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This article presents the application of a recently developed statistical regression method

to the controlled instrument calibration problem. The statistical method of Model Robust
Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument
calibration by reducing the reliance of the calibration on a predetermined parametric (e.g.
polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from
the predetermined parametric model to be augmented by a certain portion of a fit to the
residuals from the initial regression using a nonparametric (locally parametric) regression
technique. The method is demonstrated for the absolute scale calibration of silicon-based
pressure transducers.
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H Hat matrix X(X'X)"1X’

k Number of regressor variables

m.d.f. Degrees of freedom used by a particular model, tr(H)
MSE Mean square error

n Number of samples

r, R Residual

T Predicted or estimated residuals

R Average Range

tr Trace of a matrix

V Voltage

Vo Voltage at zero pressure

W Diagonal weight matrix

X Model matrix

X Set condition

Transpose of the model matrix
Regressor variable

Response

Estimated/predicted response

Zero shifted voltage, Z =V — 1}
Unknown parameters

Estimate of the unknown parameters
Estimated standard deviation
Variance

MRR mixing parameter
Asymptotically optimal MRR mixing parameter
A* Estimated Asymptotically optimal MRR mixing parameter

W N b 4

> 9 »
[V

>
*

Sub/Superscripts

0 Quantity or vector at a specified location

LLR Local linear regression

LPR Local polynomial regression

MRR1  Model Robust Regression 1, see Section I1.C.1
MRR2  Model Robust Regression 2, see Section I1.C.2

ker Kernel regression

NP Nonparametric

ols Ordinary least squares
P Parametric

I. Introduction

It is well understood that no instrument behaves exactly according to a predefined theory. Occasionally,
the theory does not adequately represent the physical behavior of a system, and there often exists an intrinsic
difference in individual instruments due to variability in the manufacturing process. At times, no theory is
available for an instrument’s behavior, and one must rely on experience and data analysis.

This inherent deficiency in the manufacturing process is often seen with diaphragm based pressure trans-
ducers. No two transducers will behave exactly the same way. All have properties that vary from one to
another, whether it is the material properties, mounting differences, or micro fractures in the diaphragm
itself. However, the transducers do respond similarly in a broad sense, which allows the definition of a
calibration model.

Electronically Scanned Pressure (ESP) transducers all have a nearly linear response to pressure. To
account for the slight nonlinearity of the response curve, higher order terms are often included in the
calibration. These higher order terms perform well for the small curvature present in the higher pressure
region of the gauge; however, near zero these adjustments are inadequate and induce calibration error.
This presents a problem for very low pressure measurements in both the absolute and differential regimes.
Typical polynomial models do not account well for this behavior. Everhart! described this phenomena and
proposed a more representative mathematical form, which will be discussed later. Since much effort has
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been conducted in development of a parametric model for this application, this will be used to highlight the
power of the current method.

For simplicity, this paper will consider the univariate calibration problem. Thus, for any given calibration,
there are n pairs of measurements (z;,y;), ¢ = 1,...,n, where x; is the set condition and y; is the instrument
response. In a typical regression model y is viewed as a function of z, y = y(z); however, in the case of an
instrument calibration, it is often advantageous to use an inverse calibration model, x = z(y). The goal of
the instrument calibration is to obtain a function or mapping of the instrument response y that will yield
the condition that the instrument is measuring. Since the inverse regression model is used in practice for
instrument calibration, this will be the main focus for the present article.

Another distinction that is necessary for this article is that of controlled versus random calibrations.
According to Cheng and Van Ness,? “If the z’s in the calibration stage are at fixed pre-chosen levels, the
calibration is said to be controlled, but if the z’s are random, the calibration is said to be random.” This
article will deal with controlled calibrations. The contamination or noise level dealt with here is at or
below one percent of the instrument’s full-scale output. Random calibrations typically deal with values that
have contamination of up to ten percent of the full-scale output. Further, it is assumed that outliers are
negligible, and the instrument response will incorporate any local instrument bias and inherit only the bias
of the calibration standard.

In regression, the terms “parametric” and “nonparametric” signify two different approaches to the model-
ing process. In parametric regression, a known or specified model form is used for fitting the data. Generally,
this form comes from either prior experience, or scientific theory. The problem then becomes one of deter-
mining values for the parameters of the model. In nonparametric regression, the user approaches the problem
with no known model and attempts to fit a curve to the data points by joining a sequence of curve sections
obtained through localized modeling. The final result is a regression curve not represented by any global
form. Most often, this nonparametric approach is used when a theoretical reference curve is unavailable for
a process. Semiparametric regression is a relatively new approach to the problem. This technique involves
fitting the data both parametrically and nonparametrically, and then combining the results to form a curve
that is based on a suitable theoretical form, yet still being able to adapt to aberrations from that form.

The purpose for this work is to demonstrate a methodology, called Model Robust Regression (MRR),
for improving the use of data taken for the express purpose of controlled calibration. The advantage of
MRR methodology is that it is not entirely dependent on the functional form of the parametric regression
model. Given this advantage, any knowledge or understanding of the problem that can be represented in a
parametric form can then be incorporated to yield an increase in calibration accuracy.

For completeness, this paper will review the pertinent regression methods, including ordinary least squares
in Section II. Details of the MRR for mixing of the parametric and nonparametric models are given in Sec-
tion III. The statistical measures developed for comparison of methods and overall measures of goodness
of fits and predictions will be presented in Section IV. Section V gives a brief description of the pressure
instrumentation used in this study. The parametric and MRR regressions are applied to the data in Sec-
tions VI and VII, respectively. Section VIII contains a discussion of the properties of the MRR procedure
with cited examples. Readers interested in the mathematical foundation of the regression methods should
begin in Section II; others only interested in the application and results of the current procedure should
begin in Section V.

II. Regression Methodology

The following review of regression methodology is comprised of excerpts taken from Mays, Birch, and
Starnes.® The basic problem of regression is explaining the response of a variable y by using k (with k > 1)
regressor variables, X1, Xs, ..., X}, according to a model of the form y = g(X1, Xa,..., X) + e. The term
e is a random error from the process, often assumed to have mean 0 and variance o2. Of interest is when
the researcher has some knowledge of the form of g, but there are regions in the data that do not conform
sufficiently to this underlying structure. Of particular interest is dealing with small data sets where the
sample size n (the number of independent observations of y, X5, ..., Xj) is small, say less than 50. This
situation is often the case in calibration, especially when it is done in-situ.
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A. Ordinary Least Squares (OLS)

The parametric approach to regression is to assume a known linear form for g, rewrite the model as
vy = X8 + e, and estimate the unknown parameters in 3 from the data. Here X is an n X (k 4+ 1) model
matrix of k regressors augmented with a column of ones. Ordinary least squares (OLS) minimizes the sum

of squared residuals to obtain the fitted values as

Fois = XBg, = X(X'X) ' X'y = H Py, (1)
where H®®) is the OLS “hat” matrix (Myers?). The fit for y; at location X; may be expressed as g§°ls) =
Z?Zl hg;-)ls)yj, a weighted sum of the n observations y;, where hgi)ls), ces hgzls)
of H(®®) | The weighting scheme is a direct consequence of the prescribed model. If the model is misspecified,
even over subsets of the data, then inferences from OLS will be misleading.

are the elements of the ith row

B. Nonparametric Regression

An alternative approach is to use nonparametric regression, which is most useful in situations where the
function ¢ is considered to be unknown and the user has no knowledge of its form. Local linear regression
(LLR) receives the emphasis here. The prediction of g(xg) at location x{, = (X1 ... Xko) uses weighted least
squares, where the weights are a decreasing function of the distances of the respective regressor locations
from xg. This work emphasizes the “single regressor model” where k = 1. That is, x{, = (Xo). Extensions
to cases where k > 1 can easily be made. Since nonparametric techniques rely totally on the data and have
no specific functional form, they may fit to irregular patterns in the data and may be more variable than
parametric fits. In other words, a nonparametric method can mistake noise for a signal.

Thus, a dilemma is created for the common problem that occurs when there is partial knowledge about
the underlying model. For example, a parametric model might explain most of the data, but could be
inadequate in several regions of the independent variable space, whereas a nonparametric fit would simply
ignore the important information that the engineer may have about the underlying structure. Also, it is
possible that even with the presence of important deviations from the underlying model, a lack of fit test
would incorrectly conclude that the parametric fit is adequate (Mays, Birch, Starnes?).

There are several possible solutions to the above dilemma. Two recently developed model robust methods,
MRR1 and MRR2, are presented in this work. MRRI is shown in contrast to the methodology of MRR2;
however, MRR2 has been selected as the regression method of choice based on analysis in Mays,® and Mays,
Birch, Starnes.®> Another method, partial linear regression (PLR) was developed by Speckman,® and is
discussed by Mays>® for purposes of comparison. The goal is to obtain a simple procedure that maintains
robustness to a misspecified model while adequately fitting the data (i.e., to find a model that adequately
represents the data, even if there is an error in the initially assumed model form). These techniques contribute
to the growing list of literature dealing with semiparametric regression (described below). Such references
include work by Speckman,® Burman and Chaudhuri,” Rahman, Gokhale, and Ullah,® Hjort and Glad,®
Eubank and Spiegelman,'® and Newey.!! Work by Wooldridge,'? Robinson,'® and Ullah and Vinod
exemplify the growing use of semiparametric regression in areas such as economics.

Hirdle'® presents a thorough discussion of kernel regression and other popular nonparametric procedures.
Wand and Jones'® and Fan and Gijbels'” also address nonparametric fitting procedures, and include detailed
coverage of local least squares techniques. Kernel regression gives fitted values according to the expression
gjgkcr)(z (X)) => hg-{cr)yj, for j =1,...,n. These fits may also be expressed as

ykcr = H(kcr)y, (2)

(ker)

P

where H&er) = [h
kernel weights

] is denoted as the kernel “hat” matrix. The current work uses the Nadaraya-Watson

. X — X; = X, —X
= (55 /S (55
j=1

(see Wand and Jones!6), where the kernel function K (u) is a decreasing function of |u|, and b > 0 is the
bandwidth (smoothing parameter), which determines how rapidly the weights decrease as the distance from
the location being fit increases. Other weighting schemes have been introduced and discussed by Priestley
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and Chao,'® Gasser and Miiller,'® and Chu and Marron.?° The kernel function employed in this current
work is the simplified Normal (or Gaussian) kernel given by K(u) = e(_“2), where u is a real number.

The bandwidth b controls the smoothness of the resulting estimate of g and in practice is crucial in
obtaining a “good” kernel fit that strikes the proper balance between the variance, which may be high when
b is too small, and the bias (or squared bias), which may be high when b is too large. The normalized
bandwidth, by, is determined for the unit normalized regressor axis by subtracting the offset and dividing
by the range. Mays and Birch?!22 discuss bandwidth choice considerations in nonparametric regression in
general and new considerations brought about by the model-robust procedures described below. Key issues
in bandwidth choice development are the minimization of some mean squared error criterion (Hérdle,®
Rice,?® Chiu,?* Hirdle and Marron,?® Chu and Marron,? Faraway,2% and Ruppert et al.2”), the use of the
leave-one-out criterion PRESS = > (y; — 9 —:)? (Allen®®), where §; _; is the fit obtained at z; when the data
point (y;, x;) has been temporarily removed from the data set, and the use of penalizing functions to protect
against small bandwidths (Rice,?® Hérdle,'> and Hirdle et al.??). Combining these methods, and adding a
penalty for large bandwidths, Mays and Birch?''2? propose a new “penalized PRESS” bandwidth selector
called PRESS**. This new selector is needed due to new smoothing considerations for the model-robust
methods. In general, for selecting a smoothing or mixing parameter 6 for the nonparametric or model-robust
methods, each having a hat matrix H, and defining SSEgy to be the sum of squares error when using the
chosen value 6, and SSEp,.x to be the maximum sum of squares error across all 6 values (e.g., when b = 1
for kernel regression with X values scaled from 0 to 1), PRESS** is defined as

PRESS

PRESS™ = (4)

n — tr(H) + (n — 1) S —S5Ea |

Also discussed in Mays and Birch?!:%2 is the fact that PRESS** may yield one or two local minimum values
(giving the appropriate bandwidth value and/or b = 1), and a graphical remedy for this possibility.

The above discussion deals with “global” bandwidths, but locally adaptive bandwidth selectors may prove
beneficial in some instances (Altman,3° Miiller and Stadtmiiller,3! Hirdle and Bowman,3? and Faraway?2°).
These more computationally advanced “improvements” to bandwidth selection may be studied in the future,
but should benefit each of the procedures similarly. For a discussion on bandwidth choice in the related field
of density estimation, see Park and Marron.?3

A major problem inherent in kernel regression is predicting at the boundaries of the data, where the
kernel weights become asymmetric, and bias and variance can be affected. Local polynomial regression
(LPR), introduced by Cleveland®* and discussed as a boundary bias correction by Hastie and Loader,® is
used here to eliminate boundary bias and other problems. This technique obtains the fitted value ¢; as the
fitted value of a dth degree polynomial fit to the data using weighted least squares regression, where the
weights w;; are assigned to each observation based on an initial kernel fit to the data. The LPR fit to y; at
location X; is obtained as

ygLPR) _ x;(LPR)BELPR)

—  /(LPR) X/(LPR)WLPR(Xi)X(LPR) _1X/(LPR)WLPR(XZ_)y

_ PRy (5)

where WIPR (X)) is the diagonal weight matrix with diagonal elements consisting of the n elements of the ith
row of H¥ ") and X(PR) is the model matrix for LPR determined by the degree d of the polynomial, with ith

row defined as x;(LPR) = (1X; X2 ... X%). The n fitted values may be expressed as y1.pr = HIPR®y, where

H(PR) _ [h/_(LPR)]
36,57

. Cleveland®* and Hastie and Loader3® present this development with further discussion,
and Stone shows optimal convergence rates for LPR in a certain minimax sense. In choosing the order d
of the local polynomial, a first order fit, yielding local linear regression (LLR), is an adequate choice for the
majority of cases, and is used here as the nonparametric fitting technique. Fan3® gives asymptotic optimality
properties and advantageous small sample properties via simulations for LLR.

C. Semiparametric Regression

With partial information about the underlying model, the idea now is to combine a parametric fit that takes
advantage of this knowledge with a nonparametric fit that captures any structure in the data not explained
by the parametric fit.
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1. Model Robust Regression 1 (MRR1)

A simple and effective procedure that addresses the shortcomings of previous semiparametric methods is
Model Robust Regression 1 (MRR1), developed by Einsporn and Birch.?® MRR1 combines the fit of a
parametric model with the fit of a nonparametric model, both to the raw data, in a convex combination via
a mixing parameter \. Letting y.is be the OLS fitted values and y1,1.r be the local linear fitted values, the
MRRI1 fitted values are obtained simply as yMrr1 = AYLLR + (1 — A)Fo1s where A € [0,1]. In terms of hat
matrices,

yurrr = AHIRy 4+ (1 - )HEWy
= PDHE 4 (1- ) HC |y
H(MRRl)y. (6)

The purpose of A is to combine the parametric and nonparametric fits in the most efficient proportions, and
A increases from 0 to 1 as the amount of misspecification of the user’s parametric model increases. The
choice of A involves considerations similar to those for bandwidth, and PRESS** may be used as the data-
driven method to estimate A. An asymptotically optimal estimator (in terms of minimizing the distance
between the unknown regression function and the MRRI1 fit) that behaves similar to PRESS** is presented
in Section III, where convergence rates are also given for both selection criteria.

MRRI1 combines two separate fits to the data at each X;, selecting a value between them for the final
estimate of y;. If locations exist in the data where the two fits are either both too high or both too low, then
MRR1 has no way to correct for these insufficient fits. It is important to note that MRR1 is a procedural
definition. Specific use of ols for the parametric portion and LLR for the nonparametric portion of the overall
fit is not required. Robust, weighted, etc. regression techniques can be substituted for ols and LLR as long
as the substitution is of like kind (parametric or nonparametric).

2. Model Robust Regression 2 (MRR2)

The other model-robust procedure, Model Robust Regression 2 (MRR2), is motivated by the need to improve
upon the shortcomings of MRR1 and other existing semiparametric methods. Similar to MRR1, two separate
fits are combined to obtain the final fit. The parametric portion of MRR2 is a parametric fit, say ¥os, to
the raw data (as in MRR1). However, the nonparametric portion of MRR2, instead of coming from a fit to
the raw data, comes from a fit to the residuals (r) from the parametric fit. The nonparametric fit (using

LLR) may be expressed as I = HgLLR)r, where HgLLR) is the local linear hat matrix for fitting the residuals.
The final MRR2 fit is obtained by adding a portion of the residual fit back to the original parametric fit:
YMRR2 = Yols + Ar. As in MRR1, A increases from 0 to 1 as model misspecification increases, and \ and
the bandwidth are chosen separately. Also, A may be chosen by PRESS** or the asymptotically optimal
estimator for MRR2 discussed in Section III. The basic motivation for A is as follows. If the parametric fit
is adequate, then adding back the nonparametric fit to the residuals would increase the variability of the
overall fit. A A\ =~ 0 would control for this. If the parametric fit is inadequate, then the nonparametric fit
should be used to improve it. The amount of misspecification of the parametric model, and thus the amount
of correction needed from the residual fit, is reflected in the size of A. MRR2 uses A to control the variance
of the final fit by allowing use of only a portion of the nonparametric fit. In terms of hat matrices,

YMRR2 = H(OIS)Y+)\H5LLR)r

|:H(ols) + /\HgLLR) (I _ H(ols)) y
H(MRR2)y. (7)

It is the authors’ contention that MRR2 is the best overall procedure for fitting data in situations of small to
moderate model misspecification. MRR2 is simpler and more intuitive than other semiparametric methods
and eliminates the cases in MRR1 where both of the component fits are inaccurate in the same direction.
This is accomplished by the residual fit, which provides flexibility to correct for these bias problems in the
initial parametric fit. It is also conjectured that applying the nonparametric fit to the residuals instead of
the raw data will provide fits that are less variable, because the structure left in the residuals should be less
complex than that of the raw data. As with MRR1, MRR2 is a procedural definition and does not explicitly
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require ols and LLR as long as a parametric method is substituted for ols and a nonparametric method for
LLR.

III. Asymptotically Optimal Mixing Parameter

In this section, derivations are given for asymptotically optimal estimators of A, the mixing parameter,
that minimize the distance between the unknown regression function and the MRR1 or MRR2 fit. The
term “asymptotic” means that the number of observations increases without bound, and the manifestation
of these observations in the X space increases uniformly in the predictor space. This creates a fixed effects
structure, as n — oo, over a uniform design. In other words, if there are an infinite number of equally
spaced points the estimate would asymptotically approach the actual parameter.

For any two functions of x}, h; and hy, the inner product is defined as

1 n
(hy,hy) = - Z;hl(xz-)hz(xi), (8)
and the norm as
|hi|” = (hy, hy), 9)

with
[hi| = +/(h1,hy). (10)

For the MRRI1 fit, a mixing parameter is sought to minimize

(MRR1) _gH _ ||)\§,NP+(1—/\)$’P — gl ()

where g is the true function. As in Burman and Chaudhuri,” it is easy to demonstrate by simple calculus

that Equation 11 attains a minimum at
TV (M- e) - (9 -7 )
= N P2 = N P12
[NAE [yNF — 37|

(12)
Since ¢ is unknown, A\* must be estimated; thus Mays, Birch, and Starnes® propose the following asymptot-

ically optimal data driven mixing parameter:

5\* . <$’ljf _S’Eiay_yp>
= N P2
[yNF — 3P|

(13)

where 97, and g™ represent the parametric and nonparametric estimates, respectively, obtained by leaving
out the ith observation when fitting at x;. These cross-validation estimates are used because the nonpara-
metric estimate gN* at z; may overfit the data and it is desirable to protect against putting too much weight
on g in the mixing process.

If the parametric model is incorrect, MRR1 can achieve a consistent estimate at the asymptotic conver-
gence rate of the nonparametric estimate. Otherwise, if the model is correct, then MRR1 achieves consistency
at the parametric rate, faster than a purely nonparametric estimate. Details, including the derivation, as-
sumptions, and proofs for the asymptotically optimal MRR1 mixing parameter are found in Burman and
Chaudhuri” and Starnes.*?

For obtaining the optimal estimator for MRR2, consider the parametric fit to the data, y©, and the
nonparametric fit to the residuals, . Similar to the MRR1 case, it can be shown that

y(MRR2) _ gH _ H/\f' s gH (14)
attains a minimum at . . p
r,g-—
UL b ) J ). (15)
2]
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The suggested asymptotically optimal data driven mixing parameter is given by

B oP
jo = By =3) (16)
2]l
The MRR2 model possesses the same asymptotic properties as those of the MRR1 model; thus converging
to the underlying model whether or not the specified model is correct. Details, including the derivation,
assumptions, and proofs for the asymptotically optimal MRR2 mixing parameter are found in Starnes*® and
Mays, Birch, and Starnes.?

IV. Statistical Inference for Goodness of Fit (Confidence and Prediction
Intervals)

Having reviewed the methods, it becomes necessary to use some metric to compare the methods. There
are several metrics that can be used to infer model performance: the confidence interval, the prediction
interval, and the mean square error. This section will discuss the corresponding confidence intervals (C.1.)
and prediction intervals (P.1.) for the various fitting techniques and the mean square error calculation.

As developed by Mays,? 4! the form of the confidence interval for the semiparametric methods will closely
resemble that of OLS. The OLS (1 — «)100% C.I. for the true mean p,, at the location z¢ for a (p — 1)th

order polynomial is given by
I £ b2 6 /x0(XX) ~1xo, (17)
~ (ols)

. . T . - . _a\th
where y” " is the estimated value at the individual point x{, = (1zga? --- 2} b, tn—p,g is the (1To‘)t
percentile of the t-distribution with n — p degrees of freedom (d.f.), and & is an estimate of error standard

deviation. The usual estimate of o is

2
[ (™)
e = — (18)

Similarly, the OLS (1 — «)100% P.I. for individual measures ¥, at the location xg is given by

Tt 564/1 + xH(XX) 1. (19)

The general form of the (1 — «)100% C.I. and P.I. can be expressed as

07 ()5 60\ oV hy (20)
COE IR VAT Ml (21)

respectively, where

> i (yi - Qz(.))Q
n—tr (H(')) ’

(22)

Oe) =

and “e” represents the corresponding regression technique, whether it be, for example, OLS, LLR, LPR,
MRRI1, or MRR2. The mean square error or MSE is defined as &2.

V. Calibration Experiment

A. Instrumentation

Voltages were obtained from calibrations conducted on Electronically Scanned Pressure (ESP) transducers
manufactured by Pressure Systems Incorporated (PSI) using a system developed for low pressure calibrations
as described by Green, Everhart, and Rhode.*?> The PSI System 8400 is a differential pressure measurement
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system that uses multiplexed multi-port modules. FEight ports of a 32-port, 15 psid ESP module were
randomly selected to be representative of data obtained from this measurement range.

The ESP transducers were selected to highlight the MRR2 regression model for instrument calibration
because the standard ESP calibration has a documented deficiency and a proposed corrective model (Ev-
erhart!). In essence, the standard calibration model misspecifies the behavior of the transducer for low
absolute pressures. Therefore, it is anticipated that by using the MRR2 model with the standard calibration
model as the parametric form, it will asymptotically approach the corrected calibration model, provided that
enough data are acquired.

B. Data Acquisition

The calibration system described by Green, Everhart, and Rhode*? consists of a proportional integral deriva-
tive (PID) pressure control system that controls pressures on the sample side of the transducer while the
reference side of the transducer is held at a hard vacuum. Calibration set pressures are measured using two
Ruska transducers with 1 and 15 psid ranges accurate to 0.003% full scale and 0.005% full scale, respectively.

The calibration system controls the pressure independently from the pressure measurement system which
allows pressures to be held near or within the resolution of the Ruska calibration standards. Temperature
is controlled using software PID algorithms programmed into the LabVIEW programming environment.
Temperature is held to within +0.1°F. The transducer environmental pressure is controlled within an en-
vironmental control chamber which can maintain pressures from a vacuum near 0.005 psia to pressures as
large as 150 psia.

Ten controlled calibrations were performed on the ESP modules. These calibration data were taken while
the low pressure calibration system was demonstrated to be in statistical control. Stability and control of this
calibration system is discussed by Green, Walker, and Everhart.*? The ten calibration runs consisted of 9 to
32 points acquired from 0 to 5 psi. The data acquisition schedule details are given in Table 1. Figures 1(a)
and (b) show the ten calibrations for a representative transducer on the 15 psid ESP module.

C. Establishing the Noise Level

With each replicate calibration, a zero pressure voltage Vy was acquired. These voltage measures, which can
be seen in Figure 1(b) of the 15 psid ESP data around P = 1075, have no correlation with the pressure
settings at this level. This lack of correlation is indicative of reaching the noise floor of the instrument
(i.e., the instrument is no longer sensitive to changes in pressure at this level); thus the zero pressure voltage
dispersion measure can be used to quantify the instrument’s noise floor. Replication of measures at pressure
can also yield this information; however, care must be taken in the data acquisition such that there is no
error due to not repeating the set point closely enough. This can cause a local correlation effect and bias
the noise measure.

The ranges from each measured port on a given module are compared for consistency. This is done to
estimate an average noise floor for a given module range. Figure 2(a) shows a statistical process control
(SPC) range chart for a 15 psid ESP module, and Figure 2(b) presents the same results in terms of percent
of full scale of the instrument (5 volts). Calculations for Figure 2 were based on basic SPC theory outlined by
Wheeler and Chambers.?* Constants were taken from Tables A.1 and A.2 on pages 393-394. The centerline
of each figure is the average range, R, across each of the ports for a module. The upper and lower range
limits (URL/LRL) are given by D4R and D3R, where Dy = 1.777 and D3 = 0.223 for n = 10 (the number
of calibrations).

Based on the results from Figure 2, the ports have essentially the same variation and the average vari-
ation across the ports is indicative of the behavior of transducers for this module range. The standard
deviation can be estimated by ¢ = R/ ds, where dy = 3.078 for n = 10. The noise of the instrument will be
represented by an error band of £36 for the absolute scale. A coverage factor of three is chosen to yield a
conservative/confirmatory estimate of the intrinsic variation in the instrument. According to work presented
by Wheeler,*® a coverage factor of 3 standard deviations from the mean encompasses at least 98% of the vari-
ation of the data for all practical probability distributions, including those with high levels of skewness—far
better than the 88.9% from Chebychev’s inequality. The instrument noise can then be expressed as

R 3R _ _
136 = 43" =+ = 1. ~ +R. 2
36 =3 = ko = £0ITSR~ ER (23)
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For the 15 psid ESP module, the noise band is £1.2mV or 0.023% full scale.

VI. Calibration Model Analysis

For the purpose of discussion the 15 psid ESP module will be used to highlight the properties of MRR2.
Three parametric models will be used to draw contrast to the present method: a fourth order polynomial,
an “invented” model tailored for the instrument, and a simple linear fit. This section will discuss these three
models and how they explain the data set. A fourth order polynomial model was chosen since that is what
is used in practice. This is then compared with a model tailored for the instrument and with a simple linear
fit based on the overall trend of the data seen in Figures 1(a) and (b).

The prediction interval (see Section IV) is an indication of how well the calibration model (i.e., curve-fit)
matches the data for a given run. As discussed in Section V.C, the instrument noise band is an indication
of the instrument capability (i.e., across-run reproducibility). Hence, if the prediction interval for a given
fit is larger than the noise band, it is an indication of detectable lack-of-fit.

A. Typical ESP Calibration Model

ESP transducers are usually calibrated using an intrinsic calibration method that uses a fit of a fourth order
polynomial to 5 data points. In practice, this has been modified, on occasion with customized software, to
include more data points. The analytical form for the standard fit is as follows:

P=Co+C\V+CoV2+C3V3 + Oy V2 (24)

Here, P is the pressure, and V is the transducer output voltage. To allow for a proper comparison of the
calibration models, it is necessary to modify Equation 24 to the following form:

P =B1Z+ BsZ?+ B3 7% + B, Z*, (25)

where, Z =V — V|, and Vj is the voltage at zero pressure.
Figure 3 shows a typical result of regressing the data from the 15 psid ESP module using Equation 25.
A brief discussion of the analysis presentation is provided here to orient the reader to the plot style that will
be used for the rest of the paper. Figure 3(a), the full-scale curve fit shown on a log-log scale to highlight
the low pressure behavior of the instrument, has five elements: the data used for the regression process, the
curve fit result from the regression process, the confidence interval on the mean regression curve using a
significance level of a = 0.05, the prediction interval of an individual measurement using a significance level
of a = 0.05, and the cross-check data consisting of data from the 9 other calibration runs. The cross-check
data will also be used to generate predicted residuals by subtracting the actual Ruska standard measure of
pressure from the predicted pressure of the curve fit. This process of predicting the residual is accomplished
by taking an ordered pair of measured data, (V;, P;), and transforming it to (V;,7;) by using the following
equation: R
7 = P, — P(Vi), (26)

where 7; is the individual predicted residual, and P, is the predicted response of the instrument given a
particular regression model. Figure 3(b) shows the direct residuals on a log-linear scale from the curve fit
as well as the predicted residuals. Confidence and prediction intervals are included in the residual plots for
comparison. These intervals are taken from Figure 3(a) and applied to the axis since the estimate of the
mean response has been removed. The estimate of the noise band of the instrument calculated in Section V.C
is also denoted on the residual plots. Figure 3(c) shows the absolute residuals as a percent of full scale. This
figure contains the same information as Figure 3(b).

Table 2 presents some of the key statistics of the calibration that will be used for discussion. This table is
organized by the base parametric regression model and subcategorized by the local or nonparametric regres-
sion model. Procedures are denoted as follows: ordinary least squares (OLS), local polynomial regression
(LPR), and model robust regression 2 (MRR2). Statistics included in the table are: the degrees of freedom,
m.d.f., used in the model calculation (the trace of the hat matrix, see Section II); the mean square error,
MSE or 62, statistic (calculated using Equation 22), with v = n — m.d.f. effective degrees of freedom; the
cross-check mean square error, CCMSE, statistic (calculated using Equation 22, with v = 132 for Table 2
and v = 155 for Table 3.); and the estimated asymptotically optimal mixing parameter, M*. Also included
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for convenience are the figure references for the corresponding regression analysis. The fourth order regres-
sion model uses 5 degree of freedom, one for each of the model coefficients in Equation 25 and one for the
measurement of V. The coverage factor for the model dispersion is approximately 2, as is the case with all
the other models in Table 2. This is indicative of having reached a point where the model degrees of freedom
are not significantly impacting the predictions of the confidence and prediction intervals; thus using a 32
point calibration allows the models to be compared on an equal footing.

From Figure 3(a) it can easily be seen that there is a deviation of the data from the curve fit. This is
confirmed in the residual plots, Figures 3(b) and (c). These figures show a distinct structure in the residuals
that was not captured by the 4th order polynomial. Also, Figure 3(c) shows that the prediction interval for
the 4th order curve fit is well above the system noise level of 0.023% full scale, indicating that error incurred
due to model misspecification is significant.

B. High/Low Pressure Calibration Model

While searching for a high accuracy calibration, Everhart! proposed a calibration model form that better fit
the calibration data. This formulation is given as:

P=A\Z5+ Ay 7% + AsZ + Ay 22, (27)

Once again the coefficients are determined using a least squares fit of the entire data set. The improvements
presented by Everhart! show significant reduction of the curve fit residuals.

As with the 4th order polynomial, Figure 4 shows the fit and residual analysis consistent with the
Everhart model. In Figure 4(a) a much different picture of the curve fit is cast than with the 4th order
polynomial model, even though Table 2 shows that both models use the same number of degrees of freedom.
The confidence band is much wider than the 4th order fit but the curve actually tracks with the data.
On the other hand, the prediction interval is much smaller than the 4th order model. The residual plots
in Figures 4(b) and (c) show little if any structure left in the residuals. These plots also show that the
prediction interval is below that of the instrument noise floor; thus indicating that the Everhart calibration
model will tend to vary from calibration to calibration but only within the noise of the instrument. The
Everhart model will result in a much more accurate calibration than that of the 4th order polynomial.

It should be noted that the work done by Everhart to obtain this parametric form was quite extensive.
Thus, one of the major points of this article is that the current method will demonstrate similar performance
starting with a model containing obvious deficiencies (e.g., a 4th order polynomial or a simple linear model).

C. Simple Linear Calibration Model

As previously stated, a simple linear model was chosen based on the overall trend of the data in Figure 1.
For the purpose of comparison, the linear model form that is used is as follows:

P=D\Z (28)

Figure 5 shows the fit and residual analysis for the simple linear fit. The behavior, at least in the full scale
sense, Figure 5(a), is similar to that of the 4th order fit, with the exception that the prediction interval is
larger. The residual scale shows a much different story. A very distinct pattern is seen in Figure 5(b). It is
also interesting to note that the prediction interval is almost twice the size of that corresponding to the 4th
order fit. This is an important fact since Table 2 shows that this model only uses 2 degrees of freedom (one
for the model coefficient and one for the measurement of V;). Thus the simple linear model shows an even
greater deficiency than that of the 4th order polynomial.

It has been demonstrated that the simple linear model has a much greater deficiency than either of the
other parametric models presented. This will prove to be a much more severe test of the MRR2 procedure
than that of the 4th order polynomial.

VII. MRR2 Calibration Analysis

This section will discuss the MRR2 fitting procedure using each of the parametric models discussed in
Section VI. The nonparametric fit to the residuals from each of the parametric models is analyzed first. This
is followed by an analysis of the mixed model or final form of the MRR2 procedure.
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A. Local Fitting of the Residuals

Following the methodology outlined in Section II.B, three increasing order local polynomial regressions were

performed on residuals from each of the three parametric fits. Using the definition of x;(LPR) given below
Equation 5, local linear, quadratic, and cubic models are constructed by setting d = 1, 2, and 3, respectively.
Bandwidth choice was automated by minimization of the penalized prediction sum of squares, PRESS**,
defined in Equation 4.

Figure 6 shows the fit and residual analysis for each of the three orders of the local polynomial modeling
for the residuals of the 4th order fit. Figures 7 and 8 show the corresponding analyses for the Everhart and
simple linear parametric model residuals, respectively. In each of these figures, panels (a), (d), and (g) show
the fit of the residuals from each respective parametric model. These panels show that no real improvement
is gained by increasing the local polynomial order. An important thing to note about the curve fit panels
is that the local polynomial modeling captured the structure of the residuals. Careful examination of the
residual panels will yield a slight improvement in terms of the prediction interval for the local quadratic
fit and slight decrease in performance for the local cubic fit. According to Fan and Gijbels,'” the order of
the local polynomial model should be odd; however, in the cases investigated by the authors, often local
quadratic fits have been seen to yield a slightly better fit. Further discussion of the problem concerning the
order of the local polynomial is given by Ruppert et al.*S For cases involving larger gradients it may be
beneficial to use a higher order local model. Table 2 shows that the number of degrees of freedom for each
local modeling order is the same regardless of the base parametric model: local linear, 8.5; local quadratic,
11.5; and local cubic, 12.2. With the exception of investigating the results of the MRR2 analysis, only local
linear modeling will be used for the remainder of the paper. This is done because the additional cost in terms
of degrees of freedom is not worth the benefit seen in residual/prediction interval reduction for this problem.
Also note that in each case the prediction intervals are well below the system noise level. This indicates that
the major contribution of the model misspecification to overall variation can be removed. The next step is
to combine these results with the parametric model results in such a way as to describe the behavior of the
system, at least to its noise level.

B. Mixing the Models

The methodology used in the MRR2 procedure is discussed in Section II.C.2. However, the key to making
MRR2 work is in the use of the asymptotically optimal mixing parameter, A*. This parameter was derived
using a geometric argument to add back some fraction of the structure found in the residuals to the parametric
fit. The asymptotically optimal mixing parameter for MRR2 is discussed in Section III. For this paper, the
estimating equation, Equation 16, for A* will be used. The estimated mixing parameters for each of the base
parametric models are presented in Table 2.

Figure 9 shows the regression fit and residual analysis for the MRR2 procedure using the 4th order
polynomial (Equation 25) as the base parametric model and local linear (a)-(c), local quadratic (d)-(f), and
local cubic (g)-(i) models. The Everhart (Equation 27) and simple linear (Equation 28) base parametric
models are shown in Figures 10 and 11, respectively.

The discussion for the MRR2 figures closely follows that of the local polynomial fit of the residuals in the
previous section (Section VII.A). Again, no real improvement is gained by increasing the local polynomial
order. This can be seen by comparing the prediction intervals for each of the local polynomial regression
orders. Another way of comparing this is by using the estimated mixing parameters given in Table 2. These
statistics show very little increase with increasing local polynomial order. Recall that \* is a scaled geometric
measure of the structure contained in the residuals. Thus, little, if any, additional structure is being recovered
by increasing local polynomial order with the possible exception of responses with large changes in gradient.

Note from Table 2, that the number of degrees of freedom used for the MRR2 procedure is between that
of the OLS and LPR procedures. This is a direct benefit of the mixing procedure discussed in Section I1.C.2.
Further discussion of model degrees of freedom is provided in Section VIIL.A.

Each of the final MRR2 curve fits track with the data and the resulting residual plots have little, if any,
structure. Also note that every one of the fits involving this procedure have prediction intervals below the
system noise level. This is one of the highlights of the current method: using enough data, the solution will
converge to the system noise level.
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VIII. Discussion of MRR2 Properties

This section will discuss some of the more important properties of the MRR2 procedures by example. A
discussion of the number of degrees of freedom necessary to perform this regression is included to justify the
cost of the present method. Another property of MRR2 is that it will default to the parametric model when
no structure in the residuals can be detected.

A. Degrees of Freedom

A discussion of the degrees of freedom used by the current procedure is important because the number of
degrees of freedom is directly tied to the cost of using the model. For the purpose of this discussion, the
same three parametric models will be used to regress the 15 psid ESP calibration, this time with only a 9
point calibration run. The same analysis path used in the 32 point calibration will be employed here. As
with the 32 point calibration, regression fit statistics for comparison are included in Table 3. Figures 12, 13,
and 14 show the parametric fit and residual analysis for the 4th order polynomial, Everhart, and simple linear
models, respectively. Comparing the (a) panel of the three figures, similar results are seen when compared to
Figures 3, 4, and 5. The prediction intervals are wide for both the 4th order and simple linear models with
respect to that of the Everhart model. Since the models are parametric, the required number of degrees of
freedom always remains the same. For a given model, the prediction interval is controlled by two quantities:
the standard deviation of the residuals and the number of remaining degrees of freedom after subtracting
those used by the model (see Equation 19 or 21). The consequence is that if a large number of degrees of
freedom are remaining after the regression, the prediction (and confidence) intervals will be smaller. On the
other hand, if the standard deviation of the residuals is small due to the model’s explanation of the data
this will also cause the prediction interval to be smaller. This small residual standard deviation explains
the fact that the Everhart model prediction limits are much smaller than those of the two polynomial based
models (i.e., it just explains the data better). Even with a 9 point calibration the Everhart model prediction
interval is within the noise for this instrument. For the two polynomial based models, only small changes are
seen between the 32 point calibration (Figures 3 and 5) and the 9 point calibration(Figures 12 and 14). The
differences seen here are primarily due to number of remaining degrees of freedom. As before, the residuals
for the polynomial based models show a definite structure in comparison to the residuals from the Everhart
model. The cross-check mean square error (CCMSE) statistics presented in Tables 2 and 3 also indicate the
same trends for the parametric models.

Figures 15, 16, and 17 show the nonparametric residual fit and the resulting residual analysis for the
4th order polynomial, Everhart, and simple linear models, respectively. In this particular case, the residuals
from the 4th order fit are more complex than what is represented by the 9 calibration points. This can be
seen in Figures 12(b) and 15(a) with the cross-check data. Having the residual structure under-represented
by the data causes the nonparametric model to fail to adequately recover this structure. As can be seen from
the two residual plots (b) and (c) in Figure 15, the prediction interval is much greater than the instrument
noise level. Note that the spikes seen in the prediction (and confidence) intervals are caused by the gaps in
the data being too large for the calculated global bandwidth to give a good estimate in these regions. This
could be addressed by using a locally defined bandwidth (see references in Section II.B), but is beyond the
scope of this article. Little structure is seen in the residuals from the Everhart model in Figure 16. This
is primarily due the performance of the parametric model that was seen in Figure 13. The simple linear
fit does have a complex structure remaining in the residuals, but it is well represented by the 9 calibration
points. This can be verified in Figure 17(a) using the cross-check data. Here the prediction interval for the
remaining residuals from the local fit are at the instrument noise level. As before, the number of degrees
of freedom for the local polynomial regression are the same no matter what the base parametric model is.
Note that in Tables 2 and 3, the degrees of freedom required are not identical for the 9 point and 32 point
calibrations. This is due to a combination of the bandwidth and the number of points that are being fit
(i.e., the number of terms required in a local polynomial regression to fit the data). The more data points
there are and the more narrow the bandwidth, the more degrees of freedom will be required.

The MRR2 augmentation for each of the three parametric models is shown in Figures 18, 19, and 20.
Results of this analysis follow directly from the preceding discussion of the local fit. Again, the 9 point cali-
bration failed to adequately represent the 4th order polynomial model misspecification completely; however,
some improvement is made by the MRR2 procedure which can be seen from comparing the parametric fit
analysis in Figure 12 to the MRR2 fit in Figure 18. The CCMSE for the MRR2 augmentation of the 4th
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order fit also indicates some improvement; however, the overall improvement is not as great at that seen with
the 32 point calibration or either of the simple linear fits as indicated in Tables 2 and 3. Both the augmented
Everhart and simple linear models have prediction intervals at or below the instrument noise level.

From this analysis, it is apparent that a trade-off exists for using MRR2. If an adequate parametric
model is established, fewer data points will be necessary to define the parameters for that model. However,
if misspecification is present in the model, more data must be acquired in the areas of misspecification to
ensure that the structure of the parametric model residuals is adequately represented. In effect, the MRR2
procedure takes the specified parametric model and augments it with a geometrically scaled portion of locally
fit data model residuals that contain a nonrandom structure. In addition, the MRR2 procedure can only
augment or correct the model to the level of the noise in data.

B. Default to the Parametric Form

Another property of the current method is its tendency to default to the parametric form if the parametric
residuals do not have a detectable structure. An example of this property is seen with the Everhart model.
This model has a parametric description that fits the data to within the noise level consistently. Evidence
for this can be seen by comparing Figures 4 and 10 for the 32 point calibration and Figures 13 and 19 for
the 9 point calibration. In both cases the local linear nonparametric augmentation of the Everhart model
yielded only marginal improvement. Evidence for this is seen in Tables 2 and 3. The mixing parameters
for the Everhart models for both the 32 and 9 point calibrations are significantly lower than those of the
polynomial models. Also, the number of degrees of freedom used for the MRR2 procedure using the Everhart
base model are approximately the same as the Everhart model itself. This is not the case for either of the
two polynomial models. The true advantage here is that the MRR2 procedure returned the parametric form
at no additional cost. Since there was no real structure in the residuals from the Everhart model, essentially
none of the local modeling was included in the final result.

IX. Final Remarks

This paper has demonstrated the robustness to regression/calibration model selection of the MRR2
method. Using a geometrically scaled portion of the residuals from the parametric model, essentially a data
model, the initially chosen model is augmented and will converge to within the noise level of the instrument
as the data points both increase in number and better characterize the parametric residual structure. This
paper has also shown that at least for a mild regression in terms of gradients and misspecification—the
number and coverage demands of the MRR2 procedure are not excessive. One other beneficial property is
that the MRR2 procedure will not augment parametric models that truly fit the data. In this respect, the
MRR2 procedure can also be used as a tool to detect model misspecification and drive toward a more correct
parametric form if that is what is desired. This is advantageous only if a parametric form of the calibration
model is required or desired.

Since instrument calibration is typically a low noise environment in comparison with the random cal-
ibration problem, the current method is vastly superior to a basic parametric model calibration. This is
due to instrument behavior being defined by the data model itself. If the output of an instrument can be
accurately referenced to a standard and enough data taken at a fine enough spacing, this would essentially
allow a lookup table calibration of the instrument. Lack of resources often make this approach unfeasi-
ble, and either parametric or nonparametric techniques are employed to reduce the amount of data. By
using the current method, the advantages of both the parametric and nonparametric methods are gained.
Any basic understanding of the instrument behavior can be incorporated through the parametric form, and
any misspecification or deficiency of the parametric form can be augmented by mixing in a portion of a
nonparametric modeling technique.
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Table 1. Data Acquisition Schedule

Replicates 5 1 3 1
Points Per Run 9 10 32 22
Pressure 0.0000 0.0000 0.0000 0.0000

Schedule (psi) 0.0010 0.0010 0.0010 0.0010
0.0100 0.0100 0.0030 0.0030
0.0330 0.0330 0.0060 0.0060
0.1000 0.1000 0.0075 0.0075
0.3300 0.2500 0.0100 0.0100
1.0000 0.3300 0.0250 0.0250
3.0000 1.0000 0.0330 0.0330
5.0000 3.0000 0.0500 0.0500
5.0000 0.0670 0.0670
0.0750 0.0750
0.0870 0.0870
0.1000  0.1000
0.1750  0.1750
0.2500 0.2500
0.3300 0.3300
0.5000 0.5000
0.6700 0.6700
0.7500 0.7500
0.8700 0.8700
1.0000 1.0000
1.2500 1.2500

1.5000

1.7500

2.0000

2.2500

2.5000

3.0000
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Table 2. 32 Point Calibration Statistics [15 psid]

Model m.d.f. MSE(107°) CCMSE(107°) A* Figure
4th Order Polynomial Regression Model

OLS 5.0 1.68 1.35 3
Local Linear

LPR 7.1 6 (a)-(c)
MRR2 7.3 0.189 0.301 0.893 9 (a)-(c)
Local Quadratic

LPR 9.6 6 (d)-(f)
MRR2 9.3 0.130 0.263 0.936 9 (d)-(f)
Local Cubic

LPR 104 6 (2)-(1)
MRR2  10.0 0.135 0.261 0.934 9 (g)-()
FEverhart Regression Model

OLS 5.0 0.105 0.253 4
Local Linear

LPR 7.1 7 (a)-(c)
MRR2 5.2 0.105 0.253 0.074 10 (a)-(c)
Local Quadratic

LPR 9.6 7 (d)-(f)
MRR2 5.5 0.105 0.253 0.115 10 (d)-(f)
Local Cubic

LPR 104 7 (2)-(3)
MRR2 5.7 0.105 0.253 0.126 10 (2)-()
Simple Linear Regression Model

OLS 2.0 5.21 5.05 5
Local Linear

LPR 7.1 8 (a)-(c)
MRR2 7.0 0.138 0.285 0.964 11 (a)-(c)
Local Quadratic

LPR 96 8 (d)-(f)
MRR2 94 0.127 0.284 0.980 11 (d)-(f)
Local Cubic

LPR 104 8 (2)-(1)
MRR2  10.3 0.128 0.283 0.984 11 (g)-(i)

18 of 31

American Institute of Aeronautics and Astronautics



Table 3. 9 Point Calibration Statistics [15 psid]

Model m.d.f. MSE(107%) CCMSE(107°) A" Figure
4th Order Polynomial Regression Model

OLS 5.0 2.02 6.28 12
Local Linear

LPR 5.3 15
MRR2 5.6 0.623 5.69 0.770 18
FEverhart Regression Model

OLS 5.0 0.0744 0.206 13
Local Linear

LPR 5.3 16
MRR2 5.0 0.0746 0.206 0.019 19
Simple Linear Regression Model

OLS 2.0 6.05 5.17 14
Local Linear

LPR 5.3 17
MRR2 5.2 0.126 0.246 0.978 20
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Figure 9. MRR2 Agumentation of the 4th Order Polynomial Fit [15 psid ESP/32 point Calibration]
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Figure 10. MRR2 Agumentation of the Everhart Model [15 psid ESP /32 point Calibration]
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Figure 11. MRR2 Agumentation of the Simple Linear Fit [15 psid ESP /32 point Calibration]
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Figure 12. 4th Order Polynomial Curve Fit [15 psid ESP/9 point Calibration]
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Figure 13. Everhart Model Curve Fit [15 psid ESP/9
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Figure 14. Simple Linear Fit [15 psid ESP/9 point Calibration]
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Figure 15. Nonparametric Curve Fit of 4th Order Polynomial Fit Residuals [15 psid ESP/9 point Calibration]

0.12
0.10f
50'08,_
[+
S L
(2] L
S50.06
[ L
~ L
Z0.04F
[ A |
L S a b
0.02fF == == == 52T = - =%
i ‘ L IS P sy
[ - - = meis *‘H:; PP L N
B vo . o+t ES 0
O_OOT_AAJJAWMNT&M%_A
10 10 10 10 10
v ]

Z [Voltage
(¢) % Full Scale Absolute Residuals

0.00
10™ 1

012
0.10f
008
[+3
s [
(7] L
= 0.06|
L L
§ -
X0.04}
0.02F : X A
o # . T
e A S 2 :
i L : i
3 d 2 M"‘““dﬁ_‘-1

0.02 0.02
B . Data (used for fit) I
I Curve Fit I
|| = = = — Confidence Interval I
| === Prediction Interval I
0.01F + Cross-Check Data 0.01p
= || == Noise Band = [
2 7 . 2 I ..
= DAY ;= L DAY /
o _ '__//\._4\' o J—— N
Z b ) A ot L
0.00 e R e sy 000 UL
- - = L ASA. =R _ﬁt** LA e TR,
- + o ~ 7
P S I S S \'\\{"\‘% Emmmmimeme e o \\"I 4 3\
-0.01f -0.01}
_0_027 IEENITRTTT! R RETT] T SR | Opl—vn o i i
10 107 10?2 10™ 10° 10 10° 107 10" 10°
Z [Voltage] Z [Voltage]
(a) Local Linear Curve Fit (b) Residuals
Figure 16. Nonparametric Curve Fit of Everhart Model Residuals [15 psid ESP/9 point Calibration]
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Figure 17. Nonparametric Curve Fit of Simple Linear Fit Residuals [15 psid ESP/9 point Calibration]
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Figure 18. MRR2 Agumentation of the 4th Order Polynomial Fit [15 psid ESP/9 point Calibration]
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Figure 19. MRR2 Agumentation of the Everhart Model [15 psid ESP/9 point Calibration]
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Figure 20. MRR2 Agumentation of the Simple Linear Fit [15 psid ESP/9 point Calibration]
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