerges with new values for the various applicable
parameters. Another event that warrants invoking the procedure arises when the set of available
processors is augmented due to the freeing of one or more processors that were unavailable at the
time of the last redistribution. Each application of the procedure represents , in effect, an updating
of optimality for the remaining computation.

What is highly interesting about this procedure is that this adjustment for optimality goes
beyond the updating of parameters in response to a change in the value of m(t) or a change in the
set of available processors. This arises from the fact that the dynamic procedure tends, with each
application, to correct for its inherent inaccuracies and the inaccuracies of the model on which it is
based. Recall that there are three basic sources of inaccuracy underlying the dynamic load
distribution strategy we have formulated: Using average workload parameters, ignoring

25

synchronization delays in modeling time execution, and excluding partially-executed modules
from redistribution. The procedure tends to offset the deviation from optimality arising from these
effects. To see why this is so, recall that the optimality criterion allocates to each processor a load
proportional to its efficacy, such that all processors will have the same value of execution time
completion : T; = t(x) for all i. Consider what might take place between invoking the procedure at

time t; and subsequently at time t,. If the specific modules allocated to processor P; at time t;
happen to be, say, larger than the average-parameter module, then P; will fall behind in execution
time and will have at time ty a larger number of unexecuted modules X;(to) than it would otherwise.
Let x;*(1) be the new optimal allocation, If x*(t) > xj(t2) thch X;¥(t) - x{(t) modules would be
added to P;, which is less than it would get otherwise. If Xi*(t2) <xj(t2) then x;(tp) - x;*(t2)
modules would be removed from P;, which is more than it would loose otherwise. Thus, in every
case the larger than average loading of P; at time t; tends to be corrected at time ty . The same
arguments apply if P; falls behind because it experiences synchronization delays or because it had
.at time t; a partially executed module that was not accounted for by the redistribution procedure.

Thus repeated application of the procedure improves the accuracy of its performance by reducing
the deviation from true optimality resulting from ignoring module specificity, synchronization
delay, and partially-executed modules. This would especially true if the procedure is applied
greedily as described above.

5.4 Implementation issues

One important issue in the implementation of the dynamic load distribution procedure is the task
of maintaining current updated values for the parameters of the remaining workload R(t), such as
8(t), rj(1), and T,(t). To illustrate how this might be done recursively, assume that the redistribution

algorithm is invoked every time a processor completes the execution of a module. Assume that the
last redistribution occured at time t, when the remaining computation was represented by the graph

Rt c'onsisting of the set of unexecuted modules corresponding to the index set I(t;) whose
cardinality is II(t;)l = m(t1). Assume that the next redistribution is invoked at time ty when the

execution of module M; is just completed.The updated value ri{t2) can be computed from the

previous value ry(t)) by the following simple recursive relationship:

Tt} = [m(tprity) - ril/{me) - 1]
where ;i is the computation time of module M; on processor P;. The derivation of the above

relationship is as follows:

Ii(ty) = stl(a) rk/m(iy) = [Raern)ri¥) - 1)/ imaen) - 1] = (Z ke Imee) - 1] - r/imey) -1]

26

= {m@/[m) - 1} (Epegey Mm@ - ri/imey) - 1) = {m@/Imey)-11}r560) - 13/[m(ey)-1]

= [m)r() - 1)/ [mey) - 1]
The above relationship implies that if i = ri(ty) then 1y(ty) = ry(t;). In other words, if the

computation time of the completed module is approximately equal to the current average, the
updated average will be approximately equal to the preceeding value. Similar recursive

relationships are applicable to §t) and (D).

6. Conclusions and Recommendations

We have developed in this paper simple criteria for optimizing the distribution of coupled load
modules over heterogeneous processing elements. A simple computational model of the workload,
with average values of the relevant parameters, enabled us to minimize a weighted combination of
four metrics of performance and cost: workload completion time, communication cost, resource
utilization cost, and idle-time cost. The weight coefficients can be used to "tune” the decision
model to the specific objectives of a particular system/workload situation. A straightforward
analytical criterion was derived which enables the determination of the optimal load distribution
according to the numerical values of the problem parameters. The optimal load distribution was
found to be the apportionment of the total load among the q < p most efficacious processors in
direct proportion to their efficacies. The efficacy of a processing element was defined as a
composite measure of its cpu speed, memory speed, and the degree of coupling among the
modules of the given workload. The criterion provides a straightforward procedure for determining
the number q of processors to be thus engaged in executing the given workload. In the absence of
synchronization delays, the optimal distribution results in equal execution time for all engaged
processors, thus eliminating idle wait-time and therefore representing the ideal load "balancing” on
the heterogeneous system. The p - q least efficacious processors remain unengaged in workload
execution and can be allocated to other jobs.

Since average values were used in the analysis, the criterion should be regarded as an
approximate rule-of-thumb policy for guiding load distribution.The policy may be implemented on
its own; or as a first step in a two-level optimization procedure employing an adaptation of any of
the known task-specific assignment algorithms, with a resulting substantial savings in the overhead
cost of such algorithms running on their own,

Another source of inaccuracy in the results stems from ignoring the effects of synchronization
delays experienced by processors while waiting for interprocessor communications. Since
synchronization delay creates the potential of prolonging the load completion time, it follows that

27

the estimate of workload completion time used in our objective function might actually be an
underestimate of the desired metric,

Exact continuous-variable analysis was employed in the derivation of the closed-form criterion
which therefore provides the absolute optimal distribution comprising non-integer-valued module
allocations. If load module fragmentation for fitting the ideal distribution is not possible,
integer-valued allocations can be derived by a straightforward and computationally efficient
algorithm.

The optimal load distribution procedure can be applied dynamically at any time during
workload execution using the appropriate parameters pertaining to the remaining workload
computation. The procedure can be greedily invoked at the time of individual module completions
or whenever the set of available system processors changes. Updated values of the needed
parameters can be efficiently computed in a recursive fashion from one invokation to the next.
Decision to carry out the prescribed redistribution is governed by whether its cost is outweighed by
its benefit as measured by the would-be reduction in the decision objective function value.

- Although the analytical procedure can handle non-integer load allocations, it is suggested that
pre-emption of partially executed modules be excluded from redistribution because of the high
overhead of context switching it might entail. This would represent a third source of deviation from
true optimality, in addition to using average load parameters and i gnoring synchronization delay.
Nonetheless, repeated applications of the dynamic distribution algorithm during workload run-time
tends to persistently and adaptively correct the deviations from optimality resulting from these

inaccuracies.

Further research is needed to extend the approach and the results of this paper to heterogeneous
systems where the processor loading levels are constrained by ceilings dictated by limitations of
physical resources, such as memory capacity. In this case the, the minimization of the objective

function has to be performed under the additional constraints Xj £L;, where L; is the upper bound
limiting the loading of processor P;. This extention has been accomplished in [23] forstatic load

distribution and using a simplified objective function consisting only of the workload completion
time. Further effort is needed to bring this extension to bear on dynamic load distribution and the
multimetric optimization decision model formulated in this paper.

28

7. Appendix
7.1 Lemma 1: f £¢") = min,f(o), then Celtply] where tj=m/a; , ty = my/(a +ay+-+ay)

Proof: we first show that for any value of t, we must have t > tp- Assume, to the contrary, that

t <t,. Then we must have
t(x) = max;{x;/a;} < p, Xifay <t foralli, x;< ajty alli , Ix; <Zajtp , m<tpTa
which is a contradiction to the definition of tp = m/Za; . Hence we must have t > tp - We next show
that for and t =t' > t; we must have f(t) > f(t;) and therefore t' cannot be a minimum point of f(t).
It follows from the definition of f(t) in (25) that, to have f(t) > f(t;), we must have
dit’ + mingepyG(x) > dit; + minyenyG(x)
Since t' > t;, the above inequality would be true if can prove that

minst(tr)G(x) 2 minXED(u)G(x) (AQ)

Now consider three different distributions: a specific x1eD(t,), any x'eD(t’), and any x"eD(t;)

defined as follows:

x! xh=m , xi=0 foriz1, t(xl)= max; {x!i/a;} = m/a, =t,
X Zx'i=m, tx)= max;{xy/a;} =t
xrr : Zxrri =m , t(x“) = ma.xl[x"]/a.l} = tl

Evaluate the difference G(x') - G(x!) using the expression for G(x) = dyZuix; - AXx;2 from (19):
G(x) - G(x1) = d,Zux|; - AZx2 - dyu;m + Am? = duZ(uy- ux + A[Ex)? - Ex'2] 2 0
The last inequality follows from u;-u; 2 0, as implied by (12), and (Zx')? - x';2 = 0 which is

always true for a set {x'j} of non-negative numbers. Repeating the same for G(x") - G(x1), we get
G(x") - G(x1) = d, Zux"; - AZx"2 -duym + Am? = dyZ{u;- u)x"; + A[Zx")? - Zx"2] 2 0
Thus we have G(x") > G(x1) for all x"eD(t), hence G(x1) = Minyey1)G(X). Also we have G(x")

2 G(x1) for all x'eD(t"), hence minyepyG(x) 2 G(x1). The relationship in (AQ) follows from
these two conclusions, and the proof of the lemma is complete.

7.2 Lemma 2 + For any given value of t , the value of g(t) is expressed as
8(8) = miny.p) GX) = Glxv) = dyZugi - AX(xim)2 (A1)

29

where
x0 = (agt,a,. .., anept, m-2"Waie, 0, 0...,0) (A2)

n(t)smax{j:m-zjaitBO} (A3)
and therefore the explicit expression of g intermsof t is

gt) =d, I Oyay - AZO a2 4 dylingy(m-Z"Wa.t) - A(m-Z2Vy,1)2 (Ad)

Proof: Recall the definition of D(t) from (22)

D = {x: 0<xi<at, Zxj=m , x=ay for some s =i } (A5)

Note that the distribution x() satisfies all the conditions for D(t) in (A5), and therefore x® € D(1).
Note also that distribution y() in (A2) is characterized by two properties, denoted P1 and P2:
P1: The elements yitv of o) are arranged in nonincreasing order, (because g 2ay2 -2 ap).
P2: Forevery element yjo# 0, the preceding element y;.1() is equal to its upper bound a; ;t.
These two properties uniquely identify y@) . No other x # x(satisfies P1 and P2 simultaneously.

We present a proof by contradiction. Assume, contrary to the assertion of the lemma, that the
minimum of G(x) does not occur for (v but occurs for some other distribution x's 10

G* = mineep G(x) = Gx) < Gy) . x'e D) , X%y (A6)
There are two mutually exclusive cases for X', denoted by C1 and C2:
Cl: The elements of x' are arranged in non-increasing order, viz. X2 X7 02Xy,

C2: The elements of X' are not arranged in non-increasing order.
We show that either case will lead to a contradiction. Consider case C1 first. Since x' satisfies P]
and x'# x(, it follows that x' does not satisfy P2.This implies that there is at least one nonzero

element x'; whose preceding element Xj.11s less than its upper bound aqt:
0< X'j < X'j_I < aj_lt (A7)
Define the number d as

d = min { X'j y aj,lt - le_l } >0 (AS)
Consider a new distribution x" derived from x' by subtracting d from x'jand adding d to Xj-15

while keeping all other elements unchanged

o

X" = (x'y, x5, .., Xjp+d,xj-d,. .. x'p) (A9)
We now show that G(x") < G(x"), which is a contradiction 1o the starting assumption of G(x')

being the minimum value of G(x). But first we have to have check if x” ¢ D(t) by verifying that x"

satisfies all the conditions in (AS5). Note that Zx"j=2x;=m and (A8) implies that
x“j,l = x'j_l +d< gt x"j = x'j -dz0 (A1)

30

Thus x" satisfies all the conditions in (A5) except perhaps the requirement X" = at for some § = .

The only situation where this condition would be violated is when X} is the only element in x'
such that X'j=ajt, hence x"j=xj-d< ait, and ifx";, = Xjp+d< 3.1t . This would mean x";
<ajt for alliand x" is not in D(t). In this happens to be the case, we abandon x'jand focus our
attention on X'j.; instead.which has same needed property as x'j mamely, a nonzero element
whose preceding element is less than its upper bound Xj2 < a2t (since in this case x| is the
only element equal to its upper bound), and in addition we have x'j_ 1 <2j,t as indicated in (A7),

Recall the expression of G(x) from (19);

G(x) = dyZujx; - AZx;2 (A1)
G(x) - G(x") = dy(uj-uj)d + Al +d)? + xj-dy2 - xj.1)? - (x';)?}
_ = dy(u; - ujg)d + 2Ad(x'y; - Xj)+ 2Ad? > 0
The positiveness of the last expression follows from the relationships - ujq 20, X7 - X} 20,
and d > 0, as indicated in (8) ,(A7), and (A9) respectively,
Consider case C2. Since the elements of x' are not arranged in nonincreasing order, we can
identify a pair of elements x'j and x', such that

x' = {x'y, X'9, .\, Xjoeen Xk, x'p) . X' > X, k>j (A12)

Consider a new distribution x! derived from x' by swapping the magnitudes of xjand x'y :
xl = (x', x, .., x=xy,. ., xl= ST x'p) (A13)

Note that x! ¢ D(t) since Zxli=3x,=m and x=x\<at < ajt , xlg=xj<xy<at as
implied by (8) and (A12). We now show that G(x!) £ G(x) :

G(x) - Gx!) = uj (x - x) + . (x'y - XP = (e u)x-x)) 2 0
where the non-negativeness of the last expression follows from U 2 u; and X' > x. IfGx) -
G(x1) > 0, we have a contradiction to G(x") being the minimum of G(x), and the proof would be
complete. On the other hand, if G(x!) = G(x"), we repeat the same Steps applied now to x1instead
of x', provided that x! is still not arranged in nondecreasing order despite the swapping which

previously ordered X'y and x j in decreasing order. By swapping two elements in x! similar to

what we did in (A12) and (A13), we get a new distribution x2 leading again to a contradiction or to
the conclusion that G(x?) = G(x1) = G(x"). We re-iterate the procedure s < p times, which
terminates, either with a contradiction or with a distribution fully arranged in nondecreasing order,
whichever comes first. In the later case, we have

G(x$) =GxS1)=...= G(x?) = G(x!} = G(x') = minye gy G(x)
Thus , xS is a distribution arranged in nondecreasing order which minimizes G(x). But this also
leads to a contradiction, as we have already shown in case C1 above. This completes the proof.

31

7.3 Lemma 3 : Tre funcrion £(t) is continuous for all t in the domain [ty]

Proof: We focus on the points ty = m/ZKa, , where the coefficients of f(t) are discontinuous, and
verify that f+(t,) = £(t). Recall that n(ty) =k, and the expression for f(t) from (34)-(36):
() = -a(®)2 + bam)t + c(aw)

a(n()) = A[Z"0a;2 + (£009,)2] | bingp) = [di+ d,2"ua. + 2mA - dylingy1)Z"03,]

¢(n(®) = dyuyyy,m
o) - (40 = [-a(k) + alk-1y2 + [b(k) - b(k-1)] t +c(k) - c(k-1)

= -l AL ag? + (Zka)2 - (T2t - 2mAa + Ay - ug) Tva; 1+ dy(ug,; - wm
Factoring the difference of the two Squares and substituting t, = m/ZKa; :
(Zkay)2 - (Exla)? = ag(Zka; + Tkl = ax(23Ka; - ay) = 2ay Tka; - g1 2

Pl -) = -A(m/Z4a;){ [2ay Ska;)m/zka, - 2maj} = -A(m/Z¥a){ 2may - 2may)= 0

Thus, (t) is continuous at ty.

8. References

[1] H.S. Stone, "Multiprocessor Scheduling with Aid of Network Flow Algorithms," JEEE
Trans. Software Eng., vol. SE-3, January 1977, pp.85-93

[2] H.S. Stone, "Critical Load Factors in Two-processor Distributed Systems," IEEE Trans.
Software Eng., vol. SE-4, May 1978, pp. 254-258.

[3] G.S. Rao, HS. Stone, and T.C. Hu, "Assignment of Tasks in a Distributed Processor
System with Limited Memory," IEEE Trans. Computers, vol. C-28, April 1979, pp. 291-299,

[41 V.M. Lo, "Heuristic Algorithms for Task Assignment in Distributed Systems," IEEE Trans.
on Computers, vol. 37, no. 11, November 1988.

[5]1 S. Bokhari, "Partitioning Problems in Paralle} Pipelined and Distributed Computing," IEEEE
Trans. Computers, vol. 37, no. 1, Jan. 1988. .

[6] S. Bokhari, Assignment Problems in Parallel and Distribuged Computing, Kluwer Academic
Publishers, 1987. _ _

[7] B. Indukhya, H.S. Stone, and L. Xi-Cheng, "Optimal Partitioning of Randomly Generated
Distributed Programs," IEEEE Trans Software Eng., vol. SE-12, March 1986, pp. 483-495,

{8] H.S. Stone, High Performance Computer Architecture, 2d ed., Addison-Wesley, 1990, Pp.

32

309-25.

[9] D.M. Nicol, "Optimal Partitioning of Random Programs Across Two Processors," JEEE
Trans. on Software Eng, Vol. 15, no. 2, February 1989.

[10] E.K. Haddad, "Optimal Partitioning of Random Workloads in Homogeneous Multiprocessor
and Distributed Systems,” Proc of the Second IEEE Symposium on Parallel and Distributed
Processing, Dallas, Texas, Dec. 1990. '

[11] E.K. Haddad, "Partitioned Load Allocation for Minimum Parallel Processing Execution
Time," Proc of the 19th International Conference on Parallel Processing, St. Charles, Illinois,
August 1989,

{12} EK. Haddad, "A Criterion for the Optimal Assignment of Program Modules in Parallel and
Distributed Systems. International Journal Of Mini & Micro Computers, Special Issue on
Distributed and Parallel Computing, vol. 12 no. 3 , 1990.

[13] E.K. Haddad, "Optimizing the Parallel Execution Time of Homogeneous Random
Workloads" Proceedings of 21st International Conference on Parallel Processing,” St. Charles,
IHinois, August 1991.

[14] E.K. Haddad, "Variation of Parallel Processing Time with Continuously Partitioned Load
Allocation.” Proc of Fourth SIAM Conference on Parallel Processing for Scientific Computing,
Chicago,11-13 December 1989.

f15] T.C. Chou and J.A. Abraham, "Load Balancing in Distributed Systems, JEEE Trans. on
Software Engineering, vol. SE-35, 1982, pp. 401-12.

[16] J.L. Gaudiot and J.LPi, "Program Graph Allocation in Distributed Multicomputers," Parallel
Computing , Northland, vol. 27, 1988, pp.227-47.

[17] K. Hwang and J. Xu, "Efficient Allocation of Partitioned Program Modules in a
Message-Passing Multicomputer,” Proceedings of the ISMM International Conference on Parallel
and Distributed Computing and Systems, New York, 10-12 October 1990.

[18] J.Xu and K. Hwang, "A Simulated Annealing Method for Mapping Production Systems onto
Multicomputers," Proc. of Sixth IEEE Conference on Aritficial Intelligence Applications, March
1990, pp. 130-136.

[19] A.N. Tantawi and D. Towsley, "Optimal Static Load Balancing in Distributed Computer
System," Journal of the ACM, vol. 32, 1985.

[20] K.W. Ross and D.D. Yao, "Optimal Load Balancing and Scheduling in a Distributed
Computer System" Journal of the ACM, Vol.38,No. 3, July 1991.

[21] W.W. Chu, L.J. Holloway, M.T. Lan and Kemal Efe, "Task allocation in distributed data
p}ocessing," IEEE Computer, pp. 57-69, November 1980.

[22] V. M. Lo ,"Task assignment in distributed systems,” Ph.D. Dissertation, Dep. Comput. Sci.,
Univ. Hlinois, Oct. 1983.

[23] E.K. Haddad, "Optimal Distribution of Random Workloads over Heterogeneous Processors
with Loading Constraints" Proc of the 1992 International Conference on Parallel Processing, St.
Charles, Illinois, August 1992.

33

