DISTRIBUTED RECONFIGURATION AND FAULT
DIAGNOSIS IN CELLULAR PROCESSING ARRAYS
by

Shannon Edward Lawson

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

APPROVED:

J MJ’EQL

Dr. Nathamel J vis, IV, Chairman

Dr. F. Gail Gra Dr. Dong S. Ha

January, 1993
Blacksburg, Virginia

LD
/A
Zv
w3 1993
1797

6102,

DISTRIBUTED RECONFIGURATION AND FAULT
DIAGNOSIS IN CELLULAR PROCESSING ARRAYS

by

Shannon Edward Lawson

Committee Chairman: Dr. Nathaniel J. Davis, IV

Electrical Engineering

ABSTRACT

An overview of an existing hierarchical reconfiguration scheme for a fault-tolerant
two-dimensional cellular architecture is presented, wherein an array of finite state machine
cells controls the processing and switching elements. This allows the array to either
reconfigure in the presence of faults, or to perform different processing functions. Since
the control mechanism is distributed, the system is not subject to single-point "hard core”
failures, as in the case of a global control mechanism. Unlike other fault-tolerant systems,

the proposed method does not assume the existence of components which never fail.

The processing elements in the array are logically connected in a mesh pattern, and
are provided with additional physical connections to other cells. A local reconfiguration
scheme allows faulty cells to be bypassed via these additional connections, so that the
logical mesh can be restored. This technique allows the array to quickly reconfigure in the

presence of up to triple faults.

Abstract

When local reconfiguration fails, the array can still reconfigure by using a global
reconfiguration scheme, in which the functional part of the array relocates itself to a fault-
free area. The process is "global” in the sense that the entire functional part of the array is

involved in the process, but the mechanism to accomplish this is still distributed in nature.

With the framework of the system established, the results of this research are
presented. The hardware complexities of the existing global reconfiguration scheme are
analyzed, and compared with the complexities of previous work in this area. A distributed
diagnosis algorithm is also developed, which works in conjunction with the local
reconfiguration mechanism to quickly detect and isolate faults in the array. Using these
results, the foundations are laid for a totally self-checking implementation of the control

cells, which allows online concurrent fault detection in the array.

Abstract

ACKNOWLEDGMENTS

The author wishes to thank the committee chairman, Dr. Nathaniel J. Davis, IV,
for his guidance and support over the last 2 years. The author also wishes to thank the
other committee members, Dr. F. Gail Gray and Dr. Dong S. Ha, for their instruction and

assistance in preparing this thesis.

Special thanks go to Mrs. Virginia D. McWhorter, Assistant Department Head of
the Bradley Department of Electrical Engineering, Dr. Joseph G. Tront, Assistant Dean in
the College of Engineering, and Mr. Hugh W. Munson, Instructor in the General

Engineering Department, for their faith in my potential.

Most of all, thanks go to my wife, Debra Ann Patterson Lawson, and my parents,

Mr. W. E. Lawson and Mrs. Carolyn K. Lawson, for their love, patience, and

understanding. This work could not have been done without you.

Acknowledgments iv

TABLE OF CONTENTS

1. Imtroduction.......... 1
1.1 Statement of PUTPOSE.....c.cvieivuiiiirurinnirtrieerecseeneneteeeeietescnnesessseessssnressssnnes 3
1.2 THESiS OVEIVIEWcocvieemeereereennerenrreceessteessersssenesssesssaerossessssesssseesossesssssssssassns 4

2. Background 6
2.1 SYSIOLC ATTAYS .eevouueiiieeieierierinieeeieteesaresesreteossaneesssessessssesssssassssesssssessssanesssns 6
2.2 Motivation for RecONfiguration........ccocceeviirverinueinieinnnennneiineeinnenensesneeesaes 9

2.2.1 Yield EnhanCement...........ceiiiiiiiiiiiieiiiirneetteeenneecceeesssneseesesssasaes 9
2.2.1.1 Fault Tolerant Testable Scan Design.....ccccccceeeervrerirverrrncreereccnncenae 10
2.2.1.2 The Kuo-Fuchs Repair-Most StTategyccccceeverrireeriniennecrerenenns 16

2.2.2 Runtime Fault TOIErance..........cccoccucrevruerrenneininncensisvececnneeecssieeeessseessenn 21
2.2.2.1 The Diogenes ApProachccccceevivvuiicieinnncininernnnecnneesnesnennes 21
2.2.2.2 Interstitial Redundancy..........cccceceeeverecernricinnneercneeconeersneennsenennnees 25
2.2.2.3 Fault-Stealing Strate@ies......ccocereverrrreerrensererecruererecerereenonseeesnseceees 25

2.2.3 Array POlymOIPhiSIM....cccceiiriiueieisiueeessrneeecrneeessnenesssassessresssssrnsessssrnssesns 30
2.2.3.1 The Configurable, Highly Parallel (CHiP) Computer........................ 30
2.2.3.2 Hierarchical Reconfigurationccceccceeeevvveerneneeeenceeeesnseeensssnnens 32

2.3 Global RecONfIgUIAtiON.......ccocueirueiivniinieriieiniieneseearesssreesseeseuseesassessasessnnesss 35

2.3.1 Martin's Methodeeeeeieeiiiiiiiricirieeteeccrnreeeeeeeiraeeceeessneeesesesssssansens 38

2.3.2 Kumar's Method........coooiiimiiiiniieniieriteeeete e e s ereeeesreceeenee 38

2.3.3 Brighton's Method.......cccceeevvuiiiimiiiiniieiiiiieniiiiccieeeneeeeseeeesseeneeesnne 38
2.3.3.1 Definitions of Terms Used........cccccoeeervrueiiriniiiinnneeicinneecinneenisnnens 39
2.3.3.2 Pattern Growth Example: The Banyan Networkcccocveeeennnin. 40

Table of Contents A

2.3.3.3 Pattern Growth Rules.................... et etreeeeenrerearaatetaanneesrrnaesaannnaanne 48

2.4 Local Reconfiguration rerrrreeens SRR rreereesbr e s eartt e e e abaaees 50
2.4.1 The Processing Element...................... cerveeereennnnes reeteeeeeeennteereaannnaaas50
2.4.2 The Fault Register cerveeneennns ceevteneenane cernreeeraenns cereeeresasnneaeasssnnnns .52
2.4.3 Fault Coverage............... reeerernenens vereesernreeens crreeerres e ceveersanaens .54

2.5 Summary............. ceeeeeans eeeeeesteeesrteeesteeesrateessaesenteaeensraesanntes cerrerennaees creveeens .54

Reconfiguration Complexity Analysis 57

3.1 Explanation of Symbols Usedcccoceevuveirvrnnecnnnnnn. ceeenens rereeeeeereestessnas .57

3.2 Local Memory Complexity crreerennaens veeeernnes RUSO cerereenees ceveeneenne 58
3.2.1 Martin............. veeeraneeeneens eeteertteesteeeares et eetassatasssaae s aenatsenteenne vrreesneenaes .58
3.2.2 KUMATueiiiieriiieeeenreenieeeeenacescaeenenee eeeteeeeernnneeteeee e eaeeea e naneaaeaeann 59
3.2.3 Brighton.............. ceveesatrenesssnaasents reeeeeneeeteeenaeeatessataesraeennaesstasesanannne ...63

3.3 Interconnection Complexity ceveenns ceesteesesentrtesseennesassessnnnaaanans cervereeeens .64
3301 MATtN c.oceeieieereeeeecteeeee et senere st e e seesenr e s re e sene e s nesesnees ceeereennens 64
3.3.2 Kumar......... ceerreenanes ceverenne creeersnrenies creveesaenes ceveeresanes eeereeeereennanans ceeenanes 65
3.3.3 Brighton.........cccceuuunenn. eereeeeeseeseneteesesataatesas b aneeeseasneaeeeaessaseraaeesaasssnns 65

3.4 Transmitted Data Complexity et ab e ae s vesreesrens 66
3.4.1 Martin................... veereneene cevrereesressnanenns reeeieeenens ceveeseeennee reveesnreeraennees 66
3.4.2 Kumar....... vereerterearesaaeenaes ceeeereteeteeeae e e te et ees et e ntasesaaaenneeenanes creeeereeens 67
3.4.3 Brighton.....cccceoceereuieeuennne. eeteeeter et te e ettt e st e e ena e et e e et e e ssna s e rtesannanns 67

3.5 Complexity Analysis RESUILSccooocuiiirimiiririieiiteenieeteeeeeeeseeee e sneeesssneeas 68

3.6 CONCIUSIONS ..eeiiiieneiereieiiieeeeeeteeeteserte et e e sesrae et s e sarn e e s ees s snrreeeeeesannsenacesaessen 68

Table of Contents vi

4.

Distributed Fault DiagnoSsiscceeevssseccssessnssssassssssssesesssnsssrscssrnssssscossesssssnsssassoses 72

4.1 Motivation for Distributed Diagnosiscccccceeereerrneereecircneieeeccrrenresseessinnees 73
4.2 The Cell Neighborhood..........cocccciiviiiiiiiiiiiiiiiiieiciincrerec e 77
4.3 The Fault REZISIETccccuviiiriiieeriieerrnteereeeesreeesseneesssaseeessssanessonesessssasesssnnnases 88
4.4 Fatal Fault PatteIns....cccceeeeruierrreeiriiieenieeeneteeereceessaeeseesneesossneessssaesesnsasess 92
4.4.1 The L-fault.....ccccoeviiiioiireiiiiniciecnieeiteeneneteecsreeeesnrecesssssesosssesesssens 94
4.4.2 The V-fault and the /-fault 98
4.4.3 Other Problematic Triple Faultscccceeeeeieeiiierrinnieireicinneceenecceneeeen. 98

4.5 Distributed Diagnosis SIMUIAtOT........ccoeveirieeiiirietiiiiieeeieeiiiieeeeesesineeeeseeens 105
4.5.1 Single Fault DIiagnosiscccceceeerririeeiieninrieeeeecereeereseesnetesesssssssaseesons 108
4.5.2 Double Fault DiagnosiS......cccccvveerrerrnereersernrneerionrrneceeresssnsntecsessesesasees 108
4.5.3 Triple Fault Diagnosis.......ccceeeeeereeraneeereeerrreerereeerieeeeseeesaneeesesasssnsnsesens 112
4.5.4 Quadruple Fault Diagnosis.......cccccccceerrerrerneeriereerinsteesssenceessrvecsessaeeses 112
4.5.5 Diagnosis of 5 or More Faults.......ccccceeccererereniinnncrnneennreiecnieenecennneenes 128
4.6 Reconfiguration Using Distributed Diagnosisccccccevereeereriveeeciveeeesrneeeeen. 128
4.7 Reliability ANALYSIS.......ccoovireruimrieiiiiiiriinieiniecnnreeteenseesnsesssessssesssssesssees 145
4.8 RESUILS.....cooiriieiiiiiirtteterstt ettt ceae e sae s sre s s rs e b e s ra s s san s st s 147
4.9 CONCIUSIONSeeuieirireeeereeerereerrteerereeneeeeneeesaeesesnesesnesssacesesuesesnnesorsesassesssnnt 150
Self-Checking Circuits 153
5.1 Properties of Self-Checking CirCuitsccccceeeivvirieriiiinciieriiinnrennrcnereceseees 154
5.1.1 Totally Self-Checking (TSC) CirCuits........cccceveveeervrrieeerireeecrieerecsneeses 154
5.1.2 Strongly Fault-Secure (SFS) Circuitscooveviirivieiininnieiiniecrccinecannns 157
5.1.3 Strongly Code-Disjoint (SCD) CirCuitscccccceeeeerrueerecrreerernnerserneeenns 158

Table of Contents vii

5.2 Coding Theory for Self-Checking CirCUitS........cocveerrveeersrueeecriereesrrersessneeessan 159

5.2.1 Berger COdes....cccouveireieieceeeereetereriirerreeeesreeesresesssneesssssseesssnsesssssssenes 161
5.2.2 B0SE-Lin COAES......occerrurerreeieenienerieneteceeniessacesessacesseessneeseessnesssesnees 161
5.2.3 The Two-Rail Code.....ccccueruiremerrerinienretreienneeeeneeenreerseeessseessecesenses 162

5.3 A Self-Checking Control Cell ArChitectureccooeveervereeericcercririessreeesonnne 162
5.3.1 The Incoming Data Error-Trap CirCuitry.........ccceceveerivueeeccnniernineecennnne 168
5.3.2 The Bidirectional I/O Channelscccooveeernneiecrciirnnineennnnereessneeesecnees 172
 5.3.3 The Registers and Buffers...........ccoooeioinieniiiniiiiciccnnciiecns 175
5.3.4 The RESM......oiiiiiitiiecieetententencsenteestessaeenaesseessassnsessasssnassesnne 182
5.3.4.1 Sequentially Self-Checking (SeSC) Circuitscccceeeeeercenseersuennne 184
5.3.4.2 Strongly Language-Disjoint (SLD) Checkers..........ccccervcvrerennene. 189

5.3.5 The Code Conversion Modulec.cceeeiirrereonirenercnneeenernreeeecseecennes 197
5.3.6 The TSC Checker for the Code Conversion Modulecccccercuveene. 197
5.3.7 The Internal Fault Indicators.........cccovvvveereericrruerecnreernenneennncneecssneenenee 198
5.4 RESUIS....coneiierveeieeieeteetenreeteereetessaeesteeseesnesstessbesssasesaesaeessasensesoneessnens 198
5.5 CONCIUSIONS ...ccoervuerierrueriairetieioeereenttesssseesesssesessstesssontesessaseesesseasassosesssssnnans 202
6. Conclusions 205
6.1 Summary of ACCOMPLSHMENLScocuvieiieiriniriiiiiiiiiiiiniintecceeeeeereee e 205
6.2 Future Research OppOrtunities..........coccevvueriuerniniinnienicinineennicnseeniseesoneneas 208

Table of Contents viii

Bibliographycccceeecccnnencsssecssennes ceveesssnanessessanessennes 209

Appendix A. Simulation Source Code 215
AL ATTAY.Coorriereeeecniceeeeierneeeeeeesraneesssssseateesesssansssssssssestasssssssansasesssssssanaassssons 215
A2 FaUlmMap.C.cciiiiiiiiiieiiieteitieeeeeeiceesrsnrreseeseeesesessssssesssnsnssaesssesassssssssssssssssnnsnne 239

Vita e 247

Table of Contents X

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21

Figure 2.22

Example systolic array for performing linear convolutionccceeeeeeeeuneen. 8
A proposed augmented PE for yield enhancement.........c.ccooeuvenvueennnucnnnnnen. 11
Possible settings for augmented PE switch SWc.cccconviiiinnniiicniivennnnae 12
Simplified diagram of vertical input paths for augmented PE 14
Successfully reconfigured systolic matrix multiplier arraycccoccereeeeene 15
Repair-most strategy example with 2 spare rows and 2 spare columns....... 17
Successful reconfiguration of Figure 2.6 using repair-most strategy........... 19
Unsuccessful reconfiguration of Figure 2.6 using repair-most strategy....... 20
Hardware stack structure for the Diogenes approach.........c.cccceeeevuveeeeennnas 22
Hardware queue structure for the Diogenes approachccceeevueeeeennnnns. 23
Example of interstitial redundancy.......c...ccoceeevreierneincreeennvieornsessnessecennnns 26
Example of direct reconfiguration (DR)cccceceevvererirveeenrieecnicrneeeerenenn. 28
Example of complex fault stealing (CFS)........ccccceeevieinniiiniirnneennneeeniaenns 29
Pseudocode algorithm for complex fault stealing.......ccccoccvvevenueericcncnnnnnee. 31
CHiP architecture configured as a mesh arrayccccceccevveevveenreenrennennne 33
CHIiP architecture of Figure 2.15 configured as a binary tree..................... 34
An array of PEs divided into control and computational planes.................. 36
Banyan network used in pattern growth example.........cccccoveviiinervnnennnnenn. 41
Control cell state assignments for the Banyan Networkccccceeuennneeee. 42
XR, YR, and LSR contents during pattern growth fort <4....................... 44
XR, YR, and LSR contents at t=0.........cc.evverrrererirrmmirieeeeeeneeneeererereerennnens 46
Final control pattern for the Banyan network example, t > 9...........ccc.cc..... 47

List of Figures X

Figure 2.23
Figure 2.24
Figure 2.25
Figure 3.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12

Figure 4.13

Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18

Cell interconnection pattern used in White's Algorithm 4-12...................... 51

End result of local reconfiguration in response to a double fault................ 53
Fatal L-fault pattern example prior to local reconfiguration attempt........... 55
A diamond pattern of cells in a Processor aITaycc.cceeeerveeerecrneerssneenes 61
The zero fault latency model.......cccovvvrierrinrerirniiininiciinieerecerceeeeeenens 74
The link fault cannot be detected by any neighbor of the PE other than N.. 76

The von Neumann cell neighborhood has a scope of 5........c.cccvuervuvennnen. 78
The Moore cell neighborhood has a scope of 9.........ccccccceevviiiiiniirnnnnnnnne. 79
The White cell neighborhood has a scope of 13.......cocovevieeeiiiiiviicnninnne. 80
The possible choices for a NORTH logical neighborcccoccveicuirenecnne 82
The possible choices for an EAST logical neighborcccccceeveeennennnnen. 83
The possible choices for a SOUTH logical neighbor........c.ccceeeeveernecnnnnnn. 84
The possible choices for a WEST logical neighbor...........cccococceeveivvenncnnnes 85
The Lawson cell neighborhood has a scope of 9......ccocevvvieevneiiiivnveennnane 86
Setting the fault TEZIStEr DitS.......ccoecviienruiirnrvieeinieeieeiicentereeeneesessaeens 90

Distributed diagnosis diagram using a White neighborhood for the
interconnection network, and a von Neumann neighborhood for passing the
FAUIE dALA ...oeeniieeireeeeretce sttt sra e s e enene 91

Distributed diagnosis diagram using a White neighborhood for both the

interconnection network and for passing the faultdata..............cc..cc.......... 93
Unsuccessful L-fault detection using a von Neumann neighborhood.......... 95
Additional fault register bits needed to detect L-faults.............c.cc.cuunee.eee. 96

Example of successful L-fault detection using the 20-bit fault register 97
Unsuccessful V-fault detection using a von Neumann neighborhood.......... 99

Unsuccessful /-fault detection using a von Neumann neighborhood 100

List of Figures xi

Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30
Figure 4.31
Figure 4.32
Figure 4.33
Figure 4.34
Figure 4.35
Figure 4.36
Figure 4.37
Figure 4.38
Figure 4.39

Figure 4.40

Figure 4.41

List of Figures

Additional fault register bits needed to detect all triple faults 101

Successful detection of a V-fault using the 24-bit fault register................ 102
Successful detection of a /-fault using the 24-bit fault register 103
Triple fault which can be treated as a single fault and a double fault......... 104
Single fault EtECHONveeeeevurerirrrereireeieirereenreeresseseecssaeenesssenesssnessssens 109
Double fault detection (Case 1)......ccccceeeereeieereerisvrninneeeseeeeeeeesensesessesnenens 110
Double fault detection (Case 2).........ccceeeeeerrereereereeeieeeeeeeeereesseessessesnsnnenes 111
Tightly-clustered triple fault pattern (Case 1)cccceeveeeevcrecreerccerrreenennen. 113
Tightly-clustered triple fault pattern (Case 2)cccceeveeevernccenecvennvecnnne. 114
Tightly-clustered triple fault pattern (Case 3)ccccceeeeeeevicerrccrencreeneeennees 115
Tightly-clustered triple fault pattern (Case 4)ccovvcereevveercrrverrcrvneenens 116
Tightly-clustered triple fault pattern (Case 5)coccevveevueeniiiricneccnnennneene 117
Fatal quadruple fault pattern (Case 1)cooceevverruiinnienrccirnecnnreecsseenens 118
Fatal quadruple fault pattern (Case 2)cccceeveerrceecreerrreerercrecneenoneennenes 119
Fatal quadruple fault pattern (Case 3)cccccvereeeverrecivcerercneeeerreeecnneees 120
Fatal quadruple fault pattern (Case 4)c..ccoeceeerueeirerrrerecseeencensreeenens 121
Fatal quadruple fault pattern (Case 5)coevveeeverirerereeenieeecreeenneencneenee 122
Fatal quadruple fault pattern (Case 6)c.cccceevveecreencerereerreenserseesseennnes 123
Fatal quadruple fault pattern (Case 7)cooceveverenieencreensreersneeessveeenuenens 124
Fatal quadruple fault pattern (Case 8)ccccevvuiernuirenveeniucericerrereeneneenne 125

Fatal quadruple fault pattern using current local reconfiguration hardware

Figure 4.42
Figure 4.43
Figure 4.44
Figure 4.45
Figure 4.46
Figure 4.47
Figure 4.48
Figure 4.49
Figure 4.50
Figure 4.51
Figure 4.52
Figure 4.53
Figure 4.54
Figure 4.55
Figure 4.56
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8

Figure 5.9
Figure 5.10

List of Figures

Properly detected, tightly clustered quadruple fault pattern (Case 2)........ 130
Properly detected, tightly clustered quadruple fault pattern (Case 3)........ 131
Properly detected, tightly clustered quadruple fault pattern (Case 4)........ 132
Properly detected, tightly clustered quadruple fault pattern (Case 5)........ 133
Properly detected, tightly clustered quadruple fault pattern (Case 6)........ 134
Properly detected, tightly clustered quadruple fault pattern (Case 7)........ 135
Properly detected, tightly clustered quadruple fault pattern (Case 8)........ 136
Properly detected, tightly clustered quadruple fault pattern (Case 9)........ 137
Properly detected, tightly clustered quadruple fault pattern (Case 10)...... 138
Properly detected, tightly clustered quadruple fault pattern (Case 11)...... 139
Properly detected, tightly clustered quadruple fault pattern (Case 12)...... 140
Properly detected, tightly clustered quadruple fault pattern (Case 13)...... 141
Properly detected, tightly clustered quadruple fault pattern (Case 14)...... 142
Properly detected, tightly clustered quadruple fault pattern (Case 15)...... 143
Properly detected, tightly clustered quadruple fault pattern (Case 16)...... 144

Basic self-checking CirCUit.........cooceeeveiiiiinsneenininnniiiinicneccncenseeseneees 155
TSC checkers for the two-rail Code.........cevvviiiriirnvnirirecinreerircicsnneecneees 163
Control cell interconnections for two-rail data transfers..........cccecccevueeenee. 165
Block diagram of the self-checking control cell architecture 167
The two-Tail EITOT-trap CITCUIL ...cocvvieereerereeereeeeeeerreeereeeceeererreessneessneens 169
Block diagram of the bidirectional I/O channels for the control cell 173
The registers and buffers for the control cell........c..cccvveiieevrvniiininnnnnnnen. 176
The SES register bit-SLiCeccuviiiiiiiiiiiiiiiiniiiiieieiciniic s 181
Block diagram of a self-checking sequential system........c.c.ccccceeeiicennonnnnee 183
Sequentially self-checking machines made from SFS circuits 188

Figure 5.11 Block diagram of a proposed SLD checker

...

Figure 5.12 Improved SLD checker design which eliminates SCD checkers...............

List of Figures

Xiv

LIST OF TABLES

Table 3.1
Table 4.1
Table 5.1
Table 5.2

Complexity of Global Reconfiguration Overheadccccoceeeveeeniirecncannae 69
Maximum fault latency times for up to quadruple faults...........c...ccccuuee.ee. 148
Results of single stuck-at faults in the XNOR gateccccccovevrnvvenineccnne 170
Results of single stuck-at faults in the XOR gateccooeeevvviiniiinnnnnnnnns 171

List of Tables XV

1. INTRODUCTION

The advent of Very Large Scale Integration (VLSI) and Wafer Scale Integration
(WSI) devices with high component densities makes possible the fabrication of powerful
parallel processing multinode architectures on a single silicon substrate. These systems are
often discussed in the context of signal processing applications, where the iterative nature
of the computations involved is well suited to the regularity of layout desired in
VLSI/WSI implementations [Kun82].

However, array processors are often special purpose in nature. This creates the
need for many specialized architectures, each inflexible and uniquely suited to a particular
task [Sny82]. Integrated circuits are also inherently difficult to repair; the failure of even
a single transistor out of the millions available in the system can result in catastrophic
failure. Moreover, such faults can manifest themselves either during production, or later
in a runtime environment. Fortunately, all of these difficulties can be successfully

addressed to some degree through the concept of reconfigurable architectures [Whi91].

Many strategies have been developed to reconfigure VLSI and WSI processor
arrays, including [Sny82], [KiR89], [KuF87], [Ros83], and others. These systems employ
redundant hardware in order to achieve the desired level of fault tolerance and
reconfigurability. A control mechanism is responsible for managing redundant resources,
as well as configuring processing and switching elements. Some reconfiguration schemes
use a centralized, or global, control mechanism, such as in [ChF89], [SaS86], and
[Sny82], whereas others utilize a distributed control strategy, including [Bri87], [GoG84],
[GrW89], [Hos89], [Kum84], [MaG80], [Mar80], and [Whi91].

Chapter 1 - Introduction 1

The use of a central control mechanism introduces the possibility of a single-point,
or "hard core,” failure in an otherwise fault-tolerant system. If the controller itself fails,
the entire system fails. The issue of controller reliability is sometimes circumvented by
either explicitly or implicitly assuming the existence of an external fault-free control
mechanism [Ros83], [KiR89]. Such assumptions may be valid in a manufacturing
environment, where multiple redundant controllers may exist, and where fault diagnosis
and reconfiguration are less time-critical than in a runtime environment. However, these

Iuxuries are not generally available outside a manufacturing context.

In [Hos89], a distributed fault diagnosis strategy is presented which does not
require a central reconfiguration control mechanism. Unfortunately, the author makes the
assumption that interprocessor communications links never fail, based on their relative
simplicity and small layout requirements as compared to the processing elements.
Research presented in {Mar80], [Kum84], [Bri87], [Whi91], and elsewhere, has focused
on developing distributed reconfiguration strategies which do not rely on failure-proof
components. A common theme throughout this work is an array containing redundant
processing elements, only a subset of which are used at runtime. The set of all processing
elements is called the physical array, and the structure needed for processing is called the
logical array. The logical array may require a rectangular mesh, binary tree, or any other
processor interconnection scheme. It is the task of the reconfiguration control mechanism

to map the logical array into a functioning part of the physical array.
Through [Mar80], [Kum84], and [Bri87], a global reconfiguration scheme

evolves. In response to a fault, the logical array is relocated to a fault-free area of the

physical array. The same technique also provides array polymorphism, allowing a single

Chapter 1 - Introduction ' 2

array to reconfigure itself for use in various specialized processing tasks. The method
presented in [Bri87] has distinct advantages over those given in both [Mar80] and
[Kum84], with respect to the amount of required hardware and layout area, and is
therefore the most desirable approach of the three. When exclusively employed in
response to faults, the global reconfiguration process is intrinsically costly in terms of the
hardware and time overhead required to relocate the logical array [Whi91]. Thus, it is not

necessarily suitable for use in all fault reconfiguration scenarios.

In [Whi9l1], a local reconfiguration strategy is presented, in which the tasks
assigned to faulty processing elements are passed to neighboring elements, and spare
elements are shifted in to satisfy the logical array size requirements. This technique is
reminiscent of the "fault stealing" strategy presented in [SaS86], and allows the array to
tolerate a small number of faults within the logical portion of the array. This approach
provides relatively quick response to faults as they occur, as compared to the global
reconfiguration approach. The local configuration strategy is 2-fault-tolerant, and also

provides coverage for most triple-fault configurations [Whi91].

1.1 STATEMENT OF PURPOSE

The purposes of the research presented herein are threefold. The first purpose is
to show the efficiency of the global reconfiguration scheme presented in [Bri87], as
compared to [Mar80] and [Kum84], with respect to the size of local memory required by
each processing element, the number of interconnection wires needed to provide a given
level of fault tolerance, and the size of the data packets passed between neighbors to

support each of the given schemes. The second purpose is to provide a distributed

Chapter 1 - Introduction 3

mechanism for alerting processing elements to the existence of faulty neighboring
processors, and consequently to provide coverage for all triple-fault patterns. The third
purpose is to provide a concurrent fault detection mechanism, thus reducing fault latency

as compared to periodic off-line testing schemes.

1.2 THESIS OVERVIEW

Chapter 2 provides a background on systolic array processors and the desirability
of reconfigurable architectures. Examples which address each of the different
reconfiguration scenarios are presented. Overviews of the global and local reconfiguration
schemes discussed in [Bri87] and [Whi91], respectively, are included as well. The
information provided in this chapter gives the reader the background necessary to

understand the new results presented in the subsequent chapters.

Chapter 3 derives the relative hardware complexities of [Mar80], and [Kum84],
and compares them to those of [Bri87]. It is shown that the latter scheme results in a
reduced local memory for an array element, as compared to either of the other two
methods. The method in [Bri87] also offers a small, fixed interconnect cost, independent
of the degree of fault tolerance desired, as opposed to the results given in [Mar80].
Finally, the method given in [Bri87] requires smaller data packets than the method given in
[Kum84].

Results presented in [Mar80], [Kum84], [Bri87], and [Whi91], assume the

existence of some unspecified mechanism to detect faults in the array. Further, the

assumption is made that all neighbors of a faulty cell become aware of that fault

Chapter 1 - Introduction 4

simultaneously. Chapter 4 addresses these assumptions in the form of a distributed
algorithm for fault diagnosis and isolation. It is shown that it is not necessary for all
neighbors to know of the existence of a faulty cell simultaneously. Further, the time
required for fault information to be disseminated to all neighbors of the faulty cell has an
upper bound which depends on the interconnect scheme used to pass the location of the
faulty cell. Another consequence of this analysis, performed in conjunction with Joseph
Wegner, is a relatively inexpensive means to improve the reliability of the local

reconfiguration scheme given in [Whi91] so that it tolerates all triple faults.

One of the major goals of this effort is the inclusion of concurrent, or on-line, fault
detection. This approach reduces fault latency, as compared to off-line testing, as faults
are detected as they occur. As a possible solution to problems associated with concurrent
testing, Chapter 5 discusses the design of totally self-checking (TSC) finite state automata,
and relates this information to the diagnosis and isolation algorithm presented in Chapter
4. Specifically, it is shown that all faults in the assumed fault set are correctly diagnosed,

including link failures between processing elements.

Chapter 6 summarizes the results of this research, and discusses open questions for
future efforts. In particular, it is shown that with the inclusion of triple-fault-tolerance in
the local reconfiguration scheme, the addition of concurrent fault detection, and the
distributed fault reporting mechanism, the hierarchical reconfiguration strategy is made

more robust.

Chapter 1 - Introduction 5

2. BACKGROUND

This chapter provides a foundation for the results presented in subsequent
chapters. The basic concepts of systolic arrays are introduced, and the suitability of these
arrays for implementation in VLSI and WSI technologies is argued. However, such
implementations present certain difficulties, thus motivating the subsequent discussion of
reconfiguration as a means to alleviate these problems. The relative merits and
deficiencies of global and distributed reconfiguration control mechanisms are examined,
with the focus being on a fault-tolerant computing environment. Finally, the state of the
previously developed hierarchical reconfiguration scheme is presented, which incorporates

both the local and global reconfiguration schemes of [Whi91] and [Bri87], respectively.

2.1 SYSTOLIC ARRAYS

Algorithms can generally be categorized as either compute-bound or 1/O-bound
processes. A compute-bound process is one in which the number of operations performed
in the algorithm is greater than the number of distinct data objects manipulated during
processing. An I/O-bound process, on the other hand, involves a relatively small number
of operations performed on a relatively large number of data objects. Unfortunately,
compute-bound processes can become I/O-bound when executed in a classical von
Neumann architecture [Kun82]. This can occur when many of the same data objects are
retrieved from memory several times during processing, so that the total number of I/O
operations is on the same order as the number of processing operations. Thus, the general

purpose von Neumann architecture is unsuitable for such applications.

Chapter 2 - Background 6

Systolic arrays embody a class of special purpose architectures which eliminate the
von Neumann memory bottleneck by using a single access of a given data object to
perform parallel computations. Systolic arrays are so named by the analogy that data

circulates through the array as blood does through the circulatory system.

An example systolic array which performs convolution is given in [Kun82], and
reproduced as Figure 2.1. In the figure, x; represents thé ith input to the system, wj is the
ith coefficient of the system's unit pulse response, and y; is the ith system output. In this
particular implementation, w; remains fixed at cell i, and the output y; propagates to cell
i+1. Note that the system accesses each input x; only once, as opposed to the multiple
accesses required by a sequential system. The same technique can be applied to many
other signal processing and matrix algorithms, including 1-D and 2-D Fast Fourier
Transforms, IIR filter implementation, matrix multiplication, and matrix LU

decomposition [Sny82].

It is important to realize that each cell in the array is essentially the same as any
other, with the possible exception in the example of the w; coefficients. If these
coefficients are loaded into the cells at runtime, rather than hardwired, then all cells are

identical. This structural regularity is well-suited to VLSI/WSI implementation [Kun82].

Systolic arrays typically arise in the context of a larger system, as is assumed here.
In such systems, a host computer applies input data to the array as needed. The array in
turn provides the host with the resulting output data, which may then be used in

computations better suited to general purpose architectures [Kun82].

Chapter 2 - Background 7

¥3 y2 yl
L o .wl'——'ﬂ—‘wa—>"-—>wi'—’oo

yin
w [yout=yin+ xin ew

Figure 2.1 - Example systolic array for performing linear convolution.

Chapter 2 - Background

2.2 MOTIVATION FOR RECONFIGURATION

VLSI/WSI array processors can, unfortunately, develop faults during production
or at runtime for a number of reasons [GrW89]. It is therefore desirable to introduce
some measure of fault-tolerance into the end-product which allows it to perform to the
desired specifications, even in the presence of a predetermined number of faulty elements.
Systolic arrays can also be designed to perform a variety of processing tasks, thus
reducing the need for separate, special-purpose architectures [Sny82], [GrW89]. Such
arrays may need to be reconfigured, either during production or at runtime, to select the

-

desired array functionality.

2.2.1 YIELD ENHANCEMENT

Deficiencies in current manufacturing processes can result in low product yields,
even for single faults [GrW89]. New techniques such as X-ray lithography may show
promise as a means of allowing technicians to directly effect repairs on a faulty integrated
circuit, but this technology is not sufficiently developed to employ in practical
applications. Rather than discard faulty chips, it is often desirable to introduce sufficient
redundancy so that a required minimum number of working array elements per chip is very
likely to be available. Such goals are achieved through reconfiguration for yield
enhancement, in which faulty elements are identified and disabled at production time, and
are replaced by spares. Yield enhancement schemes are often referred to as static
reconfiguration, since reconfiguration is performed only once at production time, and the
changes are permanent. Static reconfiguration is generally not a time-critical operation,

since full functionality is only needed at runtime; thus, sophisticated fault detection and

Chapter 2 - Background 9

location schemes may be employed to improve the process yield. Examples of
reconfiguration techniques which are suitable for yield enhancement include Fault Tolerant

Testable Scan Design [KiR89], and the Kuo-Fuchs Strategy [KuF87].

2.2.1.1 FAULT TOLERANT TESTABLE SCAN DESIGN

In [KiR89], Kim and Reddy propose the augmented PE reproduced in Figure 2.2
as a means of yield enhancement. It accepts data on both horizontal and vertical data

paths, and contains several components to facilitate testing and reconfiguration.

The horizontal data input register, HR, accepts data on the horizontal input path
for processing. Similarly, the vertical data input register, VR, accepts data on the vertical
input path. A control flip-flop, CS, configures a switch, SW, which determines the input
to VR. The three possible switch configurations are shown in Figure 2.3, and are
reproduced from [KiR89]. The bypass register, BR, is used to route incoming horizontal
data around a faulty PE. Hence, the assumption is made that a faulty PE can still perform
this buffering operation. A delay register, DR, can be used to buffer vertical input data by
one clock cycle to prevent skew between the horizontal and vertical data. This feature is
used when the horizontal input data comes from a bypassed PE. Multiplexer MUX2
selects the contents of either VR or DR as vertical input data to the Computational Unit,
CU, as determined by the CD control flip-flop. The CU performs the necessary
computation on the horizontal and vertical input data, and stores the results in the
computational result register, CR. Multiplexer MUX1 selects the output data path, which

is determined by the 2-bit control register CM. When CM = 00, the horizontal input data

Chapter 2 - Background 10

—=(10 M
00 y
11 X
M —{01 !
11}) C ona
X Unit
2

Figure 2.2 - A proposed augmented PE for yield enhancement.

Chapter 2 - Background

11

Figure 2.3 - Possible settings for augmented PE switch SW.

Chapter 2 - Background

12

held in HR appears at the output. When CM = 01, the horizontal input data held in BR
appears at the output. When CM = 10, the vertical input data held in VR appears at the

output. Finally, when CM = 11, the computational result in CR appears at the output.

As indicated by the simplified PE interconnection patterns shown in Figure 2.4, a
PE at location (i, j) can receive vertical input data through SW from the PEs at (i-1, j-1),
@-1, j), or (i-1, j+1). This provides flexibility in selecting an alternate vertical data input
path when faulty PEs are bypassed. Testing is accomplished in four steps:

1. Test data are scanned into the control flip-flops and the test responses are

scanned out. By noting faults in the test responses, it is possible to
determine which PEs should be bypassed.

2. More test data is scanned in along the horizontal data path, and the test
responses are scanned out. Since the control flip-flops have already been
tested, any faults are due to the horizontal data path. Faulty PEs can then
be located and bypassed.

3. Test data is scanned in on the vertical path, and MUX1 is used to scan out
responses along the fault-free horizontal path found in step 2. Any faulty
PEs in the vertical path are detected, and so can be bypassed.

4. Test data is scanned in on the fault-free horizontal and vertical paths found
in step 3, and passed into the computational unit. Results in the CR are
scanned out on the horizontal path. Any PEs with faulty computational
results can be detected and bypassed.

The testing and reconfiguration process is managed by an external global control
mechanism, which injects test data, evaluates test responses, and sets control flip-flops.
Figure 2.5, reproduced from an example in [Kun82], shows a reconfigured systolic array

which multiplies two 3-by-3 matrices. Zero values in the data stream insure that

Chapter 2 - Background 13

r { {

—PJ G-1,571) e G1,j)) k—— @1, j+1)

Il

(t%))
———GL, ;Jr: h, -

! v K

a) Cell (i,j) receives vertical input from cell (i-1, j-1).

— LD GL) e GLj) ~
! _ ¥
—P
K ' K}

b) Cell (i,j) receives vertical input from cell (i-1, j).

- (-1,j1) pe— (l,j) @1, j+1)

! : ‘

oo
R [!

c¢) Cell (i,j) receives vertical input from cell (i-1, j+1).

Figure 2.4 - Simplified diagram of vertical input paths for augmented PE.

Chapter 2 - Background 14

0 0 b33

0 b32 b23

b31 b22 b13

b21 b12 0

i .
0 0 al3al2all —» — X —= D — D —
0 a23a22a210 —» X —= D D D —

Y S
33232431 0 0 — — X (=

X | : AfaultyPE

D |: APE with an enabled DR

Figure 2.5 - Successfully reconfigured systolic matrix multiplier array.

Chapter 2 - Background

15

horizontal and vertical data items are correctly synchronized with one another during the
computation. Faulty PEs are indicated by the symbol X, and fault-free PEs using DR to
provide the proper delay on the horizontal data path are denoted by the symbol D. The
scheme is processor-switched, meaning that individual processors are switched into the
logical array to replace faulty PEs. The technique employs local redundancy, since a PE
can only substitute for its left or right neighbor, rather than for an arbitrary faulty PE
[ChF90]. Since this technique tolerates at most one fault per row, it may be unsuitable for

yield enhancement when clustered faults are present.

2.2.1.2 THE KUO-FUCHS REPAIR-MOST STRATEGY

Set switching, a strategy in which banks of PEs are switched in to replace those
containing faulty PEs, may be used to accommodate the clustered fault model [ChF90].
The Kuo-Fuchs strategy substitutes a working row or column of array elements for a row
or column containing one or more faulty PEs. In this scheme, the system is modeled as a
bipartite graph, as shown in Figure 2.6 [Joh89], [ChF90]. One column of nodes in the
graph represents rows containing faulty cells, and the other represents columns containing
faulty cells. An edge in the graph represents a faulty PE at location (i, j). Thus the edge is
incident to the node for row i and the node for column j. A faulty PE is said to be covered
if a spare PE is available to replace it. The basic repair-most strategy is to replace rows
and columns with the most faults first, thus assuming that the remaining faults may be

easily covered. The algorithm for replacing faulty rows and columns is as follows:

Chapter 2 - Background 16

X]
[[« T 1
X HMH X X —
C T T
— M X L
I l
XX X
S i {- e
| Bl |
[T
spare rows

Figure 2.6 - Repair-most strategy example with 2 spare rows and 2 spare columns.

Chapter 2 - Background 17

1. Select a node with the maximum number of incident edges.
2. Replace the row/column of PEs represented by the node.
3. Remove the node and its incident edges from the graph.

These three steps are repeated until all faults are covered by spare rows or spare
columns, if possible. If two or more nodes have the same number of incident edges, some
arbitrary means may be used to select one of those nodes. Note, however, that the order
in which nodes are deleted can influence the outcome of the repair-most strategy. Figure
2.7 represents a successful replacement strategy of the bipartite graph in Figure 2.6. If not
all of the faulty PEs are covered after all spare rows and columns are used, the algorithm
fails. An example of this failure is given in Figure 2.8, using the same initial configuration
of Figure 2.6 with a different ordering of row and column replacements than is used in
Figure 2.7. After both spare rows and both spare columns are used, the faulty PE located
at (4, 3) is still not covered. In the general case, optimal solution of the Kuo-Fuchs graph-
theoretical representation is an NP-complete problem [KuF87], similar to the well-known
"traveling salesman" problem. However, through the use of heuristics, such as a branch-
and-bound approach, it is often possible to produce optimal or near-optimal results in a

reasonable time.

Since the algorithm requires information concerning the locations of all faults in
the array, it is well-suited to a global control scheme. The global control mechanism can
perform the algorithm, and make the necessary replacements. Implementations can be
locally redundant, wherein spare sets can replace only certain faulty sets. This reduces the
amount of switching hardware as compared to a global redundancy scheme, but can result

in the underutilization of spares, due to the clustered nature of the faults. However, a

Chapter 2 - Background 18

ROWS COLUMNS ROWS COLUMNS

ROWS COLUMNS ROWS COLUMNS

Figure 2.7 - Successful reconfiguration of Figure 2.6 using repair-most strategy.

Chapter 2 - Background

19

ROWS COLUMNS ROWS COLUMNS

ROWS COLUMNS ROWS COLUMNS

Figure 2.8 - Unsuccessful reconfiguration of Figure 2.6 using repair-most strategy

Chapter 2 - Background

20

global redundancy scheme would allow spare sets to replace any faulty sets, thus

providing better utilization of spares [ChF90].

2.2.2 RUNTIME FAULT TOLERANCE

Dynamic reconfiguration for reliability enhancement considers faults encountered
in a runtime environment, as opposed to static reconfiguration for yield enhancement.
High reliability systems must not fail on the basis of a single runtime fault [GrW89].
Though these faults can be either transient or permanent in nature, most runtime faults
tend to be transient and randomly distributed within the array [Joh89]. An effective
reconfiguration scheme must be capable of dealing with both transient and permanent

faults in an efficient manner, since long delays are intolerable.

2.2.2.1 THE DIOGENES APPROACH

Rosenberg introduced an approach for the design of fault tolerant arrays, which
linearizes the array via a set of communications links [Ros83). These links traverse the
entire structure, so that any given PE can be connected to any other PE. The cell
interconnection paths are assumed to be fault-free, which the author attempts to justify by
citing the relative simplicity of the links as compared to the PEs. In his paper, Rosenberg

introduces hardware stacks and queues, reproduced in Figures 2.9 and 2.10, respectively.

The stack structure of Figure 2.9 allows a PE to PUSH a request for a connection
to a following PE, and also allows it to connect to a preceding PE by asserting the POP

line. Logically, PEs are not linearly connected, but can instead skip physically adjacent

Chapter 2 - Background 21

//// =

S ¢
:

PEs to connect to logically adjacent PEs. By augmenting this structure, it is possible to

create other interconnection schemes, such as binary trees [Ros83].

The queue structure of Figure 2.10 allows a PE to ENQ (enqueue) a request for a
connection to a following PE, and also allows it to connect to a preceding PE by asserting
the DEQ (dequeue) line. If a one-element queue is used, a linear array can be easily
constructed. However, in a larger queue, PEs can again skip physically adjacent PEs to
connect to logically adjacent PEs. This structure can be combined with the stack structure

to create pyramid and rectangular mesh interconnections [Ros83].

Modifications to the Diogenes approach proposed in [BeB92] describe a strategy
in which spare rows and columns replace rows and columns with insufficient numbers of
working PEs. This results in a lower interconnection overhead, since only the PEs in a
given row or column must be linearized, rather than linearizing the entire array. In
addition, the modified approach does not assume the existence of fault-free
communications links. Unlike the originally proposed design, however, the modified

Diogenes approach can not achieve 100% utilization of spares.

A major drawback of both approaches is in the potential for long cell
interconnections in the presence of é large number of faulty consecutive nodes. The
propagation delays thus incurred can severely limit the array performance. Both
approaches depend on a global control mechanism to provide test data and interpret test
results in order to locate faulty PEs. This strategy is best suited to small arrays consisting

of complex PEs [ChF90].

Chanter 2 - Backeround 24

2.2.2.2 INTERSTITIAL REDUNDANCY

This method uses a processor-switched local redundancy scheme. One possible
configuration from [Sin88] is reproduced in Figure 2.11, in which a regularly connected
mesh is augmented with spare PEs. As shown, each spare node can replace one of a fixed
set of other nodes. As opposed to the Diogenes approach, interstitial redundancy has the
advantage of reduced cell interconnection cost in terms of area, reliability, and data
propagation delays. Such a scheme could be employed using a distributed reconfiguration
algorithm, in which the cells in a given set are self-checking or neighbor-checking. Spares
can then be activated to replace the faulty cells. A global reconfiguration mechanism can
also be used to determine the locations of faulty cells, and to activate spares accordingly.
Interstitial redundancy can be used with many other interconnection patterns. Fault
coverage can be improved by adding more interstitial redundancy, at the expense of

greater layout area overhead and underutilization of spares.

2.2.2.3 FAULT-STEALING STRATEGIES

These methods, described in [SaS86], allow a faulty cell to "steal" a neighbor to
perform its duties. However, this neighbor must in turn "steal" from another neighbor,
and so on. The process continues until a spare is found to fill the gap initially created by
the faulty PE. This approach is processor-switched and locally redundant. It is well-

suited to a distributed environment.

Chapter 2 - Background 25

Figure 2.11 - Example of interstitial redundancy.

Chapter 2 - Background

26

Direct reconfiguration (DR) forms the basis for the fault-stealing strategies. An
example of the DR approach from [ChF90] is reproduced as Figure 2.12. The physical
coordinates of PEs are given in parentheses, and their logical coordinates are given in
square brackets. In Figure 2.12, for example, the cell with physical coordinates (2, 3) has
logical coordinates [1, 2]. The logical coordinate [0, 0] indicates that a PE is not used in
the final configuration. In DR, each c':olumn is scanned from the bottom up. The leftmost
fault in each row is flagged as a "vertical fault,” and the remaining faults in the row are
"horizontal faults.” Vertical faults steal downward, and horizontal faults steal to the right.
Note that it is possible for a fault to steal both downward and to the right, as with element
[1, 2] in the example. The DR algorithm fails if a given row has two or more horizontal
faults. The interconnection costs are modest, the algorithm is efficient, and high utilization
of spares is possible. However, DR is unable to reconfigure in the presence of multiple

horizontal faults per row.

Fixed-stealing increases array survivability by allowing the rightmost horizontal
fault in a row to steal from the same row (as in DR), but the remaining horizontal faults
steal vertically up from an adjacent row. To tolerate N faults in a row, it is necessary to
allow stealing from up to N fault-free rows previous to the row containing horizontal
faults. Variable stealing works in a similar fashion, except it selects as the horizontal fault

the cell which cannot steal from a previous row [SaS86].

Complex fault stealing (CFS) allows more flexible vertical stealing, as shown in an
example from [ChF90] given here as Figure 2.13. Note the additional fault at (2, 3) can
be accommodated by CES, but would fail under direct reconfiguration, since there are two

horizontal faults in the first row. The vertical connection paths are omitted to improve the

Chapter 2 - Background 27

|
(1,1) (14) (1.5)
[1,1]) \ [1,3] [14]
1
@) 23| | 24) @2.5)
[2.1] 1 J 1,21 — | 12.3] [24]
—"_l
—
3.1) ¢ | |63 (34) (3.5
3,1] 13.2] 22] [34] [0,0]
L1 |
—
@.,1) | @3 @4.5)
[4,1] J 133] , [0,0]
|

(5.2) 53) (54) (5.5)

X [4,2] [4,3] [4,4] [0,0]

Figure 2.12 - Example of direct reconfiguration (DR).

Chapter 2 - Background

(1,1) (14) (1.5)
[1,1]] , 1113 [1,4]
@.1) || 4 i @.5)
12,1]) [12] [2.4]
G.1) (32) (33) (G4) 3.5
3,11 122] [2.3] 133] [3.4]
@.1) L “3) @.5)
4,11) [3.2] X [4,4]

52) (5.3) J (54) (5.5

[4,2] [4,3] [0,0] [0,0]

Figure 2.13 - Example of complex fault stealing (CFS).

Chapter 2 - Background

readability of the figure. The pseudocode algorithm for CFS is given in Figure 2.14
[ChF90]. CFS offers a higher probability of reconfiguration at the expense of increased
cell interconnection complexity, and a slightly more complex algorithm than other fault-
stealing methods. The cells are assumed to be self-testing, which requires additional cell
overhead. However, the authors make no assumptions regarding the types of faults which
occur. Rather, it is up to the designer of a fault-stealing system to determine an
appropriate fault model for a particular environment. Reconfiguration can be

accomplished quickly, which is important in the case of runtime faults.

2.2.3 ARRAY POLYMORPHISM

Reconfiguration does not necessarily require that a fault exists in a processor array.
Processor array architectures are often "special purpose,” in that the functionality of the
array is specifically designed for a particular application [GrW89]. This implies that
different applications require different array architectures. This can be very expensive for
the manufacturer, as well as for the users of such architectures. Reconfiguration
techniques for array polymorphism provide a means of altering the array functionality in
terms of the cell interconnections and the processing functions to be performed, as in
[Sny82], [GrW89]. This allows a single processor array to perform various computational

tasks.

2.2.3.1 THE CONFIGURABLE, HIGHLY PARALLEL (CHIP) COMPUTER

The CHiP computer, introduced by Lawrence Snyder in [Sny82], takes advantage

of the array polymorphism concept. It consists of a grid composed of PEs and switching

Chapter 2 - Background 30

horizontal_steal = FALSE;
for (every faulty or unavailable cell (i, j) in a row)

{
if (not_rightmost(, j) Il (horizontal_steal == TRUE))
{
if (fault_free(i+1, j))
steal(i+1, j);
else if (fault_free(i+1, j+1))
steal(i+1, j+1);
else if (not_rightmost(i, j))
{
steal(i, j+1);
horizontal_steal = TRUE;
}
}
else
{
steal(i, j+1);
horizontal_steal = TRUE;
}
)

Figure 2.14 - Pseudocode algorithm for complex fault stealing.

Chapter 2 - Background

elements, whose functions are determined by a global control mechanism. This controller
is responsible for configuring the functionality of the PEs and the switch interconnection
patterns. By sending commands to the controller, the grid can be configured according to

the needs of a particular application.

Examples of the CHiP architecture are given in Figures 2.15 and 2.16, which are
taken from [Sny82]. Figure 2.15 shows a typical rectangular mesh pattern, where the
square elements represent PEs, and the circular elements represent switches. The same
grid can be configured as a binary tree, as shown in Figure 2.16, by simply changing the
interconnection pattern. This reconfiguration property can also be used as a measure of
fault tolerance. When faults are detected by the global controller, the switch lattice can be
configured around the faulty area. Thus, the CHiP architecture is essentially processor-
switched and locally redundant. By adding set-switched, multiple, independent CHiP grid
structures on a die or wafer, the flexibility of reconfiguration increases. A single grid can
be selected for application suitability using set switching, after which the desired
interconnection pattern and fault bypassing can be accomplished through processor
switching. The switching functions involved in this approach can be complex, due to the
requirements of various interconnection schemes [ChF90]. This leads to reduced switch

reliability and increased layout area.

2.2.3.2 HIERARCHICAL RECONFIGURATION

Although the previous examples describe several techniques to address one or
perhaps two of the three types of reconfiguration, none offers a comprehensive approach

to deal with reconfiguration for yield enhancement, runtime fault tolerance, and array

Chapter 2 - Background 32

O : switch element

D : processing element (PE)

Figure 2.15 - CHiP architecture configured as a mesh array.

Chapter 2 - Background

33

ONONORONONONG,

ROOT:

ONORONONONONONO

OO0 O0O0000O0O0

ONONONONONONONO

O : switch element

[:l : processing element (PE)

Figure 2.16 - CHiP architecture of Figure 2.15 configured as a binary tree.

Chapter 2 - Background 34

polymorphism. Perhaps a hierarchical reconfiguration strategy can provide the flexibility
needed to respond to all three reconfiguration scenarios. Such a hierarchical system,
described in [Mar80], [GoG84], [Kum84], [Bri87], and [Whi91], addresses all three

issues. The results presented in this thesis are a continuation of that effort.

The system is hierarchical in the sense that it supports a two-tiered reconfiguration
scheme. A local reconfiguration scheme allocates spare rows and columns of processing
elements, along with the requisite number of elements needed to support the logical array.
The spare PEs in the additional rows and columns are then used to bypass faulty PEs in
the logical array. Should the local reconfiguration mechanism fail to tolerate a given set of
faqlts, a global redundancy scheme then allows the logical array to remap itself into a
fault-free portion of the physical array. This approach provides the array with substantial
flexibility in tolerating faults. The hierarchical reconfiguration scheme is presented in the
following two sections. Since the global scheme is the original approach used for all three

reconfiguration scenarios, it is presented first.

2.3 GLOBAL RECONFIGURATION

A processor array can be visualized in terms of a “"computational plane" and a
“control plane,” as depicted in Figure 2.17 [GoG84]. Without loss of generality, the
control and computational planes may be physically distinct, or may only be separated
conceptually. The physical separation of the two planes could be implemented in a system
such as the Hughes 3-D computer in [LiE89]. The Hughes system architecture consists of
a set of stacked wafers, each of which contains a different set of functionally compatible

modules. For example, customized control and computational modules could each be

Chapter 2 - Background 35

. CONTRO
| \nveerpLane/ |
[J

l

TIVY N

t

va/s 13

|

/__;:A ‘I { \ e

COMPUTATIONAL
HYPERPLANE

Figure 2.17 - An array of PEs divided into control and computational planes.

Chapter 2 - Background

36

designed on separate wafers for specific applications, and then integrated with
standardized memory and I/O wafers. Physical separation also simplifies the problem of
routing cell interconnections, since the control and computational routing would otherwise
need to be coplanar. The computational plane may consist of processing elements which
employ internal switching, or may contain both PEs and external switching elements if
internal switching is not used. Since computational elements are allowed to be arbitrarily

complex in design and functionality, they will not be considered here.

Control plane cells are responsible for configuring the computational elements to
which they are linked, so that various computational functions and interconnection
schemes can be realized. The control plane is an array of identical, regularly connected
cellular finite state machines (FSMs). The FSMs are assumed to be Moore machines,
whose outputs are dependent only on their present states. A cell's neighborhood is
defined as the set of cells to which it is logically connected, and includes the cell itself.
The number of cells in the neighborhood is called the neighborhood scope. Two-
dimensional Moore or von Neumann neighborhoods are typically used. The method
presented here employs a two-dimensional von Neumann neighborhood, in which each cell
in the array is connected to its North, East, South, and West neighbors. The Moore
neighborhood augments this scheme by adding connections to the Northeast, Southeast,
Southwest, and Northwest neighbors. Either neighborhood may be used, as long as each
cell is included in its own neighborhood in order to ensure the stability of the array
[ThW77]. Note that the scope of the von Neumann neighborhood is 5, and the scope of

the Moore neighborhood is 9.

Chapter 2 - Background 37

2.3.1 MARTIN'S METHOD

Previous research conducted at Virginia Tech focuses on distributed
reconfiguration of cellular arrays. In [Mar80], Martin presents a method of producing a
self-diagnosing control mechanism which can relocate itself to a fault-free portion of a
processor array. However, little consideration is given to the problem of initializing the
array to the desired functional pattern. The neighborhood scope used in Martin's method
is also prohibitively large, and grows linearly with the number of faults to be tolerated.
Thus, a substantial number of cell interconnections is required. The concept is developed
for linear arrays, but the extensions of the method to multidimensional arrays depend

heavily on the properties developed for the linear case, and so are of limited usefulness.

2.3.2 KUMAR'S METHOD

Kumar developed an improved distributed control method which was more
amenable to multidimensional arrays in [Kum§84]. This method also developed a strategy
for initializing the control mechanism, and provided better fault isolation and
reconfiguration capabilities than Martin's method. As it employed a fixed neighborhood
independent of the number of faults to be tolerated, the number of cell interconnections

was substantially reduced in comparison to Martin's method.

2.3.3 BRIGHTON'S METHOD

Brighton's method, presented in [Bri87], is an outgrowth of the cellular automata

research conducted by Martin and Kumar. The size of the local memory required to store

Chapter 2 - Background 38

the next-state lookup table for the FSMs is reduced compared to the methods developed
by both Martin and Kumar. Like Kumar's method, the neighborhood scope is independent
of the desired level of fault tolerance, and employs fewer processor interconnections than
Martin's method. The fault isolation and reconfiguration strategies described in [Kum&4]
are incorporated into Brighton's method with little or no alteration. The basic differences
between Brighton's and Kumar's methods are primarily concerned with initializing the
control mechanism. The significance of the improvements resulting from Brighton's

method are discussed in the complexity analysis of Chapter 3.

2.3.3.1 DEFINITIONS OF TERMS USED

The states of the control cells in the array constitute a control pattern, and the
process of establishing this control pattern in the array is called pattern growth. When
faults in the array are detected, the distributed control mechanism can recreate the correct

pattern in a fault-free area of the array, so that a proper operating state is restored.

In order to discuss the initialization procedure, it is important to distinguish
between the state of a single control cell, the set of states for all cells in the control plane
at a given time, and the desired array functionality. The local state (LS) of a single
control cell describes the cell's interaction with other control cells, as well as with its
assigned computational cell. The set of states for all cells in the control plane is referred
to as the control pattern. A "seed" state is externally injected into the array, through
which it migrates until a sufficiently large fault-free area in which to "grow" the desired
control pattern is found. This is determined in essentially the same manner as in [Kum84].

Different seed states allow different patterns to be grown according to the chosen array

Chapter 2 - Background 39

function (e.g., Fast-Fourier transform, band-matrix multiplication, etc.). These functions
are called global states (GS). At each discrete time step, the control pattern grows
concentrically from the seed cell until the desired pattern size is reached. At the following
time step, called "bloomtime," each cell in the control pattern uses the GS value and its
position in the final pattern as indices into a lookup table stored in local memory. The
present state (PS) of a cell is defined by the combination of its LS and GS values. Pattern
growth, as described above, is the process of producing the final control pattern from the

seed cell corresponding to the desired GS.

2.3.3.2 PATTERN GROWTH EXAMPLE: THE BANYAN NETWORK

The Banyan network shown in Figure 2.18 is used to illustrate the pattern growth
mechanism. The square symbols represent processing elements, and the circular symbols
denote switches. Although the control cells use a von Neumann neighborhood, the PEs
and switches in this example are connected in a Moore neighborhood. Figure 2.19 shows
the connection patterns to be assigned to the switches, and the value of LS for the
corresponding control elements. All control cells associated with PEs are assigned the
value of LS = 15 (not shown), since each PE performs the same task. However, this need

not be the case, in general.

Each control cell contains the following registers to support pattern growth: LSR,
GSR, XR, YR, and TR. Also, a pattern growth flag (PGF) and an OK_PG flag are used.
The LSR, or local state register, simply holds the present LS for the cell. Similarly, the
global state register (GSR) contains the desired GS. For the example, the GSR value

indicates that the Banyan network function is to be used. XR and YR denote the relative

Chapter 2 - Background 40

Joopgoopgoonpnoonoon

ONONONONONONONONONONONONONORONG,

ONONONONONONONONONONONONONONONG,

OO OO0OO0OO0OO0O0O0O00O0O0

ONONONONONONOHONONONONONONONONC

Doopoogoopnpoongood

|__:| : processing element (PE)

O : switch element

Figure 2.18 - Banyan network used in pattern growth example.

41

Chapter 2 - Background

@Q@@®
S U
Qo QP

3 14

Figure 2.19 - Control cell state assignments for the Banyan Network.

Chapter 2 - Background 42

x- and y- coordinates, respectively, of the cell with respect to the final global control
pattern's lower left corner, which is given coordinates (1, 1). The time register (TR) is a
local counter used by the cell to determine when bloomtime has arrived, so that the final
pattern can be constructed. The PGF, when asserted, indicates that a given cell is
participating in pattern growth. The OK_PG flag, when asserted, indicates that the seed is

in an appropriate area in which to grow the pattern.

Figure 2.20 shows the contents of the XR, YR, and LSR registers for the first
three time steps of pattern growth for the Banyan network. From the seed's GSR value, a
cell can determine the XR and YR values for the seed cell. These values are selected to be
near the center of the final pattern in order to minimize the time required for pattern
growth. As shown in the figure for time step t = 1, the seed cell has a LS during pattern
growth denoted by Gc, and has relative x-y coordinates (5, 4). The maximum pattern
dimensions and the bloomtime are also a function of the GSR value. At each time step
prior to bloomtime, cells in the von Neumann neighborhood of a given cell assume one of
the following states: Gx, Gy, G, or the quiescent state, denoted by 0. Cells on the same
row or column as the seed cell assume the Gx or Gy states, respectively. This is shown in
Figure 2.20 for t = 2 and t = 3. All other cells assume the G state, as shown in the figure
for time step t = 3. The O-state is used to denote cells which are not currently
participating in pattern growth, as well as those which lie outside the final pattern. All
non-faulty cells in the array are initialized to the 0-state prior to seeding. Although not
explicitly shown in the figure, all cells which are not in the Gc, Gx, Gy, or G states are

actually in the O-state.

Chapter 2 - Background 43

1 5,4 Gc
5,5 Gy
2 44 54 6,4 Gx Gc Gx
5,3 Gy
5,6 Gy
4,5 5,5 6,5 GGy G
3 34 44 54 64 7.4 Gx Gx Gec Gx Gx
43 53 6,3 GGy G
5.2 Gy

Figure 2.20 - XR, YR, and LSR contents during pattern growth fort < 4

Chapter 2 - Background

As the pattern grows, cells pass the information in their GSR, XR, and YR
registers to their neighbors. Cells pass XR values to their east and west neighbors, and
YR values to their north and south neighbors. Thus, a cell determines its own position
from the XR value passed to it by an east or west neighbor, and the YR value passed by a
north or south neighbor. Figure 2.20 shows that for time steps t =2 and t = 3, cells in the
Gy state are in the same column as the seed cell. Although these cells do not explicitly
receive an XR value, it is the same as the XR value of the seed cell, and can be locally
determined from the value of the GSR. Similarly, cells in the Gx state are in the same row
as the seed cell and can therefore determine the missing YR value. Brighton demonstrates
in [Bri87] that cells can distinguish this case from the case where a faulty neighbor is not
sending the coordinate. Since each time step during pattern growth brings the array closer
to bloomtime, TR values are initialized according to the cell's Manhattan distance from the

seed cell; thus, all cells reach bloomtime simultaneously.

The control cell register values for time step t = 9 are given in Figure 2.21. This is
one step prior to bloomtime for the Banyan network. The size and shape of the final
pattern are defined, and the array is prepared for the final mapping. Figure 2.22 shows the
final control pattern for the Banyan network at bloomtime and beyond. Cells which lie
within the pattern use the values in the GSR, XR, and YR to look up their final states in

the state-transformation lookup table contained in local memory.

Chapter 2 - Background 45

1,7
1,6
1,5
14
1,3
1,2
1,1

Chapter 2 - Background

2,7
2,6
2,5

24

2,3

2,2
2,1

3,7
3,6
35
34
3,3
3,2
3,1

Figure 2.21 - XR, YR, and LSR contents att=9.

4,7
4,6
45
4,4
4,3
4.2
4,1

XR, YR

5,7
5,6

54
53
5,2
5,1

6,7
6,6
6,5
6,4
6,3
6,2
6,1

LSR

7,7
7,6
7,5
7,4
7,3
7,2
7,1

8,7
8,6
8,5
8,4
8,3
8,2
8,1

9,7
9,6
9,5
9,4
9,3
9,2
9,1

10,7
10,6
10,5
10,4
10,3
10,2
10,1

46

0 0 0 0
0 15 6 10
0 2 0 0
0 2 0 0
0 15 6 4
0 2 11 3
0 2 3 11
0 15 0 0
0 0 0 0

Figure 2.22 - Final control pattern for the Banyan network example, t > 9.

Chapter 2 - Background

15
13
14
15

15

— T — R — R —

15
14
13
15

15

I — R — N e e — R

47

2.3.3.3 PATTERN GROWTH RULES

The following three rules summarize the pattern growth process:

Rule 1: The seed corresponding to the desired GS migrates until it finds a
fault-free area of adequate size in which to grow the pattern. The OK_PG
flag is asserted, and the seed cell initiates pattern growth by asserting the
PGF. Next, the cell sets XR = cenx(GSR), and YR = ceny(GSR), where
cenx and ceny are functions which return the coordinates of the seed cell
relative to the lower left corner of the pattern, as specified by the GSR.
The cell then sets TR = 0 and LSR = Gc.

Rule 2: A cell which is not currently participating in the pattern growth
process (PGF = false), and has LSR = 0 should check the following:

the cell has no faulty neighbors,

at least one neighbor has LSR = Gc, Gx, Gy, or G,
all neighbors have valid values for GSR, and

the cell's position lies within the pattern.

b

Cells failing conditions 1 or 3 are mapped to a special quarantine state to
isolate the faulty cell(s). Cells failing conditions 2 or 4 remain in the 0-

state, since they are not part of the pattern.

If all four conditions are met, the cell asserts the PGF, and loads the XR

and YR registers from information passed by its neighbors. The cell's time

register is initialized to its Manhattan distance from the seed cell:

Chapter 2 - Background

TR = abs(XR - cenx(GSR)) + abs(YR - ceny(GSR)).

The cell then assigns a value to the LSR according to its position:

if XR = cenx(GSR))
LSR =Gx;

else if (YR == ceny(GSR))
LSR =Gy;

else
LSR =G;

The Gc, Gx, Gy, and G local states are referred to as pattern growth states.

Cells remain in these states until bloomtime.

Rule 3: At each time step after the PGF is asserted, the cell increments the
TR until bloomtime is reached. At that time, the cell uses its GSR, XR,
and YR registers as indices into the final state lookup table, and assigns the
returned value to the LSR. The PGF is then cleared, prohibiting further

pattern growth.

Normally, cells do not change state after bloomtime. The only exceptions to this
rule occur during reconfiguration. Although the details of fault isolation and
reconfiguration are not given here, the technique is essentially the same as in [Kum84],
wherein cells which detect faulty neighbors assume a special quarantine state, Q. This
effectively isolates faulty cells from the rest of the array. Kumar shows that if faulty or
quarantine cells are part of the current control pattern, a distributed technique can be used
to clear the pattern in the remaining fault-free regions, and to choose a single quarantine

cell to internally reseed the array [Kum84]. No conflict arises if faults occur during the

Chapter 2 - Background 49

pattern growth process, as the faulty pattern is immediately cleared, and a new
reconfiguration cycle is initiated according to [Kum84, Bri87]. Kumar's method uses a
special clear state (Z) to clear the array to the 0-state in the presence of faults which does
not reset faulty or quarantine cells. The Z-state can be injected into the array to clear out
the current pattern, allowing the array to be externally reseeded. If either internal or
external seeding occurs, the seed migrates to an appropriate area, and a new pattern

growth cycle begins.

24 LOCAL RECONFIGURATION

The global reconfiguration strategy described above is expensive when applied as a
general response to faults in the array. It is not difficult to imagine a scenario in which a
single fault triggers the global reconfiguration mechanism, and the pattern is relocated
within the array, only to have another single fault reinitiate the sequence. A better
approach might be to employ a local reconfiguration scheme in response to small numbers
of faults. Thus the expense of global reconfiguration only comes into play when local
reconfiguration fails. Such a hierarchical system is developed in [Whi91].

2.4.1 THE PROCESSING ELEMENT

Although White considers many different local reconfiguration strategies,
Algorithm 4-12, given in Chapter 5 of [Whi91], produces the most promising results.
Figure 2.23 shows that in this algorithm, each PE is physically connected to 12 of its
neighbors: North, South, East, West, Northeast, Northwest, Southeast, Southwest, Far

Forth, Far South, Far East, and Far West. To alleviate confusion, the names of physical

Chapter 2 - Background 50

Figure 2.23 - Cell interconnection pattern used in White's Algorithm 4-12.

Chapter 2 - Background

Nw N NE
FW A\ PE E
SwW S SE
FS

51

neighbors are distinguished by initial uppercase letters, and the names of logical neighbors
are given completely in uppercase. Thus, the North physical neighbor of a given cell may
also be that cell's NORTH logical neighbor. Each PE uses only 4 of the 12 available
physical connections at a given time, corresponding to the logical NORTH, SOUTH,
EAST, and WEST neighbors. This results in a rectangular mesh pattern for the logical
array. As faults occur in the array, PEs may choose different physical connections to
maintain the logical array. An example of the results of the local reconfiguration
algorithm, given in Figure 2.24, shows that PEs simply disconnect themselves from faulty
neighbors, and use connections to other neighbors to maintain the logical rectangular mesh
pattern. This approach is reminiscent of the fault-stealing strategies outlined in Section

2.2.2.3.

2.4.2 THE FAULT REGISTER

Since reconfiguration is assumed to occur in a distributed fashion, some means of
notifying PEs of faulty neighbors without relying on a centralized controller is needed. In
[Whi91], each cell contains a fault register, whose bits indicate the presence of faulty cells
in the neighborhood of the given cell. This register also contains information pertaining to
bypassed faults in the same or adjacent rows as the given cell. Each PE regularly passes
the contents of its fault register to its neighbors during operation, by which other
neighbors become aware of faulty PEs. More information on the fault register is given in

the fault diagnosis analysis in Chapter 4.

Chapter 2 - Background 52

Figure 2.24 - End result of local reconfiguration in response to a double fault.

Chapter 2 - Background

S S S
S
S
S
S
S S S S
: faulty PE : spare PE

53

2.4.3 FAULT COVERAGE

Of the algorithms presented in [Whi91], Algorithm 4-12 offers the best balance
between hardware overhead and fault coverage capability. The algorithm is 2-fault-
tolerant, as it covers all double faults. For an 8-by-8 logical array with 2 spare rows and 2
spare columns, the resulting 10-by-10 physical array covers 99.7% of the triple-fault
patterns as well [Whi91]. In fact, the only triple faults not tolerated in any array are those
in which one of the faulty elements is adjacent in the same row as one of the other faulty
elements, and is also adjacent in the same column as the remaining faulty element. These
faults are termed L-faults, due to the resemblance of the fault pattern to the capital letter
"L." An example L-fault pattern prior to local reconfiguration is given in Figure 2.25. In
Chapter 4, an extension to White's fault register is examined which allows 100% coverage

of triple-faults, thus making the array 3-fault-tolerant.

2.5 SUMMARY

This chapter provides the context for the remainder of the thesis. Systolic arrays
are introduced as a means to reduce bandwidth requirements in compute-bound processes
by performing all calculations which use a common data item in parallel. The regular
structure of systolic arrays makes them suitable for VLSI/WSI implementation, but the
resulting systems are often fault intolerant and highly application specific. Thus, it is
desirable to make such systems reconfigurable to enhance yield, to dynamically tolerate
faults, and to provide array polymorphism. Several examples of reconfigurable processing
arrays are presented, but none are applicable to all three reconfiguration scenarios, with

the exception of the proposed hierarchical reconfiguration strategy. This hierarchical

Chapter 2 - Background 54

Figure 2.25 - Fatal L-fault pattern example prior to local reconfiguration attempt.

Chapter 2 - Background

S S S S
S
S
S
S
S S S S
: faulty PE : spare PE

55

scheme incorporates a local reconfiguration mechanism as a primary approach to fault
tolerance, and global reconfiguration algorithm to provide array polymorphism as well as a

secondary means of achieving fault tolerance.

The local reconfiguration scheme presented in [Whi91] allows the array to bypass
faulty cells in a local sense by allocating spare rows and columns of processing elements.
This enhancement provides the array with more flexibility in tolerating faults. All double-
faults are tolerated, as well as most of the triple-fault patterns, with the exception of the L-

fault patterns.

If the local reconfiguration scheme fails, the global reconfiguration strategy scheme
presented in [Bri87] takes effect. This scheme allows distributed control patterns to be
grown in a cellular array, regardless of the number of faulty cells present, provided that an
ample fault-free area exists. Reconfiguration can be initiated either in response to the
presence of faults, or to provide array polymorphism. The method is not subject to hard
core failures. In addition, it does not require that control cells be excessively reliable, and

it does not assume the existence of components which never fail.

The following chapters present new material which addresses some of the
questions concerning previous system development. These issues include the efficiency of
the current global reconfiguration scheme, distributed diagnosis of faults in the array,

complete triple-fault coverage, and concurrent online fault detection.

Chapter 2 - Background 56

3. RECONFIGURATION COMPLEXITY ANALYSIS

This chapter addresses questions raised concerning the efficiency of the global
reconfiguration scheme presented in [Bri87] as compared to those given in [Mar80] and
[Kum84]. For each method being considered, this chapter compares the upper bounds on
the size complexities of various para;mcters which characterize the state transformation
function. These parameters include the size of a cell's local memory, the number of cell
interconnection wires, and the size in bits of the data to be passed between processing
elements, as required by the state transformation function. It is assumed that data sent
from a cell to a given neighbor is transmitted serially over a single wire. This reduces the
routing complexity which would otherwise be involved in the circuit layout if data is

transmitted in parallel.

3.1 EXPLANATION OF SYMBOLS USED

The total number of local states required by a given method is denoted by n;, the
symbol for the number of global states is ng, and the maximum control pattern dimension
is represented by D. The neighborhood scope defined in Chapter 2 is indicated by n. To
simplify the comparison, it is assumed that all global patterns are the same size, that a
given method always uses the same neighborhood, and that the same patterns are grown
using each of the three methods. Note that Martin's method is restricted to square
patterns with sides of length D = g2, for some integer k. Therefore, all three methods are
analyzed for these cases of square pattern growth. The values of n; and n are dependent
upon the method used. However, both n; and D are independent of the method used.

Hence, complexity analysis results are given in terms of those parameters.

Chapter 3 - Reconfiguration Complexity Analysis 57

3.2 LOCAL MEMORY COMPLEXITY

This section compares the size of the local memory needed by a cell to implement
the next-state lookup table. State information received from a cell's neighbors, as well as
the cell's own current state, determine the cell's transition to a new state. Although the
next state function could be implemented as discrete logic for a given array, the lookup

table approach provides a consistent methodology for any array.

3.2.1 MARTIN

Martin's method requires a unique neighborhood configuration for each cell
participating in pattern growth, as well as for each cell in the final pattern [Mar80]. If one
global pattern with n; local states is grown with n neighbors for each cell, there are n;”
possible neighborhoods for each cell. Hence, the memory size complexity of the lookup

table for Martin's method is given by

M =0(ng-nt). (3.1)

From [Mar80], the dimension, D, of the square pattern must be the square of an integer, k.
Martin's method requires £ local states to provide unique neighborhoods required for each
cell in the pattern. That is, D =k?, and k= pn,. Thus, the relationship between the

number of local states and the maximum pattern dimension, D, is fixed, and is given by
n.=D". 3.2)

The next-state mapping function requires knowledge of the states of each of a

cell's neighbors, as well as the cell's own state. Therefore, the neighborhood scope for

Chapter 3 - Reconfiguration Complexity Analysis 58

Martin's method must be determined. The minimum neighborhood scope, n, required to

reconfigure in the presence of single faults for [Mar80] is given by
n=12j+3, 3.3)

for some integer j > 1. Martin shows that the neighborhood scope increases linearly with
the number of faults to be tolerated. By letting j = 2 in Equation 3.3, we see that Martin's

method has a minimum neighborhood scope given by
n=27. (3.4)

By substituting Equations 3.2 and 3.4 into Equation 3.1, we find that Martin's method has

a minimum memory size complexity of

M =O(nc-D™%). (3.5)

3.2.2 KUMAR

Like Martin's method, Kumar's method also requires a unique neighborhood
configuration for every cell in the control pattern during pattern growth. This constraint is
lifted for the final pattern mapping at bloomtime. A set of intermediate pattern growth
states is required for every time step prior to bloomtime, so that the unique neighborhood
condition is satisfied. Since patterns in Kumar's method grow in a diamond shape due to
the use of a von Neumann neighborhood, a diamond of sufficient size must be grown so
that it circumscribes a square area of the desired dimension, D. The following definitions
and theorems provide insight into the relationship between the size of a diamond, the size
of the inscribed square, the time needed to establish the diamond, and the number of

distinct neighborhoods at each time step of Kumar's pattern growth process.

Chapter 3 - Reconfiguration Complexity Analysis 59

Definition 3.1:

A diamond of girth G, where G is odd, consists of consecutive rows of lengths
1,3,5,...,(G-2),G,(G-2),...,5,3,1, where the middle cell of each row is in the same
column as that of the other rows. Note that the girth of the diamond is the length of the
longest row (or column) in the diamond. Figure 1 shows the general form for a diamond.
Note that a valid diamond of girth G exists if and only if G is odd, since each row (or
column) is of odd length.

From [Kum84], a diamond of girth G, where G is odd, contains rectangles of
dimension 1xG,3x(G -2),....,2m-1)x(G-2(m-1)),...,(G-2)x3,Gx1. Note that
1<m <(G+1)/2. This is obtained by observing that a rectangle has minimum dimension
1. The general expression for the dimension of a rectangle is (2m —1)x(G —2(m-1)),
which defines the limits on m. Since (2m-1)>1, we have m>1. From
G-2(m-1)21,wesee that G-2m+221,or m<(G+1)/2.

Theorem 3.1:
The girth, G, of a diamond is related to the length of a side, D, of the largest
square which can be inscribed in it by G = 4| D/2 |+1.

Proof:

If D is odd, then we can find the relationship between D and G from the general
expression for the dimension of a rectangle. A square is simply a rectangle of dimension
DxD. From D=2m-1, we see that m=(D+1)/2. By substituting this result into
D=G-2(m-1), we find that D = G -2((D +1)/2-1), or G=2D-1. Since D is odd,
2| D/2|+1=D, so G=2(2| D/2|+1)-1=4| D/2|+1. ¥ D is even, we can embed the

Chapter 3 - Reconfiguration Complexity Analysis 60

Figure 3.1 - A diamond pattern of cells in a processor array.

Chapter 3 - Reconfiguration Complexity Analysis

G-2)

G-2

61

square in a larger square with sides of length (D +1). Note that we must do this, since the

rectangles contained within the diamond always have odd values for dimensions. From
D+1=2m-1, we see that m=(D+2)/2. By substituting this result into
D+1=G~-2(m~-1), we find that D+1=G-2((D+2)/2-1), or G=2D+1. Since D
iseven, 2| D/2|=D, so G=4 D/2|+1.

Theorem 3.2:
The number of time steps, ¢, required to grow a diamond of girth G, where G is
odd, is given by ¢t = (G +1)/2.

Proof by Induction:

Trivial Case:
A single seed cell at ¢ =1 is a diamond of girth G =1.

Assumption:
The number of time steps, ¢, required to grow a diamond of girth G = g, where g
is odd, is given by t = (g +1)/2.

Induction Step:
Show that the number of time steps, #, required to grow a diamond of girth
G =(g+2), where (g +2) is odd, is given by ¢ = (g +3)/2.

Since g is odd, (g +2) is also odd, so a valid diamond of girth (g +2) exists, by
Definition 3.1. In Kumar's pattern growth process, a valid diamond of girth (g +2) is

constructed from a valid diamond of girth g by adding one cell to each end of each row,

and by adding one cell to the top and bottom of the diamond. Thus the longest row

Chapter 3 - Reconfiguration Complexity Analysis 62

(column) is of length (g+2), as expected. Note that only one additional time step is
required to accomplish this result. Thus, ¢ =((g+1)/2)+1=(g+3)/2.

Each of the intermediate neighborhoods requires a separate entry in the local
lookup table. The number of unique neighborhoods, ny, in the diamond pattern at time ¢ is

the same as the number of cells in the pattern at the next time step [Bri87], and is given by
ny =1+ =(G+1) 2+G+2 (3.6)

Since one memory word must be allocated for each neighborhood at each step of
the pattern growth process, the total number of memory words required is approximately
given by summing Equation 3.6 as the diamond pattern begins as a single seed, and grows
to its final size. An average value of G=2D is used to simplify the calculations.
Neglecting the constant values in Theorem 3.1 has no effect on the final expression for the

memory complexity function.
2D
n= Y[(G+1)'/2+G+2] 3.7
G=1

n.=(4D*+17D*+15D)/3 (3.8)

By Equation 3.8, Kumar's method has a memory size complexity of O(D?) for a single

global function, and hence a total memory complexity of

M =0(ns - D*) (3.9

3.2.3 BRIGHTON

During pattern growth, Brighton's method requires only the single lookup which is

performed at bloomtime. For a single global pattern, this lookup is dependent only on the

Chapter 3 - Reconfiguration Complexity Analysis 63

contents of the XR and YR registers, each of which is restricted to a maximum value of D.
A single global pattern has a maximum of n, = D? cells, which gives a total memory size

complexity of

M= O(nG . DZ) (3. 10)

3.3 INTERCONNECTION COMPLEXITY

This section of the complexity analysis focuses on the number of wires used to
connect a cell to its neighbors. Clearly, minimizing the number of such wires leads to a
minimal layout complexity. Data is transmitted in a serial fashion, so that only a single
wire is needed for two neighboring cells to exchange information. A multi-wire bus could

also be used, reducing transmission time at the expense of increased layout area.

3.3.1 MARTIN

In order for a cell to perform the next-state function, it must know the state
information for each of its neighbors. The minimum number of cell interconnection wires
required by Martin's method to communicate this information is one less than the number
of neighbors, since a cell needs no wires to communicate with itself. The resulting
expression for the minimum number of wires, using the minimum neighborhood size from

Equation 3.4, is given by

W=(n-1)=26 (3.11)

Chapter 3 - Reconfiguration Complexity Analysis 64

since a cell needs no external routing to determine its own state value. Since the
neighborhood scope increases linearly with the number of faults, as mentioned above, so

too does the number of cell interconnection wires.

3.3.2 KUMAR

A von Neumann neighborhood is used in [Kum84], which gives

n=5 (3.12)
Thus, the number of interconnect wires per cell is given by

W=(n-1)=4 (3.13)

Note that the neighborhood scope, and hence the number of interconnection wires,

remains constant, regardless of the number of faults to be tolerated.

3.3.3 BRIGHTON

Since Brighton's method uses a von Neumann neighborhood, the number of cell
interconnection wires is the same as in Kumar's method. The result is therefore the same

as for Kumar's method, and is given in Equation 3.13 above.

Chapter 3 - Reconfiguration Complexity Analysis 65

3.4 TRANSMITTED DATA COMPLEXITY

This section of the complexity analysis compares the size in bits of the data to be
transmitted between neighboring cells. Since this data is transmitted serially, the size of
the data packets is directly related to the amount of time required to send them. As in the
previous section, a multi-wire bus implementation effectively results in a constant data
transmission time over the three methods under consideration, at the expense of increased

layout area.

3.4.1 MARTIN

The number of bits to be transmitted is determined by the encoding of a cell's state
value, which includes both the global and local state values. Thus, the number of bits to

be transmitted is given by
b =log,(ns+log,(n.)) (3.14)

By substituting Equation 3.2 into Equation 3.14, we see that the total number of

transmitted bits is given by

b =log,(ng)+log,(D%) (3.15)

Chapter 3 - Reconfiguration Complexity Analysis 66

34.2 KUMAR

Again, the number of bits which must be sent is equal to the size of the global and
local state values, as shown in Equation 3.14. By substituting Equation 3.8 into Equation

3.14, we see that the total number of transmitted bits is given by

b =log,(nc) +1og,((4D*+17D*+15D) /3) (3.16)

3.4.3 BRIGHTON

As in the previous discussions, the number of bits which must be sent to each
neighbor is dependent on the size of the global and local state values. Recall from Section
2.3.3.2 that a cell receives one position value from an east or west neighbor, and the other
position value from a north or south neighbor. Thus, in addition to the global and local
state information, the data passed between neighboring cells must also include one of the

position register values, XR or YR. Thus, the total number of bits is given by
b =1log,(nc)+log,(n.)+log,(PR) (3.17)

where PR represents the maximum position register value, which is D. Substituting this

value and », = D? into Equation 3.17 gives the total number of bits as

b =log,(ns)+1log,(D?)+log,(D) (3.18a)
b =log,(nc)+log,(D?) (3.18b)

Chapter 3 - Reconfiguration Complexity Analysis 67

3.5 COMPLEXITY ANALYSIS RESULTS

Table 3.1 summarizes the results of the global reconfiguration complexity analysis.
The first column of the table demonstrates a considerable improvement in the memory size
complexity of Brighton's method over that found for Martin's and Kumar's methods,
respectively. The second column of Table 3.1 shows that the interconnection complexities
of both Kumar's and Brighton's methods are dramatically improved as compared to
Martin's method. Finally, the third column of the table indicates that more information bits
must be transmitted by Kumar's method as compared to Martin's method, but that the
number of information bits required by Brighton's method lies between these two
extremes. The additional time required by Brighton's method to transmit the greater
number of bits, as compared to Martin's method, is offset by the greatly reduced number
of cell interconnection wires, as well as the significantly decreased memory size

complexity.

3.6 CONCLUSIONS

This chapter derives the relative complexities of the global reconfiguration schemes
presented in [Mar80], [Kum84], and [Bri87], with respect to the size of local memory, the
number of cell interconnections, and the number of bits transmitted between neighboring
cells. It is appropriate at this point to briefly mention the limitations of the comparisons

performed in this chapter.

Recall that Martin's method is restricted to the growth of square patterns with

sides of length D = k2, where k is some positive integer. Thus, any desired pattern must

Chapter 3 - Reconfiguration Complexity Analysis 68

Table 3.1 - Complexity of Global Reconfiguration Overhead

Memory

Interprocessor

Method Requirement Wires Data Bits Transferred

Martin | O(ng.D™) 26 log, (ng)+1log,(D%)

Kumar O(ng - D) 4 logz(nG)+log2((4D3+17D2+15D)/3)
Brighton | O(ng-D?) 4 log, (n¢) +log,(D?)

Note: Martin's method assumes single-fault tolerance only

Chapter 3 - Reconfiguration Complexity Analysis

69

fit within such a square, resulting in potentially poor cell utilization in the general case,
since the required number of available cells may be much greater than the number of cells
actually used. Kumar's method requires that the desired pattern be inscribed within a
diamond of the appropriate girth. In Brighton's method, the final pattern must fit within a
rectangle of the appropriate size. Clearly, Kumar's and Brighton's methods must be

heavily restricted in order to fairly compare them with Martin's method.

If Kumar's and Brighton's methods are compared directly, however, the worst-case
complexity costs for both methods are of the same order as presented in the above
sections. This can be seen if the maximum pattern dimension parameter, D, is defined to
be the length of the longest side of a rectangular pattern. In a worst-case scenario, the
pattern would be square, with sides of length D. Obviously, the number of
interconnection wires does not change in a direct comparison. Thus, the same analysis

applies as given in Sections 3.2 through 3.4.

Brighton's method has modest local memory requirements to implement the local
transformation function, as compared to both [Mar80] and [Kum84]. Brighton's method
also requires fewer information bits to be transmitted between neighbors, as compared to
Kumar's method. Martin's method requires fewer information bits than Brighton's method.
However, the reduction in the amount of transmitted data comes at the expense of a large
number of cell interconnections, which increases linearly with the number of faults to be
tolerated. In contrast, both Brighton's and Kumar's methods employ a small, fixed

neighborhood scope which is independent of the number of faults to be tolerated.

Chapter 3 - Reconfiguration Complexity Analysis 70

The reduced size of the next-state lookup table, as well as relatively small number
of cell interconnection wires, makes Brighton's scheme a more attractive alternative for
global reconfiguration as compared to the techniques developed by either Martin or
Kumar. Therefore, the results presented in subsequent chapters of this thesis assume

Brighton's approach is used as the basis for the global reconfiguration algorithm.

Chapter 3 - Reconfiguration Complexity Analysis 71

4. DISTRIBUTED FAULT DIAGNOSIS

This chapter discusses a distributed approach for pinpointing faulty PEs in a
cellular array. Although the reconfiguration technique in [Dis89] addresses link failures,
the governing algorithm relies on global fault knowledge in the array. The approach
presented in this chapter eliminates the need for global knowledge of the locations of
faulty PEs, and is easily integrated into the existing fault-tolerant cellular architecture.
Cells in the control plane are assumed to be self-checking. This assumption guarantees
that fault latency, the elapsed time between the occurrence of a fault and its detection, can
be minimized. The means for making self-checking cells are examined in Chapter 5. As
before, the cells in the computational plane are not considered here, given the potential

functional diversity of those components.

In this distributed diagnosis scheme, fault latency is defined as the elapsed time
between the occurrence of a fault and its detection by all cells which need to be aware of
the fault. When this detection is accomplished, the fault is said to be properly detected. A
fault which is not properly detected is said to be improperly detected, and may not result
in a correct local reconfiguration. This occurs when cells which need to be aware of the
fault are prohibited from learning of its existence, due to limitations in the hardware or

software which manages the array.

With these definitions in mind, several cell interconnection schemes, or
neighborhoods, are examined with respect to fault latency. The neighborhood determines
the time needed to propagate the fault data to other cells in the array. Each cell contains a

fault register, which contains the relative locations of faulty cells within a given area

Chapter 4 - Distributed Fault Diagnosis 72

surrounding the cell. This area is known as the region of fault awareness, and this chapter
examines the impact of this area on proper fault detection in detail. An explanation of the

contents of the fault register, and how its contents are determined is also included.

Finally, a simulation program is discussed which unifies the concepts of the cell
neighborhood, fault latency, and the fault register. Worst-case simulation results indicate
the detection of all triple faults is possible when a von Neumann neighborhood is used to
pass the fault data, as well as the detection of all quadruple faults when certain other
neighborhoods are used. The simulation results also provide the maximum fault latency

for successful detection, with respect to the neighborhood used.

4.1 MOTIVATION FOR DISTRIBUTED DIAGNOSIS

The previously developed fault-tolerant cellular architecture assumes that as faults
occur in the array, all PEs adjacent to faulty PEs enter a special quarantine state, thus
isolating the faulty regions from the fault-free regions. An example of this behavior is
given in Figure 4.1. In this case, adjacency is defined in terms of the von Neumann
neighborhood, which consists of the PEs to the north, south, east, and west of the faulty
PE. In order to distinguish directions from the names of neighboring cells, the former are
given in lower case, and the latter begin with uppercase letters. Thus, the neighbors in the
von Neumann neighborhood are, in clockwise order: North (N), East (E), South (S), and
West (W). The faulty PE, denoted by the symbol X, is isolated from the fault-free portion
of the array by the four quarantine PEs, denoted by the symbol Q. The figure implies the
faulty PE is immediately and simultaneously detected by all four neighbors. This further

implies that the fault latency time is zero.

Chapter 4 - Distributed Fault Diagnosis 73

a) A fault occurs...

b) ... and is immediately detected!

Figure 4.1 - The zero fault latency model.

Chapter 4 - Distributed Fault Diagnosis

74

One possible way to achieve zero fault latency is through the concept of self-
checking circuits. Such circuits allow faults to be detected at the output as they occur.
This eliminates the need for a periodic off-line testing cycle, during which all processing is
suspended. Off-line testing is undesirable in this context, since fault latency is directly
related to the interval between testing cycles. Self-checking circuits are discussed in
Chapter 5. For the purposes of this discussion, the assumption is made that the cells in the

control plane are self-checking.

Even with the assumption of self-checking circuitry, however, there is no way to
guarantee simultaneous fault detection by all neighbors, as is assumed in Figure 4.1.
Consider the example in Figure 4.2, in which the center cell is connected to each of its
neighbors via bidirectional communications links. If a failure develops in the link to the
north, as shown in the figure, the North neighbor, N, becomes aware of that fault via the
self-checking assumption. However, the other three neighbors have no way to detect the
fault directly; they must be informed of the fault by N. Other cells besides the four
nearest neighbors may also need to be aware of the faulty cell in order to successfully
reconfigure the array. As previously discussed, a global control mechanism limits the
fault-tolerance of the array. Therefore, some distributed mechanism is needed for carrying
information concerning the locations of faulty cells from the detecting neighbors to other

cells in the array.

Obviously, some fault latency is incurred in allowing the information to spread
from the point of origin to all fault-free cells which need to be aware of faults in the array.
Furthermore, since not all the fault-free cells receive fault information simultaneously, an

upper bound on the time required to distribute the data is needed. This bound, denoted

Chapter 4 - Distributed Fault Diagnosis 75

N

—

Faulty Link

PE

E

Figure 4.2 - The link fault cannot be detected by any neighbor of the PE other than N.

Chapter 4 - Distributed Fault Diagnosis

76

tmax , is determined by a number of factors, including the neighborhood used to distribute
the fault information, the size and shape of the area of cells surrounding a faulty cell which
need to be aware of the fault, and the maximum number of faults to be tolerated. Once
tmax is determined, a cell which becomes aware of a fault need only wait ¢y4x time steps
before attempting to reconfigure the array. This waiting period guarantees that for any
tolerable fault pattern, all cells needing to be aware of the fault are notified within £pax
time steps. The following sections of this chapter investigate the interrelationships of

these factors, and their impact on fyax -

4.2 THE CELL NEIGHBORHOOD

As defined in Chapter 2, a cell's neighborhood consists of all cells to which the cell
is connected, as well as the cell itself. The number of cells in the neighborhood defines the
neighborhood scope. The von Neumann neighborhood shown in Figure 4.3 has a scope of
5. The Moore neighborhood of Figure 4.4, and the White neighborhood of Figure 4.5
have scopes of 9 and 13, respectively. Note that the Moore neighborhood simply
augments the von Neumann neighborhood by adding the diagonal neighbors: Northeast
(NE), Southeast (SE), Southwest (SW), and Northwest (NW). The White neighborhood
extends the Moore neighborhood to include the following neighbors: Far North (FN), Far
East (FE), Far South (FS), and Far West (FW). Thus, a von Neumann neighborhood
requires less hardware to support the necessary cell interconnections than either the
Moore or White neighborhoods, due to its reduced scope. This hardware can take the
form of the interconnection links, as well as buffers, multiplexers, and other components

needed to manage the additional transfer of information between cells.

Chapter 4 - Distributed Fault Diagnosis 77

PE

Figure 4.3 - The von Neumann cell neighborhood has a scope of 5.

Chapter 4 - Distributed Fault Diagnosis

78

NW N NE
W PE E
SW S SE

Figure 4.4 - The Moore cell neighborhood has a scope of 9.

Chapter 4 - Distributed Fault Diagnosis

79

NW N NE
7 —\
FW \%Y% PE E
N/
SW S SE
FS

Figure 4.5 - The White cell neighborhood has a scope of 13.

Chapter 4 - Distributed Fault Diagnosis

80

The White neighborhood derives its name from the researcher who created the
local reconfiguration scheme of [Whi91], as described in Chapter 2. In this scheme, a
distinction is made between the physical neighborhood and the logical neighborhood.
Physically, all cells in the array are connected as in Figure 4.5. Logically, however, the
array is viewed as a rectangular mesh of cells connected in the von Neumann fashion of
Figure 4.3. During local reconfiguration, internal multiplexers are set which map the
physically available connections to the proper logical connections, so that the logical mesh
is maintained. As shown in Figures 4.6 through 4.9, a cell can choose from one of four
cells in the physical neighborhood to serve as a particular logical neighbor. Since there are
only 12 physical neighbors, the diagonal physical neighbors can serve as one of two logical
neighbors. For example, the southeast neighbor can either be viewed as the EAST logical
neighbor, as shown in Figure 4.7, or as the SOUTH logical neighbor, as in Figure 4.8.

Figure 4.10 introduces another neighborhood variation. It adds the Far North
(FN), Far South (FS), Far East (FE), and Far West (FW) neighbors to the von Neumann
neighborhood. This particular configuration is referred to here as the Lawson
neighborhood. 1t will be shown that this neighborhood offers many of the best qualities
found in the other neighborhoods which are particularly useful for the distributed fault
diagnosis algorithms developed here. Specifically, the fault latency incurred when a
Lawson neighborhood is used to pass the fault data is significantly lower than when a von
Neumann neighborhood is used. It is important to note that even though a von Neumann
neighborhood is currently used to pass the fault data, much of the hardware needed to
pass the fault data via a Moore, Lawson, or White neighborhood is already present in the
White interconnection network assumed for local reconfiguration in [Whi91]. It is shown

that although some additional hardware is required to support the Lawson neighborhood

Chapter 4 - Distributed Fault Diagnosis 81

Figure 4.6 - The possible choices for a NORTH logical neighbor.

Chapter 4 - Distributed Fault Diagnosis

PE

82

PE

Figure 4.7 - The possible choices for an EAST logical neighbor.

Chapter 4 - Distributed Fault Diagnosis

SE

&3

PE

SW

SE

Figure 4.8 - The possible choices for a SOUTH logical neighbor.

Chapter 4 - Distributed Fault Diagnosis

FS

84

PE

Figure 4.9 - The possible choices for a WEST logical neighbor.

Chapter 4 - Distributed Fault Diagnosis

SW

85

Figure 10 - The Lawson cell neighborhood has a scope of 9.

Chapter 4 - Distributed Fault Diagnosis

N

FW w PE
S

ES

86

as a fault detection mechanism, the fault latency time is considerably lower than that of the
Moore neighborhood, which has the same scope, and hence the same hardware overhead
requirements, as the Lawson neighborhood. Furthermore, the substantially higher
hardware investment required to support the White neighborhood for passing fault data
does not result in a significant reduction in the fault latency time over the Lawson

neighborhood.

The neighborhood scope directly relates to the amount of hardware needed in each
cell to support the interconnections required by the neighborhood. This hardware consists
of not only the requisite communications links, but also includes circuitry internal to the
cell, such as buffers, multiplexers, and combinational logic. The White neighborhood
developed for the local reconfiguration algorithm assumes four multiplexers and four
buffers for passing fault data between neighbors [Whi91]. Hence, the communications
links, multiplexers, and some of the data buffers and combinational logic are already
present in the current architecture. However, since a logical von Neumann neighborhood
is currently used for passing data between processors, additional hardware is required if a
different neighborhood is used for passing the fault data. None of the neighborhoods
examined in this chapter require additional communications links, so the only hardware
cost is the additional buffering and combinational logic needed. It is desirable to minimize
the amount of additional hardware needed, so that the layout complexity and power

consumption of the cell are conserved.

Chapter 4 - Distributed Fault Diagnosis 87

4.3 THE FAULT REGISTER

Each cell in the control plane maintains the contents of a fault register. This
register is simply a set of bit-flags which indicate the faulty or fault-free status of cells in
the area surrounding the given cell. Assuming, for example, that the fault register contains
flags which correspond to the White neighborhood of Figure 4.5, then the fault register is
12 bits wide. The region defined by the fault register flags is called the region of fault
awareness, or simply the region of awareness. Note that an exclusive and reciprocal
relationship exists between any given cell and those cells in its region of awareness. In
other words, any given cell is included in the region of awareness of each cell in its own
region of awareness, and in no other such region. The region can be expanded to
encompass as much area as desired by simply adding the appropriate flags to the fault

register.

This chapter initially considers a fault register configuration based on the White
neighborhood for distributed diagnosis, since the same configuration defines the physical
neighborhood. That is, all cells which are physically connected to a faulty cell should be
made aware of the fault. This approach will eventually enable all cells physically
connected to a faulty cell to determine the necessary connection patterns for successful
reconfiguration. Since there are twelve neighbors in the White neighborhood, the fault
register contains twelve bits (one for each neighbor). In an attempt to conserve hardware
overhead, a von Neumann neighborhood is assumed for passing the fault data, unless
otherwise noted. Modifications will be made as needed over the course of the analysis to

accommodate problematic fault configurations.

Chapter 4 - Distributed Fault Diagnosis 88

A cell sets its own fault register flags based on fault register data received from
other cells. Figure 4.11 contains an example of this procedure. Suppose a faulty cell,
denoted by X, is detected by its North neighbor, N. Further suppose that the Northwest
neighbor of X, NW, receives fault data from its own East neighbor, N, and that in turn, N
contains a flag indicating the fault in its South neighbor, X. If NW has a flag in its own
fault register corresponding to its Southeast neighbor, X, then NW can deduce the fault in

X by examining the South neighbor flag in the fault register data passed to it by N.

This deductive process continues until all cells in the region of awareness of X are
notified of the fault. For example, the West neighbor of X, W, can be told of the fault at
X by either N or NW if a White (or Moore) neighborhood is used to pass the fault data.
Since there is a direct diagonal connection between W and N, both W and NW leamn of
the fault at X at the same time. If the diagonal connections are not enabled, such as if a
von Neumann neighborhood is used to pass the fault data, W must learn of the fault at X

from NW, who in turn learns of it from N as shown in Figure 4.11.

Figure 4.12 provides a complete example of single fault diagnosis. The faulty cell,
X, is detected at ¢t =0 by its North neighbor, and is indicated by the numeral 0 at that
position. The fault register is assumed to contain bits corresponding to a White
neighborhood, as indicated by the region of awareness shown in the figure, since it is
desirable to notify all cells physically connected to X to be aware of the fault. A von
Neumann neighborhood is assumed for the purpose of transmitting the fault data. Thus at
t =1, the North, East, and West neighbors of the detecting cell become aware of the fault
at X, as indicated by the numeral 1 in the appropriate positions. Note that at ¢ = 5, the Far

South neighbor of X is the last cell in the region of awareness to be made aware of the

Chapter 4 - Distributed Fault Diagnosis 89

W PE E —
SwW S SE —
S
|---| 1]---] NorthFault Register
SE
|---[1]---] Northwest Fault Register
E
|---] 1]---] WestFault Register

W can directly learn about the fault at X from N if the diagonal connections are enabled.

Otherwise, W learns about the fault at X from NW, .which first learns about it from N.

Figure 4.11 - Setting the fault register bits.

Chapter 4 - Distributed Fault Diagnosis 90

Figure 4.12 - Distributed diagnosis diagram using a White neighborhood for the

interconnection network, and a von Neumann neighborhood for passing the fault data.

Chapter 4 - Distributed Fault Diagnosis 91

fault. Figure 4.13 shows the same example when a White neighborhood is used to
distribute the fault data. Note that all cells in the region of awareness of X are notified of
the fault on or before t =2. Thus, the fault latency incurred from the use of a White
neighborhood to distribute the fault data is much less than that required when a von

Neumann neighborhood is used.

44 FATAL FAULT PATTERNS

Since the region of awareness is finite, all cells that can be made aware of a
particular fault will become so within some finite time. The maximum time needed to
accomplish this is given by the fault latency parameter, ¢a4x, mentioned above. Intuitively,
more complex fault patterns and larger regions of awareness increase the upper bound on
tmax- The examples in Figures 4.12 and 4.13 illustrate the influence of the fault data
distribution neighborhood on the fault latency parameter, since data may need to pass

through intermediate neighbors to reach a particular cell.

It is important to recognize that some fault patterns may prevent fault data from
reaching particular cells within the region of awareness. This occurs when the fault data
distribution neighborhood is inadequate for bypassing a given fault pattern. For the von
Neumann fault data distribution neighborhood, this is equivalent to finding fault patterns
which divide the region of awareness into two or more disjoint regions. Other
neighborhood configurations have similar limitations, since any sufficiently large fault
pattern can be shown to be improperly detected. Such improperly detected faults are

called fatal faults, since they are not tolerated by the existing array.

Chapter 4 - Distributed Fault Diagnosis 92

Figure 4.13 - Distributed diagnosis diagram using a White neighborhood for both the

interconnection network and for passing the fault data.

Chapter 4 - Distributed Fault Diagnosis

93

4.4.1 THE L-FAULT

An example of a fatal fault is given in the triple fault pattern of Figure 4.14. Recall
that this particular fault distribution is referred to as an L-fault pattern. The cell marked X
defines the region of awareness for the example. The cells marked Y represent faulty cells
within the region of awareness for X; these cells have their own regions of awareness,
which are not relevant to this example. A von Neumann neighborhood is to be used for
passing the fault data. Suppose that X fails at #=0. Note that after # =3, the cells

marked ¥ are still unaware of the fault at X. There is no way for the fault data to reach

these cells, due to the faulty cells marked Y.

Figure 4.15 illustrates one solution to this particular problem. By expanding the
region of awareness beyond the White neighborhood which was initially assumed, all L-
fault patterns can be properly detected. The eight neighbors added to the region of
awareness are, in clockwise order: North-Northeast (NNE), East-Northeast (ENE), East-
Southeast (ESE), South-Southeast (SSE), South-Southwest (SSW), West-Southwest
(WSW), West-Northwest (WNW), and North-Northwest (NNW). This modification
corresponds to adding eight bits to the original twelve bits in the fault register, as well as
the combinational logic needed to properly set these bits. The example of Figure 4.14 is
repeated in Figure 4.16 to include the expanded fault register. Note that all the physical
neighbors of X are aware of its faulty status on or before ¢ =5, and that all cells in the
region of awareness of X are aware of the same on or before £+ =6. This does not
guarantee the same results for the faults marked Y. In order to completely diagnose the
L-fault, additional time may be needed beyond ¢ = 6. This depends on how each of the

Chapter 4 - Distributed Fault Diagnosis 94

Cells marked *¥ are unable to learn about the fault at X, due to the faulty cells marked Y.

Figure 4.14 - Unsuccessful L-fault detection using a von Neumann neighborhood.

Chapter 4 - Distributed Fault Diagnosis 95

ENE

WSW

ESE

SSw

SSE

Figure 4.15 - Additional fault register bits needed to detect L-faults.

Chapter 4 - Distributed Fault Diagnosis

96

Figure 4.16 - Example of successful L-fault detection using the 20-bit fault register.

Chapter 4 - Distributed Fault Diagnosis

97

faults is initially detected, and which neighborhood is used to distribute the fault data.

These issues are explored in more detail in section 4.5.

4.4.2 THE V-FAULT AND THE /-FAULT

Even with the expansion of the fault register as described above, two other triple
faults can prove fatal. Figure 4.17 illustrates the V-fault, and Figure 4.18 gives an
example of the /-fault ("slash fault"). Both faults can be accommodated by again
expanding the region of awareness to include the four additional cells indicated in Figure
4.19. Thus, four bits are added to the fault register, bringing the total number of fault
register bits to twenty-four. The new bits correspond to the far diagonal neighbors: Far
Northeast (FNE), Far Southeast (FSE), Far Southwest (FSW), and Far Northwest
(FNW). Figures 4.20 and 4.21 show that both the V-fault and the /-fault are properly
detected when the far diagonal neighbors are added.

4.4.3 OTHER PROBLEMATIC TRIPLE FAULTS

Figure 4.22 shows that with the addition of the last four bits to the fault register,

another triple fault can divide the region of awareness into disjoint regions. Thus, if a von
Neumann neighborhood is used to pass data, the cell at ¥ cannot be made aware of the
fault at X. This type of situation is unavoidable, in general, regardless of how large the
region of awareness is allowed to grow. However, the isolated cell, *, is not a physical
neighbor of X. In other words, * can do nothing to directly influence the local

reconfiguration needed to bypass X. In this case, the fault can actually be treated as a

Chapter 4 - Distributed Fault Diagnosis 98

Cells marked *¥ are unable to learn about the fault at X, due to the faulty cells marked Y.

Figure 4.17 - Unsuccessful V-fault detection using a von Neumann neighborhood.

Chapter 4 - Distributed Fault Diagnosis 99

Cells marked *K are unable to learn about the fault at X, due to the faulty cells marked Y.

Figure 4.18 - Unsuccessful /-fault detection using a von Neumann neighborhood.

Chapter 4 - Distributed Fault Diagnosis 100

FSW

FSE

Figure 4.19 - Additional fault register bits needed to detect all triple faults.

Chapter 4 - Distributed Fault Diagnosis

101

Figure 4.20 - Successful detection of a V-fault using the 24-bit fault register.

Chapter 4 - Distributed Fault Diagnosis 102

Figure 4.21 - Successful detection of a /-fault using the 24-bit fault register.

Chapter 4 - Distributed Fault Diagnosis 103

Figure 4.22 - Triple fault which can be treated as a single fault and a double fault.

Chapter 4 - Distributed Fault Diagnosis 104

compound fault, consisting of the single fault at X, and the double fault indicated by the
cells marked Y. Thus, ¥ does not need to be aware of the fault at X at all. Fortunately,

no other fatal triple faults exist. Therefore, by increasing the number of bits in the fault

register from twelve to twenty-four, all triple faults can be properly detected.

4.5 DISTRIBUTED DIAGNOSIS SIMULATOR

With the fault register configuration defined, it is now possible to determine the
fault latency parameter, tp4x, for the fault patterns of interest. A software simulation of
the distributed diagnosis algorithm is presented for determining fy4x. The following
discussion of the algorithm is general in nature, but serves to illustrate the basic concepts
involved in performing the simulation. The C source code for the simulator is provided as

Appendix A.
The calling syntax of the simulator is as follows:
array [vimlllw] filespec

where [vimlllw] indicates the neighborhood to be used to pass the fault data (von
Neumann, Moore, Lawson, or White, respectively), and filespec is the specification for a
text file which contains the locations of faults in the array. This fault specification file
consists of one line of text per faulty cell, and two space-delimited numerals per line. The
numerals indicate the row and column of the corresponding fault, respectively. The
simulator uses a 10-by-10 physical array to investigate the distributed diagnosis problem,

with row 0 being the topmost row, and column 0 being the leftmost column. Once the

Chapter 4 - Distributed Fault Diagnosis 105

faults are placed in the array, the simulation is ready to begin, and the simulator makes

some assumptions to guarantee a worst-case scenario.

It is assumed that each faulty cell is detected by only one neighbor, rather than a
general cell failure in which the faulty cell is simultaneously detected by two or more
neighbors. This single detection model corresponds to a single link failure, which
represents the most challenging fault detection problem. Since an upper bound on ¢yx is

required, this worst-case assumption provides the desired results.

It is further assumed that faulty cells do not send valid fault data to any neighbors.
Note that in the case of bidirectional link faults, it is entirely possible for a cell which is
otherwise fault-free to detect the faulty link as if the adjoining neighbor is faulty. It is
therefore perfectly reasonable in this case to assume the cell can tell its other neighbors of
the problem. Similarly, the cell on the other end of the same link sees the first cell as
faulty, and likewise broadcasts this information to its own neighbors. Hence, a
bidirectional link fault appears as a double fault to the cells in the appropriate regions of
awareness. Nevertheless, the simulator assumes faulty cells do nothing to improve the
distribution of fault data. In practice, multiple detection and partly functional circuits can
occur, and in any case would only decrease the amount of time needed to distribute the

necessary data.

Each fault pattern is simulated once for each possible combination of detecting
cells. This insures that the worst-case time needed to distribute the fault data is
determined. At each step of the simulation, each cell examines the contents of the fault

registers of its fault-free neighbors, and updates the appropriate bits in its own fault

Chapter 4 - Distributed Fault Diagnosis 106

register accordingly. This process is accomplished via a simple table lookup scheme,
which could be implemented in hardware using combinational logic, or by using a memory
table similar to that used for the pattern growth process. The simulation terminates when
all fault-free physical neighbors of faulty cells are aware of the faults, or when the state of
the array does not change from one iteration to the next. The latter condition indicates a
failure to properly diagnose the fault. At the end of the simulation run, the number of
simulations is given, along with the maximum number of iterations needed to distribute the

fault data to all physical neighbors of the faulty cells.

Note that the time needed to inform all cells in the region of awareness of a faulty
cell is sometimes greater than the time needed to inform only the physical neighbors of the
faulty cell. However, the difference is at most two time steps. Consider the case in which
all of the physical neighbors of a faulty cell X are aware of the fault at time t =0. If a von
Neumann neighborhood is used to pass the fault data, the region of awareness defined by
the 24-bit fault register is covered at time ¢ =2. Under the worst-case simulation cases,
the region of awareness is covered in at most one time step after all of the physical
neighbors are covered. This is due to the fact that during the time needed to inform the
physical neighbors of the fault, some or all of the additional cells in the region of
awareness are informed as well. Waiting the additional time step can be advantageous in a
local reconfiguration scenario. Even though cells which are not physical neighbors of a
faulty cell do not directly take part in locally bypassing a faulty cell, they could
conceivably use the knowledge of the fault to change their own interconnections so that a
spare could take part in the reconfiguration process. Thus, the given value of 7y will

include the additional time step, if needed.

Chapter 4 - Distributed Fault Diagnosis 107

4.5.1 SINGLE FAULT DIAGNOSIS

Although there is really only one single fault case, the simulator treats each
detection possibility as a separate case. Figure 4.23 shows the region of awareness
surrounding the faulty cell, X. Since the faulty cell has four neighbors, each of which is
the potential detecting cell, four simulations are performed. Also given in the figure are
the maximum times needed to fully distribute the fault data. When two numbers are given,
the first indicates the time needed to notify all of the physical neighbors of X, and the

second indicates the time needed to notify all cells in the region of awareness.

4.5.2 DOUBLE FAULT DIAGNOSIS

There are 2 double faults of interest, as shown in Figures 4.24 and 4.25. The
faulty cell marked X defines the area of awareness shown. Other faulty cells are marked
Y. Although the von Neumann case is shown here, all four neighborhoods are simulated.
Both of these patterns are tightly clustered, in that the minimum radial distance from any
given fault to each of the other faults in the pattern is equal to one. Other double fault
patterns are possible, but once any faulty cell achieves a minimum radial distance of two or
more from the other faults in a pattern, the maximum time needed to properly diagnose
the fault is no greater than the maximum time needed to diagnose the tightly clustered

fault patterns. This is verified via exhaustive simulation of up to quadruple faults.

Chapter 4 - Distributed Fault Diagnosis 108

Figure 4.23 - Single fault detection using a von Neumann neighborhood.

Chapter 4 - Distributed Fault Diagnosis 109

Figure 4.24 - Double fault detection using a von Neumann neighborhood.

(Case 1)

Chapter 4 - Distributed Fault Diagnosis 110

Figure 4.25 - Double fault detection using a von Neumann neighborhood.
(Case 2)

Chapter 4 - Distributed Fault Diagnosis 111

4.5.3 TRIPLE FAULT DIAGNOSIS

All triple fault patterns have been simulated. The only triple fault patterns
presented here are the tightly clustered cases, as given in Figures 4.26 through 4.30.
These and subsequent fault pattern diagrams indicate only the faulty cells, and omit the
fault detection times given in the previous diagrams. Maximum fault detection times are

summarized at the end of the chapter for each of the four neighborhoods.

4.5.4 QUADRUPLE FAULT DIAGNOSIS

The von Neumann neighborhood is unable to properly detect eight quadruple fault
patterns, which are given in Figures 4.31 through 4.38. Each of these fatal faults divides
the region of awareness into two or more disjoint regions. Note that expanding the region
of awareness has no effect on diagnosing the fault of Figure 4.31, since there is no means

for passing fault data into or out of the cell in the interior region defined by the faulty cells.

The Moore neighborhood is incapable of properly detecting the fault of Figure
4.38. Joseph Wegner, a researcher at Virginia Tech who is currently investigating the
local reconfiguration algorithm, has determined that the fault pattern of Figure 4.38 cannot
be successfully handled by the local reconfiguration hardware, even if proper detection is
possible. In other words, no means currently exist to successfully bypass this particular
fault pattern with the existing physical neighborhood. There are 2 additional quadruple
faults which cannot be tolerated by the current local reconfiguration hardware. These

patterns are given as Figures 4.39 and 4.40.

Chapter 4 - Distributed Fault Diagnosis 112

Figure 4.26 - Tightly-clustered triple fault pattern.
(Case 1)

Chapter 4 - Distributed Fault Diagnosis 113

Figure 4.27 - Tightly-clustered triple fault pattern.
(Case 2)

Chapter 4 - Distributed Fault Diagnosis 114

Figure 4.28 - Tightly-clustered triple fault pattern.
(Case 3)

Chapter 4 - Distributed Fault Diagnosis 115

Figure 4.29 - Tightly-clustered triple fault pattern.
(Case 4)

Chapter 4 - Distributed Fault Diagnosis 116

Figure 4.30 - Tightly-clustered triple fault pattern.
(Case 5)

Chapter 4 - Distributed Fault Diagnosis 117

Figure 4.31 - Fatal quadruple fault pattern using a von Neumann neighborhood.
(Case 1)

Chapter 4 - Distributed Fault Diagnosis 118

Figure 4.32 - Fatal quadruple fault pattern using a von Neumann neighborhood.
(Case 2)

Chapter 4 - Distributed Fault Diagnosis 119

Figure 4.33 - Fatal quadruple fault pattern using a von Neumann neighborhood.
(Case 3)

Chapter 4 - Distributed Fault Diagnosis 120

Figure 4.34 - Fatal quadruple fault pattern using a von Neumann neighborhood.
(Case 4)

Chapter 4 - Distributed Fault Diagnosis 121

Figure 4.35 - Fatal quadruple fault pattern using a von Neumann neighborhood.
(Case 5)

Chapter 4 - Distributed Fault Diagnosis 122

Figure 4.36 - Fatal quadruple fault pattern using a von Neumann neighborhood.
(Case 6)

Chapter 4 - Distributed Fault Diagnosis 123

Figure 4.37 - Fatal quadruple fault pattern using a von Neumann neighborhood.
(Case 7)

Chapter 4 - Distributed Fault Diagnosis 124

Figure 4.38 - Fatal quadruple fault pattern using von Neumann or Moore neighborhoods.
(Case 8)

Chapter 4 - Distributed Fault Diagnosis 125

Figure 4.39 - Fatal quadruple fault pattern using current local reconfiguration hardware.

(Case 1)

Chapter 4 - Distributed Fault Diagnosis 126

Figure 4.40 - Fatal quadruple fault pattern using current local reconfiguration hardware.
(Case 2)

Chapter 4 - Distributed Fault Diagnosis 127

After eliminating the above quadruple fault patterns, there are 16 remaining tightly
clustered quadruple fault patterns, as shown in Figures 4.41 through 4.56. It should be
noted that both the Lawson and White neighborhoods can properly detect all quadruple

faults, including those not currently tolerated by the local reconfiguration scheme.

4.5.5 DIAGNOSIS OF 5 OR MORE FAULTS

Many higher order faults can be viewed as compound faults of up to quadruple
faults, for the purposes of fault detection, if the simpler fault patterns are sufficiently
separated from one another. The above results still hold in those cases. However, many
higher order faults are fatal, and can prevent proper detection by prohibiting the passing of
fault data to the necessary cells. These problems can be addressed by adding more bits to
the fault register, and thus expanding the region of awareness, or by using an appropriate
neighborhood, or a combination of these techniques. As for the lower order cases, the

more tightly clustered faults will tend to determine the time needed for proper detection.

4.6 RECONFIGURATION USING DISTRIBUTED DIAGNOSIS

Once tmax is determined, it is possible to suggest a means to incorporate the
distributed diagnosis algorithm into the existing local reconfiguration scheme. If a cell
becomes aware of a new fault, it must wait ¢yux time steps before reconfiguring its
communications links to bypass the fault. If multiple faults occur simultaneously in the
cell's region of awareness, waiting ty4x time steps insures that all quadruple faults are
properly detected, provided that a Lawson or a White neighborhood is used for passing

the fault information. Note that in a worst-case scenario, the last cell becomes aware of

Chapter 4 - Distributed Fault Diagnosis 128

Figure 4.41 - Properly detected, tightly clustered quadruple fault pattern.
(Case 1)

Chapter 4 - Distributed Fault Diagnosis 129

Figure 4.42 - Properly detected, tightly clustered quadruple fault pattern.
(Case 2)

Chapter 4 - Distributed Fault Diagnosis ‘ 130

Figure 4.43 - Properly detected, tightly clustered quadruple fault pattern.
(Case 3)

Chapter 4 - Distributed Fault Diagnosis 131

Figure 4.44 - Properly detected, tightly clustered quadruple fault pattern.
(Case 4)

Chapter 4 - Distributed Fault Diagnosis 132

Figure 4.45 - Properly detected, tightly clustered quadruple fault pattern.
(Case 5)

Chapter 4 - Distributed Fault Diagnosis 133

Figure 4.46 - Properly detected, tightly clustered quadruple fault pattern.
(Case 6)

Chapter 4 - Distributed Fault Diagnosis 134

Figure 4.47 - Properly detected, tightly clustered quadruple fault pattern.
(Case 7)

Chapter 4 - Distributed Fault Diagnosis 135

Figure 4.48 - Properly detected, tightly clustered quadruple fault pattern.
(Case 8)

Chapter 4 - Distributed Fault Diagnosis 136

Figure 4.49 - Properly detected, tightly clustered quadruple fault pattern.
(Case 9)

Chapter 4 - Distributed Fault Diagnosis 137

Figure 4.50 - Properly detected, tightly clustered quadruple fault pattern.
(Case 10)

Chapter 4 - Distributed Fault Diagnosis 138

Figure 4.51 - Properly detected, tightly clustered quadruple fault pattern.
(Case 11)

Chapter 4 - Distributed Fault Diagnosis 139

Figure 4.52 - Properly detected, tightly clustered quadruple fault pattern.
(Case 12)

Chapter 4 - Distributed Fault Diagnosis 140

Figure 4.53 - Properly detected, tightly clustered quadruple fault pattern.
(Case 13)

Chapter 4 - Distributed Fault Diagnosis 141

Figure 4.54 - Properly detected, tightly clustered quadruple fault pattern.
(Case 14)

Chapter 4 - Distributed Fault Diagnosis 142

Figure 4.55 - Properly detected, tightly clustered quadruple fault pattern.
(Case 15)

Chapter 4 - Distributed Fault Diagnosis 143

Figure 4.56 - Properly detected, tightly clustered quadruple fault pattern.
(Case 16)

Chapter 4 - Distributed Fault Diagnosis

144

one or more faults at time ¢ = ty4x. After waiting zpux time steps, at time ¢ = 2 fp,x, this
cell is prepared for local reconfiguration. Note that it is assumed that no additional faults
occur during this period, since the value for 7y would otherwise have no applicability.
In other words, MTBF >> 2ty.x must be true for this scheme to function as intended,

where MTBEF is the mean time between failures of the system.

4.7 RELIABILITY ANALYSIS

The assumption that MTBF >> 2¢y,x needs to be justified. Also, it is desirable to
show the improvement in the reliability of the reconfigurable system over a system with no
reconfiguration capability. First consider an M-by-N array of processing elements with no
reconfiguration capability, where each of the PEs is assumed to have a failure rate of
A =107¢ failures per hour. Since the array cannot reconfigure, the reliability of the system

is given by

R(t)= ™™, 4.1)
For M = N =10, the reliability of the system is

R(t) =¥, 4.2)
The mean time between failures of the system is defined as

MTBF = MTTF + MTIR, 4.3)

where MTTF is the mean time to failure of the system, given that the system is operational
at time ¢ =0, and MTTR is the mean time to repair the system after a fault occurs. Since

the system is non-repairing, we have

Chapter 4 - Distributed Fault Diagnosis 145

MTBF = MTTF. 4.4)

The mean time to failure of the system can be found by integrating the reliability

function for all + 2 0. Integrating Equation 4.1 over this interval yields

MTTF = 1/(MNXL). (4.5)
For M = N =10, the mean time to failure is

MTTF =10* hours. 4.6)

Now consider the locally reconfigurable system, which currently has the goal of
tolerating all triple faults. Even though the system can tolerate many of the higher order
fault patterns, a lower bound on the reliability of the system is the same as if the system
could not tolerate any fault pattern more complex than a triple fault:

RO)=Y (MiN)e**“‘“”(l—e‘””)'l @.7)

=0

The summation yields

R()= (AgN)e'(m‘”” + [(MzN) - 3(1‘?')] R

(4.8)
MN MN MN\ (MN
+ MN -2 +3 e ™Ml 1-MN +2 - e ™
2 3 2 3
which for M = N =10 gives
R(1) =161700 ¢ - 480150 ¢ ¥ + 475300 ¢ 7~ 156849 ¢ '™ 4.9)

It can be shown that the reliability expression for the reconfigurable aray in

Equation 4.9 is greater than the expression of Equation 4.2, which represents the reliability

Chapter 4 - Distributed Fault Diagnosis 146

It can be shown that the reliability expression for the reconfigurable aray in
Equation 4.9 is greater than the expression of Equation 4.2, which represents the reliability
of the same array without the capability for local feconﬁguration. It is perhaps more
meaningful to examine the improvement in the MTTF of the reconfigurable system over
that of the system without reconfiguration capability. Given Equation 4.3, it is reasonable
to expect that the mean time to repair the system should be small with respect to the mean
time to failure. Otherwise, the system would spend a considerable amount of time in the
repair mode. If the MTTR is assumed to be negligible with respect to the MTTF, it
follows that Equation 4.4 also holds for the reconfigurable system. Performing the
integration of the reliability function of Equation 4.9 for all £ > 0 yields

MTTF = 40614 hours, (4.10)

which is more than a fourfold improvement over the MTTF of the non-reconfigurable
system. The assumption that the MTTR is negligible with respect to the MTTF is
validated by Equation 4.10, since the total time for local reconfiguration is assumed to be
on the order of seconds or fractions thereof. If this were not the case, the reconfigurable
array would have little or no practical application. Equation 4.10 also validates the
assumption that MTBF >> 2y, since the time required for distributed diagnosis is less

than that needed to perform local reconfiguration.

4.8 RESULTS

Table 4.1 summarizes the fault simulation results for up to quadruple faults. Note
that for quadruple faults, the figures given for the von Neumann and Moore

neighborhoods represent the maximum times needed to properly diagnose the fault

Chapter 4 - Distributed Fault Diagnosis 147

Table 4.1 - Maximum fault latency times for up to quadruple faults.

Number of Faults

Fault Data
Distribution
Neighborhood

3

von Neumann

Moore

Lawson

White

von Neumann

Moore

Lawson

White

W A& NN W W |

von Neumann

—
[e]

Moore

Lawson

White

von Neumann

12%*

Moore

6%

Lawson

White

*The indicated fault latency times do not consider fatal quadruple faults when these

neighborhoods are used to distribute the fault data.

Chapter 4 - Distributed Fault Diagnosis

148

patterns which each neighborhood can successfully accommodate. The value for fpax is
chosen to be that given for the quadruple fault case, since any simpler fault patterns are
covered as well. This approach accommodates all triple faults, while allowing future

research to investigate a local reconfiguration algorithm for quadruple fault patterns.

The von Neumann neighborhood requires less hardware overhead than any of the
other neighborhoods shown, since only 4 fault buffers are needed for the combinational
logic used to set the fault register flags. However, this neighborhood offers the poorest
value for the fault latency parameter, with ¢yux =12. The equal scope of the Moore and
Lawson neighborhoods implies an equal amount of internal hardware for each cell. These
neighborhoods require 8 fault buffers and the associated combinational logic. However,
the Lawson neighborhood provides a better value for the fault latency parameter,
tmax = 4, as opposed to the Moore neighborhood, with a value of fpux =6. The White
neighborhood has the largest scope, and hence the greatest hardware requirement, of any
of the other neighborhoods. A total of 12 buffers and the accompanying increase in
combinational logic is needed. This approach gives only a marginal improvement in fault
latency over the Lawson neighborhood, with ¢y =3. These results suggest that the
Lawson neighborhood offers a good compromise between the conflicting goals of
minimizing both fault latency and the additional hardware needed to support an expanded
fault detection network, while providing a significant improvement in reliability over an

array lacking the ability to reconfigure.

Chapter 4 - Distributed Fault Diagnosis 149

4.9 CONCLUSIONS

This chapter presents a distributed scheme for fault diagnosis. An approach of this
type is needed, since it is unrealistic to assume that a faulty cell is instantaneously and
simultaneously detected by all of its neighbors, or that global knowledge of a fault exists
within the array. Instead, the fault register concept of [Whi91] is expanded to
accommodate the distributed diagnosis scheme. The region of awareness concept is
introduced to relate the fault register contents to a geometrical view of the fault data
passing scheme. Since a major goal of the current local reconfiguration research is to
provide complete coverage of all triple fault patterns, the fault register is now capable of

properly detecting all such fault patterns.

Four different neighborhoods for passing the fault data are provided in the
software simulation: von Neumann, Moore, Lawson, and White. The simulation results
show that the method presented here provides proper diagnosis of up to triple faults, when
a von Neumann scheme is used to pass the fault data within the array. When a Lawson or
White neighborhood is used instead, the same approach also allows all quadruple faults to
be properly diagnosed. Furthermore, the only quadruple fault pattern not properly
diagnosed by the Moore neighborhood can not be tolerated by the present local

reconfiguration hardware, and so is of little importance at the present time.

The simulation results also determine the upper bound on the fault latency
parameter, fyax, for up to quadruple faults. The value of fyux depends on the
neighborhood used to pass the fault register data, which in turn is directly related to the

amount of hardware needed to support that neighborhood. However, some of the

Chapter 4 - Distributed Fault Diagnosis 150

required hardware is already included by the current local reconfiguration scheme, since
each cell is physically connected to the 12 neighbors in a White neighborhood. The
present hardware fully supports the logical von Neumann neighborhood used for local
reconfiguration. The only additional hardware needed to support a larger neighborhood
consists of a fault register buffer for e:ach additional neighbor, and the combinational logic
needed to set the appropriate bits in the fault register. The increase in hardware
complexity needed to accommodate the reconfigurable architecture does degrade the
reliability of a single cell somewhat. However, the reliability calculations of Section 4.6
indicate a substantial increase in the reliability of the fault-tolerant array with respect to an

array without reconfiguration capability.

By simply adding four fault data buffers and the requisite combinational logic, the
Lawson neighborhood offers diagnosis of all quadruple faults within ¢4 = 4. This value
is one-third of the value tyux =12 provided by the von Neumann neighborhood, and two-
thirds of the value ty.x = 6 provided by the Moore neighborhood, with the same hardware
cost as the latter. The White neighborhood requires 8 additional fault data buffers and
associated combinational logic over the von Neumann neighborhood. However, with
twice the number of additional buffers as the Moore and Lawson neighborhoods, the
White neighborhood provides only marginal improvement over the latter in fault latency,
with 7yax =3. Therefore, the Lawson neighborhood appears to be the best overall
solution to the distributed diagnosis problem, in terms of fault coverage, reduced fault

latency, and hardware complexity.

Chapter 4 - Distributed Fault Diagnosis 151

The results of this chapter are being used by Joseph Wegner to develop an
improved local reconfiguration algorithm, which uses a slightly modified version of the
existing local reconfiguration mechanism to accommodate all triple faults. Since the
diagnosis algorithm makes it possible to identify all such faults, the system can be made 3-
fault tolerant. As noted in Chapter 2, this is a significant improvement over the existing
approach [Whi91], which is unable to perform successful local reconfiguration in the

presence of L-faults.

Chapter 4 - Distributed Fault Diagnosis 152

5. SELF-CHECKING CIRCUITS

This chapter investigates available techniques for implementing control cells in the
array, such that the self-checking assumptions made in Chapter 4 are satisfied. That is,
faulty control cells are recognized as such by at least one neighbor as soon as an erroneous
output occurs, whereupon the distributed fault detection mechanism notifies other cells of
the faults. The theory of self-checking circuits is both diverse and complex. Therefore,
rather than presenting a comprehensive treatment of the theory of self-checking circuits,
this chapter first presents the basic definitions and concepts, and then focuses on some

techniques found in the literature which appear applicable to the goals of this research.

It is not currently practical to attempt a complete self-checking implementation of
the control cell. This is because the global and local reconfiguration mechanisms cannot
be integrated until the improved local reconfiguration algorithm currently under
development by Joseph Wegner is completed (see Chapter 4). The Reconfiguration Finite
State Machine, which is the heart of the control cell architecture, can be made self-
checking after its behavior is determined by the integration of the two reconfiguration
algorithms [JaC88]. Therefore, the general theory and structure for a self-checking
implementation of the control cell is presented, and particular attention is given to
methods needed to transfer data between cells. It is shown that the system satisfies the

self-checking assumptions made in the distributed diagnosis algorithm of Chapter 4.

Chapter 5 - Self-Checking Circuits 153

5.1 PROPERTIES OF SELF-CHECKING CIRCUITS

The theory of self-checking circuits is formalized in [AnM73]. The block diagram
of Figure 5.1 shows the original self-checking circuit concept. It consists of a functional
circuit, and a checker which monitors the output of the functional circuit, and produces an
error indication when an erroneous output is detected. The inputs and outputs of the
functional circuit are encoded to guard against errors, and the checker simply monitors the

output lines of the functional circuit to insure that properly encoded outputs are produced.

5.1.1 TOTALLY SELF-CHECKING (TSC) CIRCUITS

The checker of Figure 5.1 monitors the encoded output lines of the functional
circuit, and produces an error indication on its outputs when an erroneous output, or non-
codeword, is detected. However, the possibility exists that the checker is faulty. It is not
practical to add a second checker to check the first checker, as this leads to an infinitely
regressive solution as more and more checkers are added to the system. Instead, the
checker is designed to be self-checking. That is, faults in the checker can produce an
error indication on the checker outputs, just as if the checker detects a fault in the
functional circuit. Some definitions are needed to further characterize self-checking

circuits.

Definition 5.1:
If a fault f causes a functional circuit to produce a codeword output other than the

expected codeword output for a given codeword input, the output codeword is said to be

an incorrect codeword.

Chapter 5 - Self-Checking Circuits 154

Input

/ Functional
Codewords Circuit

Output

7 ™ Codewords
- Error
Checker » Indicator

Figure 5.1 - Basic self-checking circuit.

Chapter 5 - Self-Checking Circuits

155

Definition 5.2:

A circuit is said to be fault-secure with respect to a set of faults F if, for any fault
f € F, the circuit never produces an incorrect codeword output for a codeword input
[JhK90]. That is, either the correct codeword or a non-codeword output is produced by
the network in response to any given codeword input. The set F is called the fault set,
and contains all the faults for which a given circuit property, such as fault-secureness,

holds.

Definition 5.3:
A circuit is self-testing with respect to a fault set F if, for any fault f € F, at least
one codeword input results in a non-codeword output during normal operation of the

circuit [JhK90].

Definition 5.3 implies that a faulty self-testing circuit eventually receives one or
more input codewords which cause the fault to be detected as a non-codeword output.
Suppose for any given fault f € F, there is a set of input codewords, /, such that a given
circuit produces non-codeword outputs in the presence of f only when codewords in I are
applied to the input. If no member of is applied to the circuit during the course of

normal operation, the circuit is not self-testing with respect to f.

Definition 5.4:
A circuit is code-disjoint if any codeword input produces a codeword output, and

any non-codeword input produces a non-codeword output [JhK90].

Chapter 5 - Self-Checking Circuits 156

Definition 5.5:
A circuit is fotally self-checking (TSC) with respect to a fault set F if it is both
fault-secure and self-checking. A TSC checker is both TSC and code-disjoint [JhK90].

Definition 5.5 implies that any non-codeword on the checker outputs signifies an
error in either the checker or the functional circuit. The following assumptions are made

for faults in TSC circuits [JhK90]:
1) Faults occur sequentially.

2) All of the codeword tests required to detect a fault are applied so that the
fault is detected before the next fault occurs.

Under these fault assumptions, a TSC circuit always produces a non-codeword as
its first erroneous output. A circuit is said to satisfy the T7SC goal if it produces a non-
codeword as its first erroneous output. This allows the fault to be detected as soon as its
output response differs from expected behavior. The TSC goal must be met in order to
validate the distributed diagnosis algorithm presented in Chapter 4. Designing TSC
systems is extremely complex, in general. However, systems can be designed which meet
the TSC goal under the same fault assumptions as for TSC circuits, without necessarily
being TSC themselves [SmM78]. This is accomplished by constructing the system from
subsystem blocks which meet the TSC goal.

5.1.2 STRONGLY FAULT-SECURE (SFS) CIRCUITS

Strongly fault-secure (SFS) circuits comprise a class of functional circuits which

meet the TSC goal [SmM78]. Suppose a circuit is fault-secure but not self-testing. Then

Chapter 5 - Self-Checking Circuits 157

there exists a fault f, € F such that the circuit never produces an erroneous output for
codeword inputs. If another fault f, e F occurs, it is possible that the fault sequence
(f VY fz) ¢ F allows the network to produce incorrect codeword outputs. Such fault
sequences may contain any number of faults from F, which may occur in any order.
Clearly, it would be advantageous to insure the fault-secure property in the presence of
these fault sequences. A general class of such circuits which meet the TSC goal can now

be defined.

Definition 5.6:
A circuit is strongly fault-secure with respect to a set of faults F if, for any fault
f € F, either
a) the circuit is self-testing and fault-secure, or
b) the circuit is fault-secure, and if another fault from F occurs in the circuit,

then either a) or b) is true for the fault sequence [JhK90].

Since SFS circuits are fault-secure, even in the presence of undetectable fault
sequences, the first erroneous output due to a fault sequence is guaranteed to be a non-

codeword. Thus, the TSC goal is met by SFS circuits.

5.1.3 STRONGLY CODE-DISJOINT (SCD) CIRCUITS

Just as SFES circuits remain fault-secure in the presence of undetectable fault
sequences, another class of circuits can be defined which maps non-codeword inputs to
non-codeword outputs, even in the presence of undetectable fault sequences. These

circuits are known as strongly code-disjoint (SCD) circuits [JhK90].

Chapter 5 - Self-Checking Circuits 158

Definition 5.7:
A circuit is strongly code-disjoint with respect to a set of faults F if, before the
occurrence of any fault, the circuit is code-disjoint, and for any fault f € F, either
a) the circuit is self-testing, or
b) the circuit always maps non-codewords at its inputs to non-codewords at
its outputs, and if another fault from F occurs in the circuit, then either a)

or b) is true for the fault sequence [JhK90].

5.2 CODING THEORY FOR SELF-CHECKING CIRCUITS

Self-checking circuits are based on error-detecting codes. These codes employ
information redundancy, which allows information to be recovered in the presence of
crrors.‘ Systematic codes and separable codes are codes in which the k information bits of
the original data are appended with r checkbits. The symbol r is called the redundancy of
the code [JhK90]. The number of checkbits generally indicates the extent to which a
codeword can be corrupted and still allow the original information to be recovered.
Systematic codes use all 2* possible combinations for the information bits, whereas
separable codes use a proper subset of the available combinations. Systematic codes and
separable codes are easily accommodated in circuit design, since the information bits and
checkbits can be processed separately. Non-separable codes are a third general class of
codes, in which the information bits cannot be separated from the check bits. These codes
are generally less redundant than systematic codes and separable codes, but can result in
more difficult circuit implementations, since circuits must process the codeword as a

whole. This chapter will only consider systematic codes. A code is optimal with respect

Chapter 5 - Self-Checking Circuits 159

to a given class of codes if it contains the fewest checkbits for a given number of

information bits.

The encoding for the functional circuit may be based on any one of several error-
detecting codes; unordered codes, including two-rail codes are commonly used for this
purpose. Checker outputs are usually encoded in a two-rail code, whereas other circuits

may employ a different unordered code.

A code is said to be unordered if no codeword contains 1s in all of the same bit
positions as any other codeword has 1s. By counterexample, a code containing 1011 and
1010 as codewords would not be unordered, since 1011 contains 1s in all the same bit
positions in which 1010 has 1s. Unordered codes are useful for detecting all
unidirectional errors. Such errors are characterized by transitions from 0 to 1 only, or
from 1 to 0 only. That is, all erroneous bits change in the same fashion, rather than some
0 bits changing to 1, and some 1 bits changing to 0. According to [PrS80], unidirectional
errors are the most prevalent errors found in VLSI circuits. It is therefore desirable to
detect these errors. If a code is unordered, no unidirectional errors can change a
codeword into any other codeword, since the result is simply increasing or decreasing the
number of 1s in the original codeword. Note that the vector containing all Os and the
vector containing all 1s are never codewords in an unordered code, since a unidirectional

error could incorrectly produce either one of these vectors.

Chapter 5 - Self-Checking Circuits 160

5.2.1 BERGER CODES

Berger codes are systematic, unordered codes, for which the checkbits can be
obtained using one of two approaches. One approach derives the r checkbits from the
binary representation for the number of Os in the & information bits. The other approach
derives the checkbits from the 1s complement of the binary representation for the number
of Os in the information bits. Both approaches produce the same checkbits for any given
information vector if and only if Kk =2"—1; such a code is known as a maximal-length
Berger code. Designs for TSC checkers for Berger codes are presented in [AsR77]. One
potential problem with using Berger codes in self-checking networks occurs when
k =2"". In such cases, no known TSC checker network exists. However, there exists a
class of codes, known as modified Berger codes, which are equivalent to these Berger
codes, and for which TSC checkers can be designed [AsR77]. Berger codes are optimal

systematic codes.

5.2.2 BOSE-LIN CODES

Bose-Lin codes belong to a class of codes known as t-unidirectional error-
detecting codes, as they are capable of detecting up to t unidirectional errors. These
codes may be appropriate for use in self-checking VLSI systems if an upper bound on the
number of unidirectional errors is known to be ¢ [JhK90]. For example, unidirectional
errors my occur in bursts, where up to ¢ bits may be unidirectionally changed. In such
cases, Bose-Lin codes reduce the number of checkbits needed, and hence the amount of
hardware required to support the encoding scheme. The number of checkbits for a Bose-

Lin code increases with ¢, but is independent of the number of information bits. The parity

Chapter 5 - Self-Checking Circuits 161

code is a special case of the Bose-Lin code, where £ =1. That is, any one-bit error is
detectable. Determining the checkbits for a given information vector can be complex, as
described in [BoL85]. Implementations for TSC checkers for Bose-Lin codes are given in
[Jha91].

5.2.3 THE TWO-RAIL CODE

The output of the TSC checker of Figure 5.1 is often encoded using a two-rail
code. That is, the error indicator consists of two lines which maintain complementary
values, 01 or 10, during fault-free operation, and which produce the non-codeword
outputs 00 or 11 when an error condition exists. Obviously, the two-rail code word is
unordered, since neither codeword contains 1s in all the same bit positions as the other. If
one of the outputs of a TSC checker contains a stuck-at fault, the self-testing property
insures that the first erroneous output is a non-codeword. Figure 5.2 shows a 2-variable
TSC checker for the two-rail code. Also shown in the figure is a 4-variable TSC checker
for the two-rail code, which is a tree structure consisting of 2-variable checkers. In
general, a 2¢-variable TSC checker for the two-rail code can be implemented by
constructing a tree of 2-variable two-rail TSC checkers. Such designs are easily testable,
as only 4 codewords are needed to check for all single and unidirectional faults in the tree
[ThK90].

5.3 A SELF-CHECKING CONTROL CELL ARCHITECTURE

Using the fundamental concepts of self-checking circuits, a general plan for a self-

checking control cell architecture can be presented. The functionality of the control cell is

Chapter 5 - Self-Checking Circuits 162

x1'
x2'

a) A 2-variable TSC checker for the two-rail code.

x1x1' x2x2' x3 x3' x4 x4'

TRC TRC

b) A 4-variable TSC checker for the two-rail code composed of 2-variable TSC checkers.

Figure 5.2 - TSC checkers for the two-rail code.

Chapter 5 - Self-Checking Circuits 163

largely governed by the Reconfiguration Finite State Machine (RFSM), first proposed by
Kumar in [Kum84], and investigated further by Brighton in [Bri87]. With the advent of
the local reconfiguration scheme proposed by White in [Whi91], it seems logical to
integrate the current global and local reconfiguration algorithms, along with the distributed
fault detection algorithm proposed in Chapter 4 of this thesis, so that the RFSM addresses
all of these issues as well. Furthermore, a rollback methodology should be included to
address transient faults, as these faults are much more prevalent in VLSI circuits than
permanent faults [Jha93]. It should be noted that such a rollback mechanism is currently

being investigated by Vinay Murthy, under the direction of Dr. F. Gail Gray.

It is not feasible at present for this researcher to integrate all of these schemes
before presenting a self-checking cell architecture, as the local reconfiguration scheme is
currently under revision, and the rollback mechanism is not fully developed. Therefore,
the purpose of this section is to present a general methodology for creating a self-checking
control cell architecture, so that future researchers may utilize this approach after the

integrated RFSM is well-defined.

Figure 5.3 shows the interconnections between a pair of self-checking control
cells. Although it is not shown in the figure, a White interconnection neighborhood is
assumed. Neighbors communicate with each other via a pair of bidirectional
communications links, and two pairs of unidirectional internal fault indicators. It is desired
that neighbors exchange data in a serial fashion, but a single communications link is prone
to undetectable faults. Thus, a two-rail encoding scheme is used to transmit the serial data
from one cell to another. The fault indicator links are also encoded in a two-rail fashion,

allowing cells to identify internal faults in neighboring cells. Cells which receive non-

Chapter S - Self-Checking Circuits 164

External Fault Indicator <—+ Internal Fault Indicator

Data Channel <ﬁl—> Data Channel

Internal Fault Indicator ~ [—————#{ External Fault Indicator

Figure 5.3 - Control cell interconnections for two-rail data transfers and error checking.

Chapter 5 - Self-Checking Circuits 165

codewords from a neighbor on any links trap the corrupted data internally to prevent it

from spreading to other parts of the system.

Figure 5.4 shows a block diagram of the self-checking control cell. The
architecture reflects the anticipated needs of the hierarchical reconfiguration system,

without any provisions for a rollback mechanism. The control cell contains the following

components:
1) a two-rail encoded circuit for trapping erroneous incoming data,
2) bidirectional I/O circuitry to provide serial communications among

neighboring cells,
3) a set of registers and buffers,
4) the RFSM,
5) a code conversion module between the RFSM and the register/buffer file,
6) a TSC checker for the outputs of the code conversion module, and

1)) a set of 12 two-rail TSC checkers used as internal error indicators (not
shown).

The last item is not included in the figure in order to reduce clutter. The two-rail
TSC checkers monitor all of the two-rail encoded subsystem interfaces, including the two-
rail control signals, with the exception of the data links to neighboring cells. The TSC
outputs of the two-rail TSC code checker are also monitored, as well as the two-rail error
indicator of the RFSM. The two-rail encoded outputs of the two-rail TSC checkers are

provided as internal fault indicators to each of the neighboring cells.

Chapter 5 - Self-Checking Circuits 166

12 12
<a—/——/—{ Bidirectional I/O ' Registers and
Data links to Channels Buffers
Neighbors - |
RFSM Code
RESM | Converter
Error
12 12 TSC Code
Error
e Trap | Checker
—_— Error / Error
Trap
External Error
Indicators
n
+’ Encoded Busses +> n Two-rail Busses
— Si Two-rail B i
mgle Two us Two-rail Control Bus

Figure 5.4 - Block diagram of the self-checking control cell architecture.

Chapter 5 - Self-Checking Circuits 167

The registers and buffers are those needed to support the known global and local
reconfiguration schemes. Despite the fact that the RFSM cannot currently be specified,
other circuits contained in the self-checking cell architecture can be defined at the present

time, and a general technique for a self-checking implementation of the RFSM also exists.

5.3.1 THE INCOMING DATA ERROR-TRAP CIRCUITRY

Figure 5.5 shows that the circuitry needed to trap incoming data errors is quite
simple. Two-rail data in the form {x,x'} enters the error-trap circuit, which produces the
two-rail output {z,z'}={0,1} for properly encoded two-rail input data, and
{z,2'} = {1,0} when a non-codeword input is detected. Figure 5.4 shows that the internal
fault indicators supplied by each neighboring cell are also monitored by an error-trap
block, and the outputs of both circuits are used by the RFSM to set the appropriate bits in
the fault register when erroneous data from a neighbor is detected. Thus, data from faulty
neighboring cells can be ignored by the RFSM. Tables 5.1 and 5.2 show that the error-
trap circuit of Figure 5.5 meets the TSC goal for single stuck-at faults, since any such fault
produces either the correct codeword output or a non-codeword. In the tables, the
symbol a/0, for example, indicates a stuck-at-0 fault on line a of Figure 5.5.
Unidirectional faults are also covered by the error-trap circuit, since the two-rail code is
unordered. The fault-free circuit is not code-disjoint, as non-codeword inputs are mapped
to two-rail encoded outputs. Since the circuit is not intended as a self-checking checker,
the lack of the code-disjoint property is not problematic in this case [Jha93]. However, it
is desirable to detect internal faults in the error-trap circuit, so that neighboring cells can
recognize the fault. Therefore, the outputs of the error-trap circuits are monitored by the

12 two-rail TSC checkers, each of which provides an internal fault indication to one of the

Chapter 5 - Self-Checking Circuits 168

Two-rail
. Error-Trap Circuit ,

a) The two-rail error-trap circuit detects errors on incoming data lines.

b) An implementation of the two-rail error-trap circuit which meets the TSC goal.

Figure 5.5 - The two-rail error-trap circuit.

Chapter 5 - Self-Checking Circuits 169

Table 5.1 - Results of single stuck-at faults in the XNOR gate for the error-trap circuit.

Fault X X' z z Result Code
0 0 1 0 C
a/0 0 1 0 1 C
1 0 1 1 N
1 1 0 0 N
0 0 0 0 N
a/l 0 1 1 1 N
1 0 0 1 C
1 1 1 0 C
0 0 1 0 C
b/0 0 1 1 1 N
1 0 0 1 C
1 1 0 0 N
0 0 0 0 N
b/1 0 1 0 1 C
1 0 1 1 N
1 1 1 0 C
0 0 0 0 N
c/0 0 1 0 1 C
1 0 0 1 C
1 1 0 0 N
0 0 1 0 C
b/0 0 1 1 1 N
1 0 1 1 N
1 1 1 0 C

Result Codes:
C - Correct Codeword Output
N - Non-Codeword Output

Chapter 5 - Self-Checking Circuits 170

Table 5.2 - Results of single stuck-at faults in the XOR gate for the error-trap circuit.

Fault X x' z z Result Code
0 0 1 0 C
d/o 0 1 0 1 C
1 0 0 0 N
1 1 1 1 N
0 0 1 1 N
d/i1 0 1 0 0 N
1 0 0 1 C
1 1 1 0 C
0 0 1 0 C
e/0 0 1 0 0 N
1 0 0 1 C
1 1 1 1 N
0 0 1 1 N
e/l 0 1 0 1 C
1 0 0 0 N
1 1 1 0 C
0 0 1 0 C
/0 0 1 0 0 N
1 0 0 0 N
1 1 1 0 C
0 0 1 1 N
fi1 0 1 0 1 C
1 0 0 1 C
1 1 1 1 N

Result Codes:
C - Correct Codeword Output
N - Non-Codeword Output

Chapter 5 - Self-Checking Circuits 171

neighboring cells. When the error-trap circuit produces a non-codeword output, the TSC
checkers inform neighboring cells of the internal fault. The same technique can be used to
directly monitor all of the two-rail variables in the subsystem interfaces, with the exception
of the incoming data lines, which are indirectly monitored via the error-trap circuitry. The
reason cells cannot share a bidirectional pair of internal fault indicator links is because a
cell's own error-trap circuitry would then monitor the outputs of its TSC checkers, which
in turn monitor the outputs of the error-trap circuitry, providing an undesirable feedback

path.

5.3.2 THE BIDIRECTIONAL I/O CHANNELS

The 1/O circuitry block shown in Figure 5.4 is essentially a set of four multiplexed
bidirectional channels, each of which can select a data path to one of four physically
neighboring cells. The diagonal neighbors (Northeast, Southeast, Southwest, and
Northwest), are each connected to two channels, as shown in Figure 5.6. Incoming data
from each of the twelve physical neighbors can be routed to the cell's internal buffers
under the control of the RFSM. Outgoing data can be similarly routed from the cell's

internal registers to the appropriate output path by the RFSM.

Note that the data channels can not only be used to select logical neighbors from
the available physical neighbors, as suggested in [Whi91], but also to allow time-division-
multiplexed serial communications with the far neighbors, as appropriate for the Lawson
neighborhood suggested for use in the distributed fault detection scheme. As indicated in
Figures 5.4 and 5.6, 3 two-rail unidirectional data paths provide full-duplex data transfers

between the I/O block and the set of registers and buffers. One data path allows the

Chapter 5 - Self-Checking Circuits 172

R T : From
— : | DEMUX
I NMUX !
RFSM \ \) [
Control ' | |] 4
; <> NW| | N | [EN| |NEe»
lw E
To MUX2 -=— W E =
° M Neighbor Vi
U Cells U .
Fw FE — To MUX2
» X X .
SwW S FS SE .
. | | A A
. y '
. SMUX
From ' \
DEMUX | *---------+- -+ - l ------------
- To MUX1
Two-rail Serial LRI
Data From Registers | —— To NMUX and EMUX
—r— DEMUX ,
) —‘—’ To SMUX and WMUX
From NMUX j ,
— ' . .
. MUX1 Two-rail Serial
. Data To Buffers
From SMUX Z
From EMUX ’
: . Two-rail Serial
- Data To Buffers
From WMUX e e e e e -
RESM i\
Control

Figure 5.6 - Block diagram of the bidirectional I/O channels for the control cell.

Chapter 5 - Self-Checking Circuits

173

contents of one of the cell's registers to be transmitted simultaneously to two neighbors.

At the same time, the other two data paths allow data to be received from two neighbors

for storage in the cell's incoming data buffers. Naturally, the two neighbors receiving data

must be distinct from the two neighbors transmitting data. The TSC checker networks

monitor these data paths and provide internal fault indicators to the neighboring cells.

Under the control of the RFSM, the communications channels can be switched to

the correct neighbors at the appropriate time. Each data transmission cycle consists of the

following steps:

1§ Set the data channels for communications with the North, East, South, and
West neighbors.

2) Transmit data to the North and East neighbors, and receive data from the
South and West neighbors.

3) Transmit data to the South and West neighbors, and receive data from the
North and East neighbors.

4) Set the data channels for communications with the Far North, Far East, Far
South, and Far West neighbors.

5) Transmit data to the Far North and Far East neighbors, and receive data
from the Far South and Far West neighbors.

6) Transmit data to the Far South and Far West neighbors, and receive data
from the Far North and Far East neighbors.

7 Update the registers and buffers, including the fault register. Go to step 1.

Since each cycle of the RFSM includes an update of the fault register, each

transmission cycle is equivalent to the time step described in Chapter 4. Cells

Chapter 5 - Self-Checking Circuits 174

continuously participate in the transmission cycle. When a new fault is detected, a cell
must wait fpsx transmission cycles before attempting local reconfiguration, so that all

tolerable faults may be properly detected.

Note that the bidirectional 1/O channel circuitry is simply a combinational logic
block whose inputs and outputs are both encoded using unordered codes. In [Mag73], it
is shown that any such circuit has an inverter-free implementation. Furthermore,
[SmM78] asserts that all inverter-free circuits are SFS. Therefore, SFS circuits can be
implemented using inverter-free PLAs. Although design techniques for self-checking
circuits using PLAs are discussed in [WaA79], the authors place restrictions on the
number of product terms which can be simultaneously activated, and assume that the PLA
produces all possible codeword outputs. A less restrictive approach for creating SFS
circuits with PLAs is given in [MaAS82]. The outputs of these PLAs can be monitored by
the 12 two-rail TSC intemal error indicators, providing the concurrent error detection

needed.

5.3.3 THE REGISTERS AND BUFFERS

Figure 5.7 shows the set of registers and buffers from Figure 5.4. These
components are needed to support the global reconfiguration scheme of [Bri87], as well as
those anticipated for the improved local reconfiguration scheme based on [Whi91] which
is currently under development. The distributed diagnosis algorithm of Chapter 4
contributes 4 additional fault data buffers for holding fault data from the far neighbors, as
required by the Lawson neighborhood used to distribute the fault data. The buffers and

registers are all two-rail encoded. All buffers can be serially loaded with incoming two-rail

Chapter 5 - Self-Checking Circuits 175

Two-rail Incoming Serial Data From I/O Block Two-rail Incoming Serial Data From I/O Block

jl > - ,I
)L P » 4
' | NsVB [*] SSVB [*| [ESVB %] WSVB [
* [NasvB [*| [sasvB [*] [EasvB | wWasvB [
' 1 NLSB [*] [SLsB — ELSB | WLSB [*]
— S f— -— — - [|
— NGSB v SGSB EGSB WGSB [
RESM . [| NPB [[| SPB [[| EPB | WPB]
Control | [~ NFB SFB [* [EFB —| WFB [+
. [FNFB b FSFB FEFB [*— [| FWFB [
1 S PP PO P
| J 4 4 / -
Two-rail Parallel Data to Code Converter or RFSM
Two-rail Parallel Data to/from Code Converter or RFESM /
- S P j 7 >
P AP R - ¥
. FR PRR [™
<> SVR hPRR [
<> dSVR j XR [
<% SR YR [
g GSR TR e
| Yy .
) MUX ;
—_ ,
;I l [}
RESM | Z
Control Shift Register .
Two-rail Serial
Data to /O Block

Figure 5.7 - The registers and buffers for the control cell.

Chapter 5 - Self-Checking Circuits 176

data from the I/O block via a right-shift operation. A multiplexer under the control of the
RFSM selects one of the registers as the current output, and the shift register serially
transmits the data to the I/O block. The multiplexer can be implemented as an SFS PLA.
The registcré and buffers have a parallel load capability. The RFSM controls the load and
shift operations of all of the buffers and registers, and is responsible for updating the
contents of the registers. In turn, all of the registers and buffers provide two-rail parallel

data as input to the code conversion module.

The registers and buffers needed for global reconfiguration are as follows:

NSVB/ESVB/SSVB/WSVB - These are the s-value buffers. They store s-value
data from the North, East, South, and West neighbors, respectively, which
indicates the amount of fault-free space surrounding each cell. See
[Kum84] for an explanation of how the s-value is determined.

NdSVB/EdSVB/SdSVB/WdASVB - These are the diagonal s-value buffers. They
store data from the North, East, South, and West neighbors, respectively,
concerning the fault-free diagonal space surrounding each cell [Bri87].

NLSB/ELSB/SLSB/WLSB - These are the local state buffers. They store data
from the North, East, South, and West neighbors, respectively, concerning
the local states of these four cells, as described in Chapter 2 and [Bri87].

NGSB/EGSB/SGSB/WGSB - These are the global state buffers. They store data
from the North, East, South, and West neighbors, respectively, concerning
the global states of these four cells, as described in Chapter 2 and [Bri87].

Chapter 5 - Self-Checking Circuits 177

NPB/EPB/SPB/WPB - These are the position buffers. They store data from the
North, East, South, and West neighbors, respectively, concerning either the
row or column locations of these four cells, as described in Chapter 2 and
[Bri87]. Note that only one position buffer per neighbor is needed, since
cells pass either the row or column location, but not both, to their
neighbors.

SVR - The s-value register for this cell, which contains information concerning the
amount of fault-free space surrounding this cell [Bri87].

dSVR - The diagonal s-value register for this cell, which contains information
concerning the amount of diagonal fault-free space surrounding this cell
[Bri87].

LSR - The local state register for this cell, as described in Chapter 2 and [Bri87].
GSR - The global state register for this cell, as described in Chapter 2 and [Bri87].

PRR - The priority register for this cell, as described in [Bri87]. The global
reconfiguration mechanism uses it to determine which cell provides the
new seed for control pattern relocation and regrowth.

hPRR - The high-priority register for this cell, as described in [Bri87]. It holds the
highest priority value seen by the cell when a new seed must be created for
control pattern relocation and regrowth.

XR/YR - The position registers for this cell, as described in Chapter 2 and [Bri87].
XR stores the row coordinate, and YR stores the column coordinate.

TR - The time register for this cell, as described in Chapter 2 and [Bri87]. It is
used to mark the occurrence of bloomtime.

The registers and buffers anticipated for local reconfiguration and the distributed

diagnosis algorithm of Chapter 4 are as follows:

Chapter 5 - Self-Checking Circuits 178

FR - The fault register for this cell, as described in Chapter 4, [Whi91], and
[Bri87].

NFB/EFB/SFB/WFB - These are the fault data buffers for the North, East, South,
and West neighbors, respectively. They hold copies of the fault register
data received from each of these neighbors.

FNFB/FEFB/FSFB/FWEB - These are the fault data buffers for the Far North, Far
East, Far South, and Far West neighbors, respectively. They hold copies of
the fault register data received from each of these neighbors.

Note that even though White did not discuss the NFB, EFB, SFB, and WFB fault
data buffers in [Whi91], they are needed for that local reconfiguration scheme, so that the
cell can store and use the fault data from its neighbors. Also, White suggests that one
copy of the fault register be used for determining the new fault register contents, and
another with identical contents be used for the transmission of fault data to neighboring
cells. This assessment is derived from the software simulation of the system. Note that
two memory locations are needed to store a register's current-state and its next-state in
software. A hardware implementation has no such restriction, so only one fault register is

needed.

As shown in Figures 5.4 and 5.6, two buffers can be simultaneously loaded by the
incoming serial data from the I/O block, in accordance with the data transmission cycle
discussed in Section 5.3.2. Since the RFSM controls the loading of data into the registers,
there is no contention for the busses. The contents of a single register can also be sent to

the I/O block, where the data can be transmitted to two neighbors simultaneously.

Chapter 5 - Self-Checking Circuits 179

Figure 5.8 shows a single bit-slice for the registers and buffers, taken from
[NaK85]. Since the registers and buffers use a two-rail code, two bit-slice registers are
needed to store a single bit of two-rail data. Data on the D line is loaded by a pair of two-
rail clock signals, labeled L and /L in the diagram. When Q = 0, a positive pulse at L loads
the data from the D input. When Q =1, a negative pulse at /L loads the data from the D
input. This circuit is SFS for any unidirectional or stuck-at faults in the data input and
load signals, as well as for unidirectional and stuck-at errors at the output [NaK85].
Consider the case when the signal at /L is fixed and a positive pulse appears at L. This can
occur if /L experiences a stuck-at fault, or if an erroneous transient pulse appears at L. If

Q =1, then D cannot be loaded, and so the output appears as either the correct value, or
as a unidirectional error from 0 to 1. If Q =0, then L causes the D input to be loaded,
which may result in Q =1, preventing the bit-slice register from being loaded again.
Similarly, if the signal at L remains fixed, and a negative pulse at /L appears, a
unidirectional error from 1 to 0 is detected. Note that in the shift mode, unidirectional
faults are simply sent from one bit-slice to the next. Thus, the outputs are either the
correct codeword, or contain a unidirectional fault. The parallel and serial load paths
needed for the registers and buffers can be implemented as an SFS PLA, whose outputs
can be monitored by the internal error indicators. If erroneous incoming data from the I/O
block is the result of a faulty neighbor, the fault register allows the RFSM to ignore the
corrupted data. The registers and buffers are assumed to be resettable under the control
of a two-rail control signal from the RFSM. This can be accomplished by allowing the

RFSM to write an appropriate two-rail codeword to all of the registers and buffers.

Chapter 5 - Self-Checking Circuits 180

. ————Q

Figure 5.8 - The SFS register bit-slice is fault-secure for unidirectional and stuck-at faults.

Chapter 5 - Self-Checking Circuits 181

5.3.4 THE RFSM

The Reconfiguration Finite State Machine of Figure 5.4 is assumed to have
integrated all of the necessary functions for the control cell, including rollback, local, and
global reconfiguration. It accepts as inputs the codewords held in the registers and buffers
of the system after they have been translated by the code conversion module (see Section
5.3.5 below). The RFSM also generates output codewords which are converted and
stored in the registers as needed, as well as the two-rail signals required to control the

functions of the I/O circuitry and the registers and buffers.

Figure 5.9 shows a block diagram for a self-checking sequential system which
meets the TSC goal [JaC88]. Figure 5.9 appears very similar to the self-checking
combinational network shown in Figure 5.1. In the figure, a sequentially self-checking
(SeSC) machine accepts sequences of inputs which conform to an input language, and it
provides sequenced outputs belonging to an output language. The outputs of the
sequential machine are monitored by a sequential checker circuit, called a strongly
language-disjoint (SLD) checker. The SeSC and SLD properties are defined later in this
section. Rather than performing a combinational checking function, the sequential checker
accepts as an input language the output language symbols from the sequential machine.
The checker produces an output language which indicates whether the sequence of input
symbols supplied by the sequential machine belongs to the checker's input language set.
Conveniently, the output language of the checker circuit can be defined as sequences of
two-rail codewords if desired. Thus, the outputs of the checker circuit can be monitored

by the TSC internal fault indicators.

Chapter 5 - Self-Checking Circuits 182

Input . Sequential
Language Machine

Output

-

Sequential

-

Language

- Error

» Indicator

Checker

Figure 5.9 - Block diagram of a self-checking sequential system.

Chapter 5 - Self-Checking Circuits

183

5.3.4.1 SEQUENTIALLY SELF-CHECKING (SeSC) CIRCUITS

Just as there are formal definitions for self-checking combinational circuits, so t00
are there formal definitions for the properties which characterize sequentially self-checking
circuits. Formally, a sequential machine M can be defined in terms of the following
parameters [ViD80]:

X - the set of valid input symbols
Q - the set of internal states

Z - the set of valid output symbols
O - the next-state function, and

® - the output function.

Thus, M =(X,0,Z,8,0). When the machine contains a fault f, the resulting faulty
machine is given by M’ =(X,07,Z”,5’,0’). For a given state ge Q, and a given
input sequence i, let the next state sequence be 8(i,q), and let the corresponding output

sequence be w(i,q). If the fault f occurs in the state g of M, the machine immediately
assumes the state ¢’ € 0. Thus, §’(i,q) = 8’ (i,¢”) is the next-state sequence, given the

input sequence i, due to the fault f, and g’ (i,q) = @’ (i,¢") is the corresponding output

sequence.

Let i = i) « i, called the concatenation of i, and i,, be the input sequence obtained
by following the input sequence j; by the input sequence j,. The sequences j, and j, are
said to be a suffix and a prefix of i, respectively. Let P(i) and S(i) denote the sets of all

prefixes and suffixes of the input sequence i, respectively.

Chapter 5 - Self-Checking Circuits 184

Definition 5.8:
The input language, Iy, of a sequential machine, M, is the set of all input

sequences { which may be applied from the initial state g, in normal operation [ViD80].

Definition 5.9:

The output language, Oy, of a sequential machine, M, is the set of all output
sequences which may be obtained from the initial state g, in normal operation [ViD80].
That is, Oy = {@(i,q,):i € I}

Thus, the input and output languages are determined by the expected behavior of the
sequential machine, and may be obtained from a state diagram or flow table

representation, for example.

Let the set of input sequences i, which may be applied to M when it is in state ¢
during normal operation be given by I, = {izziloig EIM,S(il,qn) =q}. That is, a valid

input sequence j; € I is applied to M, which is in initial state g,. After the first sequence

concludes, M is in state g, whereupon any valid sequence j, is applied. The input

sequences of unbounded length can be defined as I7 < 1,.

Definition 5.10:
A circuit M is sequentially self-testing (SeST) for a fault f, a state g, and an input

sequence i, € [, iff : Vj; such that S(il,qo) =gq and such that j,«j,¢], :

6(1'1,40) 'a(iz,Q) € Oy [VID8O0].

Chapter 5 - Self-Checking Circuits 185

Definition 5.10 simply states that in response to a fault, a sequentially self-testing
circuit can be driven by a particular valid input sequence which eventually produces an
invalid output sequence. This is analogous to the self-testing property of combinational
circuits as given in Definition 5.3. A definition analogous to the fault-secure property of

combinational circuits given in Definition 5.2 also exists for sequential circuits. Let i,,

denote the shortest prefix of i, such that @(j;,q,) - ®(izm,q) € On.

Definition 5.11:
A circuit M is sequentially fault-secure (SeFS) for a fault f, a state g, and an input

sequence i, € I, iff :

@’ (55,9,) = 0(is,q), Vis€Plisn), ir#iom, if i exists, Vise P(i,) otherwise

[ViD80].

Definition 5.11 says that as long as the input sequence produces an output
sequence which belongs to the output language set, the output sequence is correct. That

is, no incorrect output sequences belonging to the output language are produced.

Definition 5.12:
A circuit M is sequentially self-checking for a prescribed normal operation and for

a fault set F iff, for any f, € F, for any g € Q, and for any i, € I;, either
a) the circuit is both SeST and SeFS for (f l,q,iz), or

b) the circuit is only SeFS for (f,,q,i.) and, for any f,e F, or any is € S(iz),
either the property a), or the property b) is true for : f, U f, taking the

Chapter 5 - Self-Checking Circuits 186

place of f,, 8 (is,q) such that j, =is.i, taking the place of g, and i,
taking the place of i, [ViD80].

This definition for SeSC circuits is recursive in nature, but is easily explained. If a)
is true, then the input sequence i, detects the fault sequence by producing an output
sequence whose first erroneous value results in an output sequence which does not belong
to the output language. If b) is true, then as long as the input sequence does not detect
the fault sequence, the machine continues to produce the correct output sequence until a
detecting input sequence is applied. Thus, Definition 5.12 insures that a sequential system
meets the TSC goal by producing an invalid output sequence as its first erroneous output.
Note that if a) is true, the machine is self-testing under the fault sequence, which must be

detected before another fault from F occurs.

The sequential machine in Figure 5.9 must be SeSC in order for the system to meet
the TSC goal. In [ViD80], it is shown that if a sequential circuit is SFS for a fault set F,
then the circuit is also SeSC for F. Figure 5.10 shows the block diagrams of two general
sequential circuits proposed in [NaK85] which are SFS, and hence SeSC, for
unidirectional faults. Both the Moore and Mealy sequential machine models are shown.
Recall that in the Moore model, the output of the machine is a function of its current state
only, whereas in the Mealy model, the current inputs also determine the output. The
register block is composed of the bit-slice registers given in Figure 5.8, where an
unordered code is used to encode the state values. The inverter-free circuits, which
provide the next-state and output functions, accept unordered codewords as inputs and
produce unordered codewords as outputs. These circuits can be implemented using SFS

PLAs.

Chapter 5 - Self-Checking Circuits 187

Inverter-Free . ’ Inverter-Free Output
Input # Register R

Pl Circuit Circuit

a) Moore model for the SFS sequential machine.

) . Output
Tnput Inverter-Free Register Inverter-Free

b) Mealy model for the SFS sequential machine.

Figure 5.10 - Sequentially self-checking machines made from SFS circuits.

Chapter 5 - Self-Checking Circuits

188

5.3.4.2 STRONGLY LANGUAGE-DISJOINT (SLD) CHECKERS

The design proposed in [NaK85] does not include the sequential checker depicted
in Figure 5.9, as required for a self-checking sequential system. As long as the machine
reaches a valid state, the assumption is made in [NaK85] that the transition which
produces the state is valid. Clearly, this is not an acceptable approach if invalid transitions
can occur in response to a fault. In [JaC88], Jansch and Courtois define a strongly
language-disjoint (SLD) checker which can be used as a checker for the system shown in
Figure 5.9. More definitions are required before the SLD checker can be formally defined.

Definition 5.13:
A sequential circuit M is language-disjoint if Vie Iy, co(i, qn) €Oy and Vig]y,
o(i,q,) & Ou [7aC88].

The language-disjoint property for sequential circuits is analogous to the code-
disjoint property for combinational circuits. It maps input sequences which are not
contained in the input language to output sequences which are not contained in the output
language. Recall that TSC checkers for combinational circuits require the code-disjoint
property in addition to the self-testing and fault-secure properties. The following

definition gives an analogous property for sequential machines.

Definition 5.14:
A sequential circuit M is a sequentially self-checking checker if it is both
sequentially self-checking and language-disjoint [JaC88].

Chapter 5 - Self-Checking Circuits 189

Note that the language-disjoint property does not impose restrictions on the ability
of a faulty circuit to maintain that property. It is desirable for the checker circuit to
maintain the language-disjoint property in the presence of faults. Hence, the need for the
SLD checker. The definition for the SLD checker follows from the concept of the

redundancy of a sequential circuit.

Definition 5.15:

A sequential checker C is redundant with respect to a fault f, and with respect to
an input language I and with respect to an output language O if Vi e I, Vi€ P(i),
wclii, o)+ wi(i2.q) € Oc, where i =ii+ir, and ¢ =8 (i1.q,), and Vi elc, ViieP(i),
wc(i1,0) - 0t(i2.4) € Oc [JaC88].

Simply stated, Definition 5.15 says that in the presence of the fault f, the
redundancy property of the checker insures that the language-disjoint property is
maintained. This allows the faulty checker to produce invalid output sequences when the

sequential circuit being checked produces invalid output sequences.

Definition 5.16:
A sequential checker is strongly redundant with respect to the fault sequence

(fl,fz,—--,f,,), and with respect to an input language /. and with respect to an output
language O if it is redundant with respect to the n fault subsequences (f,), (f,,f,),
(f,,fz,f3>,---,(f,,fz,---,f,,) and with respect to the input language /¢, and with respect

to the output language O [JaC88].

Chapter 5 - Self-Checking Circuits 190

A strongly redundant sequential checker maintains the language-disjoint property,
even in the presence of the sequence of faults. This is a desirable property, since
undetected faults cannot prevent the checker from maintaining the language-disjoint

property.

Definition 5.17:

Before the occurrence of any fault, the checker C is language disjoint. For a fault
sequence (fl,fz,---,f,,), a state ¢, and an input sequence i, € I¢, let k be the smallest
integer for which § (i}, qo) =¢q and such that

iiefrelec(ig,) 0" (iq) € O
If there is no such £, let k = n+1. Then C is strongly language disjoint with respect to the

fault sequence if

Vigle, Vme{1,2,--,k-1}, oc(i,q)- o> (i.q) e Oc [JaC88).

The above definition states that if the shortest fault subsequence for which the
checker maps valid input sequences to invalid output sequences is known, then the
checker is SLD for the subsequence if, for any sub-subsequence of the subsequence, the

checker maintains the language disjoint property.
Definition 5.18:

The checker C is strongly language disjoint with respect to the fault set F if C is

SLD with respect to all fault sequences whose members belong to F [JaC88].

Chapter 5 - Self-Checking Circuits 191

Thus, a checker which is SLD for a given fault set F maintains the language
disjoint property for any sequence of faults in F. This is analogous to the strongly code-

disjoint property for combinational circuits, as given in Definition 5.7.

Figure 5.11 gives the block diagram for an SLD checker proposed in [JaC85].
The external input sequence is supplied by the sequential machine under test, which is the
functional part of the RFSM in this case. The code B is defined as the concatenation of
the external input codewords and the state code, and is indicated by an ellipse associated
with the SFS / SCD combinational logic block. A codeword of B is only defined if the
external input codeword is valid under a given state codeword. If the SLD checker is
currently in a valid state g, and the input vector x is a valid input codeword, then if a valid
next-state mapping exists from g to ¢’ under the input x, the concatenation of g and x is a
valid codeword in B. In effect, x belongs to a valid input sequence when the checker is in
state g. However, if there is no valid next-state mapping from q to any other state when x
is the applied input vector, the concatenation of g and x is not a codeword in B, even if ¢

and x are codewords in the next-state and input codes, respectively.

The SES / SCD combinational logic block provides the next-state and output
functions, and can be implemented with PLAs and some discrete gates, as given in
[PaS91]. The output function of the block maps input codewords in B to output
codewords in the code Oc. The next-state function of the block maps input codewords in
B to output codewords in the next-state code C. The SFS property of the combinational
block insures that for a codeword input, only correct codeword outputs are produced,

even in the presence of a fault sequence. The SCD property of the combinational block

Chapter 5 - Self-Checking Circuits 192

o
-

Error
—» Indication

SCD
Checker 2
Oc /
B
External Ic N . scp
Input + SFS [J Checker
Sequence) Next-State
T Function 7
| SCD
SFS* C Checker 1
J/ Memorization
State Logic Next-State
Code Code

Figure 5.11 - Block diagram of a proposed SLD checker.

Chapter 5 - Self-Checking Circuits

193

insures that the presence of a fault sequence, non-codeword inputs are mapped to non-

codeword outputs.

The SFS* memorization logic described in [JaC85] and [JaC88] has special
properties in addition to the SFS properties needed for combinational logic. In particular,
it is assumed that the circuit outputs do not change until a clock signal is generated, and
that when a value is loaded, it is either the correct codeword or a non-codeword, in
accordance with the SES property. A further assumption is that the circuit is SFS in the
presence of faulty clock lines. If the stable output assumption is granted, then the SFS bit-
slice register given in Figure 5. 8 is sufficient for this purpose.

There are three SCD checkers in Figure 5.11. SCD checker 1 monitors the code
C, and SCD checker 2 monitors the code B. The third SCD checker accepts inputs from
the other two SCD checkers, as well as from the output function of the SFS / SCD logic
block. Its output is two-rail encoded, and is monitored by the TSC internal fault
indicators. SCD functional circuits are useful in the construction of systems which meet
the TSC goal, but SCD checkers may be inappropriate in such systems. In [Jha88] and
[Jha90], it is pointed out that SCD checkers whose outputs are not directly observable,
but are instead checked by other checkers, may not meet the TSC goal. This is due to the
fact that the lack of the fault-secure property in SCD checkers may prevent the final
checker from being adequately exercised to expose faults in the system. Such a case could
arise in any of the SCD checkers in Figure 5.11, since their outputs are not directly
observable; recall that the error signal is monitored by the TSC internal fault indicators.
To guard against this problem, Jha introduces the strongly self-checking (SSC) property
for checkers in [Jha88], which combines the SFS and SCD properties.

Chapter 5 - Self-Checking Circuits 194

Definition 5.19:
A circuit is strongly self-checking with respect to a set of faults F if, before the
occurrence of any fault, the circuit is code-disjoint, and for any fault f € F, either
a) the circuit is self-testing, or
b) the circuit is fault-secure and always maps non-codewords at its inputs to
non-codewords at its’ outputs, and if another fault from F occurs in the

circuit, then either a) or b) is true for the fault sequence [JhK89].

SSC circuits can be used for both functional circuits and for checkers. In the case
that an SSC checker can not be sufficiently exercised by the available codewords to make
it self-testing, Jha proposes a weaker property than the SSC property, called the
sufficiently strongly self-checking (SSSC) property.

Definition 5.20:

A circuit is sufficiently strongly self-checking with respect to a set of faults F if,
before the occurrence of any fault, the circuit is code-disjoint, and for any fault f e F,
either

a) the circuit is self-testing, or

b) the circuit is fault-secure and always maps non-codewords at its inputs to

non-codewords at its outputs [JhK89].

The SCD checker blocks of Figure 5.11 should be replaced by TSC or SSC
checkers to insure that both the code-disjoint and fault-secure properties are maintained if
the checkers are sufficiently exercised to expose faults. This arrangement is shown in

Figure 5.12. If SSSC checkers are used instead, periodic off-line testing may be needed to

Chapter 5 - Self-Checking Circuits 195

Y

TSC/SSC
| Checker2
B Oc
External Ic A H—>= TSC/ssC
Input va SFS U Checker
Sequence Next-State
Function]
TSC/SSC
SES* C Checker 1
+ Memorization
State Logic Next-State
Code Code

Error
Indication

Figure 5.12 - Improved SLD checker design which eliminates SCD checkers.

Chapter 5 - Self-Checking Circuits

196

fully exercise the checkers for faults [Jha90]. TSC and SSC checker implementations are

given in [Jha88], and SSSC checker designs are given in [Jha89].

5.3.5 THE CODE CONVERSION MODULE

As shown in Figure 5.4, this functional block is located between the block of
registers and buffers and the RFSM. The block converts data encoded in the two-rail
code to a code with smaller codewords, and vice-versa. The lower cost code can be any
unordered code for which a TSC checker can be implemented, such as a Berger code or a
Bose-Lin code. The block is optional, but may reduce the hardware overhead of the cell,
provided that the cost of implementing the code conversion block offsets the cost of the
additional hardware which would otherwise be required by the RFSM to accommodate all
of the two-rail data from the buffers and registers. The two-rail inputs and outputs of the
code conversion module are monitored directly by the TSC internal error indicators.
Those inputs and outputs encoded using the lower cost unordered code are monitored by
a TSC checker for that code, which is in turn monitored by the internal error indicators.

An SFS PLA can be used to implement the code conversion module.

5.3.6 THE TSC CHECKER FOR THE CODE CONVERSION MODULE

This TSC checker monitors the inputs and outputs of the code conversion module
which are not encoded in a two-rail code, as described in Section 5.3.6. The monitored
inputs and outputs are encoded using an unordered code with a smaller codeword size
than the two-rail code. The checker provides a two-rail output which is monitored by the

internal error indicators. Implementations of TSC checkers for Berger codes and modified

Chapter 5 - Self-Checking Circuits 197

Berger codes are discussed in [Jha90] and [AsR77]. Implementations of TSC checkers

for Bose-Lin and other unordered codes are given in [Jha91].

5.3.7 THE INTERNAL FAULT INDICATORS

The 12 internal fault indicators can be implemented as two-rail TSC checker trees,
as explained in Section 5.2.2.3. Each of these two-rail TSC checkers sends its two-rail
output pair to a single neighbor, as shown in Figure 5.3. Each neighbor feeds the received
two-rail signal into the error trap circuit of Figure 5.5, whose output allows the neighbor
to set its fault register accordingly. As noted in Section 5., neighboring cells cannot share
these fault indicator lines as a bidirectional data path. This is due to the feedback loop

which would be created between the error trap circuitry and the internal fault indicators.

5.4 RESULTS

The proposed self-checking control cell architecture combines many different
techniques proposed for the design of systems which meet the TSC goal. The anticipated
needs of the system are incorporated into the design, based on the information currently
available concerning the global and local reconfiguration strategies. The proposed error-
trap circuitry prevents corrupted incoming data from being used by a fault-free cell, and
allows concurrent detection of faulty cells in the array by neighboring cells. The 1/O
circuitry provides bidirectional serial communications with neighboring cells, and is
flexible enough to support the anticipated needs of the local reconfiguration algorithm, as
well as the distributed diagnosis algorithm of Chapter 4. If implemented as a strongly
fault-secure PLA, this block meets the TSC goal. The SFS two-rail registers and buffers

Chapter 5 - Self-Checking Circuits 198

provide storage for local as well as incoming data. The sequentially self-checking
functional part of the RFSM incorporates the SFS bit-slice register and SES PLAs. The
strongly language-disjoint checker, implied in the RFSM block of Figure 5.4, uses the SFS
bit-slice register, self-checking checkers, and combinational logic which is both strongly
code-disjoint and SFS to detect undesirable behavior in the RFSM; Appropriate
implementations for all of these blocks exist, as discussed in this chapter. The code
conversion module, which converts the data stored in thé two-rail registers to a lower-cost
code for use by the RFSM, and vice versa, is optional, and may be implemented using an
SFS PLA. Depending on the chosen implementation of the control cell, the conversion
module may substantially reduce the hardware overhead of the cell by decreasing the
number of inputs needed by the RESM. A TSC checker with a two-rail output is needed
to monitor the data encoded in the lower-cost code, and so must be included as overhead.
Finally, a set of 12 two-rail TSC checkers monitors all of the subsystem interfaces, so that

neighboring cells are quickly informed of any faults in the system.

Estimating the cost of implementation for the proposed self-checking control cell
architecture is extremely difficult at present. The rollback strategy, the distributed
diagnosis strategy, and the local and global reconfiguration algorithms need to be
integrated before implementation costs can be realistically evaluated. During the course of
integrating these schemes, changes may be made to any or all of them which may cause
the system specification to differ somewhat from the design proposed in this chapter.
However, it is possible to make certain generalizations about the costs of the proposed
architecture, which should hold for any implementation using the general scheme

presented in this chapter.

Chapter 5 - Self-Checking Circuits 199

The use of encoded inputs and outputs also adds to the cost of the circuit. In the
case of the two-rail code, the registers, buffers, links, and busses must be fully duplicated.
In addition, each of the bit-slice registers requires 3 gates and a D flip-flop. For an n-bit
register without two-rail encoding, the cost is n flip-flops. The cost for the same register
using a two-rail code and the SFS bit-slice design is 6n gates and 2n flip-flops. The use of
a Lawson neighborhood to pass fault data adds 4 buffers to the design, as well as the
additional combinational logic in the RFSM needed to set the fault register.

The cost of the error trap circuits is relatively small. There are two gates per
block, two blocks per neighbor, and 12 neighbors per cell. Thus, the error trap circuitry
requires 48 gates per cell. Note that in some implementations, the transistor count and
general layout of the XOR and XNOR gates used in the error-trap circuits is exactly the
same. The only difference is found in routing the various input signals to the appropriate

points in the circuit.

The use of PLAs to implement the various SFS and SCD combinational logic
blocks in the circuit guarantees that the TSC goal is met by these circuits. PLAs also aid
in automating the design and layout processes, due to their regular structure. However,
SES and SCD circuits which do not require a PLA-based implementation may exist for
some of these blocks, once the exact behavior is known. Such circuits should be
considered wherever possible, since the PLAs may require substantially greater layout

arcas.

Two-rail TSC checker trees take the form of inverted full binary trees. For a 27-

variable two-rail TSC checker tree, it can be shown from properties of binary trees that

Chapter 5 - Self-Checking Circuits 200

the checker tree has g levels of cascaded 2-variable two-rail TSC checkers, and that
(27-1) checkers are needed to construct the checker tree. Since there are 6 gates per 2-

variable TSC checker, 6(27—1) gates are needed. Faster, lower cost implementations for

two-rail TSC checkers exist, but they do not enjoy the regularity of layout and easy
testability of the TSC checker tree [Jha90].

The cost of the RFSM can be reduced if the SLD checker is eliminated from the
system. One of the sequentially self-checking machines of Figure 5.10 can be used alone.
However, the ability to detect valid next-state transitions is lost. The only checking that
can take place is for a valid state, which is still an improvement over a system with no such

capability.

The SES implementation of the i8080 processor presented in [NaK85] makes
extensive use of SFS PLAs, and uses the SeSC machine of Figure 5.10. It is similar to the
proposed control cell architecture in many other respects, including the use of two-rail
encoding for the busses and internal ALU registers, as well as the use of a code
conversion module and TSC checkers. However, no SLD checker is used, and the
outputs of the 4 TSC checkers in the system are directly observable by the operator.
Assuming a microprogrammed architecture, the [NaK85] estimates that a 38% increase in
the hardware is required for the system to be made SFS. This figure may increase
somewhat for the self-checking control cell, since the SLD checker and additional checker
modules are used. However, the similarity in the structure of the two systems suggests a

reasonable similarity in the respective costs.

Chapter S - Self-Checking Circuits 201

5.5 CONCLUSIONS

Several classes of self-checking combinational and sequential circuits have been
examined in this chapter. If unidirectional faults are the assumed fault set, encoding the
inputs and outputs of the self-checking circuits in an unordered code allows the system to
achieve the TSC goal for unidirectional faults. That is, the first erroneous output
produced by the system is a non-codeword. Some examples of unordered codes are the
Berger codes, the Bose-Lin codes, and the two-rail code. TSC checkers for all of these
codes are presented in [Jha90].

The proposed self-checking control cell architecture presented in this chapter
meets the self-checking requirements of the distributed diagnosis algorithm of Chapter 4
for unidirectional faults. It utilizes many different approaches previously used in the
design of self-checking systems. When this control cell architecture is combined with the
Lawson neighborhood assumed for the distributed diagnosis algorithm, the system has a
relatively low fault latency parameter. This allows for rapid detection and isolation of
faulty cells in the array, whereupon the local reconfiguration strategy can be applied as

needed.

The proposed error trap circuitry is completely new, as far as is known. It allows
a non-codeword two-rail signal to be mapped to a two-rail codeword for use by other
circuits in a self-checking system. TSC checkers are not applicable to this problem, as
they map non-codeword inputs to non-codeword outputs. Thus, the output of a TSC
checker would simply propagate the effect of the non-codeword to other parts of the

system.

Chapter 5 - Self-Checking Circuits 202

Note that the error-trap circuits monitor the bidirectional data link constantly, so
that faults which appear at the links when the cell is transmitting data are detectable.
Since the RFSM controls the transmission sequence, it can distinguish faults in the
incoming data from faults in the outgoing data. A fault-free cell sharing the link with the
faulty cell will detect the fault as an external error. However, an extra bit in the fault
register could also allow the faulty cell to detect its own fault in this case. As long as the
cell transmits valid codewords to at least one other neighbor on a different link, this other
neighbor could be made aware of the link fault, which could conceivably reduce the fault

latency time.

Certain assumptions are made in [JaC85] and [JaC88] conceming the presence of
faults in the SeSC system of Figure 5.9. Specifically, between the occurrence of any two
faults in the sequential machine, all codewords which can detect the current fault are
assumed to be applied to the inputs of the machine, and no faults can be present in the
SLD checker. That is, a valid input sequence is applied to the machine which causes the
fault to be detected. Similarly, between the occurrence of any two faults in the SLD
checker, all codewords in B which can detect the current fault are applied to the inputs of
the checker, and the sequential machine must be fault-free. These assumptions are similar
to the assumptions given in Section 5.1.1 for self-checking combinational circuits. If these
assumptions are unacceptable, however, Jansch and Courtois define the very strongly
language-disjoint (VSLD) property, which differs slightly from Definition 5.17. The
VSLD checker requires that for a valid input sequence, the shortest fault sequence which
causes the output sequence to be invalid does not cause the faulty circuit to lose the
language-disjoint property. Under this definition, a fault in the sequential machine can be

followed by a fault in the checker before the fault in the sequential machine is detected.

Chapter 5 - Self-Checking Circuits 203

Similarly, a fault in the checker can be followed by a fault in the sequential machine before
the fault in the checker is detected. Unfortunately, Jansch and Courtois do not offer any
solutions for building a VSLD checker. If the self-checking system with an SLD checker
cannot be sufficiently exercised to meet the assumptions made by Jansch and Courtois, the
SSSC property discussed in [Jha89] may be more applicable. This question cannot be
answered until the behavior of the control cell is fully specified.

Chapter 5 - Self-Checking Circuits 204

6. CONCLUSIONS

This thesis has investigated many issues related to the global and local
reconfiguration of fault-tolerant cellular processing arrays. The results presented in this
work are all necessary for insuring a robust fault-tolerant system. These results provide
part of the platform needed to integrate the available reconfiguration strategies into a
unified system. However, many challenging problems remain to be investigated in future

research efforts.

6.1 SUMMARY OF ACCOMPLISHMENTS

Chapter 2 demonstrated the need for a system which addresses reconfiguration for
yield enhancement, run-time fault tolerance, and array polymorphism. Furthermore, such
a system should not assume the existence of components which never fail, such as a global
control mechanism or communications links. These hard core components limit the useful
application of the system, since the failure of these components can result in the failure of
the system. To address these issues, a hierarchical reconfiguration strategy was proposed
which included the global reconfiguration algorithms developed in [Kum84] and [Bri87],
as well as the local reconfiguration algorithms proposed in [Whi91]. No hard core
components were assumed, and the previously developed distributed algorithms for

reconfiguration were proposed for eliminating the need for a global control mechanism.
Chapter 3 presented an analysis of the relative complexities of the hardware

needed to support the pattern growth algorithms of [Mar80], [Kum84], and [Bri87]. The

latter algorithm was shown to provide an exponential savings in the size of the local

Chapter 6 - Conclusions 205

memory table needed to perform the next-state function over the other two approaches.
The algorithm of [Bri87] also achieves a small savings in the amount of data which must
be transferred between neighboring cells, as compared to [Kum84]. Even though [Bri87]
requires that a greater amount of data be transmitted between neighboring cells than
[Mar80], a substantial savings in the number of interconnection wires is realized by the
former method over the latter. These factors indicate that the pattern growth algorithms

presented in [Bri87] represent the best choice among the currently available options.

Chapter 4 supplanted the zero fault latency model assumed in all of the related
research to date with a distributed diagnosis scheme for notifying cells of faults in the
array. The fault register concept used in [Bri87] and [Whi91] was extended to support
this algorithm. It was shown that the size and shape of the area represented by the flags in
the fault register has a direct impact on the fault patterns which can be properly detected.
It was also shown that the neighborhood used to communicate the locations of faulty cells
in the array influences the fault patterns which can be properly detected, as well as the
amount of time needed to inform cells of the fault. The neighborhood used to distribute
the fault data also influences the amount of hardware needed to support the
communications network and fault diagnosis algorithm. Simulation results for up to
quadruple faults were given for the von Neumann, Moore, Lawson, and White
neighborhoods. Some additional hardware in the form of buffers and combinational logic
was needed to support the Lawson neighborhood in favor of the von Neumann
neighborhood. However, it was shown that the Lawson neighborhood offered a very
small fault latency period with respect to the four neighborhoods considered. Despite the
fact that the use of the White neighborhood offered an incrementally lower fault latency

period than the Lawson neighborhood, the substantial increase in the hardware overhead

Chapter 6 - Conclusions 206

cost over the Lawson neighborhood did not appear justifiable. Moreover, only the
Lawson and White neighborhoods provided proper detection of all quadruple fault
patterns. Thus, the Lawson neighborhood offered the best compromise between the
opposing goals of zero fault latency and zero hardware overhead. When combined with
the improved local reconfiguration algorithm under development by Joseph Wegner, the

system tolerates all triple faults.

Chapter 5 proposed an architecture for a self-checking control cell. The control
cell can meet the TSC goal for unidirectional faults by insuring that each of the subsystems
meets the TSC goal. Data and control signals were encoded to enable the detection of
unidirectional faults. Bidirectional data communications channels and a set of registers
and buffers were presented which can be made to support the present global and local
reconfiguration algorithms. Error trap circuitry was introduced for insuring that corrupted
data from neighboring cells does not give a false error indication in a fault-free cell. A
self-checking sequential machine was discussed which detects invalid next-state transitions
in addition to reporting invalid current states and input codes. It was modeled after the
Reconfiguration Finite State Machine proposed in [Kum84], and further investigated in
[Bri87]. A code conversion module and its accompanying TSC checker were included as
a possible means to reduce the hardware required by the circuit. A set of TSC checkers
was included to monitor the subsystem interfaces and report internal faults to neighboring
cells. The resulting system meets the self-checking assumptions made in Chapter 4, hence
the distributed diagnosis algorithm can be used by the self-checking control cell

architecture.

Chapter 6 - Conclusions 207

6.2 FUTURE RESEARCH OPPORTUNITIES

Upon completion, the improved local reconfiguration strategy should be integrated
with the global reconfiguration strategy of [Bri87], so that the costs involved in
implementing the self-checking control cell proposed in Chapter 5 can be evaluated. It is
worthwhile to investigate techniques for implementing self-checking computational cells,
as well as techniques for reconfiguring the system in the presence of either faulty control
cells or faulty computational cells. Naturally, the functionality of the computational cell
influences the methods used to meet the TSC goal. It is therefore desirable to investigate
applications which can benefit from the proposed system, and to tailor the computational

systems to those applications.

A rollback capability should also be included as a first line of defense against
transient faults, since these faults occur more frequently than permanent or semi-
permanent faults [Jha93]. If rollback and recomputation fails, a permanent or semi-
permanent fault is present, and so the local reconfiguration algorithm should be invoked.
If unsuccessful, the global reconfiguration strategy can be used to activate another area of

the array before computation is resumed.

Chapter 6 - Conclusions 208

[AnM73]

[AsR77]

[BeB92]

[Bri87]

[ChF89]

[ChF90]

Bibliography

BIBLIOGRAPHY

Douglas A. Anderson and Gernot Metze, "Design of Totally Self-Checking
Check Circuits for m-Out-of-n Codes," IEEE Transactions on Computers,
Vol. C-22, No. 3, March, 1973, pp. 263-269.

Mohammad Ashjace and Sudhakar M. Reddy, "On Totally Self-Checking
Checkers for Separable Codes," IEEE Transactions on Computers, Vol. C-
26, No. 8, August, 1977, pp. 737-744.

K. P. Belkhale and P. Banerjee, "Reconfiguration strategies for VLSI
processor arrays and trees using a modified Diogenes approach,” IEEE
Transactions on Computers, Vol. 41, No. 1, January 1992, pp. 83-96.

B. A. Brighton, Improved Pattern Growth and Reconfiguration Methods
for a Fault Tolerant Cellular Architecture, M. S. Thesis, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia, 1987.

M. Chean and J. A. B. Fortes, "FUSS: A Reconfiguration Scheme for Fault
Tolerant Processor Arrays," Abstracts from the International Workshop on
Hardware Fault Tolerance in Multiprocessors, June 19-20, 1989, pp. 30-
32.

Mengly Chean and Jose A. B. Fortes, "A taxonomy of reconfiguration
techniques for fault-tolerant processor arrays,” Computer, Vol. 23, No. 1,
January 1990, pp. 55-69.

209

[DiS89]

[GoG84]

[Grw89]

[Hos89]

[Jac85]

[JaC88]

[Jha88]

Bibliography

F. Distante, M. G. Sami, R. Stefanelli, "Reconfiguration Techniques in the
Presence of Faulty Interconnections,” Proceedings of the International
Conference on Wafer Scale Integration, San Francisco, California, January
3-5, 1989, pp. 379-388.

N. Gollakota and F. G. Gray, "Reconfigurable Cellular Architecture," 1984
International Conference on Parallel Processing, August 21-24, 1984,
Bellaire, Michigan, pp. 377-379.

F. G. Gray and T. S. White, "Summary of a Distributed Control Algorithm
for a Dynamically Reconfigurable Array Architecture," Proceedings of the
International Conference on Wafer Scale Integration, San Francisco,
California, January 3-5, 1989, pp. 131-140.

S. H. Hosseini, "On Fault-Tolerant Structure, Distributed Fault-Diagnosis,
Reconfiguration, and Recovery of the Armray Processors," IEEE
Transactions on Computers, Vol. 38, pp. 932-942, July 1989.

Ingrid Jansch and Bernard Courtois, "Strongly Language Disjoint
Checkers," Fifteenth Annual International Symposium on Fault-Tolerant
Computing, Digest of Papers, Ann Arbor, Michigan, June 19-21, 1985, pp.
390-39s5.

Ingrid Jansch and Bernard Courtois, "Definition and Design of Strongly
Language Disjoint Checkers," IEEE Transactions on Computers, Vol. 37,
No. 6, June 1988, pp. 745-748.

Niraj K. Jha, "SFS/SSC Domino-CMOS Implementations of TSC
Circuits," Proceedings of the Twenty-Sixth Annual Allerton Conference on
Communications, Control, and Computing, Monticello, Illinois, September
28-30, 1988, pp. 768-777.

210

[Jha89]

[Jha90]

[Jha91]

[Jha93]

[JhK90]

[Joh89]

[KiR89]

[KuF87]

Bibliography

Niraj K. Jha, "Design of Sufficiently Strongly Self-Checking Embedded
Checkers for Systematic and Separable Codes," Proceedings of the 1989
IEEE International Conference on Computer Design: VLSI in Computers
and Processors, Cambridge, Massachusetts, October 2-4, 1989, pp. 120-
123.

Niraj K. Jha, "Strongly Fault-Secure and Strongly Self-Checking Domino-
CMOS Implementations of Totally Self-Checking Circuits,” JEEE
Transactions on Computer-Aided Design, Vol. 9, No. 3, March 1990, pp.
332-336.

Niraj K. Jha, "Totally Self-Checking Checker Designs for Bose-Lin, Bose,
and Blaum Codes," IEEE Transactions on Computer-Aided Design, Vol.
10, No. 1, January, 1991, pp. 136-143.

Niraj K. Jha, Personal communication, January 3, 1993.

Niraj K. Jha and Sandip Kundu, Testing and Reliable Design of CMOS
Circuits, Kluwer Academic Publishers, 1990, pp. 177-221.

Barry W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems,
Addison-Wesley, Reading, Massachusetts, 1982, pp. 49, 404-421.

Jung Hwan Kim and Sudhakar M. Reddy, "On the design of fault-tolerant
two-dimensional systolic arrays for yield enhancement,” IEEE
Transactions on Computers, Vol. 38, No. 4, April 1989, pp. 515-525.

S. Y. Kuo and W. K. Fuchs, "Efficient spare allocation for reconfigurable
arrays,” IEEE Design and Test of Computers, Vol. 4, No. 1, February
1987, pp. 24-31.

211

[Kum84] R. Kumar, A Fault-Tolerant Cellular Architecture, Ph. D. Dissertation,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia,
1984.

[Kun82] H. T. Kung, "Why systolic architectures?", Computer, Vol. 15, No. 1,
January 1982, pp. 37-45.

[LiES9] M. J. Little, R. D. Etchells, J. Grinberg, S. P. Laub, J. G. Nash, and M. W.
Yung, "The 3-D Computer,” Proceedings of the International Conference
on Wafer Scale Integration, San Francisco, California, January 3-5, 1989,
pp- 55-64.

[MaAS82] G. P. Mak, J. A. Abraham, and E. S. Davidson, "The Design of PLAs with
Concurrent Error Detection," Twelfth Annual International Symposium on
Fault-Tolerant Computing, Digest of Papers, Santa Monica, California,
June 22-24, 1982, pp. 303-310.

[Mag73] G. Mago, "Monotone Functions in Sequential Circuits,” JEEE
Transactions on Computers, Vol. C-22, No. 10, pp. 928-933.

[MaG80] H. L. Martin and F. G. Gray, "A Two-Dimensional Self-Reconfigurable
Tessellation Automaton,” Proceedings of Southeastcon ‘80, Nashville,
Tennessee, April 2-5, 1980, pp. 91-94.

[Mar80] H. L. Martin, A Self-Reconfigurable Cellular Structure, Ph.D.
Dissertation, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, 1980.

Bibliography 212

[NaK85]

[PaS91]

[Ros83]

[SaS86]

[Sin88]

’[SmL83]

[SmM78]

Bibliography

Takashi Nanya and Toshiaki Kawamura, "Error Secure/Propagating
Concept and its Application to The Design of Strongly Fault Secure
Processors," Fifteenth Annual International Symposium on Fault-Tolerant
Computing, Digest of Papers, Ann Arbor, Michigan, June 19-21, 1985, pp.
396-401.

Sandeep Pagey, S. D. Sherlekar, G. Venkatesh, "A Methodology for the
Design of SFS/SCD Circuits for a Class of Unordered Codes,” Journal of
Electronic Testing: Theory and Applications, Vol. 2, No. 3, August 1991,
pp- 261-277.

Amold L. Rosenberg, "The Diogenes approach to testable fault-tolerant
arrays of processors," IEEE Transactions on Computers, Vol. C-32, No.
10, October 1983, pp. 902-910.

Mariagiovanni Sami and Renato Stefanelli, "Reconfigurable architectures
for VLSI processing arrays," Proceedings of the IEEE, Vol. 74, No. 5,
May 1986, pp. 712-722.

Adit D. Singh, "Interstitial redundancy: an area efficient fault tolerance
scheme for large area VLSI processor arrays," IEEE Transactions on
Computers, Vol. 37, No. 11, November 1988, pp. 1398-1410.

James E. Smith and Paklin Lam, "A Theory of Totally Self-Checking
System Design," IEEE Transactions on Computers, Vol. C-32, No. 9,
September, 1983, pp. 831-844.

James E. Smith and Gernot Metze, "Strongly Fault Secure Logic
Networks," IEEE Transactions on Computers, Vol. C-27, No. 6, June
1978, pp. 491-499.

213

[Sny82]

[ThW77]

[ViD80]

[WaA79]

[Whi91]

Bibliography

L. Snyder, "Introduction to the Configurable, Highly Parallel Computer,”
Computer, Vol. 15, January 1982, pp. 47-55.

R. A. Thompson, S. M. Walters, and F. G. Gray, "Stability in a Class of
Tessellation Automata," Proceedings of the Ninth Annual Southeastern
Symposium on Systems Theory, March 1977, pp. 404-414.

Jacques Viaud and Rene' David, "Sequentially Self-Checking Circuits,"
Tenth Annual International Symposium on Fault Tolerant Computing,
Digest of Papers, Kyoto, Japan, October 1-3, 1980, pp. 263-268.

Shean Lin Wang and Algirdas Avizienis, "The Design of Totally Self-
Checking Circuits Using Programmable Logic Arrays," Ninth Annual
International Symposium on Fault-Tolerant Computing, Madison,
Wisconsin, June 20-22, 1979, pp. 173-180.

T. S. White, Distributed Control Reconfiguration Algorithms for 2-
dimensional Mesh Architectures, Ph.D. Dissertation, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia, 1991.

214

APPENDIX A. SIMULATION SOURCE CODE

A.l ARRAY.C

/*

*/

/‘k

Filename: ARRAY.C
Programmer: Shannon Lawson
Date: October, 1992.

ARRAY.C - This file uses the lookup table in FAULTMAP.C for setting the
fault register flags in an array of control cells. See that file for
a description of the lookup mechanism.

The calling syntax is
array [vim|l|w] filespec

where [vim|liw] specifies the neighborhood to use for passing fault data:
von Neumann, Moore, Lawson, or White, respectively. The filespec parameter
specifies the path of a text file containing the locations of faulty cells
in the array. The upper left cell in the array has coordinates (0,0), and
the lower right cell has coordinates (9,9). Each line in the text file
simply contains the coordinates of a faulty cell as follows:

row column

The main program performs a simulation of the distributed diagnosis
algorithm for up to gquadruple fault patterns in a 10-by-10 array. All
cells are initialized as fault-free, then the locations of the faulty
cells are read from the user-specified fault data file. Each faulty
cell is assumed to be detected by one neighboring fault free cell, of
which up to 4 may exist. All possible detection combinations are
simulated, and the simulator produces output reflecting the state of
the array at each time step of the diagnosis. Each cell is represented
in the output as follows:

Xn - Faulty cell n
Q - Quarantine cell (adjacent to faulty cell)
n - Cell is aware of fault n

5 fields are allowed per cell. Unused fields are filled with '-*
characters. Thus, a cell marked '----- ' ig a fault free cell with no
information pertaining to faults in the array. A cell marked 'Ql1-3-' is
a quarantine cell which is adjacent to either fault 1 or fault 3 (or both)
and is aware of the faults in both cells. A cell marked '--23-' is aware
of faults 2 and 3, but is not adjacent to either one.

Each detection possibility constitutes a single simulation, during which
fault data is distributed at each iteration. Thus, multiple simulations
are run per invocation of the simulator. Each simulation terminates if
either all faults are detected by all neighbors, or if the pattern of
fault data in the array does not change from one iteration from the next.
The former indicates a successful simulation, whereas the latter indicates
failure.

Each iteration produces a snapshot of the state of the fault data in
the array. Each iteration is numbered in the output, and at the end of
each simulation, the number of iterations is given. At the end of the
run, the largest number of iterations for a single simulation is given.

Standard system includes */

#include <stdio.h>
#include <stdlib.h>

Appendix A - Simulation Source Code

215

/* Define boolean types */
#define FALSE 0

#define TRUE (!FALSE)

typedef unsigned char boolean;

#define MAX_ FAULT 4 /* Simulate up to quadruple faults */
#define MAX_ROW 10 /* Number of rows in the array */
#define MAX_COL 10 /* Number of columns in the array */
#define MAX_ PHYSICAL 12 /* Number of physical neighbor connections */
#define MAX_AWARE 24 /* Number of cells in area of awareness */
#define NUM_FAULT_ BITS 24 /* Number of bits in the fault register */
#define NUM_OUT_BUFFS 2 /* Two iterations are printed per output */
#define NUM_OUT_ROWS MAX_ROW /* Number of rows in the output */
#define NUM_OUT_COLS 140 /* Number of columns in the output */
#define CELL_STRING_SIZE 7 /* Number of characters to output per cell */
#define FORM_FEED 0x0C /* Define the form feed character */

/* Fault register associated definitions */
#define MAX_OFFSET 2 /* Maximum row/column distance to neighboer *x/

/*
This value is not used in the simulation, but could be used to allow a cell
to detect its own fault via information gained from a neighbor

*/
#define SELF -1 /* Cell detects its own fault via a neighbor */
#define NO_FAULT -1 /* Fault register data is of no concern *x/

/* Neighbor values */

/ * .
Let the current cell be located at (i, j). Rows in the array are numbered
from 0 to (MAX_ROW-1) from top to bottom. Similarly, columns in the array
are numbered from 0 to (MAX_COL-1) from left to right.

*/

#define NORTH 0 /* Cell at (i-1, j) */
#define SOUTH 1 /* Cell at (i+1, j) */
#define EAST 2 /* Cell at (i , j+1) */
#define WEST 3 /* Cell at (i , j-1) */
#define N_EAST 4 /* Cell at (i-1, j+1) */
#define N_WEST 5 /* Cell at (i-1, j-1) */
#define S_EAST 6 /* Cell at (i+l, j+1) */
#define S_WEST 7 /* Cell at (i+1, j-1) *x/
#define F_NORTH 8 /* Cell at (i-2, J) */
#define F_SOUTH 9 /* Cell at (i+2, 3) */
#define F_EAST 10 /* Cell at (1 , j+2) */
#define F_WEST 11 /* Cell at (i , j-2) */
#define NN_EAST 12 /* Cell at (i-2, j+1) */
#define EN_EAST 13 /* Cell at (i-1, j+2) */
#define NN_WEST 14 /* Cell at (i-2, j-1) */
#define WN_WEST 15 /* Cell at (i-1, 3j-2) */
#define SS_EAST 16 /* Cell at (i+2, j+1) */
#define ES_EAST 17 /* Cell at (i+1, j+2) */
#define SS_WEST 18 /* Cell at (i+2, j-1) */
#define WS_WEST 19 /* Cell at (i+1, 3-2) */

Appendix A - Simulation Source Code 216

#define F_N_EAST 20 /* Cell at (i-2, j+2) */

#define F_N_WEST 21 /* Cell at (i-2, j-2) */
#define F_S_EAST 22 /* Cell at (i+2, j+2) */
#define F_S_WEST 23 /* Cell at (i+2, j-2) */
/*

This macro maps a bit number into a bit mask by left-shifting 1.
Equivalent to the following nested IF structure:

if (n >= 0} Valid bit positions are non-negative
return(l << nj; Left shift 1 by n bit positions
else if (n == -1) Use -1 argument to return a 0 mask

return(0);

else
return(-1); Other negative values return -1 mask (invalid)
*/
#define bit(n) ((n >= 0) ? (1L << (n)) : (n == -1) 2?2 0L : -1L)

/* Neighborhoods used */

/* Von Neumann neighborhood as North, South, East, and West neighbors */
#define VON_NEUMANN (bit(NORTH) | bit (SOUTH) | bit (EAST) | bit (WEST))

/*
Moore neighborhood adds Northeast, Northwest, Southeast, and Southwest
neighbors to Von Neumann neighborhood

*/

#define MOORE (VON_NEUMANN | bit (N_EAST) | bit (N_WEST) | \

bit (S_EAST) | bit(S_WEST))

/*
Lawson neighborhood adds Far Neorth, Far South, Far East and Far West
neighbors to Von Neumann neighborhood

*/

#define LAWSON (VON_NEUMANN | bit (F_NORTH) | bit(F_SOUTH) | \

bit (F_EAST) | bit (F_WEST})

/*
White neighborhood adds Far North, Far South, Far East, and Far West
neighbors to Von Neumann neighborhood
*/
#define WHITE {MOORE | bit (F_NORTH) | bit(F_SOUTH) | bit(F_EAST) \
| bit {F_WEST))

/*
The area of awareness of a cell currently includes all cells within a
radial distance of two from that cell
*/
#define AWARE (WHITE | bit (NN_EAST) | bit(EN_EAST) | bit (NN_WEST) \
| it (WN_WEST) | bit{SS_EAST) | bit(ES_EAST) | bit(SS_WEST) | bit (WS_WEST} \
| bit (F_N_EAST) | bit(F_N_WEST) | bit(F_S_EAST) | bit(F_S_WEST))

/* Flag for undetected faults */
#define UNDETECTED 0

/*
Border and near-border cells are missing some neighbors, so we need to
exclude the missing neighbors from the physical neighborhood

*/

Appendix A - Simulation Source Code 217

/* Cells in the first row have no neighbors in the two rows above */
#define FIRST_ROW (~(bit (NORTH) | bit (N_EAST) | bit{(N_WEST) \
| bit (F_NORTH)))

/* Cells in the last row have no neighborg in the two rows below */
#define LAST_ROW (~(bit (SOUTH) | bit(S_EAST) | bit (S_WEST) \
| bit (F_SOUTH)))

/* Cells in the second row have no Far North neighbors */
#define NEAR_FIRST ROW (~(bit (F_NORTH)))

/* Cells in the next-to-last row have no Far South neighbors */
#define NEAR_LAST_ROW (~{bit (F_SOUTH)))

/* Cells in the first column have no neighbors in two columns to the left */
#define FIRST COL (~(bit (WEST) | bit(N_WEST) | bit (S_WEST) \
| bit(F_WEST)))

/* Cells in the last column have no neighbors in two columns to the right */

#define LAST_COL (~(bit (EAST) | bit (N_EAST) | bit(S_EAST) \
| bit (F_EAST)))

/* Cells in the second column have no Far West neighbors */
#define NEAR_FIRST COL (~(bit (F_WEST)))

/* Cells in the next-to-last ccoclumn have no Far East neighbors */
#define NEAR_LAST COL (~(bit (F_EAST)))

/* Types defined for this program */

typedef
unsigned long direction_type; /* North, south, east, etc. */

typedef long
neighborhoocd_type; /* Von Neumann, Moore, Lawson, White */

typedef struct

{
int
row,
col;
} position_type:; /* Relative row/column offsets */
/*
Maps neighbor directions to row and column offsets from a given cell
located at (i,3)
*/

position_type
offset [MAX_AWARE] =

{

-1, 0, /* North = (i-1, j) */
1, O, /* South (i+1, 3) */
0, 1, /* East (i , j+1) */
0, -1, /* West (i, 3-1) */

-1, 1, /* NE (i-1, J+1) */

-1, -1, /* NW (i-1, 3-1) */
1, 1, /* SE (i+1, j+1) */
1, -1, /* SW (i+1, j-1) */

-2, 0, /* Far N (i-2, 3) */
2, 0, /* Far S (i+2, 3) */
0, 2, /* Far E (i, j+2) */
0, -2, /* Far W (i, j-2) */

Appendix A - Simulation Source Code 218

-2, 1, /* NNE (i-2, j+1) */

-1, 2, /* ENE (i-1, j+2) */
-2, -1, /* NNW (i-2, j-1) */
-1, -2, /* WNW {i-1, j-2) */
2, 1, /* SSE (i+2, j+1) */
1, 2, /* ESE (i+1, j+2) */
2, -1, /* Ssw (i+2, 3-1) */
1, -2, /* WSW (i+1, 3-2) */

-2, 2, /* Far NE (i-2, j+2) */
-2, -2, /* Far NW (i-2, j-2) */
2, 2, /* Far SE (i+2, j+2) */
2, -2 /* Far SW (i+2, j-2) */

/*
We will need to map neighbor row/column offsets to directions. To do so,
a 2D array that spans the maximum distance in the 4 cardinal directions
is used. Thus, we need (two times the maximum offset distance plus one)
rows and columns.

*/

#define DIR_MAP_SIZE (2*MAX_OFFSET + 1)

direction_type
direction_map[DIR_MAP_SIZE] [DIR_MAP_SIZE] =
{ .

F_N_WEST, NN_WEST, F_NORTH, NN_EAST, F_N_EAST,
WN_WEST, N_WEST, NORTH, N_EAST, EN_EAST,
F_WEST, WEST, SELF, EAST, F_EAST,

WS_WEST, S_WEST, SOUTH, S_EAST, ES_EAST,
F_S_WEST, SS_WEST, F_SOUTH, SS_EAST, F_S_EAST

/*
This maps directions to their opposites. That is, the opposite of North
is South, the opposite of Far East is Far West, etc.
*/
direction_type
opposite_direction[MAX_PHYSICAL] =
{
SOUTH, NORTH, WEST, EAST,
S_WEST, S_EAST, N_WEST, N_EAST,
F_SOUTH, F_NORTH, F_WEST, F_EAST
}:

/* FAULTMAP.C contains the lookup table for setting the fault register bits */
#include *faultmap.c*

/* The fault register */
typedef unsigned long fault_reg;

/* Initialize fault registers to 0 to simulate a fault-free startup */
fault_reg
init_fault_reg = OL;

Appendix A - Simulation Source Code 219

/* The contents of a cell */
typedef struct

boolean
is_faulty, /* Is the cell faulty?
is_quarantine, /* Is the cell a guarantine cell?
fault_detected[MAX_FAULT]; /* Does the cell detect a given fault?
unsigned char
fault_num; /* Fault number assigned to faulty cell
fault_reg
fault_buffer [MAX_PHYSICAL], /* Buffer for neighbor fault data
old_fault, /* Current fault register image
new_fault; /* New fault register image
neighborhood_type
log_neighbor, /* Cells in the logical neighborhood
phys_neighbor, /* Cells in the physical neighborhood
detected_by; /* Neighbors detecting the cell's fault
} cell_type;

/* The array of control cells is a global variable */
cell_type
array [MAX_ROW] [MAX_COL];

/* ANSI Function prototypes */

void show_usage(char *prog_name) ;

void init_array(neighborhood_type neighborhood) ;

int read_faults(char *fault_name, position_type *fault_pos);

void set_faults(position_type *fault_pos, direction_type *fault_dir_list,
int num_faults);

boolean faults_isolated(boolean *isolated, position_type *fault_pos,
int num_faults);

void update_faults(int num_faults);
boolean update_array(int num_faults);
void output_array(int num_faults, boolean changed, int *iteration);

void set_neighborhood(char *neighborhood_string,
neighborhood_type *neighborhood, char *prog_name) ;

boolean next_fault_dir{direction_type *fault_dir_list, int num_faults,
position_type *fault_pos);

int main(int argc, char *argvi[])};

Appendix A - Simulation Source Code

*/
*/
*/

*/

*/
*/
*/

*/
*/
*/

220

/*

show_usage() - This function displays the correct calling syntax for the

program and exits.

Input Parameters:
prog_name - the name of the executable
Called By: main(), set_neighborhood()
*/
void show_usage(char *prog_name)
{

/* Show calling convention and exit */

printf(®*\nUsage: %s [VIMIWI|IL] fault_file\n*®, prog_name);

printf(*\nWhere [V|IM|IW|L] specifies one of the following neighborhoods:\n");

printf(*\n\t(V)on Neumann = N S E W");
printf(*\n\t(M)oore = Von Neumann + NE SE NW SW");
printf(*\n\t{(W)hite = Moore + FN FS FE FW");
printf({*\n\t(L)awson = Von Neumann + FN FS FE FW\n\n");
exit(1);

/*

init_array() - initializes the array of cells so that no faults are
present, and each cell is informed as to the cells in its neighborhood

Input Parameters:

neighborhood - VON_NEUMANN, MOORE, LAWSON, or WHITE

Globals Modified:

array - the array of control cells

Called By: main{()

*/

void init_array{neighborhood_type neighborhood)
{

int
row, /* The row of the current cell
col, /* The column of the current cell
fault_num; /* The current fault number

direction_type

direction; /* The current relative direction
cell_type
cell; / The current cell

/* Initialize all cells in the array */
for (row = 0; row < MAX_ROW; row++)
for (col = 0; col < MAX_COL; col++)
{
cell = &arraylrow][col];

Appendix A - Simulation Source Code

*/
*/
*/

*/

*/

221

/* Reset all variables and flags relating to faults

cell->is_faulty = FALSE;
cell->is_quarantine = FALSE;
cell->fault_num = 0;

cell->detected_by = UNDETECTED;

cell->o0ld_fault = cell-»>new_fault = init_fault_reg;

*/

for (fault_num = 0; fault_num < MAX_FAULT; fault_num++)

cell->fault_detected|{fault_num] = FALSE;

/* Set up the appropriate neighborhood */
cell->log_neighbor = neighborhood;
cell->phys_neighbor = WHITE;

/* Mask out nonexistent border cell neighbors */

switch (row)

/* Cell is in first row. Mask out all northern neighbors */

case 0:
cell->log_neighbor &= FIRST_ROW;
cell->phys_neighbor &= FIRST_ROW;
break;

/* Cell is in second row. Mask out far north neighbor */

case 1:
cell->log_neighbor &= NEAR_FIRST ROW;
cell->phys_neighbor &= NEAR_FIRST_ROW;
break;

/* Cell is in next-to-last row. Mask out far south neighbor */

case (MAX_ROW - 2):
cell->log_neighbor &= NEAR_LAST_ROW;
cell->phys_neighbor &= NEAR_LAST_ROW;
break;

/* Cell is in last row. Mask out all southern neighbors */

case (MAX ROW - 1):
cell->log_neighbor &= LAST ROW;
cell->phys_neighbor &= LAST_ROW;
break;

default:
break;
}

switch (col)
{

/* Cell is in first col. Mask out all eastern neighbors */

case 0:
cell->log_neighbor &= FIRST COL;
cell->phys_neighbor &= FIRST_COL;
break;

/* Cell is in second col. Mask out far east neighbor */

case 1:
cell->log_neighbor &= NEAR_FIRST_COL;
cell->phys_neighbor &= NEAR_FIRST_COL;
break;

/* Cell is in next-to-last col. Mask out far west neighbor */

case (MAX_COL - 2}:
cell->log_neighbor &= NEAR_LAST COL;
cell->phys_neighbor &= NEAR_LAST COL;
break;

Appendix A - Simulation Source Code

222

/* Cell is in last col. Mask out all western neighbors */
case (MAX_COL - 1):

cell->log_neighbor &= LAST_COL:

cell->phys_neighbor &= LAST_COL;

break;

default:
break;

/t
read_faults() - reads in the locations of the faulty cells from the
specified file.
Input Parameters:
fault_name - the name of the file containing the fault locations
Ooutput Parameters:
fault_pos - an array containing the fault locations
Globals Modified:
array - the array of control cells
Returned Value:
num_faults - the number of faults read into the array
Called By: main()
*/

int read_faults(char *fault_name,
position_type *fault_pos)

{
FILE
fault_file; / The file containing the fault locations */
boolean
done; /* Have all faults been read? */
int
num_faults = 0, /* The number of faults read from the file */
fault_num, /* The number assigned to the current fault */
fault_row, /* The row containing the current fault */
fault_col, /* The column containing the current fault */
neighbor_row, /* The row of a neighbor of the fault */
neighbor_col; /* The column of a neighbor of the fault */
cell_type
faulty, / The current faulty cell */
neighbor; / A neighbor of the faulty cell */
direction_type
fault_dir, /* The relative direction of the faulty cell */
neighbor_dir; /* The relative direction of the neighbor */

Appendix A - Simulation Source Code 223

/* Try to open the file with the fault data in it */
if (fault_file = fopen(fault_name, *"r"))
{

/* Read all the faults in */

for (num_faults = 0, done = FALSE; !done;)

{

if (fscanf(fault_file, "%d %d*, &fault_row, &fault_col) == 2)
{
fault_pos[num_faults].row = fault_row;
fault_pos[num_faults].col = fault_col;

faulty = &array(fault_row][fault_col};

/* Flag faulty cell */
faulty->is_faulty = TRUE;
faulty->fault_num = num_faults;

/* Track number of faults so far */
num_faults++;
}
else
done = TRUE;
}

fclose(fault_file);
}

/* Force flags so we don't check for detection by faulty neighbors */
for (fault_num = 0; fault_num < num_faults; fault_num++)
{

fault_row = fault_pos[fault_num].row;

fault_col = fault_pos[fault_num].col;

faulty = &array|[fault_row][fault_col];

/* Just pretend a cell is already detected by a faulty neighbor */
for (neighbor_dir = NORTH; neighbor_dir <= S_WEST; neighbor_dir++)
{

fault_row + offset[neighbor_dir].row;

fault_col + offset[neighbor_dir].col;

neighbor_row =
neighbor_col =

neighbor = &array|[neighbor_row] [neighbor_col];

if (neighbor->is_faulty)
faulty->detected_by |= bit(neighbor_dir);

}

/* Need to know how many faults were read in *?
return{num_faults);

Appendix A - Simulation Source Code 224

/*

set_faults{)

Input Parameters:

- sets up a detecting cell for each fault in the array.

fault_pos - an array containing the fault locations
fault_dir_list - an array of relative locations of detecting neighbors
num_faults - the number of faults in the array

Globals Modified:

array - the array of control cells

Called By: main()

*/

void set_faults(pogition_type *fault_posg,
direction_type *fault_dir_list,

int num_faults)

boolean

int

done;

fault_num,
fault_row,
fault_col,
fault2_num,
fault2_row,
fault2_col,
neighbor_row,
neighbor_col,
fault_row_index,
fault_col_index,
row_diff,
col_diff;

cell_type

*faulty,
*faulty2,
*neighbor;

direction_type

/t

fault_dir,
fault2_dir,
neighbor_dir;

/*

/*
/*
/*
/t
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/‘k
/*

Are

The
The
The
The
The
The
The
The

we done getting up faults?

number of the current faulty cell

row containing the current fault

coclumn containing the current fault
number of another fault

row containing another fault

column containing another fault

row containing the detecting neighbor
column containing the detecting neighbor

Offset from cell row to neighbor row
Offset from cell column to neighbor cclumn
Row difference between two faults

Column difference between two faults

The

current faulty cell

Another faulty cell
A neighbor of the current faulty cell

Relative direction to the current faulty cell
Relative direction to another faulty cell
Relative direction to the detecting neighbor

Process all faults in the array */
fault_num < num_faults; fault_num++)

for (fault_num = 0;

{

fault_row = fault_pos[fault_num].row;

fault_col

fault_pos[fault_num].col;

faulty = &arraylfault_row]{fault_col];

/* Find the relative direction of the detecting neighbor */
neighbor_dir = fault_dir_list[fault_num];

neighbor_row
neighbor_col

I ou

fault_row + offset[neighbor_dir].row;
fault_col + offset[neighbor_dir].col;

Appendix A - Simulation Source Code

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

225

neighbor = &array(neighbor_row] [neighbor_col];
neighbor->fault_detected[fault_num] = TRUE;

/* Calculate offset from faulty cell to detecting neighbor */
fault_row_index = fault_row - neighbor_row + MAX_OFFSET;
fault_col_index = fault_col - neighbor_col + MAX_OFFSET;

/* Use direction information to set neighbor fault register */
fault_dir =
direction_map(fault_row_index][fault_col_index];

neighbor->new_fault =
{(neighbor->0ld_fault |= bit(fault_dir));

/* Exclude faulty cell from the neighborhood */
neighbor->log_neighbor &= ~bit(fault_dir);
neighbor->phys_neighbor &= ~bit(fault_dir);

/* Quarantine faulty cells in the Von Neumann neighborhood */
neighbor->is_guarantine = ((bit(fault_dir) & VON_NEUMANN) != 0);

/* Let faulty cell know who has detected it */
neighbor_dir = opposite_direction[fault_dir];

faulty->detected_by |= bit(neighbor_dir);

/*
Faulty cells are assumed not to detect other faulty cells,
so the simulation will not check whether a faulty cell is
detected by other faulty cells in its physical neighborhood.
Therefore, the simulation just forces these cells to *think"
they are detected by their faulty neighbors so it doesn't have
to worry about it later.

*/

/* Check all faults */
for (fault2_num = 0; fault2_num < num_faults; fault2_num++)

{

fault2_row = fault_pos{fault2_num].row;

fault2_col = fault_pos[fault2_num].col;

faulty2 = &array([fault2_row] [fault2_col];

/* Is any faulty cell physically connected to the current fault? */

if (((row_diff = fault2_row - fault_row) <= MAX_OFFSET) &&

((col_diff = fault2_col - fault_col) <= MAX_OFFSET))

{
/* Force faulty cells to think they "detect® each other */
fault2_dir =

direction_map(row_diff+MAX_OFFSET] [col_diff+MAX OFFSET];
fault_dir =
direction_map{MAX_OFFSET-row_diff] [MAX_OFFSET-col_diff];
if (fault2_dir && WHITE)
(
faulty->detected_by |= bit({fault2_dir);
faulty2->detected_by |= bit(fault_dir);

}

}

)

Appendix A - Simulation Source Code 226

/*

*/

faults_isclated() - determines whether faults are detected by all neighbors

in the current neighborhood.

Input Parameters:

isolated - an array which tracks whether faults are isolated yet

fault_pos - an array of the locations of faulty cells
num_faults - the number of faults in the array

Output Parameters:

isolated - updated to reflect newly isolated faults

Returned Value:

done - indicates when all faults are detected

Called By: main()

boolean faults_isolated{boolean *isolated,

position_type fault_pocsl(],
int num_faults)

int
fault, /* The number of the current fault
fault_col, /* Column containing the faulty cell
fault_row, /* Row containing the faulty cell
neighbor_col, /* Column containing a neighbor
neighbor_row; /* Row containing a neighbor
boolean
done; /* All faults isolated?
cell_type
faulty; / The faulty cell

/* Check all faults for isolation */
for (fault = 0; fault < num_faults; fault++)

{
/* If a fault is not isolated, check for detection by all neighbors */
if (!(isolated[fault]))
{
fault_row = fault_pos([fault].row;
fault_col = fault_pos|[fault].col;
faulty = &array[fault_row][fault_col];
isolated[fault] =
(faulty->detected_by & WHITE) == faulty->phys_neighbor;
}
}
/*

*/

for (fault = 0, done = TRUE; (fault < num_faults) && done; fault++)

done = isolated[fault];

return(done) ;

Appendix A - Simulation Source Code

227

/*

*/

update_faults()

- the heart of the simulator.

Uses the lookup table

contained in FAULTMAP.C to determine how bits in the fault register

should be set,

based on fault data received from neighboring cells.

Input Parameters:

num_faults - the number of faults in the array

Globals Modified:

array - the array of control cells

Called By:

main()

void update_faults{int num_faults)

{

direction_type

Direction to current neighbor
Direction to current fault
Current fault data buffer bit
Direction of detecting cell

Current row of the array
Current column of the array

unsigned long

cell_ fault;

for {(col = 0;

{

/* Do not worry about updating the fault registers of faulty cells */
&array|[row] [col]l)->is_faulty)

if (! (cell
{

direction, /*
fault_dir, /*
buff_bit, /*
detect_dir; /*
int
row, /*
col, /*
neighbor_row, /*
neighbor_col, /*
fault, /*
faulty_row, /*
faulty_col; /*
cell_type
cell, /
neighbor, /
faulty; /

/*

Row containing the neighbor
Column containing the neighbor
Number of the current fault
Row containing the fault
Column containing the fault

The current cell in the array
The current neighbor
The current faulty cell

The bit to set in the fault register

/* Update fault data in row major order */
for (row = 0; row < MAX_ROW; row++)
col < MAX_COL; col++)

/* Check all neighbors of the current cell */

for (direction

{

/* Cells in the neighborhood can give us valid fault data */

NORTH; direction <= F_WEST; direction++)

if (bit(direction) & cell->log_neighbor)

{

/* Find neighbor in current direction */
neighbor_row = row + offset[direction].row;
neighbor_col = col + offset[direction].col;

neighbor

&array [neighbor_row] [neighbor_col};

Appendix A - Simulation Source Code

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/

228

/* Copy neighbor fault register */
cell->fault_buffer[direction] = neighbor->o0ld_fault;

/*
Check all bits in neighbor's fault register. If we can
map a fault in the neighbor's register to ours, we need
toc do that. If the fault corresponds to a physical
neighbor, we'll flag it as detected
*/
for (buff_bit = NORTH; buff bit <= F_S_WEST; buff_bit++)
if (cell->fault_buffer|[direction] & bit{buff_bit))
{
/* Where's the fault in relation to us? */
fault_dir = fault_mapl[direction][buff_bit];

/* Is this a valid fault? */
if (cell_fault = bit{(fault_dir))
{
/* Flag the fault */
cell->new_fault {= cell_fault;

/* Is the fault is in our region of awareness? */
if (cell_fault & AWARE)

{
/* Quarantine faulty cells */
cell->is_quarantine |=
{({cell_fault & VON_NEUMANN) != 0);

/* Exclude faulty cell from the neighborhood */
cell->log _neighbor &= ~cell_fault;

/* Find faulty cell and set detection flags */
faulty_row = row + offset[fault_dir].row;
faulty_col = col + offset[fault_dir].col;
faulty = &array[faulty_row][faulty_col];
cell->fault_detected[faulty->fault_num] = TRUE;

if (cell_fault & WHITE)

{
detect_dir = opposite_direction|fault_dir};
faulty->detected_by |= bit(detect_dir);
}
}
}
}
}
/* Otherwise, clear fault buffer */
else
cell->fault_buffer[direction] = init_fault_reg;

Appendix A - Simulation Source Code

229

/‘k
update_array() - simply copies the new fault data over the previous data
so that another iteration of the simulation can be performed

Input Parameters:

num_faults - the number of faults in the array

Globals Modified:

array - the array of control cells

Returned Value:
changed - indicates whether any changes occurred this iteration. If no

changes occur from one iteration to the next, the simulation
aborts, since nothing will ever change from that point on.

Called By: main()

*/

boolean update_array(int num_faults)
{

int
fault, /* The current fault */
row, /* The row containing the current fault */
col; /* The column containing the current fault */
boolean
changed; /* Did anything change this iteration? */
fault_reg
old_fault, /* 01d fault data */
new_fault; /* New fault data */

/* Check all cells in the array in row major order */
for (changed = FALSE, row = 0; row < MAX ROW; row++)
for (col = 0; col < MAX_COL; col++)

old_fault
new_fault

array|[row] [col]).old_fault;
array|[row] [col]l.new_fault;

wen

/* Need to save new fault data if it differs from old data */
if (old_fault != new_fault)
{

array[row] [col].old_fault = new_fault;

changed = TRUE;

}

/* If the array has not changed, the simulation will abort */
return(changed) ;

Appendix A - Simulation Source Code 230

/*

*/

output_array () - produces a visual representation of the state of the array

after every 2 iterations, or at the end of simulation.

Input Parameters:

num_faults - the number of faults in the array

changed - indicates whether the array changed since the last iteration

output Parameters:

iteration - counts simulation interations

Called By: main()

void output_array({int num_faults,

boolean changed,
int *iteration)

int
row, /* The current row
col, /* The current column
fault_num, /* The Number of the current fault
buff num = (*iteration) & 1, /* The current print buffer
num_print_buffs; /* The number of print buffers
cell_type
cell; / The current cell

/* output string buffers for cells and rows of the array */
char
row_string[NUM_OUT_BUFFS] [MAX_ROW] [NUM_OUT_COLS+1],
cell_string{CELL_STRING_SIZE+1];

boclean

odd = (buff_num == 1); /* Print buffers alternate

/* Copy array info into appropriate buffer if it changed */

if {changed)

{
/* Process array in row major order */
for (row = 0; row < MAX_ROW; row++)
{

/* Initialize row output string */
row_string[buff_num] [row] [0] = '\0*;

/* Concatenate cell strings to get the row string */
for (col = 0; col < MAX_COL; col++)
{

cell = &(array[row][coll};

/* Determine display characteristics of the current cell

if (cell->is_faulty)

sprintf (cell_string, *-X%¥d-- *, cell->fault_num + 1);

else if (cell->is_gquarantine)

sprintf(cell_string, *Q---- *);
else
sprintf(cell_string, *----- ")

Appendix A - Simulation Source Code

>/
*/
*/
*/
*/

*/

*/

*/

231

/* Indicate the faults detected by the current cell, if any */

if (! (cell-»is_faulty))
{

for (fault_num = 0; fault_num < num_faults; fault_num++)

if (cell->fault_detected[fault_num])
cell_string[fault_num+1l] = fault_num + '1°‘;

}

strcat (row_string[buff num] [row], cell_string);

/*

We are trying to output two iterations at a time to conserve paper.
Therefore, each output cycle may consist of an even iteration and the

following odd iteration.

Exceptions occur when the array has not changed since the last

iteration. This indicates failure on the part of the data passing

mechanism, due to an intolerable fault pattern.

If an even iteration matches the previous odd iteration, we need not

output any data. If an odd iteration matches the previous even
iteration, we need to only output the even iteration.
*/

/* Determine the number of iterations to output */
if ((num_print_buffs = odd ? (changed 2 2 : 1) : 0) > 0)
printf(*\n\n*);
/* Output iteration counters */
for (buff_num = 0; buff_num < num _print_buffs; buff_num++)
printf("%-61d4*, (*iteration) - 1 + buff_num);
printf(*\n\n");
/* Output all rows */
for (row = 0; row < MAX_ROW; row++)
{
for (buff_num = 0; buff_num < num _print_buffs; buff_num++)
printf(*"%-61s*, row_string[buff_num][row]);
printf(*\n");
}
/* Keep going if the array is still changing with each iteration */

if (changed)
(*iteration)++;

Appendix A - Simulation Source Code

232

/*

set_neighborhood() - determines the neighborhood to use in passing the
fault data, based on the user-specified command line parameter

Input Parameters:

neighborhood_string - character indicating the neighborhood to use

prog_name - the name of the simulator program

Output Parameters:

neighborhood - the type of neighborhood to be used in the simulation

e

Called By: main()

*/

void set_neighborhood(char *neighborhood_string,
neighborhood_type *neighborhood,
char *prog_name)

switch (toupper (neighborhood_string[0]))
{
case 'V':
*neighborhood = VON_NEUMANN;
printf(*\nvon Neumann\n®);
break;

case 'M':
*neighborhood = MOORE;
printf (*\nMoore\n") ;
break;

case 'W':
*neighborhood = WHITE;
printf(*\nwhite\n");
break;

case 'L':
*neighborhcod = LAWSCN;
printf (*\nLawson\n") ;
break;

default:

show_usage (prog_name) ;
break;

Appendix A - Simulation Source Code

233

/*
next_fault_dir() - changes the relative locations of the detecting
neighbors from one simulation run to the next. This way, all possible
worst-case detection patterns are simulated. It is best to think of this
as a 4-digit (maximum), modulo-4 counter. Each *"digit" represents a
detecting neighbor, and the value of the digit indicates the relative
location from a faulty cell to the detecting neighbor. The counter
is initially set such that all faults are detected by North neighbors,
except one, which is initially detected by its East neighbor. The counter
is incremented after each simulation run, corresponding to rotating the
direction of detection clockwise. When a digit returns to the North
neighbor, the next most significant digit is incremented, and the cycle
repeats. When all digits return to the North neighbor, the simulation
is completed. 1If two faulty cells are adjacent, such that one is selected
as the detecting neighbor of the other, the counter is incremented as
needed until all faulty cells are only detected by non-faulty cells.

Input Parameters:
fault_dir_list - the relative locations of the detecting neighbors
num_faults - the number of faults in the array
fault_pos - the locations of faults in the array

Output Parameters:

fault_dir_list - updated to indicate new detection pattern

Returned Value:

full _circle - indicates when the simulation is completed

Called By: main()

*/

boolean next_fault_dir(direction_type *fault_dir_list,
int num_faults,
position_type *fault_pos)

{
int
fault_num = 0, /* The number of the current fault */
bump_count, /* Counts the number of detection changes */
neighbor_row, /* Row containing a detecting neighbor */
neighbor_col; /* Column containing a detecting neighbor */

static boolean

first_time = TRUE; /* Is this the first time through? */
boolean

done, /* Finished finding new detecting neighbors? */

bump_done, /* Finished with the current fault? */

no_faulty, /* No faulty detecting neighbors? */

full_circle; /* All detection patterns attempted? */
cell_type

neighbor; / The detecting neighbor */

direction_type
detect_dir; /* Direction to detecting neighbor */

Appendix A - Simulation Source Code 234

/* Repeat until finished updating the current detection pattern */
for (done = FALSE; !done;)
{

for (bump_count = 0, bump_done = FALSE; ! (bump_done || first_time);)

/t
Bump the current direction one step. If the resulting direction
is NORTH, we have cycled this direction counter all the way around.
If there is a next most significant digit, we need to bump it also.

*/
switch({fault_dir_list[fault_num])
{
case NORTH:
fault_dir_list{fault_num] = EAST;
bump_dcone = TRUE;
break;
case SOUTH:
fault_dir_list[fault_num] = WEST;
bump_done = TRUE;
break;
case EAST:
fault_dir_list(fault_num] = SOUTH;
bump_done = TRUE;
break;
case WEST:
fault_dir_list[fault_num] = NORTH;
if (fault_num < (num_faults - 1))
fault_num++;
bump_count++;
break;
}

first_time = FALSE;

/*
If we've incremented all of the direction counters, we've come full
circle and need to stop now. Otherwise, we need to do some more
checking.

*/

if (! (full_circle = ({(bump_count == num_faults)))

{
/*

Now we need to determine whether any of the detecting cells is a

faulty cell. If not, we're done. Otherwise, we need to generate

another set of detecting cells by repeating the bump loop above.
*/

for (fault_num = 0, no_faulty = TRUE;
(fault_num < num_faults) && no_faulty; fault_num++)

{
detect_dir = fault_dir_list{fault_num];
/* Find neighbor in current direction */
neighbor_row = fault_pos{fault_num].row + offset[detect_dir].row;
neighbor_col = fault_pos|fault_num].col + offset{detect_dir]}.col;
neighbor = &array[neighbor_row] [neighbor_col];
/* Make sure the detecting neighbor isn't faulty! */
no_faulty = ! (neighbor->is_faulty);
}

Appendix A - Simulation Source Code 235

/*

If none of the detecting cells are faulty, we're done.

we need to bump the direction counters again!

*/

if (no_faulty)
done = TRUE;

else

{
done = FALSE;
fault_num = 0;

}
}
else
done = TRUE;
}
return(full_circle);
}
/*
main(}) - the main simulation loop. Command line parameters are checked,
and the neighborhood is set up accordingly. Detections are initially
set up to be the North neighbor of each faulty cell. The fault-free
status of the array is initialized,
Input Parameters:
argv([l] - the neighborhood to use: [vIm|l[w]
argv[2] - the path for the fault location file
*/

int main(int argc, char *argv|])
{
neighborhood_type
neighborhood;

boolean
first_time = TRUE,
changed,
group_done,
sim_done,
isolated [MAX_FAULT];

position_type
fault_pos[MAX_FAULT];

direction_type
direction,
fault_dir_list[MAX_ FAULT];

int
num_faults,
fault_num,
sim_count,
iteration,
max_iteration = 0;

/‘k

/*
/*
/*
/*
/t

/*

/‘k
/*

/t
/*
/*
/*
/*

/* Check calling parameters and set

if (argc != 3)
show_usage(argv(0]);

The neighborhood to use

First time through?

Has the array changed?

Is this run completed?

Is the simulation completed?
Is this fault isolated?

Holds fault locations

Indicates detection direction
Indicates detection direction

How many faults?

The number of the current fault
The number of simulations

The current iteration

Maximum iterations this run

up neighborhood */

set_neighborhood(argv([l], &neighborhood, argv([0]);

Appendix A - Simulation Source Code

Otherwise,

*/

*/
*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/
*/

236

/* All faults initially detected by their North neighbors */
for {fault_num = 0; fault_num < MAX_FAULT; fault_num++)
fault_dir_list[fault_num] = NORTH;

/* One loop per simulation */
for (sim_count = 0, group_done = FALSE; !group_done; sim_count++)
{

/* New simulation. Reset the array */
changed = TRUE;

iteration = 0;
init_array (neighborhood) ;

for (fault_num = 0; fault_num < MAX FAULT; fault_num++)
isolated{fault_num] = FALSE;

/* Read in the fault locations */
if ((num_faults = read_faults({argv[2], fault_pos})) == 0)

printf{*\nUnable to open fault file: %s\n*", argv[2]);
exit (1)

/* Set up initial detection pattern */
if (first_time)

first_time = FALSE;
group_done = next_fault_dir{fault_dir_list, num_faults, fault_pos);

/* Set up initial fault data */
set_faults(fault_pos, fault_dir_list, num_faults);

/* Show initial array configuration */
output_array{num_faults, changed, &iteration);

/* Iteration loop */
for (sim _done = FALSE; !sim_done;)

{

/* Update fault register information */
update_faults{num_ faults);

/* Copy new fault register data over old */
changed = update_array{(num_faults);

/* Show the new configuration */
output_array (num_faults, changed, &iteration);

/* Check for end of simulation and output iterations as needed */
if (changed)
{
if(sim_done =
faults_isclated({isolated, fault_pos, num_faults))
{
changed = FALSE;
output_array(num_faults, changed, &iteration);
printf(*\n\nAll faults isolated!\n\n");

Appendix A - Simulation Source Code 237

else

{
printf (*\nFAILURE! No changes since last iteration!\n");

sim_done = TRUE;

/* Track maximum number of iterations this simulation run */
if {((iteration - 1) > max_iteration)
max_iteration = iteration - 1;

/* Set up new fault detection pattern */
group_done = next_fault_dir(fault_dir_list, num_faults, fault_pos);

}

printf(*\n\nSimulations: %d\n", sim_count);
printf(*Max Iterations: %d\n\n*, max_iteration);

return(l);

Appendix A - Simulation Source Code

238

A2 FAULTMAP.C

/r

*/

Filename: FAULTMAP.C
Programmer: Shannon Lawson
Date: October, 1992.
Used by: ARRAY.C

FAULTMAP.C - This file contains the lookup table for setting the fault
register. 1It's very simple, actually. A cell gets fault data via one

of several neighborhoods - Von Neumann, Moore, Lawson, or White. Entries
in the table are first grouped according to which neighbor is providing the
data, and then by the position of bits in the fault register. Thus, if

a cell is receiving data from its North neighbor, it would lock in the
first set of entries. If the cell needs to examine the West fault bit of
its North neighbor, then it looks at the third entry in the first set

of entries. The value stored in each entry tells the cell which, if any,
of its own neighbors is faulty, based con the data received from a given
neighbor.

EXAMPLE - A cell finds that the fault register data received from its
North neighbor has a bit set correspconding to the North neighbor's West
neighbor. Looking in the first set of entries, which corresponds to the
North neighbor, we see that the fourth entry in that set corresponds to
the North neighbor's West neighbor, and that the value stored in the
entry indicates that the original cell has a faulty Northwest neighbor:

N-X * - the original cell
1/ N - *'s North neighbor
* X - N's West neighbor (*'s Northwest neighbor)

Although not used, a value of SELF indicates that the original cell is
faulty. This could conceivably happen if one neighbor diagnoses the
original cell as faulty, and another neighbor learns of the fault
before the cell itself does.

A value of NO_FAULT indicates that the indicated bit position in the
neighbor's fault register has no significance to the given cell. For
example, if a cell's Far North neighbor has a faulty Northeast neighbor,
the faulty cell is too far away from the given cell to consider under
the current algorithm.

The table can be easily modified to accommodate more bits and/or more
neighbors with minimal changes to the table-driven code in ARRAY.C

Appendix A - Simulation Source Code

239

direction_type

fault_mapl[MAX_PHYSICAL][NUM_FAULT_BITS]

(

/* North neighbor

/* Fault */ /*
F_NORTH, /*
SELF, /*
N_EAST, /*
N_WEST, /*
NN_EAST, /*
NN_WEST, /*
EAST, /*
WEST, /*
NO_FAULT, /*
SOUTH, /*
EN_EAST, /*
WN_WEST, /*
NO_FAULT, /*
F_N_EAST, /*
NO_FAULT, /*
F_N_WEST, /*
S_EAST, /*
F_EAST, /*
S_WEST, /*
F_WEST, /*
NO_FAULT, /*
NO_FAULT, /*
ES_EAST, /*
WS_WEST, /*

/* South neighbor

/* Fault */ /*

SELF, /*
F_SOUTH, /*
S_EAST, /*
S_WEST, /*
EAST, /*
WEST, /*
SS_EAST, /*
SS_WEST, /*
NORTH, /*
NO_FAULT, /*
ES_EAST, /*
WS_WEST, /*
N_EAST, /*
F_EAST, /*
N_WEST, /*
F_WEST, /*
NO_FAULT, /*
F_S_EAST, /*
NO_FAULT, /*
F_S_WEST, /*

fault info */

Relation of fault to North neighbor

North
South
East
West

Northeast

Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
Scuth of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

fault info */

Relation of fault to South neighbor

North
Scuth
East
West

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Socuthwest
West of Southwest

Appendix A - Simulation Source Code

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

240

EN_EAST,
WN_WEST,
NC_FAULT,
NO_FAULT,

/*
/*
/*
/*

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* East neighbor fault info */

/* Fault */

N_EAST,
S_EAST,
F_EAST,
SELF,

EN_EAST,
NORTH,
ES_EAST,
SOUTH,

NN_EAST,
SS_EAST,
NO_FAULT,
WEST,

F_N_EAST,
NO_FAULT,
F_NCRTH,
N_WEST,

F_S_EAST,
NO_FAULT,
F_SOUTH,
S_WEST,

NO_FAULT,
NN_WEST,
NO_FAULT,
SS_WEST,

/* Relation of fault to East neighbor

/*
/*
/*
/*

/*
/*
/*
/*

/*
/t
/t
/*

/*
/*
/*
/*

/*
/*
/*
/i

North
South
East
West

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* West neighbor fault info */

/* Fault */

N_WEST,
S_WEST,
SELF,

F_WEST,

NORTH,
WN_WEST,
SOUTH,
WS_WEST,

NN_WEST,
SS_WEST,
EAST,
NO_FAULT,

F_NORTH,
N_EAST,
F_N_WEST,
NO_FAULT,

/* Relation of fault to West neighbor

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/t

/*
/*
/*
/*

North
South
East
West

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

Appendix A - Simulation Source Code

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

241

F_SOUTH,
S_EAST,

F_S_WEST,
NO_FAULT,

NN_EAST,
NO_FAULT,
SS_EAST,
NO_FAULT,

/*
/t
/*
/*

/*
/‘k
/*
/*

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* Northeast neighbor fault info */

/* Fault */

NN_EAST,
EAST,
EN_EAST,
NORTH,

F_N_EAST,
F_NORTH,
F_EAST,
SELF,

NO_FAULT,
S_EAST,
NO_FAULT,
N_WEST,

NO_FAULT,
NO_FAULT,
NO_FAULT,
NN_WEST,

ES_EAST,
NO_FAULT,
SOUTH,
WEST,

NO_FAULT,
NO_FAULT,
NO_FAULT,
S_WEST,

/*

Relation of fault to Northeast neighbor

North
South
East
West

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* Northwest neighbor fault info */

/* Fault */

NN_WEST,
WEST,
NORTH,
WN_WEST,

F_NORTH,
F_N_WEST,
SELF,
F_WEST,

NO_FAULT,
S_WEST,
N_EAST,
NO_FAULT,

/*

/t
/a
/t
/*

/*
/t
/*
/i’

/*
/*
/*
/*

Relation of fault to Northwest neighbor

North
South
East
West

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

Appendix A - Simulation Source Code

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/

*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

242

NO_FAULT,
NN_EAST,

NO_FAULT,
NO_FAULT,

SOUTH,
EAST,
WS_WEST,
NO_FAULT,

NO_FAULT,
NO_FAULT,
S_EAST,

NO_FAULT,

/*
/*
/t
/*

/*
/*
/*
/*

/*
/*
/’*
/*

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* Southeast neighbor fault info */

/* Fault */

EAST,
SS_EAST,
ES_EAST,
SOUTH,

F_EAST,
SELF,
F_S_EAST,
F_SOUTH,

N_EAST,
NO_FAULT,
NO_FAULT,
S_WEST,

EN_EAST,
NO_FAULT,
NORTH,
WEST,

NO_FAULT,
NO_FAULT,
NO_FAULT,
SS_WEST,

NO_FAULT,
N_WEST,

NO_FAULT,
NO_FAULT,

/*

/*
/*
/t
/*

/*
/r
/*
/*

/*
/‘k
/*
/*

/*
/*
/*
/*

/*
/*
/*
/'k

/'k
/*
/*
/*

Relation of fault to Southeast neighbor

North
South
East
West

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* Southwest neighbor fault info */

/* Fault */

WEST,
SS_WEST,
SOUTH,
WS_WEST,

SELF,
F_WEST,
F_SOUTH,
F_S_WEST,

/*

/*
/*
/*
/*

/t
/'k
/*
/*

Relation of fault to Southwest neighbor

North
South
East
West

Northeast
Northwest
Southeast
Southwest

Appendix A - Simulation Source Code

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
>/
*/
*/

*/
*/
*/
*/

243

N_WEST,
NO_FAULT,
S_EAST,
NO_FAULT,

NORTH,
EAST,
WN_WEST,
NO_FAULT,

NO_FAULT,
SS_EAST,

NO_FAULT,
NO_FAULT,

N_EAST,
NO_FAULT,
NO_FAULT,
NO_FAULT,

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/‘k
/*

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* Far North neighbor fault info */

/* Fault */

NO_FAULT,
NORTH,
NN_EAST,
NN_WEST,

NO_FAULT,
NO_FAULT,
N_EAST,
N_WEST,

NO_FAULT,
SELF,

F_N_EAST,
F_N_WEST,

NO_FAULT,
NO_FAULT,
NO_FAULT,
NO_FAULT,

EAST,
EN_EAST,
WEST,
WN_WEST,

NO_FAULT,
NO_FAULT,
F_EAST,
F_WEST,

/* Relation of fault to Far North neighbor

/*
/*
/*
/ir

/*
/*
/*
/‘k

/*
/*
/*
/*

/*
/*
/‘R
/ir

/*
/‘k
/*
/‘k

/*
/t
/t
/*

North
South
East
West

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* Far South neighbor fault info */

/* Fault */

SOUTH,
NO_FAULT,
SS_EAST,
SS_WEST,

/*

/*
/*
/*
/*

Relation of fault to Far South neighbor

North
South
East
West

Appendix A - Simulation Source Code

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/

*/

*/
*/
*/
*/

*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/

*/

*/
*/
*/
*/

244

S_EAST,
S_WEST,
NO_FAULT,
NO_FAULT,

SELF,
NO_FAULT,
F_S_EAST,
F_S_WEST,

EAST,
ES_EAST,
WEST,
WS_WEST,

NO_FAULT,
NO_FAULT,
NO_FAULT,
NO_FAULT,

F_EAST,
F_WEST,

NO_FAULT,
NO_FAULT,

/*
/*
/*
/*

/*
/*
/t
/*

/*
/t

/*

/*
/*
/*
/*

/t
/*
/t
/*

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

/* Far East neighbor fault info */

/* Fault */

EN_EAST,
ES_EAST,
NO_FAULT,
EAST,

NO_FAULT,
N_EAST,
NO_FAULT,
S_EAST,

F_N_EAST,
F_S_EAST,
NO_FAULT,
SELF,

NO_FAULT,
NO_FAULT,
NN_EAST,
NORTH,

NO_FAULT,
NO_FAULT,
SS_EAST,
SOUTH,

NO_FAULT,
F_NORTH,
NO_FAULT,
F_SOUTH,

/* Relation of fault to Far East neighbor

/*
/*
/*
/*

/t
/*
/*
/*

/*
/*
/*
/x

/*
'/*
/*
/‘k

/*
/k
/*
/‘R

/*
/*
/*
/‘k

North
South
East
West

Northeast
Northwest
Southeast
Southwest

Far North
Far South
Far East
Far West

North of Northeast
East of Northeast
North of Northwest
West of Northwest

South of Southeast
East of Southeast
South of Southwest
West of Southwest

Far Northeast
Far Northwest
Far Southeast
Far Southwest

Appendix A - Simulation Source Code

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

245

/* Far West neighbor fault info */

/* Fault */ /* Relation of fault to Far West neighbor */
WN_WEST, /* North */
WS_WEST, /* South */
WEST, /* East */
NO_FAULT, /* West */
N_WEST, /* Northeast */
NO_FAULT, /* Northwest */
S_WEST, /* Southeast */
NO_FAULT, /* Southwest */
F_N_WEST, /* Far North */
F_S_WEST, /* Far South */
SELF, /* Far East */
NO_FAULT, /* Far West */
NN_WEST, /* North of Northeast */
NORTH, /* East of Northeast */
NO_FAULT, /* North of Northwest */
NO_FAULT, /* West of Northwest */
SS_WEST, /* South of Southeast */
SCUTH, /* East of Southeast */
NO_FAULT, /* South of Southwest */
NO_FAULT, /* West of Southwest */
F_NORTH, /* Far Northeast */
NO_FAULT, /* Far Northwest */
F_SOUTH, /* Far Southeast */
NO_FAULT, /* Far Southwest */

}:

Appendix A - Simulation Source Code 246

VITA

Shannon Edward Lawson was born on October 3, 1963 in Newport News,
Virginia. He was awarded the degree of Bachelor of Science in Computer Engineering in
May 1991 from Virginia Polytechnic Institute and State University, and entered the
graduate program in the university's Bradley Department of Electrical Engineering in
August 1991 to pursue a Master of Science degree. His current interests include fault-
tolerant computing, VLSI circuit design and testing, and microprocessor systems design.
He is a member of the IEEE, and the IEEE Computer Society. Following the completion
of his Master's degree, he will be accepting a position as a Systems Design Engineer with

the Motorola Semiconductor Products Sector in Austin, Texas.

Vita 247

